1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as Julian Day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implemention requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the Julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBM 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** On recent Windows platforms, the localtime_s() function is available 55 ** as part of the "Secure CRT". It is essentially equivalent to 56 ** localtime_r() available under most POSIX platforms, except that the 57 ** order of the parameters is reversed. 58 ** 59 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 60 ** 61 ** If the user has not indicated to use localtime_r() or localtime_s() 62 ** already, check for an MSVC build environment that provides 63 ** localtime_s(). 64 */ 65 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ 66 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 67 #define HAVE_LOCALTIME_S 1 68 #endif 69 70 /* 71 ** A structure for holding a single date and time. 72 */ 73 typedef struct DateTime DateTime; 74 struct DateTime { 75 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 76 int Y, M, D; /* Year, month, and day */ 77 int h, m; /* Hour and minutes */ 78 int tz; /* Timezone offset in minutes */ 79 double s; /* Seconds */ 80 char validYMD; /* True (1) if Y,M,D are valid */ 81 char validHMS; /* True (1) if h,m,s are valid */ 82 char validJD; /* True (1) if iJD is valid */ 83 char validTZ; /* True (1) if tz is valid */ 84 }; 85 86 87 /* 88 ** Convert zDate into one or more integers. Additional arguments 89 ** come in groups of 5 as follows: 90 ** 91 ** N number of digits in the integer 92 ** min minimum allowed value of the integer 93 ** max maximum allowed value of the integer 94 ** nextC first character after the integer 95 ** pVal where to write the integers value. 96 ** 97 ** Conversions continue until one with nextC==0 is encountered. 98 ** The function returns the number of successful conversions. 99 */ 100 static int getDigits(const char *zDate, ...){ 101 va_list ap; 102 int val; 103 int N; 104 int min; 105 int max; 106 int nextC; 107 int *pVal; 108 int cnt = 0; 109 va_start(ap, zDate); 110 do{ 111 N = va_arg(ap, int); 112 min = va_arg(ap, int); 113 max = va_arg(ap, int); 114 nextC = va_arg(ap, int); 115 pVal = va_arg(ap, int*); 116 val = 0; 117 while( N-- ){ 118 if( !sqlite3Isdigit(*zDate) ){ 119 goto end_getDigits; 120 } 121 val = val*10 + *zDate - '0'; 122 zDate++; 123 } 124 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ 125 goto end_getDigits; 126 } 127 *pVal = val; 128 zDate++; 129 cnt++; 130 }while( nextC ); 131 end_getDigits: 132 va_end(ap); 133 return cnt; 134 } 135 136 /* 137 ** Read text from z[] and convert into a floating point number. Return 138 ** the number of digits converted. 139 */ 140 #define getValue sqlite3AtoF 141 142 /* 143 ** Parse a timezone extension on the end of a date-time. 144 ** The extension is of the form: 145 ** 146 ** (+/-)HH:MM 147 ** 148 ** Or the "zulu" notation: 149 ** 150 ** Z 151 ** 152 ** If the parse is successful, write the number of minutes 153 ** of change in p->tz and return 0. If a parser error occurs, 154 ** return non-zero. 155 ** 156 ** A missing specifier is not considered an error. 157 */ 158 static int parseTimezone(const char *zDate, DateTime *p){ 159 int sgn = 0; 160 int nHr, nMn; 161 int c; 162 while( sqlite3Isspace(*zDate) ){ zDate++; } 163 p->tz = 0; 164 c = *zDate; 165 if( c=='-' ){ 166 sgn = -1; 167 }else if( c=='+' ){ 168 sgn = +1; 169 }else if( c=='Z' || c=='z' ){ 170 zDate++; 171 goto zulu_time; 172 }else{ 173 return c!=0; 174 } 175 zDate++; 176 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ 177 return 1; 178 } 179 zDate += 5; 180 p->tz = sgn*(nMn + nHr*60); 181 zulu_time: 182 while( sqlite3Isspace(*zDate) ){ zDate++; } 183 return *zDate!=0; 184 } 185 186 /* 187 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 188 ** The HH, MM, and SS must each be exactly 2 digits. The 189 ** fractional seconds FFFF can be one or more digits. 190 ** 191 ** Return 1 if there is a parsing error and 0 on success. 192 */ 193 static int parseHhMmSs(const char *zDate, DateTime *p){ 194 int h, m, s; 195 double ms = 0.0; 196 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ 197 return 1; 198 } 199 zDate += 5; 200 if( *zDate==':' ){ 201 zDate++; 202 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ 203 return 1; 204 } 205 zDate += 2; 206 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 207 double rScale = 1.0; 208 zDate++; 209 while( sqlite3Isdigit(*zDate) ){ 210 ms = ms*10.0 + *zDate - '0'; 211 rScale *= 10.0; 212 zDate++; 213 } 214 ms /= rScale; 215 } 216 }else{ 217 s = 0; 218 } 219 p->validJD = 0; 220 p->validHMS = 1; 221 p->h = h; 222 p->m = m; 223 p->s = s + ms; 224 if( parseTimezone(zDate, p) ) return 1; 225 p->validTZ = (p->tz!=0)?1:0; 226 return 0; 227 } 228 229 /* 230 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 231 ** that the YYYY-MM-DD is according to the Gregorian calendar. 232 ** 233 ** Reference: Meeus page 61 234 */ 235 static void computeJD(DateTime *p){ 236 int Y, M, D, A, B, X1, X2; 237 238 if( p->validJD ) return; 239 if( p->validYMD ){ 240 Y = p->Y; 241 M = p->M; 242 D = p->D; 243 }else{ 244 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 245 M = 1; 246 D = 1; 247 } 248 if( M<=2 ){ 249 Y--; 250 M += 12; 251 } 252 A = Y/100; 253 B = 2 - A + (A/4); 254 X1 = 36525*(Y+4716)/100; 255 X2 = 306001*(M+1)/10000; 256 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 257 p->validJD = 1; 258 if( p->validHMS ){ 259 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 260 if( p->validTZ ){ 261 p->iJD -= p->tz*60000; 262 p->validYMD = 0; 263 p->validHMS = 0; 264 p->validTZ = 0; 265 } 266 } 267 } 268 269 /* 270 ** Parse dates of the form 271 ** 272 ** YYYY-MM-DD HH:MM:SS.FFF 273 ** YYYY-MM-DD HH:MM:SS 274 ** YYYY-MM-DD HH:MM 275 ** YYYY-MM-DD 276 ** 277 ** Write the result into the DateTime structure and return 0 278 ** on success and 1 if the input string is not a well-formed 279 ** date. 280 */ 281 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 282 int Y, M, D, neg; 283 284 if( zDate[0]=='-' ){ 285 zDate++; 286 neg = 1; 287 }else{ 288 neg = 0; 289 } 290 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ 291 return 1; 292 } 293 zDate += 10; 294 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 295 if( parseHhMmSs(zDate, p)==0 ){ 296 /* We got the time */ 297 }else if( *zDate==0 ){ 298 p->validHMS = 0; 299 }else{ 300 return 1; 301 } 302 p->validJD = 0; 303 p->validYMD = 1; 304 p->Y = neg ? -Y : Y; 305 p->M = M; 306 p->D = D; 307 if( p->validTZ ){ 308 computeJD(p); 309 } 310 return 0; 311 } 312 313 /* 314 ** Set the time to the current time reported by the VFS 315 */ 316 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 317 double r; 318 sqlite3 *db = sqlite3_context_db_handle(context); 319 sqlite3OsCurrentTime(db->pVfs, &r); 320 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 321 p->validJD = 1; 322 } 323 324 /* 325 ** Attempt to parse the given string into a Julian Day Number. Return 326 ** the number of errors. 327 ** 328 ** The following are acceptable forms for the input string: 329 ** 330 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 331 ** DDDD.DD 332 ** now 333 ** 334 ** In the first form, the +/-HH:MM is always optional. The fractional 335 ** seconds extension (the ".FFF") is optional. The seconds portion 336 ** (":SS.FFF") is option. The year and date can be omitted as long 337 ** as there is a time string. The time string can be omitted as long 338 ** as there is a year and date. 339 */ 340 static int parseDateOrTime( 341 sqlite3_context *context, 342 const char *zDate, 343 DateTime *p 344 ){ 345 int isRealNum; /* Return from sqlite3IsNumber(). Not used */ 346 if( parseYyyyMmDd(zDate,p)==0 ){ 347 return 0; 348 }else if( parseHhMmSs(zDate, p)==0 ){ 349 return 0; 350 }else if( sqlite3StrICmp(zDate,"now")==0){ 351 setDateTimeToCurrent(context, p); 352 return 0; 353 }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){ 354 double r; 355 getValue(zDate, &r); 356 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 357 p->validJD = 1; 358 return 0; 359 } 360 return 1; 361 } 362 363 /* 364 ** Compute the Year, Month, and Day from the julian day number. 365 */ 366 static void computeYMD(DateTime *p){ 367 int Z, A, B, C, D, E, X1; 368 if( p->validYMD ) return; 369 if( !p->validJD ){ 370 p->Y = 2000; 371 p->M = 1; 372 p->D = 1; 373 }else{ 374 Z = (int)((p->iJD + 43200000)/86400000); 375 A = (int)((Z - 1867216.25)/36524.25); 376 A = Z + 1 + A - (A/4); 377 B = A + 1524; 378 C = (int)((B - 122.1)/365.25); 379 D = (36525*C)/100; 380 E = (int)((B-D)/30.6001); 381 X1 = (int)(30.6001*E); 382 p->D = B - D - X1; 383 p->M = E<14 ? E-1 : E-13; 384 p->Y = p->M>2 ? C - 4716 : C - 4715; 385 } 386 p->validYMD = 1; 387 } 388 389 /* 390 ** Compute the Hour, Minute, and Seconds from the julian day number. 391 */ 392 static void computeHMS(DateTime *p){ 393 int s; 394 if( p->validHMS ) return; 395 computeJD(p); 396 s = (int)((p->iJD + 43200000) % 86400000); 397 p->s = s/1000.0; 398 s = (int)p->s; 399 p->s -= s; 400 p->h = s/3600; 401 s -= p->h*3600; 402 p->m = s/60; 403 p->s += s - p->m*60; 404 p->validHMS = 1; 405 } 406 407 /* 408 ** Compute both YMD and HMS 409 */ 410 static void computeYMD_HMS(DateTime *p){ 411 computeYMD(p); 412 computeHMS(p); 413 } 414 415 /* 416 ** Clear the YMD and HMS and the TZ 417 */ 418 static void clearYMD_HMS_TZ(DateTime *p){ 419 p->validYMD = 0; 420 p->validHMS = 0; 421 p->validTZ = 0; 422 } 423 424 #ifndef SQLITE_OMIT_LOCALTIME 425 /* 426 ** Compute the difference (in milliseconds) 427 ** between localtime and UTC (a.k.a. GMT) 428 ** for the time value p where p is in UTC. 429 */ 430 static sqlite3_int64 localtimeOffset(DateTime *p){ 431 DateTime x, y; 432 time_t t; 433 x = *p; 434 computeYMD_HMS(&x); 435 if( x.Y<1971 || x.Y>=2038 ){ 436 x.Y = 2000; 437 x.M = 1; 438 x.D = 1; 439 x.h = 0; 440 x.m = 0; 441 x.s = 0.0; 442 } else { 443 int s = (int)(x.s + 0.5); 444 x.s = s; 445 } 446 x.tz = 0; 447 x.validJD = 0; 448 computeJD(&x); 449 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 450 #ifdef HAVE_LOCALTIME_R 451 { 452 struct tm sLocal; 453 localtime_r(&t, &sLocal); 454 y.Y = sLocal.tm_year + 1900; 455 y.M = sLocal.tm_mon + 1; 456 y.D = sLocal.tm_mday; 457 y.h = sLocal.tm_hour; 458 y.m = sLocal.tm_min; 459 y.s = sLocal.tm_sec; 460 } 461 #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S 462 { 463 struct tm sLocal; 464 localtime_s(&sLocal, &t); 465 y.Y = sLocal.tm_year + 1900; 466 y.M = sLocal.tm_mon + 1; 467 y.D = sLocal.tm_mday; 468 y.h = sLocal.tm_hour; 469 y.m = sLocal.tm_min; 470 y.s = sLocal.tm_sec; 471 } 472 #else 473 { 474 struct tm *pTm; 475 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 476 pTm = localtime(&t); 477 y.Y = pTm->tm_year + 1900; 478 y.M = pTm->tm_mon + 1; 479 y.D = pTm->tm_mday; 480 y.h = pTm->tm_hour; 481 y.m = pTm->tm_min; 482 y.s = pTm->tm_sec; 483 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 484 } 485 #endif 486 y.validYMD = 1; 487 y.validHMS = 1; 488 y.validJD = 0; 489 y.validTZ = 0; 490 computeJD(&y); 491 return y.iJD - x.iJD; 492 } 493 #endif /* SQLITE_OMIT_LOCALTIME */ 494 495 /* 496 ** Process a modifier to a date-time stamp. The modifiers are 497 ** as follows: 498 ** 499 ** NNN days 500 ** NNN hours 501 ** NNN minutes 502 ** NNN.NNNN seconds 503 ** NNN months 504 ** NNN years 505 ** start of month 506 ** start of year 507 ** start of week 508 ** start of day 509 ** weekday N 510 ** unixepoch 511 ** localtime 512 ** utc 513 ** 514 ** Return 0 on success and 1 if there is any kind of error. 515 */ 516 static int parseModifier(const char *zMod, DateTime *p){ 517 int rc = 1; 518 int n; 519 double r; 520 char *z, zBuf[30]; 521 z = zBuf; 522 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ 523 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; 524 } 525 z[n] = 0; 526 switch( z[0] ){ 527 #ifndef SQLITE_OMIT_LOCALTIME 528 case 'l': { 529 /* localtime 530 ** 531 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 532 ** show local time. 533 */ 534 if( strcmp(z, "localtime")==0 ){ 535 computeJD(p); 536 p->iJD += localtimeOffset(p); 537 clearYMD_HMS_TZ(p); 538 rc = 0; 539 } 540 break; 541 } 542 #endif 543 case 'u': { 544 /* 545 ** unixepoch 546 ** 547 ** Treat the current value of p->iJD as the number of 548 ** seconds since 1970. Convert to a real julian day number. 549 */ 550 if( strcmp(z, "unixepoch")==0 && p->validJD ){ 551 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; 552 clearYMD_HMS_TZ(p); 553 rc = 0; 554 } 555 #ifndef SQLITE_OMIT_LOCALTIME 556 else if( strcmp(z, "utc")==0 ){ 557 sqlite3_int64 c1; 558 computeJD(p); 559 c1 = localtimeOffset(p); 560 p->iJD -= c1; 561 clearYMD_HMS_TZ(p); 562 p->iJD += c1 - localtimeOffset(p); 563 rc = 0; 564 } 565 #endif 566 break; 567 } 568 case 'w': { 569 /* 570 ** weekday N 571 ** 572 ** Move the date to the same time on the next occurrence of 573 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 574 ** date is already on the appropriate weekday, this is a no-op. 575 */ 576 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 577 && (n=(int)r)==r && n>=0 && r<7 ){ 578 sqlite3_int64 Z; 579 computeYMD_HMS(p); 580 p->validTZ = 0; 581 p->validJD = 0; 582 computeJD(p); 583 Z = ((p->iJD + 129600000)/86400000) % 7; 584 if( Z>n ) Z -= 7; 585 p->iJD += (n - Z)*86400000; 586 clearYMD_HMS_TZ(p); 587 rc = 0; 588 } 589 break; 590 } 591 case 's': { 592 /* 593 ** start of TTTTT 594 ** 595 ** Move the date backwards to the beginning of the current day, 596 ** or month or year. 597 */ 598 if( strncmp(z, "start of ", 9)!=0 ) break; 599 z += 9; 600 computeYMD(p); 601 p->validHMS = 1; 602 p->h = p->m = 0; 603 p->s = 0.0; 604 p->validTZ = 0; 605 p->validJD = 0; 606 if( strcmp(z,"month")==0 ){ 607 p->D = 1; 608 rc = 0; 609 }else if( strcmp(z,"year")==0 ){ 610 computeYMD(p); 611 p->M = 1; 612 p->D = 1; 613 rc = 0; 614 }else if( strcmp(z,"day")==0 ){ 615 rc = 0; 616 } 617 break; 618 } 619 case '+': 620 case '-': 621 case '0': 622 case '1': 623 case '2': 624 case '3': 625 case '4': 626 case '5': 627 case '6': 628 case '7': 629 case '8': 630 case '9': { 631 double rRounder; 632 n = getValue(z, &r); 633 assert( n>=1 ); 634 if( z[n]==':' ){ 635 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 636 ** specified number of hours, minutes, seconds, and fractional seconds 637 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 638 ** omitted. 639 */ 640 const char *z2 = z; 641 DateTime tx; 642 sqlite3_int64 day; 643 if( !sqlite3Isdigit(*z2) ) z2++; 644 memset(&tx, 0, sizeof(tx)); 645 if( parseHhMmSs(z2, &tx) ) break; 646 computeJD(&tx); 647 tx.iJD -= 43200000; 648 day = tx.iJD/86400000; 649 tx.iJD -= day*86400000; 650 if( z[0]=='-' ) tx.iJD = -tx.iJD; 651 computeJD(p); 652 clearYMD_HMS_TZ(p); 653 p->iJD += tx.iJD; 654 rc = 0; 655 break; 656 } 657 z += n; 658 while( sqlite3Isspace(*z) ) z++; 659 n = sqlite3Strlen30(z); 660 if( n>10 || n<3 ) break; 661 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } 662 computeJD(p); 663 rc = 0; 664 rRounder = r<0 ? -0.5 : +0.5; 665 if( n==3 && strcmp(z,"day")==0 ){ 666 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); 667 }else if( n==4 && strcmp(z,"hour")==0 ){ 668 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); 669 }else if( n==6 && strcmp(z,"minute")==0 ){ 670 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); 671 }else if( n==6 && strcmp(z,"second")==0 ){ 672 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); 673 }else if( n==5 && strcmp(z,"month")==0 ){ 674 int x, y; 675 computeYMD_HMS(p); 676 p->M += (int)r; 677 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 678 p->Y += x; 679 p->M -= x*12; 680 p->validJD = 0; 681 computeJD(p); 682 y = (int)r; 683 if( y!=r ){ 684 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); 685 } 686 }else if( n==4 && strcmp(z,"year")==0 ){ 687 int y = (int)r; 688 computeYMD_HMS(p); 689 p->Y += y; 690 p->validJD = 0; 691 computeJD(p); 692 if( y!=r ){ 693 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); 694 } 695 }else{ 696 rc = 1; 697 } 698 clearYMD_HMS_TZ(p); 699 break; 700 } 701 default: { 702 break; 703 } 704 } 705 return rc; 706 } 707 708 /* 709 ** Process time function arguments. argv[0] is a date-time stamp. 710 ** argv[1] and following are modifiers. Parse them all and write 711 ** the resulting time into the DateTime structure p. Return 0 712 ** on success and 1 if there are any errors. 713 ** 714 ** If there are zero parameters (if even argv[0] is undefined) 715 ** then assume a default value of "now" for argv[0]. 716 */ 717 static int isDate( 718 sqlite3_context *context, 719 int argc, 720 sqlite3_value **argv, 721 DateTime *p 722 ){ 723 int i; 724 const unsigned char *z; 725 int eType; 726 memset(p, 0, sizeof(*p)); 727 if( argc==0 ){ 728 setDateTimeToCurrent(context, p); 729 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 730 || eType==SQLITE_INTEGER ){ 731 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); 732 p->validJD = 1; 733 }else{ 734 z = sqlite3_value_text(argv[0]); 735 if( !z || parseDateOrTime(context, (char*)z, p) ){ 736 return 1; 737 } 738 } 739 for(i=1; i<argc; i++){ 740 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ 741 return 1; 742 } 743 } 744 return 0; 745 } 746 747 748 /* 749 ** The following routines implement the various date and time functions 750 ** of SQLite. 751 */ 752 753 /* 754 ** julianday( TIMESTRING, MOD, MOD, ...) 755 ** 756 ** Return the julian day number of the date specified in the arguments 757 */ 758 static void juliandayFunc( 759 sqlite3_context *context, 760 int argc, 761 sqlite3_value **argv 762 ){ 763 DateTime x; 764 if( isDate(context, argc, argv, &x)==0 ){ 765 computeJD(&x); 766 sqlite3_result_double(context, x.iJD/86400000.0); 767 } 768 } 769 770 /* 771 ** datetime( TIMESTRING, MOD, MOD, ...) 772 ** 773 ** Return YYYY-MM-DD HH:MM:SS 774 */ 775 static void datetimeFunc( 776 sqlite3_context *context, 777 int argc, 778 sqlite3_value **argv 779 ){ 780 DateTime x; 781 if( isDate(context, argc, argv, &x)==0 ){ 782 char zBuf[100]; 783 computeYMD_HMS(&x); 784 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 785 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 786 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 787 } 788 } 789 790 /* 791 ** time( TIMESTRING, MOD, MOD, ...) 792 ** 793 ** Return HH:MM:SS 794 */ 795 static void timeFunc( 796 sqlite3_context *context, 797 int argc, 798 sqlite3_value **argv 799 ){ 800 DateTime x; 801 if( isDate(context, argc, argv, &x)==0 ){ 802 char zBuf[100]; 803 computeHMS(&x); 804 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 805 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 806 } 807 } 808 809 /* 810 ** date( TIMESTRING, MOD, MOD, ...) 811 ** 812 ** Return YYYY-MM-DD 813 */ 814 static void dateFunc( 815 sqlite3_context *context, 816 int argc, 817 sqlite3_value **argv 818 ){ 819 DateTime x; 820 if( isDate(context, argc, argv, &x)==0 ){ 821 char zBuf[100]; 822 computeYMD(&x); 823 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 824 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 825 } 826 } 827 828 /* 829 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 830 ** 831 ** Return a string described by FORMAT. Conversions as follows: 832 ** 833 ** %d day of month 834 ** %f ** fractional seconds SS.SSS 835 ** %H hour 00-24 836 ** %j day of year 000-366 837 ** %J ** Julian day number 838 ** %m month 01-12 839 ** %M minute 00-59 840 ** %s seconds since 1970-01-01 841 ** %S seconds 00-59 842 ** %w day of week 0-6 sunday==0 843 ** %W week of year 00-53 844 ** %Y year 0000-9999 845 ** %% % 846 */ 847 static void strftimeFunc( 848 sqlite3_context *context, 849 int argc, 850 sqlite3_value **argv 851 ){ 852 DateTime x; 853 u64 n; 854 size_t i,j; 855 char *z; 856 sqlite3 *db; 857 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); 858 char zBuf[100]; 859 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 860 db = sqlite3_context_db_handle(context); 861 for(i=0, n=1; zFmt[i]; i++, n++){ 862 if( zFmt[i]=='%' ){ 863 switch( zFmt[i+1] ){ 864 case 'd': 865 case 'H': 866 case 'm': 867 case 'M': 868 case 'S': 869 case 'W': 870 n++; 871 /* fall thru */ 872 case 'w': 873 case '%': 874 break; 875 case 'f': 876 n += 8; 877 break; 878 case 'j': 879 n += 3; 880 break; 881 case 'Y': 882 n += 8; 883 break; 884 case 's': 885 case 'J': 886 n += 50; 887 break; 888 default: 889 return; /* ERROR. return a NULL */ 890 } 891 i++; 892 } 893 } 894 testcase( n==sizeof(zBuf)-1 ); 895 testcase( n==sizeof(zBuf) ); 896 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 897 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 898 if( n<sizeof(zBuf) ){ 899 z = zBuf; 900 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 901 sqlite3_result_error_toobig(context); 902 return; 903 }else{ 904 z = sqlite3DbMallocRaw(db, (int)n); 905 if( z==0 ){ 906 sqlite3_result_error_nomem(context); 907 return; 908 } 909 } 910 computeJD(&x); 911 computeYMD_HMS(&x); 912 for(i=j=0; zFmt[i]; i++){ 913 if( zFmt[i]!='%' ){ 914 z[j++] = zFmt[i]; 915 }else{ 916 i++; 917 switch( zFmt[i] ){ 918 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 919 case 'f': { 920 double s = x.s; 921 if( s>59.999 ) s = 59.999; 922 sqlite3_snprintf(7, &z[j],"%06.3f", s); 923 j += sqlite3Strlen30(&z[j]); 924 break; 925 } 926 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 927 case 'W': /* Fall thru */ 928 case 'j': { 929 int nDay; /* Number of days since 1st day of year */ 930 DateTime y = x; 931 y.validJD = 0; 932 y.M = 1; 933 y.D = 1; 934 computeJD(&y); 935 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 936 if( zFmt[i]=='W' ){ 937 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 938 wd = (int)(((x.iJD+43200000)/86400000)%7); 939 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 940 j += 2; 941 }else{ 942 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 943 j += 3; 944 } 945 break; 946 } 947 case 'J': { 948 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 949 j+=sqlite3Strlen30(&z[j]); 950 break; 951 } 952 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 953 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 954 case 's': { 955 sqlite3_snprintf(30,&z[j],"%lld", 956 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 957 j += sqlite3Strlen30(&z[j]); 958 break; 959 } 960 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 961 case 'w': { 962 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 963 break; 964 } 965 case 'Y': { 966 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 967 break; 968 } 969 default: z[j++] = '%'; break; 970 } 971 } 972 } 973 z[j] = 0; 974 sqlite3_result_text(context, z, -1, 975 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 976 } 977 978 /* 979 ** current_time() 980 ** 981 ** This function returns the same value as time('now'). 982 */ 983 static void ctimeFunc( 984 sqlite3_context *context, 985 int NotUsed, 986 sqlite3_value **NotUsed2 987 ){ 988 UNUSED_PARAMETER2(NotUsed, NotUsed2); 989 timeFunc(context, 0, 0); 990 } 991 992 /* 993 ** current_date() 994 ** 995 ** This function returns the same value as date('now'). 996 */ 997 static void cdateFunc( 998 sqlite3_context *context, 999 int NotUsed, 1000 sqlite3_value **NotUsed2 1001 ){ 1002 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1003 dateFunc(context, 0, 0); 1004 } 1005 1006 /* 1007 ** current_timestamp() 1008 ** 1009 ** This function returns the same value as datetime('now'). 1010 */ 1011 static void ctimestampFunc( 1012 sqlite3_context *context, 1013 int NotUsed, 1014 sqlite3_value **NotUsed2 1015 ){ 1016 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1017 datetimeFunc(context, 0, 0); 1018 } 1019 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1020 1021 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1022 /* 1023 ** If the library is compiled to omit the full-scale date and time 1024 ** handling (to get a smaller binary), the following minimal version 1025 ** of the functions current_time(), current_date() and current_timestamp() 1026 ** are included instead. This is to support column declarations that 1027 ** include "DEFAULT CURRENT_TIME" etc. 1028 ** 1029 ** This function uses the C-library functions time(), gmtime() 1030 ** and strftime(). The format string to pass to strftime() is supplied 1031 ** as the user-data for the function. 1032 */ 1033 static void currentTimeFunc( 1034 sqlite3_context *context, 1035 int argc, 1036 sqlite3_value **argv 1037 ){ 1038 time_t t; 1039 char *zFormat = (char *)sqlite3_user_data(context); 1040 sqlite3 *db; 1041 double rT; 1042 char zBuf[20]; 1043 1044 UNUSED_PARAMETER(argc); 1045 UNUSED_PARAMETER(argv); 1046 1047 db = sqlite3_context_db_handle(context); 1048 sqlite3OsCurrentTime(db->pVfs, &rT); 1049 #ifndef SQLITE_OMIT_FLOATING_POINT 1050 t = 86400.0*(rT - 2440587.5) + 0.5; 1051 #else 1052 /* without floating point support, rT will have 1053 ** already lost fractional day precision. 1054 */ 1055 t = 86400 * (rT - 2440587) - 43200; 1056 #endif 1057 #ifdef HAVE_GMTIME_R 1058 { 1059 struct tm sNow; 1060 gmtime_r(&t, &sNow); 1061 strftime(zBuf, 20, zFormat, &sNow); 1062 } 1063 #else 1064 { 1065 struct tm *pTm; 1066 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1067 pTm = gmtime(&t); 1068 strftime(zBuf, 20, zFormat, pTm); 1069 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1070 } 1071 #endif 1072 1073 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1074 } 1075 #endif 1076 1077 /* 1078 ** This function registered all of the above C functions as SQL 1079 ** functions. This should be the only routine in this file with 1080 ** external linkage. 1081 */ 1082 void sqlite3RegisterDateTimeFunctions(void){ 1083 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { 1084 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1085 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1086 FUNCTION(date, -1, 0, 0, dateFunc ), 1087 FUNCTION(time, -1, 0, 0, timeFunc ), 1088 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1089 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1090 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1091 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1092 FUNCTION(current_date, 0, 0, 0, cdateFunc ), 1093 #else 1094 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1095 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc), 1096 STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1097 #endif 1098 }; 1099 int i; 1100 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1101 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); 1102 1103 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ 1104 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1105 } 1106 } 1107