1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 507 ** routine will always fail. 508 ** 509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 510 ** library function localtime_r() is used to assist in the calculation of 511 ** local time. 512 */ 513 static int osLocaltime(time_t *t, struct tm *pTm){ 514 int rc; 515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 516 struct tm *pX; 517 #if SQLITE_THREADSAFE>0 518 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 519 #endif 520 sqlite3_mutex_enter(mutex); 521 pX = localtime(t); 522 #ifndef SQLITE_UNTESTABLE 523 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 524 #endif 525 if( pX ) *pTm = *pX; 526 sqlite3_mutex_leave(mutex); 527 rc = pX==0; 528 #else 529 #ifndef SQLITE_UNTESTABLE 530 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 531 #endif 532 #if HAVE_LOCALTIME_R 533 rc = localtime_r(t, pTm)==0; 534 #else 535 rc = localtime_s(pTm, t); 536 #endif /* HAVE_LOCALTIME_R */ 537 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 538 return rc; 539 } 540 #endif /* SQLITE_OMIT_LOCALTIME */ 541 542 543 #ifndef SQLITE_OMIT_LOCALTIME 544 /* 545 ** Compute the difference (in milliseconds) between localtime and UTC 546 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 547 ** return this value and set *pRc to SQLITE_OK. 548 ** 549 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 550 ** is undefined in this case. 551 */ 552 static sqlite3_int64 localtimeOffset( 553 DateTime *p, /* Date at which to calculate offset */ 554 sqlite3_context *pCtx, /* Write error here if one occurs */ 555 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 556 ){ 557 DateTime x, y; 558 time_t t; 559 struct tm sLocal; 560 561 /* Initialize the contents of sLocal to avoid a compiler warning. */ 562 memset(&sLocal, 0, sizeof(sLocal)); 563 564 x = *p; 565 computeYMD_HMS(&x); 566 if( x.Y<1971 || x.Y>=2038 ){ 567 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 568 ** works for years between 1970 and 2037. For dates outside this range, 569 ** SQLite attempts to map the year into an equivalent year within this 570 ** range, do the calculation, then map the year back. 571 */ 572 x.Y = 2000; 573 x.M = 1; 574 x.D = 1; 575 x.h = 0; 576 x.m = 0; 577 x.s = 0.0; 578 } else { 579 int s = (int)(x.s + 0.5); 580 x.s = s; 581 } 582 x.tz = 0; 583 x.validJD = 0; 584 computeJD(&x); 585 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 586 if( osLocaltime(&t, &sLocal) ){ 587 sqlite3_result_error(pCtx, "local time unavailable", -1); 588 *pRc = SQLITE_ERROR; 589 return 0; 590 } 591 y.Y = sLocal.tm_year + 1900; 592 y.M = sLocal.tm_mon + 1; 593 y.D = sLocal.tm_mday; 594 y.h = sLocal.tm_hour; 595 y.m = sLocal.tm_min; 596 y.s = sLocal.tm_sec; 597 y.validYMD = 1; 598 y.validHMS = 1; 599 y.validJD = 0; 600 y.rawS = 0; 601 y.validTZ = 0; 602 y.isError = 0; 603 computeJD(&y); 604 *pRc = SQLITE_OK; 605 return y.iJD - x.iJD; 606 } 607 #endif /* SQLITE_OMIT_LOCALTIME */ 608 609 /* 610 ** The following table defines various date transformations of the form 611 ** 612 ** 'NNN days' 613 ** 614 ** Where NNN is an arbitrary floating-point number and "days" can be one 615 ** of several units of time. 616 */ 617 static const struct { 618 u8 eType; /* Transformation type code */ 619 u8 nName; /* Length of th name */ 620 char *zName; /* Name of the transformation */ 621 double rLimit; /* Maximum NNN value for this transform */ 622 double rXform; /* Constant used for this transform */ 623 } aXformType[] = { 624 { 0, 6, "second", 464269060800.0, 1000.0 }, 625 { 0, 6, "minute", 7737817680.0, 60000.0 }, 626 { 0, 4, "hour", 128963628.0, 3600000.0 }, 627 { 0, 3, "day", 5373485.0, 86400000.0 }, 628 { 1, 5, "month", 176546.0, 2592000000.0 }, 629 { 2, 4, "year", 14713.0, 31536000000.0 }, 630 }; 631 632 /* 633 ** Process a modifier to a date-time stamp. The modifiers are 634 ** as follows: 635 ** 636 ** NNN days 637 ** NNN hours 638 ** NNN minutes 639 ** NNN.NNNN seconds 640 ** NNN months 641 ** NNN years 642 ** start of month 643 ** start of year 644 ** start of week 645 ** start of day 646 ** weekday N 647 ** unixepoch 648 ** localtime 649 ** utc 650 ** 651 ** Return 0 on success and 1 if there is any kind of error. If the error 652 ** is in a system call (i.e. localtime()), then an error message is written 653 ** to context pCtx. If the error is an unrecognized modifier, no error is 654 ** written to pCtx. 655 */ 656 static int parseModifier( 657 sqlite3_context *pCtx, /* Function context */ 658 const char *z, /* The text of the modifier */ 659 int n, /* Length of zMod in bytes */ 660 DateTime *p /* The date/time value to be modified */ 661 ){ 662 int rc = 1; 663 double r; 664 switch(sqlite3UpperToLower[(u8)z[0]] ){ 665 case 'a': { 666 /* 667 ** auto 668 ** 669 ** If rawS is available, then interpret as a julian day number, or 670 ** a unix timestamp, depending on its magnitude. 671 */ 672 if( sqlite3_stricmp(z, "auto")==0 ){ 673 if( !p->rawS || p->validJD ){ 674 rc = 0; 675 p->rawS = 0; 676 }else if( p->s>=-210866760000 && p->s<=253402300799 ){ 677 r = p->s*1000.0 + 210866760000000.0; 678 clearYMD_HMS_TZ(p); 679 p->iJD = (sqlite3_int64)(r + 0.5); 680 p->validJD = 1; 681 p->rawS = 0; 682 rc = 0; 683 } 684 } 685 break; 686 } 687 case 'j': { 688 /* 689 ** julianday 690 ** 691 ** Always interpret the prior number as a julian-day value. If this 692 ** is not the first modifier, or if the prior argument is not a numeric 693 ** value in the allowed range of julian day numbers understood by 694 ** SQLite (0..5373484.5) then the result will be NULL. 695 */ 696 if( sqlite3_stricmp(z, "julianday")==0 ){ 697 if( p->validJD && p->rawS ){ 698 rc = 0; 699 p->rawS = 0; 700 } 701 } 702 break; 703 } 704 #ifndef SQLITE_OMIT_LOCALTIME 705 case 'l': { 706 /* localtime 707 ** 708 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 709 ** show local time. 710 */ 711 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 712 computeJD(p); 713 p->iJD += localtimeOffset(p, pCtx, &rc); 714 clearYMD_HMS_TZ(p); 715 } 716 break; 717 } 718 #endif 719 case 'u': { 720 /* 721 ** unixepoch 722 ** 723 ** Treat the current value of p->s as the number of 724 ** seconds since 1970. Convert to a real julian day number. 725 */ 726 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 727 r = p->s*1000.0 + 210866760000000.0; 728 if( r>=0.0 && r<464269060800000.0 ){ 729 clearYMD_HMS_TZ(p); 730 p->iJD = (sqlite3_int64)(r + 0.5); 731 p->validJD = 1; 732 p->rawS = 0; 733 rc = 0; 734 } 735 } 736 #ifndef SQLITE_OMIT_LOCALTIME 737 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 738 if( p->tzSet==0 ){ 739 sqlite3_int64 c1; 740 computeJD(p); 741 c1 = localtimeOffset(p, pCtx, &rc); 742 if( rc==SQLITE_OK ){ 743 p->iJD -= c1; 744 clearYMD_HMS_TZ(p); 745 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 746 } 747 p->tzSet = 1; 748 }else{ 749 rc = SQLITE_OK; 750 } 751 } 752 #endif 753 break; 754 } 755 case 'w': { 756 /* 757 ** weekday N 758 ** 759 ** Move the date to the same time on the next occurrence of 760 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 761 ** date is already on the appropriate weekday, this is a no-op. 762 */ 763 if( sqlite3_strnicmp(z, "weekday ", 8)==0 764 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 765 && (n=(int)r)==r && n>=0 && r<7 ){ 766 sqlite3_int64 Z; 767 computeYMD_HMS(p); 768 p->validTZ = 0; 769 p->validJD = 0; 770 computeJD(p); 771 Z = ((p->iJD + 129600000)/86400000) % 7; 772 if( Z>n ) Z -= 7; 773 p->iJD += (n - Z)*86400000; 774 clearYMD_HMS_TZ(p); 775 rc = 0; 776 } 777 break; 778 } 779 case 's': { 780 /* 781 ** start of TTTTT 782 ** 783 ** Move the date backwards to the beginning of the current day, 784 ** or month or year. 785 */ 786 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 787 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 788 z += 9; 789 computeYMD(p); 790 p->validHMS = 1; 791 p->h = p->m = 0; 792 p->s = 0.0; 793 p->rawS = 0; 794 p->validTZ = 0; 795 p->validJD = 0; 796 if( sqlite3_stricmp(z,"month")==0 ){ 797 p->D = 1; 798 rc = 0; 799 }else if( sqlite3_stricmp(z,"year")==0 ){ 800 p->M = 1; 801 p->D = 1; 802 rc = 0; 803 }else if( sqlite3_stricmp(z,"day")==0 ){ 804 rc = 0; 805 } 806 break; 807 } 808 case '+': 809 case '-': 810 case '0': 811 case '1': 812 case '2': 813 case '3': 814 case '4': 815 case '5': 816 case '6': 817 case '7': 818 case '8': 819 case '9': { 820 double rRounder; 821 int i; 822 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 823 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 824 rc = 1; 825 break; 826 } 827 if( z[n]==':' ){ 828 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 829 ** specified number of hours, minutes, seconds, and fractional seconds 830 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 831 ** omitted. 832 */ 833 const char *z2 = z; 834 DateTime tx; 835 sqlite3_int64 day; 836 if( !sqlite3Isdigit(*z2) ) z2++; 837 memset(&tx, 0, sizeof(tx)); 838 if( parseHhMmSs(z2, &tx) ) break; 839 computeJD(&tx); 840 tx.iJD -= 43200000; 841 day = tx.iJD/86400000; 842 tx.iJD -= day*86400000; 843 if( z[0]=='-' ) tx.iJD = -tx.iJD; 844 computeJD(p); 845 clearYMD_HMS_TZ(p); 846 p->iJD += tx.iJD; 847 rc = 0; 848 break; 849 } 850 851 /* If control reaches this point, it means the transformation is 852 ** one of the forms like "+NNN days". */ 853 z += n; 854 while( sqlite3Isspace(*z) ) z++; 855 n = sqlite3Strlen30(z); 856 if( n>10 || n<3 ) break; 857 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 858 computeJD(p); 859 rc = 1; 860 rRounder = r<0 ? -0.5 : +0.5; 861 for(i=0; i<ArraySize(aXformType); i++){ 862 if( aXformType[i].nName==n 863 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 864 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 865 ){ 866 switch( aXformType[i].eType ){ 867 case 1: { /* Special processing to add months */ 868 int x; 869 computeYMD_HMS(p); 870 p->M += (int)r; 871 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 872 p->Y += x; 873 p->M -= x*12; 874 p->validJD = 0; 875 r -= (int)r; 876 break; 877 } 878 case 2: { /* Special processing to add years */ 879 int y = (int)r; 880 computeYMD_HMS(p); 881 p->Y += y; 882 p->validJD = 0; 883 r -= (int)r; 884 break; 885 } 886 } 887 computeJD(p); 888 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); 889 rc = 0; 890 break; 891 } 892 } 893 clearYMD_HMS_TZ(p); 894 break; 895 } 896 default: { 897 break; 898 } 899 } 900 return rc; 901 } 902 903 /* 904 ** Process time function arguments. argv[0] is a date-time stamp. 905 ** argv[1] and following are modifiers. Parse them all and write 906 ** the resulting time into the DateTime structure p. Return 0 907 ** on success and 1 if there are any errors. 908 ** 909 ** If there are zero parameters (if even argv[0] is undefined) 910 ** then assume a default value of "now" for argv[0]. 911 */ 912 static int isDate( 913 sqlite3_context *context, 914 int argc, 915 sqlite3_value **argv, 916 DateTime *p 917 ){ 918 int i, n; 919 const unsigned char *z; 920 int eType; 921 memset(p, 0, sizeof(*p)); 922 if( argc==0 ){ 923 if( !sqlite3NotPureFunc(context) ) return 1; 924 return setDateTimeToCurrent(context, p); 925 } 926 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 927 || eType==SQLITE_INTEGER ){ 928 setRawDateNumber(p, sqlite3_value_double(argv[0])); 929 }else{ 930 z = sqlite3_value_text(argv[0]); 931 if( !z || parseDateOrTime(context, (char*)z, p) ){ 932 return 1; 933 } 934 } 935 for(i=1; i<argc; i++){ 936 z = sqlite3_value_text(argv[i]); 937 n = sqlite3_value_bytes(argv[i]); 938 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 939 } 940 computeJD(p); 941 if( p->isError || !validJulianDay(p->iJD) ) return 1; 942 return 0; 943 } 944 945 946 /* 947 ** The following routines implement the various date and time functions 948 ** of SQLite. 949 */ 950 951 /* 952 ** julianday( TIMESTRING, MOD, MOD, ...) 953 ** 954 ** Return the julian day number of the date specified in the arguments 955 */ 956 static void juliandayFunc( 957 sqlite3_context *context, 958 int argc, 959 sqlite3_value **argv 960 ){ 961 DateTime x; 962 if( isDate(context, argc, argv, &x)==0 ){ 963 computeJD(&x); 964 sqlite3_result_double(context, x.iJD/86400000.0); 965 } 966 } 967 968 /* 969 ** unixepoch( TIMESTRING, MOD, MOD, ...) 970 ** 971 ** Return the number of seconds (including fractional seconds) since 972 ** the unix epoch of 1970-01-01 00:00:00 GMT. 973 */ 974 static void unixepochFunc( 975 sqlite3_context *context, 976 int argc, 977 sqlite3_value **argv 978 ){ 979 DateTime x; 980 if( isDate(context, argc, argv, &x)==0 ){ 981 computeJD(&x); 982 sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); 983 } 984 } 985 986 /* 987 ** datetime( TIMESTRING, MOD, MOD, ...) 988 ** 989 ** Return YYYY-MM-DD HH:MM:SS 990 */ 991 static void datetimeFunc( 992 sqlite3_context *context, 993 int argc, 994 sqlite3_value **argv 995 ){ 996 DateTime x; 997 if( isDate(context, argc, argv, &x)==0 ){ 998 char zBuf[100]; 999 computeYMD_HMS(&x); 1000 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 1001 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 1002 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1003 } 1004 } 1005 1006 /* 1007 ** time( TIMESTRING, MOD, MOD, ...) 1008 ** 1009 ** Return HH:MM:SS 1010 */ 1011 static void timeFunc( 1012 sqlite3_context *context, 1013 int argc, 1014 sqlite3_value **argv 1015 ){ 1016 DateTime x; 1017 if( isDate(context, argc, argv, &x)==0 ){ 1018 char zBuf[100]; 1019 computeHMS(&x); 1020 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 1021 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1022 } 1023 } 1024 1025 /* 1026 ** date( TIMESTRING, MOD, MOD, ...) 1027 ** 1028 ** Return YYYY-MM-DD 1029 */ 1030 static void dateFunc( 1031 sqlite3_context *context, 1032 int argc, 1033 sqlite3_value **argv 1034 ){ 1035 DateTime x; 1036 if( isDate(context, argc, argv, &x)==0 ){ 1037 char zBuf[100]; 1038 computeYMD(&x); 1039 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 1040 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1041 } 1042 } 1043 1044 /* 1045 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 1046 ** 1047 ** Return a string described by FORMAT. Conversions as follows: 1048 ** 1049 ** %d day of month 1050 ** %f ** fractional seconds SS.SSS 1051 ** %H hour 00-24 1052 ** %j day of year 000-366 1053 ** %J ** julian day number 1054 ** %m month 01-12 1055 ** %M minute 00-59 1056 ** %s seconds since 1970-01-01 1057 ** %S seconds 00-59 1058 ** %w day of week 0-6 sunday==0 1059 ** %W week of year 00-53 1060 ** %Y year 0000-9999 1061 ** %% % 1062 */ 1063 static void strftimeFunc( 1064 sqlite3_context *context, 1065 int argc, 1066 sqlite3_value **argv 1067 ){ 1068 DateTime x; 1069 size_t i,j; 1070 sqlite3 *db; 1071 const char *zFmt; 1072 sqlite3_str sRes; 1073 1074 1075 if( argc==0 ) return; 1076 zFmt = (const char*)sqlite3_value_text(argv[0]); 1077 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1078 db = sqlite3_context_db_handle(context); 1079 sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1080 1081 computeJD(&x); 1082 computeYMD_HMS(&x); 1083 for(i=j=0; zFmt[i]; i++){ 1084 if( zFmt[i]!='%' ) continue; 1085 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1086 i++; 1087 j = i + 1; 1088 switch( zFmt[i] ){ 1089 case 'd': { 1090 sqlite3_str_appendf(&sRes, "%02d", x.D); 1091 break; 1092 } 1093 case 'f': { 1094 double s = x.s; 1095 if( s>59.999 ) s = 59.999; 1096 sqlite3_str_appendf(&sRes, "%06.3f", s); 1097 break; 1098 } 1099 case 'H': { 1100 sqlite3_str_appendf(&sRes, "%02d", x.h); 1101 break; 1102 } 1103 case 'W': /* Fall thru */ 1104 case 'j': { 1105 int nDay; /* Number of days since 1st day of year */ 1106 DateTime y = x; 1107 y.validJD = 0; 1108 y.M = 1; 1109 y.D = 1; 1110 computeJD(&y); 1111 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1112 if( zFmt[i]=='W' ){ 1113 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1114 wd = (int)(((x.iJD+43200000)/86400000)%7); 1115 sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); 1116 }else{ 1117 sqlite3_str_appendf(&sRes,"%03d",nDay+1); 1118 } 1119 break; 1120 } 1121 case 'J': { 1122 sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); 1123 break; 1124 } 1125 case 'm': { 1126 sqlite3_str_appendf(&sRes,"%02d",x.M); 1127 break; 1128 } 1129 case 'M': { 1130 sqlite3_str_appendf(&sRes,"%02d",x.m); 1131 break; 1132 } 1133 case 's': { 1134 i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); 1135 sqlite3_str_appendf(&sRes,"%lld",iS); 1136 break; 1137 } 1138 case 'S': { 1139 sqlite3_str_appendf(&sRes,"%02d",(int)x.s); 1140 break; 1141 } 1142 case 'w': { 1143 sqlite3_str_appendchar(&sRes, 1, 1144 (char)(((x.iJD+129600000)/86400000) % 7) + '0'); 1145 break; 1146 } 1147 case 'Y': { 1148 sqlite3_str_appendf(&sRes,"%04d",x.Y); 1149 break; 1150 } 1151 case '%': { 1152 sqlite3_str_appendchar(&sRes, 1, '%'); 1153 break; 1154 } 1155 default: { 1156 sqlite3_str_reset(&sRes); 1157 return; 1158 } 1159 } 1160 } 1161 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1162 sqlite3ResultStrAccum(context, &sRes); 1163 } 1164 1165 /* 1166 ** current_time() 1167 ** 1168 ** This function returns the same value as time('now'). 1169 */ 1170 static void ctimeFunc( 1171 sqlite3_context *context, 1172 int NotUsed, 1173 sqlite3_value **NotUsed2 1174 ){ 1175 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1176 timeFunc(context, 0, 0); 1177 } 1178 1179 /* 1180 ** current_date() 1181 ** 1182 ** This function returns the same value as date('now'). 1183 */ 1184 static void cdateFunc( 1185 sqlite3_context *context, 1186 int NotUsed, 1187 sqlite3_value **NotUsed2 1188 ){ 1189 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1190 dateFunc(context, 0, 0); 1191 } 1192 1193 /* 1194 ** current_timestamp() 1195 ** 1196 ** This function returns the same value as datetime('now'). 1197 */ 1198 static void ctimestampFunc( 1199 sqlite3_context *context, 1200 int NotUsed, 1201 sqlite3_value **NotUsed2 1202 ){ 1203 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1204 datetimeFunc(context, 0, 0); 1205 } 1206 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1207 1208 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1209 /* 1210 ** If the library is compiled to omit the full-scale date and time 1211 ** handling (to get a smaller binary), the following minimal version 1212 ** of the functions current_time(), current_date() and current_timestamp() 1213 ** are included instead. This is to support column declarations that 1214 ** include "DEFAULT CURRENT_TIME" etc. 1215 ** 1216 ** This function uses the C-library functions time(), gmtime() 1217 ** and strftime(). The format string to pass to strftime() is supplied 1218 ** as the user-data for the function. 1219 */ 1220 static void currentTimeFunc( 1221 sqlite3_context *context, 1222 int argc, 1223 sqlite3_value **argv 1224 ){ 1225 time_t t; 1226 char *zFormat = (char *)sqlite3_user_data(context); 1227 sqlite3_int64 iT; 1228 struct tm *pTm; 1229 struct tm sNow; 1230 char zBuf[20]; 1231 1232 UNUSED_PARAMETER(argc); 1233 UNUSED_PARAMETER(argv); 1234 1235 iT = sqlite3StmtCurrentTime(context); 1236 if( iT<=0 ) return; 1237 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1238 #if HAVE_GMTIME_R 1239 pTm = gmtime_r(&t, &sNow); 1240 #else 1241 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1242 pTm = gmtime(&t); 1243 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1244 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1245 #endif 1246 if( pTm ){ 1247 strftime(zBuf, 20, zFormat, &sNow); 1248 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1249 } 1250 } 1251 #endif 1252 1253 /* 1254 ** This function registered all of the above C functions as SQL 1255 ** functions. This should be the only routine in this file with 1256 ** external linkage. 1257 */ 1258 void sqlite3RegisterDateTimeFunctions(void){ 1259 static FuncDef aDateTimeFuncs[] = { 1260 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1261 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1262 PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), 1263 PURE_DATE(date, -1, 0, 0, dateFunc ), 1264 PURE_DATE(time, -1, 0, 0, timeFunc ), 1265 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1266 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1267 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1268 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1269 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1270 #else 1271 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1272 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1273 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1274 #endif 1275 }; 1276 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1277 } 1278