1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** $Id: date.c,v 1.107 2009/05/03 20:23:53 drh Exp $ 20 ** 21 ** SQLite processes all times and dates as Julian Day numbers. The 22 ** dates and times are stored as the number of days since noon 23 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 24 ** calendar system. 25 ** 26 ** 1970-01-01 00:00:00 is JD 2440587.5 27 ** 2000-01-01 00:00:00 is JD 2451544.5 28 ** 29 ** This implemention requires years to be expressed as a 4-digit number 30 ** which means that only dates between 0000-01-01 and 9999-12-31 can 31 ** be represented, even though julian day numbers allow a much wider 32 ** range of dates. 33 ** 34 ** The Gregorian calendar system is used for all dates and times, 35 ** even those that predate the Gregorian calendar. Historians usually 36 ** use the Julian calendar for dates prior to 1582-10-15 and for some 37 ** dates afterwards, depending on locale. Beware of this difference. 38 ** 39 ** The conversion algorithms are implemented based on descriptions 40 ** in the following text: 41 ** 42 ** Jean Meeus 43 ** Astronomical Algorithms, 2nd Edition, 1998 44 ** ISBM 0-943396-61-1 45 ** Willmann-Bell, Inc 46 ** Richmond, Virginia (USA) 47 */ 48 #include "sqliteInt.h" 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <time.h> 52 53 #ifndef SQLITE_OMIT_DATETIME_FUNCS 54 55 /* 56 ** On recent Windows platforms, the localtime_s() function is available 57 ** as part of the "Secure CRT". It is essentially equivalent to 58 ** localtime_r() available under most POSIX platforms, except that the 59 ** order of the parameters is reversed. 60 ** 61 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 62 ** 63 ** If the user has not indicated to use localtime_r() or localtime_s() 64 ** already, check for an MSVC build environment that provides 65 ** localtime_s(). 66 */ 67 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ 68 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 69 #define HAVE_LOCALTIME_S 1 70 #endif 71 72 /* 73 ** A structure for holding a single date and time. 74 */ 75 typedef struct DateTime DateTime; 76 struct DateTime { 77 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 78 int Y, M, D; /* Year, month, and day */ 79 int h, m; /* Hour and minutes */ 80 int tz; /* Timezone offset in minutes */ 81 double s; /* Seconds */ 82 char validYMD; /* True (1) if Y,M,D are valid */ 83 char validHMS; /* True (1) if h,m,s are valid */ 84 char validJD; /* True (1) if iJD is valid */ 85 char validTZ; /* True (1) if tz is valid */ 86 }; 87 88 89 /* 90 ** Convert zDate into one or more integers. Additional arguments 91 ** come in groups of 5 as follows: 92 ** 93 ** N number of digits in the integer 94 ** min minimum allowed value of the integer 95 ** max maximum allowed value of the integer 96 ** nextC first character after the integer 97 ** pVal where to write the integers value. 98 ** 99 ** Conversions continue until one with nextC==0 is encountered. 100 ** The function returns the number of successful conversions. 101 */ 102 static int getDigits(const char *zDate, ...){ 103 va_list ap; 104 int val; 105 int N; 106 int min; 107 int max; 108 int nextC; 109 int *pVal; 110 int cnt = 0; 111 va_start(ap, zDate); 112 do{ 113 N = va_arg(ap, int); 114 min = va_arg(ap, int); 115 max = va_arg(ap, int); 116 nextC = va_arg(ap, int); 117 pVal = va_arg(ap, int*); 118 val = 0; 119 while( N-- ){ 120 if( !sqlite3Isdigit(*zDate) ){ 121 goto end_getDigits; 122 } 123 val = val*10 + *zDate - '0'; 124 zDate++; 125 } 126 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ 127 goto end_getDigits; 128 } 129 *pVal = val; 130 zDate++; 131 cnt++; 132 }while( nextC ); 133 end_getDigits: 134 va_end(ap); 135 return cnt; 136 } 137 138 /* 139 ** Read text from z[] and convert into a floating point number. Return 140 ** the number of digits converted. 141 */ 142 #define getValue sqlite3AtoF 143 144 /* 145 ** Parse a timezone extension on the end of a date-time. 146 ** The extension is of the form: 147 ** 148 ** (+/-)HH:MM 149 ** 150 ** Or the "zulu" notation: 151 ** 152 ** Z 153 ** 154 ** If the parse is successful, write the number of minutes 155 ** of change in p->tz and return 0. If a parser error occurs, 156 ** return non-zero. 157 ** 158 ** A missing specifier is not considered an error. 159 */ 160 static int parseTimezone(const char *zDate, DateTime *p){ 161 int sgn = 0; 162 int nHr, nMn; 163 int c; 164 while( sqlite3Isspace(*zDate) ){ zDate++; } 165 p->tz = 0; 166 c = *zDate; 167 if( c=='-' ){ 168 sgn = -1; 169 }else if( c=='+' ){ 170 sgn = +1; 171 }else if( c=='Z' || c=='z' ){ 172 zDate++; 173 goto zulu_time; 174 }else{ 175 return c!=0; 176 } 177 zDate++; 178 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ 179 return 1; 180 } 181 zDate += 5; 182 p->tz = sgn*(nMn + nHr*60); 183 zulu_time: 184 while( sqlite3Isspace(*zDate) ){ zDate++; } 185 return *zDate!=0; 186 } 187 188 /* 189 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 190 ** The HH, MM, and SS must each be exactly 2 digits. The 191 ** fractional seconds FFFF can be one or more digits. 192 ** 193 ** Return 1 if there is a parsing error and 0 on success. 194 */ 195 static int parseHhMmSs(const char *zDate, DateTime *p){ 196 int h, m, s; 197 double ms = 0.0; 198 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ 199 return 1; 200 } 201 zDate += 5; 202 if( *zDate==':' ){ 203 zDate++; 204 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ 205 return 1; 206 } 207 zDate += 2; 208 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 209 double rScale = 1.0; 210 zDate++; 211 while( sqlite3Isdigit(*zDate) ){ 212 ms = ms*10.0 + *zDate - '0'; 213 rScale *= 10.0; 214 zDate++; 215 } 216 ms /= rScale; 217 } 218 }else{ 219 s = 0; 220 } 221 p->validJD = 0; 222 p->validHMS = 1; 223 p->h = h; 224 p->m = m; 225 p->s = s + ms; 226 if( parseTimezone(zDate, p) ) return 1; 227 p->validTZ = (p->tz!=0)?1:0; 228 return 0; 229 } 230 231 /* 232 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 233 ** that the YYYY-MM-DD is according to the Gregorian calendar. 234 ** 235 ** Reference: Meeus page 61 236 */ 237 static void computeJD(DateTime *p){ 238 int Y, M, D, A, B, X1, X2; 239 240 if( p->validJD ) return; 241 if( p->validYMD ){ 242 Y = p->Y; 243 M = p->M; 244 D = p->D; 245 }else{ 246 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 247 M = 1; 248 D = 1; 249 } 250 if( M<=2 ){ 251 Y--; 252 M += 12; 253 } 254 A = Y/100; 255 B = 2 - A + (A/4); 256 X1 = 36525*(Y+4716)/100; 257 X2 = 306001*(M+1)/10000; 258 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 259 p->validJD = 1; 260 if( p->validHMS ){ 261 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 262 if( p->validTZ ){ 263 p->iJD -= p->tz*60000; 264 p->validYMD = 0; 265 p->validHMS = 0; 266 p->validTZ = 0; 267 } 268 } 269 } 270 271 /* 272 ** Parse dates of the form 273 ** 274 ** YYYY-MM-DD HH:MM:SS.FFF 275 ** YYYY-MM-DD HH:MM:SS 276 ** YYYY-MM-DD HH:MM 277 ** YYYY-MM-DD 278 ** 279 ** Write the result into the DateTime structure and return 0 280 ** on success and 1 if the input string is not a well-formed 281 ** date. 282 */ 283 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 284 int Y, M, D, neg; 285 286 if( zDate[0]=='-' ){ 287 zDate++; 288 neg = 1; 289 }else{ 290 neg = 0; 291 } 292 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ 293 return 1; 294 } 295 zDate += 10; 296 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 297 if( parseHhMmSs(zDate, p)==0 ){ 298 /* We got the time */ 299 }else if( *zDate==0 ){ 300 p->validHMS = 0; 301 }else{ 302 return 1; 303 } 304 p->validJD = 0; 305 p->validYMD = 1; 306 p->Y = neg ? -Y : Y; 307 p->M = M; 308 p->D = D; 309 if( p->validTZ ){ 310 computeJD(p); 311 } 312 return 0; 313 } 314 315 /* 316 ** Set the time to the current time reported by the VFS 317 */ 318 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 319 double r; 320 sqlite3 *db = sqlite3_context_db_handle(context); 321 sqlite3OsCurrentTime(db->pVfs, &r); 322 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 323 p->validJD = 1; 324 } 325 326 /* 327 ** Attempt to parse the given string into a Julian Day Number. Return 328 ** the number of errors. 329 ** 330 ** The following are acceptable forms for the input string: 331 ** 332 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 333 ** DDDD.DD 334 ** now 335 ** 336 ** In the first form, the +/-HH:MM is always optional. The fractional 337 ** seconds extension (the ".FFF") is optional. The seconds portion 338 ** (":SS.FFF") is option. The year and date can be omitted as long 339 ** as there is a time string. The time string can be omitted as long 340 ** as there is a year and date. 341 */ 342 static int parseDateOrTime( 343 sqlite3_context *context, 344 const char *zDate, 345 DateTime *p 346 ){ 347 int isRealNum; /* Return from sqlite3IsNumber(). Not used */ 348 if( parseYyyyMmDd(zDate,p)==0 ){ 349 return 0; 350 }else if( parseHhMmSs(zDate, p)==0 ){ 351 return 0; 352 }else if( sqlite3StrICmp(zDate,"now")==0){ 353 setDateTimeToCurrent(context, p); 354 return 0; 355 }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){ 356 double r; 357 getValue(zDate, &r); 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 return 0; 361 } 362 return 1; 363 } 364 365 /* 366 ** Compute the Year, Month, and Day from the julian day number. 367 */ 368 static void computeYMD(DateTime *p){ 369 int Z, A, B, C, D, E, X1; 370 if( p->validYMD ) return; 371 if( !p->validJD ){ 372 p->Y = 2000; 373 p->M = 1; 374 p->D = 1; 375 }else{ 376 Z = (int)((p->iJD + 43200000)/86400000); 377 A = (int)((Z - 1867216.25)/36524.25); 378 A = Z + 1 + A - (A/4); 379 B = A + 1524; 380 C = (int)((B - 122.1)/365.25); 381 D = (36525*C)/100; 382 E = (int)((B-D)/30.6001); 383 X1 = (int)(30.6001*E); 384 p->D = B - D - X1; 385 p->M = E<14 ? E-1 : E-13; 386 p->Y = p->M>2 ? C - 4716 : C - 4715; 387 } 388 p->validYMD = 1; 389 } 390 391 /* 392 ** Compute the Hour, Minute, and Seconds from the julian day number. 393 */ 394 static void computeHMS(DateTime *p){ 395 int s; 396 if( p->validHMS ) return; 397 computeJD(p); 398 s = (int)((p->iJD + 43200000) % 86400000); 399 p->s = s/1000.0; 400 s = (int)p->s; 401 p->s -= s; 402 p->h = s/3600; 403 s -= p->h*3600; 404 p->m = s/60; 405 p->s += s - p->m*60; 406 p->validHMS = 1; 407 } 408 409 /* 410 ** Compute both YMD and HMS 411 */ 412 static void computeYMD_HMS(DateTime *p){ 413 computeYMD(p); 414 computeHMS(p); 415 } 416 417 /* 418 ** Clear the YMD and HMS and the TZ 419 */ 420 static void clearYMD_HMS_TZ(DateTime *p){ 421 p->validYMD = 0; 422 p->validHMS = 0; 423 p->validTZ = 0; 424 } 425 426 #ifndef SQLITE_OMIT_LOCALTIME 427 /* 428 ** Compute the difference (in milliseconds) 429 ** between localtime and UTC (a.k.a. GMT) 430 ** for the time value p where p is in UTC. 431 */ 432 static sqlite3_int64 localtimeOffset(DateTime *p){ 433 DateTime x, y; 434 time_t t; 435 x = *p; 436 computeYMD_HMS(&x); 437 if( x.Y<1971 || x.Y>=2038 ){ 438 x.Y = 2000; 439 x.M = 1; 440 x.D = 1; 441 x.h = 0; 442 x.m = 0; 443 x.s = 0.0; 444 } else { 445 int s = (int)(x.s + 0.5); 446 x.s = s; 447 } 448 x.tz = 0; 449 x.validJD = 0; 450 computeJD(&x); 451 t = x.iJD/1000 - 21086676*(i64)10000; 452 #ifdef HAVE_LOCALTIME_R 453 { 454 struct tm sLocal; 455 localtime_r(&t, &sLocal); 456 y.Y = sLocal.tm_year + 1900; 457 y.M = sLocal.tm_mon + 1; 458 y.D = sLocal.tm_mday; 459 y.h = sLocal.tm_hour; 460 y.m = sLocal.tm_min; 461 y.s = sLocal.tm_sec; 462 } 463 #elif defined(HAVE_LOCALTIME_S) 464 { 465 struct tm sLocal; 466 localtime_s(&sLocal, &t); 467 y.Y = sLocal.tm_year + 1900; 468 y.M = sLocal.tm_mon + 1; 469 y.D = sLocal.tm_mday; 470 y.h = sLocal.tm_hour; 471 y.m = sLocal.tm_min; 472 y.s = sLocal.tm_sec; 473 } 474 #else 475 { 476 struct tm *pTm; 477 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 478 pTm = localtime(&t); 479 y.Y = pTm->tm_year + 1900; 480 y.M = pTm->tm_mon + 1; 481 y.D = pTm->tm_mday; 482 y.h = pTm->tm_hour; 483 y.m = pTm->tm_min; 484 y.s = pTm->tm_sec; 485 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 486 } 487 #endif 488 y.validYMD = 1; 489 y.validHMS = 1; 490 y.validJD = 0; 491 y.validTZ = 0; 492 computeJD(&y); 493 return y.iJD - x.iJD; 494 } 495 #endif /* SQLITE_OMIT_LOCALTIME */ 496 497 /* 498 ** Process a modifier to a date-time stamp. The modifiers are 499 ** as follows: 500 ** 501 ** NNN days 502 ** NNN hours 503 ** NNN minutes 504 ** NNN.NNNN seconds 505 ** NNN months 506 ** NNN years 507 ** start of month 508 ** start of year 509 ** start of week 510 ** start of day 511 ** weekday N 512 ** unixepoch 513 ** localtime 514 ** utc 515 ** 516 ** Return 0 on success and 1 if there is any kind of error. 517 */ 518 static int parseModifier(const char *zMod, DateTime *p){ 519 int rc = 1; 520 int n; 521 double r; 522 char *z, zBuf[30]; 523 z = zBuf; 524 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ 525 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; 526 } 527 z[n] = 0; 528 switch( z[0] ){ 529 #ifndef SQLITE_OMIT_LOCALTIME 530 case 'l': { 531 /* localtime 532 ** 533 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 534 ** show local time. 535 */ 536 if( strcmp(z, "localtime")==0 ){ 537 computeJD(p); 538 p->iJD += localtimeOffset(p); 539 clearYMD_HMS_TZ(p); 540 rc = 0; 541 } 542 break; 543 } 544 #endif 545 case 'u': { 546 /* 547 ** unixepoch 548 ** 549 ** Treat the current value of p->iJD as the number of 550 ** seconds since 1970. Convert to a real julian day number. 551 */ 552 if( strcmp(z, "unixepoch")==0 && p->validJD ){ 553 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; 554 clearYMD_HMS_TZ(p); 555 rc = 0; 556 } 557 #ifndef SQLITE_OMIT_LOCALTIME 558 else if( strcmp(z, "utc")==0 ){ 559 sqlite3_int64 c1; 560 computeJD(p); 561 c1 = localtimeOffset(p); 562 p->iJD -= c1; 563 clearYMD_HMS_TZ(p); 564 p->iJD += c1 - localtimeOffset(p); 565 rc = 0; 566 } 567 #endif 568 break; 569 } 570 case 'w': { 571 /* 572 ** weekday N 573 ** 574 ** Move the date to the same time on the next occurrence of 575 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 576 ** date is already on the appropriate weekday, this is a no-op. 577 */ 578 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 579 && (n=(int)r)==r && n>=0 && r<7 ){ 580 sqlite3_int64 Z; 581 computeYMD_HMS(p); 582 p->validTZ = 0; 583 p->validJD = 0; 584 computeJD(p); 585 Z = ((p->iJD + 129600000)/86400000) % 7; 586 if( Z>n ) Z -= 7; 587 p->iJD += (n - Z)*86400000; 588 clearYMD_HMS_TZ(p); 589 rc = 0; 590 } 591 break; 592 } 593 case 's': { 594 /* 595 ** start of TTTTT 596 ** 597 ** Move the date backwards to the beginning of the current day, 598 ** or month or year. 599 */ 600 if( strncmp(z, "start of ", 9)!=0 ) break; 601 z += 9; 602 computeYMD(p); 603 p->validHMS = 1; 604 p->h = p->m = 0; 605 p->s = 0.0; 606 p->validTZ = 0; 607 p->validJD = 0; 608 if( strcmp(z,"month")==0 ){ 609 p->D = 1; 610 rc = 0; 611 }else if( strcmp(z,"year")==0 ){ 612 computeYMD(p); 613 p->M = 1; 614 p->D = 1; 615 rc = 0; 616 }else if( strcmp(z,"day")==0 ){ 617 rc = 0; 618 } 619 break; 620 } 621 case '+': 622 case '-': 623 case '0': 624 case '1': 625 case '2': 626 case '3': 627 case '4': 628 case '5': 629 case '6': 630 case '7': 631 case '8': 632 case '9': { 633 double rRounder; 634 n = getValue(z, &r); 635 assert( n>=1 ); 636 if( z[n]==':' ){ 637 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 638 ** specified number of hours, minutes, seconds, and fractional seconds 639 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 640 ** omitted. 641 */ 642 const char *z2 = z; 643 DateTime tx; 644 sqlite3_int64 day; 645 if( !sqlite3Isdigit(*z2) ) z2++; 646 memset(&tx, 0, sizeof(tx)); 647 if( parseHhMmSs(z2, &tx) ) break; 648 computeJD(&tx); 649 tx.iJD -= 43200000; 650 day = tx.iJD/86400000; 651 tx.iJD -= day*86400000; 652 if( z[0]=='-' ) tx.iJD = -tx.iJD; 653 computeJD(p); 654 clearYMD_HMS_TZ(p); 655 p->iJD += tx.iJD; 656 rc = 0; 657 break; 658 } 659 z += n; 660 while( sqlite3Isspace(*z) ) z++; 661 n = sqlite3Strlen30(z); 662 if( n>10 || n<3 ) break; 663 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } 664 computeJD(p); 665 rc = 0; 666 rRounder = r<0 ? -0.5 : +0.5; 667 if( n==3 && strcmp(z,"day")==0 ){ 668 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); 669 }else if( n==4 && strcmp(z,"hour")==0 ){ 670 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); 671 }else if( n==6 && strcmp(z,"minute")==0 ){ 672 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); 673 }else if( n==6 && strcmp(z,"second")==0 ){ 674 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); 675 }else if( n==5 && strcmp(z,"month")==0 ){ 676 int x, y; 677 computeYMD_HMS(p); 678 p->M += (int)r; 679 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 680 p->Y += x; 681 p->M -= x*12; 682 p->validJD = 0; 683 computeJD(p); 684 y = (int)r; 685 if( y!=r ){ 686 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); 687 } 688 }else if( n==4 && strcmp(z,"year")==0 ){ 689 int y = (int)r; 690 computeYMD_HMS(p); 691 p->Y += y; 692 p->validJD = 0; 693 computeJD(p); 694 if( y!=r ){ 695 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); 696 } 697 }else{ 698 rc = 1; 699 } 700 clearYMD_HMS_TZ(p); 701 break; 702 } 703 default: { 704 break; 705 } 706 } 707 return rc; 708 } 709 710 /* 711 ** Process time function arguments. argv[0] is a date-time stamp. 712 ** argv[1] and following are modifiers. Parse them all and write 713 ** the resulting time into the DateTime structure p. Return 0 714 ** on success and 1 if there are any errors. 715 ** 716 ** If there are zero parameters (if even argv[0] is undefined) 717 ** then assume a default value of "now" for argv[0]. 718 */ 719 static int isDate( 720 sqlite3_context *context, 721 int argc, 722 sqlite3_value **argv, 723 DateTime *p 724 ){ 725 int i; 726 const unsigned char *z; 727 int eType; 728 memset(p, 0, sizeof(*p)); 729 if( argc==0 ){ 730 setDateTimeToCurrent(context, p); 731 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 732 || eType==SQLITE_INTEGER ){ 733 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); 734 p->validJD = 1; 735 }else{ 736 z = sqlite3_value_text(argv[0]); 737 if( !z || parseDateOrTime(context, (char*)z, p) ){ 738 return 1; 739 } 740 } 741 for(i=1; i<argc; i++){ 742 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ 743 return 1; 744 } 745 } 746 return 0; 747 } 748 749 750 /* 751 ** The following routines implement the various date and time functions 752 ** of SQLite. 753 */ 754 755 /* 756 ** julianday( TIMESTRING, MOD, MOD, ...) 757 ** 758 ** Return the julian day number of the date specified in the arguments 759 */ 760 static void juliandayFunc( 761 sqlite3_context *context, 762 int argc, 763 sqlite3_value **argv 764 ){ 765 DateTime x; 766 if( isDate(context, argc, argv, &x)==0 ){ 767 computeJD(&x); 768 sqlite3_result_double(context, x.iJD/86400000.0); 769 } 770 } 771 772 /* 773 ** datetime( TIMESTRING, MOD, MOD, ...) 774 ** 775 ** Return YYYY-MM-DD HH:MM:SS 776 */ 777 static void datetimeFunc( 778 sqlite3_context *context, 779 int argc, 780 sqlite3_value **argv 781 ){ 782 DateTime x; 783 if( isDate(context, argc, argv, &x)==0 ){ 784 char zBuf[100]; 785 computeYMD_HMS(&x); 786 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 787 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 788 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 789 } 790 } 791 792 /* 793 ** time( TIMESTRING, MOD, MOD, ...) 794 ** 795 ** Return HH:MM:SS 796 */ 797 static void timeFunc( 798 sqlite3_context *context, 799 int argc, 800 sqlite3_value **argv 801 ){ 802 DateTime x; 803 if( isDate(context, argc, argv, &x)==0 ){ 804 char zBuf[100]; 805 computeHMS(&x); 806 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 807 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 808 } 809 } 810 811 /* 812 ** date( TIMESTRING, MOD, MOD, ...) 813 ** 814 ** Return YYYY-MM-DD 815 */ 816 static void dateFunc( 817 sqlite3_context *context, 818 int argc, 819 sqlite3_value **argv 820 ){ 821 DateTime x; 822 if( isDate(context, argc, argv, &x)==0 ){ 823 char zBuf[100]; 824 computeYMD(&x); 825 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 826 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 827 } 828 } 829 830 /* 831 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 832 ** 833 ** Return a string described by FORMAT. Conversions as follows: 834 ** 835 ** %d day of month 836 ** %f ** fractional seconds SS.SSS 837 ** %H hour 00-24 838 ** %j day of year 000-366 839 ** %J ** Julian day number 840 ** %m month 01-12 841 ** %M minute 00-59 842 ** %s seconds since 1970-01-01 843 ** %S seconds 00-59 844 ** %w day of week 0-6 sunday==0 845 ** %W week of year 00-53 846 ** %Y year 0000-9999 847 ** %% % 848 */ 849 static void strftimeFunc( 850 sqlite3_context *context, 851 int argc, 852 sqlite3_value **argv 853 ){ 854 DateTime x; 855 u64 n; 856 size_t i,j; 857 char *z; 858 sqlite3 *db; 859 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); 860 char zBuf[100]; 861 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 862 db = sqlite3_context_db_handle(context); 863 for(i=0, n=1; zFmt[i]; i++, n++){ 864 if( zFmt[i]=='%' ){ 865 switch( zFmt[i+1] ){ 866 case 'd': 867 case 'H': 868 case 'm': 869 case 'M': 870 case 'S': 871 case 'W': 872 n++; 873 /* fall thru */ 874 case 'w': 875 case '%': 876 break; 877 case 'f': 878 n += 8; 879 break; 880 case 'j': 881 n += 3; 882 break; 883 case 'Y': 884 n += 8; 885 break; 886 case 's': 887 case 'J': 888 n += 50; 889 break; 890 default: 891 return; /* ERROR. return a NULL */ 892 } 893 i++; 894 } 895 } 896 testcase( n==sizeof(zBuf)-1 ); 897 testcase( n==sizeof(zBuf) ); 898 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 899 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 900 if( n<sizeof(zBuf) ){ 901 z = zBuf; 902 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 903 sqlite3_result_error_toobig(context); 904 return; 905 }else{ 906 z = sqlite3DbMallocRaw(db, (int)n); 907 if( z==0 ){ 908 sqlite3_result_error_nomem(context); 909 return; 910 } 911 } 912 computeJD(&x); 913 computeYMD_HMS(&x); 914 for(i=j=0; zFmt[i]; i++){ 915 if( zFmt[i]!='%' ){ 916 z[j++] = zFmt[i]; 917 }else{ 918 i++; 919 switch( zFmt[i] ){ 920 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 921 case 'f': { 922 double s = x.s; 923 if( s>59.999 ) s = 59.999; 924 sqlite3_snprintf(7, &z[j],"%06.3f", s); 925 j += sqlite3Strlen30(&z[j]); 926 break; 927 } 928 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 929 case 'W': /* Fall thru */ 930 case 'j': { 931 int nDay; /* Number of days since 1st day of year */ 932 DateTime y = x; 933 y.validJD = 0; 934 y.M = 1; 935 y.D = 1; 936 computeJD(&y); 937 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 938 if( zFmt[i]=='W' ){ 939 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 940 wd = (int)(((x.iJD+43200000)/86400000)%7); 941 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 942 j += 2; 943 }else{ 944 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 945 j += 3; 946 } 947 break; 948 } 949 case 'J': { 950 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 951 j+=sqlite3Strlen30(&z[j]); 952 break; 953 } 954 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 955 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 956 case 's': { 957 sqlite3_snprintf(30,&z[j],"%lld", 958 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 959 j += sqlite3Strlen30(&z[j]); 960 break; 961 } 962 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 963 case 'w': { 964 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 965 break; 966 } 967 case 'Y': { 968 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 969 break; 970 } 971 default: z[j++] = '%'; break; 972 } 973 } 974 } 975 z[j] = 0; 976 sqlite3_result_text(context, z, -1, 977 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 978 } 979 980 /* 981 ** current_time() 982 ** 983 ** This function returns the same value as time('now'). 984 */ 985 static void ctimeFunc( 986 sqlite3_context *context, 987 int NotUsed, 988 sqlite3_value **NotUsed2 989 ){ 990 UNUSED_PARAMETER2(NotUsed, NotUsed2); 991 timeFunc(context, 0, 0); 992 } 993 994 /* 995 ** current_date() 996 ** 997 ** This function returns the same value as date('now'). 998 */ 999 static void cdateFunc( 1000 sqlite3_context *context, 1001 int NotUsed, 1002 sqlite3_value **NotUsed2 1003 ){ 1004 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1005 dateFunc(context, 0, 0); 1006 } 1007 1008 /* 1009 ** current_timestamp() 1010 ** 1011 ** This function returns the same value as datetime('now'). 1012 */ 1013 static void ctimestampFunc( 1014 sqlite3_context *context, 1015 int NotUsed, 1016 sqlite3_value **NotUsed2 1017 ){ 1018 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1019 datetimeFunc(context, 0, 0); 1020 } 1021 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1022 1023 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1024 /* 1025 ** If the library is compiled to omit the full-scale date and time 1026 ** handling (to get a smaller binary), the following minimal version 1027 ** of the functions current_time(), current_date() and current_timestamp() 1028 ** are included instead. This is to support column declarations that 1029 ** include "DEFAULT CURRENT_TIME" etc. 1030 ** 1031 ** This function uses the C-library functions time(), gmtime() 1032 ** and strftime(). The format string to pass to strftime() is supplied 1033 ** as the user-data for the function. 1034 */ 1035 static void currentTimeFunc( 1036 sqlite3_context *context, 1037 int argc, 1038 sqlite3_value **argv 1039 ){ 1040 time_t t; 1041 char *zFormat = (char *)sqlite3_user_data(context); 1042 sqlite3 *db; 1043 double rT; 1044 char zBuf[20]; 1045 1046 UNUSED_PARAMETER(argc); 1047 UNUSED_PARAMETER(argv); 1048 1049 db = sqlite3_context_db_handle(context); 1050 sqlite3OsCurrentTime(db->pVfs, &rT); 1051 #ifndef SQLITE_OMIT_FLOATING_POINT 1052 t = 86400.0*(rT - 2440587.5) + 0.5; 1053 #else 1054 /* without floating point support, rT will have 1055 ** already lost fractional day precision. 1056 */ 1057 t = 86400 * (rT - 2440587) - 43200; 1058 #endif 1059 #ifdef HAVE_GMTIME_R 1060 { 1061 struct tm sNow; 1062 gmtime_r(&t, &sNow); 1063 strftime(zBuf, 20, zFormat, &sNow); 1064 } 1065 #else 1066 { 1067 struct tm *pTm; 1068 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1069 pTm = gmtime(&t); 1070 strftime(zBuf, 20, zFormat, pTm); 1071 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1072 } 1073 #endif 1074 1075 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1076 } 1077 #endif 1078 1079 /* 1080 ** This function registered all of the above C functions as SQL 1081 ** functions. This should be the only routine in this file with 1082 ** external linkage. 1083 */ 1084 void sqlite3RegisterDateTimeFunctions(void){ 1085 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { 1086 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1087 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1088 FUNCTION(date, -1, 0, 0, dateFunc ), 1089 FUNCTION(time, -1, 0, 0, timeFunc ), 1090 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1091 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1092 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1093 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1094 FUNCTION(current_date, 0, 0, 0, cdateFunc ), 1095 #else 1096 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1097 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc), 1098 STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1099 #endif 1100 }; 1101 int i; 1102 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1103 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); 1104 1105 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ 1106 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1107 } 1108 } 1109