xref: /sqlite-3.40.0/src/date.c (revision 3ad202dd)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** $Id: date.c,v 1.60 2007/01/08 16:19:07 drh Exp $
20 **
21 ** NOTES:
22 **
23 ** SQLite processes all times and dates as Julian Day numbers.  The
24 ** dates and times are stored as the number of days since noon
25 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
26 ** calendar system.
27 **
28 ** 1970-01-01 00:00:00 is JD 2440587.5
29 ** 2000-01-01 00:00:00 is JD 2451544.5
30 **
31 ** This implemention requires years to be expressed as a 4-digit number
32 ** which means that only dates between 0000-01-01 and 9999-12-31 can
33 ** be represented, even though julian day numbers allow a much wider
34 ** range of dates.
35 **
36 ** The Gregorian calendar system is used for all dates and times,
37 ** even those that predate the Gregorian calendar.  Historians usually
38 ** use the Julian calendar for dates prior to 1582-10-15 and for some
39 ** dates afterwards, depending on locale.  Beware of this difference.
40 **
41 ** The conversion algorithms are implemented based on descriptions
42 ** in the following text:
43 **
44 **      Jean Meeus
45 **      Astronomical Algorithms, 2nd Edition, 1998
46 **      ISBM 0-943396-61-1
47 **      Willmann-Bell, Inc
48 **      Richmond, Virginia (USA)
49 */
50 #include "sqliteInt.h"
51 #include "os.h"
52 #include <ctype.h>
53 #include <stdlib.h>
54 #include <assert.h>
55 #include <time.h>
56 
57 #ifndef SQLITE_OMIT_DATETIME_FUNCS
58 
59 /*
60 ** A structure for holding a single date and time.
61 */
62 typedef struct DateTime DateTime;
63 struct DateTime {
64   double rJD;      /* The julian day number */
65   int Y, M, D;     /* Year, month, and day */
66   int h, m;        /* Hour and minutes */
67   int tz;          /* Timezone offset in minutes */
68   double s;        /* Seconds */
69   char validYMD;   /* True if Y,M,D are valid */
70   char validHMS;   /* True if h,m,s are valid */
71   char validJD;    /* True if rJD is valid */
72   char validTZ;    /* True if tz is valid */
73 };
74 
75 
76 /*
77 ** Convert zDate into one or more integers.  Additional arguments
78 ** come in groups of 5 as follows:
79 **
80 **       N       number of digits in the integer
81 **       min     minimum allowed value of the integer
82 **       max     maximum allowed value of the integer
83 **       nextC   first character after the integer
84 **       pVal    where to write the integers value.
85 **
86 ** Conversions continue until one with nextC==0 is encountered.
87 ** The function returns the number of successful conversions.
88 */
89 static int getDigits(const char *zDate, ...){
90   va_list ap;
91   int val;
92   int N;
93   int min;
94   int max;
95   int nextC;
96   int *pVal;
97   int cnt = 0;
98   va_start(ap, zDate);
99   do{
100     N = va_arg(ap, int);
101     min = va_arg(ap, int);
102     max = va_arg(ap, int);
103     nextC = va_arg(ap, int);
104     pVal = va_arg(ap, int*);
105     val = 0;
106     while( N-- ){
107       if( !isdigit(*(u8*)zDate) ){
108         goto end_getDigits;
109       }
110       val = val*10 + *zDate - '0';
111       zDate++;
112     }
113     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
114       goto end_getDigits;
115     }
116     *pVal = val;
117     zDate++;
118     cnt++;
119   }while( nextC );
120 end_getDigits:
121   va_end(ap);
122   return cnt;
123 }
124 
125 /*
126 ** Read text from z[] and convert into a floating point number.  Return
127 ** the number of digits converted.
128 */
129 #define getValue sqlite3AtoF
130 
131 /*
132 ** Parse a timezone extension on the end of a date-time.
133 ** The extension is of the form:
134 **
135 **        (+/-)HH:MM
136 **
137 ** If the parse is successful, write the number of minutes
138 ** of change in *pnMin and return 0.  If a parser error occurs,
139 ** return 0.
140 **
141 ** A missing specifier is not considered an error.
142 */
143 static int parseTimezone(const char *zDate, DateTime *p){
144   int sgn = 0;
145   int nHr, nMn;
146   while( isspace(*(u8*)zDate) ){ zDate++; }
147   p->tz = 0;
148   if( *zDate=='-' ){
149     sgn = -1;
150   }else if( *zDate=='+' ){
151     sgn = +1;
152   }else{
153     return *zDate!=0;
154   }
155   zDate++;
156   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
157     return 1;
158   }
159   zDate += 5;
160   p->tz = sgn*(nMn + nHr*60);
161   while( isspace(*(u8*)zDate) ){ zDate++; }
162   return *zDate!=0;
163 }
164 
165 /*
166 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
167 ** The HH, MM, and SS must each be exactly 2 digits.  The
168 ** fractional seconds FFFF can be one or more digits.
169 **
170 ** Return 1 if there is a parsing error and 0 on success.
171 */
172 static int parseHhMmSs(const char *zDate, DateTime *p){
173   int h, m, s;
174   double ms = 0.0;
175   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
176     return 1;
177   }
178   zDate += 5;
179   if( *zDate==':' ){
180     zDate++;
181     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
182       return 1;
183     }
184     zDate += 2;
185     if( *zDate=='.' && isdigit((u8)zDate[1]) ){
186       double rScale = 1.0;
187       zDate++;
188       while( isdigit(*(u8*)zDate) ){
189         ms = ms*10.0 + *zDate - '0';
190         rScale *= 10.0;
191         zDate++;
192       }
193       ms /= rScale;
194     }
195   }else{
196     s = 0;
197   }
198   p->validJD = 0;
199   p->validHMS = 1;
200   p->h = h;
201   p->m = m;
202   p->s = s + ms;
203   if( parseTimezone(zDate, p) ) return 1;
204   p->validTZ = p->tz!=0;
205   return 0;
206 }
207 
208 /*
209 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
210 ** that the YYYY-MM-DD is according to the Gregorian calendar.
211 **
212 ** Reference:  Meeus page 61
213 */
214 static void computeJD(DateTime *p){
215   int Y, M, D, A, B, X1, X2;
216 
217   if( p->validJD ) return;
218   if( p->validYMD ){
219     Y = p->Y;
220     M = p->M;
221     D = p->D;
222   }else{
223     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
224     M = 1;
225     D = 1;
226   }
227   if( M<=2 ){
228     Y--;
229     M += 12;
230   }
231   A = Y/100;
232   B = 2 - A + (A/4);
233   X1 = 365.25*(Y+4716);
234   X2 = 30.6001*(M+1);
235   p->rJD = X1 + X2 + D + B - 1524.5;
236   p->validJD = 1;
237   if( p->validHMS ){
238     p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
239     if( p->validTZ ){
240       p->rJD -= p->tz*60/86400.0;
241       p->validYMD = 0;
242       p->validHMS = 0;
243       p->validTZ = 0;
244     }
245   }
246 }
247 
248 /*
249 ** Parse dates of the form
250 **
251 **     YYYY-MM-DD HH:MM:SS.FFF
252 **     YYYY-MM-DD HH:MM:SS
253 **     YYYY-MM-DD HH:MM
254 **     YYYY-MM-DD
255 **
256 ** Write the result into the DateTime structure and return 0
257 ** on success and 1 if the input string is not a well-formed
258 ** date.
259 */
260 static int parseYyyyMmDd(const char *zDate, DateTime *p){
261   int Y, M, D, neg;
262 
263   if( zDate[0]=='-' ){
264     zDate++;
265     neg = 1;
266   }else{
267     neg = 0;
268   }
269   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
270     return 1;
271   }
272   zDate += 10;
273   while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
274   if( parseHhMmSs(zDate, p)==0 ){
275     /* We got the time */
276   }else if( *zDate==0 ){
277     p->validHMS = 0;
278   }else{
279     return 1;
280   }
281   p->validJD = 0;
282   p->validYMD = 1;
283   p->Y = neg ? -Y : Y;
284   p->M = M;
285   p->D = D;
286   if( p->validTZ ){
287     computeJD(p);
288   }
289   return 0;
290 }
291 
292 /*
293 ** Attempt to parse the given string into a Julian Day Number.  Return
294 ** the number of errors.
295 **
296 ** The following are acceptable forms for the input string:
297 **
298 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
299 **      DDDD.DD
300 **      now
301 **
302 ** In the first form, the +/-HH:MM is always optional.  The fractional
303 ** seconds extension (the ".FFF") is optional.  The seconds portion
304 ** (":SS.FFF") is option.  The year and date can be omitted as long
305 ** as there is a time string.  The time string can be omitted as long
306 ** as there is a year and date.
307 */
308 static int parseDateOrTime(const char *zDate, DateTime *p){
309   memset(p, 0, sizeof(*p));
310   if( parseYyyyMmDd(zDate,p)==0 ){
311     return 0;
312   }else if( parseHhMmSs(zDate, p)==0 ){
313     return 0;
314   }else if( sqlite3StrICmp(zDate,"now")==0){
315     double r;
316     sqlite3OsCurrentTime(&r);
317     p->rJD = r;
318     p->validJD = 1;
319     return 0;
320   }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
321     getValue(zDate, &p->rJD);
322     p->validJD = 1;
323     return 0;
324   }
325   return 1;
326 }
327 
328 /*
329 ** Compute the Year, Month, and Day from the julian day number.
330 */
331 static void computeYMD(DateTime *p){
332   int Z, A, B, C, D, E, X1;
333   if( p->validYMD ) return;
334   if( !p->validJD ){
335     p->Y = 2000;
336     p->M = 1;
337     p->D = 1;
338   }else{
339     Z = p->rJD + 0.5;
340     A = (Z - 1867216.25)/36524.25;
341     A = Z + 1 + A - (A/4);
342     B = A + 1524;
343     C = (B - 122.1)/365.25;
344     D = 365.25*C;
345     E = (B-D)/30.6001;
346     X1 = 30.6001*E;
347     p->D = B - D - X1;
348     p->M = E<14 ? E-1 : E-13;
349     p->Y = p->M>2 ? C - 4716 : C - 4715;
350   }
351   p->validYMD = 1;
352 }
353 
354 /*
355 ** Compute the Hour, Minute, and Seconds from the julian day number.
356 */
357 static void computeHMS(DateTime *p){
358   int Z, s;
359   if( p->validHMS ) return;
360   computeJD(p);
361   Z = p->rJD + 0.5;
362   s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
363   p->s = 0.001*s;
364   s = p->s;
365   p->s -= s;
366   p->h = s/3600;
367   s -= p->h*3600;
368   p->m = s/60;
369   p->s += s - p->m*60;
370   p->validHMS = 1;
371 }
372 
373 /*
374 ** Compute both YMD and HMS
375 */
376 static void computeYMD_HMS(DateTime *p){
377   computeYMD(p);
378   computeHMS(p);
379 }
380 
381 /*
382 ** Clear the YMD and HMS and the TZ
383 */
384 static void clearYMD_HMS_TZ(DateTime *p){
385   p->validYMD = 0;
386   p->validHMS = 0;
387   p->validTZ = 0;
388 }
389 
390 /*
391 ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
392 ** for the time value p where p is in UTC.
393 */
394 static double localtimeOffset(DateTime *p){
395   DateTime x, y;
396   time_t t;
397   x = *p;
398   computeYMD_HMS(&x);
399   if( x.Y<1971 || x.Y>=2038 ){
400     x.Y = 2000;
401     x.M = 1;
402     x.D = 1;
403     x.h = 0;
404     x.m = 0;
405     x.s = 0.0;
406   } else {
407     int s = x.s + 0.5;
408     x.s = s;
409   }
410   x.tz = 0;
411   x.validJD = 0;
412   computeJD(&x);
413   t = (x.rJD-2440587.5)*86400.0 + 0.5;
414 #ifdef HAVE_LOCALTIME_R
415   {
416     struct tm sLocal;
417     localtime_r(&t, &sLocal);
418     y.Y = sLocal.tm_year + 1900;
419     y.M = sLocal.tm_mon + 1;
420     y.D = sLocal.tm_mday;
421     y.h = sLocal.tm_hour;
422     y.m = sLocal.tm_min;
423     y.s = sLocal.tm_sec;
424   }
425 #else
426   {
427     struct tm *pTm;
428     sqlite3OsEnterMutex();
429     pTm = localtime(&t);
430     y.Y = pTm->tm_year + 1900;
431     y.M = pTm->tm_mon + 1;
432     y.D = pTm->tm_mday;
433     y.h = pTm->tm_hour;
434     y.m = pTm->tm_min;
435     y.s = pTm->tm_sec;
436     sqlite3OsLeaveMutex();
437   }
438 #endif
439   y.validYMD = 1;
440   y.validHMS = 1;
441   y.validJD = 0;
442   y.validTZ = 0;
443   computeJD(&y);
444   return y.rJD - x.rJD;
445 }
446 
447 /*
448 ** Process a modifier to a date-time stamp.  The modifiers are
449 ** as follows:
450 **
451 **     NNN days
452 **     NNN hours
453 **     NNN minutes
454 **     NNN.NNNN seconds
455 **     NNN months
456 **     NNN years
457 **     start of month
458 **     start of year
459 **     start of week
460 **     start of day
461 **     weekday N
462 **     unixepoch
463 **     localtime
464 **     utc
465 **
466 ** Return 0 on success and 1 if there is any kind of error.
467 */
468 static int parseModifier(const char *zMod, DateTime *p){
469   int rc = 1;
470   int n;
471   double r;
472   char *z, zBuf[30];
473   z = zBuf;
474   for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
475     z[n] = tolower(zMod[n]);
476   }
477   z[n] = 0;
478   switch( z[0] ){
479     case 'l': {
480       /*    localtime
481       **
482       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
483       ** show local time.
484       */
485       if( strcmp(z, "localtime")==0 ){
486         computeJD(p);
487         p->rJD += localtimeOffset(p);
488         clearYMD_HMS_TZ(p);
489         rc = 0;
490       }
491       break;
492     }
493     case 'u': {
494       /*
495       **    unixepoch
496       **
497       ** Treat the current value of p->rJD as the number of
498       ** seconds since 1970.  Convert to a real julian day number.
499       */
500       if( strcmp(z, "unixepoch")==0 && p->validJD ){
501         p->rJD = p->rJD/86400.0 + 2440587.5;
502         clearYMD_HMS_TZ(p);
503         rc = 0;
504       }else if( strcmp(z, "utc")==0 ){
505         double c1;
506         computeJD(p);
507         c1 = localtimeOffset(p);
508         p->rJD -= c1;
509         clearYMD_HMS_TZ(p);
510         p->rJD += c1 - localtimeOffset(p);
511         rc = 0;
512       }
513       break;
514     }
515     case 'w': {
516       /*
517       **    weekday N
518       **
519       ** Move the date to the same time on the next occurrence of
520       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
521       ** date is already on the appropriate weekday, this is a no-op.
522       */
523       if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
524                  && (n=r)==r && n>=0 && r<7 ){
525         int Z;
526         computeYMD_HMS(p);
527         p->validTZ = 0;
528         p->validJD = 0;
529         computeJD(p);
530         Z = p->rJD + 1.5;
531         Z %= 7;
532         if( Z>n ) Z -= 7;
533         p->rJD += n - Z;
534         clearYMD_HMS_TZ(p);
535         rc = 0;
536       }
537       break;
538     }
539     case 's': {
540       /*
541       **    start of TTTTT
542       **
543       ** Move the date backwards to the beginning of the current day,
544       ** or month or year.
545       */
546       if( strncmp(z, "start of ", 9)!=0 ) break;
547       z += 9;
548       computeYMD(p);
549       p->validHMS = 1;
550       p->h = p->m = 0;
551       p->s = 0.0;
552       p->validTZ = 0;
553       p->validJD = 0;
554       if( strcmp(z,"month")==0 ){
555         p->D = 1;
556         rc = 0;
557       }else if( strcmp(z,"year")==0 ){
558         computeYMD(p);
559         p->M = 1;
560         p->D = 1;
561         rc = 0;
562       }else if( strcmp(z,"day")==0 ){
563         rc = 0;
564       }
565       break;
566     }
567     case '+':
568     case '-':
569     case '0':
570     case '1':
571     case '2':
572     case '3':
573     case '4':
574     case '5':
575     case '6':
576     case '7':
577     case '8':
578     case '9': {
579       n = getValue(z, &r);
580       if( n<=0 ) break;
581       if( z[n]==':' ){
582         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
583         ** specified number of hours, minutes, seconds, and fractional seconds
584         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
585         ** omitted.
586         */
587         const char *z2 = z;
588         DateTime tx;
589         int day;
590         if( !isdigit(*(u8*)z2) ) z2++;
591         memset(&tx, 0, sizeof(tx));
592         if( parseHhMmSs(z2, &tx) ) break;
593         computeJD(&tx);
594         tx.rJD -= 0.5;
595         day = (int)tx.rJD;
596         tx.rJD -= day;
597         if( z[0]=='-' ) tx.rJD = -tx.rJD;
598         computeJD(p);
599         clearYMD_HMS_TZ(p);
600         p->rJD += tx.rJD;
601         rc = 0;
602         break;
603       }
604       z += n;
605       while( isspace(*(u8*)z) ) z++;
606       n = strlen(z);
607       if( n>10 || n<3 ) break;
608       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
609       computeJD(p);
610       rc = 0;
611       if( n==3 && strcmp(z,"day")==0 ){
612         p->rJD += r;
613       }else if( n==4 && strcmp(z,"hour")==0 ){
614         p->rJD += r/24.0;
615       }else if( n==6 && strcmp(z,"minute")==0 ){
616         p->rJD += r/(24.0*60.0);
617       }else if( n==6 && strcmp(z,"second")==0 ){
618         p->rJD += r/(24.0*60.0*60.0);
619       }else if( n==5 && strcmp(z,"month")==0 ){
620         int x, y;
621         computeYMD_HMS(p);
622         p->M += r;
623         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
624         p->Y += x;
625         p->M -= x*12;
626         p->validJD = 0;
627         computeJD(p);
628         y = r;
629         if( y!=r ){
630           p->rJD += (r - y)*30.0;
631         }
632       }else if( n==4 && strcmp(z,"year")==0 ){
633         computeYMD_HMS(p);
634         p->Y += r;
635         p->validJD = 0;
636         computeJD(p);
637       }else{
638         rc = 1;
639       }
640       clearYMD_HMS_TZ(p);
641       break;
642     }
643     default: {
644       break;
645     }
646   }
647   return rc;
648 }
649 
650 /*
651 ** Process time function arguments.  argv[0] is a date-time stamp.
652 ** argv[1] and following are modifiers.  Parse them all and write
653 ** the resulting time into the DateTime structure p.  Return 0
654 ** on success and 1 if there are any errors.
655 */
656 static int isDate(int argc, sqlite3_value **argv, DateTime *p){
657   int i;
658   if( argc==0 ) return 1;
659   if( SQLITE_NULL==sqlite3_value_type(argv[0]) ||
660       parseDateOrTime((char*)sqlite3_value_text(argv[0]), p) ) return 1;
661   for(i=1; i<argc; i++){
662     if( SQLITE_NULL==sqlite3_value_type(argv[i]) ||
663         parseModifier((char*)sqlite3_value_text(argv[i]), p) ) return 1;
664   }
665   return 0;
666 }
667 
668 
669 /*
670 ** The following routines implement the various date and time functions
671 ** of SQLite.
672 */
673 
674 /*
675 **    julianday( TIMESTRING, MOD, MOD, ...)
676 **
677 ** Return the julian day number of the date specified in the arguments
678 */
679 static void juliandayFunc(
680   sqlite3_context *context,
681   int argc,
682   sqlite3_value **argv
683 ){
684   DateTime x;
685   if( isDate(argc, argv, &x)==0 ){
686     computeJD(&x);
687     sqlite3_result_double(context, x.rJD);
688   }
689 }
690 
691 /*
692 **    datetime( TIMESTRING, MOD, MOD, ...)
693 **
694 ** Return YYYY-MM-DD HH:MM:SS
695 */
696 static void datetimeFunc(
697   sqlite3_context *context,
698   int argc,
699   sqlite3_value **argv
700 ){
701   DateTime x;
702   if( isDate(argc, argv, &x)==0 ){
703     char zBuf[100];
704     computeYMD_HMS(&x);
705     sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
706            (int)(x.s));
707     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
708   }
709 }
710 
711 /*
712 **    time( TIMESTRING, MOD, MOD, ...)
713 **
714 ** Return HH:MM:SS
715 */
716 static void timeFunc(
717   sqlite3_context *context,
718   int argc,
719   sqlite3_value **argv
720 ){
721   DateTime x;
722   if( isDate(argc, argv, &x)==0 ){
723     char zBuf[100];
724     computeHMS(&x);
725     sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
726     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
727   }
728 }
729 
730 /*
731 **    date( TIMESTRING, MOD, MOD, ...)
732 **
733 ** Return YYYY-MM-DD
734 */
735 static void dateFunc(
736   sqlite3_context *context,
737   int argc,
738   sqlite3_value **argv
739 ){
740   DateTime x;
741   if( isDate(argc, argv, &x)==0 ){
742     char zBuf[100];
743     computeYMD(&x);
744     sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
745     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
746   }
747 }
748 
749 /*
750 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
751 **
752 ** Return a string described by FORMAT.  Conversions as follows:
753 **
754 **   %d  day of month
755 **   %f  ** fractional seconds  SS.SSS
756 **   %H  hour 00-24
757 **   %j  day of year 000-366
758 **   %J  ** Julian day number
759 **   %m  month 01-12
760 **   %M  minute 00-59
761 **   %s  seconds since 1970-01-01
762 **   %S  seconds 00-59
763 **   %w  day of week 0-6  sunday==0
764 **   %W  week of year 00-53
765 **   %Y  year 0000-9999
766 **   %%  %
767 */
768 static void strftimeFunc(
769   sqlite3_context *context,
770   int argc,
771   sqlite3_value **argv
772 ){
773   DateTime x;
774   int n, i, j;
775   char *z;
776   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
777   char zBuf[100];
778   if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
779   for(i=0, n=1; zFmt[i]; i++, n++){
780     if( zFmt[i]=='%' ){
781       switch( zFmt[i+1] ){
782         case 'd':
783         case 'H':
784         case 'm':
785         case 'M':
786         case 'S':
787         case 'W':
788           n++;
789           /* fall thru */
790         case 'w':
791         case '%':
792           break;
793         case 'f':
794           n += 8;
795           break;
796         case 'j':
797           n += 3;
798           break;
799         case 'Y':
800           n += 8;
801           break;
802         case 's':
803         case 'J':
804           n += 50;
805           break;
806         default:
807           return;  /* ERROR.  return a NULL */
808       }
809       i++;
810     }
811   }
812   if( n<sizeof(zBuf) ){
813     z = zBuf;
814   }else{
815     z = sqliteMalloc( n );
816     if( z==0 ) return;
817   }
818   computeJD(&x);
819   computeYMD_HMS(&x);
820   for(i=j=0; zFmt[i]; i++){
821     if( zFmt[i]!='%' ){
822       z[j++] = zFmt[i];
823     }else{
824       i++;
825       switch( zFmt[i] ){
826         case 'd':  sprintf(&z[j],"%02d",x.D); j+=2; break;
827         case 'f': {
828           double s = x.s;
829           if( s>59.999 ) s = 59.999;
830           sqlite3_snprintf(7, &z[j],"%02.3f", s);
831           j += strlen(&z[j]);
832           break;
833         }
834         case 'H':  sprintf(&z[j],"%02d",x.h); j+=2; break;
835         case 'W': /* Fall thru */
836         case 'j': {
837           int nDay;             /* Number of days since 1st day of year */
838           DateTime y = x;
839           y.validJD = 0;
840           y.M = 1;
841           y.D = 1;
842           computeJD(&y);
843           nDay = x.rJD - y.rJD + 0.5;
844           if( zFmt[i]=='W' ){
845             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
846             wd = ((int)(x.rJD+0.5)) % 7;
847             sprintf(&z[j],"%02d",(nDay+7-wd)/7);
848             j += 2;
849           }else{
850             sprintf(&z[j],"%03d",nDay+1);
851             j += 3;
852           }
853           break;
854         }
855         case 'J':  sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
856         case 'm':  sprintf(&z[j],"%02d",x.M); j+=2; break;
857         case 'M':  sprintf(&z[j],"%02d",x.m); j+=2; break;
858         case 's': {
859           sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
860           j += strlen(&z[j]);
861           break;
862         }
863         case 'S':  sprintf(&z[j],"%02d",(int)x.s); j+=2; break;
864         case 'w':  z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
865         case 'Y':  sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
866         case '%':  z[j++] = '%'; break;
867       }
868     }
869   }
870   z[j] = 0;
871   sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
872   if( z!=zBuf ){
873     sqliteFree(z);
874   }
875 }
876 
877 /*
878 ** current_time()
879 **
880 ** This function returns the same value as time('now').
881 */
882 static void ctimeFunc(
883   sqlite3_context *context,
884   int argc,
885   sqlite3_value **argv
886 ){
887   sqlite3_value *pVal = sqlite3ValueNew();
888   if( pVal ){
889     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
890     timeFunc(context, 1, &pVal);
891     sqlite3ValueFree(pVal);
892   }
893 }
894 
895 /*
896 ** current_date()
897 **
898 ** This function returns the same value as date('now').
899 */
900 static void cdateFunc(
901   sqlite3_context *context,
902   int argc,
903   sqlite3_value **argv
904 ){
905   sqlite3_value *pVal = sqlite3ValueNew();
906   if( pVal ){
907     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
908     dateFunc(context, 1, &pVal);
909     sqlite3ValueFree(pVal);
910   }
911 }
912 
913 /*
914 ** current_timestamp()
915 **
916 ** This function returns the same value as datetime('now').
917 */
918 static void ctimestampFunc(
919   sqlite3_context *context,
920   int argc,
921   sqlite3_value **argv
922 ){
923   sqlite3_value *pVal = sqlite3ValueNew();
924   if( pVal ){
925     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
926     datetimeFunc(context, 1, &pVal);
927     sqlite3ValueFree(pVal);
928   }
929 }
930 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
931 
932 #ifdef SQLITE_OMIT_DATETIME_FUNCS
933 /*
934 ** If the library is compiled to omit the full-scale date and time
935 ** handling (to get a smaller binary), the following minimal version
936 ** of the functions current_time(), current_date() and current_timestamp()
937 ** are included instead. This is to support column declarations that
938 ** include "DEFAULT CURRENT_TIME" etc.
939 **
940 ** This function uses the C-library functions time(), gmtime()
941 ** and strftime(). The format string to pass to strftime() is supplied
942 ** as the user-data for the function.
943 */
944 static void currentTimeFunc(
945   sqlite3_context *context,
946   int argc,
947   sqlite3_value **argv
948 ){
949   time_t t;
950   char *zFormat = (char *)sqlite3_user_data(context);
951   char zBuf[20];
952 
953   time(&t);
954 #ifdef SQLITE_TEST
955   {
956     extern int sqlite3_current_time;  /* See os_XXX.c */
957     if( sqlite3_current_time ){
958       t = sqlite3_current_time;
959     }
960   }
961 #endif
962 
963 #ifdef HAVE_GMTIME_R
964   {
965     struct tm sNow;
966     gmtime_r(&t, &sNow);
967     strftime(zBuf, 20, zFormat, &sNow);
968   }
969 #else
970   {
971     struct tm *pTm;
972     sqlite3OsEnterMutex();
973     pTm = gmtime(&t);
974     strftime(zBuf, 20, zFormat, pTm);
975     sqlite3OsLeaveMutex();
976   }
977 #endif
978 
979   sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
980 }
981 #endif
982 
983 /*
984 ** This function registered all of the above C functions as SQL
985 ** functions.  This should be the only routine in this file with
986 ** external linkage.
987 */
988 void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
989 #ifndef SQLITE_OMIT_DATETIME_FUNCS
990   static const struct {
991      char *zName;
992      int nArg;
993      void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
994   } aFuncs[] = {
995     { "julianday", -1, juliandayFunc   },
996     { "date",      -1, dateFunc        },
997     { "time",      -1, timeFunc        },
998     { "datetime",  -1, datetimeFunc    },
999     { "strftime",  -1, strftimeFunc    },
1000     { "current_time",       0, ctimeFunc      },
1001     { "current_timestamp",  0, ctimestampFunc },
1002     { "current_date",       0, cdateFunc      },
1003   };
1004   int i;
1005 
1006   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
1007     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
1008         SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
1009   }
1010 #else
1011   static const struct {
1012      char *zName;
1013      char *zFormat;
1014   } aFuncs[] = {
1015     { "current_time", "%H:%M:%S" },
1016     { "current_date", "%Y-%m-%d" },
1017     { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
1018   };
1019   int i;
1020 
1021   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
1022     sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
1023         aFuncs[i].zFormat, currentTimeFunc, 0, 0);
1024   }
1025 #endif
1026 }
1027