1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 507 ** routine will always fail. 508 ** 509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 510 ** library function localtime_r() is used to assist in the calculation of 511 ** local time. 512 */ 513 static int osLocaltime(time_t *t, struct tm *pTm){ 514 int rc; 515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 516 struct tm *pX; 517 #if SQLITE_THREADSAFE>0 518 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 519 #endif 520 sqlite3_mutex_enter(mutex); 521 pX = localtime(t); 522 #ifndef SQLITE_UNTESTABLE 523 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 524 #endif 525 if( pX ) *pTm = *pX; 526 #if SQLITE_THREADSAFE>0 527 sqlite3_mutex_leave(mutex); 528 #endif 529 rc = pX==0; 530 #else 531 #ifndef SQLITE_UNTESTABLE 532 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 533 #endif 534 #if HAVE_LOCALTIME_R 535 rc = localtime_r(t, pTm)==0; 536 #else 537 rc = localtime_s(pTm, t); 538 #endif /* HAVE_LOCALTIME_R */ 539 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 540 return rc; 541 } 542 #endif /* SQLITE_OMIT_LOCALTIME */ 543 544 545 #ifndef SQLITE_OMIT_LOCALTIME 546 /* 547 ** Compute the difference (in milliseconds) between localtime and UTC 548 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 549 ** return this value and set *pRc to SQLITE_OK. 550 ** 551 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 552 ** is undefined in this case. 553 */ 554 static sqlite3_int64 localtimeOffset( 555 DateTime *p, /* Date at which to calculate offset */ 556 sqlite3_context *pCtx, /* Write error here if one occurs */ 557 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 558 ){ 559 DateTime x, y; 560 time_t t; 561 struct tm sLocal; 562 563 /* Initialize the contents of sLocal to avoid a compiler warning. */ 564 memset(&sLocal, 0, sizeof(sLocal)); 565 566 x = *p; 567 computeYMD_HMS(&x); 568 if( x.Y<1971 || x.Y>=2038 ){ 569 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 570 ** works for years between 1970 and 2037. For dates outside this range, 571 ** SQLite attempts to map the year into an equivalent year within this 572 ** range, do the calculation, then map the year back. 573 */ 574 x.Y = 2000; 575 x.M = 1; 576 x.D = 1; 577 x.h = 0; 578 x.m = 0; 579 x.s = 0.0; 580 } else { 581 int s = (int)(x.s + 0.5); 582 x.s = s; 583 } 584 x.tz = 0; 585 x.validJD = 0; 586 computeJD(&x); 587 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 588 if( osLocaltime(&t, &sLocal) ){ 589 sqlite3_result_error(pCtx, "local time unavailable", -1); 590 *pRc = SQLITE_ERROR; 591 return 0; 592 } 593 y.Y = sLocal.tm_year + 1900; 594 y.M = sLocal.tm_mon + 1; 595 y.D = sLocal.tm_mday; 596 y.h = sLocal.tm_hour; 597 y.m = sLocal.tm_min; 598 y.s = sLocal.tm_sec; 599 y.validYMD = 1; 600 y.validHMS = 1; 601 y.validJD = 0; 602 y.rawS = 0; 603 y.validTZ = 0; 604 y.isError = 0; 605 computeJD(&y); 606 *pRc = SQLITE_OK; 607 return y.iJD - x.iJD; 608 } 609 #endif /* SQLITE_OMIT_LOCALTIME */ 610 611 /* 612 ** The following table defines various date transformations of the form 613 ** 614 ** 'NNN days' 615 ** 616 ** Where NNN is an arbitrary floating-point number and "days" can be one 617 ** of several units of time. 618 */ 619 static const struct { 620 u8 nName; /* Length of the name */ 621 char zName[7]; /* Name of the transformation */ 622 float rLimit; /* Maximum NNN value for this transform */ 623 float rXform; /* Constant used for this transform */ 624 } aXformType[] = { 625 { 6, "second", 4.6427e+14, 1.0 }, 626 { 6, "minute", 7.7379e+12, 60.0 }, 627 { 4, "hour", 1.2897e+11, 3600.0 }, 628 { 3, "day", 5373485.0, 86400.0 }, 629 { 5, "month", 176546.0, 2592000.0 }, 630 { 4, "year", 14713.0, 31536000.0 }, 631 }; 632 633 /* 634 ** Process a modifier to a date-time stamp. The modifiers are 635 ** as follows: 636 ** 637 ** NNN days 638 ** NNN hours 639 ** NNN minutes 640 ** NNN.NNNN seconds 641 ** NNN months 642 ** NNN years 643 ** start of month 644 ** start of year 645 ** start of week 646 ** start of day 647 ** weekday N 648 ** unixepoch 649 ** localtime 650 ** utc 651 ** 652 ** Return 0 on success and 1 if there is any kind of error. If the error 653 ** is in a system call (i.e. localtime()), then an error message is written 654 ** to context pCtx. If the error is an unrecognized modifier, no error is 655 ** written to pCtx. 656 */ 657 static int parseModifier( 658 sqlite3_context *pCtx, /* Function context */ 659 const char *z, /* The text of the modifier */ 660 int n, /* Length of zMod in bytes */ 661 DateTime *p /* The date/time value to be modified */ 662 ){ 663 int rc = 1; 664 double r; 665 switch(sqlite3UpperToLower[(u8)z[0]] ){ 666 case 'a': { 667 /* 668 ** auto 669 ** 670 ** If rawS is available, then interpret as a julian day number, or 671 ** a unix timestamp, depending on its magnitude. 672 */ 673 if( sqlite3_stricmp(z, "auto")==0 ){ 674 if( !p->rawS || p->validJD ){ 675 rc = 0; 676 p->rawS = 0; 677 }else if( p->s>=-210866760000 && p->s<=253402300799 ){ 678 r = p->s*1000.0 + 210866760000000.0; 679 clearYMD_HMS_TZ(p); 680 p->iJD = (sqlite3_int64)(r + 0.5); 681 p->validJD = 1; 682 p->rawS = 0; 683 rc = 0; 684 } 685 } 686 break; 687 } 688 case 'j': { 689 /* 690 ** julianday 691 ** 692 ** Always interpret the prior number as a julian-day value. If this 693 ** is not the first modifier, or if the prior argument is not a numeric 694 ** value in the allowed range of julian day numbers understood by 695 ** SQLite (0..5373484.5) then the result will be NULL. 696 */ 697 if( sqlite3_stricmp(z, "julianday")==0 ){ 698 if( p->validJD && p->rawS ){ 699 rc = 0; 700 p->rawS = 0; 701 } 702 } 703 break; 704 } 705 #ifndef SQLITE_OMIT_LOCALTIME 706 case 'l': { 707 /* localtime 708 ** 709 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 710 ** show local time. 711 */ 712 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 713 computeJD(p); 714 p->iJD += localtimeOffset(p, pCtx, &rc); 715 clearYMD_HMS_TZ(p); 716 } 717 break; 718 } 719 #endif 720 case 'u': { 721 /* 722 ** unixepoch 723 ** 724 ** Treat the current value of p->s as the number of 725 ** seconds since 1970. Convert to a real julian day number. 726 */ 727 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 728 r = p->s*1000.0 + 210866760000000.0; 729 if( r>=0.0 && r<464269060800000.0 ){ 730 clearYMD_HMS_TZ(p); 731 p->iJD = (sqlite3_int64)(r + 0.5); 732 p->validJD = 1; 733 p->rawS = 0; 734 rc = 0; 735 } 736 } 737 #ifndef SQLITE_OMIT_LOCALTIME 738 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 739 if( p->tzSet==0 ){ 740 sqlite3_int64 c1; 741 computeJD(p); 742 c1 = localtimeOffset(p, pCtx, &rc); 743 if( rc==SQLITE_OK ){ 744 p->iJD -= c1; 745 clearYMD_HMS_TZ(p); 746 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 747 } 748 p->tzSet = 1; 749 }else{ 750 rc = SQLITE_OK; 751 } 752 } 753 #endif 754 break; 755 } 756 case 'w': { 757 /* 758 ** weekday N 759 ** 760 ** Move the date to the same time on the next occurrence of 761 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 762 ** date is already on the appropriate weekday, this is a no-op. 763 */ 764 if( sqlite3_strnicmp(z, "weekday ", 8)==0 765 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 766 && (n=(int)r)==r && n>=0 && r<7 ){ 767 sqlite3_int64 Z; 768 computeYMD_HMS(p); 769 p->validTZ = 0; 770 p->validJD = 0; 771 computeJD(p); 772 Z = ((p->iJD + 129600000)/86400000) % 7; 773 if( Z>n ) Z -= 7; 774 p->iJD += (n - Z)*86400000; 775 clearYMD_HMS_TZ(p); 776 rc = 0; 777 } 778 break; 779 } 780 case 's': { 781 /* 782 ** start of TTTTT 783 ** 784 ** Move the date backwards to the beginning of the current day, 785 ** or month or year. 786 */ 787 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 788 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 789 z += 9; 790 computeYMD(p); 791 p->validHMS = 1; 792 p->h = p->m = 0; 793 p->s = 0.0; 794 p->rawS = 0; 795 p->validTZ = 0; 796 p->validJD = 0; 797 if( sqlite3_stricmp(z,"month")==0 ){ 798 p->D = 1; 799 rc = 0; 800 }else if( sqlite3_stricmp(z,"year")==0 ){ 801 p->M = 1; 802 p->D = 1; 803 rc = 0; 804 }else if( sqlite3_stricmp(z,"day")==0 ){ 805 rc = 0; 806 } 807 break; 808 } 809 case '+': 810 case '-': 811 case '0': 812 case '1': 813 case '2': 814 case '3': 815 case '4': 816 case '5': 817 case '6': 818 case '7': 819 case '8': 820 case '9': { 821 double rRounder; 822 int i; 823 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 824 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 825 rc = 1; 826 break; 827 } 828 if( z[n]==':' ){ 829 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 830 ** specified number of hours, minutes, seconds, and fractional seconds 831 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 832 ** omitted. 833 */ 834 const char *z2 = z; 835 DateTime tx; 836 sqlite3_int64 day; 837 if( !sqlite3Isdigit(*z2) ) z2++; 838 memset(&tx, 0, sizeof(tx)); 839 if( parseHhMmSs(z2, &tx) ) break; 840 computeJD(&tx); 841 tx.iJD -= 43200000; 842 day = tx.iJD/86400000; 843 tx.iJD -= day*86400000; 844 if( z[0]=='-' ) tx.iJD = -tx.iJD; 845 computeJD(p); 846 clearYMD_HMS_TZ(p); 847 p->iJD += tx.iJD; 848 rc = 0; 849 break; 850 } 851 852 /* If control reaches this point, it means the transformation is 853 ** one of the forms like "+NNN days". */ 854 z += n; 855 while( sqlite3Isspace(*z) ) z++; 856 n = sqlite3Strlen30(z); 857 if( n>10 || n<3 ) break; 858 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 859 computeJD(p); 860 rc = 1; 861 rRounder = r<0 ? -0.5 : +0.5; 862 for(i=0; i<ArraySize(aXformType); i++){ 863 if( aXformType[i].nName==n 864 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 865 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 866 ){ 867 switch( i ){ 868 case 4: { /* Special processing to add months */ 869 int x; 870 assert( strcmp(aXformType[i].zName,"month")==0 ); 871 computeYMD_HMS(p); 872 p->M += (int)r; 873 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 874 p->Y += x; 875 p->M -= x*12; 876 p->validJD = 0; 877 r -= (int)r; 878 break; 879 } 880 case 5: { /* Special processing to add years */ 881 int y = (int)r; 882 assert( strcmp(aXformType[i].zName,"year")==0 ); 883 computeYMD_HMS(p); 884 p->Y += y; 885 p->validJD = 0; 886 r -= (int)r; 887 break; 888 } 889 } 890 computeJD(p); 891 p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); 892 rc = 0; 893 break; 894 } 895 } 896 clearYMD_HMS_TZ(p); 897 break; 898 } 899 default: { 900 break; 901 } 902 } 903 return rc; 904 } 905 906 /* 907 ** Process time function arguments. argv[0] is a date-time stamp. 908 ** argv[1] and following are modifiers. Parse them all and write 909 ** the resulting time into the DateTime structure p. Return 0 910 ** on success and 1 if there are any errors. 911 ** 912 ** If there are zero parameters (if even argv[0] is undefined) 913 ** then assume a default value of "now" for argv[0]. 914 */ 915 static int isDate( 916 sqlite3_context *context, 917 int argc, 918 sqlite3_value **argv, 919 DateTime *p 920 ){ 921 int i, n; 922 const unsigned char *z; 923 int eType; 924 memset(p, 0, sizeof(*p)); 925 if( argc==0 ){ 926 if( !sqlite3NotPureFunc(context) ) return 1; 927 return setDateTimeToCurrent(context, p); 928 } 929 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 930 || eType==SQLITE_INTEGER ){ 931 setRawDateNumber(p, sqlite3_value_double(argv[0])); 932 }else{ 933 z = sqlite3_value_text(argv[0]); 934 if( !z || parseDateOrTime(context, (char*)z, p) ){ 935 return 1; 936 } 937 } 938 for(i=1; i<argc; i++){ 939 z = sqlite3_value_text(argv[i]); 940 n = sqlite3_value_bytes(argv[i]); 941 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 942 } 943 computeJD(p); 944 if( p->isError || !validJulianDay(p->iJD) ) return 1; 945 return 0; 946 } 947 948 949 /* 950 ** The following routines implement the various date and time functions 951 ** of SQLite. 952 */ 953 954 /* 955 ** julianday( TIMESTRING, MOD, MOD, ...) 956 ** 957 ** Return the julian day number of the date specified in the arguments 958 */ 959 static void juliandayFunc( 960 sqlite3_context *context, 961 int argc, 962 sqlite3_value **argv 963 ){ 964 DateTime x; 965 if( isDate(context, argc, argv, &x)==0 ){ 966 computeJD(&x); 967 sqlite3_result_double(context, x.iJD/86400000.0); 968 } 969 } 970 971 /* 972 ** unixepoch( TIMESTRING, MOD, MOD, ...) 973 ** 974 ** Return the number of seconds (including fractional seconds) since 975 ** the unix epoch of 1970-01-01 00:00:00 GMT. 976 */ 977 static void unixepochFunc( 978 sqlite3_context *context, 979 int argc, 980 sqlite3_value **argv 981 ){ 982 DateTime x; 983 if( isDate(context, argc, argv, &x)==0 ){ 984 computeJD(&x); 985 sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); 986 } 987 } 988 989 /* 990 ** datetime( TIMESTRING, MOD, MOD, ...) 991 ** 992 ** Return YYYY-MM-DD HH:MM:SS 993 */ 994 static void datetimeFunc( 995 sqlite3_context *context, 996 int argc, 997 sqlite3_value **argv 998 ){ 999 DateTime x; 1000 if( isDate(context, argc, argv, &x)==0 ){ 1001 char zBuf[100]; 1002 computeYMD_HMS(&x); 1003 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 1004 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 1005 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1006 } 1007 } 1008 1009 /* 1010 ** time( TIMESTRING, MOD, MOD, ...) 1011 ** 1012 ** Return HH:MM:SS 1013 */ 1014 static void timeFunc( 1015 sqlite3_context *context, 1016 int argc, 1017 sqlite3_value **argv 1018 ){ 1019 DateTime x; 1020 if( isDate(context, argc, argv, &x)==0 ){ 1021 char zBuf[100]; 1022 computeHMS(&x); 1023 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 1024 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1025 } 1026 } 1027 1028 /* 1029 ** date( TIMESTRING, MOD, MOD, ...) 1030 ** 1031 ** Return YYYY-MM-DD 1032 */ 1033 static void dateFunc( 1034 sqlite3_context *context, 1035 int argc, 1036 sqlite3_value **argv 1037 ){ 1038 DateTime x; 1039 if( isDate(context, argc, argv, &x)==0 ){ 1040 char zBuf[100]; 1041 computeYMD(&x); 1042 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 1043 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1044 } 1045 } 1046 1047 /* 1048 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 1049 ** 1050 ** Return a string described by FORMAT. Conversions as follows: 1051 ** 1052 ** %d day of month 1053 ** %f ** fractional seconds SS.SSS 1054 ** %H hour 00-24 1055 ** %j day of year 000-366 1056 ** %J ** julian day number 1057 ** %m month 01-12 1058 ** %M minute 00-59 1059 ** %s seconds since 1970-01-01 1060 ** %S seconds 00-59 1061 ** %w day of week 0-6 sunday==0 1062 ** %W week of year 00-53 1063 ** %Y year 0000-9999 1064 ** %% % 1065 */ 1066 static void strftimeFunc( 1067 sqlite3_context *context, 1068 int argc, 1069 sqlite3_value **argv 1070 ){ 1071 DateTime x; 1072 size_t i,j; 1073 sqlite3 *db; 1074 const char *zFmt; 1075 sqlite3_str sRes; 1076 1077 1078 if( argc==0 ) return; 1079 zFmt = (const char*)sqlite3_value_text(argv[0]); 1080 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1081 db = sqlite3_context_db_handle(context); 1082 sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1083 1084 computeJD(&x); 1085 computeYMD_HMS(&x); 1086 for(i=j=0; zFmt[i]; i++){ 1087 if( zFmt[i]!='%' ) continue; 1088 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1089 i++; 1090 j = i + 1; 1091 switch( zFmt[i] ){ 1092 case 'd': { 1093 sqlite3_str_appendf(&sRes, "%02d", x.D); 1094 break; 1095 } 1096 case 'f': { 1097 double s = x.s; 1098 if( s>59.999 ) s = 59.999; 1099 sqlite3_str_appendf(&sRes, "%06.3f", s); 1100 break; 1101 } 1102 case 'H': { 1103 sqlite3_str_appendf(&sRes, "%02d", x.h); 1104 break; 1105 } 1106 case 'W': /* Fall thru */ 1107 case 'j': { 1108 int nDay; /* Number of days since 1st day of year */ 1109 DateTime y = x; 1110 y.validJD = 0; 1111 y.M = 1; 1112 y.D = 1; 1113 computeJD(&y); 1114 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1115 if( zFmt[i]=='W' ){ 1116 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1117 wd = (int)(((x.iJD+43200000)/86400000)%7); 1118 sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); 1119 }else{ 1120 sqlite3_str_appendf(&sRes,"%03d",nDay+1); 1121 } 1122 break; 1123 } 1124 case 'J': { 1125 sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); 1126 break; 1127 } 1128 case 'm': { 1129 sqlite3_str_appendf(&sRes,"%02d",x.M); 1130 break; 1131 } 1132 case 'M': { 1133 sqlite3_str_appendf(&sRes,"%02d",x.m); 1134 break; 1135 } 1136 case 's': { 1137 i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); 1138 sqlite3_str_appendf(&sRes,"%lld",iS); 1139 break; 1140 } 1141 case 'S': { 1142 sqlite3_str_appendf(&sRes,"%02d",(int)x.s); 1143 break; 1144 } 1145 case 'w': { 1146 sqlite3_str_appendchar(&sRes, 1, 1147 (char)(((x.iJD+129600000)/86400000) % 7) + '0'); 1148 break; 1149 } 1150 case 'Y': { 1151 sqlite3_str_appendf(&sRes,"%04d",x.Y); 1152 break; 1153 } 1154 case '%': { 1155 sqlite3_str_appendchar(&sRes, 1, '%'); 1156 break; 1157 } 1158 default: { 1159 sqlite3_str_reset(&sRes); 1160 return; 1161 } 1162 } 1163 } 1164 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1165 sqlite3ResultStrAccum(context, &sRes); 1166 } 1167 1168 /* 1169 ** current_time() 1170 ** 1171 ** This function returns the same value as time('now'). 1172 */ 1173 static void ctimeFunc( 1174 sqlite3_context *context, 1175 int NotUsed, 1176 sqlite3_value **NotUsed2 1177 ){ 1178 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1179 timeFunc(context, 0, 0); 1180 } 1181 1182 /* 1183 ** current_date() 1184 ** 1185 ** This function returns the same value as date('now'). 1186 */ 1187 static void cdateFunc( 1188 sqlite3_context *context, 1189 int NotUsed, 1190 sqlite3_value **NotUsed2 1191 ){ 1192 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1193 dateFunc(context, 0, 0); 1194 } 1195 1196 /* 1197 ** current_timestamp() 1198 ** 1199 ** This function returns the same value as datetime('now'). 1200 */ 1201 static void ctimestampFunc( 1202 sqlite3_context *context, 1203 int NotUsed, 1204 sqlite3_value **NotUsed2 1205 ){ 1206 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1207 datetimeFunc(context, 0, 0); 1208 } 1209 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1210 1211 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1212 /* 1213 ** If the library is compiled to omit the full-scale date and time 1214 ** handling (to get a smaller binary), the following minimal version 1215 ** of the functions current_time(), current_date() and current_timestamp() 1216 ** are included instead. This is to support column declarations that 1217 ** include "DEFAULT CURRENT_TIME" etc. 1218 ** 1219 ** This function uses the C-library functions time(), gmtime() 1220 ** and strftime(). The format string to pass to strftime() is supplied 1221 ** as the user-data for the function. 1222 */ 1223 static void currentTimeFunc( 1224 sqlite3_context *context, 1225 int argc, 1226 sqlite3_value **argv 1227 ){ 1228 time_t t; 1229 char *zFormat = (char *)sqlite3_user_data(context); 1230 sqlite3_int64 iT; 1231 struct tm *pTm; 1232 struct tm sNow; 1233 char zBuf[20]; 1234 1235 UNUSED_PARAMETER(argc); 1236 UNUSED_PARAMETER(argv); 1237 1238 iT = sqlite3StmtCurrentTime(context); 1239 if( iT<=0 ) return; 1240 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1241 #if HAVE_GMTIME_R 1242 pTm = gmtime_r(&t, &sNow); 1243 #else 1244 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1245 pTm = gmtime(&t); 1246 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1247 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1248 #endif 1249 if( pTm ){ 1250 strftime(zBuf, 20, zFormat, &sNow); 1251 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1252 } 1253 } 1254 #endif 1255 1256 /* 1257 ** This function registered all of the above C functions as SQL 1258 ** functions. This should be the only routine in this file with 1259 ** external linkage. 1260 */ 1261 void sqlite3RegisterDateTimeFunctions(void){ 1262 static FuncDef aDateTimeFuncs[] = { 1263 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1264 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1265 PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), 1266 PURE_DATE(date, -1, 0, 0, dateFunc ), 1267 PURE_DATE(time, -1, 0, 0, timeFunc ), 1268 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1269 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1270 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1271 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1272 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1273 #else 1274 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1275 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1276 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1277 #endif 1278 }; 1279 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1280 } 1281