1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 pToplevel->db->mallocFailed = 1; 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 int isView, /* True if looking for a VIEW rather than a TABLE */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = isView ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( zDbase ){ 368 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 369 }else{ 370 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 371 } 372 pParse->checkSchema = 1; 373 } 374 375 return p; 376 } 377 378 /* 379 ** Locate the table identified by *p. 380 ** 381 ** This is a wrapper around sqlite3LocateTable(). The difference between 382 ** sqlite3LocateTable() and this function is that this function restricts 383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 384 ** non-NULL if it is part of a view or trigger program definition. See 385 ** sqlite3FixSrcList() for details. 386 */ 387 Table *sqlite3LocateTableItem( 388 Parse *pParse, 389 int isView, 390 struct SrcList_item *p 391 ){ 392 const char *zDb; 393 assert( p->pSchema==0 || p->zDatabase==0 ); 394 if( p->pSchema ){ 395 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 396 zDb = pParse->db->aDb[iDb].zName; 397 }else{ 398 zDb = p->zDatabase; 399 } 400 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 401 } 402 403 /* 404 ** Locate the in-memory structure that describes 405 ** a particular index given the name of that index 406 ** and the name of the database that contains the index. 407 ** Return NULL if not found. 408 ** 409 ** If zDatabase is 0, all databases are searched for the 410 ** table and the first matching index is returned. (No checking 411 ** for duplicate index names is done.) The search order is 412 ** TEMP first, then MAIN, then any auxiliary databases added 413 ** using the ATTACH command. 414 */ 415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 416 Index *p = 0; 417 int i; 418 /* All mutexes are required for schema access. Make sure we hold them. */ 419 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 420 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 421 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 422 Schema *pSchema = db->aDb[j].pSchema; 423 assert( pSchema ); 424 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 425 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 426 p = sqlite3HashFind(&pSchema->idxHash, zName); 427 if( p ) break; 428 } 429 return p; 430 } 431 432 /* 433 ** Reclaim the memory used by an index 434 */ 435 static void freeIndex(sqlite3 *db, Index *p){ 436 #ifndef SQLITE_OMIT_ANALYZE 437 sqlite3DeleteIndexSamples(db, p); 438 #endif 439 sqlite3ExprDelete(db, p->pPartIdxWhere); 440 sqlite3ExprListDelete(db, p->aColExpr); 441 sqlite3DbFree(db, p->zColAff); 442 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 sqlite3_free(p->aiRowEst); 445 #endif 446 sqlite3DbFree(db, p); 447 } 448 449 /* 450 ** For the index called zIdxName which is found in the database iDb, 451 ** unlike that index from its Table then remove the index from 452 ** the index hash table and free all memory structures associated 453 ** with the index. 454 */ 455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 456 Index *pIndex; 457 Hash *pHash; 458 459 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 460 pHash = &db->aDb[iDb].pSchema->idxHash; 461 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 462 if( ALWAYS(pIndex) ){ 463 if( pIndex->pTable->pIndex==pIndex ){ 464 pIndex->pTable->pIndex = pIndex->pNext; 465 }else{ 466 Index *p; 467 /* Justification of ALWAYS(); The index must be on the list of 468 ** indices. */ 469 p = pIndex->pTable->pIndex; 470 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 471 if( ALWAYS(p && p->pNext==pIndex) ){ 472 p->pNext = pIndex->pNext; 473 } 474 } 475 freeIndex(db, pIndex); 476 } 477 db->flags |= SQLITE_InternChanges; 478 } 479 480 /* 481 ** Look through the list of open database files in db->aDb[] and if 482 ** any have been closed, remove them from the list. Reallocate the 483 ** db->aDb[] structure to a smaller size, if possible. 484 ** 485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 486 ** are never candidates for being collapsed. 487 */ 488 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 489 int i, j; 490 for(i=j=2; i<db->nDb; i++){ 491 struct Db *pDb = &db->aDb[i]; 492 if( pDb->pBt==0 ){ 493 sqlite3DbFree(db, pDb->zName); 494 pDb->zName = 0; 495 continue; 496 } 497 if( j<i ){ 498 db->aDb[j] = db->aDb[i]; 499 } 500 j++; 501 } 502 db->nDb = j; 503 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 504 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 505 sqlite3DbFree(db, db->aDb); 506 db->aDb = db->aDbStatic; 507 } 508 } 509 510 /* 511 ** Reset the schema for the database at index iDb. Also reset the 512 ** TEMP schema. 513 */ 514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 515 Db *pDb; 516 assert( iDb<db->nDb ); 517 518 /* Case 1: Reset the single schema identified by iDb */ 519 pDb = &db->aDb[iDb]; 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 assert( pDb->pSchema!=0 ); 522 sqlite3SchemaClear(pDb->pSchema); 523 524 /* If any database other than TEMP is reset, then also reset TEMP 525 ** since TEMP might be holding triggers that reference tables in the 526 ** other database. 527 */ 528 if( iDb!=1 ){ 529 pDb = &db->aDb[1]; 530 assert( pDb->pSchema!=0 ); 531 sqlite3SchemaClear(pDb->pSchema); 532 } 533 return; 534 } 535 536 /* 537 ** Erase all schema information from all attached databases (including 538 ** "main" and "temp") for a single database connection. 539 */ 540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 541 int i; 542 sqlite3BtreeEnterAll(db); 543 for(i=0; i<db->nDb; i++){ 544 Db *pDb = &db->aDb[i]; 545 if( pDb->pSchema ){ 546 sqlite3SchemaClear(pDb->pSchema); 547 } 548 } 549 db->flags &= ~SQLITE_InternChanges; 550 sqlite3VtabUnlockList(db); 551 sqlite3BtreeLeaveAll(db); 552 sqlite3CollapseDatabaseArray(db); 553 } 554 555 /* 556 ** This routine is called when a commit occurs. 557 */ 558 void sqlite3CommitInternalChanges(sqlite3 *db){ 559 db->flags &= ~SQLITE_InternChanges; 560 } 561 562 /* 563 ** Delete memory allocated for the column names of a table or view (the 564 ** Table.aCol[] array). 565 */ 566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 567 int i; 568 Column *pCol; 569 assert( pTable!=0 ); 570 if( (pCol = pTable->aCol)!=0 ){ 571 for(i=0; i<pTable->nCol; i++, pCol++){ 572 sqlite3DbFree(db, pCol->zName); 573 sqlite3ExprDelete(db, pCol->pDflt); 574 sqlite3DbFree(db, pCol->zDflt); 575 sqlite3DbFree(db, pCol->zType); 576 sqlite3DbFree(db, pCol->zColl); 577 } 578 sqlite3DbFree(db, pTable->aCol); 579 } 580 } 581 582 /* 583 ** Remove the memory data structures associated with the given 584 ** Table. No changes are made to disk by this routine. 585 ** 586 ** This routine just deletes the data structure. It does not unlink 587 ** the table data structure from the hash table. But it does destroy 588 ** memory structures of the indices and foreign keys associated with 589 ** the table. 590 ** 591 ** The db parameter is optional. It is needed if the Table object 592 ** contains lookaside memory. (Table objects in the schema do not use 593 ** lookaside memory, but some ephemeral Table objects do.) Or the 594 ** db parameter can be used with db->pnBytesFreed to measure the memory 595 ** used by the Table object. 596 */ 597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 598 Index *pIndex, *pNext; 599 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 600 601 assert( !pTable || pTable->nRef>0 ); 602 603 /* Do not delete the table until the reference count reaches zero. */ 604 if( !pTable ) return; 605 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 606 607 /* Record the number of outstanding lookaside allocations in schema Tables 608 ** prior to doing any free() operations. Since schema Tables do not use 609 ** lookaside, this number should not change. */ 610 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 611 db->lookaside.nOut : 0 ); 612 613 /* Delete all indices associated with this table. */ 614 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 615 pNext = pIndex->pNext; 616 assert( pIndex->pSchema==pTable->pSchema ); 617 if( !db || db->pnBytesFreed==0 ){ 618 char *zName = pIndex->zName; 619 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 620 &pIndex->pSchema->idxHash, zName, 0 621 ); 622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 623 assert( pOld==pIndex || pOld==0 ); 624 } 625 freeIndex(db, pIndex); 626 } 627 628 /* Delete any foreign keys attached to this table. */ 629 sqlite3FkDelete(db, pTable); 630 631 /* Delete the Table structure itself. 632 */ 633 sqlite3DeleteColumnNames(db, pTable); 634 sqlite3DbFree(db, pTable->zName); 635 sqlite3DbFree(db, pTable->zColAff); 636 sqlite3SelectDelete(db, pTable->pSelect); 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #ifndef SQLITE_OMIT_VIRTUALTABLE 639 sqlite3VtabClear(db, pTable); 640 #endif 641 sqlite3DbFree(db, pTable); 642 643 /* Verify that no lookaside memory was used by schema tables */ 644 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 645 } 646 647 /* 648 ** Unlink the given table from the hash tables and the delete the 649 ** table structure with all its indices and foreign keys. 650 */ 651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 652 Table *p; 653 Db *pDb; 654 655 assert( db!=0 ); 656 assert( iDb>=0 && iDb<db->nDb ); 657 assert( zTabName ); 658 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 659 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 660 pDb = &db->aDb[iDb]; 661 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 662 sqlite3DeleteTable(db, p); 663 db->flags |= SQLITE_InternChanges; 664 } 665 666 /* 667 ** Given a token, return a string that consists of the text of that 668 ** token. Space to hold the returned string 669 ** is obtained from sqliteMalloc() and must be freed by the calling 670 ** function. 671 ** 672 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 673 ** surround the body of the token are removed. 674 ** 675 ** Tokens are often just pointers into the original SQL text and so 676 ** are not \000 terminated and are not persistent. The returned string 677 ** is \000 terminated and is persistent. 678 */ 679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 680 char *zName; 681 if( pName ){ 682 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 683 sqlite3Dequote(zName); 684 }else{ 685 zName = 0; 686 } 687 return zName; 688 } 689 690 /* 691 ** Open the sqlite_master table stored in database number iDb for 692 ** writing. The table is opened using cursor 0. 693 */ 694 void sqlite3OpenMasterTable(Parse *p, int iDb){ 695 Vdbe *v = sqlite3GetVdbe(p); 696 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 697 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 698 if( p->nTab==0 ){ 699 p->nTab = 1; 700 } 701 } 702 703 /* 704 ** Parameter zName points to a nul-terminated buffer containing the name 705 ** of a database ("main", "temp" or the name of an attached db). This 706 ** function returns the index of the named database in db->aDb[], or 707 ** -1 if the named db cannot be found. 708 */ 709 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 710 int i = -1; /* Database number */ 711 if( zName ){ 712 Db *pDb; 713 int n = sqlite3Strlen30(zName); 714 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 715 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 716 0==sqlite3StrICmp(pDb->zName, zName) ){ 717 break; 718 } 719 } 720 } 721 return i; 722 } 723 724 /* 725 ** The token *pName contains the name of a database (either "main" or 726 ** "temp" or the name of an attached db). This routine returns the 727 ** index of the named database in db->aDb[], or -1 if the named db 728 ** does not exist. 729 */ 730 int sqlite3FindDb(sqlite3 *db, Token *pName){ 731 int i; /* Database number */ 732 char *zName; /* Name we are searching for */ 733 zName = sqlite3NameFromToken(db, pName); 734 i = sqlite3FindDbName(db, zName); 735 sqlite3DbFree(db, zName); 736 return i; 737 } 738 739 /* The table or view or trigger name is passed to this routine via tokens 740 ** pName1 and pName2. If the table name was fully qualified, for example: 741 ** 742 ** CREATE TABLE xxx.yyy (...); 743 ** 744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 745 ** the table name is not fully qualified, i.e.: 746 ** 747 ** CREATE TABLE yyy(...); 748 ** 749 ** Then pName1 is set to "yyy" and pName2 is "". 750 ** 751 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 752 ** pName2) that stores the unqualified table name. The index of the 753 ** database "xxx" is returned. 754 */ 755 int sqlite3TwoPartName( 756 Parse *pParse, /* Parsing and code generating context */ 757 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 758 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 759 Token **pUnqual /* Write the unqualified object name here */ 760 ){ 761 int iDb; /* Database holding the object */ 762 sqlite3 *db = pParse->db; 763 764 assert( pName2!=0 ); 765 if( pName2->n>0 ){ 766 if( db->init.busy ) { 767 sqlite3ErrorMsg(pParse, "corrupt database"); 768 return -1; 769 } 770 *pUnqual = pName2; 771 iDb = sqlite3FindDb(db, pName1); 772 if( iDb<0 ){ 773 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 774 return -1; 775 } 776 }else{ 777 assert( db->init.iDb==0 || db->init.busy ); 778 iDb = db->init.iDb; 779 *pUnqual = pName1; 780 } 781 return iDb; 782 } 783 784 /* 785 ** This routine is used to check if the UTF-8 string zName is a legal 786 ** unqualified name for a new schema object (table, index, view or 787 ** trigger). All names are legal except those that begin with the string 788 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 789 ** is reserved for internal use. 790 */ 791 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 792 if( !pParse->db->init.busy && pParse->nested==0 793 && (pParse->db->flags & SQLITE_WriteSchema)==0 794 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 795 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 796 return SQLITE_ERROR; 797 } 798 return SQLITE_OK; 799 } 800 801 /* 802 ** Return the PRIMARY KEY index of a table 803 */ 804 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 805 Index *p; 806 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 807 return p; 808 } 809 810 /* 811 ** Return the column of index pIdx that corresponds to table 812 ** column iCol. Return -1 if not found. 813 */ 814 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 815 int i; 816 for(i=0; i<pIdx->nColumn; i++){ 817 if( iCol==pIdx->aiColumn[i] ) return i; 818 } 819 return -1; 820 } 821 822 /* 823 ** Begin constructing a new table representation in memory. This is 824 ** the first of several action routines that get called in response 825 ** to a CREATE TABLE statement. In particular, this routine is called 826 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 827 ** flag is true if the table should be stored in the auxiliary database 828 ** file instead of in the main database file. This is normally the case 829 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 830 ** CREATE and TABLE. 831 ** 832 ** The new table record is initialized and put in pParse->pNewTable. 833 ** As more of the CREATE TABLE statement is parsed, additional action 834 ** routines will be called to add more information to this record. 835 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 836 ** is called to complete the construction of the new table record. 837 */ 838 void sqlite3StartTable( 839 Parse *pParse, /* Parser context */ 840 Token *pName1, /* First part of the name of the table or view */ 841 Token *pName2, /* Second part of the name of the table or view */ 842 int isTemp, /* True if this is a TEMP table */ 843 int isView, /* True if this is a VIEW */ 844 int isVirtual, /* True if this is a VIRTUAL table */ 845 int noErr /* Do nothing if table already exists */ 846 ){ 847 Table *pTable; 848 char *zName = 0; /* The name of the new table */ 849 sqlite3 *db = pParse->db; 850 Vdbe *v; 851 int iDb; /* Database number to create the table in */ 852 Token *pName; /* Unqualified name of the table to create */ 853 854 if( db->init.busy && db->init.newTnum==1 ){ 855 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 856 iDb = db->init.iDb; 857 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 858 pName = pName1; 859 }else{ 860 /* The common case */ 861 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 862 if( iDb<0 ) return; 863 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 864 /* If creating a temp table, the name may not be qualified. Unless 865 ** the database name is "temp" anyway. */ 866 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 867 return; 868 } 869 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 870 zName = sqlite3NameFromToken(db, pName); 871 } 872 pParse->sNameToken = *pName; 873 if( zName==0 ) return; 874 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 875 goto begin_table_error; 876 } 877 if( db->init.iDb==1 ) isTemp = 1; 878 #ifndef SQLITE_OMIT_AUTHORIZATION 879 assert( isTemp==0 || isTemp==1 ); 880 assert( isView==0 || isView==1 ); 881 { 882 static const u8 aCode[] = { 883 SQLITE_CREATE_TABLE, 884 SQLITE_CREATE_TEMP_TABLE, 885 SQLITE_CREATE_VIEW, 886 SQLITE_CREATE_TEMP_VIEW 887 }; 888 char *zDb = db->aDb[iDb].zName; 889 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 890 goto begin_table_error; 891 } 892 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 893 zName, 0, zDb) ){ 894 goto begin_table_error; 895 } 896 } 897 #endif 898 899 /* Make sure the new table name does not collide with an existing 900 ** index or table name in the same database. Issue an error message if 901 ** it does. The exception is if the statement being parsed was passed 902 ** to an sqlite3_declare_vtab() call. In that case only the column names 903 ** and types will be used, so there is no need to test for namespace 904 ** collisions. 905 */ 906 if( !IN_DECLARE_VTAB ){ 907 char *zDb = db->aDb[iDb].zName; 908 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 909 goto begin_table_error; 910 } 911 pTable = sqlite3FindTable(db, zName, zDb); 912 if( pTable ){ 913 if( !noErr ){ 914 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 915 }else{ 916 assert( !db->init.busy || CORRUPT_DB ); 917 sqlite3CodeVerifySchema(pParse, iDb); 918 } 919 goto begin_table_error; 920 } 921 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 922 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 923 goto begin_table_error; 924 } 925 } 926 927 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 928 if( pTable==0 ){ 929 db->mallocFailed = 1; 930 pParse->rc = SQLITE_NOMEM; 931 pParse->nErr++; 932 goto begin_table_error; 933 } 934 pTable->zName = zName; 935 pTable->iPKey = -1; 936 pTable->pSchema = db->aDb[iDb].pSchema; 937 pTable->nRef = 1; 938 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 939 assert( pParse->pNewTable==0 ); 940 pParse->pNewTable = pTable; 941 942 /* If this is the magic sqlite_sequence table used by autoincrement, 943 ** then record a pointer to this table in the main database structure 944 ** so that INSERT can find the table easily. 945 */ 946 #ifndef SQLITE_OMIT_AUTOINCREMENT 947 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 948 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 949 pTable->pSchema->pSeqTab = pTable; 950 } 951 #endif 952 953 /* Begin generating the code that will insert the table record into 954 ** the SQLITE_MASTER table. Note in particular that we must go ahead 955 ** and allocate the record number for the table entry now. Before any 956 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 957 ** indices to be created and the table record must come before the 958 ** indices. Hence, the record number for the table must be allocated 959 ** now. 960 */ 961 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 962 int addr1; 963 int fileFormat; 964 int reg1, reg2, reg3; 965 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 966 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 967 sqlite3BeginWriteOperation(pParse, 1, iDb); 968 969 #ifndef SQLITE_OMIT_VIRTUALTABLE 970 if( isVirtual ){ 971 sqlite3VdbeAddOp0(v, OP_VBegin); 972 } 973 #endif 974 975 /* If the file format and encoding in the database have not been set, 976 ** set them now. 977 */ 978 reg1 = pParse->regRowid = ++pParse->nMem; 979 reg2 = pParse->regRoot = ++pParse->nMem; 980 reg3 = ++pParse->nMem; 981 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 982 sqlite3VdbeUsesBtree(v, iDb); 983 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 984 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 985 1 : SQLITE_MAX_FILE_FORMAT; 986 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 987 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 988 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 989 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 990 sqlite3VdbeJumpHere(v, addr1); 991 992 /* This just creates a place-holder record in the sqlite_master table. 993 ** The record created does not contain anything yet. It will be replaced 994 ** by the real entry in code generated at sqlite3EndTable(). 995 ** 996 ** The rowid for the new entry is left in register pParse->regRowid. 997 ** The root page number of the new table is left in reg pParse->regRoot. 998 ** The rowid and root page number values are needed by the code that 999 ** sqlite3EndTable will generate. 1000 */ 1001 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1002 if( isView || isVirtual ){ 1003 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1004 }else 1005 #endif 1006 { 1007 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1008 } 1009 sqlite3OpenMasterTable(pParse, iDb); 1010 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1011 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1012 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1013 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1014 sqlite3VdbeAddOp0(v, OP_Close); 1015 } 1016 1017 /* Normal (non-error) return. */ 1018 return; 1019 1020 /* If an error occurs, we jump here */ 1021 begin_table_error: 1022 sqlite3DbFree(db, zName); 1023 return; 1024 } 1025 1026 /* Set properties of a table column based on the (magical) 1027 ** name of the column. 1028 */ 1029 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1030 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1031 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1032 pCol->colFlags |= COLFLAG_HIDDEN; 1033 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1034 pTab->tabFlags |= TF_OOOHidden; 1035 } 1036 } 1037 #endif 1038 1039 1040 /* 1041 ** Add a new column to the table currently being constructed. 1042 ** 1043 ** The parser calls this routine once for each column declaration 1044 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1045 ** first to get things going. Then this routine is called for each 1046 ** column. 1047 */ 1048 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1049 Table *p; 1050 int i; 1051 char *z; 1052 Column *pCol; 1053 sqlite3 *db = pParse->db; 1054 if( (p = pParse->pNewTable)==0 ) return; 1055 #if SQLITE_MAX_COLUMN 1056 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1057 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1058 return; 1059 } 1060 #endif 1061 z = sqlite3NameFromToken(db, pName); 1062 if( z==0 ) return; 1063 for(i=0; i<p->nCol; i++){ 1064 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1065 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1066 sqlite3DbFree(db, z); 1067 return; 1068 } 1069 } 1070 if( (p->nCol & 0x7)==0 ){ 1071 Column *aNew; 1072 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1073 if( aNew==0 ){ 1074 sqlite3DbFree(db, z); 1075 return; 1076 } 1077 p->aCol = aNew; 1078 } 1079 pCol = &p->aCol[p->nCol]; 1080 memset(pCol, 0, sizeof(p->aCol[0])); 1081 pCol->zName = z; 1082 sqlite3ColumnPropertiesFromName(p, pCol); 1083 1084 /* If there is no type specified, columns have the default affinity 1085 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1086 ** be called next to set pCol->affinity correctly. 1087 */ 1088 pCol->affinity = SQLITE_AFF_BLOB; 1089 pCol->szEst = 1; 1090 p->nCol++; 1091 } 1092 1093 /* 1094 ** This routine is called by the parser while in the middle of 1095 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1096 ** been seen on a column. This routine sets the notNull flag on 1097 ** the column currently under construction. 1098 */ 1099 void sqlite3AddNotNull(Parse *pParse, int onError){ 1100 Table *p; 1101 p = pParse->pNewTable; 1102 if( p==0 || NEVER(p->nCol<1) ) return; 1103 p->aCol[p->nCol-1].notNull = (u8)onError; 1104 } 1105 1106 /* 1107 ** Scan the column type name zType (length nType) and return the 1108 ** associated affinity type. 1109 ** 1110 ** This routine does a case-independent search of zType for the 1111 ** substrings in the following table. If one of the substrings is 1112 ** found, the corresponding affinity is returned. If zType contains 1113 ** more than one of the substrings, entries toward the top of 1114 ** the table take priority. For example, if zType is 'BLOBINT', 1115 ** SQLITE_AFF_INTEGER is returned. 1116 ** 1117 ** Substring | Affinity 1118 ** -------------------------------- 1119 ** 'INT' | SQLITE_AFF_INTEGER 1120 ** 'CHAR' | SQLITE_AFF_TEXT 1121 ** 'CLOB' | SQLITE_AFF_TEXT 1122 ** 'TEXT' | SQLITE_AFF_TEXT 1123 ** 'BLOB' | SQLITE_AFF_BLOB 1124 ** 'REAL' | SQLITE_AFF_REAL 1125 ** 'FLOA' | SQLITE_AFF_REAL 1126 ** 'DOUB' | SQLITE_AFF_REAL 1127 ** 1128 ** If none of the substrings in the above table are found, 1129 ** SQLITE_AFF_NUMERIC is returned. 1130 */ 1131 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1132 u32 h = 0; 1133 char aff = SQLITE_AFF_NUMERIC; 1134 const char *zChar = 0; 1135 1136 if( zIn==0 ) return aff; 1137 while( zIn[0] ){ 1138 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1139 zIn++; 1140 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1141 aff = SQLITE_AFF_TEXT; 1142 zChar = zIn; 1143 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1144 aff = SQLITE_AFF_TEXT; 1145 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1146 aff = SQLITE_AFF_TEXT; 1147 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1148 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1149 aff = SQLITE_AFF_BLOB; 1150 if( zIn[0]=='(' ) zChar = zIn; 1151 #ifndef SQLITE_OMIT_FLOATING_POINT 1152 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1153 && aff==SQLITE_AFF_NUMERIC ){ 1154 aff = SQLITE_AFF_REAL; 1155 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1156 && aff==SQLITE_AFF_NUMERIC ){ 1157 aff = SQLITE_AFF_REAL; 1158 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1159 && aff==SQLITE_AFF_NUMERIC ){ 1160 aff = SQLITE_AFF_REAL; 1161 #endif 1162 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1163 aff = SQLITE_AFF_INTEGER; 1164 break; 1165 } 1166 } 1167 1168 /* If pszEst is not NULL, store an estimate of the field size. The 1169 ** estimate is scaled so that the size of an integer is 1. */ 1170 if( pszEst ){ 1171 *pszEst = 1; /* default size is approx 4 bytes */ 1172 if( aff<SQLITE_AFF_NUMERIC ){ 1173 if( zChar ){ 1174 while( zChar[0] ){ 1175 if( sqlite3Isdigit(zChar[0]) ){ 1176 int v = 0; 1177 sqlite3GetInt32(zChar, &v); 1178 v = v/4 + 1; 1179 if( v>255 ) v = 255; 1180 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1181 break; 1182 } 1183 zChar++; 1184 } 1185 }else{ 1186 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1187 } 1188 } 1189 } 1190 return aff; 1191 } 1192 1193 /* 1194 ** This routine is called by the parser while in the middle of 1195 ** parsing a CREATE TABLE statement. The pFirst token is the first 1196 ** token in the sequence of tokens that describe the type of the 1197 ** column currently under construction. pLast is the last token 1198 ** in the sequence. Use this information to construct a string 1199 ** that contains the typename of the column and store that string 1200 ** in zType. 1201 */ 1202 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1203 Table *p; 1204 Column *pCol; 1205 1206 p = pParse->pNewTable; 1207 if( p==0 || NEVER(p->nCol<1) ) return; 1208 pCol = &p->aCol[p->nCol-1]; 1209 assert( pCol->zType==0 || CORRUPT_DB ); 1210 sqlite3DbFree(pParse->db, pCol->zType); 1211 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1212 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1213 } 1214 1215 /* 1216 ** The expression is the default value for the most recently added column 1217 ** of the table currently under construction. 1218 ** 1219 ** Default value expressions must be constant. Raise an exception if this 1220 ** is not the case. 1221 ** 1222 ** This routine is called by the parser while in the middle of 1223 ** parsing a CREATE TABLE statement. 1224 */ 1225 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1226 Table *p; 1227 Column *pCol; 1228 sqlite3 *db = pParse->db; 1229 p = pParse->pNewTable; 1230 if( p!=0 ){ 1231 pCol = &(p->aCol[p->nCol-1]); 1232 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1233 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1234 pCol->zName); 1235 }else{ 1236 /* A copy of pExpr is used instead of the original, as pExpr contains 1237 ** tokens that point to volatile memory. The 'span' of the expression 1238 ** is required by pragma table_info. 1239 */ 1240 sqlite3ExprDelete(db, pCol->pDflt); 1241 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1242 sqlite3DbFree(db, pCol->zDflt); 1243 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1244 (int)(pSpan->zEnd - pSpan->zStart)); 1245 } 1246 } 1247 sqlite3ExprDelete(db, pSpan->pExpr); 1248 } 1249 1250 /* 1251 ** Backwards Compatibility Hack: 1252 ** 1253 ** Historical versions of SQLite accepted strings as column names in 1254 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1255 ** 1256 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1257 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1258 ** 1259 ** This is goofy. But to preserve backwards compatibility we continue to 1260 ** accept it. This routine does the necessary conversion. It converts 1261 ** the expression given in its argument from a TK_STRING into a TK_ID 1262 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1263 ** If the epxression is anything other than TK_STRING, the expression is 1264 ** unchanged. 1265 */ 1266 static void sqlite3StringToId(Expr *p){ 1267 if( p->op==TK_STRING ){ 1268 p->op = TK_ID; 1269 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1270 p->pLeft->op = TK_ID; 1271 } 1272 } 1273 1274 /* 1275 ** Designate the PRIMARY KEY for the table. pList is a list of names 1276 ** of columns that form the primary key. If pList is NULL, then the 1277 ** most recently added column of the table is the primary key. 1278 ** 1279 ** A table can have at most one primary key. If the table already has 1280 ** a primary key (and this is the second primary key) then create an 1281 ** error. 1282 ** 1283 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1284 ** then we will try to use that column as the rowid. Set the Table.iPKey 1285 ** field of the table under construction to be the index of the 1286 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1287 ** no INTEGER PRIMARY KEY. 1288 ** 1289 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1290 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1291 */ 1292 void sqlite3AddPrimaryKey( 1293 Parse *pParse, /* Parsing context */ 1294 ExprList *pList, /* List of field names to be indexed */ 1295 int onError, /* What to do with a uniqueness conflict */ 1296 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1297 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1298 ){ 1299 Table *pTab = pParse->pNewTable; 1300 char *zType = 0; 1301 int iCol = -1, i; 1302 int nTerm; 1303 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1304 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1305 sqlite3ErrorMsg(pParse, 1306 "table \"%s\" has more than one primary key", pTab->zName); 1307 goto primary_key_exit; 1308 } 1309 pTab->tabFlags |= TF_HasPrimaryKey; 1310 if( pList==0 ){ 1311 iCol = pTab->nCol - 1; 1312 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1313 zType = pTab->aCol[iCol].zType; 1314 nTerm = 1; 1315 }else{ 1316 nTerm = pList->nExpr; 1317 for(i=0; i<nTerm; i++){ 1318 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1319 assert( pCExpr!=0 ); 1320 sqlite3StringToId(pCExpr); 1321 if( pCExpr->op==TK_ID ){ 1322 const char *zCName = pCExpr->u.zToken; 1323 for(iCol=0; iCol<pTab->nCol; iCol++){ 1324 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1325 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1326 zType = pTab->aCol[iCol].zType; 1327 break; 1328 } 1329 } 1330 } 1331 } 1332 } 1333 if( nTerm==1 1334 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1335 && sortOrder!=SQLITE_SO_DESC 1336 ){ 1337 pTab->iPKey = iCol; 1338 pTab->keyConf = (u8)onError; 1339 assert( autoInc==0 || autoInc==1 ); 1340 pTab->tabFlags |= autoInc*TF_Autoincrement; 1341 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1342 }else if( autoInc ){ 1343 #ifndef SQLITE_OMIT_AUTOINCREMENT 1344 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1345 "INTEGER PRIMARY KEY"); 1346 #endif 1347 }else{ 1348 Index *p; 1349 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1350 0, sortOrder, 0); 1351 if( p ){ 1352 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1353 } 1354 pList = 0; 1355 } 1356 1357 primary_key_exit: 1358 sqlite3ExprListDelete(pParse->db, pList); 1359 return; 1360 } 1361 1362 /* 1363 ** Add a new CHECK constraint to the table currently under construction. 1364 */ 1365 void sqlite3AddCheckConstraint( 1366 Parse *pParse, /* Parsing context */ 1367 Expr *pCheckExpr /* The check expression */ 1368 ){ 1369 #ifndef SQLITE_OMIT_CHECK 1370 Table *pTab = pParse->pNewTable; 1371 sqlite3 *db = pParse->db; 1372 if( pTab && !IN_DECLARE_VTAB 1373 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1374 ){ 1375 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1376 if( pParse->constraintName.n ){ 1377 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1378 } 1379 }else 1380 #endif 1381 { 1382 sqlite3ExprDelete(pParse->db, pCheckExpr); 1383 } 1384 } 1385 1386 /* 1387 ** Set the collation function of the most recently parsed table column 1388 ** to the CollSeq given. 1389 */ 1390 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1391 Table *p; 1392 int i; 1393 char *zColl; /* Dequoted name of collation sequence */ 1394 sqlite3 *db; 1395 1396 if( (p = pParse->pNewTable)==0 ) return; 1397 i = p->nCol-1; 1398 db = pParse->db; 1399 zColl = sqlite3NameFromToken(db, pToken); 1400 if( !zColl ) return; 1401 1402 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1403 Index *pIdx; 1404 sqlite3DbFree(db, p->aCol[i].zColl); 1405 p->aCol[i].zColl = zColl; 1406 1407 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1408 ** then an index may have been created on this column before the 1409 ** collation type was added. Correct this if it is the case. 1410 */ 1411 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1412 assert( pIdx->nKeyCol==1 ); 1413 if( pIdx->aiColumn[0]==i ){ 1414 pIdx->azColl[0] = p->aCol[i].zColl; 1415 } 1416 } 1417 }else{ 1418 sqlite3DbFree(db, zColl); 1419 } 1420 } 1421 1422 /* 1423 ** This function returns the collation sequence for database native text 1424 ** encoding identified by the string zName, length nName. 1425 ** 1426 ** If the requested collation sequence is not available, or not available 1427 ** in the database native encoding, the collation factory is invoked to 1428 ** request it. If the collation factory does not supply such a sequence, 1429 ** and the sequence is available in another text encoding, then that is 1430 ** returned instead. 1431 ** 1432 ** If no versions of the requested collations sequence are available, or 1433 ** another error occurs, NULL is returned and an error message written into 1434 ** pParse. 1435 ** 1436 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1437 ** invokes the collation factory if the named collation cannot be found 1438 ** and generates an error message. 1439 ** 1440 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1441 */ 1442 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1443 sqlite3 *db = pParse->db; 1444 u8 enc = ENC(db); 1445 u8 initbusy = db->init.busy; 1446 CollSeq *pColl; 1447 1448 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1449 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1450 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1451 } 1452 1453 return pColl; 1454 } 1455 1456 1457 /* 1458 ** Generate code that will increment the schema cookie. 1459 ** 1460 ** The schema cookie is used to determine when the schema for the 1461 ** database changes. After each schema change, the cookie value 1462 ** changes. When a process first reads the schema it records the 1463 ** cookie. Thereafter, whenever it goes to access the database, 1464 ** it checks the cookie to make sure the schema has not changed 1465 ** since it was last read. 1466 ** 1467 ** This plan is not completely bullet-proof. It is possible for 1468 ** the schema to change multiple times and for the cookie to be 1469 ** set back to prior value. But schema changes are infrequent 1470 ** and the probability of hitting the same cookie value is only 1471 ** 1 chance in 2^32. So we're safe enough. 1472 */ 1473 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1474 int r1 = sqlite3GetTempReg(pParse); 1475 sqlite3 *db = pParse->db; 1476 Vdbe *v = pParse->pVdbe; 1477 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1478 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1479 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1480 sqlite3ReleaseTempReg(pParse, r1); 1481 } 1482 1483 /* 1484 ** Measure the number of characters needed to output the given 1485 ** identifier. The number returned includes any quotes used 1486 ** but does not include the null terminator. 1487 ** 1488 ** The estimate is conservative. It might be larger that what is 1489 ** really needed. 1490 */ 1491 static int identLength(const char *z){ 1492 int n; 1493 for(n=0; *z; n++, z++){ 1494 if( *z=='"' ){ n++; } 1495 } 1496 return n + 2; 1497 } 1498 1499 /* 1500 ** The first parameter is a pointer to an output buffer. The second 1501 ** parameter is a pointer to an integer that contains the offset at 1502 ** which to write into the output buffer. This function copies the 1503 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1504 ** to the specified offset in the buffer and updates *pIdx to refer 1505 ** to the first byte after the last byte written before returning. 1506 ** 1507 ** If the string zSignedIdent consists entirely of alpha-numeric 1508 ** characters, does not begin with a digit and is not an SQL keyword, 1509 ** then it is copied to the output buffer exactly as it is. Otherwise, 1510 ** it is quoted using double-quotes. 1511 */ 1512 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1513 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1514 int i, j, needQuote; 1515 i = *pIdx; 1516 1517 for(j=0; zIdent[j]; j++){ 1518 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1519 } 1520 needQuote = sqlite3Isdigit(zIdent[0]) 1521 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1522 || zIdent[j]!=0 1523 || j==0; 1524 1525 if( needQuote ) z[i++] = '"'; 1526 for(j=0; zIdent[j]; j++){ 1527 z[i++] = zIdent[j]; 1528 if( zIdent[j]=='"' ) z[i++] = '"'; 1529 } 1530 if( needQuote ) z[i++] = '"'; 1531 z[i] = 0; 1532 *pIdx = i; 1533 } 1534 1535 /* 1536 ** Generate a CREATE TABLE statement appropriate for the given 1537 ** table. Memory to hold the text of the statement is obtained 1538 ** from sqliteMalloc() and must be freed by the calling function. 1539 */ 1540 static char *createTableStmt(sqlite3 *db, Table *p){ 1541 int i, k, n; 1542 char *zStmt; 1543 char *zSep, *zSep2, *zEnd; 1544 Column *pCol; 1545 n = 0; 1546 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1547 n += identLength(pCol->zName) + 5; 1548 } 1549 n += identLength(p->zName); 1550 if( n<50 ){ 1551 zSep = ""; 1552 zSep2 = ","; 1553 zEnd = ")"; 1554 }else{ 1555 zSep = "\n "; 1556 zSep2 = ",\n "; 1557 zEnd = "\n)"; 1558 } 1559 n += 35 + 6*p->nCol; 1560 zStmt = sqlite3DbMallocRaw(0, n); 1561 if( zStmt==0 ){ 1562 db->mallocFailed = 1; 1563 return 0; 1564 } 1565 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1566 k = sqlite3Strlen30(zStmt); 1567 identPut(zStmt, &k, p->zName); 1568 zStmt[k++] = '('; 1569 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1570 static const char * const azType[] = { 1571 /* SQLITE_AFF_BLOB */ "", 1572 /* SQLITE_AFF_TEXT */ " TEXT", 1573 /* SQLITE_AFF_NUMERIC */ " NUM", 1574 /* SQLITE_AFF_INTEGER */ " INT", 1575 /* SQLITE_AFF_REAL */ " REAL" 1576 }; 1577 int len; 1578 const char *zType; 1579 1580 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1581 k += sqlite3Strlen30(&zStmt[k]); 1582 zSep = zSep2; 1583 identPut(zStmt, &k, pCol->zName); 1584 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1585 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1586 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1587 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1588 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1589 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1590 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1591 1592 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1593 len = sqlite3Strlen30(zType); 1594 assert( pCol->affinity==SQLITE_AFF_BLOB 1595 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1596 memcpy(&zStmt[k], zType, len); 1597 k += len; 1598 assert( k<=n ); 1599 } 1600 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1601 return zStmt; 1602 } 1603 1604 /* 1605 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1606 ** on success and SQLITE_NOMEM on an OOM error. 1607 */ 1608 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1609 char *zExtra; 1610 int nByte; 1611 if( pIdx->nColumn>=N ) return SQLITE_OK; 1612 assert( pIdx->isResized==0 ); 1613 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1614 zExtra = sqlite3DbMallocZero(db, nByte); 1615 if( zExtra==0 ) return SQLITE_NOMEM; 1616 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1617 pIdx->azColl = (const char**)zExtra; 1618 zExtra += sizeof(char*)*N; 1619 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1620 pIdx->aiColumn = (i16*)zExtra; 1621 zExtra += sizeof(i16)*N; 1622 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1623 pIdx->aSortOrder = (u8*)zExtra; 1624 pIdx->nColumn = N; 1625 pIdx->isResized = 1; 1626 return SQLITE_OK; 1627 } 1628 1629 /* 1630 ** Estimate the total row width for a table. 1631 */ 1632 static void estimateTableWidth(Table *pTab){ 1633 unsigned wTable = 0; 1634 const Column *pTabCol; 1635 int i; 1636 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1637 wTable += pTabCol->szEst; 1638 } 1639 if( pTab->iPKey<0 ) wTable++; 1640 pTab->szTabRow = sqlite3LogEst(wTable*4); 1641 } 1642 1643 /* 1644 ** Estimate the average size of a row for an index. 1645 */ 1646 static void estimateIndexWidth(Index *pIdx){ 1647 unsigned wIndex = 0; 1648 int i; 1649 const Column *aCol = pIdx->pTable->aCol; 1650 for(i=0; i<pIdx->nColumn; i++){ 1651 i16 x = pIdx->aiColumn[i]; 1652 assert( x<pIdx->pTable->nCol ); 1653 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1654 } 1655 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1656 } 1657 1658 /* Return true if value x is found any of the first nCol entries of aiCol[] 1659 */ 1660 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1661 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1662 return 0; 1663 } 1664 1665 /* 1666 ** This routine runs at the end of parsing a CREATE TABLE statement that 1667 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1668 ** internal schema data structures and the generated VDBE code so that they 1669 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1670 ** Changes include: 1671 ** 1672 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1673 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1674 ** data storage is a covering index btree. 1675 ** (2) Bypass the creation of the sqlite_master table entry 1676 ** for the PRIMARY KEY as the primary key index is now 1677 ** identified by the sqlite_master table entry of the table itself. 1678 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1679 ** schema to the rootpage from the main table. 1680 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1681 ** (5) Add all table columns to the PRIMARY KEY Index object 1682 ** so that the PRIMARY KEY is a covering index. The surplus 1683 ** columns are part of KeyInfo.nXField and are not used for 1684 ** sorting or lookup or uniqueness checks. 1685 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1686 ** indices with the PRIMARY KEY columns. 1687 */ 1688 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1689 Index *pIdx; 1690 Index *pPk; 1691 int nPk; 1692 int i, j; 1693 sqlite3 *db = pParse->db; 1694 Vdbe *v = pParse->pVdbe; 1695 1696 /* Convert the OP_CreateTable opcode that would normally create the 1697 ** root-page for the table into an OP_CreateIndex opcode. The index 1698 ** created will become the PRIMARY KEY index. 1699 */ 1700 if( pParse->addrCrTab ){ 1701 assert( v ); 1702 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1703 } 1704 1705 /* Locate the PRIMARY KEY index. Or, if this table was originally 1706 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1707 */ 1708 if( pTab->iPKey>=0 ){ 1709 ExprList *pList; 1710 Token ipkToken; 1711 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1712 pList = sqlite3ExprListAppend(pParse, 0, 1713 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1714 if( pList==0 ) return; 1715 pList->a[0].sortOrder = pParse->iPkSortOrder; 1716 assert( pParse->pNewTable==pTab ); 1717 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1718 if( pPk==0 ) return; 1719 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1720 pTab->iPKey = -1; 1721 }else{ 1722 pPk = sqlite3PrimaryKeyIndex(pTab); 1723 1724 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1725 ** table entry. This is only required if currently generating VDBE 1726 ** code for a CREATE TABLE (not when parsing one as part of reading 1727 ** a database schema). */ 1728 if( v ){ 1729 assert( db->init.busy==0 ); 1730 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1731 } 1732 1733 /* 1734 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1735 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1736 ** code assumes the PRIMARY KEY contains no repeated columns. 1737 */ 1738 for(i=j=1; i<pPk->nKeyCol; i++){ 1739 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1740 pPk->nColumn--; 1741 }else{ 1742 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1743 } 1744 } 1745 pPk->nKeyCol = j; 1746 } 1747 pPk->isCovering = 1; 1748 assert( pPk!=0 ); 1749 nPk = pPk->nKeyCol; 1750 1751 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1752 ** do not enforce this for imposter tables.) */ 1753 if( !db->init.imposterTable ){ 1754 for(i=0; i<nPk; i++){ 1755 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort; 1756 } 1757 pPk->uniqNotNull = 1; 1758 } 1759 1760 /* The root page of the PRIMARY KEY is the table root page */ 1761 pPk->tnum = pTab->tnum; 1762 1763 /* Update the in-memory representation of all UNIQUE indices by converting 1764 ** the final rowid column into one or more columns of the PRIMARY KEY. 1765 */ 1766 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1767 int n; 1768 if( IsPrimaryKeyIndex(pIdx) ) continue; 1769 for(i=n=0; i<nPk; i++){ 1770 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1771 } 1772 if( n==0 ){ 1773 /* This index is a superset of the primary key */ 1774 pIdx->nColumn = pIdx->nKeyCol; 1775 continue; 1776 } 1777 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1778 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1779 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1780 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1781 pIdx->azColl[j] = pPk->azColl[i]; 1782 j++; 1783 } 1784 } 1785 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1786 assert( pIdx->nColumn>=j ); 1787 } 1788 1789 /* Add all table columns to the PRIMARY KEY index 1790 */ 1791 if( nPk<pTab->nCol ){ 1792 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1793 for(i=0, j=nPk; i<pTab->nCol; i++){ 1794 if( !hasColumn(pPk->aiColumn, j, i) ){ 1795 assert( j<pPk->nColumn ); 1796 pPk->aiColumn[j] = i; 1797 pPk->azColl[j] = sqlite3StrBINARY; 1798 j++; 1799 } 1800 } 1801 assert( pPk->nColumn==j ); 1802 assert( pTab->nCol==j ); 1803 }else{ 1804 pPk->nColumn = pTab->nCol; 1805 } 1806 } 1807 1808 /* 1809 ** This routine is called to report the final ")" that terminates 1810 ** a CREATE TABLE statement. 1811 ** 1812 ** The table structure that other action routines have been building 1813 ** is added to the internal hash tables, assuming no errors have 1814 ** occurred. 1815 ** 1816 ** An entry for the table is made in the master table on disk, unless 1817 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1818 ** it means we are reading the sqlite_master table because we just 1819 ** connected to the database or because the sqlite_master table has 1820 ** recently changed, so the entry for this table already exists in 1821 ** the sqlite_master table. We do not want to create it again. 1822 ** 1823 ** If the pSelect argument is not NULL, it means that this routine 1824 ** was called to create a table generated from a 1825 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1826 ** the new table will match the result set of the SELECT. 1827 */ 1828 void sqlite3EndTable( 1829 Parse *pParse, /* Parse context */ 1830 Token *pCons, /* The ',' token after the last column defn. */ 1831 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1832 u8 tabOpts, /* Extra table options. Usually 0. */ 1833 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1834 ){ 1835 Table *p; /* The new table */ 1836 sqlite3 *db = pParse->db; /* The database connection */ 1837 int iDb; /* Database in which the table lives */ 1838 Index *pIdx; /* An implied index of the table */ 1839 1840 if( pEnd==0 && pSelect==0 ){ 1841 return; 1842 } 1843 assert( !db->mallocFailed ); 1844 p = pParse->pNewTable; 1845 if( p==0 ) return; 1846 1847 assert( !db->init.busy || !pSelect ); 1848 1849 /* If the db->init.busy is 1 it means we are reading the SQL off the 1850 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1851 ** So do not write to the disk again. Extract the root page number 1852 ** for the table from the db->init.newTnum field. (The page number 1853 ** should have been put there by the sqliteOpenCb routine.) 1854 ** 1855 ** If the root page number is 1, that means this is the sqlite_master 1856 ** table itself. So mark it read-only. 1857 */ 1858 if( db->init.busy ){ 1859 p->tnum = db->init.newTnum; 1860 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1861 } 1862 1863 /* Special processing for WITHOUT ROWID Tables */ 1864 if( tabOpts & TF_WithoutRowid ){ 1865 if( (p->tabFlags & TF_Autoincrement) ){ 1866 sqlite3ErrorMsg(pParse, 1867 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1868 return; 1869 } 1870 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1871 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1872 }else{ 1873 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1874 convertToWithoutRowidTable(pParse, p); 1875 } 1876 } 1877 1878 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1879 1880 #ifndef SQLITE_OMIT_CHECK 1881 /* Resolve names in all CHECK constraint expressions. 1882 */ 1883 if( p->pCheck ){ 1884 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1885 } 1886 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1887 1888 /* Estimate the average row size for the table and for all implied indices */ 1889 estimateTableWidth(p); 1890 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1891 estimateIndexWidth(pIdx); 1892 } 1893 1894 /* If not initializing, then create a record for the new table 1895 ** in the SQLITE_MASTER table of the database. 1896 ** 1897 ** If this is a TEMPORARY table, write the entry into the auxiliary 1898 ** file instead of into the main database file. 1899 */ 1900 if( !db->init.busy ){ 1901 int n; 1902 Vdbe *v; 1903 char *zType; /* "view" or "table" */ 1904 char *zType2; /* "VIEW" or "TABLE" */ 1905 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1906 1907 v = sqlite3GetVdbe(pParse); 1908 if( NEVER(v==0) ) return; 1909 1910 sqlite3VdbeAddOp1(v, OP_Close, 0); 1911 1912 /* 1913 ** Initialize zType for the new view or table. 1914 */ 1915 if( p->pSelect==0 ){ 1916 /* A regular table */ 1917 zType = "table"; 1918 zType2 = "TABLE"; 1919 #ifndef SQLITE_OMIT_VIEW 1920 }else{ 1921 /* A view */ 1922 zType = "view"; 1923 zType2 = "VIEW"; 1924 #endif 1925 } 1926 1927 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1928 ** statement to populate the new table. The root-page number for the 1929 ** new table is in register pParse->regRoot. 1930 ** 1931 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1932 ** suitable state to query for the column names and types to be used 1933 ** by the new table. 1934 ** 1935 ** A shared-cache write-lock is not required to write to the new table, 1936 ** as a schema-lock must have already been obtained to create it. Since 1937 ** a schema-lock excludes all other database users, the write-lock would 1938 ** be redundant. 1939 */ 1940 if( pSelect ){ 1941 SelectDest dest; /* Where the SELECT should store results */ 1942 int regYield; /* Register holding co-routine entry-point */ 1943 int addrTop; /* Top of the co-routine */ 1944 int regRec; /* A record to be insert into the new table */ 1945 int regRowid; /* Rowid of the next row to insert */ 1946 int addrInsLoop; /* Top of the loop for inserting rows */ 1947 Table *pSelTab; /* A table that describes the SELECT results */ 1948 1949 regYield = ++pParse->nMem; 1950 regRec = ++pParse->nMem; 1951 regRowid = ++pParse->nMem; 1952 assert(pParse->nTab==1); 1953 sqlite3MayAbort(pParse); 1954 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1955 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1956 pParse->nTab = 2; 1957 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1958 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1959 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1960 sqlite3Select(pParse, pSelect, &dest); 1961 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1962 sqlite3VdbeJumpHere(v, addrTop - 1); 1963 if( pParse->nErr ) return; 1964 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1965 if( pSelTab==0 ) return; 1966 assert( p->aCol==0 ); 1967 p->nCol = pSelTab->nCol; 1968 p->aCol = pSelTab->aCol; 1969 pSelTab->nCol = 0; 1970 pSelTab->aCol = 0; 1971 sqlite3DeleteTable(db, pSelTab); 1972 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1973 VdbeCoverage(v); 1974 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1975 sqlite3TableAffinity(v, p, 0); 1976 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1977 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1978 sqlite3VdbeGoto(v, addrInsLoop); 1979 sqlite3VdbeJumpHere(v, addrInsLoop); 1980 sqlite3VdbeAddOp1(v, OP_Close, 1); 1981 } 1982 1983 /* Compute the complete text of the CREATE statement */ 1984 if( pSelect ){ 1985 zStmt = createTableStmt(db, p); 1986 }else{ 1987 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1988 n = (int)(pEnd2->z - pParse->sNameToken.z); 1989 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1990 zStmt = sqlite3MPrintf(db, 1991 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1992 ); 1993 } 1994 1995 /* A slot for the record has already been allocated in the 1996 ** SQLITE_MASTER table. We just need to update that slot with all 1997 ** the information we've collected. 1998 */ 1999 sqlite3NestedParse(pParse, 2000 "UPDATE %Q.%s " 2001 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2002 "WHERE rowid=#%d", 2003 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2004 zType, 2005 p->zName, 2006 p->zName, 2007 pParse->regRoot, 2008 zStmt, 2009 pParse->regRowid 2010 ); 2011 sqlite3DbFree(db, zStmt); 2012 sqlite3ChangeCookie(pParse, iDb); 2013 2014 #ifndef SQLITE_OMIT_AUTOINCREMENT 2015 /* Check to see if we need to create an sqlite_sequence table for 2016 ** keeping track of autoincrement keys. 2017 */ 2018 if( p->tabFlags & TF_Autoincrement ){ 2019 Db *pDb = &db->aDb[iDb]; 2020 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2021 if( pDb->pSchema->pSeqTab==0 ){ 2022 sqlite3NestedParse(pParse, 2023 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2024 pDb->zName 2025 ); 2026 } 2027 } 2028 #endif 2029 2030 /* Reparse everything to update our internal data structures */ 2031 sqlite3VdbeAddParseSchemaOp(v, iDb, 2032 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2033 } 2034 2035 2036 /* Add the table to the in-memory representation of the database. 2037 */ 2038 if( db->init.busy ){ 2039 Table *pOld; 2040 Schema *pSchema = p->pSchema; 2041 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2042 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2043 if( pOld ){ 2044 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2045 db->mallocFailed = 1; 2046 return; 2047 } 2048 pParse->pNewTable = 0; 2049 db->flags |= SQLITE_InternChanges; 2050 2051 #ifndef SQLITE_OMIT_ALTERTABLE 2052 if( !p->pSelect ){ 2053 const char *zName = (const char *)pParse->sNameToken.z; 2054 int nName; 2055 assert( !pSelect && pCons && pEnd ); 2056 if( pCons->z==0 ){ 2057 pCons = pEnd; 2058 } 2059 nName = (int)((const char *)pCons->z - zName); 2060 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2061 } 2062 #endif 2063 } 2064 } 2065 2066 #ifndef SQLITE_OMIT_VIEW 2067 /* 2068 ** The parser calls this routine in order to create a new VIEW 2069 */ 2070 void sqlite3CreateView( 2071 Parse *pParse, /* The parsing context */ 2072 Token *pBegin, /* The CREATE token that begins the statement */ 2073 Token *pName1, /* The token that holds the name of the view */ 2074 Token *pName2, /* The token that holds the name of the view */ 2075 ExprList *pCNames, /* Optional list of view column names */ 2076 Select *pSelect, /* A SELECT statement that will become the new view */ 2077 int isTemp, /* TRUE for a TEMPORARY view */ 2078 int noErr /* Suppress error messages if VIEW already exists */ 2079 ){ 2080 Table *p; 2081 int n; 2082 const char *z; 2083 Token sEnd; 2084 DbFixer sFix; 2085 Token *pName = 0; 2086 int iDb; 2087 sqlite3 *db = pParse->db; 2088 2089 if( pParse->nVar>0 ){ 2090 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2091 goto create_view_fail; 2092 } 2093 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2094 p = pParse->pNewTable; 2095 if( p==0 || pParse->nErr ) goto create_view_fail; 2096 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2097 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2098 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2099 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2100 2101 /* Make a copy of the entire SELECT statement that defines the view. 2102 ** This will force all the Expr.token.z values to be dynamically 2103 ** allocated rather than point to the input string - which means that 2104 ** they will persist after the current sqlite3_exec() call returns. 2105 */ 2106 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2107 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2108 if( db->mallocFailed ) goto create_view_fail; 2109 2110 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2111 ** the end. 2112 */ 2113 sEnd = pParse->sLastToken; 2114 assert( sEnd.z[0]!=0 ); 2115 if( sEnd.z[0]!=';' ){ 2116 sEnd.z += sEnd.n; 2117 } 2118 sEnd.n = 0; 2119 n = (int)(sEnd.z - pBegin->z); 2120 assert( n>0 ); 2121 z = pBegin->z; 2122 while( sqlite3Isspace(z[n-1]) ){ n--; } 2123 sEnd.z = &z[n-1]; 2124 sEnd.n = 1; 2125 2126 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2127 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2128 2129 create_view_fail: 2130 sqlite3SelectDelete(db, pSelect); 2131 sqlite3ExprListDelete(db, pCNames); 2132 return; 2133 } 2134 #endif /* SQLITE_OMIT_VIEW */ 2135 2136 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2137 /* 2138 ** The Table structure pTable is really a VIEW. Fill in the names of 2139 ** the columns of the view in the pTable structure. Return the number 2140 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2141 */ 2142 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2143 Table *pSelTab; /* A fake table from which we get the result set */ 2144 Select *pSel; /* Copy of the SELECT that implements the view */ 2145 int nErr = 0; /* Number of errors encountered */ 2146 int n; /* Temporarily holds the number of cursors assigned */ 2147 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2148 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2149 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2150 2151 assert( pTable ); 2152 2153 #ifndef SQLITE_OMIT_VIRTUALTABLE 2154 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2155 return SQLITE_ERROR; 2156 } 2157 if( IsVirtual(pTable) ) return 0; 2158 #endif 2159 2160 #ifndef SQLITE_OMIT_VIEW 2161 /* A positive nCol means the columns names for this view are 2162 ** already known. 2163 */ 2164 if( pTable->nCol>0 ) return 0; 2165 2166 /* A negative nCol is a special marker meaning that we are currently 2167 ** trying to compute the column names. If we enter this routine with 2168 ** a negative nCol, it means two or more views form a loop, like this: 2169 ** 2170 ** CREATE VIEW one AS SELECT * FROM two; 2171 ** CREATE VIEW two AS SELECT * FROM one; 2172 ** 2173 ** Actually, the error above is now caught prior to reaching this point. 2174 ** But the following test is still important as it does come up 2175 ** in the following: 2176 ** 2177 ** CREATE TABLE main.ex1(a); 2178 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2179 ** SELECT * FROM temp.ex1; 2180 */ 2181 if( pTable->nCol<0 ){ 2182 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2183 return 1; 2184 } 2185 assert( pTable->nCol>=0 ); 2186 2187 /* If we get this far, it means we need to compute the table names. 2188 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2189 ** "*" elements in the results set of the view and will assign cursors 2190 ** to the elements of the FROM clause. But we do not want these changes 2191 ** to be permanent. So the computation is done on a copy of the SELECT 2192 ** statement that defines the view. 2193 */ 2194 assert( pTable->pSelect ); 2195 bEnabledLA = db->lookaside.bEnabled; 2196 if( pTable->pCheck ){ 2197 db->lookaside.bEnabled = 0; 2198 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2199 &pTable->nCol, &pTable->aCol); 2200 }else{ 2201 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2202 if( pSel ){ 2203 n = pParse->nTab; 2204 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2205 pTable->nCol = -1; 2206 db->lookaside.bEnabled = 0; 2207 #ifndef SQLITE_OMIT_AUTHORIZATION 2208 xAuth = db->xAuth; 2209 db->xAuth = 0; 2210 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2211 db->xAuth = xAuth; 2212 #else 2213 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2214 #endif 2215 pParse->nTab = n; 2216 if( pSelTab ){ 2217 assert( pTable->aCol==0 ); 2218 pTable->nCol = pSelTab->nCol; 2219 pTable->aCol = pSelTab->aCol; 2220 pSelTab->nCol = 0; 2221 pSelTab->aCol = 0; 2222 sqlite3DeleteTable(db, pSelTab); 2223 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2224 }else{ 2225 pTable->nCol = 0; 2226 nErr++; 2227 } 2228 sqlite3SelectDelete(db, pSel); 2229 } else { 2230 nErr++; 2231 } 2232 } 2233 db->lookaside.bEnabled = bEnabledLA; 2234 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2235 #endif /* SQLITE_OMIT_VIEW */ 2236 return nErr; 2237 } 2238 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2239 2240 #ifndef SQLITE_OMIT_VIEW 2241 /* 2242 ** Clear the column names from every VIEW in database idx. 2243 */ 2244 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2245 HashElem *i; 2246 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2247 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2248 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2249 Table *pTab = sqliteHashData(i); 2250 if( pTab->pSelect ){ 2251 sqlite3DeleteColumnNames(db, pTab); 2252 pTab->aCol = 0; 2253 pTab->nCol = 0; 2254 } 2255 } 2256 DbClearProperty(db, idx, DB_UnresetViews); 2257 } 2258 #else 2259 # define sqliteViewResetAll(A,B) 2260 #endif /* SQLITE_OMIT_VIEW */ 2261 2262 /* 2263 ** This function is called by the VDBE to adjust the internal schema 2264 ** used by SQLite when the btree layer moves a table root page. The 2265 ** root-page of a table or index in database iDb has changed from iFrom 2266 ** to iTo. 2267 ** 2268 ** Ticket #1728: The symbol table might still contain information 2269 ** on tables and/or indices that are the process of being deleted. 2270 ** If you are unlucky, one of those deleted indices or tables might 2271 ** have the same rootpage number as the real table or index that is 2272 ** being moved. So we cannot stop searching after the first match 2273 ** because the first match might be for one of the deleted indices 2274 ** or tables and not the table/index that is actually being moved. 2275 ** We must continue looping until all tables and indices with 2276 ** rootpage==iFrom have been converted to have a rootpage of iTo 2277 ** in order to be certain that we got the right one. 2278 */ 2279 #ifndef SQLITE_OMIT_AUTOVACUUM 2280 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2281 HashElem *pElem; 2282 Hash *pHash; 2283 Db *pDb; 2284 2285 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2286 pDb = &db->aDb[iDb]; 2287 pHash = &pDb->pSchema->tblHash; 2288 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2289 Table *pTab = sqliteHashData(pElem); 2290 if( pTab->tnum==iFrom ){ 2291 pTab->tnum = iTo; 2292 } 2293 } 2294 pHash = &pDb->pSchema->idxHash; 2295 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2296 Index *pIdx = sqliteHashData(pElem); 2297 if( pIdx->tnum==iFrom ){ 2298 pIdx->tnum = iTo; 2299 } 2300 } 2301 } 2302 #endif 2303 2304 /* 2305 ** Write code to erase the table with root-page iTable from database iDb. 2306 ** Also write code to modify the sqlite_master table and internal schema 2307 ** if a root-page of another table is moved by the btree-layer whilst 2308 ** erasing iTable (this can happen with an auto-vacuum database). 2309 */ 2310 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2311 Vdbe *v = sqlite3GetVdbe(pParse); 2312 int r1 = sqlite3GetTempReg(pParse); 2313 assert( iTable>1 ); 2314 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2315 sqlite3MayAbort(pParse); 2316 #ifndef SQLITE_OMIT_AUTOVACUUM 2317 /* OP_Destroy stores an in integer r1. If this integer 2318 ** is non-zero, then it is the root page number of a table moved to 2319 ** location iTable. The following code modifies the sqlite_master table to 2320 ** reflect this. 2321 ** 2322 ** The "#NNN" in the SQL is a special constant that means whatever value 2323 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2324 ** token for additional information. 2325 */ 2326 sqlite3NestedParse(pParse, 2327 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2328 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2329 #endif 2330 sqlite3ReleaseTempReg(pParse, r1); 2331 } 2332 2333 /* 2334 ** Write VDBE code to erase table pTab and all associated indices on disk. 2335 ** Code to update the sqlite_master tables and internal schema definitions 2336 ** in case a root-page belonging to another table is moved by the btree layer 2337 ** is also added (this can happen with an auto-vacuum database). 2338 */ 2339 static void destroyTable(Parse *pParse, Table *pTab){ 2340 #ifdef SQLITE_OMIT_AUTOVACUUM 2341 Index *pIdx; 2342 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2343 destroyRootPage(pParse, pTab->tnum, iDb); 2344 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2345 destroyRootPage(pParse, pIdx->tnum, iDb); 2346 } 2347 #else 2348 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2349 ** is not defined), then it is important to call OP_Destroy on the 2350 ** table and index root-pages in order, starting with the numerically 2351 ** largest root-page number. This guarantees that none of the root-pages 2352 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2353 ** following were coded: 2354 ** 2355 ** OP_Destroy 4 0 2356 ** ... 2357 ** OP_Destroy 5 0 2358 ** 2359 ** and root page 5 happened to be the largest root-page number in the 2360 ** database, then root page 5 would be moved to page 4 by the 2361 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2362 ** a free-list page. 2363 */ 2364 int iTab = pTab->tnum; 2365 int iDestroyed = 0; 2366 2367 while( 1 ){ 2368 Index *pIdx; 2369 int iLargest = 0; 2370 2371 if( iDestroyed==0 || iTab<iDestroyed ){ 2372 iLargest = iTab; 2373 } 2374 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2375 int iIdx = pIdx->tnum; 2376 assert( pIdx->pSchema==pTab->pSchema ); 2377 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2378 iLargest = iIdx; 2379 } 2380 } 2381 if( iLargest==0 ){ 2382 return; 2383 }else{ 2384 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2385 assert( iDb>=0 && iDb<pParse->db->nDb ); 2386 destroyRootPage(pParse, iLargest, iDb); 2387 iDestroyed = iLargest; 2388 } 2389 } 2390 #endif 2391 } 2392 2393 /* 2394 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2395 ** after a DROP INDEX or DROP TABLE command. 2396 */ 2397 static void sqlite3ClearStatTables( 2398 Parse *pParse, /* The parsing context */ 2399 int iDb, /* The database number */ 2400 const char *zType, /* "idx" or "tbl" */ 2401 const char *zName /* Name of index or table */ 2402 ){ 2403 int i; 2404 const char *zDbName = pParse->db->aDb[iDb].zName; 2405 for(i=1; i<=4; i++){ 2406 char zTab[24]; 2407 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2408 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2409 sqlite3NestedParse(pParse, 2410 "DELETE FROM %Q.%s WHERE %s=%Q", 2411 zDbName, zTab, zType, zName 2412 ); 2413 } 2414 } 2415 } 2416 2417 /* 2418 ** Generate code to drop a table. 2419 */ 2420 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2421 Vdbe *v; 2422 sqlite3 *db = pParse->db; 2423 Trigger *pTrigger; 2424 Db *pDb = &db->aDb[iDb]; 2425 2426 v = sqlite3GetVdbe(pParse); 2427 assert( v!=0 ); 2428 sqlite3BeginWriteOperation(pParse, 1, iDb); 2429 2430 #ifndef SQLITE_OMIT_VIRTUALTABLE 2431 if( IsVirtual(pTab) ){ 2432 sqlite3VdbeAddOp0(v, OP_VBegin); 2433 } 2434 #endif 2435 2436 /* Drop all triggers associated with the table being dropped. Code 2437 ** is generated to remove entries from sqlite_master and/or 2438 ** sqlite_temp_master if required. 2439 */ 2440 pTrigger = sqlite3TriggerList(pParse, pTab); 2441 while( pTrigger ){ 2442 assert( pTrigger->pSchema==pTab->pSchema || 2443 pTrigger->pSchema==db->aDb[1].pSchema ); 2444 sqlite3DropTriggerPtr(pParse, pTrigger); 2445 pTrigger = pTrigger->pNext; 2446 } 2447 2448 #ifndef SQLITE_OMIT_AUTOINCREMENT 2449 /* Remove any entries of the sqlite_sequence table associated with 2450 ** the table being dropped. This is done before the table is dropped 2451 ** at the btree level, in case the sqlite_sequence table needs to 2452 ** move as a result of the drop (can happen in auto-vacuum mode). 2453 */ 2454 if( pTab->tabFlags & TF_Autoincrement ){ 2455 sqlite3NestedParse(pParse, 2456 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2457 pDb->zName, pTab->zName 2458 ); 2459 } 2460 #endif 2461 2462 /* Drop all SQLITE_MASTER table and index entries that refer to the 2463 ** table. The program name loops through the master table and deletes 2464 ** every row that refers to a table of the same name as the one being 2465 ** dropped. Triggers are handled separately because a trigger can be 2466 ** created in the temp database that refers to a table in another 2467 ** database. 2468 */ 2469 sqlite3NestedParse(pParse, 2470 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2471 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2472 if( !isView && !IsVirtual(pTab) ){ 2473 destroyTable(pParse, pTab); 2474 } 2475 2476 /* Remove the table entry from SQLite's internal schema and modify 2477 ** the schema cookie. 2478 */ 2479 if( IsVirtual(pTab) ){ 2480 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2481 } 2482 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2483 sqlite3ChangeCookie(pParse, iDb); 2484 sqliteViewResetAll(db, iDb); 2485 } 2486 2487 /* 2488 ** This routine is called to do the work of a DROP TABLE statement. 2489 ** pName is the name of the table to be dropped. 2490 */ 2491 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2492 Table *pTab; 2493 Vdbe *v; 2494 sqlite3 *db = pParse->db; 2495 int iDb; 2496 2497 if( db->mallocFailed ){ 2498 goto exit_drop_table; 2499 } 2500 assert( pParse->nErr==0 ); 2501 assert( pName->nSrc==1 ); 2502 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2503 if( noErr ) db->suppressErr++; 2504 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2505 if( noErr ) db->suppressErr--; 2506 2507 if( pTab==0 ){ 2508 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2509 goto exit_drop_table; 2510 } 2511 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2512 assert( iDb>=0 && iDb<db->nDb ); 2513 2514 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2515 ** it is initialized. 2516 */ 2517 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2518 goto exit_drop_table; 2519 } 2520 #ifndef SQLITE_OMIT_AUTHORIZATION 2521 { 2522 int code; 2523 const char *zTab = SCHEMA_TABLE(iDb); 2524 const char *zDb = db->aDb[iDb].zName; 2525 const char *zArg2 = 0; 2526 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2527 goto exit_drop_table; 2528 } 2529 if( isView ){ 2530 if( !OMIT_TEMPDB && iDb==1 ){ 2531 code = SQLITE_DROP_TEMP_VIEW; 2532 }else{ 2533 code = SQLITE_DROP_VIEW; 2534 } 2535 #ifndef SQLITE_OMIT_VIRTUALTABLE 2536 }else if( IsVirtual(pTab) ){ 2537 code = SQLITE_DROP_VTABLE; 2538 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2539 #endif 2540 }else{ 2541 if( !OMIT_TEMPDB && iDb==1 ){ 2542 code = SQLITE_DROP_TEMP_TABLE; 2543 }else{ 2544 code = SQLITE_DROP_TABLE; 2545 } 2546 } 2547 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2548 goto exit_drop_table; 2549 } 2550 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2551 goto exit_drop_table; 2552 } 2553 } 2554 #endif 2555 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2556 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2557 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2558 goto exit_drop_table; 2559 } 2560 2561 #ifndef SQLITE_OMIT_VIEW 2562 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2563 ** on a table. 2564 */ 2565 if( isView && pTab->pSelect==0 ){ 2566 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2567 goto exit_drop_table; 2568 } 2569 if( !isView && pTab->pSelect ){ 2570 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2571 goto exit_drop_table; 2572 } 2573 #endif 2574 2575 /* Generate code to remove the table from the master table 2576 ** on disk. 2577 */ 2578 v = sqlite3GetVdbe(pParse); 2579 if( v ){ 2580 sqlite3BeginWriteOperation(pParse, 1, iDb); 2581 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2582 sqlite3FkDropTable(pParse, pName, pTab); 2583 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2584 } 2585 2586 exit_drop_table: 2587 sqlite3SrcListDelete(db, pName); 2588 } 2589 2590 /* 2591 ** This routine is called to create a new foreign key on the table 2592 ** currently under construction. pFromCol determines which columns 2593 ** in the current table point to the foreign key. If pFromCol==0 then 2594 ** connect the key to the last column inserted. pTo is the name of 2595 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2596 ** of tables in the parent pTo table. flags contains all 2597 ** information about the conflict resolution algorithms specified 2598 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2599 ** 2600 ** An FKey structure is created and added to the table currently 2601 ** under construction in the pParse->pNewTable field. 2602 ** 2603 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2604 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2605 */ 2606 void sqlite3CreateForeignKey( 2607 Parse *pParse, /* Parsing context */ 2608 ExprList *pFromCol, /* Columns in this table that point to other table */ 2609 Token *pTo, /* Name of the other table */ 2610 ExprList *pToCol, /* Columns in the other table */ 2611 int flags /* Conflict resolution algorithms. */ 2612 ){ 2613 sqlite3 *db = pParse->db; 2614 #ifndef SQLITE_OMIT_FOREIGN_KEY 2615 FKey *pFKey = 0; 2616 FKey *pNextTo; 2617 Table *p = pParse->pNewTable; 2618 int nByte; 2619 int i; 2620 int nCol; 2621 char *z; 2622 2623 assert( pTo!=0 ); 2624 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2625 if( pFromCol==0 ){ 2626 int iCol = p->nCol-1; 2627 if( NEVER(iCol<0) ) goto fk_end; 2628 if( pToCol && pToCol->nExpr!=1 ){ 2629 sqlite3ErrorMsg(pParse, "foreign key on %s" 2630 " should reference only one column of table %T", 2631 p->aCol[iCol].zName, pTo); 2632 goto fk_end; 2633 } 2634 nCol = 1; 2635 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2636 sqlite3ErrorMsg(pParse, 2637 "number of columns in foreign key does not match the number of " 2638 "columns in the referenced table"); 2639 goto fk_end; 2640 }else{ 2641 nCol = pFromCol->nExpr; 2642 } 2643 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2644 if( pToCol ){ 2645 for(i=0; i<pToCol->nExpr; i++){ 2646 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2647 } 2648 } 2649 pFKey = sqlite3DbMallocZero(db, nByte ); 2650 if( pFKey==0 ){ 2651 goto fk_end; 2652 } 2653 pFKey->pFrom = p; 2654 pFKey->pNextFrom = p->pFKey; 2655 z = (char*)&pFKey->aCol[nCol]; 2656 pFKey->zTo = z; 2657 memcpy(z, pTo->z, pTo->n); 2658 z[pTo->n] = 0; 2659 sqlite3Dequote(z); 2660 z += pTo->n+1; 2661 pFKey->nCol = nCol; 2662 if( pFromCol==0 ){ 2663 pFKey->aCol[0].iFrom = p->nCol-1; 2664 }else{ 2665 for(i=0; i<nCol; i++){ 2666 int j; 2667 for(j=0; j<p->nCol; j++){ 2668 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2669 pFKey->aCol[i].iFrom = j; 2670 break; 2671 } 2672 } 2673 if( j>=p->nCol ){ 2674 sqlite3ErrorMsg(pParse, 2675 "unknown column \"%s\" in foreign key definition", 2676 pFromCol->a[i].zName); 2677 goto fk_end; 2678 } 2679 } 2680 } 2681 if( pToCol ){ 2682 for(i=0; i<nCol; i++){ 2683 int n = sqlite3Strlen30(pToCol->a[i].zName); 2684 pFKey->aCol[i].zCol = z; 2685 memcpy(z, pToCol->a[i].zName, n); 2686 z[n] = 0; 2687 z += n+1; 2688 } 2689 } 2690 pFKey->isDeferred = 0; 2691 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2692 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2693 2694 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2695 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2696 pFKey->zTo, (void *)pFKey 2697 ); 2698 if( pNextTo==pFKey ){ 2699 db->mallocFailed = 1; 2700 goto fk_end; 2701 } 2702 if( pNextTo ){ 2703 assert( pNextTo->pPrevTo==0 ); 2704 pFKey->pNextTo = pNextTo; 2705 pNextTo->pPrevTo = pFKey; 2706 } 2707 2708 /* Link the foreign key to the table as the last step. 2709 */ 2710 p->pFKey = pFKey; 2711 pFKey = 0; 2712 2713 fk_end: 2714 sqlite3DbFree(db, pFKey); 2715 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2716 sqlite3ExprListDelete(db, pFromCol); 2717 sqlite3ExprListDelete(db, pToCol); 2718 } 2719 2720 /* 2721 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2722 ** clause is seen as part of a foreign key definition. The isDeferred 2723 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2724 ** The behavior of the most recently created foreign key is adjusted 2725 ** accordingly. 2726 */ 2727 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2728 #ifndef SQLITE_OMIT_FOREIGN_KEY 2729 Table *pTab; 2730 FKey *pFKey; 2731 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2732 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2733 pFKey->isDeferred = (u8)isDeferred; 2734 #endif 2735 } 2736 2737 /* 2738 ** Generate code that will erase and refill index *pIdx. This is 2739 ** used to initialize a newly created index or to recompute the 2740 ** content of an index in response to a REINDEX command. 2741 ** 2742 ** if memRootPage is not negative, it means that the index is newly 2743 ** created. The register specified by memRootPage contains the 2744 ** root page number of the index. If memRootPage is negative, then 2745 ** the index already exists and must be cleared before being refilled and 2746 ** the root page number of the index is taken from pIndex->tnum. 2747 */ 2748 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2749 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2750 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2751 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2752 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2753 int addr1; /* Address of top of loop */ 2754 int addr2; /* Address to jump to for next iteration */ 2755 int tnum; /* Root page of index */ 2756 int iPartIdxLabel; /* Jump to this label to skip a row */ 2757 Vdbe *v; /* Generate code into this virtual machine */ 2758 KeyInfo *pKey; /* KeyInfo for index */ 2759 int regRecord; /* Register holding assembled index record */ 2760 sqlite3 *db = pParse->db; /* The database connection */ 2761 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2762 2763 #ifndef SQLITE_OMIT_AUTHORIZATION 2764 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2765 db->aDb[iDb].zName ) ){ 2766 return; 2767 } 2768 #endif 2769 2770 /* Require a write-lock on the table to perform this operation */ 2771 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2772 2773 v = sqlite3GetVdbe(pParse); 2774 if( v==0 ) return; 2775 if( memRootPage>=0 ){ 2776 tnum = memRootPage; 2777 }else{ 2778 tnum = pIndex->tnum; 2779 } 2780 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2781 2782 /* Open the sorter cursor if we are to use one. */ 2783 iSorter = pParse->nTab++; 2784 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2785 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2786 2787 /* Open the table. Loop through all rows of the table, inserting index 2788 ** records into the sorter. */ 2789 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2790 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2791 regRecord = sqlite3GetTempReg(pParse); 2792 2793 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2794 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2795 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2796 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2797 sqlite3VdbeJumpHere(v, addr1); 2798 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2799 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2800 (char *)pKey, P4_KEYINFO); 2801 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2802 2803 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2804 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2805 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2806 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2807 sqlite3VdbeGoto(v, j2); 2808 addr2 = sqlite3VdbeCurrentAddr(v); 2809 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2810 pIndex->nKeyCol); VdbeCoverage(v); 2811 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2812 }else{ 2813 addr2 = sqlite3VdbeCurrentAddr(v); 2814 } 2815 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2816 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2817 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2818 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2819 sqlite3ReleaseTempReg(pParse, regRecord); 2820 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2821 sqlite3VdbeJumpHere(v, addr1); 2822 2823 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2824 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2825 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2826 } 2827 2828 /* 2829 ** Allocate heap space to hold an Index object with nCol columns. 2830 ** 2831 ** Increase the allocation size to provide an extra nExtra bytes 2832 ** of 8-byte aligned space after the Index object and return a 2833 ** pointer to this extra space in *ppExtra. 2834 */ 2835 Index *sqlite3AllocateIndexObject( 2836 sqlite3 *db, /* Database connection */ 2837 i16 nCol, /* Total number of columns in the index */ 2838 int nExtra, /* Number of bytes of extra space to alloc */ 2839 char **ppExtra /* Pointer to the "extra" space */ 2840 ){ 2841 Index *p; /* Allocated index object */ 2842 int nByte; /* Bytes of space for Index object + arrays */ 2843 2844 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2845 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2846 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2847 sizeof(i16)*nCol + /* Index.aiColumn */ 2848 sizeof(u8)*nCol); /* Index.aSortOrder */ 2849 p = sqlite3DbMallocZero(db, nByte + nExtra); 2850 if( p ){ 2851 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2852 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2853 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2854 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2855 p->aSortOrder = (u8*)pExtra; 2856 p->nColumn = nCol; 2857 p->nKeyCol = nCol - 1; 2858 *ppExtra = ((char*)p) + nByte; 2859 } 2860 return p; 2861 } 2862 2863 /* 2864 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2865 ** and pTblList is the name of the table that is to be indexed. Both will 2866 ** be NULL for a primary key or an index that is created to satisfy a 2867 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2868 ** as the table to be indexed. pParse->pNewTable is a table that is 2869 ** currently being constructed by a CREATE TABLE statement. 2870 ** 2871 ** pList is a list of columns to be indexed. pList will be NULL if this 2872 ** is a primary key or unique-constraint on the most recent column added 2873 ** to the table currently under construction. 2874 ** 2875 ** If the index is created successfully, return a pointer to the new Index 2876 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2877 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2878 */ 2879 Index *sqlite3CreateIndex( 2880 Parse *pParse, /* All information about this parse */ 2881 Token *pName1, /* First part of index name. May be NULL */ 2882 Token *pName2, /* Second part of index name. May be NULL */ 2883 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2884 ExprList *pList, /* A list of columns to be indexed */ 2885 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2886 Token *pStart, /* The CREATE token that begins this statement */ 2887 Expr *pPIWhere, /* WHERE clause for partial indices */ 2888 int sortOrder, /* Sort order of primary key when pList==NULL */ 2889 int ifNotExist /* Omit error if index already exists */ 2890 ){ 2891 Index *pRet = 0; /* Pointer to return */ 2892 Table *pTab = 0; /* Table to be indexed */ 2893 Index *pIndex = 0; /* The index to be created */ 2894 char *zName = 0; /* Name of the index */ 2895 int nName; /* Number of characters in zName */ 2896 int i, j; 2897 DbFixer sFix; /* For assigning database names to pTable */ 2898 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2899 sqlite3 *db = pParse->db; 2900 Db *pDb; /* The specific table containing the indexed database */ 2901 int iDb; /* Index of the database that is being written */ 2902 Token *pName = 0; /* Unqualified name of the index to create */ 2903 struct ExprList_item *pListItem; /* For looping over pList */ 2904 int nExtra = 0; /* Space allocated for zExtra[] */ 2905 int nExtraCol; /* Number of extra columns needed */ 2906 char *zExtra = 0; /* Extra space after the Index object */ 2907 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2908 2909 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2910 goto exit_create_index; 2911 } 2912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2913 goto exit_create_index; 2914 } 2915 2916 /* 2917 ** Find the table that is to be indexed. Return early if not found. 2918 */ 2919 if( pTblName!=0 ){ 2920 2921 /* Use the two-part index name to determine the database 2922 ** to search for the table. 'Fix' the table name to this db 2923 ** before looking up the table. 2924 */ 2925 assert( pName1 && pName2 ); 2926 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2927 if( iDb<0 ) goto exit_create_index; 2928 assert( pName && pName->z ); 2929 2930 #ifndef SQLITE_OMIT_TEMPDB 2931 /* If the index name was unqualified, check if the table 2932 ** is a temp table. If so, set the database to 1. Do not do this 2933 ** if initialising a database schema. 2934 */ 2935 if( !db->init.busy ){ 2936 pTab = sqlite3SrcListLookup(pParse, pTblName); 2937 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2938 iDb = 1; 2939 } 2940 } 2941 #endif 2942 2943 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2944 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2945 /* Because the parser constructs pTblName from a single identifier, 2946 ** sqlite3FixSrcList can never fail. */ 2947 assert(0); 2948 } 2949 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2950 assert( db->mallocFailed==0 || pTab==0 ); 2951 if( pTab==0 ) goto exit_create_index; 2952 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2953 sqlite3ErrorMsg(pParse, 2954 "cannot create a TEMP index on non-TEMP table \"%s\"", 2955 pTab->zName); 2956 goto exit_create_index; 2957 } 2958 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2959 }else{ 2960 assert( pName==0 ); 2961 assert( pStart==0 ); 2962 pTab = pParse->pNewTable; 2963 if( !pTab ) goto exit_create_index; 2964 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2965 } 2966 pDb = &db->aDb[iDb]; 2967 2968 assert( pTab!=0 ); 2969 assert( pParse->nErr==0 ); 2970 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2971 && db->init.busy==0 2972 #if SQLITE_USER_AUTHENTICATION 2973 && sqlite3UserAuthTable(pTab->zName)==0 2974 #endif 2975 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2976 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2977 goto exit_create_index; 2978 } 2979 #ifndef SQLITE_OMIT_VIEW 2980 if( pTab->pSelect ){ 2981 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2982 goto exit_create_index; 2983 } 2984 #endif 2985 #ifndef SQLITE_OMIT_VIRTUALTABLE 2986 if( IsVirtual(pTab) ){ 2987 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2988 goto exit_create_index; 2989 } 2990 #endif 2991 2992 /* 2993 ** Find the name of the index. Make sure there is not already another 2994 ** index or table with the same name. 2995 ** 2996 ** Exception: If we are reading the names of permanent indices from the 2997 ** sqlite_master table (because some other process changed the schema) and 2998 ** one of the index names collides with the name of a temporary table or 2999 ** index, then we will continue to process this index. 3000 ** 3001 ** If pName==0 it means that we are 3002 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3003 ** own name. 3004 */ 3005 if( pName ){ 3006 zName = sqlite3NameFromToken(db, pName); 3007 if( zName==0 ) goto exit_create_index; 3008 assert( pName->z!=0 ); 3009 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3010 goto exit_create_index; 3011 } 3012 if( !db->init.busy ){ 3013 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3014 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3015 goto exit_create_index; 3016 } 3017 } 3018 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3019 if( !ifNotExist ){ 3020 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3021 }else{ 3022 assert( !db->init.busy ); 3023 sqlite3CodeVerifySchema(pParse, iDb); 3024 } 3025 goto exit_create_index; 3026 } 3027 }else{ 3028 int n; 3029 Index *pLoop; 3030 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3031 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3032 if( zName==0 ){ 3033 goto exit_create_index; 3034 } 3035 } 3036 3037 /* Check for authorization to create an index. 3038 */ 3039 #ifndef SQLITE_OMIT_AUTHORIZATION 3040 { 3041 const char *zDb = pDb->zName; 3042 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3043 goto exit_create_index; 3044 } 3045 i = SQLITE_CREATE_INDEX; 3046 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3047 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3048 goto exit_create_index; 3049 } 3050 } 3051 #endif 3052 3053 /* If pList==0, it means this routine was called to make a primary 3054 ** key out of the last column added to the table under construction. 3055 ** So create a fake list to simulate this. 3056 */ 3057 if( pList==0 ){ 3058 Token prevCol; 3059 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3060 pList = sqlite3ExprListAppend(pParse, 0, 3061 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3062 if( pList==0 ) goto exit_create_index; 3063 assert( pList->nExpr==1 ); 3064 sqlite3ExprListSetSortOrder(pList, sortOrder); 3065 }else{ 3066 sqlite3ExprListCheckLength(pParse, pList, "index"); 3067 } 3068 3069 /* Figure out how many bytes of space are required to store explicitly 3070 ** specified collation sequence names. 3071 */ 3072 for(i=0; i<pList->nExpr; i++){ 3073 Expr *pExpr = pList->a[i].pExpr; 3074 assert( pExpr!=0 ); 3075 if( pExpr->op==TK_COLLATE ){ 3076 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3077 } 3078 } 3079 3080 /* 3081 ** Allocate the index structure. 3082 */ 3083 nName = sqlite3Strlen30(zName); 3084 nExtraCol = pPk ? pPk->nKeyCol : 1; 3085 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3086 nName + nExtra + 1, &zExtra); 3087 if( db->mallocFailed ){ 3088 goto exit_create_index; 3089 } 3090 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3091 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3092 pIndex->zName = zExtra; 3093 zExtra += nName + 1; 3094 memcpy(pIndex->zName, zName, nName+1); 3095 pIndex->pTable = pTab; 3096 pIndex->onError = (u8)onError; 3097 pIndex->uniqNotNull = onError!=OE_None; 3098 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3099 pIndex->pSchema = db->aDb[iDb].pSchema; 3100 pIndex->nKeyCol = pList->nExpr; 3101 if( pPIWhere ){ 3102 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3103 pIndex->pPartIdxWhere = pPIWhere; 3104 pPIWhere = 0; 3105 } 3106 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3107 3108 /* Check to see if we should honor DESC requests on index columns 3109 */ 3110 if( pDb->pSchema->file_format>=4 ){ 3111 sortOrderMask = -1; /* Honor DESC */ 3112 }else{ 3113 sortOrderMask = 0; /* Ignore DESC */ 3114 } 3115 3116 /* Analyze the list of expressions that form the terms of the index and 3117 ** report any errors. In the common case where the expression is exactly 3118 ** a table column, store that column in aiColumn[]. For general expressions, 3119 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3120 ** 3121 ** TODO: Issue a warning if two or more columns of the index are identical. 3122 ** TODO: Issue a warning if the table primary key is used as part of the 3123 ** index key. 3124 */ 3125 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3126 Expr *pCExpr; /* The i-th index expression */ 3127 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3128 const char *zColl; /* Collation sequence name */ 3129 3130 sqlite3StringToId(pListItem->pExpr); 3131 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3132 if( pParse->nErr ) goto exit_create_index; 3133 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3134 if( pCExpr->op!=TK_COLUMN ){ 3135 if( pTab==pParse->pNewTable ){ 3136 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3137 "UNIQUE constraints"); 3138 goto exit_create_index; 3139 } 3140 if( pIndex->aColExpr==0 ){ 3141 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3142 pIndex->aColExpr = pCopy; 3143 if( !db->mallocFailed ){ 3144 assert( pCopy!=0 ); 3145 pListItem = &pCopy->a[i]; 3146 } 3147 } 3148 j = XN_EXPR; 3149 pIndex->aiColumn[i] = XN_EXPR; 3150 pIndex->uniqNotNull = 0; 3151 }else{ 3152 j = pCExpr->iColumn; 3153 assert( j<=0x7fff ); 3154 if( j<0 ){ 3155 j = pTab->iPKey; 3156 }else if( pTab->aCol[j].notNull==0 ){ 3157 pIndex->uniqNotNull = 0; 3158 } 3159 pIndex->aiColumn[i] = (i16)j; 3160 } 3161 zColl = 0; 3162 if( pListItem->pExpr->op==TK_COLLATE ){ 3163 int nColl; 3164 zColl = pListItem->pExpr->u.zToken; 3165 nColl = sqlite3Strlen30(zColl) + 1; 3166 assert( nExtra>=nColl ); 3167 memcpy(zExtra, zColl, nColl); 3168 zColl = zExtra; 3169 zExtra += nColl; 3170 nExtra -= nColl; 3171 }else if( j>=0 ){ 3172 zColl = pTab->aCol[j].zColl; 3173 } 3174 if( !zColl ) zColl = sqlite3StrBINARY; 3175 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3176 goto exit_create_index; 3177 } 3178 pIndex->azColl[i] = zColl; 3179 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3180 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3181 } 3182 3183 /* Append the table key to the end of the index. For WITHOUT ROWID 3184 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3185 ** normal tables (when pPk==0) this will be the rowid. 3186 */ 3187 if( pPk ){ 3188 for(j=0; j<pPk->nKeyCol; j++){ 3189 int x = pPk->aiColumn[j]; 3190 assert( x>=0 ); 3191 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3192 pIndex->nColumn--; 3193 }else{ 3194 pIndex->aiColumn[i] = x; 3195 pIndex->azColl[i] = pPk->azColl[j]; 3196 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3197 i++; 3198 } 3199 } 3200 assert( i==pIndex->nColumn ); 3201 }else{ 3202 pIndex->aiColumn[i] = XN_ROWID; 3203 pIndex->azColl[i] = sqlite3StrBINARY; 3204 } 3205 sqlite3DefaultRowEst(pIndex); 3206 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3207 3208 if( pTab==pParse->pNewTable ){ 3209 /* This routine has been called to create an automatic index as a 3210 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3211 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3212 ** i.e. one of: 3213 ** 3214 ** CREATE TABLE t(x PRIMARY KEY, y); 3215 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3216 ** 3217 ** Either way, check to see if the table already has such an index. If 3218 ** so, don't bother creating this one. This only applies to 3219 ** automatically created indices. Users can do as they wish with 3220 ** explicit indices. 3221 ** 3222 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3223 ** (and thus suppressing the second one) even if they have different 3224 ** sort orders. 3225 ** 3226 ** If there are different collating sequences or if the columns of 3227 ** the constraint occur in different orders, then the constraints are 3228 ** considered distinct and both result in separate indices. 3229 */ 3230 Index *pIdx; 3231 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3232 int k; 3233 assert( IsUniqueIndex(pIdx) ); 3234 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3235 assert( IsUniqueIndex(pIndex) ); 3236 3237 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3238 for(k=0; k<pIdx->nKeyCol; k++){ 3239 const char *z1; 3240 const char *z2; 3241 assert( pIdx->aiColumn[k]>=0 ); 3242 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3243 z1 = pIdx->azColl[k]; 3244 z2 = pIndex->azColl[k]; 3245 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3246 } 3247 if( k==pIdx->nKeyCol ){ 3248 if( pIdx->onError!=pIndex->onError ){ 3249 /* This constraint creates the same index as a previous 3250 ** constraint specified somewhere in the CREATE TABLE statement. 3251 ** However the ON CONFLICT clauses are different. If both this 3252 ** constraint and the previous equivalent constraint have explicit 3253 ** ON CONFLICT clauses this is an error. Otherwise, use the 3254 ** explicitly specified behavior for the index. 3255 */ 3256 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3257 sqlite3ErrorMsg(pParse, 3258 "conflicting ON CONFLICT clauses specified", 0); 3259 } 3260 if( pIdx->onError==OE_Default ){ 3261 pIdx->onError = pIndex->onError; 3262 } 3263 } 3264 pRet = pIdx; 3265 goto exit_create_index; 3266 } 3267 } 3268 } 3269 3270 /* Link the new Index structure to its table and to the other 3271 ** in-memory database structures. 3272 */ 3273 assert( pParse->nErr==0 ); 3274 if( db->init.busy ){ 3275 Index *p; 3276 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3277 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3278 pIndex->zName, pIndex); 3279 if( p ){ 3280 assert( p==pIndex ); /* Malloc must have failed */ 3281 db->mallocFailed = 1; 3282 goto exit_create_index; 3283 } 3284 db->flags |= SQLITE_InternChanges; 3285 if( pTblName!=0 ){ 3286 pIndex->tnum = db->init.newTnum; 3287 } 3288 } 3289 3290 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3291 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3292 ** emit code to allocate the index rootpage on disk and make an entry for 3293 ** the index in the sqlite_master table and populate the index with 3294 ** content. But, do not do this if we are simply reading the sqlite_master 3295 ** table to parse the schema, or if this index is the PRIMARY KEY index 3296 ** of a WITHOUT ROWID table. 3297 ** 3298 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3299 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3300 ** has just been created, it contains no data and the index initialization 3301 ** step can be skipped. 3302 */ 3303 else if( HasRowid(pTab) || pTblName!=0 ){ 3304 Vdbe *v; 3305 char *zStmt; 3306 int iMem = ++pParse->nMem; 3307 3308 v = sqlite3GetVdbe(pParse); 3309 if( v==0 ) goto exit_create_index; 3310 3311 sqlite3BeginWriteOperation(pParse, 1, iDb); 3312 3313 /* Create the rootpage for the index using CreateIndex. But before 3314 ** doing so, code a Noop instruction and store its address in 3315 ** Index.tnum. This is required in case this index is actually a 3316 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3317 ** that case the convertToWithoutRowidTable() routine will replace 3318 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3319 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3320 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3321 3322 /* Gather the complete text of the CREATE INDEX statement into 3323 ** the zStmt variable 3324 */ 3325 if( pStart ){ 3326 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3327 if( pName->z[n-1]==';' ) n--; 3328 /* A named index with an explicit CREATE INDEX statement */ 3329 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3330 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3331 }else{ 3332 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3333 /* zStmt = sqlite3MPrintf(""); */ 3334 zStmt = 0; 3335 } 3336 3337 /* Add an entry in sqlite_master for this index 3338 */ 3339 sqlite3NestedParse(pParse, 3340 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3341 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3342 pIndex->zName, 3343 pTab->zName, 3344 iMem, 3345 zStmt 3346 ); 3347 sqlite3DbFree(db, zStmt); 3348 3349 /* Fill the index with data and reparse the schema. Code an OP_Expire 3350 ** to invalidate all pre-compiled statements. 3351 */ 3352 if( pTblName ){ 3353 sqlite3RefillIndex(pParse, pIndex, iMem); 3354 sqlite3ChangeCookie(pParse, iDb); 3355 sqlite3VdbeAddParseSchemaOp(v, iDb, 3356 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3357 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3358 } 3359 3360 sqlite3VdbeJumpHere(v, pIndex->tnum); 3361 } 3362 3363 /* When adding an index to the list of indices for a table, make 3364 ** sure all indices labeled OE_Replace come after all those labeled 3365 ** OE_Ignore. This is necessary for the correct constraint check 3366 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3367 ** UPDATE and INSERT statements. 3368 */ 3369 if( db->init.busy || pTblName==0 ){ 3370 if( onError!=OE_Replace || pTab->pIndex==0 3371 || pTab->pIndex->onError==OE_Replace){ 3372 pIndex->pNext = pTab->pIndex; 3373 pTab->pIndex = pIndex; 3374 }else{ 3375 Index *pOther = pTab->pIndex; 3376 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3377 pOther = pOther->pNext; 3378 } 3379 pIndex->pNext = pOther->pNext; 3380 pOther->pNext = pIndex; 3381 } 3382 pRet = pIndex; 3383 pIndex = 0; 3384 } 3385 3386 /* Clean up before exiting */ 3387 exit_create_index: 3388 if( pIndex ) freeIndex(db, pIndex); 3389 sqlite3ExprDelete(db, pPIWhere); 3390 sqlite3ExprListDelete(db, pList); 3391 sqlite3SrcListDelete(db, pTblName); 3392 sqlite3DbFree(db, zName); 3393 return pRet; 3394 } 3395 3396 /* 3397 ** Fill the Index.aiRowEst[] array with default information - information 3398 ** to be used when we have not run the ANALYZE command. 3399 ** 3400 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3401 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3402 ** number of rows in the table that match any particular value of the 3403 ** first column of the index. aiRowEst[2] is an estimate of the number 3404 ** of rows that match any particular combination of the first 2 columns 3405 ** of the index. And so forth. It must always be the case that 3406 * 3407 ** aiRowEst[N]<=aiRowEst[N-1] 3408 ** aiRowEst[N]>=1 3409 ** 3410 ** Apart from that, we have little to go on besides intuition as to 3411 ** how aiRowEst[] should be initialized. The numbers generated here 3412 ** are based on typical values found in actual indices. 3413 */ 3414 void sqlite3DefaultRowEst(Index *pIdx){ 3415 /* 10, 9, 8, 7, 6 */ 3416 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3417 LogEst *a = pIdx->aiRowLogEst; 3418 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3419 int i; 3420 3421 /* Set the first entry (number of rows in the index) to the estimated 3422 ** number of rows in the table. Or 10, if the estimated number of rows 3423 ** in the table is less than that. */ 3424 a[0] = pIdx->pTable->nRowLogEst; 3425 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3426 3427 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3428 ** 6 and each subsequent value (if any) is 5. */ 3429 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3430 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3431 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3432 } 3433 3434 assert( 0==sqlite3LogEst(1) ); 3435 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3436 } 3437 3438 /* 3439 ** This routine will drop an existing named index. This routine 3440 ** implements the DROP INDEX statement. 3441 */ 3442 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3443 Index *pIndex; 3444 Vdbe *v; 3445 sqlite3 *db = pParse->db; 3446 int iDb; 3447 3448 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3449 if( db->mallocFailed ){ 3450 goto exit_drop_index; 3451 } 3452 assert( pName->nSrc==1 ); 3453 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3454 goto exit_drop_index; 3455 } 3456 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3457 if( pIndex==0 ){ 3458 if( !ifExists ){ 3459 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3460 }else{ 3461 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3462 } 3463 pParse->checkSchema = 1; 3464 goto exit_drop_index; 3465 } 3466 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3467 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3468 "or PRIMARY KEY constraint cannot be dropped", 0); 3469 goto exit_drop_index; 3470 } 3471 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3472 #ifndef SQLITE_OMIT_AUTHORIZATION 3473 { 3474 int code = SQLITE_DROP_INDEX; 3475 Table *pTab = pIndex->pTable; 3476 const char *zDb = db->aDb[iDb].zName; 3477 const char *zTab = SCHEMA_TABLE(iDb); 3478 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3479 goto exit_drop_index; 3480 } 3481 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3482 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3483 goto exit_drop_index; 3484 } 3485 } 3486 #endif 3487 3488 /* Generate code to remove the index and from the master table */ 3489 v = sqlite3GetVdbe(pParse); 3490 if( v ){ 3491 sqlite3BeginWriteOperation(pParse, 1, iDb); 3492 sqlite3NestedParse(pParse, 3493 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3494 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3495 ); 3496 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3497 sqlite3ChangeCookie(pParse, iDb); 3498 destroyRootPage(pParse, pIndex->tnum, iDb); 3499 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3500 } 3501 3502 exit_drop_index: 3503 sqlite3SrcListDelete(db, pName); 3504 } 3505 3506 /* 3507 ** pArray is a pointer to an array of objects. Each object in the 3508 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3509 ** to extend the array so that there is space for a new object at the end. 3510 ** 3511 ** When this function is called, *pnEntry contains the current size of 3512 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3513 ** in total). 3514 ** 3515 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3516 ** space allocated for the new object is zeroed, *pnEntry updated to 3517 ** reflect the new size of the array and a pointer to the new allocation 3518 ** returned. *pIdx is set to the index of the new array entry in this case. 3519 ** 3520 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3521 ** unchanged and a copy of pArray returned. 3522 */ 3523 void *sqlite3ArrayAllocate( 3524 sqlite3 *db, /* Connection to notify of malloc failures */ 3525 void *pArray, /* Array of objects. Might be reallocated */ 3526 int szEntry, /* Size of each object in the array */ 3527 int *pnEntry, /* Number of objects currently in use */ 3528 int *pIdx /* Write the index of a new slot here */ 3529 ){ 3530 char *z; 3531 int n = *pnEntry; 3532 if( (n & (n-1))==0 ){ 3533 int sz = (n==0) ? 1 : 2*n; 3534 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3535 if( pNew==0 ){ 3536 *pIdx = -1; 3537 return pArray; 3538 } 3539 pArray = pNew; 3540 } 3541 z = (char*)pArray; 3542 memset(&z[n * szEntry], 0, szEntry); 3543 *pIdx = n; 3544 ++*pnEntry; 3545 return pArray; 3546 } 3547 3548 /* 3549 ** Append a new element to the given IdList. Create a new IdList if 3550 ** need be. 3551 ** 3552 ** A new IdList is returned, or NULL if malloc() fails. 3553 */ 3554 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3555 int i; 3556 if( pList==0 ){ 3557 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3558 if( pList==0 ) return 0; 3559 } 3560 pList->a = sqlite3ArrayAllocate( 3561 db, 3562 pList->a, 3563 sizeof(pList->a[0]), 3564 &pList->nId, 3565 &i 3566 ); 3567 if( i<0 ){ 3568 sqlite3IdListDelete(db, pList); 3569 return 0; 3570 } 3571 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3572 return pList; 3573 } 3574 3575 /* 3576 ** Delete an IdList. 3577 */ 3578 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3579 int i; 3580 if( pList==0 ) return; 3581 for(i=0; i<pList->nId; i++){ 3582 sqlite3DbFree(db, pList->a[i].zName); 3583 } 3584 sqlite3DbFree(db, pList->a); 3585 sqlite3DbFree(db, pList); 3586 } 3587 3588 /* 3589 ** Return the index in pList of the identifier named zId. Return -1 3590 ** if not found. 3591 */ 3592 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3593 int i; 3594 if( pList==0 ) return -1; 3595 for(i=0; i<pList->nId; i++){ 3596 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3597 } 3598 return -1; 3599 } 3600 3601 /* 3602 ** Expand the space allocated for the given SrcList object by 3603 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3604 ** New slots are zeroed. 3605 ** 3606 ** For example, suppose a SrcList initially contains two entries: A,B. 3607 ** To append 3 new entries onto the end, do this: 3608 ** 3609 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3610 ** 3611 ** After the call above it would contain: A, B, nil, nil, nil. 3612 ** If the iStart argument had been 1 instead of 2, then the result 3613 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3614 ** the iStart value would be 0. The result then would 3615 ** be: nil, nil, nil, A, B. 3616 ** 3617 ** If a memory allocation fails the SrcList is unchanged. The 3618 ** db->mallocFailed flag will be set to true. 3619 */ 3620 SrcList *sqlite3SrcListEnlarge( 3621 sqlite3 *db, /* Database connection to notify of OOM errors */ 3622 SrcList *pSrc, /* The SrcList to be enlarged */ 3623 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3624 int iStart /* Index in pSrc->a[] of first new slot */ 3625 ){ 3626 int i; 3627 3628 /* Sanity checking on calling parameters */ 3629 assert( iStart>=0 ); 3630 assert( nExtra>=1 ); 3631 assert( pSrc!=0 ); 3632 assert( iStart<=pSrc->nSrc ); 3633 3634 /* Allocate additional space if needed */ 3635 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3636 SrcList *pNew; 3637 int nAlloc = pSrc->nSrc+nExtra; 3638 int nGot; 3639 pNew = sqlite3DbRealloc(db, pSrc, 3640 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3641 if( pNew==0 ){ 3642 assert( db->mallocFailed ); 3643 return pSrc; 3644 } 3645 pSrc = pNew; 3646 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3647 pSrc->nAlloc = nGot; 3648 } 3649 3650 /* Move existing slots that come after the newly inserted slots 3651 ** out of the way */ 3652 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3653 pSrc->a[i+nExtra] = pSrc->a[i]; 3654 } 3655 pSrc->nSrc += nExtra; 3656 3657 /* Zero the newly allocated slots */ 3658 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3659 for(i=iStart; i<iStart+nExtra; i++){ 3660 pSrc->a[i].iCursor = -1; 3661 } 3662 3663 /* Return a pointer to the enlarged SrcList */ 3664 return pSrc; 3665 } 3666 3667 3668 /* 3669 ** Append a new table name to the given SrcList. Create a new SrcList if 3670 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3671 ** 3672 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3673 ** SrcList might be the same as the SrcList that was input or it might be 3674 ** a new one. If an OOM error does occurs, then the prior value of pList 3675 ** that is input to this routine is automatically freed. 3676 ** 3677 ** If pDatabase is not null, it means that the table has an optional 3678 ** database name prefix. Like this: "database.table". The pDatabase 3679 ** points to the table name and the pTable points to the database name. 3680 ** The SrcList.a[].zName field is filled with the table name which might 3681 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3682 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3683 ** or with NULL if no database is specified. 3684 ** 3685 ** In other words, if call like this: 3686 ** 3687 ** sqlite3SrcListAppend(D,A,B,0); 3688 ** 3689 ** Then B is a table name and the database name is unspecified. If called 3690 ** like this: 3691 ** 3692 ** sqlite3SrcListAppend(D,A,B,C); 3693 ** 3694 ** Then C is the table name and B is the database name. If C is defined 3695 ** then so is B. In other words, we never have a case where: 3696 ** 3697 ** sqlite3SrcListAppend(D,A,0,C); 3698 ** 3699 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3700 ** before being added to the SrcList. 3701 */ 3702 SrcList *sqlite3SrcListAppend( 3703 sqlite3 *db, /* Connection to notify of malloc failures */ 3704 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3705 Token *pTable, /* Table to append */ 3706 Token *pDatabase /* Database of the table */ 3707 ){ 3708 struct SrcList_item *pItem; 3709 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3710 if( pList==0 ){ 3711 pList = sqlite3DbMallocRaw(db, sizeof(SrcList) ); 3712 if( pList==0 ) return 0; 3713 pList->nAlloc = 1; 3714 pList->nSrc = 0; 3715 } 3716 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3717 if( db->mallocFailed ){ 3718 sqlite3SrcListDelete(db, pList); 3719 return 0; 3720 } 3721 pItem = &pList->a[pList->nSrc-1]; 3722 if( pDatabase && pDatabase->z==0 ){ 3723 pDatabase = 0; 3724 } 3725 if( pDatabase ){ 3726 Token *pTemp = pDatabase; 3727 pDatabase = pTable; 3728 pTable = pTemp; 3729 } 3730 pItem->zName = sqlite3NameFromToken(db, pTable); 3731 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3732 return pList; 3733 } 3734 3735 /* 3736 ** Assign VdbeCursor index numbers to all tables in a SrcList 3737 */ 3738 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3739 int i; 3740 struct SrcList_item *pItem; 3741 assert(pList || pParse->db->mallocFailed ); 3742 if( pList ){ 3743 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3744 if( pItem->iCursor>=0 ) break; 3745 pItem->iCursor = pParse->nTab++; 3746 if( pItem->pSelect ){ 3747 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3748 } 3749 } 3750 } 3751 } 3752 3753 /* 3754 ** Delete an entire SrcList including all its substructure. 3755 */ 3756 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3757 int i; 3758 struct SrcList_item *pItem; 3759 if( pList==0 ) return; 3760 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3761 sqlite3DbFree(db, pItem->zDatabase); 3762 sqlite3DbFree(db, pItem->zName); 3763 sqlite3DbFree(db, pItem->zAlias); 3764 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3765 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3766 sqlite3DeleteTable(db, pItem->pTab); 3767 sqlite3SelectDelete(db, pItem->pSelect); 3768 sqlite3ExprDelete(db, pItem->pOn); 3769 sqlite3IdListDelete(db, pItem->pUsing); 3770 } 3771 sqlite3DbFree(db, pList); 3772 } 3773 3774 /* 3775 ** This routine is called by the parser to add a new term to the 3776 ** end of a growing FROM clause. The "p" parameter is the part of 3777 ** the FROM clause that has already been constructed. "p" is NULL 3778 ** if this is the first term of the FROM clause. pTable and pDatabase 3779 ** are the name of the table and database named in the FROM clause term. 3780 ** pDatabase is NULL if the database name qualifier is missing - the 3781 ** usual case. If the term has an alias, then pAlias points to the 3782 ** alias token. If the term is a subquery, then pSubquery is the 3783 ** SELECT statement that the subquery encodes. The pTable and 3784 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3785 ** parameters are the content of the ON and USING clauses. 3786 ** 3787 ** Return a new SrcList which encodes is the FROM with the new 3788 ** term added. 3789 */ 3790 SrcList *sqlite3SrcListAppendFromTerm( 3791 Parse *pParse, /* Parsing context */ 3792 SrcList *p, /* The left part of the FROM clause already seen */ 3793 Token *pTable, /* Name of the table to add to the FROM clause */ 3794 Token *pDatabase, /* Name of the database containing pTable */ 3795 Token *pAlias, /* The right-hand side of the AS subexpression */ 3796 Select *pSubquery, /* A subquery used in place of a table name */ 3797 Expr *pOn, /* The ON clause of a join */ 3798 IdList *pUsing /* The USING clause of a join */ 3799 ){ 3800 struct SrcList_item *pItem; 3801 sqlite3 *db = pParse->db; 3802 if( !p && (pOn || pUsing) ){ 3803 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3804 (pOn ? "ON" : "USING") 3805 ); 3806 goto append_from_error; 3807 } 3808 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3809 if( p==0 || NEVER(p->nSrc==0) ){ 3810 goto append_from_error; 3811 } 3812 pItem = &p->a[p->nSrc-1]; 3813 assert( pAlias!=0 ); 3814 if( pAlias->n ){ 3815 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3816 } 3817 pItem->pSelect = pSubquery; 3818 pItem->pOn = pOn; 3819 pItem->pUsing = pUsing; 3820 return p; 3821 3822 append_from_error: 3823 assert( p==0 ); 3824 sqlite3ExprDelete(db, pOn); 3825 sqlite3IdListDelete(db, pUsing); 3826 sqlite3SelectDelete(db, pSubquery); 3827 return 0; 3828 } 3829 3830 /* 3831 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3832 ** element of the source-list passed as the second argument. 3833 */ 3834 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3835 assert( pIndexedBy!=0 ); 3836 if( p && ALWAYS(p->nSrc>0) ){ 3837 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3838 assert( pItem->fg.notIndexed==0 ); 3839 assert( pItem->fg.isIndexedBy==0 ); 3840 assert( pItem->fg.isTabFunc==0 ); 3841 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3842 /* A "NOT INDEXED" clause was supplied. See parse.y 3843 ** construct "indexed_opt" for details. */ 3844 pItem->fg.notIndexed = 1; 3845 }else{ 3846 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3847 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3848 } 3849 } 3850 } 3851 3852 /* 3853 ** Add the list of function arguments to the SrcList entry for a 3854 ** table-valued-function. 3855 */ 3856 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3857 if( p ){ 3858 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3859 assert( pItem->fg.notIndexed==0 ); 3860 assert( pItem->fg.isIndexedBy==0 ); 3861 assert( pItem->fg.isTabFunc==0 ); 3862 pItem->u1.pFuncArg = pList; 3863 pItem->fg.isTabFunc = 1; 3864 }else{ 3865 sqlite3ExprListDelete(pParse->db, pList); 3866 } 3867 } 3868 3869 /* 3870 ** When building up a FROM clause in the parser, the join operator 3871 ** is initially attached to the left operand. But the code generator 3872 ** expects the join operator to be on the right operand. This routine 3873 ** Shifts all join operators from left to right for an entire FROM 3874 ** clause. 3875 ** 3876 ** Example: Suppose the join is like this: 3877 ** 3878 ** A natural cross join B 3879 ** 3880 ** The operator is "natural cross join". The A and B operands are stored 3881 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3882 ** operator with A. This routine shifts that operator over to B. 3883 */ 3884 void sqlite3SrcListShiftJoinType(SrcList *p){ 3885 if( p ){ 3886 int i; 3887 for(i=p->nSrc-1; i>0; i--){ 3888 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3889 } 3890 p->a[0].fg.jointype = 0; 3891 } 3892 } 3893 3894 /* 3895 ** Begin a transaction 3896 */ 3897 void sqlite3BeginTransaction(Parse *pParse, int type){ 3898 sqlite3 *db; 3899 Vdbe *v; 3900 int i; 3901 3902 assert( pParse!=0 ); 3903 db = pParse->db; 3904 assert( db!=0 ); 3905 /* if( db->aDb[0].pBt==0 ) return; */ 3906 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3907 return; 3908 } 3909 v = sqlite3GetVdbe(pParse); 3910 if( !v ) return; 3911 if( type!=TK_DEFERRED ){ 3912 for(i=0; i<db->nDb; i++){ 3913 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3914 sqlite3VdbeUsesBtree(v, i); 3915 } 3916 } 3917 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3918 } 3919 3920 /* 3921 ** Commit a transaction 3922 */ 3923 void sqlite3CommitTransaction(Parse *pParse){ 3924 Vdbe *v; 3925 3926 assert( pParse!=0 ); 3927 assert( pParse->db!=0 ); 3928 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3929 return; 3930 } 3931 v = sqlite3GetVdbe(pParse); 3932 if( v ){ 3933 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3934 } 3935 } 3936 3937 /* 3938 ** Rollback a transaction 3939 */ 3940 void sqlite3RollbackTransaction(Parse *pParse){ 3941 Vdbe *v; 3942 3943 assert( pParse!=0 ); 3944 assert( pParse->db!=0 ); 3945 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3946 return; 3947 } 3948 v = sqlite3GetVdbe(pParse); 3949 if( v ){ 3950 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3951 } 3952 } 3953 3954 /* 3955 ** This function is called by the parser when it parses a command to create, 3956 ** release or rollback an SQL savepoint. 3957 */ 3958 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3959 char *zName = sqlite3NameFromToken(pParse->db, pName); 3960 if( zName ){ 3961 Vdbe *v = sqlite3GetVdbe(pParse); 3962 #ifndef SQLITE_OMIT_AUTHORIZATION 3963 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3964 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3965 #endif 3966 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3967 sqlite3DbFree(pParse->db, zName); 3968 return; 3969 } 3970 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3971 } 3972 } 3973 3974 /* 3975 ** Make sure the TEMP database is open and available for use. Return 3976 ** the number of errors. Leave any error messages in the pParse structure. 3977 */ 3978 int sqlite3OpenTempDatabase(Parse *pParse){ 3979 sqlite3 *db = pParse->db; 3980 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3981 int rc; 3982 Btree *pBt; 3983 static const int flags = 3984 SQLITE_OPEN_READWRITE | 3985 SQLITE_OPEN_CREATE | 3986 SQLITE_OPEN_EXCLUSIVE | 3987 SQLITE_OPEN_DELETEONCLOSE | 3988 SQLITE_OPEN_TEMP_DB; 3989 3990 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3991 if( rc!=SQLITE_OK ){ 3992 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3993 "file for storing temporary tables"); 3994 pParse->rc = rc; 3995 return 1; 3996 } 3997 db->aDb[1].pBt = pBt; 3998 assert( db->aDb[1].pSchema ); 3999 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4000 db->mallocFailed = 1; 4001 return 1; 4002 } 4003 } 4004 return 0; 4005 } 4006 4007 /* 4008 ** Record the fact that the schema cookie will need to be verified 4009 ** for database iDb. The code to actually verify the schema cookie 4010 ** will occur at the end of the top-level VDBE and will be generated 4011 ** later, by sqlite3FinishCoding(). 4012 */ 4013 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4014 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4015 sqlite3 *db = pToplevel->db; 4016 4017 assert( iDb>=0 && iDb<db->nDb ); 4018 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4019 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4020 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4021 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4022 DbMaskSet(pToplevel->cookieMask, iDb); 4023 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4024 if( !OMIT_TEMPDB && iDb==1 ){ 4025 sqlite3OpenTempDatabase(pToplevel); 4026 } 4027 } 4028 } 4029 4030 /* 4031 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4032 ** attached database. Otherwise, invoke it for the database named zDb only. 4033 */ 4034 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4035 sqlite3 *db = pParse->db; 4036 int i; 4037 for(i=0; i<db->nDb; i++){ 4038 Db *pDb = &db->aDb[i]; 4039 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4040 sqlite3CodeVerifySchema(pParse, i); 4041 } 4042 } 4043 } 4044 4045 /* 4046 ** Generate VDBE code that prepares for doing an operation that 4047 ** might change the database. 4048 ** 4049 ** This routine starts a new transaction if we are not already within 4050 ** a transaction. If we are already within a transaction, then a checkpoint 4051 ** is set if the setStatement parameter is true. A checkpoint should 4052 ** be set for operations that might fail (due to a constraint) part of 4053 ** the way through and which will need to undo some writes without having to 4054 ** rollback the whole transaction. For operations where all constraints 4055 ** can be checked before any changes are made to the database, it is never 4056 ** necessary to undo a write and the checkpoint should not be set. 4057 */ 4058 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4059 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4060 sqlite3CodeVerifySchema(pParse, iDb); 4061 DbMaskSet(pToplevel->writeMask, iDb); 4062 pToplevel->isMultiWrite |= setStatement; 4063 } 4064 4065 /* 4066 ** Indicate that the statement currently under construction might write 4067 ** more than one entry (example: deleting one row then inserting another, 4068 ** inserting multiple rows in a table, or inserting a row and index entries.) 4069 ** If an abort occurs after some of these writes have completed, then it will 4070 ** be necessary to undo the completed writes. 4071 */ 4072 void sqlite3MultiWrite(Parse *pParse){ 4073 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4074 pToplevel->isMultiWrite = 1; 4075 } 4076 4077 /* 4078 ** The code generator calls this routine if is discovers that it is 4079 ** possible to abort a statement prior to completion. In order to 4080 ** perform this abort without corrupting the database, we need to make 4081 ** sure that the statement is protected by a statement transaction. 4082 ** 4083 ** Technically, we only need to set the mayAbort flag if the 4084 ** isMultiWrite flag was previously set. There is a time dependency 4085 ** such that the abort must occur after the multiwrite. This makes 4086 ** some statements involving the REPLACE conflict resolution algorithm 4087 ** go a little faster. But taking advantage of this time dependency 4088 ** makes it more difficult to prove that the code is correct (in 4089 ** particular, it prevents us from writing an effective 4090 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4091 ** to take the safe route and skip the optimization. 4092 */ 4093 void sqlite3MayAbort(Parse *pParse){ 4094 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4095 pToplevel->mayAbort = 1; 4096 } 4097 4098 /* 4099 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4100 ** error. The onError parameter determines which (if any) of the statement 4101 ** and/or current transaction is rolled back. 4102 */ 4103 void sqlite3HaltConstraint( 4104 Parse *pParse, /* Parsing context */ 4105 int errCode, /* extended error code */ 4106 int onError, /* Constraint type */ 4107 char *p4, /* Error message */ 4108 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4109 u8 p5Errmsg /* P5_ErrMsg type */ 4110 ){ 4111 Vdbe *v = sqlite3GetVdbe(pParse); 4112 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4113 if( onError==OE_Abort ){ 4114 sqlite3MayAbort(pParse); 4115 } 4116 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4117 sqlite3VdbeChangeP5(v, p5Errmsg); 4118 } 4119 4120 /* 4121 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4122 */ 4123 void sqlite3UniqueConstraint( 4124 Parse *pParse, /* Parsing context */ 4125 int onError, /* Constraint type */ 4126 Index *pIdx /* The index that triggers the constraint */ 4127 ){ 4128 char *zErr; 4129 int j; 4130 StrAccum errMsg; 4131 Table *pTab = pIdx->pTable; 4132 4133 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4134 if( pIdx->aColExpr ){ 4135 sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName); 4136 }else{ 4137 for(j=0; j<pIdx->nKeyCol; j++){ 4138 char *zCol; 4139 assert( pIdx->aiColumn[j]>=0 ); 4140 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4141 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4142 sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol); 4143 } 4144 } 4145 zErr = sqlite3StrAccumFinish(&errMsg); 4146 sqlite3HaltConstraint(pParse, 4147 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4148 : SQLITE_CONSTRAINT_UNIQUE, 4149 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4150 } 4151 4152 4153 /* 4154 ** Code an OP_Halt due to non-unique rowid. 4155 */ 4156 void sqlite3RowidConstraint( 4157 Parse *pParse, /* Parsing context */ 4158 int onError, /* Conflict resolution algorithm */ 4159 Table *pTab /* The table with the non-unique rowid */ 4160 ){ 4161 char *zMsg; 4162 int rc; 4163 if( pTab->iPKey>=0 ){ 4164 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4165 pTab->aCol[pTab->iPKey].zName); 4166 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4167 }else{ 4168 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4169 rc = SQLITE_CONSTRAINT_ROWID; 4170 } 4171 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4172 P5_ConstraintUnique); 4173 } 4174 4175 /* 4176 ** Check to see if pIndex uses the collating sequence pColl. Return 4177 ** true if it does and false if it does not. 4178 */ 4179 #ifndef SQLITE_OMIT_REINDEX 4180 static int collationMatch(const char *zColl, Index *pIndex){ 4181 int i; 4182 assert( zColl!=0 ); 4183 for(i=0; i<pIndex->nColumn; i++){ 4184 const char *z = pIndex->azColl[i]; 4185 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4186 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4187 return 1; 4188 } 4189 } 4190 return 0; 4191 } 4192 #endif 4193 4194 /* 4195 ** Recompute all indices of pTab that use the collating sequence pColl. 4196 ** If pColl==0 then recompute all indices of pTab. 4197 */ 4198 #ifndef SQLITE_OMIT_REINDEX 4199 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4200 Index *pIndex; /* An index associated with pTab */ 4201 4202 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4203 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4204 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4205 sqlite3BeginWriteOperation(pParse, 0, iDb); 4206 sqlite3RefillIndex(pParse, pIndex, -1); 4207 } 4208 } 4209 } 4210 #endif 4211 4212 /* 4213 ** Recompute all indices of all tables in all databases where the 4214 ** indices use the collating sequence pColl. If pColl==0 then recompute 4215 ** all indices everywhere. 4216 */ 4217 #ifndef SQLITE_OMIT_REINDEX 4218 static void reindexDatabases(Parse *pParse, char const *zColl){ 4219 Db *pDb; /* A single database */ 4220 int iDb; /* The database index number */ 4221 sqlite3 *db = pParse->db; /* The database connection */ 4222 HashElem *k; /* For looping over tables in pDb */ 4223 Table *pTab; /* A table in the database */ 4224 4225 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4226 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4227 assert( pDb!=0 ); 4228 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4229 pTab = (Table*)sqliteHashData(k); 4230 reindexTable(pParse, pTab, zColl); 4231 } 4232 } 4233 } 4234 #endif 4235 4236 /* 4237 ** Generate code for the REINDEX command. 4238 ** 4239 ** REINDEX -- 1 4240 ** REINDEX <collation> -- 2 4241 ** REINDEX ?<database>.?<tablename> -- 3 4242 ** REINDEX ?<database>.?<indexname> -- 4 4243 ** 4244 ** Form 1 causes all indices in all attached databases to be rebuilt. 4245 ** Form 2 rebuilds all indices in all databases that use the named 4246 ** collating function. Forms 3 and 4 rebuild the named index or all 4247 ** indices associated with the named table. 4248 */ 4249 #ifndef SQLITE_OMIT_REINDEX 4250 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4251 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4252 char *z; /* Name of a table or index */ 4253 const char *zDb; /* Name of the database */ 4254 Table *pTab; /* A table in the database */ 4255 Index *pIndex; /* An index associated with pTab */ 4256 int iDb; /* The database index number */ 4257 sqlite3 *db = pParse->db; /* The database connection */ 4258 Token *pObjName; /* Name of the table or index to be reindexed */ 4259 4260 /* Read the database schema. If an error occurs, leave an error message 4261 ** and code in pParse and return NULL. */ 4262 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4263 return; 4264 } 4265 4266 if( pName1==0 ){ 4267 reindexDatabases(pParse, 0); 4268 return; 4269 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4270 char *zColl; 4271 assert( pName1->z ); 4272 zColl = sqlite3NameFromToken(pParse->db, pName1); 4273 if( !zColl ) return; 4274 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4275 if( pColl ){ 4276 reindexDatabases(pParse, zColl); 4277 sqlite3DbFree(db, zColl); 4278 return; 4279 } 4280 sqlite3DbFree(db, zColl); 4281 } 4282 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4283 if( iDb<0 ) return; 4284 z = sqlite3NameFromToken(db, pObjName); 4285 if( z==0 ) return; 4286 zDb = db->aDb[iDb].zName; 4287 pTab = sqlite3FindTable(db, z, zDb); 4288 if( pTab ){ 4289 reindexTable(pParse, pTab, 0); 4290 sqlite3DbFree(db, z); 4291 return; 4292 } 4293 pIndex = sqlite3FindIndex(db, z, zDb); 4294 sqlite3DbFree(db, z); 4295 if( pIndex ){ 4296 sqlite3BeginWriteOperation(pParse, 0, iDb); 4297 sqlite3RefillIndex(pParse, pIndex, -1); 4298 return; 4299 } 4300 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4301 } 4302 #endif 4303 4304 /* 4305 ** Return a KeyInfo structure that is appropriate for the given Index. 4306 ** 4307 ** The KeyInfo structure for an index is cached in the Index object. 4308 ** So there might be multiple references to the returned pointer. The 4309 ** caller should not try to modify the KeyInfo object. 4310 ** 4311 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4312 ** when it has finished using it. 4313 */ 4314 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4315 int i; 4316 int nCol = pIdx->nColumn; 4317 int nKey = pIdx->nKeyCol; 4318 KeyInfo *pKey; 4319 if( pParse->nErr ) return 0; 4320 if( pIdx->uniqNotNull ){ 4321 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4322 }else{ 4323 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4324 } 4325 if( pKey ){ 4326 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4327 for(i=0; i<nCol; i++){ 4328 const char *zColl = pIdx->azColl[i]; 4329 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4330 sqlite3LocateCollSeq(pParse, zColl); 4331 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4332 } 4333 if( pParse->nErr ){ 4334 sqlite3KeyInfoUnref(pKey); 4335 pKey = 0; 4336 } 4337 } 4338 return pKey; 4339 } 4340 4341 #ifndef SQLITE_OMIT_CTE 4342 /* 4343 ** This routine is invoked once per CTE by the parser while parsing a 4344 ** WITH clause. 4345 */ 4346 With *sqlite3WithAdd( 4347 Parse *pParse, /* Parsing context */ 4348 With *pWith, /* Existing WITH clause, or NULL */ 4349 Token *pName, /* Name of the common-table */ 4350 ExprList *pArglist, /* Optional column name list for the table */ 4351 Select *pQuery /* Query used to initialize the table */ 4352 ){ 4353 sqlite3 *db = pParse->db; 4354 With *pNew; 4355 char *zName; 4356 4357 /* Check that the CTE name is unique within this WITH clause. If 4358 ** not, store an error in the Parse structure. */ 4359 zName = sqlite3NameFromToken(pParse->db, pName); 4360 if( zName && pWith ){ 4361 int i; 4362 for(i=0; i<pWith->nCte; i++){ 4363 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4364 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4365 } 4366 } 4367 } 4368 4369 if( pWith ){ 4370 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4371 pNew = sqlite3DbRealloc(db, pWith, nByte); 4372 }else{ 4373 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4374 } 4375 assert( zName!=0 || pNew==0 ); 4376 assert( db->mallocFailed==0 || pNew==0 ); 4377 4378 if( pNew==0 ){ 4379 sqlite3ExprListDelete(db, pArglist); 4380 sqlite3SelectDelete(db, pQuery); 4381 sqlite3DbFree(db, zName); 4382 pNew = pWith; 4383 }else{ 4384 pNew->a[pNew->nCte].pSelect = pQuery; 4385 pNew->a[pNew->nCte].pCols = pArglist; 4386 pNew->a[pNew->nCte].zName = zName; 4387 pNew->a[pNew->nCte].zCteErr = 0; 4388 pNew->nCte++; 4389 } 4390 4391 return pNew; 4392 } 4393 4394 /* 4395 ** Free the contents of the With object passed as the second argument. 4396 */ 4397 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4398 if( pWith ){ 4399 int i; 4400 for(i=0; i<pWith->nCte; i++){ 4401 struct Cte *pCte = &pWith->a[i]; 4402 sqlite3ExprListDelete(db, pCte->pCols); 4403 sqlite3SelectDelete(db, pCte->pSelect); 4404 sqlite3DbFree(db, pCte->zName); 4405 } 4406 sqlite3DbFree(db, pWith); 4407 } 4408 } 4409 #endif /* !defined(SQLITE_OMIT_CTE) */ 4410