1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBM 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else{ 427 assert( validJulianDay(p->iJD) ); 428 Z = (int)((p->iJD + 43200000)/86400000); 429 A = (int)((Z - 1867216.25)/36524.25); 430 A = Z + 1 + A - (A/4); 431 B = A + 1524; 432 C = (int)((B - 122.1)/365.25); 433 D = (36525*(C&32767))/100; 434 E = (int)((B-D)/30.6001); 435 X1 = (int)(30.6001*E); 436 p->D = B - D - X1; 437 p->M = E<14 ? E-1 : E-13; 438 p->Y = p->M>2 ? C - 4716 : C - 4715; 439 } 440 p->validYMD = 1; 441 } 442 443 /* 444 ** Compute the Hour, Minute, and Seconds from the julian day number. 445 */ 446 static void computeHMS(DateTime *p){ 447 int s; 448 if( p->validHMS ) return; 449 computeJD(p); 450 s = (int)((p->iJD + 43200000) % 86400000); 451 p->s = s/1000.0; 452 s = (int)p->s; 453 p->s -= s; 454 p->h = s/3600; 455 s -= p->h*3600; 456 p->m = s/60; 457 p->s += s - p->m*60; 458 p->rawS = 0; 459 p->validHMS = 1; 460 } 461 462 /* 463 ** Compute both YMD and HMS 464 */ 465 static void computeYMD_HMS(DateTime *p){ 466 computeYMD(p); 467 computeHMS(p); 468 } 469 470 /* 471 ** Clear the YMD and HMS and the TZ 472 */ 473 static void clearYMD_HMS_TZ(DateTime *p){ 474 p->validYMD = 0; 475 p->validHMS = 0; 476 p->validTZ = 0; 477 } 478 479 #ifndef SQLITE_OMIT_LOCALTIME 480 /* 481 ** On recent Windows platforms, the localtime_s() function is available 482 ** as part of the "Secure CRT". It is essentially equivalent to 483 ** localtime_r() available under most POSIX platforms, except that the 484 ** order of the parameters is reversed. 485 ** 486 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 487 ** 488 ** If the user has not indicated to use localtime_r() or localtime_s() 489 ** already, check for an MSVC build environment that provides 490 ** localtime_s(). 491 */ 492 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 493 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 494 #undef HAVE_LOCALTIME_S 495 #define HAVE_LOCALTIME_S 1 496 #endif 497 498 /* 499 ** The following routine implements the rough equivalent of localtime_r() 500 ** using whatever operating-system specific localtime facility that 501 ** is available. This routine returns 0 on success and 502 ** non-zero on any kind of error. 503 ** 504 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 505 ** routine will always fail. 506 ** 507 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 508 ** library function localtime_r() is used to assist in the calculation of 509 ** local time. 510 */ 511 static int osLocaltime(time_t *t, struct tm *pTm){ 512 int rc; 513 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 514 struct tm *pX; 515 #if SQLITE_THREADSAFE>0 516 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 517 #endif 518 sqlite3_mutex_enter(mutex); 519 pX = localtime(t); 520 #ifndef SQLITE_UNTESTABLE 521 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 522 #endif 523 if( pX ) *pTm = *pX; 524 sqlite3_mutex_leave(mutex); 525 rc = pX==0; 526 #else 527 #ifndef SQLITE_UNTESTABLE 528 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 529 #endif 530 #if HAVE_LOCALTIME_R 531 rc = localtime_r(t, pTm)==0; 532 #else 533 rc = localtime_s(pTm, t); 534 #endif /* HAVE_LOCALTIME_R */ 535 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 536 return rc; 537 } 538 #endif /* SQLITE_OMIT_LOCALTIME */ 539 540 541 #ifndef SQLITE_OMIT_LOCALTIME 542 /* 543 ** Compute the difference (in milliseconds) between localtime and UTC 544 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 545 ** return this value and set *pRc to SQLITE_OK. 546 ** 547 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 548 ** is undefined in this case. 549 */ 550 static sqlite3_int64 localtimeOffset( 551 DateTime *p, /* Date at which to calculate offset */ 552 sqlite3_context *pCtx, /* Write error here if one occurs */ 553 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 554 ){ 555 DateTime x, y; 556 time_t t; 557 struct tm sLocal; 558 559 /* Initialize the contents of sLocal to avoid a compiler warning. */ 560 memset(&sLocal, 0, sizeof(sLocal)); 561 562 x = *p; 563 computeYMD_HMS(&x); 564 if( x.Y<1971 || x.Y>=2038 ){ 565 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 566 ** works for years between 1970 and 2037. For dates outside this range, 567 ** SQLite attempts to map the year into an equivalent year within this 568 ** range, do the calculation, then map the year back. 569 */ 570 x.Y = 2000; 571 x.M = 1; 572 x.D = 1; 573 x.h = 0; 574 x.m = 0; 575 x.s = 0.0; 576 } else { 577 int s = (int)(x.s + 0.5); 578 x.s = s; 579 } 580 x.tz = 0; 581 x.validJD = 0; 582 computeJD(&x); 583 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 584 if( osLocaltime(&t, &sLocal) ){ 585 sqlite3_result_error(pCtx, "local time unavailable", -1); 586 *pRc = SQLITE_ERROR; 587 return 0; 588 } 589 y.Y = sLocal.tm_year + 1900; 590 y.M = sLocal.tm_mon + 1; 591 y.D = sLocal.tm_mday; 592 y.h = sLocal.tm_hour; 593 y.m = sLocal.tm_min; 594 y.s = sLocal.tm_sec; 595 y.validYMD = 1; 596 y.validHMS = 1; 597 y.validJD = 0; 598 y.rawS = 0; 599 y.validTZ = 0; 600 y.isError = 0; 601 computeJD(&y); 602 *pRc = SQLITE_OK; 603 return y.iJD - x.iJD; 604 } 605 #endif /* SQLITE_OMIT_LOCALTIME */ 606 607 /* 608 ** The following table defines various date transformations of the form 609 ** 610 ** 'NNN days' 611 ** 612 ** Where NNN is an arbitrary floating-point number and "days" can be one 613 ** of several units of time. 614 */ 615 static const struct { 616 u8 eType; /* Transformation type code */ 617 u8 nName; /* Length of th name */ 618 char *zName; /* Name of the transformation */ 619 double rLimit; /* Maximum NNN value for this transform */ 620 double rXform; /* Constant used for this transform */ 621 } aXformType[] = { 622 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, 623 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, 624 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, 625 { 0, 3, "day", 5373485.0, 86400000.0 }, 626 { 1, 5, "month", 176546.0, 30.0*86400000.0 }, 627 { 2, 4, "year", 14713.0, 365.0*86400000.0 }, 628 }; 629 630 /* 631 ** Process a modifier to a date-time stamp. The modifiers are 632 ** as follows: 633 ** 634 ** NNN days 635 ** NNN hours 636 ** NNN minutes 637 ** NNN.NNNN seconds 638 ** NNN months 639 ** NNN years 640 ** start of month 641 ** start of year 642 ** start of week 643 ** start of day 644 ** weekday N 645 ** unixepoch 646 ** localtime 647 ** utc 648 ** 649 ** Return 0 on success and 1 if there is any kind of error. If the error 650 ** is in a system call (i.e. localtime()), then an error message is written 651 ** to context pCtx. If the error is an unrecognized modifier, no error is 652 ** written to pCtx. 653 */ 654 static int parseModifier( 655 sqlite3_context *pCtx, /* Function context */ 656 const char *z, /* The text of the modifier */ 657 int n, /* Length of zMod in bytes */ 658 DateTime *p /* The date/time value to be modified */ 659 ){ 660 int rc = 1; 661 double r; 662 switch(sqlite3UpperToLower[(u8)z[0]] ){ 663 #ifndef SQLITE_OMIT_LOCALTIME 664 case 'l': { 665 /* localtime 666 ** 667 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 668 ** show local time. 669 */ 670 if( sqlite3_stricmp(z, "localtime")==0 ){ 671 computeJD(p); 672 p->iJD += localtimeOffset(p, pCtx, &rc); 673 clearYMD_HMS_TZ(p); 674 } 675 break; 676 } 677 #endif 678 case 'u': { 679 /* 680 ** unixepoch 681 ** 682 ** Treat the current value of p->s as the number of 683 ** seconds since 1970. Convert to a real julian day number. 684 */ 685 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 686 r = p->s*1000.0 + 210866760000000.0; 687 if( r>=0.0 && r<464269060800000.0 ){ 688 clearYMD_HMS_TZ(p); 689 p->iJD = (sqlite3_int64)r; 690 p->validJD = 1; 691 p->rawS = 0; 692 rc = 0; 693 } 694 } 695 #ifndef SQLITE_OMIT_LOCALTIME 696 else if( sqlite3_stricmp(z, "utc")==0 ){ 697 if( p->tzSet==0 ){ 698 sqlite3_int64 c1; 699 computeJD(p); 700 c1 = localtimeOffset(p, pCtx, &rc); 701 if( rc==SQLITE_OK ){ 702 p->iJD -= c1; 703 clearYMD_HMS_TZ(p); 704 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 705 } 706 p->tzSet = 1; 707 }else{ 708 rc = SQLITE_OK; 709 } 710 } 711 #endif 712 break; 713 } 714 case 'w': { 715 /* 716 ** weekday N 717 ** 718 ** Move the date to the same time on the next occurrence of 719 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 720 ** date is already on the appropriate weekday, this is a no-op. 721 */ 722 if( sqlite3_strnicmp(z, "weekday ", 8)==0 723 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) 724 && (n=(int)r)==r && n>=0 && r<7 ){ 725 sqlite3_int64 Z; 726 computeYMD_HMS(p); 727 p->validTZ = 0; 728 p->validJD = 0; 729 computeJD(p); 730 Z = ((p->iJD + 129600000)/86400000) % 7; 731 if( Z>n ) Z -= 7; 732 p->iJD += (n - Z)*86400000; 733 clearYMD_HMS_TZ(p); 734 rc = 0; 735 } 736 break; 737 } 738 case 's': { 739 /* 740 ** start of TTTTT 741 ** 742 ** Move the date backwards to the beginning of the current day, 743 ** or month or year. 744 */ 745 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 746 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 747 z += 9; 748 computeYMD(p); 749 p->validHMS = 1; 750 p->h = p->m = 0; 751 p->s = 0.0; 752 p->rawS = 0; 753 p->validTZ = 0; 754 p->validJD = 0; 755 if( sqlite3_stricmp(z,"month")==0 ){ 756 p->D = 1; 757 rc = 0; 758 }else if( sqlite3_stricmp(z,"year")==0 ){ 759 p->M = 1; 760 p->D = 1; 761 rc = 0; 762 }else if( sqlite3_stricmp(z,"day")==0 ){ 763 rc = 0; 764 } 765 break; 766 } 767 case '+': 768 case '-': 769 case '0': 770 case '1': 771 case '2': 772 case '3': 773 case '4': 774 case '5': 775 case '6': 776 case '7': 777 case '8': 778 case '9': { 779 double rRounder; 780 int i; 781 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 782 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ 783 rc = 1; 784 break; 785 } 786 if( z[n]==':' ){ 787 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 788 ** specified number of hours, minutes, seconds, and fractional seconds 789 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 790 ** omitted. 791 */ 792 const char *z2 = z; 793 DateTime tx; 794 sqlite3_int64 day; 795 if( !sqlite3Isdigit(*z2) ) z2++; 796 memset(&tx, 0, sizeof(tx)); 797 if( parseHhMmSs(z2, &tx) ) break; 798 computeJD(&tx); 799 tx.iJD -= 43200000; 800 day = tx.iJD/86400000; 801 tx.iJD -= day*86400000; 802 if( z[0]=='-' ) tx.iJD = -tx.iJD; 803 computeJD(p); 804 clearYMD_HMS_TZ(p); 805 p->iJD += tx.iJD; 806 rc = 0; 807 break; 808 } 809 810 /* If control reaches this point, it means the transformation is 811 ** one of the forms like "+NNN days". */ 812 z += n; 813 while( sqlite3Isspace(*z) ) z++; 814 n = sqlite3Strlen30(z); 815 if( n>10 || n<3 ) break; 816 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 817 computeJD(p); 818 rc = 1; 819 rRounder = r<0 ? -0.5 : +0.5; 820 for(i=0; i<ArraySize(aXformType); i++){ 821 if( aXformType[i].nName==n 822 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 823 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 824 ){ 825 switch( aXformType[i].eType ){ 826 case 1: { /* Special processing to add months */ 827 int x; 828 computeYMD_HMS(p); 829 p->M += (int)r; 830 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 831 p->Y += x; 832 p->M -= x*12; 833 p->validJD = 0; 834 r -= (int)r; 835 break; 836 } 837 case 2: { /* Special processing to add years */ 838 int y = (int)r; 839 computeYMD_HMS(p); 840 p->Y += y; 841 p->validJD = 0; 842 r -= (int)r; 843 break; 844 } 845 } 846 computeJD(p); 847 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); 848 rc = 0; 849 break; 850 } 851 } 852 clearYMD_HMS_TZ(p); 853 break; 854 } 855 default: { 856 break; 857 } 858 } 859 return rc; 860 } 861 862 /* 863 ** Process time function arguments. argv[0] is a date-time stamp. 864 ** argv[1] and following are modifiers. Parse them all and write 865 ** the resulting time into the DateTime structure p. Return 0 866 ** on success and 1 if there are any errors. 867 ** 868 ** If there are zero parameters (if even argv[0] is undefined) 869 ** then assume a default value of "now" for argv[0]. 870 */ 871 static int isDate( 872 sqlite3_context *context, 873 int argc, 874 sqlite3_value **argv, 875 DateTime *p 876 ){ 877 int i, n; 878 const unsigned char *z; 879 int eType; 880 memset(p, 0, sizeof(*p)); 881 if( argc==0 ){ 882 return setDateTimeToCurrent(context, p); 883 } 884 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 885 || eType==SQLITE_INTEGER ){ 886 setRawDateNumber(p, sqlite3_value_double(argv[0])); 887 }else{ 888 z = sqlite3_value_text(argv[0]); 889 if( !z || parseDateOrTime(context, (char*)z, p) ){ 890 return 1; 891 } 892 } 893 for(i=1; i<argc; i++){ 894 z = sqlite3_value_text(argv[i]); 895 n = sqlite3_value_bytes(argv[i]); 896 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 897 } 898 computeJD(p); 899 if( p->isError || !validJulianDay(p->iJD) ) return 1; 900 return 0; 901 } 902 903 904 /* 905 ** The following routines implement the various date and time functions 906 ** of SQLite. 907 */ 908 909 /* 910 ** julianday( TIMESTRING, MOD, MOD, ...) 911 ** 912 ** Return the julian day number of the date specified in the arguments 913 */ 914 static void juliandayFunc( 915 sqlite3_context *context, 916 int argc, 917 sqlite3_value **argv 918 ){ 919 DateTime x; 920 if( isDate(context, argc, argv, &x)==0 ){ 921 computeJD(&x); 922 sqlite3_result_double(context, x.iJD/86400000.0); 923 } 924 } 925 926 /* 927 ** datetime( TIMESTRING, MOD, MOD, ...) 928 ** 929 ** Return YYYY-MM-DD HH:MM:SS 930 */ 931 static void datetimeFunc( 932 sqlite3_context *context, 933 int argc, 934 sqlite3_value **argv 935 ){ 936 DateTime x; 937 if( isDate(context, argc, argv, &x)==0 ){ 938 char zBuf[100]; 939 computeYMD_HMS(&x); 940 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 941 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 942 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 943 } 944 } 945 946 /* 947 ** time( TIMESTRING, MOD, MOD, ...) 948 ** 949 ** Return HH:MM:SS 950 */ 951 static void timeFunc( 952 sqlite3_context *context, 953 int argc, 954 sqlite3_value **argv 955 ){ 956 DateTime x; 957 if( isDate(context, argc, argv, &x)==0 ){ 958 char zBuf[100]; 959 computeHMS(&x); 960 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 961 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 962 } 963 } 964 965 /* 966 ** date( TIMESTRING, MOD, MOD, ...) 967 ** 968 ** Return YYYY-MM-DD 969 */ 970 static void dateFunc( 971 sqlite3_context *context, 972 int argc, 973 sqlite3_value **argv 974 ){ 975 DateTime x; 976 if( isDate(context, argc, argv, &x)==0 ){ 977 char zBuf[100]; 978 computeYMD(&x); 979 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 980 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 981 } 982 } 983 984 /* 985 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 986 ** 987 ** Return a string described by FORMAT. Conversions as follows: 988 ** 989 ** %d day of month 990 ** %f ** fractional seconds SS.SSS 991 ** %H hour 00-24 992 ** %j day of year 000-366 993 ** %J ** julian day number 994 ** %m month 01-12 995 ** %M minute 00-59 996 ** %s seconds since 1970-01-01 997 ** %S seconds 00-59 998 ** %w day of week 0-6 sunday==0 999 ** %W week of year 00-53 1000 ** %Y year 0000-9999 1001 ** %% % 1002 */ 1003 static void strftimeFunc( 1004 sqlite3_context *context, 1005 int argc, 1006 sqlite3_value **argv 1007 ){ 1008 DateTime x; 1009 u64 n; 1010 size_t i,j; 1011 char *z; 1012 sqlite3 *db; 1013 const char *zFmt; 1014 char zBuf[100]; 1015 if( argc==0 ) return; 1016 zFmt = (const char*)sqlite3_value_text(argv[0]); 1017 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1018 db = sqlite3_context_db_handle(context); 1019 for(i=0, n=1; zFmt[i]; i++, n++){ 1020 if( zFmt[i]=='%' ){ 1021 switch( zFmt[i+1] ){ 1022 case 'd': 1023 case 'H': 1024 case 'm': 1025 case 'M': 1026 case 'S': 1027 case 'W': 1028 n++; 1029 /* fall thru */ 1030 case 'w': 1031 case '%': 1032 break; 1033 case 'f': 1034 n += 8; 1035 break; 1036 case 'j': 1037 n += 3; 1038 break; 1039 case 'Y': 1040 n += 8; 1041 break; 1042 case 's': 1043 case 'J': 1044 n += 50; 1045 break; 1046 default: 1047 return; /* ERROR. return a NULL */ 1048 } 1049 i++; 1050 } 1051 } 1052 testcase( n==sizeof(zBuf)-1 ); 1053 testcase( n==sizeof(zBuf) ); 1054 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 1055 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 1056 if( n<sizeof(zBuf) ){ 1057 z = zBuf; 1058 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1059 sqlite3_result_error_toobig(context); 1060 return; 1061 }else{ 1062 z = sqlite3DbMallocRawNN(db, (int)n); 1063 if( z==0 ){ 1064 sqlite3_result_error_nomem(context); 1065 return; 1066 } 1067 } 1068 computeJD(&x); 1069 computeYMD_HMS(&x); 1070 for(i=j=0; zFmt[i]; i++){ 1071 if( zFmt[i]!='%' ){ 1072 z[j++] = zFmt[i]; 1073 }else{ 1074 i++; 1075 switch( zFmt[i] ){ 1076 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 1077 case 'f': { 1078 double s = x.s; 1079 if( s>59.999 ) s = 59.999; 1080 sqlite3_snprintf(7, &z[j],"%06.3f", s); 1081 j += sqlite3Strlen30(&z[j]); 1082 break; 1083 } 1084 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 1085 case 'W': /* Fall thru */ 1086 case 'j': { 1087 int nDay; /* Number of days since 1st day of year */ 1088 DateTime y = x; 1089 y.validJD = 0; 1090 y.M = 1; 1091 y.D = 1; 1092 computeJD(&y); 1093 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1094 if( zFmt[i]=='W' ){ 1095 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1096 wd = (int)(((x.iJD+43200000)/86400000)%7); 1097 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 1098 j += 2; 1099 }else{ 1100 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 1101 j += 3; 1102 } 1103 break; 1104 } 1105 case 'J': { 1106 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 1107 j+=sqlite3Strlen30(&z[j]); 1108 break; 1109 } 1110 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 1111 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 1112 case 's': { 1113 sqlite3_snprintf(30,&z[j],"%lld", 1114 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 1115 j += sqlite3Strlen30(&z[j]); 1116 break; 1117 } 1118 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 1119 case 'w': { 1120 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 1121 break; 1122 } 1123 case 'Y': { 1124 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 1125 break; 1126 } 1127 default: z[j++] = '%'; break; 1128 } 1129 } 1130 } 1131 z[j] = 0; 1132 sqlite3_result_text(context, z, -1, 1133 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 1134 } 1135 1136 /* 1137 ** current_time() 1138 ** 1139 ** This function returns the same value as time('now'). 1140 */ 1141 static void ctimeFunc( 1142 sqlite3_context *context, 1143 int NotUsed, 1144 sqlite3_value **NotUsed2 1145 ){ 1146 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1147 timeFunc(context, 0, 0); 1148 } 1149 1150 /* 1151 ** current_date() 1152 ** 1153 ** This function returns the same value as date('now'). 1154 */ 1155 static void cdateFunc( 1156 sqlite3_context *context, 1157 int NotUsed, 1158 sqlite3_value **NotUsed2 1159 ){ 1160 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1161 dateFunc(context, 0, 0); 1162 } 1163 1164 /* 1165 ** current_timestamp() 1166 ** 1167 ** This function returns the same value as datetime('now'). 1168 */ 1169 static void ctimestampFunc( 1170 sqlite3_context *context, 1171 int NotUsed, 1172 sqlite3_value **NotUsed2 1173 ){ 1174 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1175 datetimeFunc(context, 0, 0); 1176 } 1177 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1178 1179 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1180 /* 1181 ** If the library is compiled to omit the full-scale date and time 1182 ** handling (to get a smaller binary), the following minimal version 1183 ** of the functions current_time(), current_date() and current_timestamp() 1184 ** are included instead. This is to support column declarations that 1185 ** include "DEFAULT CURRENT_TIME" etc. 1186 ** 1187 ** This function uses the C-library functions time(), gmtime() 1188 ** and strftime(). The format string to pass to strftime() is supplied 1189 ** as the user-data for the function. 1190 */ 1191 static void currentTimeFunc( 1192 sqlite3_context *context, 1193 int argc, 1194 sqlite3_value **argv 1195 ){ 1196 time_t t; 1197 char *zFormat = (char *)sqlite3_user_data(context); 1198 sqlite3_int64 iT; 1199 struct tm *pTm; 1200 struct tm sNow; 1201 char zBuf[20]; 1202 1203 UNUSED_PARAMETER(argc); 1204 UNUSED_PARAMETER(argv); 1205 1206 iT = sqlite3StmtCurrentTime(context); 1207 if( iT<=0 ) return; 1208 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1209 #if HAVE_GMTIME_R 1210 pTm = gmtime_r(&t, &sNow); 1211 #else 1212 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1213 pTm = gmtime(&t); 1214 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1215 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1216 #endif 1217 if( pTm ){ 1218 strftime(zBuf, 20, zFormat, &sNow); 1219 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1220 } 1221 } 1222 #endif 1223 1224 /* 1225 ** This function registered all of the above C functions as SQL 1226 ** functions. This should be the only routine in this file with 1227 ** external linkage. 1228 */ 1229 void sqlite3RegisterDateTimeFunctions(void){ 1230 static FuncDef aDateTimeFuncs[] = { 1231 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1232 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1233 DFUNCTION(date, -1, 0, 0, dateFunc ), 1234 DFUNCTION(time, -1, 0, 0, timeFunc ), 1235 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1236 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1237 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1238 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1239 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1240 #else 1241 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1242 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1243 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1244 #endif 1245 }; 1246 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1247 } 1248