1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBM 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 ){ 390 sqlite3VdbePureFuncOnly(context); 391 return setDateTimeToCurrent(context, p); 392 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ 393 setRawDateNumber(p, r); 394 return 0; 395 } 396 return 1; 397 } 398 399 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 400 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 401 ** for DateTime.iJD. 402 ** 403 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 404 ** such a large integer literal, so we have to encode it. 405 */ 406 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 407 408 /* 409 ** Return TRUE if the given julian day number is within range. 410 ** 411 ** The input is the JulianDay times 86400000. 412 */ 413 static int validJulianDay(sqlite3_int64 iJD){ 414 return iJD>=0 && iJD<=INT_464269060799999; 415 } 416 417 /* 418 ** Compute the Year, Month, and Day from the julian day number. 419 */ 420 static void computeYMD(DateTime *p){ 421 int Z, A, B, C, D, E, X1; 422 if( p->validYMD ) return; 423 if( !p->validJD ){ 424 p->Y = 2000; 425 p->M = 1; 426 p->D = 1; 427 }else if( !validJulianDay(p->iJD) ){ 428 datetimeError(p); 429 return; 430 }else{ 431 Z = (int)((p->iJD + 43200000)/86400000); 432 A = (int)((Z - 1867216.25)/36524.25); 433 A = Z + 1 + A - (A/4); 434 B = A + 1524; 435 C = (int)((B - 122.1)/365.25); 436 D = (36525*(C&32767))/100; 437 E = (int)((B-D)/30.6001); 438 X1 = (int)(30.6001*E); 439 p->D = B - D - X1; 440 p->M = E<14 ? E-1 : E-13; 441 p->Y = p->M>2 ? C - 4716 : C - 4715; 442 } 443 p->validYMD = 1; 444 } 445 446 /* 447 ** Compute the Hour, Minute, and Seconds from the julian day number. 448 */ 449 static void computeHMS(DateTime *p){ 450 int s; 451 if( p->validHMS ) return; 452 computeJD(p); 453 s = (int)((p->iJD + 43200000) % 86400000); 454 p->s = s/1000.0; 455 s = (int)p->s; 456 p->s -= s; 457 p->h = s/3600; 458 s -= p->h*3600; 459 p->m = s/60; 460 p->s += s - p->m*60; 461 p->rawS = 0; 462 p->validHMS = 1; 463 } 464 465 /* 466 ** Compute both YMD and HMS 467 */ 468 static void computeYMD_HMS(DateTime *p){ 469 computeYMD(p); 470 computeHMS(p); 471 } 472 473 /* 474 ** Clear the YMD and HMS and the TZ 475 */ 476 static void clearYMD_HMS_TZ(DateTime *p){ 477 p->validYMD = 0; 478 p->validHMS = 0; 479 p->validTZ = 0; 480 } 481 482 #ifndef SQLITE_OMIT_LOCALTIME 483 /* 484 ** On recent Windows platforms, the localtime_s() function is available 485 ** as part of the "Secure CRT". It is essentially equivalent to 486 ** localtime_r() available under most POSIX platforms, except that the 487 ** order of the parameters is reversed. 488 ** 489 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 490 ** 491 ** If the user has not indicated to use localtime_r() or localtime_s() 492 ** already, check for an MSVC build environment that provides 493 ** localtime_s(). 494 */ 495 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 496 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 497 #undef HAVE_LOCALTIME_S 498 #define HAVE_LOCALTIME_S 1 499 #endif 500 501 /* 502 ** The following routine implements the rough equivalent of localtime_r() 503 ** using whatever operating-system specific localtime facility that 504 ** is available. This routine returns 0 on success and 505 ** non-zero on any kind of error. 506 ** 507 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 508 ** routine will always fail. 509 ** 510 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 511 ** library function localtime_r() is used to assist in the calculation of 512 ** local time. 513 */ 514 static int osLocaltime(time_t *t, struct tm *pTm){ 515 int rc; 516 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 517 struct tm *pX; 518 #if SQLITE_THREADSAFE>0 519 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 520 #endif 521 sqlite3_mutex_enter(mutex); 522 pX = localtime(t); 523 #ifndef SQLITE_UNTESTABLE 524 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 525 #endif 526 if( pX ) *pTm = *pX; 527 sqlite3_mutex_leave(mutex); 528 rc = pX==0; 529 #else 530 #ifndef SQLITE_UNTESTABLE 531 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 532 #endif 533 #if HAVE_LOCALTIME_R 534 rc = localtime_r(t, pTm)==0; 535 #else 536 rc = localtime_s(pTm, t); 537 #endif /* HAVE_LOCALTIME_R */ 538 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 539 return rc; 540 } 541 #endif /* SQLITE_OMIT_LOCALTIME */ 542 543 544 #ifndef SQLITE_OMIT_LOCALTIME 545 /* 546 ** Compute the difference (in milliseconds) between localtime and UTC 547 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 548 ** return this value and set *pRc to SQLITE_OK. 549 ** 550 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 551 ** is undefined in this case. 552 */ 553 static sqlite3_int64 localtimeOffset( 554 DateTime *p, /* Date at which to calculate offset */ 555 sqlite3_context *pCtx, /* Write error here if one occurs */ 556 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 557 ){ 558 DateTime x, y; 559 time_t t; 560 struct tm sLocal; 561 562 /* Initialize the contents of sLocal to avoid a compiler warning. */ 563 memset(&sLocal, 0, sizeof(sLocal)); 564 565 x = *p; 566 computeYMD_HMS(&x); 567 if( x.Y<1971 || x.Y>=2038 ){ 568 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 569 ** works for years between 1970 and 2037. For dates outside this range, 570 ** SQLite attempts to map the year into an equivalent year within this 571 ** range, do the calculation, then map the year back. 572 */ 573 x.Y = 2000; 574 x.M = 1; 575 x.D = 1; 576 x.h = 0; 577 x.m = 0; 578 x.s = 0.0; 579 } else { 580 int s = (int)(x.s + 0.5); 581 x.s = s; 582 } 583 x.tz = 0; 584 x.validJD = 0; 585 computeJD(&x); 586 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 587 if( osLocaltime(&t, &sLocal) ){ 588 sqlite3_result_error(pCtx, "local time unavailable", -1); 589 *pRc = SQLITE_ERROR; 590 return 0; 591 } 592 y.Y = sLocal.tm_year + 1900; 593 y.M = sLocal.tm_mon + 1; 594 y.D = sLocal.tm_mday; 595 y.h = sLocal.tm_hour; 596 y.m = sLocal.tm_min; 597 y.s = sLocal.tm_sec; 598 y.validYMD = 1; 599 y.validHMS = 1; 600 y.validJD = 0; 601 y.rawS = 0; 602 y.validTZ = 0; 603 y.isError = 0; 604 computeJD(&y); 605 *pRc = SQLITE_OK; 606 return y.iJD - x.iJD; 607 } 608 #endif /* SQLITE_OMIT_LOCALTIME */ 609 610 /* 611 ** The following table defines various date transformations of the form 612 ** 613 ** 'NNN days' 614 ** 615 ** Where NNN is an arbitrary floating-point number and "days" can be one 616 ** of several units of time. 617 */ 618 static const struct { 619 u8 eType; /* Transformation type code */ 620 u8 nName; /* Length of th name */ 621 char *zName; /* Name of the transformation */ 622 double rLimit; /* Maximum NNN value for this transform */ 623 double rXform; /* Constant used for this transform */ 624 } aXformType[] = { 625 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, 626 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, 627 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, 628 { 0, 3, "day", 5373485.0, 86400000.0 }, 629 { 1, 5, "month", 176546.0, 30.0*86400000.0 }, 630 { 2, 4, "year", 14713.0, 365.0*86400000.0 }, 631 }; 632 633 /* 634 ** Process a modifier to a date-time stamp. The modifiers are 635 ** as follows: 636 ** 637 ** NNN days 638 ** NNN hours 639 ** NNN minutes 640 ** NNN.NNNN seconds 641 ** NNN months 642 ** NNN years 643 ** start of month 644 ** start of year 645 ** start of week 646 ** start of day 647 ** weekday N 648 ** unixepoch 649 ** localtime 650 ** utc 651 ** 652 ** Return 0 on success and 1 if there is any kind of error. If the error 653 ** is in a system call (i.e. localtime()), then an error message is written 654 ** to context pCtx. If the error is an unrecognized modifier, no error is 655 ** written to pCtx. 656 */ 657 static int parseModifier( 658 sqlite3_context *pCtx, /* Function context */ 659 const char *z, /* The text of the modifier */ 660 int n, /* Length of zMod in bytes */ 661 DateTime *p /* The date/time value to be modified */ 662 ){ 663 int rc = 1; 664 double r; 665 switch(sqlite3UpperToLower[(u8)z[0]] ){ 666 #ifndef SQLITE_OMIT_LOCALTIME 667 case 'l': { 668 /* localtime 669 ** 670 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 671 ** show local time. 672 */ 673 if( sqlite3_stricmp(z, "localtime")==0 ){ 674 sqlite3VdbePureFuncOnly(pCtx); 675 computeJD(p); 676 p->iJD += localtimeOffset(p, pCtx, &rc); 677 clearYMD_HMS_TZ(p); 678 } 679 break; 680 } 681 #endif 682 case 'u': { 683 /* 684 ** unixepoch 685 ** 686 ** Treat the current value of p->s as the number of 687 ** seconds since 1970. Convert to a real julian day number. 688 */ 689 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 690 r = p->s*1000.0 + 210866760000000.0; 691 if( r>=0.0 && r<464269060800000.0 ){ 692 clearYMD_HMS_TZ(p); 693 p->iJD = (sqlite3_int64)r; 694 p->validJD = 1; 695 p->rawS = 0; 696 rc = 0; 697 } 698 } 699 #ifndef SQLITE_OMIT_LOCALTIME 700 else if( sqlite3_stricmp(z, "utc")==0 ){ 701 sqlite3VdbePureFuncOnly(pCtx); 702 if( p->tzSet==0 ){ 703 sqlite3_int64 c1; 704 computeJD(p); 705 c1 = localtimeOffset(p, pCtx, &rc); 706 if( rc==SQLITE_OK ){ 707 p->iJD -= c1; 708 clearYMD_HMS_TZ(p); 709 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 710 } 711 p->tzSet = 1; 712 }else{ 713 rc = SQLITE_OK; 714 } 715 } 716 #endif 717 break; 718 } 719 case 'w': { 720 /* 721 ** weekday N 722 ** 723 ** Move the date to the same time on the next occurrence of 724 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 725 ** date is already on the appropriate weekday, this is a no-op. 726 */ 727 if( sqlite3_strnicmp(z, "weekday ", 8)==0 728 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) 729 && (n=(int)r)==r && n>=0 && r<7 ){ 730 sqlite3_int64 Z; 731 computeYMD_HMS(p); 732 p->validTZ = 0; 733 p->validJD = 0; 734 computeJD(p); 735 Z = ((p->iJD + 129600000)/86400000) % 7; 736 if( Z>n ) Z -= 7; 737 p->iJD += (n - Z)*86400000; 738 clearYMD_HMS_TZ(p); 739 rc = 0; 740 } 741 break; 742 } 743 case 's': { 744 /* 745 ** start of TTTTT 746 ** 747 ** Move the date backwards to the beginning of the current day, 748 ** or month or year. 749 */ 750 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 751 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 752 z += 9; 753 computeYMD(p); 754 p->validHMS = 1; 755 p->h = p->m = 0; 756 p->s = 0.0; 757 p->rawS = 0; 758 p->validTZ = 0; 759 p->validJD = 0; 760 if( sqlite3_stricmp(z,"month")==0 ){ 761 p->D = 1; 762 rc = 0; 763 }else if( sqlite3_stricmp(z,"year")==0 ){ 764 p->M = 1; 765 p->D = 1; 766 rc = 0; 767 }else if( sqlite3_stricmp(z,"day")==0 ){ 768 rc = 0; 769 } 770 break; 771 } 772 case '+': 773 case '-': 774 case '0': 775 case '1': 776 case '2': 777 case '3': 778 case '4': 779 case '5': 780 case '6': 781 case '7': 782 case '8': 783 case '9': { 784 double rRounder; 785 int i; 786 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 787 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ 788 rc = 1; 789 break; 790 } 791 if( z[n]==':' ){ 792 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 793 ** specified number of hours, minutes, seconds, and fractional seconds 794 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 795 ** omitted. 796 */ 797 const char *z2 = z; 798 DateTime tx; 799 sqlite3_int64 day; 800 if( !sqlite3Isdigit(*z2) ) z2++; 801 memset(&tx, 0, sizeof(tx)); 802 if( parseHhMmSs(z2, &tx) ) break; 803 computeJD(&tx); 804 tx.iJD -= 43200000; 805 day = tx.iJD/86400000; 806 tx.iJD -= day*86400000; 807 if( z[0]=='-' ) tx.iJD = -tx.iJD; 808 computeJD(p); 809 clearYMD_HMS_TZ(p); 810 p->iJD += tx.iJD; 811 rc = 0; 812 break; 813 } 814 815 /* If control reaches this point, it means the transformation is 816 ** one of the forms like "+NNN days". */ 817 z += n; 818 while( sqlite3Isspace(*z) ) z++; 819 n = sqlite3Strlen30(z); 820 if( n>10 || n<3 ) break; 821 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 822 computeJD(p); 823 rc = 1; 824 rRounder = r<0 ? -0.5 : +0.5; 825 for(i=0; i<ArraySize(aXformType); i++){ 826 if( aXformType[i].nName==n 827 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 828 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 829 ){ 830 switch( aXformType[i].eType ){ 831 case 1: { /* Special processing to add months */ 832 int x; 833 computeYMD_HMS(p); 834 p->M += (int)r; 835 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 836 p->Y += x; 837 p->M -= x*12; 838 p->validJD = 0; 839 r -= (int)r; 840 break; 841 } 842 case 2: { /* Special processing to add years */ 843 int y = (int)r; 844 computeYMD_HMS(p); 845 p->Y += y; 846 p->validJD = 0; 847 r -= (int)r; 848 break; 849 } 850 } 851 computeJD(p); 852 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); 853 rc = 0; 854 break; 855 } 856 } 857 clearYMD_HMS_TZ(p); 858 break; 859 } 860 default: { 861 break; 862 } 863 } 864 return rc; 865 } 866 867 /* 868 ** Process time function arguments. argv[0] is a date-time stamp. 869 ** argv[1] and following are modifiers. Parse them all and write 870 ** the resulting time into the DateTime structure p. Return 0 871 ** on success and 1 if there are any errors. 872 ** 873 ** If there are zero parameters (if even argv[0] is undefined) 874 ** then assume a default value of "now" for argv[0]. 875 */ 876 static int isDate( 877 sqlite3_context *context, 878 int argc, 879 sqlite3_value **argv, 880 DateTime *p 881 ){ 882 int i, n; 883 const unsigned char *z; 884 int eType; 885 memset(p, 0, sizeof(*p)); 886 if( argc==0 ){ 887 return setDateTimeToCurrent(context, p); 888 } 889 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 890 || eType==SQLITE_INTEGER ){ 891 setRawDateNumber(p, sqlite3_value_double(argv[0])); 892 }else{ 893 z = sqlite3_value_text(argv[0]); 894 if( !z || parseDateOrTime(context, (char*)z, p) ){ 895 return 1; 896 } 897 } 898 for(i=1; i<argc; i++){ 899 z = sqlite3_value_text(argv[i]); 900 n = sqlite3_value_bytes(argv[i]); 901 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 902 } 903 computeJD(p); 904 if( p->isError || !validJulianDay(p->iJD) ) return 1; 905 return 0; 906 } 907 908 909 /* 910 ** The following routines implement the various date and time functions 911 ** of SQLite. 912 */ 913 914 /* 915 ** julianday( TIMESTRING, MOD, MOD, ...) 916 ** 917 ** Return the julian day number of the date specified in the arguments 918 */ 919 static void juliandayFunc( 920 sqlite3_context *context, 921 int argc, 922 sqlite3_value **argv 923 ){ 924 DateTime x; 925 if( isDate(context, argc, argv, &x)==0 ){ 926 computeJD(&x); 927 sqlite3_result_double(context, x.iJD/86400000.0); 928 } 929 } 930 931 /* 932 ** datetime( TIMESTRING, MOD, MOD, ...) 933 ** 934 ** Return YYYY-MM-DD HH:MM:SS 935 */ 936 static void datetimeFunc( 937 sqlite3_context *context, 938 int argc, 939 sqlite3_value **argv 940 ){ 941 DateTime x; 942 if( isDate(context, argc, argv, &x)==0 ){ 943 char zBuf[100]; 944 computeYMD_HMS(&x); 945 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 946 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 947 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 948 } 949 } 950 951 /* 952 ** time( TIMESTRING, MOD, MOD, ...) 953 ** 954 ** Return HH:MM:SS 955 */ 956 static void timeFunc( 957 sqlite3_context *context, 958 int argc, 959 sqlite3_value **argv 960 ){ 961 DateTime x; 962 if( isDate(context, argc, argv, &x)==0 ){ 963 char zBuf[100]; 964 computeHMS(&x); 965 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 966 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 967 } 968 } 969 970 /* 971 ** date( TIMESTRING, MOD, MOD, ...) 972 ** 973 ** Return YYYY-MM-DD 974 */ 975 static void dateFunc( 976 sqlite3_context *context, 977 int argc, 978 sqlite3_value **argv 979 ){ 980 DateTime x; 981 if( isDate(context, argc, argv, &x)==0 ){ 982 char zBuf[100]; 983 computeYMD(&x); 984 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 985 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 986 } 987 } 988 989 /* 990 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 991 ** 992 ** Return a string described by FORMAT. Conversions as follows: 993 ** 994 ** %d day of month 995 ** %f ** fractional seconds SS.SSS 996 ** %H hour 00-24 997 ** %j day of year 000-366 998 ** %J ** julian day number 999 ** %m month 01-12 1000 ** %M minute 00-59 1001 ** %s seconds since 1970-01-01 1002 ** %S seconds 00-59 1003 ** %w day of week 0-6 sunday==0 1004 ** %W week of year 00-53 1005 ** %Y year 0000-9999 1006 ** %% % 1007 */ 1008 static void strftimeFunc( 1009 sqlite3_context *context, 1010 int argc, 1011 sqlite3_value **argv 1012 ){ 1013 DateTime x; 1014 u64 n; 1015 size_t i,j; 1016 char *z; 1017 sqlite3 *db; 1018 const char *zFmt; 1019 char zBuf[100]; 1020 if( argc==0 ) return; 1021 zFmt = (const char*)sqlite3_value_text(argv[0]); 1022 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1023 db = sqlite3_context_db_handle(context); 1024 for(i=0, n=1; zFmt[i]; i++, n++){ 1025 if( zFmt[i]=='%' ){ 1026 switch( zFmt[i+1] ){ 1027 case 'd': 1028 case 'H': 1029 case 'm': 1030 case 'M': 1031 case 'S': 1032 case 'W': 1033 n++; 1034 /* fall thru */ 1035 case 'w': 1036 case '%': 1037 break; 1038 case 'f': 1039 n += 8; 1040 break; 1041 case 'j': 1042 n += 3; 1043 break; 1044 case 'Y': 1045 n += 8; 1046 break; 1047 case 's': 1048 case 'J': 1049 n += 50; 1050 break; 1051 default: 1052 return; /* ERROR. return a NULL */ 1053 } 1054 i++; 1055 } 1056 } 1057 testcase( n==sizeof(zBuf)-1 ); 1058 testcase( n==sizeof(zBuf) ); 1059 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 1060 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 1061 if( n<sizeof(zBuf) ){ 1062 z = zBuf; 1063 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1064 sqlite3_result_error_toobig(context); 1065 return; 1066 }else{ 1067 z = sqlite3DbMallocRawNN(db, (int)n); 1068 if( z==0 ){ 1069 sqlite3_result_error_nomem(context); 1070 return; 1071 } 1072 } 1073 computeJD(&x); 1074 computeYMD_HMS(&x); 1075 for(i=j=0; zFmt[i]; i++){ 1076 if( zFmt[i]!='%' ){ 1077 z[j++] = zFmt[i]; 1078 }else{ 1079 i++; 1080 switch( zFmt[i] ){ 1081 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 1082 case 'f': { 1083 double s = x.s; 1084 if( s>59.999 ) s = 59.999; 1085 sqlite3_snprintf(7, &z[j],"%06.3f", s); 1086 j += sqlite3Strlen30(&z[j]); 1087 break; 1088 } 1089 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 1090 case 'W': /* Fall thru */ 1091 case 'j': { 1092 int nDay; /* Number of days since 1st day of year */ 1093 DateTime y = x; 1094 y.validJD = 0; 1095 y.M = 1; 1096 y.D = 1; 1097 computeJD(&y); 1098 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1099 if( zFmt[i]=='W' ){ 1100 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1101 wd = (int)(((x.iJD+43200000)/86400000)%7); 1102 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 1103 j += 2; 1104 }else{ 1105 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 1106 j += 3; 1107 } 1108 break; 1109 } 1110 case 'J': { 1111 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 1112 j+=sqlite3Strlen30(&z[j]); 1113 break; 1114 } 1115 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 1116 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 1117 case 's': { 1118 sqlite3_snprintf(30,&z[j],"%lld", 1119 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 1120 j += sqlite3Strlen30(&z[j]); 1121 break; 1122 } 1123 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 1124 case 'w': { 1125 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 1126 break; 1127 } 1128 case 'Y': { 1129 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 1130 break; 1131 } 1132 default: z[j++] = '%'; break; 1133 } 1134 } 1135 } 1136 z[j] = 0; 1137 sqlite3_result_text(context, z, -1, 1138 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 1139 } 1140 1141 /* 1142 ** current_time() 1143 ** 1144 ** This function returns the same value as time('now'). 1145 */ 1146 static void ctimeFunc( 1147 sqlite3_context *context, 1148 int NotUsed, 1149 sqlite3_value **NotUsed2 1150 ){ 1151 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1152 timeFunc(context, 0, 0); 1153 } 1154 1155 /* 1156 ** current_date() 1157 ** 1158 ** This function returns the same value as date('now'). 1159 */ 1160 static void cdateFunc( 1161 sqlite3_context *context, 1162 int NotUsed, 1163 sqlite3_value **NotUsed2 1164 ){ 1165 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1166 dateFunc(context, 0, 0); 1167 } 1168 1169 /* 1170 ** current_timestamp() 1171 ** 1172 ** This function returns the same value as datetime('now'). 1173 */ 1174 static void ctimestampFunc( 1175 sqlite3_context *context, 1176 int NotUsed, 1177 sqlite3_value **NotUsed2 1178 ){ 1179 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1180 datetimeFunc(context, 0, 0); 1181 } 1182 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1183 1184 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1185 /* 1186 ** If the library is compiled to omit the full-scale date and time 1187 ** handling (to get a smaller binary), the following minimal version 1188 ** of the functions current_time(), current_date() and current_timestamp() 1189 ** are included instead. This is to support column declarations that 1190 ** include "DEFAULT CURRENT_TIME" etc. 1191 ** 1192 ** This function uses the C-library functions time(), gmtime() 1193 ** and strftime(). The format string to pass to strftime() is supplied 1194 ** as the user-data for the function. 1195 */ 1196 static void currentTimeFunc( 1197 sqlite3_context *context, 1198 int argc, 1199 sqlite3_value **argv 1200 ){ 1201 time_t t; 1202 char *zFormat = (char *)sqlite3_user_data(context); 1203 sqlite3_int64 iT; 1204 struct tm *pTm; 1205 struct tm sNow; 1206 char zBuf[20]; 1207 1208 UNUSED_PARAMETER(argc); 1209 UNUSED_PARAMETER(argv); 1210 1211 iT = sqlite3StmtCurrentTime(context); 1212 if( iT<=0 ) return; 1213 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1214 #if HAVE_GMTIME_R 1215 pTm = gmtime_r(&t, &sNow); 1216 #else 1217 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1218 pTm = gmtime(&t); 1219 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1220 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1221 #endif 1222 if( pTm ){ 1223 strftime(zBuf, 20, zFormat, &sNow); 1224 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1225 } 1226 } 1227 #endif 1228 1229 /* 1230 ** This function registered all of the above C functions as SQL 1231 ** functions. This should be the only routine in this file with 1232 ** external linkage. 1233 */ 1234 void sqlite3RegisterDateTimeFunctions(void){ 1235 static FuncDef aDateTimeFuncs[] = { 1236 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1237 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1238 PURE_DATE(date, -1, 0, 0, dateFunc ), 1239 PURE_DATE(time, -1, 0, 0, timeFunc ), 1240 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1241 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1242 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1243 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1244 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1245 #else 1246 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1247 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1248 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1249 #endif 1250 }; 1251 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1252 } 1253