1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 if( pParse->nested ) return; 147 if( db->mallocFailed || pParse->nErr ){ 148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 149 return; 150 } 151 152 /* Begin by generating some termination code at the end of the 153 ** vdbe program 154 */ 155 v = pParse->pVdbe; 156 if( v==0 ){ 157 if( db->init.busy ){ 158 pParse->rc = SQLITE_DONE; 159 return; 160 } 161 v = sqlite3GetVdbe(pParse); 162 if( v==0 ) pParse->rc = SQLITE_ERROR; 163 } 164 assert( !pParse->isMultiWrite 165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 166 if( v ){ 167 if( pParse->bReturning ){ 168 Returning *pReturning = pParse->u1.pReturning; 169 int addrRewind; 170 int i; 171 int reg; 172 173 addrRewind = 174 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 175 VdbeCoverage(v); 176 reg = pReturning->iRetReg; 177 for(i=0; i<pReturning->nRetCol; i++){ 178 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 179 } 180 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 181 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 182 VdbeCoverage(v); 183 sqlite3VdbeJumpHere(v, addrRewind); 184 } 185 sqlite3VdbeAddOp0(v, OP_Halt); 186 187 #if SQLITE_USER_AUTHENTICATION 188 if( pParse->nTableLock>0 && db->init.busy==0 ){ 189 sqlite3UserAuthInit(db); 190 if( db->auth.authLevel<UAUTH_User ){ 191 sqlite3ErrorMsg(pParse, "user not authenticated"); 192 pParse->rc = SQLITE_AUTH_USER; 193 return; 194 } 195 } 196 #endif 197 198 /* The cookie mask contains one bit for each database file open. 199 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 200 ** set for each database that is used. Generate code to start a 201 ** transaction on each used database and to verify the schema cookie 202 ** on each used database. 203 */ 204 if( db->mallocFailed==0 205 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 206 ){ 207 int iDb, i; 208 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 209 sqlite3VdbeJumpHere(v, 0); 210 for(iDb=0; iDb<db->nDb; iDb++){ 211 Schema *pSchema; 212 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 213 sqlite3VdbeUsesBtree(v, iDb); 214 pSchema = db->aDb[iDb].pSchema; 215 sqlite3VdbeAddOp4Int(v, 216 OP_Transaction, /* Opcode */ 217 iDb, /* P1 */ 218 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 219 pSchema->schema_cookie, /* P3 */ 220 pSchema->iGeneration /* P4 */ 221 ); 222 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 223 VdbeComment((v, 224 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 225 } 226 #ifndef SQLITE_OMIT_VIRTUALTABLE 227 for(i=0; i<pParse->nVtabLock; i++){ 228 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 229 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 230 } 231 pParse->nVtabLock = 0; 232 #endif 233 234 /* Once all the cookies have been verified and transactions opened, 235 ** obtain the required table-locks. This is a no-op unless the 236 ** shared-cache feature is enabled. 237 */ 238 codeTableLocks(pParse); 239 240 /* Initialize any AUTOINCREMENT data structures required. 241 */ 242 sqlite3AutoincrementBegin(pParse); 243 244 /* Code constant expressions that where factored out of inner loops. 245 ** 246 ** The pConstExpr list might also contain expressions that we simply 247 ** want to keep around until the Parse object is deleted. Such 248 ** expressions have iConstExprReg==0. Do not generate code for 249 ** those expressions, of course. 250 */ 251 if( pParse->pConstExpr ){ 252 ExprList *pEL = pParse->pConstExpr; 253 pParse->okConstFactor = 0; 254 for(i=0; i<pEL->nExpr; i++){ 255 int iReg = pEL->a[i].u.iConstExprReg; 256 if( iReg>0 ){ 257 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 258 } 259 } 260 } 261 262 if( pParse->bReturning ){ 263 Returning *pRet = pParse->u1.pReturning; 264 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 265 } 266 267 /* Finally, jump back to the beginning of the executable code. */ 268 sqlite3VdbeGoto(v, 1); 269 } 270 } 271 272 /* Get the VDBE program ready for execution 273 */ 274 if( v && pParse->nErr==0 && !db->mallocFailed ){ 275 /* A minimum of one cursor is required if autoincrement is used 276 * See ticket [a696379c1f08866] */ 277 assert( pParse->pAinc==0 || pParse->nTab>0 ); 278 sqlite3VdbeMakeReady(v, pParse); 279 pParse->rc = SQLITE_DONE; 280 }else{ 281 pParse->rc = SQLITE_ERROR; 282 } 283 } 284 285 /* 286 ** Run the parser and code generator recursively in order to generate 287 ** code for the SQL statement given onto the end of the pParse context 288 ** currently under construction. When the parser is run recursively 289 ** this way, the final OP_Halt is not appended and other initialization 290 ** and finalization steps are omitted because those are handling by the 291 ** outermost parser. 292 ** 293 ** Not everything is nestable. This facility is designed to permit 294 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 295 ** care if you decide to try to use this routine for some other purposes. 296 */ 297 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 298 va_list ap; 299 char *zSql; 300 char *zErrMsg = 0; 301 sqlite3 *db = pParse->db; 302 char saveBuf[PARSE_TAIL_SZ]; 303 304 if( pParse->nErr ) return; 305 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 306 va_start(ap, zFormat); 307 zSql = sqlite3VMPrintf(db, zFormat, ap); 308 va_end(ap); 309 if( zSql==0 ){ 310 /* This can result either from an OOM or because the formatted string 311 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 312 ** an error */ 313 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 314 pParse->nErr++; 315 return; 316 } 317 pParse->nested++; 318 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 319 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 320 sqlite3RunParser(pParse, zSql, &zErrMsg); 321 sqlite3DbFree(db, zErrMsg); 322 sqlite3DbFree(db, zSql); 323 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 324 pParse->nested--; 325 } 326 327 #if SQLITE_USER_AUTHENTICATION 328 /* 329 ** Return TRUE if zTable is the name of the system table that stores the 330 ** list of users and their access credentials. 331 */ 332 int sqlite3UserAuthTable(const char *zTable){ 333 return sqlite3_stricmp(zTable, "sqlite_user")==0; 334 } 335 #endif 336 337 /* 338 ** Locate the in-memory structure that describes a particular database 339 ** table given the name of that table and (optionally) the name of the 340 ** database containing the table. Return NULL if not found. 341 ** 342 ** If zDatabase is 0, all databases are searched for the table and the 343 ** first matching table is returned. (No checking for duplicate table 344 ** names is done.) The search order is TEMP first, then MAIN, then any 345 ** auxiliary databases added using the ATTACH command. 346 ** 347 ** See also sqlite3LocateTable(). 348 */ 349 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 350 Table *p = 0; 351 int i; 352 353 /* All mutexes are required for schema access. Make sure we hold them. */ 354 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 355 #if SQLITE_USER_AUTHENTICATION 356 /* Only the admin user is allowed to know that the sqlite_user table 357 ** exists */ 358 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 359 return 0; 360 } 361 #endif 362 if( zDatabase ){ 363 for(i=0; i<db->nDb; i++){ 364 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 365 } 366 if( i>=db->nDb ){ 367 /* No match against the official names. But always match "main" 368 ** to schema 0 as a legacy fallback. */ 369 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 370 i = 0; 371 }else{ 372 return 0; 373 } 374 } 375 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 376 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 377 if( i==1 ){ 378 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 379 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 380 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 381 ){ 382 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 383 DFLT_TEMP_SCHEMA_TABLE); 384 } 385 }else{ 386 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 387 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 388 DFLT_SCHEMA_TABLE); 389 } 390 } 391 } 392 }else{ 393 /* Match against TEMP first */ 394 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 395 if( p ) return p; 396 /* The main database is second */ 397 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 398 if( p ) return p; 399 /* Attached databases are in order of attachment */ 400 for(i=2; i<db->nDb; i++){ 401 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 402 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 403 if( p ) break; 404 } 405 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 406 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 407 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 408 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 409 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 410 DFLT_TEMP_SCHEMA_TABLE); 411 } 412 } 413 } 414 return p; 415 } 416 417 /* 418 ** Locate the in-memory structure that describes a particular database 419 ** table given the name of that table and (optionally) the name of the 420 ** database containing the table. Return NULL if not found. Also leave an 421 ** error message in pParse->zErrMsg. 422 ** 423 ** The difference between this routine and sqlite3FindTable() is that this 424 ** routine leaves an error message in pParse->zErrMsg where 425 ** sqlite3FindTable() does not. 426 */ 427 Table *sqlite3LocateTable( 428 Parse *pParse, /* context in which to report errors */ 429 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 430 const char *zName, /* Name of the table we are looking for */ 431 const char *zDbase /* Name of the database. Might be NULL */ 432 ){ 433 Table *p; 434 sqlite3 *db = pParse->db; 435 436 /* Read the database schema. If an error occurs, leave an error message 437 ** and code in pParse and return NULL. */ 438 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 439 && SQLITE_OK!=sqlite3ReadSchema(pParse) 440 ){ 441 return 0; 442 } 443 444 p = sqlite3FindTable(db, zName, zDbase); 445 if( p==0 ){ 446 #ifndef SQLITE_OMIT_VIRTUALTABLE 447 /* If zName is the not the name of a table in the schema created using 448 ** CREATE, then check to see if it is the name of an virtual table that 449 ** can be an eponymous virtual table. */ 450 if( pParse->disableVtab==0 && db->init.busy==0 ){ 451 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 452 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 453 pMod = sqlite3PragmaVtabRegister(db, zName); 454 } 455 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 456 testcase( pMod->pEpoTab==0 ); 457 return pMod->pEpoTab; 458 } 459 } 460 #endif 461 if( flags & LOCATE_NOERR ) return 0; 462 pParse->checkSchema = 1; 463 }else if( IsVirtual(p) && pParse->disableVtab ){ 464 p = 0; 465 } 466 467 if( p==0 ){ 468 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 469 if( zDbase ){ 470 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 471 }else{ 472 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 473 } 474 }else{ 475 assert( HasRowid(p) || p->iPKey<0 ); 476 } 477 478 return p; 479 } 480 481 /* 482 ** Locate the table identified by *p. 483 ** 484 ** This is a wrapper around sqlite3LocateTable(). The difference between 485 ** sqlite3LocateTable() and this function is that this function restricts 486 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 487 ** non-NULL if it is part of a view or trigger program definition. See 488 ** sqlite3FixSrcList() for details. 489 */ 490 Table *sqlite3LocateTableItem( 491 Parse *pParse, 492 u32 flags, 493 SrcItem *p 494 ){ 495 const char *zDb; 496 assert( p->pSchema==0 || p->zDatabase==0 ); 497 if( p->pSchema ){ 498 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 499 zDb = pParse->db->aDb[iDb].zDbSName; 500 }else{ 501 zDb = p->zDatabase; 502 } 503 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 504 } 505 506 /* 507 ** Locate the in-memory structure that describes 508 ** a particular index given the name of that index 509 ** and the name of the database that contains the index. 510 ** Return NULL if not found. 511 ** 512 ** If zDatabase is 0, all databases are searched for the 513 ** table and the first matching index is returned. (No checking 514 ** for duplicate index names is done.) The search order is 515 ** TEMP first, then MAIN, then any auxiliary databases added 516 ** using the ATTACH command. 517 */ 518 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 519 Index *p = 0; 520 int i; 521 /* All mutexes are required for schema access. Make sure we hold them. */ 522 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 523 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 524 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 525 Schema *pSchema = db->aDb[j].pSchema; 526 assert( pSchema ); 527 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 528 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 529 p = sqlite3HashFind(&pSchema->idxHash, zName); 530 if( p ) break; 531 } 532 return p; 533 } 534 535 /* 536 ** Reclaim the memory used by an index 537 */ 538 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 539 #ifndef SQLITE_OMIT_ANALYZE 540 sqlite3DeleteIndexSamples(db, p); 541 #endif 542 sqlite3ExprDelete(db, p->pPartIdxWhere); 543 sqlite3ExprListDelete(db, p->aColExpr); 544 sqlite3DbFree(db, p->zColAff); 545 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 546 #ifdef SQLITE_ENABLE_STAT4 547 sqlite3_free(p->aiRowEst); 548 #endif 549 sqlite3DbFree(db, p); 550 } 551 552 /* 553 ** For the index called zIdxName which is found in the database iDb, 554 ** unlike that index from its Table then remove the index from 555 ** the index hash table and free all memory structures associated 556 ** with the index. 557 */ 558 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 559 Index *pIndex; 560 Hash *pHash; 561 562 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 563 pHash = &db->aDb[iDb].pSchema->idxHash; 564 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 565 if( ALWAYS(pIndex) ){ 566 if( pIndex->pTable->pIndex==pIndex ){ 567 pIndex->pTable->pIndex = pIndex->pNext; 568 }else{ 569 Index *p; 570 /* Justification of ALWAYS(); The index must be on the list of 571 ** indices. */ 572 p = pIndex->pTable->pIndex; 573 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 574 if( ALWAYS(p && p->pNext==pIndex) ){ 575 p->pNext = pIndex->pNext; 576 } 577 } 578 sqlite3FreeIndex(db, pIndex); 579 } 580 db->mDbFlags |= DBFLAG_SchemaChange; 581 } 582 583 /* 584 ** Look through the list of open database files in db->aDb[] and if 585 ** any have been closed, remove them from the list. Reallocate the 586 ** db->aDb[] structure to a smaller size, if possible. 587 ** 588 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 589 ** are never candidates for being collapsed. 590 */ 591 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 592 int i, j; 593 for(i=j=2; i<db->nDb; i++){ 594 struct Db *pDb = &db->aDb[i]; 595 if( pDb->pBt==0 ){ 596 sqlite3DbFree(db, pDb->zDbSName); 597 pDb->zDbSName = 0; 598 continue; 599 } 600 if( j<i ){ 601 db->aDb[j] = db->aDb[i]; 602 } 603 j++; 604 } 605 db->nDb = j; 606 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 607 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 608 sqlite3DbFree(db, db->aDb); 609 db->aDb = db->aDbStatic; 610 } 611 } 612 613 /* 614 ** Reset the schema for the database at index iDb. Also reset the 615 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 616 ** Deferred resets may be run by calling with iDb<0. 617 */ 618 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 619 int i; 620 assert( iDb<db->nDb ); 621 622 if( iDb>=0 ){ 623 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 624 DbSetProperty(db, iDb, DB_ResetWanted); 625 DbSetProperty(db, 1, DB_ResetWanted); 626 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 627 } 628 629 if( db->nSchemaLock==0 ){ 630 for(i=0; i<db->nDb; i++){ 631 if( DbHasProperty(db, i, DB_ResetWanted) ){ 632 sqlite3SchemaClear(db->aDb[i].pSchema); 633 } 634 } 635 } 636 } 637 638 /* 639 ** Erase all schema information from all attached databases (including 640 ** "main" and "temp") for a single database connection. 641 */ 642 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 643 int i; 644 sqlite3BtreeEnterAll(db); 645 for(i=0; i<db->nDb; i++){ 646 Db *pDb = &db->aDb[i]; 647 if( pDb->pSchema ){ 648 if( db->nSchemaLock==0 ){ 649 sqlite3SchemaClear(pDb->pSchema); 650 }else{ 651 DbSetProperty(db, i, DB_ResetWanted); 652 } 653 } 654 } 655 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 656 sqlite3VtabUnlockList(db); 657 sqlite3BtreeLeaveAll(db); 658 if( db->nSchemaLock==0 ){ 659 sqlite3CollapseDatabaseArray(db); 660 } 661 } 662 663 /* 664 ** This routine is called when a commit occurs. 665 */ 666 void sqlite3CommitInternalChanges(sqlite3 *db){ 667 db->mDbFlags &= ~DBFLAG_SchemaChange; 668 } 669 670 /* 671 ** Set the expression associated with a column. This is usually 672 ** the DEFAULT value, but might also be the expression that computes 673 ** the value for a generated column. 674 */ 675 void sqlite3ColumnSetExpr( 676 Parse *pParse, /* Parsing context */ 677 Table *pTab, /* The table containing the column */ 678 Column *pCol, /* The column to receive the new DEFAULT expression */ 679 Expr *pExpr /* The new default expression */ 680 ){ 681 ExprList *pList; 682 assert( !IsVirtual(pTab) ); 683 pList = pTab->u.tab.pDfltList; 684 if( pCol->iDflt==0 685 || pList==0 686 || pList->nExpr<pCol->iDflt 687 ){ 688 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; 689 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); 690 }else{ 691 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); 692 pList->a[pCol->iDflt-1].pExpr = pExpr; 693 } 694 } 695 696 /* 697 ** Return the expression associated with a column. The expression might be 698 ** the DEFAULT clause or the AS clause of a generated column. 699 ** Return NULL if the column has no associated expression. 700 */ 701 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ 702 if( pCol->iDflt==0 ) return 0; 703 if( IsVirtual(pTab) ) return 0; 704 if( pTab->u.tab.pDfltList==0 ) return 0; 705 if( pTab->u.tab.pDfltList->nExpr<pCol->iDflt ) return 0; 706 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 707 } 708 709 /* 710 ** Delete memory allocated for the column names of a table or view (the 711 ** Table.aCol[] array). 712 */ 713 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 714 int i; 715 Column *pCol; 716 assert( pTable!=0 ); 717 if( (pCol = pTable->aCol)!=0 ){ 718 for(i=0; i<pTable->nCol; i++, pCol++){ 719 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); 720 sqlite3DbFree(db, pCol->zCnName); 721 sqlite3DbFree(db, pCol->zCnColl); 722 } 723 sqlite3DbFree(db, pTable->aCol); 724 if( !IsVirtual(pTable) ){ 725 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); 726 } 727 if( db==0 || db->pnBytesFreed==0 ){ 728 pTable->aCol = 0; 729 pTable->nCol = 0; 730 if( !IsVirtual(pTable) ){ 731 pTable->u.tab.pDfltList = 0; 732 } 733 } 734 } 735 } 736 737 /* 738 ** Remove the memory data structures associated with the given 739 ** Table. No changes are made to disk by this routine. 740 ** 741 ** This routine just deletes the data structure. It does not unlink 742 ** the table data structure from the hash table. But it does destroy 743 ** memory structures of the indices and foreign keys associated with 744 ** the table. 745 ** 746 ** The db parameter is optional. It is needed if the Table object 747 ** contains lookaside memory. (Table objects in the schema do not use 748 ** lookaside memory, but some ephemeral Table objects do.) Or the 749 ** db parameter can be used with db->pnBytesFreed to measure the memory 750 ** used by the Table object. 751 */ 752 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 753 Index *pIndex, *pNext; 754 755 #ifdef SQLITE_DEBUG 756 /* Record the number of outstanding lookaside allocations in schema Tables 757 ** prior to doing any free() operations. Since schema Tables do not use 758 ** lookaside, this number should not change. 759 ** 760 ** If malloc has already failed, it may be that it failed while allocating 761 ** a Table object that was going to be marked ephemeral. So do not check 762 ** that no lookaside memory is used in this case either. */ 763 int nLookaside = 0; 764 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 765 nLookaside = sqlite3LookasideUsed(db, 0); 766 } 767 #endif 768 769 /* Delete all indices associated with this table. */ 770 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 771 pNext = pIndex->pNext; 772 assert( pIndex->pSchema==pTable->pSchema 773 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 774 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 775 char *zName = pIndex->zName; 776 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 777 &pIndex->pSchema->idxHash, zName, 0 778 ); 779 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 780 assert( pOld==pIndex || pOld==0 ); 781 } 782 sqlite3FreeIndex(db, pIndex); 783 } 784 785 if( IsOrdinaryTable(pTable) ){ 786 sqlite3FkDelete(db, pTable); 787 } 788 #ifndef SQLITE_OMIT_VIRTUAL_TABLE 789 else if( IsVirtual(pTable) ){ 790 sqlite3VtabClear(db, pTable); 791 } 792 #endif 793 else{ 794 assert( IsView(pTable) ); 795 sqlite3SelectDelete(db, pTable->u.view.pSelect); 796 } 797 798 /* Delete the Table structure itself. 799 */ 800 sqlite3DeleteColumnNames(db, pTable); 801 sqlite3DbFree(db, pTable->zName); 802 sqlite3DbFree(db, pTable->zColAff); 803 sqlite3ExprListDelete(db, pTable->pCheck); 804 sqlite3DbFree(db, pTable); 805 806 /* Verify that no lookaside memory was used by schema tables */ 807 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 808 } 809 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 810 /* Do not delete the table until the reference count reaches zero. */ 811 if( !pTable ) return; 812 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 813 deleteTable(db, pTable); 814 } 815 816 817 /* 818 ** Unlink the given table from the hash tables and the delete the 819 ** table structure with all its indices and foreign keys. 820 */ 821 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 822 Table *p; 823 Db *pDb; 824 825 assert( db!=0 ); 826 assert( iDb>=0 && iDb<db->nDb ); 827 assert( zTabName ); 828 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 829 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 830 pDb = &db->aDb[iDb]; 831 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 832 sqlite3DeleteTable(db, p); 833 db->mDbFlags |= DBFLAG_SchemaChange; 834 } 835 836 /* 837 ** Given a token, return a string that consists of the text of that 838 ** token. Space to hold the returned string 839 ** is obtained from sqliteMalloc() and must be freed by the calling 840 ** function. 841 ** 842 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 843 ** surround the body of the token are removed. 844 ** 845 ** Tokens are often just pointers into the original SQL text and so 846 ** are not \000 terminated and are not persistent. The returned string 847 ** is \000 terminated and is persistent. 848 */ 849 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 850 char *zName; 851 if( pName ){ 852 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 853 sqlite3Dequote(zName); 854 }else{ 855 zName = 0; 856 } 857 return zName; 858 } 859 860 /* 861 ** Open the sqlite_schema table stored in database number iDb for 862 ** writing. The table is opened using cursor 0. 863 */ 864 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 865 Vdbe *v = sqlite3GetVdbe(p); 866 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 867 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 868 if( p->nTab==0 ){ 869 p->nTab = 1; 870 } 871 } 872 873 /* 874 ** Parameter zName points to a nul-terminated buffer containing the name 875 ** of a database ("main", "temp" or the name of an attached db). This 876 ** function returns the index of the named database in db->aDb[], or 877 ** -1 if the named db cannot be found. 878 */ 879 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 880 int i = -1; /* Database number */ 881 if( zName ){ 882 Db *pDb; 883 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 884 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 885 /* "main" is always an acceptable alias for the primary database 886 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 887 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 888 } 889 } 890 return i; 891 } 892 893 /* 894 ** The token *pName contains the name of a database (either "main" or 895 ** "temp" or the name of an attached db). This routine returns the 896 ** index of the named database in db->aDb[], or -1 if the named db 897 ** does not exist. 898 */ 899 int sqlite3FindDb(sqlite3 *db, Token *pName){ 900 int i; /* Database number */ 901 char *zName; /* Name we are searching for */ 902 zName = sqlite3NameFromToken(db, pName); 903 i = sqlite3FindDbName(db, zName); 904 sqlite3DbFree(db, zName); 905 return i; 906 } 907 908 /* The table or view or trigger name is passed to this routine via tokens 909 ** pName1 and pName2. If the table name was fully qualified, for example: 910 ** 911 ** CREATE TABLE xxx.yyy (...); 912 ** 913 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 914 ** the table name is not fully qualified, i.e.: 915 ** 916 ** CREATE TABLE yyy(...); 917 ** 918 ** Then pName1 is set to "yyy" and pName2 is "". 919 ** 920 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 921 ** pName2) that stores the unqualified table name. The index of the 922 ** database "xxx" is returned. 923 */ 924 int sqlite3TwoPartName( 925 Parse *pParse, /* Parsing and code generating context */ 926 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 927 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 928 Token **pUnqual /* Write the unqualified object name here */ 929 ){ 930 int iDb; /* Database holding the object */ 931 sqlite3 *db = pParse->db; 932 933 assert( pName2!=0 ); 934 if( pName2->n>0 ){ 935 if( db->init.busy ) { 936 sqlite3ErrorMsg(pParse, "corrupt database"); 937 return -1; 938 } 939 *pUnqual = pName2; 940 iDb = sqlite3FindDb(db, pName1); 941 if( iDb<0 ){ 942 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 943 return -1; 944 } 945 }else{ 946 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 947 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 948 iDb = db->init.iDb; 949 *pUnqual = pName1; 950 } 951 return iDb; 952 } 953 954 /* 955 ** True if PRAGMA writable_schema is ON 956 */ 957 int sqlite3WritableSchema(sqlite3 *db){ 958 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 959 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 960 SQLITE_WriteSchema ); 961 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 962 SQLITE_Defensive ); 963 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 964 (SQLITE_WriteSchema|SQLITE_Defensive) ); 965 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 966 } 967 968 /* 969 ** This routine is used to check if the UTF-8 string zName is a legal 970 ** unqualified name for a new schema object (table, index, view or 971 ** trigger). All names are legal except those that begin with the string 972 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 973 ** is reserved for internal use. 974 ** 975 ** When parsing the sqlite_schema table, this routine also checks to 976 ** make sure the "type", "name", and "tbl_name" columns are consistent 977 ** with the SQL. 978 */ 979 int sqlite3CheckObjectName( 980 Parse *pParse, /* Parsing context */ 981 const char *zName, /* Name of the object to check */ 982 const char *zType, /* Type of this object */ 983 const char *zTblName /* Parent table name for triggers and indexes */ 984 ){ 985 sqlite3 *db = pParse->db; 986 if( sqlite3WritableSchema(db) 987 || db->init.imposterTable 988 || !sqlite3Config.bExtraSchemaChecks 989 ){ 990 /* Skip these error checks for writable_schema=ON */ 991 return SQLITE_OK; 992 } 993 if( db->init.busy ){ 994 if( sqlite3_stricmp(zType, db->init.azInit[0]) 995 || sqlite3_stricmp(zName, db->init.azInit[1]) 996 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 997 ){ 998 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 999 return SQLITE_ERROR; 1000 } 1001 }else{ 1002 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 1003 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 1004 ){ 1005 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 1006 zName); 1007 return SQLITE_ERROR; 1008 } 1009 1010 } 1011 return SQLITE_OK; 1012 } 1013 1014 /* 1015 ** Return the PRIMARY KEY index of a table 1016 */ 1017 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 1018 Index *p; 1019 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 1020 return p; 1021 } 1022 1023 /* 1024 ** Convert an table column number into a index column number. That is, 1025 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 1026 ** find the (first) offset of that column in index pIdx. Or return -1 1027 ** if column iCol is not used in index pIdx. 1028 */ 1029 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 1030 int i; 1031 for(i=0; i<pIdx->nColumn; i++){ 1032 if( iCol==pIdx->aiColumn[i] ) return i; 1033 } 1034 return -1; 1035 } 1036 1037 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1038 /* Convert a storage column number into a table column number. 1039 ** 1040 ** The storage column number (0,1,2,....) is the index of the value 1041 ** as it appears in the record on disk. The true column number 1042 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 1043 ** 1044 ** The storage column number is less than the table column number if 1045 ** and only there are VIRTUAL columns to the left. 1046 ** 1047 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 1048 */ 1049 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 1050 if( pTab->tabFlags & TF_HasVirtual ){ 1051 int i; 1052 for(i=0; i<=iCol; i++){ 1053 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 1054 } 1055 } 1056 return iCol; 1057 } 1058 #endif 1059 1060 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1061 /* Convert a table column number into a storage column number. 1062 ** 1063 ** The storage column number (0,1,2,....) is the index of the value 1064 ** as it appears in the record on disk. Or, if the input column is 1065 ** the N-th virtual column (zero-based) then the storage number is 1066 ** the number of non-virtual columns in the table plus N. 1067 ** 1068 ** The true column number is the index (0,1,2,...) of the column in 1069 ** the CREATE TABLE statement. 1070 ** 1071 ** If the input column is a VIRTUAL column, then it should not appear 1072 ** in storage. But the value sometimes is cached in registers that 1073 ** follow the range of registers used to construct storage. This 1074 ** avoids computing the same VIRTUAL column multiple times, and provides 1075 ** values for use by OP_Param opcodes in triggers. Hence, if the 1076 ** input column is a VIRTUAL table, put it after all the other columns. 1077 ** 1078 ** In the following, N means "normal column", S means STORED, and 1079 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1080 ** 1081 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1082 ** -- 0 1 2 3 4 5 6 7 8 1083 ** 1084 ** Then the mapping from this function is as follows: 1085 ** 1086 ** INPUTS: 0 1 2 3 4 5 6 7 8 1087 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1088 ** 1089 ** So, in other words, this routine shifts all the virtual columns to 1090 ** the end. 1091 ** 1092 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1093 ** this routine is a no-op macro. If the pTab does not have any virtual 1094 ** columns, then this routine is no-op that always return iCol. If iCol 1095 ** is negative (indicating the ROWID column) then this routine return iCol. 1096 */ 1097 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1098 int i; 1099 i16 n; 1100 assert( iCol<pTab->nCol ); 1101 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1102 for(i=0, n=0; i<iCol; i++){ 1103 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1104 } 1105 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1106 /* iCol is a virtual column itself */ 1107 return pTab->nNVCol + i - n; 1108 }else{ 1109 /* iCol is a normal or stored column */ 1110 return n; 1111 } 1112 } 1113 #endif 1114 1115 /* 1116 ** Insert a single OP_JournalMode query opcode in order to force the 1117 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1118 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1119 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1120 ** will return false for sqlite3_stmt_readonly() even if that statement 1121 ** is a read-only no-op. 1122 */ 1123 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1124 int iReg = ++pParse->nMem; 1125 Vdbe *v = sqlite3GetVdbe(pParse); 1126 if( v ){ 1127 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1128 sqlite3VdbeUsesBtree(v, 0); 1129 } 1130 } 1131 1132 /* 1133 ** Begin constructing a new table representation in memory. This is 1134 ** the first of several action routines that get called in response 1135 ** to a CREATE TABLE statement. In particular, this routine is called 1136 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1137 ** flag is true if the table should be stored in the auxiliary database 1138 ** file instead of in the main database file. This is normally the case 1139 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1140 ** CREATE and TABLE. 1141 ** 1142 ** The new table record is initialized and put in pParse->pNewTable. 1143 ** As more of the CREATE TABLE statement is parsed, additional action 1144 ** routines will be called to add more information to this record. 1145 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1146 ** is called to complete the construction of the new table record. 1147 */ 1148 void sqlite3StartTable( 1149 Parse *pParse, /* Parser context */ 1150 Token *pName1, /* First part of the name of the table or view */ 1151 Token *pName2, /* Second part of the name of the table or view */ 1152 int isTemp, /* True if this is a TEMP table */ 1153 int isView, /* True if this is a VIEW */ 1154 int isVirtual, /* True if this is a VIRTUAL table */ 1155 int noErr /* Do nothing if table already exists */ 1156 ){ 1157 Table *pTable; 1158 char *zName = 0; /* The name of the new table */ 1159 sqlite3 *db = pParse->db; 1160 Vdbe *v; 1161 int iDb; /* Database number to create the table in */ 1162 Token *pName; /* Unqualified name of the table to create */ 1163 1164 if( db->init.busy && db->init.newTnum==1 ){ 1165 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1166 iDb = db->init.iDb; 1167 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1168 pName = pName1; 1169 }else{ 1170 /* The common case */ 1171 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1172 if( iDb<0 ) return; 1173 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1174 /* If creating a temp table, the name may not be qualified. Unless 1175 ** the database name is "temp" anyway. */ 1176 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1177 return; 1178 } 1179 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1180 zName = sqlite3NameFromToken(db, pName); 1181 if( IN_RENAME_OBJECT ){ 1182 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1183 } 1184 } 1185 pParse->sNameToken = *pName; 1186 if( zName==0 ) return; 1187 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1188 goto begin_table_error; 1189 } 1190 if( db->init.iDb==1 ) isTemp = 1; 1191 #ifndef SQLITE_OMIT_AUTHORIZATION 1192 assert( isTemp==0 || isTemp==1 ); 1193 assert( isView==0 || isView==1 ); 1194 { 1195 static const u8 aCode[] = { 1196 SQLITE_CREATE_TABLE, 1197 SQLITE_CREATE_TEMP_TABLE, 1198 SQLITE_CREATE_VIEW, 1199 SQLITE_CREATE_TEMP_VIEW 1200 }; 1201 char *zDb = db->aDb[iDb].zDbSName; 1202 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1203 goto begin_table_error; 1204 } 1205 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1206 zName, 0, zDb) ){ 1207 goto begin_table_error; 1208 } 1209 } 1210 #endif 1211 1212 /* Make sure the new table name does not collide with an existing 1213 ** index or table name in the same database. Issue an error message if 1214 ** it does. The exception is if the statement being parsed was passed 1215 ** to an sqlite3_declare_vtab() call. In that case only the column names 1216 ** and types will be used, so there is no need to test for namespace 1217 ** collisions. 1218 */ 1219 if( !IN_SPECIAL_PARSE ){ 1220 char *zDb = db->aDb[iDb].zDbSName; 1221 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1222 goto begin_table_error; 1223 } 1224 pTable = sqlite3FindTable(db, zName, zDb); 1225 if( pTable ){ 1226 if( !noErr ){ 1227 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1228 }else{ 1229 assert( !db->init.busy || CORRUPT_DB ); 1230 sqlite3CodeVerifySchema(pParse, iDb); 1231 sqlite3ForceNotReadOnly(pParse); 1232 } 1233 goto begin_table_error; 1234 } 1235 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1236 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1237 goto begin_table_error; 1238 } 1239 } 1240 1241 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1242 if( pTable==0 ){ 1243 assert( db->mallocFailed ); 1244 pParse->rc = SQLITE_NOMEM_BKPT; 1245 pParse->nErr++; 1246 goto begin_table_error; 1247 } 1248 pTable->zName = zName; 1249 pTable->iPKey = -1; 1250 pTable->pSchema = db->aDb[iDb].pSchema; 1251 pTable->nTabRef = 1; 1252 #ifdef SQLITE_DEFAULT_ROWEST 1253 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1254 #else 1255 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1256 #endif 1257 assert( pParse->pNewTable==0 ); 1258 pParse->pNewTable = pTable; 1259 1260 /* Begin generating the code that will insert the table record into 1261 ** the schema table. Note in particular that we must go ahead 1262 ** and allocate the record number for the table entry now. Before any 1263 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1264 ** indices to be created and the table record must come before the 1265 ** indices. Hence, the record number for the table must be allocated 1266 ** now. 1267 */ 1268 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1269 int addr1; 1270 int fileFormat; 1271 int reg1, reg2, reg3; 1272 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1273 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1274 sqlite3BeginWriteOperation(pParse, 1, iDb); 1275 1276 #ifndef SQLITE_OMIT_VIRTUALTABLE 1277 if( isVirtual ){ 1278 sqlite3VdbeAddOp0(v, OP_VBegin); 1279 } 1280 #endif 1281 1282 /* If the file format and encoding in the database have not been set, 1283 ** set them now. 1284 */ 1285 reg1 = pParse->regRowid = ++pParse->nMem; 1286 reg2 = pParse->regRoot = ++pParse->nMem; 1287 reg3 = ++pParse->nMem; 1288 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1289 sqlite3VdbeUsesBtree(v, iDb); 1290 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1291 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1292 1 : SQLITE_MAX_FILE_FORMAT; 1293 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1294 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1295 sqlite3VdbeJumpHere(v, addr1); 1296 1297 /* This just creates a place-holder record in the sqlite_schema table. 1298 ** The record created does not contain anything yet. It will be replaced 1299 ** by the real entry in code generated at sqlite3EndTable(). 1300 ** 1301 ** The rowid for the new entry is left in register pParse->regRowid. 1302 ** The root page number of the new table is left in reg pParse->regRoot. 1303 ** The rowid and root page number values are needed by the code that 1304 ** sqlite3EndTable will generate. 1305 */ 1306 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1307 if( isView || isVirtual ){ 1308 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1309 }else 1310 #endif 1311 { 1312 assert( !pParse->bReturning ); 1313 pParse->u1.addrCrTab = 1314 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1315 } 1316 sqlite3OpenSchemaTable(pParse, iDb); 1317 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1318 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1319 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1320 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1321 sqlite3VdbeAddOp0(v, OP_Close); 1322 } 1323 1324 /* Normal (non-error) return. */ 1325 return; 1326 1327 /* If an error occurs, we jump here */ 1328 begin_table_error: 1329 pParse->checkSchema = 1; 1330 sqlite3DbFree(db, zName); 1331 return; 1332 } 1333 1334 /* Set properties of a table column based on the (magical) 1335 ** name of the column. 1336 */ 1337 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1338 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1339 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ 1340 pCol->colFlags |= COLFLAG_HIDDEN; 1341 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1342 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1343 pTab->tabFlags |= TF_OOOHidden; 1344 } 1345 } 1346 #endif 1347 1348 /* 1349 ** Name of the special TEMP trigger used to implement RETURNING. The 1350 ** name begins with "sqlite_" so that it is guaranteed not to collide 1351 ** with any application-generated triggers. 1352 */ 1353 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1354 1355 /* 1356 ** Clean up the data structures associated with the RETURNING clause. 1357 */ 1358 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1359 Hash *pHash; 1360 pHash = &(db->aDb[1].pSchema->trigHash); 1361 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1362 sqlite3ExprListDelete(db, pRet->pReturnEL); 1363 sqlite3DbFree(db, pRet); 1364 } 1365 1366 /* 1367 ** Add the RETURNING clause to the parse currently underway. 1368 ** 1369 ** This routine creates a special TEMP trigger that will fire for each row 1370 ** of the DML statement. That TEMP trigger contains a single SELECT 1371 ** statement with a result set that is the argument of the RETURNING clause. 1372 ** The trigger has the Trigger.bReturning flag and an opcode of 1373 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1374 ** knows to handle it specially. The TEMP trigger is automatically 1375 ** removed at the end of the parse. 1376 ** 1377 ** When this routine is called, we do not yet know if the RETURNING clause 1378 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1379 ** RETURNING trigger instead. It will then be converted into the appropriate 1380 ** type on the first call to sqlite3TriggersExist(). 1381 */ 1382 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1383 Returning *pRet; 1384 Hash *pHash; 1385 sqlite3 *db = pParse->db; 1386 if( pParse->pNewTrigger ){ 1387 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1388 }else{ 1389 assert( pParse->bReturning==0 ); 1390 } 1391 pParse->bReturning = 1; 1392 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1393 if( pRet==0 ){ 1394 sqlite3ExprListDelete(db, pList); 1395 return; 1396 } 1397 pParse->u1.pReturning = pRet; 1398 pRet->pParse = pParse; 1399 pRet->pReturnEL = pList; 1400 sqlite3ParserAddCleanup(pParse, 1401 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1402 testcase( pParse->earlyCleanup ); 1403 if( db->mallocFailed ) return; 1404 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1405 pRet->retTrig.op = TK_RETURNING; 1406 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1407 pRet->retTrig.bReturning = 1; 1408 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1409 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1410 pRet->retTrig.step_list = &pRet->retTStep; 1411 pRet->retTStep.op = TK_RETURNING; 1412 pRet->retTStep.pTrig = &pRet->retTrig; 1413 pRet->retTStep.pExprList = pList; 1414 pHash = &(db->aDb[1].pSchema->trigHash); 1415 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1416 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1417 ==&pRet->retTrig ){ 1418 sqlite3OomFault(db); 1419 } 1420 } 1421 1422 /* 1423 ** Add a new column to the table currently being constructed. 1424 ** 1425 ** The parser calls this routine once for each column declaration 1426 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1427 ** first to get things going. Then this routine is called for each 1428 ** column. 1429 */ 1430 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ 1431 Table *p; 1432 int i; 1433 char *z; 1434 char *zType; 1435 Column *pCol; 1436 sqlite3 *db = pParse->db; 1437 u8 hName; 1438 Column *aNew; 1439 u8 eType = COLTYPE_CUSTOM; 1440 u8 szEst = 1; 1441 char affinity = SQLITE_AFF_BLOB; 1442 1443 if( (p = pParse->pNewTable)==0 ) return; 1444 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1445 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1446 return; 1447 } 1448 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); 1449 1450 /* Because keywords GENERATE ALWAYS can be converted into indentifiers 1451 ** by the parser, we can sometimes end up with a typename that ends 1452 ** with "generated always". Check for this case and omit the surplus 1453 ** text. */ 1454 if( sType.n>=16 1455 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 1456 ){ 1457 sType.n -= 6; 1458 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1459 if( sType.n>=9 1460 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 1461 ){ 1462 sType.n -= 9; 1463 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1464 } 1465 } 1466 1467 /* Check for standard typenames. For standard typenames we will 1468 ** set the Column.eType field rather than storing the typename after 1469 ** the column name, in order to save space. */ 1470 if( sType.n>=3 ){ 1471 sqlite3DequoteToken(&sType); 1472 for(i=0; i<SQLITE_N_STDTYPE; i++){ 1473 if( sType.n==sqlite3StdTypeLen[i] 1474 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0 1475 ){ 1476 sType.n = 0; 1477 eType = i+1; 1478 affinity = sqlite3StdTypeAffinity[i]; 1479 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5; 1480 break; 1481 } 1482 } 1483 } 1484 1485 z = sqlite3DbMallocRaw(db, sName.n + 1 + sType.n + (sType.n>0) ); 1486 if( z==0 ) return; 1487 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); 1488 memcpy(z, sName.z, sName.n); 1489 z[sName.n] = 0; 1490 sqlite3Dequote(z); 1491 hName = sqlite3StrIHash(z); 1492 for(i=0; i<p->nCol; i++){ 1493 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ 1494 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1495 sqlite3DbFree(db, z); 1496 return; 1497 } 1498 } 1499 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+1)*sizeof(p->aCol[0])); 1500 if( aNew==0 ){ 1501 sqlite3DbFree(db, z); 1502 return; 1503 } 1504 p->aCol = aNew; 1505 pCol = &p->aCol[p->nCol]; 1506 memset(pCol, 0, sizeof(p->aCol[0])); 1507 pCol->zCnName = z; 1508 pCol->hName = hName; 1509 sqlite3ColumnPropertiesFromName(p, pCol); 1510 1511 if( sType.n==0 ){ 1512 /* If there is no type specified, columns have the default affinity 1513 ** 'BLOB' with a default size of 4 bytes. */ 1514 pCol->affinity = affinity; 1515 pCol->eType = eType; 1516 pCol->szEst = szEst; 1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1518 if( affinity==SQLITE_AFF_BLOB ){ 1519 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1520 pCol->colFlags |= COLFLAG_SORTERREF; 1521 } 1522 } 1523 #endif 1524 }else{ 1525 zType = z + sqlite3Strlen30(z) + 1; 1526 memcpy(zType, sType.z, sType.n); 1527 zType[sType.n] = 0; 1528 sqlite3Dequote(zType); 1529 pCol->affinity = sqlite3AffinityType(zType, pCol); 1530 pCol->colFlags |= COLFLAG_HASTYPE; 1531 } 1532 p->nCol++; 1533 p->nNVCol++; 1534 pParse->constraintName.n = 0; 1535 } 1536 1537 /* 1538 ** This routine is called by the parser while in the middle of 1539 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1540 ** been seen on a column. This routine sets the notNull flag on 1541 ** the column currently under construction. 1542 */ 1543 void sqlite3AddNotNull(Parse *pParse, int onError){ 1544 Table *p; 1545 Column *pCol; 1546 p = pParse->pNewTable; 1547 if( p==0 || NEVER(p->nCol<1) ) return; 1548 pCol = &p->aCol[p->nCol-1]; 1549 pCol->notNull = (u8)onError; 1550 p->tabFlags |= TF_HasNotNull; 1551 1552 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1553 ** on this column. */ 1554 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1555 Index *pIdx; 1556 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1557 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1558 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1559 pIdx->uniqNotNull = 1; 1560 } 1561 } 1562 } 1563 } 1564 1565 /* 1566 ** Scan the column type name zType (length nType) and return the 1567 ** associated affinity type. 1568 ** 1569 ** This routine does a case-independent search of zType for the 1570 ** substrings in the following table. If one of the substrings is 1571 ** found, the corresponding affinity is returned. If zType contains 1572 ** more than one of the substrings, entries toward the top of 1573 ** the table take priority. For example, if zType is 'BLOBINT', 1574 ** SQLITE_AFF_INTEGER is returned. 1575 ** 1576 ** Substring | Affinity 1577 ** -------------------------------- 1578 ** 'INT' | SQLITE_AFF_INTEGER 1579 ** 'CHAR' | SQLITE_AFF_TEXT 1580 ** 'CLOB' | SQLITE_AFF_TEXT 1581 ** 'TEXT' | SQLITE_AFF_TEXT 1582 ** 'BLOB' | SQLITE_AFF_BLOB 1583 ** 'REAL' | SQLITE_AFF_REAL 1584 ** 'FLOA' | SQLITE_AFF_REAL 1585 ** 'DOUB' | SQLITE_AFF_REAL 1586 ** 1587 ** If none of the substrings in the above table are found, 1588 ** SQLITE_AFF_NUMERIC is returned. 1589 */ 1590 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1591 u32 h = 0; 1592 char aff = SQLITE_AFF_NUMERIC; 1593 const char *zChar = 0; 1594 1595 assert( zIn!=0 ); 1596 while( zIn[0] ){ 1597 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1598 zIn++; 1599 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1600 aff = SQLITE_AFF_TEXT; 1601 zChar = zIn; 1602 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1603 aff = SQLITE_AFF_TEXT; 1604 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1605 aff = SQLITE_AFF_TEXT; 1606 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1607 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1608 aff = SQLITE_AFF_BLOB; 1609 if( zIn[0]=='(' ) zChar = zIn; 1610 #ifndef SQLITE_OMIT_FLOATING_POINT 1611 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1612 && aff==SQLITE_AFF_NUMERIC ){ 1613 aff = SQLITE_AFF_REAL; 1614 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1615 && aff==SQLITE_AFF_NUMERIC ){ 1616 aff = SQLITE_AFF_REAL; 1617 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1618 && aff==SQLITE_AFF_NUMERIC ){ 1619 aff = SQLITE_AFF_REAL; 1620 #endif 1621 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1622 aff = SQLITE_AFF_INTEGER; 1623 break; 1624 } 1625 } 1626 1627 /* If pCol is not NULL, store an estimate of the field size. The 1628 ** estimate is scaled so that the size of an integer is 1. */ 1629 if( pCol ){ 1630 int v = 0; /* default size is approx 4 bytes */ 1631 if( aff<SQLITE_AFF_NUMERIC ){ 1632 if( zChar ){ 1633 while( zChar[0] ){ 1634 if( sqlite3Isdigit(zChar[0]) ){ 1635 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1636 sqlite3GetInt32(zChar, &v); 1637 break; 1638 } 1639 zChar++; 1640 } 1641 }else{ 1642 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1643 } 1644 } 1645 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1646 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1647 pCol->colFlags |= COLFLAG_SORTERREF; 1648 } 1649 #endif 1650 v = v/4 + 1; 1651 if( v>255 ) v = 255; 1652 pCol->szEst = v; 1653 } 1654 return aff; 1655 } 1656 1657 /* 1658 ** The expression is the default value for the most recently added column 1659 ** of the table currently under construction. 1660 ** 1661 ** Default value expressions must be constant. Raise an exception if this 1662 ** is not the case. 1663 ** 1664 ** This routine is called by the parser while in the middle of 1665 ** parsing a CREATE TABLE statement. 1666 */ 1667 void sqlite3AddDefaultValue( 1668 Parse *pParse, /* Parsing context */ 1669 Expr *pExpr, /* The parsed expression of the default value */ 1670 const char *zStart, /* Start of the default value text */ 1671 const char *zEnd /* First character past end of defaut value text */ 1672 ){ 1673 Table *p; 1674 Column *pCol; 1675 sqlite3 *db = pParse->db; 1676 p = pParse->pNewTable; 1677 if( p!=0 ){ 1678 int isInit = db->init.busy && db->init.iDb!=1; 1679 pCol = &(p->aCol[p->nCol-1]); 1680 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1681 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1682 pCol->zCnName); 1683 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1684 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1685 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1686 testcase( pCol->colFlags & COLFLAG_STORED ); 1687 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1688 #endif 1689 }else{ 1690 /* A copy of pExpr is used instead of the original, as pExpr contains 1691 ** tokens that point to volatile memory. 1692 */ 1693 Expr x, *pDfltExpr; 1694 memset(&x, 0, sizeof(x)); 1695 x.op = TK_SPAN; 1696 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1697 x.pLeft = pExpr; 1698 x.flags = EP_Skip; 1699 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1700 sqlite3DbFree(db, x.u.zToken); 1701 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); 1702 } 1703 } 1704 if( IN_RENAME_OBJECT ){ 1705 sqlite3RenameExprUnmap(pParse, pExpr); 1706 } 1707 sqlite3ExprDelete(db, pExpr); 1708 } 1709 1710 /* 1711 ** Backwards Compatibility Hack: 1712 ** 1713 ** Historical versions of SQLite accepted strings as column names in 1714 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1715 ** 1716 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1717 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1718 ** 1719 ** This is goofy. But to preserve backwards compatibility we continue to 1720 ** accept it. This routine does the necessary conversion. It converts 1721 ** the expression given in its argument from a TK_STRING into a TK_ID 1722 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1723 ** If the expression is anything other than TK_STRING, the expression is 1724 ** unchanged. 1725 */ 1726 static void sqlite3StringToId(Expr *p){ 1727 if( p->op==TK_STRING ){ 1728 p->op = TK_ID; 1729 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1730 p->pLeft->op = TK_ID; 1731 } 1732 } 1733 1734 /* 1735 ** Tag the given column as being part of the PRIMARY KEY 1736 */ 1737 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1738 pCol->colFlags |= COLFLAG_PRIMKEY; 1739 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1740 if( pCol->colFlags & COLFLAG_GENERATED ){ 1741 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1742 testcase( pCol->colFlags & COLFLAG_STORED ); 1743 sqlite3ErrorMsg(pParse, 1744 "generated columns cannot be part of the PRIMARY KEY"); 1745 } 1746 #endif 1747 } 1748 1749 /* 1750 ** Designate the PRIMARY KEY for the table. pList is a list of names 1751 ** of columns that form the primary key. If pList is NULL, then the 1752 ** most recently added column of the table is the primary key. 1753 ** 1754 ** A table can have at most one primary key. If the table already has 1755 ** a primary key (and this is the second primary key) then create an 1756 ** error. 1757 ** 1758 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1759 ** then we will try to use that column as the rowid. Set the Table.iPKey 1760 ** field of the table under construction to be the index of the 1761 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1762 ** no INTEGER PRIMARY KEY. 1763 ** 1764 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1765 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1766 */ 1767 void sqlite3AddPrimaryKey( 1768 Parse *pParse, /* Parsing context */ 1769 ExprList *pList, /* List of field names to be indexed */ 1770 int onError, /* What to do with a uniqueness conflict */ 1771 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1772 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1773 ){ 1774 Table *pTab = pParse->pNewTable; 1775 Column *pCol = 0; 1776 int iCol = -1, i; 1777 int nTerm; 1778 if( pTab==0 ) goto primary_key_exit; 1779 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1780 sqlite3ErrorMsg(pParse, 1781 "table \"%s\" has more than one primary key", pTab->zName); 1782 goto primary_key_exit; 1783 } 1784 pTab->tabFlags |= TF_HasPrimaryKey; 1785 if( pList==0 ){ 1786 iCol = pTab->nCol - 1; 1787 pCol = &pTab->aCol[iCol]; 1788 makeColumnPartOfPrimaryKey(pParse, pCol); 1789 nTerm = 1; 1790 }else{ 1791 nTerm = pList->nExpr; 1792 for(i=0; i<nTerm; i++){ 1793 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1794 assert( pCExpr!=0 ); 1795 sqlite3StringToId(pCExpr); 1796 if( pCExpr->op==TK_ID ){ 1797 const char *zCName = pCExpr->u.zToken; 1798 for(iCol=0; iCol<pTab->nCol; iCol++){ 1799 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ 1800 pCol = &pTab->aCol[iCol]; 1801 makeColumnPartOfPrimaryKey(pParse, pCol); 1802 break; 1803 } 1804 } 1805 } 1806 } 1807 } 1808 if( nTerm==1 1809 && pCol 1810 && pCol->eType==COLTYPE_INTEGER 1811 && sortOrder!=SQLITE_SO_DESC 1812 ){ 1813 if( IN_RENAME_OBJECT && pList ){ 1814 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1815 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1816 } 1817 pTab->iPKey = iCol; 1818 pTab->keyConf = (u8)onError; 1819 assert( autoInc==0 || autoInc==1 ); 1820 pTab->tabFlags |= autoInc*TF_Autoincrement; 1821 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1822 (void)sqlite3HasExplicitNulls(pParse, pList); 1823 }else if( autoInc ){ 1824 #ifndef SQLITE_OMIT_AUTOINCREMENT 1825 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1826 "INTEGER PRIMARY KEY"); 1827 #endif 1828 }else{ 1829 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1830 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1831 pList = 0; 1832 } 1833 1834 primary_key_exit: 1835 sqlite3ExprListDelete(pParse->db, pList); 1836 return; 1837 } 1838 1839 /* 1840 ** Add a new CHECK constraint to the table currently under construction. 1841 */ 1842 void sqlite3AddCheckConstraint( 1843 Parse *pParse, /* Parsing context */ 1844 Expr *pCheckExpr, /* The check expression */ 1845 const char *zStart, /* Opening "(" */ 1846 const char *zEnd /* Closing ")" */ 1847 ){ 1848 #ifndef SQLITE_OMIT_CHECK 1849 Table *pTab = pParse->pNewTable; 1850 sqlite3 *db = pParse->db; 1851 if( pTab && !IN_DECLARE_VTAB 1852 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1853 ){ 1854 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1855 if( pParse->constraintName.n ){ 1856 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1857 }else{ 1858 Token t; 1859 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1860 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1861 t.z = zStart; 1862 t.n = (int)(zEnd - t.z); 1863 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1864 } 1865 }else 1866 #endif 1867 { 1868 sqlite3ExprDelete(pParse->db, pCheckExpr); 1869 } 1870 } 1871 1872 /* 1873 ** Set the collation function of the most recently parsed table column 1874 ** to the CollSeq given. 1875 */ 1876 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1877 Table *p; 1878 int i; 1879 char *zColl; /* Dequoted name of collation sequence */ 1880 sqlite3 *db; 1881 1882 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1883 i = p->nCol-1; 1884 db = pParse->db; 1885 zColl = sqlite3NameFromToken(db, pToken); 1886 if( !zColl ) return; 1887 1888 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1889 Index *pIdx; 1890 sqlite3DbFree(db, p->aCol[i].zCnColl); 1891 p->aCol[i].zCnColl = zColl; 1892 1893 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1894 ** then an index may have been created on this column before the 1895 ** collation type was added. Correct this if it is the case. 1896 */ 1897 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1898 assert( pIdx->nKeyCol==1 ); 1899 if( pIdx->aiColumn[0]==i ){ 1900 pIdx->azColl[0] = p->aCol[i].zCnColl; 1901 } 1902 } 1903 }else{ 1904 sqlite3DbFree(db, zColl); 1905 } 1906 } 1907 1908 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1909 ** column. 1910 */ 1911 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1912 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1913 u8 eType = COLFLAG_VIRTUAL; 1914 Table *pTab = pParse->pNewTable; 1915 Column *pCol; 1916 if( pTab==0 ){ 1917 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1918 goto generated_done; 1919 } 1920 pCol = &(pTab->aCol[pTab->nCol-1]); 1921 if( IN_DECLARE_VTAB ){ 1922 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1923 goto generated_done; 1924 } 1925 if( pCol->iDflt>0 ) goto generated_error; 1926 if( pType ){ 1927 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1928 /* no-op */ 1929 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1930 eType = COLFLAG_STORED; 1931 }else{ 1932 goto generated_error; 1933 } 1934 } 1935 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1936 pCol->colFlags |= eType; 1937 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1938 assert( TF_HasStored==COLFLAG_STORED ); 1939 pTab->tabFlags |= eType; 1940 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1941 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1942 } 1943 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); 1944 pExpr = 0; 1945 goto generated_done; 1946 1947 generated_error: 1948 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1949 pCol->zCnName); 1950 generated_done: 1951 sqlite3ExprDelete(pParse->db, pExpr); 1952 #else 1953 /* Throw and error for the GENERATED ALWAYS AS clause if the 1954 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1955 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1956 sqlite3ExprDelete(pParse->db, pExpr); 1957 #endif 1958 } 1959 1960 /* 1961 ** Generate code that will increment the schema cookie. 1962 ** 1963 ** The schema cookie is used to determine when the schema for the 1964 ** database changes. After each schema change, the cookie value 1965 ** changes. When a process first reads the schema it records the 1966 ** cookie. Thereafter, whenever it goes to access the database, 1967 ** it checks the cookie to make sure the schema has not changed 1968 ** since it was last read. 1969 ** 1970 ** This plan is not completely bullet-proof. It is possible for 1971 ** the schema to change multiple times and for the cookie to be 1972 ** set back to prior value. But schema changes are infrequent 1973 ** and the probability of hitting the same cookie value is only 1974 ** 1 chance in 2^32. So we're safe enough. 1975 ** 1976 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1977 ** the schema-version whenever the schema changes. 1978 */ 1979 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1980 sqlite3 *db = pParse->db; 1981 Vdbe *v = pParse->pVdbe; 1982 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1983 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1984 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1985 } 1986 1987 /* 1988 ** Measure the number of characters needed to output the given 1989 ** identifier. The number returned includes any quotes used 1990 ** but does not include the null terminator. 1991 ** 1992 ** The estimate is conservative. It might be larger that what is 1993 ** really needed. 1994 */ 1995 static int identLength(const char *z){ 1996 int n; 1997 for(n=0; *z; n++, z++){ 1998 if( *z=='"' ){ n++; } 1999 } 2000 return n + 2; 2001 } 2002 2003 /* 2004 ** The first parameter is a pointer to an output buffer. The second 2005 ** parameter is a pointer to an integer that contains the offset at 2006 ** which to write into the output buffer. This function copies the 2007 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 2008 ** to the specified offset in the buffer and updates *pIdx to refer 2009 ** to the first byte after the last byte written before returning. 2010 ** 2011 ** If the string zSignedIdent consists entirely of alpha-numeric 2012 ** characters, does not begin with a digit and is not an SQL keyword, 2013 ** then it is copied to the output buffer exactly as it is. Otherwise, 2014 ** it is quoted using double-quotes. 2015 */ 2016 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 2017 unsigned char *zIdent = (unsigned char*)zSignedIdent; 2018 int i, j, needQuote; 2019 i = *pIdx; 2020 2021 for(j=0; zIdent[j]; j++){ 2022 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 2023 } 2024 needQuote = sqlite3Isdigit(zIdent[0]) 2025 || sqlite3KeywordCode(zIdent, j)!=TK_ID 2026 || zIdent[j]!=0 2027 || j==0; 2028 2029 if( needQuote ) z[i++] = '"'; 2030 for(j=0; zIdent[j]; j++){ 2031 z[i++] = zIdent[j]; 2032 if( zIdent[j]=='"' ) z[i++] = '"'; 2033 } 2034 if( needQuote ) z[i++] = '"'; 2035 z[i] = 0; 2036 *pIdx = i; 2037 } 2038 2039 /* 2040 ** Generate a CREATE TABLE statement appropriate for the given 2041 ** table. Memory to hold the text of the statement is obtained 2042 ** from sqliteMalloc() and must be freed by the calling function. 2043 */ 2044 static char *createTableStmt(sqlite3 *db, Table *p){ 2045 int i, k, n; 2046 char *zStmt; 2047 char *zSep, *zSep2, *zEnd; 2048 Column *pCol; 2049 n = 0; 2050 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 2051 n += identLength(pCol->zCnName) + 5; 2052 } 2053 n += identLength(p->zName); 2054 if( n<50 ){ 2055 zSep = ""; 2056 zSep2 = ","; 2057 zEnd = ")"; 2058 }else{ 2059 zSep = "\n "; 2060 zSep2 = ",\n "; 2061 zEnd = "\n)"; 2062 } 2063 n += 35 + 6*p->nCol; 2064 zStmt = sqlite3DbMallocRaw(0, n); 2065 if( zStmt==0 ){ 2066 sqlite3OomFault(db); 2067 return 0; 2068 } 2069 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 2070 k = sqlite3Strlen30(zStmt); 2071 identPut(zStmt, &k, p->zName); 2072 zStmt[k++] = '('; 2073 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 2074 static const char * const azType[] = { 2075 /* SQLITE_AFF_BLOB */ "", 2076 /* SQLITE_AFF_TEXT */ " TEXT", 2077 /* SQLITE_AFF_NUMERIC */ " NUM", 2078 /* SQLITE_AFF_INTEGER */ " INT", 2079 /* SQLITE_AFF_REAL */ " REAL" 2080 }; 2081 int len; 2082 const char *zType; 2083 2084 sqlite3_snprintf(n-k, &zStmt[k], zSep); 2085 k += sqlite3Strlen30(&zStmt[k]); 2086 zSep = zSep2; 2087 identPut(zStmt, &k, pCol->zCnName); 2088 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 2089 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 2090 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 2091 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 2092 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 2093 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 2094 testcase( pCol->affinity==SQLITE_AFF_REAL ); 2095 2096 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2097 len = sqlite3Strlen30(zType); 2098 assert( pCol->affinity==SQLITE_AFF_BLOB 2099 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2100 memcpy(&zStmt[k], zType, len); 2101 k += len; 2102 assert( k<=n ); 2103 } 2104 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2105 return zStmt; 2106 } 2107 2108 /* 2109 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2110 ** on success and SQLITE_NOMEM on an OOM error. 2111 */ 2112 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2113 char *zExtra; 2114 int nByte; 2115 if( pIdx->nColumn>=N ) return SQLITE_OK; 2116 assert( pIdx->isResized==0 ); 2117 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2118 zExtra = sqlite3DbMallocZero(db, nByte); 2119 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2120 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2121 pIdx->azColl = (const char**)zExtra; 2122 zExtra += sizeof(char*)*N; 2123 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2124 pIdx->aiRowLogEst = (LogEst*)zExtra; 2125 zExtra += sizeof(LogEst)*N; 2126 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2127 pIdx->aiColumn = (i16*)zExtra; 2128 zExtra += sizeof(i16)*N; 2129 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2130 pIdx->aSortOrder = (u8*)zExtra; 2131 pIdx->nColumn = N; 2132 pIdx->isResized = 1; 2133 return SQLITE_OK; 2134 } 2135 2136 /* 2137 ** Estimate the total row width for a table. 2138 */ 2139 static void estimateTableWidth(Table *pTab){ 2140 unsigned wTable = 0; 2141 const Column *pTabCol; 2142 int i; 2143 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2144 wTable += pTabCol->szEst; 2145 } 2146 if( pTab->iPKey<0 ) wTable++; 2147 pTab->szTabRow = sqlite3LogEst(wTable*4); 2148 } 2149 2150 /* 2151 ** Estimate the average size of a row for an index. 2152 */ 2153 static void estimateIndexWidth(Index *pIdx){ 2154 unsigned wIndex = 0; 2155 int i; 2156 const Column *aCol = pIdx->pTable->aCol; 2157 for(i=0; i<pIdx->nColumn; i++){ 2158 i16 x = pIdx->aiColumn[i]; 2159 assert( x<pIdx->pTable->nCol ); 2160 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2161 } 2162 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2163 } 2164 2165 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2166 ** This is used to determine if the column number x appears in any of the 2167 ** first nCol entries of an index. 2168 */ 2169 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2170 while( nCol-- > 0 ){ 2171 assert( aiCol[0]>=0 ); 2172 if( x==*(aiCol++) ){ 2173 return 1; 2174 } 2175 } 2176 return 0; 2177 } 2178 2179 /* 2180 ** Return true if any of the first nKey entries of index pIdx exactly 2181 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2182 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2183 ** or may not be the same index as pPk. 2184 ** 2185 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2186 ** not a rowid or expression. 2187 ** 2188 ** This routine differs from hasColumn() in that both the column and the 2189 ** collating sequence must match for this routine, but for hasColumn() only 2190 ** the column name must match. 2191 */ 2192 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2193 int i, j; 2194 assert( nKey<=pIdx->nColumn ); 2195 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2196 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2197 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2198 assert( pPk->pTable==pIdx->pTable ); 2199 testcase( pPk==pIdx ); 2200 j = pPk->aiColumn[iCol]; 2201 assert( j!=XN_ROWID && j!=XN_EXPR ); 2202 for(i=0; i<nKey; i++){ 2203 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2204 if( pIdx->aiColumn[i]==j 2205 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2206 ){ 2207 return 1; 2208 } 2209 } 2210 return 0; 2211 } 2212 2213 /* Recompute the colNotIdxed field of the Index. 2214 ** 2215 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2216 ** columns that are within the first 63 columns of the table. The 2217 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2218 ** of the table have a 1. 2219 ** 2220 ** 2019-10-24: For the purpose of this computation, virtual columns are 2221 ** not considered to be covered by the index, even if they are in the 2222 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2223 ** able to find all instances of a reference to the indexed table column 2224 ** and convert them into references to the index. Hence we always want 2225 ** the actual table at hand in order to recompute the virtual column, if 2226 ** necessary. 2227 ** 2228 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2229 ** to determine if the index is covering index. 2230 */ 2231 static void recomputeColumnsNotIndexed(Index *pIdx){ 2232 Bitmask m = 0; 2233 int j; 2234 Table *pTab = pIdx->pTable; 2235 for(j=pIdx->nColumn-1; j>=0; j--){ 2236 int x = pIdx->aiColumn[j]; 2237 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2238 testcase( x==BMS-1 ); 2239 testcase( x==BMS-2 ); 2240 if( x<BMS-1 ) m |= MASKBIT(x); 2241 } 2242 } 2243 pIdx->colNotIdxed = ~m; 2244 assert( (pIdx->colNotIdxed>>63)==1 ); 2245 } 2246 2247 /* 2248 ** This routine runs at the end of parsing a CREATE TABLE statement that 2249 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2250 ** internal schema data structures and the generated VDBE code so that they 2251 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2252 ** Changes include: 2253 ** 2254 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2255 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2256 ** into BTREE_BLOBKEY. 2257 ** (3) Bypass the creation of the sqlite_schema table entry 2258 ** for the PRIMARY KEY as the primary key index is now 2259 ** identified by the sqlite_schema table entry of the table itself. 2260 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2261 ** schema to the rootpage from the main table. 2262 ** (5) Add all table columns to the PRIMARY KEY Index object 2263 ** so that the PRIMARY KEY is a covering index. The surplus 2264 ** columns are part of KeyInfo.nAllField and are not used for 2265 ** sorting or lookup or uniqueness checks. 2266 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2267 ** indices with the PRIMARY KEY columns. 2268 ** 2269 ** For virtual tables, only (1) is performed. 2270 */ 2271 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2272 Index *pIdx; 2273 Index *pPk; 2274 int nPk; 2275 int nExtra; 2276 int i, j; 2277 sqlite3 *db = pParse->db; 2278 Vdbe *v = pParse->pVdbe; 2279 2280 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2281 */ 2282 if( !db->init.imposterTable ){ 2283 for(i=0; i<pTab->nCol; i++){ 2284 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2285 pTab->aCol[i].notNull = OE_Abort; 2286 } 2287 } 2288 pTab->tabFlags |= TF_HasNotNull; 2289 } 2290 2291 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2292 ** into BTREE_BLOBKEY. 2293 */ 2294 assert( !pParse->bReturning ); 2295 if( pParse->u1.addrCrTab ){ 2296 assert( v ); 2297 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2298 } 2299 2300 /* Locate the PRIMARY KEY index. Or, if this table was originally 2301 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2302 */ 2303 if( pTab->iPKey>=0 ){ 2304 ExprList *pList; 2305 Token ipkToken; 2306 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); 2307 pList = sqlite3ExprListAppend(pParse, 0, 2308 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2309 if( pList==0 ){ 2310 pTab->tabFlags &= ~TF_WithoutRowid; 2311 return; 2312 } 2313 if( IN_RENAME_OBJECT ){ 2314 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2315 } 2316 pList->a[0].sortFlags = pParse->iPkSortOrder; 2317 assert( pParse->pNewTable==pTab ); 2318 pTab->iPKey = -1; 2319 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2320 SQLITE_IDXTYPE_PRIMARYKEY); 2321 if( db->mallocFailed || pParse->nErr ){ 2322 pTab->tabFlags &= ~TF_WithoutRowid; 2323 return; 2324 } 2325 pPk = sqlite3PrimaryKeyIndex(pTab); 2326 assert( pPk->nKeyCol==1 ); 2327 }else{ 2328 pPk = sqlite3PrimaryKeyIndex(pTab); 2329 assert( pPk!=0 ); 2330 2331 /* 2332 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2333 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2334 ** code assumes the PRIMARY KEY contains no repeated columns. 2335 */ 2336 for(i=j=1; i<pPk->nKeyCol; i++){ 2337 if( isDupColumn(pPk, j, pPk, i) ){ 2338 pPk->nColumn--; 2339 }else{ 2340 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2341 pPk->azColl[j] = pPk->azColl[i]; 2342 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2343 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2344 } 2345 } 2346 pPk->nKeyCol = j; 2347 } 2348 assert( pPk!=0 ); 2349 pPk->isCovering = 1; 2350 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2351 nPk = pPk->nColumn = pPk->nKeyCol; 2352 2353 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2354 ** table entry. This is only required if currently generating VDBE 2355 ** code for a CREATE TABLE (not when parsing one as part of reading 2356 ** a database schema). */ 2357 if( v && pPk->tnum>0 ){ 2358 assert( db->init.busy==0 ); 2359 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2360 } 2361 2362 /* The root page of the PRIMARY KEY is the table root page */ 2363 pPk->tnum = pTab->tnum; 2364 2365 /* Update the in-memory representation of all UNIQUE indices by converting 2366 ** the final rowid column into one or more columns of the PRIMARY KEY. 2367 */ 2368 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2369 int n; 2370 if( IsPrimaryKeyIndex(pIdx) ) continue; 2371 for(i=n=0; i<nPk; i++){ 2372 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2373 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2374 n++; 2375 } 2376 } 2377 if( n==0 ){ 2378 /* This index is a superset of the primary key */ 2379 pIdx->nColumn = pIdx->nKeyCol; 2380 continue; 2381 } 2382 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2383 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2384 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2385 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2386 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2387 pIdx->azColl[j] = pPk->azColl[i]; 2388 if( pPk->aSortOrder[i] ){ 2389 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2390 pIdx->bAscKeyBug = 1; 2391 } 2392 j++; 2393 } 2394 } 2395 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2396 assert( pIdx->nColumn>=j ); 2397 } 2398 2399 /* Add all table columns to the PRIMARY KEY index 2400 */ 2401 nExtra = 0; 2402 for(i=0; i<pTab->nCol; i++){ 2403 if( !hasColumn(pPk->aiColumn, nPk, i) 2404 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2405 } 2406 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2407 for(i=0, j=nPk; i<pTab->nCol; i++){ 2408 if( !hasColumn(pPk->aiColumn, j, i) 2409 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2410 ){ 2411 assert( j<pPk->nColumn ); 2412 pPk->aiColumn[j] = i; 2413 pPk->azColl[j] = sqlite3StrBINARY; 2414 j++; 2415 } 2416 } 2417 assert( pPk->nColumn==j ); 2418 assert( pTab->nNVCol<=j ); 2419 recomputeColumnsNotIndexed(pPk); 2420 } 2421 2422 2423 #ifndef SQLITE_OMIT_VIRTUALTABLE 2424 /* 2425 ** Return true if pTab is a virtual table and zName is a shadow table name 2426 ** for that virtual table. 2427 */ 2428 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2429 int nName; /* Length of zName */ 2430 Module *pMod; /* Module for the virtual table */ 2431 2432 if( !IsVirtual(pTab) ) return 0; 2433 nName = sqlite3Strlen30(pTab->zName); 2434 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2435 if( zName[nName]!='_' ) return 0; 2436 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2437 if( pMod==0 ) return 0; 2438 if( pMod->pModule->iVersion<3 ) return 0; 2439 if( pMod->pModule->xShadowName==0 ) return 0; 2440 return pMod->pModule->xShadowName(zName+nName+1); 2441 } 2442 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2443 2444 #ifndef SQLITE_OMIT_VIRTUALTABLE 2445 /* 2446 ** Return true if zName is a shadow table name in the current database 2447 ** connection. 2448 ** 2449 ** zName is temporarily modified while this routine is running, but is 2450 ** restored to its original value prior to this routine returning. 2451 */ 2452 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2453 char *zTail; /* Pointer to the last "_" in zName */ 2454 Table *pTab; /* Table that zName is a shadow of */ 2455 zTail = strrchr(zName, '_'); 2456 if( zTail==0 ) return 0; 2457 *zTail = 0; 2458 pTab = sqlite3FindTable(db, zName, 0); 2459 *zTail = '_'; 2460 if( pTab==0 ) return 0; 2461 if( !IsVirtual(pTab) ) return 0; 2462 return sqlite3IsShadowTableOf(db, pTab, zName); 2463 } 2464 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2465 2466 2467 #ifdef SQLITE_DEBUG 2468 /* 2469 ** Mark all nodes of an expression as EP_Immutable, indicating that 2470 ** they should not be changed. Expressions attached to a table or 2471 ** index definition are tagged this way to help ensure that we do 2472 ** not pass them into code generator routines by mistake. 2473 */ 2474 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2475 ExprSetVVAProperty(pExpr, EP_Immutable); 2476 return WRC_Continue; 2477 } 2478 static void markExprListImmutable(ExprList *pList){ 2479 if( pList ){ 2480 Walker w; 2481 memset(&w, 0, sizeof(w)); 2482 w.xExprCallback = markImmutableExprStep; 2483 w.xSelectCallback = sqlite3SelectWalkNoop; 2484 w.xSelectCallback2 = 0; 2485 sqlite3WalkExprList(&w, pList); 2486 } 2487 } 2488 #else 2489 #define markExprListImmutable(X) /* no-op */ 2490 #endif /* SQLITE_DEBUG */ 2491 2492 2493 /* 2494 ** This routine is called to report the final ")" that terminates 2495 ** a CREATE TABLE statement. 2496 ** 2497 ** The table structure that other action routines have been building 2498 ** is added to the internal hash tables, assuming no errors have 2499 ** occurred. 2500 ** 2501 ** An entry for the table is made in the schema table on disk, unless 2502 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2503 ** it means we are reading the sqlite_schema table because we just 2504 ** connected to the database or because the sqlite_schema table has 2505 ** recently changed, so the entry for this table already exists in 2506 ** the sqlite_schema table. We do not want to create it again. 2507 ** 2508 ** If the pSelect argument is not NULL, it means that this routine 2509 ** was called to create a table generated from a 2510 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2511 ** the new table will match the result set of the SELECT. 2512 */ 2513 void sqlite3EndTable( 2514 Parse *pParse, /* Parse context */ 2515 Token *pCons, /* The ',' token after the last column defn. */ 2516 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2517 u8 tabOpts, /* Extra table options. Usually 0. */ 2518 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2519 ){ 2520 Table *p; /* The new table */ 2521 sqlite3 *db = pParse->db; /* The database connection */ 2522 int iDb; /* Database in which the table lives */ 2523 Index *pIdx; /* An implied index of the table */ 2524 2525 if( pEnd==0 && pSelect==0 ){ 2526 return; 2527 } 2528 p = pParse->pNewTable; 2529 if( p==0 ) return; 2530 2531 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2532 p->tabFlags |= TF_Shadow; 2533 } 2534 2535 /* If the db->init.busy is 1 it means we are reading the SQL off the 2536 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2537 ** So do not write to the disk again. Extract the root page number 2538 ** for the table from the db->init.newTnum field. (The page number 2539 ** should have been put there by the sqliteOpenCb routine.) 2540 ** 2541 ** If the root page number is 1, that means this is the sqlite_schema 2542 ** table itself. So mark it read-only. 2543 */ 2544 if( db->init.busy ){ 2545 if( pSelect ){ 2546 sqlite3ErrorMsg(pParse, ""); 2547 return; 2548 } 2549 p->tnum = db->init.newTnum; 2550 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2551 } 2552 2553 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2554 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2555 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2556 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2557 2558 /* Special processing for WITHOUT ROWID Tables */ 2559 if( tabOpts & TF_WithoutRowid ){ 2560 if( (p->tabFlags & TF_Autoincrement) ){ 2561 sqlite3ErrorMsg(pParse, 2562 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2563 return; 2564 } 2565 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2566 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2567 return; 2568 } 2569 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2570 convertToWithoutRowidTable(pParse, p); 2571 } 2572 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2573 2574 #ifndef SQLITE_OMIT_CHECK 2575 /* Resolve names in all CHECK constraint expressions. 2576 */ 2577 if( p->pCheck ){ 2578 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2579 if( pParse->nErr ){ 2580 /* If errors are seen, delete the CHECK constraints now, else they might 2581 ** actually be used if PRAGMA writable_schema=ON is set. */ 2582 sqlite3ExprListDelete(db, p->pCheck); 2583 p->pCheck = 0; 2584 }else{ 2585 markExprListImmutable(p->pCheck); 2586 } 2587 } 2588 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2589 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2590 if( p->tabFlags & TF_HasGenerated ){ 2591 int ii, nNG = 0; 2592 testcase( p->tabFlags & TF_HasVirtual ); 2593 testcase( p->tabFlags & TF_HasStored ); 2594 for(ii=0; ii<p->nCol; ii++){ 2595 u32 colFlags = p->aCol[ii].colFlags; 2596 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2597 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); 2598 testcase( colFlags & COLFLAG_VIRTUAL ); 2599 testcase( colFlags & COLFLAG_STORED ); 2600 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2601 /* If there are errors in resolving the expression, change the 2602 ** expression to a NULL. This prevents code generators that operate 2603 ** on the expression from inserting extra parts into the expression 2604 ** tree that have been allocated from lookaside memory, which is 2605 ** illegal in a schema and will lead to errors or heap corruption 2606 ** when the database connection closes. */ 2607 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], 2608 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 2609 } 2610 }else{ 2611 nNG++; 2612 } 2613 } 2614 if( nNG==0 ){ 2615 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2616 return; 2617 } 2618 } 2619 #endif 2620 2621 /* Estimate the average row size for the table and for all implied indices */ 2622 estimateTableWidth(p); 2623 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2624 estimateIndexWidth(pIdx); 2625 } 2626 2627 /* If not initializing, then create a record for the new table 2628 ** in the schema table of the database. 2629 ** 2630 ** If this is a TEMPORARY table, write the entry into the auxiliary 2631 ** file instead of into the main database file. 2632 */ 2633 if( !db->init.busy ){ 2634 int n; 2635 Vdbe *v; 2636 char *zType; /* "view" or "table" */ 2637 char *zType2; /* "VIEW" or "TABLE" */ 2638 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2639 2640 v = sqlite3GetVdbe(pParse); 2641 if( NEVER(v==0) ) return; 2642 2643 sqlite3VdbeAddOp1(v, OP_Close, 0); 2644 2645 /* 2646 ** Initialize zType for the new view or table. 2647 */ 2648 if( IsOrdinaryTable(p) ){ 2649 /* A regular table */ 2650 zType = "table"; 2651 zType2 = "TABLE"; 2652 #ifndef SQLITE_OMIT_VIEW 2653 }else{ 2654 /* A view */ 2655 zType = "view"; 2656 zType2 = "VIEW"; 2657 #endif 2658 } 2659 2660 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2661 ** statement to populate the new table. The root-page number for the 2662 ** new table is in register pParse->regRoot. 2663 ** 2664 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2665 ** suitable state to query for the column names and types to be used 2666 ** by the new table. 2667 ** 2668 ** A shared-cache write-lock is not required to write to the new table, 2669 ** as a schema-lock must have already been obtained to create it. Since 2670 ** a schema-lock excludes all other database users, the write-lock would 2671 ** be redundant. 2672 */ 2673 if( pSelect ){ 2674 SelectDest dest; /* Where the SELECT should store results */ 2675 int regYield; /* Register holding co-routine entry-point */ 2676 int addrTop; /* Top of the co-routine */ 2677 int regRec; /* A record to be insert into the new table */ 2678 int regRowid; /* Rowid of the next row to insert */ 2679 int addrInsLoop; /* Top of the loop for inserting rows */ 2680 Table *pSelTab; /* A table that describes the SELECT results */ 2681 2682 regYield = ++pParse->nMem; 2683 regRec = ++pParse->nMem; 2684 regRowid = ++pParse->nMem; 2685 assert(pParse->nTab==1); 2686 sqlite3MayAbort(pParse); 2687 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2688 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2689 pParse->nTab = 2; 2690 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2691 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2692 if( pParse->nErr ) return; 2693 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2694 if( pSelTab==0 ) return; 2695 assert( p->aCol==0 ); 2696 p->nCol = p->nNVCol = pSelTab->nCol; 2697 p->aCol = pSelTab->aCol; 2698 pSelTab->nCol = 0; 2699 pSelTab->aCol = 0; 2700 sqlite3DeleteTable(db, pSelTab); 2701 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2702 sqlite3Select(pParse, pSelect, &dest); 2703 if( pParse->nErr ) return; 2704 sqlite3VdbeEndCoroutine(v, regYield); 2705 sqlite3VdbeJumpHere(v, addrTop - 1); 2706 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2707 VdbeCoverage(v); 2708 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2709 sqlite3TableAffinity(v, p, 0); 2710 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2711 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2712 sqlite3VdbeGoto(v, addrInsLoop); 2713 sqlite3VdbeJumpHere(v, addrInsLoop); 2714 sqlite3VdbeAddOp1(v, OP_Close, 1); 2715 } 2716 2717 /* Compute the complete text of the CREATE statement */ 2718 if( pSelect ){ 2719 zStmt = createTableStmt(db, p); 2720 }else{ 2721 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2722 n = (int)(pEnd2->z - pParse->sNameToken.z); 2723 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2724 zStmt = sqlite3MPrintf(db, 2725 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2726 ); 2727 } 2728 2729 /* A slot for the record has already been allocated in the 2730 ** schema table. We just need to update that slot with all 2731 ** the information we've collected. 2732 */ 2733 sqlite3NestedParse(pParse, 2734 "UPDATE %Q." DFLT_SCHEMA_TABLE 2735 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2736 " WHERE rowid=#%d", 2737 db->aDb[iDb].zDbSName, 2738 zType, 2739 p->zName, 2740 p->zName, 2741 pParse->regRoot, 2742 zStmt, 2743 pParse->regRowid 2744 ); 2745 sqlite3DbFree(db, zStmt); 2746 sqlite3ChangeCookie(pParse, iDb); 2747 2748 #ifndef SQLITE_OMIT_AUTOINCREMENT 2749 /* Check to see if we need to create an sqlite_sequence table for 2750 ** keeping track of autoincrement keys. 2751 */ 2752 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2753 Db *pDb = &db->aDb[iDb]; 2754 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2755 if( pDb->pSchema->pSeqTab==0 ){ 2756 sqlite3NestedParse(pParse, 2757 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2758 pDb->zDbSName 2759 ); 2760 } 2761 } 2762 #endif 2763 2764 /* Reparse everything to update our internal data structures */ 2765 sqlite3VdbeAddParseSchemaOp(v, iDb, 2766 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2767 } 2768 2769 /* Add the table to the in-memory representation of the database. 2770 */ 2771 if( db->init.busy ){ 2772 Table *pOld; 2773 Schema *pSchema = p->pSchema; 2774 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2775 assert( HasRowid(p) || p->iPKey<0 ); 2776 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2777 if( pOld ){ 2778 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2779 sqlite3OomFault(db); 2780 return; 2781 } 2782 pParse->pNewTable = 0; 2783 db->mDbFlags |= DBFLAG_SchemaChange; 2784 2785 /* If this is the magic sqlite_sequence table used by autoincrement, 2786 ** then record a pointer to this table in the main database structure 2787 ** so that INSERT can find the table easily. */ 2788 assert( !pParse->nested ); 2789 #ifndef SQLITE_OMIT_AUTOINCREMENT 2790 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2791 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2792 p->pSchema->pSeqTab = p; 2793 } 2794 #endif 2795 } 2796 2797 #ifndef SQLITE_OMIT_ALTERTABLE 2798 if( !pSelect && IsOrdinaryTable(p) ){ 2799 assert( pCons && pEnd ); 2800 if( pCons->z==0 ){ 2801 pCons = pEnd; 2802 } 2803 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2804 } 2805 #endif 2806 } 2807 2808 #ifndef SQLITE_OMIT_VIEW 2809 /* 2810 ** The parser calls this routine in order to create a new VIEW 2811 */ 2812 void sqlite3CreateView( 2813 Parse *pParse, /* The parsing context */ 2814 Token *pBegin, /* The CREATE token that begins the statement */ 2815 Token *pName1, /* The token that holds the name of the view */ 2816 Token *pName2, /* The token that holds the name of the view */ 2817 ExprList *pCNames, /* Optional list of view column names */ 2818 Select *pSelect, /* A SELECT statement that will become the new view */ 2819 int isTemp, /* TRUE for a TEMPORARY view */ 2820 int noErr /* Suppress error messages if VIEW already exists */ 2821 ){ 2822 Table *p; 2823 int n; 2824 const char *z; 2825 Token sEnd; 2826 DbFixer sFix; 2827 Token *pName = 0; 2828 int iDb; 2829 sqlite3 *db = pParse->db; 2830 2831 if( pParse->nVar>0 ){ 2832 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2833 goto create_view_fail; 2834 } 2835 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2836 p = pParse->pNewTable; 2837 if( p==0 || pParse->nErr ) goto create_view_fail; 2838 2839 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2840 ** on a view, even though views do not have rowids. The following flag 2841 ** setting fixes this problem. But the fix can be disabled by compiling 2842 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2843 ** depend upon the old buggy behavior. */ 2844 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2845 p->tabFlags |= TF_NoVisibleRowid; 2846 #endif 2847 2848 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2849 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2850 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2851 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2852 2853 /* Make a copy of the entire SELECT statement that defines the view. 2854 ** This will force all the Expr.token.z values to be dynamically 2855 ** allocated rather than point to the input string - which means that 2856 ** they will persist after the current sqlite3_exec() call returns. 2857 */ 2858 pSelect->selFlags |= SF_View; 2859 if( IN_RENAME_OBJECT ){ 2860 p->u.view.pSelect = pSelect; 2861 pSelect = 0; 2862 }else{ 2863 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2864 } 2865 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2866 p->eTabType = TABTYP_VIEW; 2867 if( db->mallocFailed ) goto create_view_fail; 2868 2869 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2870 ** the end. 2871 */ 2872 sEnd = pParse->sLastToken; 2873 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2874 if( sEnd.z[0]!=';' ){ 2875 sEnd.z += sEnd.n; 2876 } 2877 sEnd.n = 0; 2878 n = (int)(sEnd.z - pBegin->z); 2879 assert( n>0 ); 2880 z = pBegin->z; 2881 while( sqlite3Isspace(z[n-1]) ){ n--; } 2882 sEnd.z = &z[n-1]; 2883 sEnd.n = 1; 2884 2885 /* Use sqlite3EndTable() to add the view to the schema table */ 2886 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2887 2888 create_view_fail: 2889 sqlite3SelectDelete(db, pSelect); 2890 if( IN_RENAME_OBJECT ){ 2891 sqlite3RenameExprlistUnmap(pParse, pCNames); 2892 } 2893 sqlite3ExprListDelete(db, pCNames); 2894 return; 2895 } 2896 #endif /* SQLITE_OMIT_VIEW */ 2897 2898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2899 /* 2900 ** The Table structure pTable is really a VIEW. Fill in the names of 2901 ** the columns of the view in the pTable structure. Return the number 2902 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2903 */ 2904 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2905 Table *pSelTab; /* A fake table from which we get the result set */ 2906 Select *pSel; /* Copy of the SELECT that implements the view */ 2907 int nErr = 0; /* Number of errors encountered */ 2908 int n; /* Temporarily holds the number of cursors assigned */ 2909 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2910 #ifndef SQLITE_OMIT_VIRTUALTABLE 2911 int rc; 2912 #endif 2913 #ifndef SQLITE_OMIT_AUTHORIZATION 2914 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2915 #endif 2916 2917 assert( pTable ); 2918 2919 #ifndef SQLITE_OMIT_VIRTUALTABLE 2920 db->nSchemaLock++; 2921 rc = sqlite3VtabCallConnect(pParse, pTable); 2922 db->nSchemaLock--; 2923 if( rc ){ 2924 return 1; 2925 } 2926 if( IsVirtual(pTable) ) return 0; 2927 #endif 2928 2929 #ifndef SQLITE_OMIT_VIEW 2930 /* A positive nCol means the columns names for this view are 2931 ** already known. 2932 */ 2933 if( pTable->nCol>0 ) return 0; 2934 2935 /* A negative nCol is a special marker meaning that we are currently 2936 ** trying to compute the column names. If we enter this routine with 2937 ** a negative nCol, it means two or more views form a loop, like this: 2938 ** 2939 ** CREATE VIEW one AS SELECT * FROM two; 2940 ** CREATE VIEW two AS SELECT * FROM one; 2941 ** 2942 ** Actually, the error above is now caught prior to reaching this point. 2943 ** But the following test is still important as it does come up 2944 ** in the following: 2945 ** 2946 ** CREATE TABLE main.ex1(a); 2947 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2948 ** SELECT * FROM temp.ex1; 2949 */ 2950 if( pTable->nCol<0 ){ 2951 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2952 return 1; 2953 } 2954 assert( pTable->nCol>=0 ); 2955 2956 /* If we get this far, it means we need to compute the table names. 2957 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2958 ** "*" elements in the results set of the view and will assign cursors 2959 ** to the elements of the FROM clause. But we do not want these changes 2960 ** to be permanent. So the computation is done on a copy of the SELECT 2961 ** statement that defines the view. 2962 */ 2963 assert( IsView(pTable) ); 2964 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); 2965 if( pSel ){ 2966 u8 eParseMode = pParse->eParseMode; 2967 pParse->eParseMode = PARSE_MODE_NORMAL; 2968 n = pParse->nTab; 2969 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2970 pTable->nCol = -1; 2971 DisableLookaside; 2972 #ifndef SQLITE_OMIT_AUTHORIZATION 2973 xAuth = db->xAuth; 2974 db->xAuth = 0; 2975 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2976 db->xAuth = xAuth; 2977 #else 2978 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2979 #endif 2980 pParse->nTab = n; 2981 if( pSelTab==0 ){ 2982 pTable->nCol = 0; 2983 nErr++; 2984 }else if( pTable->pCheck ){ 2985 /* CREATE VIEW name(arglist) AS ... 2986 ** The names of the columns in the table are taken from 2987 ** arglist which is stored in pTable->pCheck. The pCheck field 2988 ** normally holds CHECK constraints on an ordinary table, but for 2989 ** a VIEW it holds the list of column names. 2990 */ 2991 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2992 &pTable->nCol, &pTable->aCol); 2993 if( db->mallocFailed==0 2994 && pParse->nErr==0 2995 && pTable->nCol==pSel->pEList->nExpr 2996 ){ 2997 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2998 SQLITE_AFF_NONE); 2999 } 3000 }else{ 3001 /* CREATE VIEW name AS... without an argument list. Construct 3002 ** the column names from the SELECT statement that defines the view. 3003 */ 3004 assert( pTable->aCol==0 ); 3005 pTable->nCol = pSelTab->nCol; 3006 pTable->aCol = pSelTab->aCol; 3007 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 3008 pSelTab->nCol = 0; 3009 pSelTab->aCol = 0; 3010 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 3011 } 3012 pTable->nNVCol = pTable->nCol; 3013 sqlite3DeleteTable(db, pSelTab); 3014 sqlite3SelectDelete(db, pSel); 3015 EnableLookaside; 3016 pParse->eParseMode = eParseMode; 3017 } else { 3018 nErr++; 3019 } 3020 pTable->pSchema->schemaFlags |= DB_UnresetViews; 3021 if( db->mallocFailed ){ 3022 sqlite3DeleteColumnNames(db, pTable); 3023 } 3024 #endif /* SQLITE_OMIT_VIEW */ 3025 return nErr; 3026 } 3027 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 3028 3029 #ifndef SQLITE_OMIT_VIEW 3030 /* 3031 ** Clear the column names from every VIEW in database idx. 3032 */ 3033 static void sqliteViewResetAll(sqlite3 *db, int idx){ 3034 HashElem *i; 3035 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 3036 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 3037 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 3038 Table *pTab = sqliteHashData(i); 3039 if( IsView(pTab) ){ 3040 sqlite3DeleteColumnNames(db, pTab); 3041 } 3042 } 3043 DbClearProperty(db, idx, DB_UnresetViews); 3044 } 3045 #else 3046 # define sqliteViewResetAll(A,B) 3047 #endif /* SQLITE_OMIT_VIEW */ 3048 3049 /* 3050 ** This function is called by the VDBE to adjust the internal schema 3051 ** used by SQLite when the btree layer moves a table root page. The 3052 ** root-page of a table or index in database iDb has changed from iFrom 3053 ** to iTo. 3054 ** 3055 ** Ticket #1728: The symbol table might still contain information 3056 ** on tables and/or indices that are the process of being deleted. 3057 ** If you are unlucky, one of those deleted indices or tables might 3058 ** have the same rootpage number as the real table or index that is 3059 ** being moved. So we cannot stop searching after the first match 3060 ** because the first match might be for one of the deleted indices 3061 ** or tables and not the table/index that is actually being moved. 3062 ** We must continue looping until all tables and indices with 3063 ** rootpage==iFrom have been converted to have a rootpage of iTo 3064 ** in order to be certain that we got the right one. 3065 */ 3066 #ifndef SQLITE_OMIT_AUTOVACUUM 3067 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 3068 HashElem *pElem; 3069 Hash *pHash; 3070 Db *pDb; 3071 3072 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3073 pDb = &db->aDb[iDb]; 3074 pHash = &pDb->pSchema->tblHash; 3075 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3076 Table *pTab = sqliteHashData(pElem); 3077 if( pTab->tnum==iFrom ){ 3078 pTab->tnum = iTo; 3079 } 3080 } 3081 pHash = &pDb->pSchema->idxHash; 3082 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3083 Index *pIdx = sqliteHashData(pElem); 3084 if( pIdx->tnum==iFrom ){ 3085 pIdx->tnum = iTo; 3086 } 3087 } 3088 } 3089 #endif 3090 3091 /* 3092 ** Write code to erase the table with root-page iTable from database iDb. 3093 ** Also write code to modify the sqlite_schema table and internal schema 3094 ** if a root-page of another table is moved by the btree-layer whilst 3095 ** erasing iTable (this can happen with an auto-vacuum database). 3096 */ 3097 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3098 Vdbe *v = sqlite3GetVdbe(pParse); 3099 int r1 = sqlite3GetTempReg(pParse); 3100 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3101 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3102 sqlite3MayAbort(pParse); 3103 #ifndef SQLITE_OMIT_AUTOVACUUM 3104 /* OP_Destroy stores an in integer r1. If this integer 3105 ** is non-zero, then it is the root page number of a table moved to 3106 ** location iTable. The following code modifies the sqlite_schema table to 3107 ** reflect this. 3108 ** 3109 ** The "#NNN" in the SQL is a special constant that means whatever value 3110 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3111 ** token for additional information. 3112 */ 3113 sqlite3NestedParse(pParse, 3114 "UPDATE %Q." DFLT_SCHEMA_TABLE 3115 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3116 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3117 #endif 3118 sqlite3ReleaseTempReg(pParse, r1); 3119 } 3120 3121 /* 3122 ** Write VDBE code to erase table pTab and all associated indices on disk. 3123 ** Code to update the sqlite_schema tables and internal schema definitions 3124 ** in case a root-page belonging to another table is moved by the btree layer 3125 ** is also added (this can happen with an auto-vacuum database). 3126 */ 3127 static void destroyTable(Parse *pParse, Table *pTab){ 3128 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3129 ** is not defined), then it is important to call OP_Destroy on the 3130 ** table and index root-pages in order, starting with the numerically 3131 ** largest root-page number. This guarantees that none of the root-pages 3132 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3133 ** following were coded: 3134 ** 3135 ** OP_Destroy 4 0 3136 ** ... 3137 ** OP_Destroy 5 0 3138 ** 3139 ** and root page 5 happened to be the largest root-page number in the 3140 ** database, then root page 5 would be moved to page 4 by the 3141 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3142 ** a free-list page. 3143 */ 3144 Pgno iTab = pTab->tnum; 3145 Pgno iDestroyed = 0; 3146 3147 while( 1 ){ 3148 Index *pIdx; 3149 Pgno iLargest = 0; 3150 3151 if( iDestroyed==0 || iTab<iDestroyed ){ 3152 iLargest = iTab; 3153 } 3154 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3155 Pgno iIdx = pIdx->tnum; 3156 assert( pIdx->pSchema==pTab->pSchema ); 3157 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3158 iLargest = iIdx; 3159 } 3160 } 3161 if( iLargest==0 ){ 3162 return; 3163 }else{ 3164 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3165 assert( iDb>=0 && iDb<pParse->db->nDb ); 3166 destroyRootPage(pParse, iLargest, iDb); 3167 iDestroyed = iLargest; 3168 } 3169 } 3170 } 3171 3172 /* 3173 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3174 ** after a DROP INDEX or DROP TABLE command. 3175 */ 3176 static void sqlite3ClearStatTables( 3177 Parse *pParse, /* The parsing context */ 3178 int iDb, /* The database number */ 3179 const char *zType, /* "idx" or "tbl" */ 3180 const char *zName /* Name of index or table */ 3181 ){ 3182 int i; 3183 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3184 for(i=1; i<=4; i++){ 3185 char zTab[24]; 3186 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3187 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3188 sqlite3NestedParse(pParse, 3189 "DELETE FROM %Q.%s WHERE %s=%Q", 3190 zDbName, zTab, zType, zName 3191 ); 3192 } 3193 } 3194 } 3195 3196 /* 3197 ** Generate code to drop a table. 3198 */ 3199 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3200 Vdbe *v; 3201 sqlite3 *db = pParse->db; 3202 Trigger *pTrigger; 3203 Db *pDb = &db->aDb[iDb]; 3204 3205 v = sqlite3GetVdbe(pParse); 3206 assert( v!=0 ); 3207 sqlite3BeginWriteOperation(pParse, 1, iDb); 3208 3209 #ifndef SQLITE_OMIT_VIRTUALTABLE 3210 if( IsVirtual(pTab) ){ 3211 sqlite3VdbeAddOp0(v, OP_VBegin); 3212 } 3213 #endif 3214 3215 /* Drop all triggers associated with the table being dropped. Code 3216 ** is generated to remove entries from sqlite_schema and/or 3217 ** sqlite_temp_schema if required. 3218 */ 3219 pTrigger = sqlite3TriggerList(pParse, pTab); 3220 while( pTrigger ){ 3221 assert( pTrigger->pSchema==pTab->pSchema || 3222 pTrigger->pSchema==db->aDb[1].pSchema ); 3223 sqlite3DropTriggerPtr(pParse, pTrigger); 3224 pTrigger = pTrigger->pNext; 3225 } 3226 3227 #ifndef SQLITE_OMIT_AUTOINCREMENT 3228 /* Remove any entries of the sqlite_sequence table associated with 3229 ** the table being dropped. This is done before the table is dropped 3230 ** at the btree level, in case the sqlite_sequence table needs to 3231 ** move as a result of the drop (can happen in auto-vacuum mode). 3232 */ 3233 if( pTab->tabFlags & TF_Autoincrement ){ 3234 sqlite3NestedParse(pParse, 3235 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3236 pDb->zDbSName, pTab->zName 3237 ); 3238 } 3239 #endif 3240 3241 /* Drop all entries in the schema table that refer to the 3242 ** table. The program name loops through the schema table and deletes 3243 ** every row that refers to a table of the same name as the one being 3244 ** dropped. Triggers are handled separately because a trigger can be 3245 ** created in the temp database that refers to a table in another 3246 ** database. 3247 */ 3248 sqlite3NestedParse(pParse, 3249 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3250 " WHERE tbl_name=%Q and type!='trigger'", 3251 pDb->zDbSName, pTab->zName); 3252 if( !isView && !IsVirtual(pTab) ){ 3253 destroyTable(pParse, pTab); 3254 } 3255 3256 /* Remove the table entry from SQLite's internal schema and modify 3257 ** the schema cookie. 3258 */ 3259 if( IsVirtual(pTab) ){ 3260 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3261 sqlite3MayAbort(pParse); 3262 } 3263 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3264 sqlite3ChangeCookie(pParse, iDb); 3265 sqliteViewResetAll(db, iDb); 3266 } 3267 3268 /* 3269 ** Return TRUE if shadow tables should be read-only in the current 3270 ** context. 3271 */ 3272 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3273 #ifndef SQLITE_OMIT_VIRTUALTABLE 3274 if( (db->flags & SQLITE_Defensive)!=0 3275 && db->pVtabCtx==0 3276 && db->nVdbeExec==0 3277 && !sqlite3VtabInSync(db) 3278 ){ 3279 return 1; 3280 } 3281 #endif 3282 return 0; 3283 } 3284 3285 /* 3286 ** Return true if it is not allowed to drop the given table 3287 */ 3288 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3289 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3290 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3291 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3292 return 1; 3293 } 3294 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3295 return 1; 3296 } 3297 return 0; 3298 } 3299 3300 /* 3301 ** This routine is called to do the work of a DROP TABLE statement. 3302 ** pName is the name of the table to be dropped. 3303 */ 3304 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3305 Table *pTab; 3306 Vdbe *v; 3307 sqlite3 *db = pParse->db; 3308 int iDb; 3309 3310 if( db->mallocFailed ){ 3311 goto exit_drop_table; 3312 } 3313 assert( pParse->nErr==0 ); 3314 assert( pName->nSrc==1 ); 3315 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3316 if( noErr ) db->suppressErr++; 3317 assert( isView==0 || isView==LOCATE_VIEW ); 3318 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3319 if( noErr ) db->suppressErr--; 3320 3321 if( pTab==0 ){ 3322 if( noErr ){ 3323 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3324 sqlite3ForceNotReadOnly(pParse); 3325 } 3326 goto exit_drop_table; 3327 } 3328 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3329 assert( iDb>=0 && iDb<db->nDb ); 3330 3331 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3332 ** it is initialized. 3333 */ 3334 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3335 goto exit_drop_table; 3336 } 3337 #ifndef SQLITE_OMIT_AUTHORIZATION 3338 { 3339 int code; 3340 const char *zTab = SCHEMA_TABLE(iDb); 3341 const char *zDb = db->aDb[iDb].zDbSName; 3342 const char *zArg2 = 0; 3343 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3344 goto exit_drop_table; 3345 } 3346 if( isView ){ 3347 if( !OMIT_TEMPDB && iDb==1 ){ 3348 code = SQLITE_DROP_TEMP_VIEW; 3349 }else{ 3350 code = SQLITE_DROP_VIEW; 3351 } 3352 #ifndef SQLITE_OMIT_VIRTUALTABLE 3353 }else if( IsVirtual(pTab) ){ 3354 code = SQLITE_DROP_VTABLE; 3355 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3356 #endif 3357 }else{ 3358 if( !OMIT_TEMPDB && iDb==1 ){ 3359 code = SQLITE_DROP_TEMP_TABLE; 3360 }else{ 3361 code = SQLITE_DROP_TABLE; 3362 } 3363 } 3364 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3365 goto exit_drop_table; 3366 } 3367 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3368 goto exit_drop_table; 3369 } 3370 } 3371 #endif 3372 if( tableMayNotBeDropped(db, pTab) ){ 3373 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3374 goto exit_drop_table; 3375 } 3376 3377 #ifndef SQLITE_OMIT_VIEW 3378 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3379 ** on a table. 3380 */ 3381 if( isView && !IsView(pTab) ){ 3382 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3383 goto exit_drop_table; 3384 } 3385 if( !isView && IsView(pTab) ){ 3386 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3387 goto exit_drop_table; 3388 } 3389 #endif 3390 3391 /* Generate code to remove the table from the schema table 3392 ** on disk. 3393 */ 3394 v = sqlite3GetVdbe(pParse); 3395 if( v ){ 3396 sqlite3BeginWriteOperation(pParse, 1, iDb); 3397 if( !isView ){ 3398 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3399 sqlite3FkDropTable(pParse, pName, pTab); 3400 } 3401 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3402 } 3403 3404 exit_drop_table: 3405 sqlite3SrcListDelete(db, pName); 3406 } 3407 3408 /* 3409 ** This routine is called to create a new foreign key on the table 3410 ** currently under construction. pFromCol determines which columns 3411 ** in the current table point to the foreign key. If pFromCol==0 then 3412 ** connect the key to the last column inserted. pTo is the name of 3413 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3414 ** of tables in the parent pTo table. flags contains all 3415 ** information about the conflict resolution algorithms specified 3416 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3417 ** 3418 ** An FKey structure is created and added to the table currently 3419 ** under construction in the pParse->pNewTable field. 3420 ** 3421 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3422 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3423 */ 3424 void sqlite3CreateForeignKey( 3425 Parse *pParse, /* Parsing context */ 3426 ExprList *pFromCol, /* Columns in this table that point to other table */ 3427 Token *pTo, /* Name of the other table */ 3428 ExprList *pToCol, /* Columns in the other table */ 3429 int flags /* Conflict resolution algorithms. */ 3430 ){ 3431 sqlite3 *db = pParse->db; 3432 #ifndef SQLITE_OMIT_FOREIGN_KEY 3433 FKey *pFKey = 0; 3434 FKey *pNextTo; 3435 Table *p = pParse->pNewTable; 3436 int nByte; 3437 int i; 3438 int nCol; 3439 char *z; 3440 3441 assert( pTo!=0 ); 3442 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3443 if( pFromCol==0 ){ 3444 int iCol = p->nCol-1; 3445 if( NEVER(iCol<0) ) goto fk_end; 3446 if( pToCol && pToCol->nExpr!=1 ){ 3447 sqlite3ErrorMsg(pParse, "foreign key on %s" 3448 " should reference only one column of table %T", 3449 p->aCol[iCol].zCnName, pTo); 3450 goto fk_end; 3451 } 3452 nCol = 1; 3453 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3454 sqlite3ErrorMsg(pParse, 3455 "number of columns in foreign key does not match the number of " 3456 "columns in the referenced table"); 3457 goto fk_end; 3458 }else{ 3459 nCol = pFromCol->nExpr; 3460 } 3461 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3462 if( pToCol ){ 3463 for(i=0; i<pToCol->nExpr; i++){ 3464 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3465 } 3466 } 3467 pFKey = sqlite3DbMallocZero(db, nByte ); 3468 if( pFKey==0 ){ 3469 goto fk_end; 3470 } 3471 pFKey->pFrom = p; 3472 pFKey->pNextFrom = p->u.tab.pFKey; 3473 z = (char*)&pFKey->aCol[nCol]; 3474 pFKey->zTo = z; 3475 if( IN_RENAME_OBJECT ){ 3476 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3477 } 3478 memcpy(z, pTo->z, pTo->n); 3479 z[pTo->n] = 0; 3480 sqlite3Dequote(z); 3481 z += pTo->n+1; 3482 pFKey->nCol = nCol; 3483 if( pFromCol==0 ){ 3484 pFKey->aCol[0].iFrom = p->nCol-1; 3485 }else{ 3486 for(i=0; i<nCol; i++){ 3487 int j; 3488 for(j=0; j<p->nCol; j++){ 3489 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ 3490 pFKey->aCol[i].iFrom = j; 3491 break; 3492 } 3493 } 3494 if( j>=p->nCol ){ 3495 sqlite3ErrorMsg(pParse, 3496 "unknown column \"%s\" in foreign key definition", 3497 pFromCol->a[i].zEName); 3498 goto fk_end; 3499 } 3500 if( IN_RENAME_OBJECT ){ 3501 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3502 } 3503 } 3504 } 3505 if( pToCol ){ 3506 for(i=0; i<nCol; i++){ 3507 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3508 pFKey->aCol[i].zCol = z; 3509 if( IN_RENAME_OBJECT ){ 3510 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3511 } 3512 memcpy(z, pToCol->a[i].zEName, n); 3513 z[n] = 0; 3514 z += n+1; 3515 } 3516 } 3517 pFKey->isDeferred = 0; 3518 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3519 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3520 3521 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3522 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3523 pFKey->zTo, (void *)pFKey 3524 ); 3525 if( pNextTo==pFKey ){ 3526 sqlite3OomFault(db); 3527 goto fk_end; 3528 } 3529 if( pNextTo ){ 3530 assert( pNextTo->pPrevTo==0 ); 3531 pFKey->pNextTo = pNextTo; 3532 pNextTo->pPrevTo = pFKey; 3533 } 3534 3535 /* Link the foreign key to the table as the last step. 3536 */ 3537 assert( !IsVirtual(p) ); 3538 p->u.tab.pFKey = pFKey; 3539 pFKey = 0; 3540 3541 fk_end: 3542 sqlite3DbFree(db, pFKey); 3543 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3544 sqlite3ExprListDelete(db, pFromCol); 3545 sqlite3ExprListDelete(db, pToCol); 3546 } 3547 3548 /* 3549 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3550 ** clause is seen as part of a foreign key definition. The isDeferred 3551 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3552 ** The behavior of the most recently created foreign key is adjusted 3553 ** accordingly. 3554 */ 3555 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3556 #ifndef SQLITE_OMIT_FOREIGN_KEY 3557 Table *pTab; 3558 FKey *pFKey; 3559 if( (pTab = pParse->pNewTable)==0 ) return; 3560 if( IsVirtual(pTab) ) return; 3561 if( (pFKey = pTab->u.tab.pFKey)==0 ) return; 3562 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3563 pFKey->isDeferred = (u8)isDeferred; 3564 #endif 3565 } 3566 3567 /* 3568 ** Generate code that will erase and refill index *pIdx. This is 3569 ** used to initialize a newly created index or to recompute the 3570 ** content of an index in response to a REINDEX command. 3571 ** 3572 ** if memRootPage is not negative, it means that the index is newly 3573 ** created. The register specified by memRootPage contains the 3574 ** root page number of the index. If memRootPage is negative, then 3575 ** the index already exists and must be cleared before being refilled and 3576 ** the root page number of the index is taken from pIndex->tnum. 3577 */ 3578 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3579 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3580 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3581 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3582 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3583 int addr1; /* Address of top of loop */ 3584 int addr2; /* Address to jump to for next iteration */ 3585 Pgno tnum; /* Root page of index */ 3586 int iPartIdxLabel; /* Jump to this label to skip a row */ 3587 Vdbe *v; /* Generate code into this virtual machine */ 3588 KeyInfo *pKey; /* KeyInfo for index */ 3589 int regRecord; /* Register holding assembled index record */ 3590 sqlite3 *db = pParse->db; /* The database connection */ 3591 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3592 3593 #ifndef SQLITE_OMIT_AUTHORIZATION 3594 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3595 db->aDb[iDb].zDbSName ) ){ 3596 return; 3597 } 3598 #endif 3599 3600 /* Require a write-lock on the table to perform this operation */ 3601 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3602 3603 v = sqlite3GetVdbe(pParse); 3604 if( v==0 ) return; 3605 if( memRootPage>=0 ){ 3606 tnum = (Pgno)memRootPage; 3607 }else{ 3608 tnum = pIndex->tnum; 3609 } 3610 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3611 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3612 3613 /* Open the sorter cursor if we are to use one. */ 3614 iSorter = pParse->nTab++; 3615 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3616 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3617 3618 /* Open the table. Loop through all rows of the table, inserting index 3619 ** records into the sorter. */ 3620 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3621 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3622 regRecord = sqlite3GetTempReg(pParse); 3623 sqlite3MultiWrite(pParse); 3624 3625 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3626 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3627 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3628 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3629 sqlite3VdbeJumpHere(v, addr1); 3630 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3631 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3632 (char *)pKey, P4_KEYINFO); 3633 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3634 3635 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3636 if( IsUniqueIndex(pIndex) ){ 3637 int j2 = sqlite3VdbeGoto(v, 1); 3638 addr2 = sqlite3VdbeCurrentAddr(v); 3639 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3640 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3641 pIndex->nKeyCol); VdbeCoverage(v); 3642 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3643 sqlite3VdbeJumpHere(v, j2); 3644 }else{ 3645 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3646 ** abort. The exception is if one of the indexed expressions contains a 3647 ** user function that throws an exception when it is evaluated. But the 3648 ** overhead of adding a statement journal to a CREATE INDEX statement is 3649 ** very small (since most of the pages written do not contain content that 3650 ** needs to be restored if the statement aborts), so we call 3651 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3652 sqlite3MayAbort(pParse); 3653 addr2 = sqlite3VdbeCurrentAddr(v); 3654 } 3655 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3656 if( !pIndex->bAscKeyBug ){ 3657 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3658 ** faster by avoiding unnecessary seeks. But the optimization does 3659 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3660 ** with DESC primary keys, since those indexes have there keys in 3661 ** a different order from the main table. 3662 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3663 */ 3664 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3665 } 3666 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3667 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3668 sqlite3ReleaseTempReg(pParse, regRecord); 3669 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3670 sqlite3VdbeJumpHere(v, addr1); 3671 3672 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3673 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3674 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3675 } 3676 3677 /* 3678 ** Allocate heap space to hold an Index object with nCol columns. 3679 ** 3680 ** Increase the allocation size to provide an extra nExtra bytes 3681 ** of 8-byte aligned space after the Index object and return a 3682 ** pointer to this extra space in *ppExtra. 3683 */ 3684 Index *sqlite3AllocateIndexObject( 3685 sqlite3 *db, /* Database connection */ 3686 i16 nCol, /* Total number of columns in the index */ 3687 int nExtra, /* Number of bytes of extra space to alloc */ 3688 char **ppExtra /* Pointer to the "extra" space */ 3689 ){ 3690 Index *p; /* Allocated index object */ 3691 int nByte; /* Bytes of space for Index object + arrays */ 3692 3693 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3694 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3695 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3696 sizeof(i16)*nCol + /* Index.aiColumn */ 3697 sizeof(u8)*nCol); /* Index.aSortOrder */ 3698 p = sqlite3DbMallocZero(db, nByte + nExtra); 3699 if( p ){ 3700 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3701 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3702 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3703 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3704 p->aSortOrder = (u8*)pExtra; 3705 p->nColumn = nCol; 3706 p->nKeyCol = nCol - 1; 3707 *ppExtra = ((char*)p) + nByte; 3708 } 3709 return p; 3710 } 3711 3712 /* 3713 ** If expression list pList contains an expression that was parsed with 3714 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3715 ** pParse and return non-zero. Otherwise, return zero. 3716 */ 3717 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3718 if( pList ){ 3719 int i; 3720 for(i=0; i<pList->nExpr; i++){ 3721 if( pList->a[i].bNulls ){ 3722 u8 sf = pList->a[i].sortFlags; 3723 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3724 (sf==0 || sf==3) ? "FIRST" : "LAST" 3725 ); 3726 return 1; 3727 } 3728 } 3729 } 3730 return 0; 3731 } 3732 3733 /* 3734 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3735 ** and pTblList is the name of the table that is to be indexed. Both will 3736 ** be NULL for a primary key or an index that is created to satisfy a 3737 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3738 ** as the table to be indexed. pParse->pNewTable is a table that is 3739 ** currently being constructed by a CREATE TABLE statement. 3740 ** 3741 ** pList is a list of columns to be indexed. pList will be NULL if this 3742 ** is a primary key or unique-constraint on the most recent column added 3743 ** to the table currently under construction. 3744 */ 3745 void sqlite3CreateIndex( 3746 Parse *pParse, /* All information about this parse */ 3747 Token *pName1, /* First part of index name. May be NULL */ 3748 Token *pName2, /* Second part of index name. May be NULL */ 3749 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3750 ExprList *pList, /* A list of columns to be indexed */ 3751 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3752 Token *pStart, /* The CREATE token that begins this statement */ 3753 Expr *pPIWhere, /* WHERE clause for partial indices */ 3754 int sortOrder, /* Sort order of primary key when pList==NULL */ 3755 int ifNotExist, /* Omit error if index already exists */ 3756 u8 idxType /* The index type */ 3757 ){ 3758 Table *pTab = 0; /* Table to be indexed */ 3759 Index *pIndex = 0; /* The index to be created */ 3760 char *zName = 0; /* Name of the index */ 3761 int nName; /* Number of characters in zName */ 3762 int i, j; 3763 DbFixer sFix; /* For assigning database names to pTable */ 3764 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3765 sqlite3 *db = pParse->db; 3766 Db *pDb; /* The specific table containing the indexed database */ 3767 int iDb; /* Index of the database that is being written */ 3768 Token *pName = 0; /* Unqualified name of the index to create */ 3769 struct ExprList_item *pListItem; /* For looping over pList */ 3770 int nExtra = 0; /* Space allocated for zExtra[] */ 3771 int nExtraCol; /* Number of extra columns needed */ 3772 char *zExtra = 0; /* Extra space after the Index object */ 3773 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3774 3775 if( db->mallocFailed || pParse->nErr>0 ){ 3776 goto exit_create_index; 3777 } 3778 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3779 goto exit_create_index; 3780 } 3781 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3782 goto exit_create_index; 3783 } 3784 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3785 goto exit_create_index; 3786 } 3787 3788 /* 3789 ** Find the table that is to be indexed. Return early if not found. 3790 */ 3791 if( pTblName!=0 ){ 3792 3793 /* Use the two-part index name to determine the database 3794 ** to search for the table. 'Fix' the table name to this db 3795 ** before looking up the table. 3796 */ 3797 assert( pName1 && pName2 ); 3798 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3799 if( iDb<0 ) goto exit_create_index; 3800 assert( pName && pName->z ); 3801 3802 #ifndef SQLITE_OMIT_TEMPDB 3803 /* If the index name was unqualified, check if the table 3804 ** is a temp table. If so, set the database to 1. Do not do this 3805 ** if initialising a database schema. 3806 */ 3807 if( !db->init.busy ){ 3808 pTab = sqlite3SrcListLookup(pParse, pTblName); 3809 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3810 iDb = 1; 3811 } 3812 } 3813 #endif 3814 3815 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3816 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3817 /* Because the parser constructs pTblName from a single identifier, 3818 ** sqlite3FixSrcList can never fail. */ 3819 assert(0); 3820 } 3821 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3822 assert( db->mallocFailed==0 || pTab==0 ); 3823 if( pTab==0 ) goto exit_create_index; 3824 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3825 sqlite3ErrorMsg(pParse, 3826 "cannot create a TEMP index on non-TEMP table \"%s\"", 3827 pTab->zName); 3828 goto exit_create_index; 3829 } 3830 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3831 }else{ 3832 assert( pName==0 ); 3833 assert( pStart==0 ); 3834 pTab = pParse->pNewTable; 3835 if( !pTab ) goto exit_create_index; 3836 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3837 } 3838 pDb = &db->aDb[iDb]; 3839 3840 assert( pTab!=0 ); 3841 assert( pParse->nErr==0 ); 3842 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3843 && db->init.busy==0 3844 && pTblName!=0 3845 #if SQLITE_USER_AUTHENTICATION 3846 && sqlite3UserAuthTable(pTab->zName)==0 3847 #endif 3848 ){ 3849 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3850 goto exit_create_index; 3851 } 3852 #ifndef SQLITE_OMIT_VIEW 3853 if( IsView(pTab) ){ 3854 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3855 goto exit_create_index; 3856 } 3857 #endif 3858 #ifndef SQLITE_OMIT_VIRTUALTABLE 3859 if( IsVirtual(pTab) ){ 3860 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3861 goto exit_create_index; 3862 } 3863 #endif 3864 3865 /* 3866 ** Find the name of the index. Make sure there is not already another 3867 ** index or table with the same name. 3868 ** 3869 ** Exception: If we are reading the names of permanent indices from the 3870 ** sqlite_schema table (because some other process changed the schema) and 3871 ** one of the index names collides with the name of a temporary table or 3872 ** index, then we will continue to process this index. 3873 ** 3874 ** If pName==0 it means that we are 3875 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3876 ** own name. 3877 */ 3878 if( pName ){ 3879 zName = sqlite3NameFromToken(db, pName); 3880 if( zName==0 ) goto exit_create_index; 3881 assert( pName->z!=0 ); 3882 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3883 goto exit_create_index; 3884 } 3885 if( !IN_RENAME_OBJECT ){ 3886 if( !db->init.busy ){ 3887 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3888 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3889 goto exit_create_index; 3890 } 3891 } 3892 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3893 if( !ifNotExist ){ 3894 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3895 }else{ 3896 assert( !db->init.busy ); 3897 sqlite3CodeVerifySchema(pParse, iDb); 3898 sqlite3ForceNotReadOnly(pParse); 3899 } 3900 goto exit_create_index; 3901 } 3902 } 3903 }else{ 3904 int n; 3905 Index *pLoop; 3906 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3907 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3908 if( zName==0 ){ 3909 goto exit_create_index; 3910 } 3911 3912 /* Automatic index names generated from within sqlite3_declare_vtab() 3913 ** must have names that are distinct from normal automatic index names. 3914 ** The following statement converts "sqlite3_autoindex..." into 3915 ** "sqlite3_butoindex..." in order to make the names distinct. 3916 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3917 if( IN_SPECIAL_PARSE ) zName[7]++; 3918 } 3919 3920 /* Check for authorization to create an index. 3921 */ 3922 #ifndef SQLITE_OMIT_AUTHORIZATION 3923 if( !IN_RENAME_OBJECT ){ 3924 const char *zDb = pDb->zDbSName; 3925 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3926 goto exit_create_index; 3927 } 3928 i = SQLITE_CREATE_INDEX; 3929 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3930 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3931 goto exit_create_index; 3932 } 3933 } 3934 #endif 3935 3936 /* If pList==0, it means this routine was called to make a primary 3937 ** key out of the last column added to the table under construction. 3938 ** So create a fake list to simulate this. 3939 */ 3940 if( pList==0 ){ 3941 Token prevCol; 3942 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3943 pCol->colFlags |= COLFLAG_UNIQUE; 3944 sqlite3TokenInit(&prevCol, pCol->zCnName); 3945 pList = sqlite3ExprListAppend(pParse, 0, 3946 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3947 if( pList==0 ) goto exit_create_index; 3948 assert( pList->nExpr==1 ); 3949 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3950 }else{ 3951 sqlite3ExprListCheckLength(pParse, pList, "index"); 3952 if( pParse->nErr ) goto exit_create_index; 3953 } 3954 3955 /* Figure out how many bytes of space are required to store explicitly 3956 ** specified collation sequence names. 3957 */ 3958 for(i=0; i<pList->nExpr; i++){ 3959 Expr *pExpr = pList->a[i].pExpr; 3960 assert( pExpr!=0 ); 3961 if( pExpr->op==TK_COLLATE ){ 3962 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3963 } 3964 } 3965 3966 /* 3967 ** Allocate the index structure. 3968 */ 3969 nName = sqlite3Strlen30(zName); 3970 nExtraCol = pPk ? pPk->nKeyCol : 1; 3971 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3972 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3973 nName + nExtra + 1, &zExtra); 3974 if( db->mallocFailed ){ 3975 goto exit_create_index; 3976 } 3977 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3978 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3979 pIndex->zName = zExtra; 3980 zExtra += nName + 1; 3981 memcpy(pIndex->zName, zName, nName+1); 3982 pIndex->pTable = pTab; 3983 pIndex->onError = (u8)onError; 3984 pIndex->uniqNotNull = onError!=OE_None; 3985 pIndex->idxType = idxType; 3986 pIndex->pSchema = db->aDb[iDb].pSchema; 3987 pIndex->nKeyCol = pList->nExpr; 3988 if( pPIWhere ){ 3989 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3990 pIndex->pPartIdxWhere = pPIWhere; 3991 pPIWhere = 0; 3992 } 3993 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3994 3995 /* Check to see if we should honor DESC requests on index columns 3996 */ 3997 if( pDb->pSchema->file_format>=4 ){ 3998 sortOrderMask = -1; /* Honor DESC */ 3999 }else{ 4000 sortOrderMask = 0; /* Ignore DESC */ 4001 } 4002 4003 /* Analyze the list of expressions that form the terms of the index and 4004 ** report any errors. In the common case where the expression is exactly 4005 ** a table column, store that column in aiColumn[]. For general expressions, 4006 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 4007 ** 4008 ** TODO: Issue a warning if two or more columns of the index are identical. 4009 ** TODO: Issue a warning if the table primary key is used as part of the 4010 ** index key. 4011 */ 4012 pListItem = pList->a; 4013 if( IN_RENAME_OBJECT ){ 4014 pIndex->aColExpr = pList; 4015 pList = 0; 4016 } 4017 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 4018 Expr *pCExpr; /* The i-th index expression */ 4019 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 4020 const char *zColl; /* Collation sequence name */ 4021 4022 sqlite3StringToId(pListItem->pExpr); 4023 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 4024 if( pParse->nErr ) goto exit_create_index; 4025 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 4026 if( pCExpr->op!=TK_COLUMN ){ 4027 if( pTab==pParse->pNewTable ){ 4028 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 4029 "UNIQUE constraints"); 4030 goto exit_create_index; 4031 } 4032 if( pIndex->aColExpr==0 ){ 4033 pIndex->aColExpr = pList; 4034 pList = 0; 4035 } 4036 j = XN_EXPR; 4037 pIndex->aiColumn[i] = XN_EXPR; 4038 pIndex->uniqNotNull = 0; 4039 }else{ 4040 j = pCExpr->iColumn; 4041 assert( j<=0x7fff ); 4042 if( j<0 ){ 4043 j = pTab->iPKey; 4044 }else{ 4045 if( pTab->aCol[j].notNull==0 ){ 4046 pIndex->uniqNotNull = 0; 4047 } 4048 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 4049 pIndex->bHasVCol = 1; 4050 } 4051 } 4052 pIndex->aiColumn[i] = (i16)j; 4053 } 4054 zColl = 0; 4055 if( pListItem->pExpr->op==TK_COLLATE ){ 4056 int nColl; 4057 zColl = pListItem->pExpr->u.zToken; 4058 nColl = sqlite3Strlen30(zColl) + 1; 4059 assert( nExtra>=nColl ); 4060 memcpy(zExtra, zColl, nColl); 4061 zColl = zExtra; 4062 zExtra += nColl; 4063 nExtra -= nColl; 4064 }else if( j>=0 ){ 4065 zColl = pTab->aCol[j].zCnColl; 4066 } 4067 if( !zColl ) zColl = sqlite3StrBINARY; 4068 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 4069 goto exit_create_index; 4070 } 4071 pIndex->azColl[i] = zColl; 4072 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 4073 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 4074 } 4075 4076 /* Append the table key to the end of the index. For WITHOUT ROWID 4077 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 4078 ** normal tables (when pPk==0) this will be the rowid. 4079 */ 4080 if( pPk ){ 4081 for(j=0; j<pPk->nKeyCol; j++){ 4082 int x = pPk->aiColumn[j]; 4083 assert( x>=0 ); 4084 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 4085 pIndex->nColumn--; 4086 }else{ 4087 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 4088 pIndex->aiColumn[i] = x; 4089 pIndex->azColl[i] = pPk->azColl[j]; 4090 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 4091 i++; 4092 } 4093 } 4094 assert( i==pIndex->nColumn ); 4095 }else{ 4096 pIndex->aiColumn[i] = XN_ROWID; 4097 pIndex->azColl[i] = sqlite3StrBINARY; 4098 } 4099 sqlite3DefaultRowEst(pIndex); 4100 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4101 4102 /* If this index contains every column of its table, then mark 4103 ** it as a covering index */ 4104 assert( HasRowid(pTab) 4105 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4106 recomputeColumnsNotIndexed(pIndex); 4107 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4108 pIndex->isCovering = 1; 4109 for(j=0; j<pTab->nCol; j++){ 4110 if( j==pTab->iPKey ) continue; 4111 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4112 pIndex->isCovering = 0; 4113 break; 4114 } 4115 } 4116 4117 if( pTab==pParse->pNewTable ){ 4118 /* This routine has been called to create an automatic index as a 4119 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4120 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4121 ** i.e. one of: 4122 ** 4123 ** CREATE TABLE t(x PRIMARY KEY, y); 4124 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4125 ** 4126 ** Either way, check to see if the table already has such an index. If 4127 ** so, don't bother creating this one. This only applies to 4128 ** automatically created indices. Users can do as they wish with 4129 ** explicit indices. 4130 ** 4131 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4132 ** (and thus suppressing the second one) even if they have different 4133 ** sort orders. 4134 ** 4135 ** If there are different collating sequences or if the columns of 4136 ** the constraint occur in different orders, then the constraints are 4137 ** considered distinct and both result in separate indices. 4138 */ 4139 Index *pIdx; 4140 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4141 int k; 4142 assert( IsUniqueIndex(pIdx) ); 4143 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4144 assert( IsUniqueIndex(pIndex) ); 4145 4146 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4147 for(k=0; k<pIdx->nKeyCol; k++){ 4148 const char *z1; 4149 const char *z2; 4150 assert( pIdx->aiColumn[k]>=0 ); 4151 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4152 z1 = pIdx->azColl[k]; 4153 z2 = pIndex->azColl[k]; 4154 if( sqlite3StrICmp(z1, z2) ) break; 4155 } 4156 if( k==pIdx->nKeyCol ){ 4157 if( pIdx->onError!=pIndex->onError ){ 4158 /* This constraint creates the same index as a previous 4159 ** constraint specified somewhere in the CREATE TABLE statement. 4160 ** However the ON CONFLICT clauses are different. If both this 4161 ** constraint and the previous equivalent constraint have explicit 4162 ** ON CONFLICT clauses this is an error. Otherwise, use the 4163 ** explicitly specified behavior for the index. 4164 */ 4165 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4166 sqlite3ErrorMsg(pParse, 4167 "conflicting ON CONFLICT clauses specified", 0); 4168 } 4169 if( pIdx->onError==OE_Default ){ 4170 pIdx->onError = pIndex->onError; 4171 } 4172 } 4173 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4174 if( IN_RENAME_OBJECT ){ 4175 pIndex->pNext = pParse->pNewIndex; 4176 pParse->pNewIndex = pIndex; 4177 pIndex = 0; 4178 } 4179 goto exit_create_index; 4180 } 4181 } 4182 } 4183 4184 if( !IN_RENAME_OBJECT ){ 4185 4186 /* Link the new Index structure to its table and to the other 4187 ** in-memory database structures. 4188 */ 4189 assert( pParse->nErr==0 ); 4190 if( db->init.busy ){ 4191 Index *p; 4192 assert( !IN_SPECIAL_PARSE ); 4193 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4194 if( pTblName!=0 ){ 4195 pIndex->tnum = db->init.newTnum; 4196 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4197 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4198 pParse->rc = SQLITE_CORRUPT_BKPT; 4199 goto exit_create_index; 4200 } 4201 } 4202 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4203 pIndex->zName, pIndex); 4204 if( p ){ 4205 assert( p==pIndex ); /* Malloc must have failed */ 4206 sqlite3OomFault(db); 4207 goto exit_create_index; 4208 } 4209 db->mDbFlags |= DBFLAG_SchemaChange; 4210 } 4211 4212 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4213 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4214 ** emit code to allocate the index rootpage on disk and make an entry for 4215 ** the index in the sqlite_schema table and populate the index with 4216 ** content. But, do not do this if we are simply reading the sqlite_schema 4217 ** table to parse the schema, or if this index is the PRIMARY KEY index 4218 ** of a WITHOUT ROWID table. 4219 ** 4220 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4221 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4222 ** has just been created, it contains no data and the index initialization 4223 ** step can be skipped. 4224 */ 4225 else if( HasRowid(pTab) || pTblName!=0 ){ 4226 Vdbe *v; 4227 char *zStmt; 4228 int iMem = ++pParse->nMem; 4229 4230 v = sqlite3GetVdbe(pParse); 4231 if( v==0 ) goto exit_create_index; 4232 4233 sqlite3BeginWriteOperation(pParse, 1, iDb); 4234 4235 /* Create the rootpage for the index using CreateIndex. But before 4236 ** doing so, code a Noop instruction and store its address in 4237 ** Index.tnum. This is required in case this index is actually a 4238 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4239 ** that case the convertToWithoutRowidTable() routine will replace 4240 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4241 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4242 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4243 4244 /* Gather the complete text of the CREATE INDEX statement into 4245 ** the zStmt variable 4246 */ 4247 assert( pName!=0 || pStart==0 ); 4248 if( pStart ){ 4249 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4250 if( pName->z[n-1]==';' ) n--; 4251 /* A named index with an explicit CREATE INDEX statement */ 4252 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4253 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4254 }else{ 4255 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4256 /* zStmt = sqlite3MPrintf(""); */ 4257 zStmt = 0; 4258 } 4259 4260 /* Add an entry in sqlite_schema for this index 4261 */ 4262 sqlite3NestedParse(pParse, 4263 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4264 db->aDb[iDb].zDbSName, 4265 pIndex->zName, 4266 pTab->zName, 4267 iMem, 4268 zStmt 4269 ); 4270 sqlite3DbFree(db, zStmt); 4271 4272 /* Fill the index with data and reparse the schema. Code an OP_Expire 4273 ** to invalidate all pre-compiled statements. 4274 */ 4275 if( pTblName ){ 4276 sqlite3RefillIndex(pParse, pIndex, iMem); 4277 sqlite3ChangeCookie(pParse, iDb); 4278 sqlite3VdbeAddParseSchemaOp(v, iDb, 4279 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4280 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4281 } 4282 4283 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4284 } 4285 } 4286 if( db->init.busy || pTblName==0 ){ 4287 pIndex->pNext = pTab->pIndex; 4288 pTab->pIndex = pIndex; 4289 pIndex = 0; 4290 } 4291 else if( IN_RENAME_OBJECT ){ 4292 assert( pParse->pNewIndex==0 ); 4293 pParse->pNewIndex = pIndex; 4294 pIndex = 0; 4295 } 4296 4297 /* Clean up before exiting */ 4298 exit_create_index: 4299 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4300 if( pTab ){ 4301 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4302 ** The list was already ordered when this routine was entered, so at this 4303 ** point at most a single index (the newly added index) will be out of 4304 ** order. So we have to reorder at most one index. */ 4305 Index **ppFrom = &pTab->pIndex; 4306 Index *pThis; 4307 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4308 Index *pNext; 4309 if( pThis->onError!=OE_Replace ) continue; 4310 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4311 *ppFrom = pNext; 4312 pThis->pNext = pNext->pNext; 4313 pNext->pNext = pThis; 4314 ppFrom = &pNext->pNext; 4315 } 4316 break; 4317 } 4318 #ifdef SQLITE_DEBUG 4319 /* Verify that all REPLACE indexes really are now at the end 4320 ** of the index list. In other words, no other index type ever 4321 ** comes after a REPLACE index on the list. */ 4322 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4323 assert( pThis->onError!=OE_Replace 4324 || pThis->pNext==0 4325 || pThis->pNext->onError==OE_Replace ); 4326 } 4327 #endif 4328 } 4329 sqlite3ExprDelete(db, pPIWhere); 4330 sqlite3ExprListDelete(db, pList); 4331 sqlite3SrcListDelete(db, pTblName); 4332 sqlite3DbFree(db, zName); 4333 } 4334 4335 /* 4336 ** Fill the Index.aiRowEst[] array with default information - information 4337 ** to be used when we have not run the ANALYZE command. 4338 ** 4339 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4340 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4341 ** number of rows in the table that match any particular value of the 4342 ** first column of the index. aiRowEst[2] is an estimate of the number 4343 ** of rows that match any particular combination of the first 2 columns 4344 ** of the index. And so forth. It must always be the case that 4345 * 4346 ** aiRowEst[N]<=aiRowEst[N-1] 4347 ** aiRowEst[N]>=1 4348 ** 4349 ** Apart from that, we have little to go on besides intuition as to 4350 ** how aiRowEst[] should be initialized. The numbers generated here 4351 ** are based on typical values found in actual indices. 4352 */ 4353 void sqlite3DefaultRowEst(Index *pIdx){ 4354 /* 10, 9, 8, 7, 6 */ 4355 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4356 LogEst *a = pIdx->aiRowLogEst; 4357 LogEst x; 4358 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4359 int i; 4360 4361 /* Indexes with default row estimates should not have stat1 data */ 4362 assert( !pIdx->hasStat1 ); 4363 4364 /* Set the first entry (number of rows in the index) to the estimated 4365 ** number of rows in the table, or half the number of rows in the table 4366 ** for a partial index. 4367 ** 4368 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4369 ** table but other parts we are having to guess at, then do not let the 4370 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4371 ** Failure to do this can cause the indexes for which we do not have 4372 ** stat1 data to be ignored by the query planner. 4373 */ 4374 x = pIdx->pTable->nRowLogEst; 4375 assert( 99==sqlite3LogEst(1000) ); 4376 if( x<99 ){ 4377 pIdx->pTable->nRowLogEst = x = 99; 4378 } 4379 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4380 a[0] = x; 4381 4382 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4383 ** 6 and each subsequent value (if any) is 5. */ 4384 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4385 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4386 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4387 } 4388 4389 assert( 0==sqlite3LogEst(1) ); 4390 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4391 } 4392 4393 /* 4394 ** This routine will drop an existing named index. This routine 4395 ** implements the DROP INDEX statement. 4396 */ 4397 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4398 Index *pIndex; 4399 Vdbe *v; 4400 sqlite3 *db = pParse->db; 4401 int iDb; 4402 4403 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4404 if( db->mallocFailed ){ 4405 goto exit_drop_index; 4406 } 4407 assert( pName->nSrc==1 ); 4408 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4409 goto exit_drop_index; 4410 } 4411 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4412 if( pIndex==0 ){ 4413 if( !ifExists ){ 4414 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4415 }else{ 4416 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4417 sqlite3ForceNotReadOnly(pParse); 4418 } 4419 pParse->checkSchema = 1; 4420 goto exit_drop_index; 4421 } 4422 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4423 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4424 "or PRIMARY KEY constraint cannot be dropped", 0); 4425 goto exit_drop_index; 4426 } 4427 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4428 #ifndef SQLITE_OMIT_AUTHORIZATION 4429 { 4430 int code = SQLITE_DROP_INDEX; 4431 Table *pTab = pIndex->pTable; 4432 const char *zDb = db->aDb[iDb].zDbSName; 4433 const char *zTab = SCHEMA_TABLE(iDb); 4434 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4435 goto exit_drop_index; 4436 } 4437 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 4438 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4439 goto exit_drop_index; 4440 } 4441 } 4442 #endif 4443 4444 /* Generate code to remove the index and from the schema table */ 4445 v = sqlite3GetVdbe(pParse); 4446 if( v ){ 4447 sqlite3BeginWriteOperation(pParse, 1, iDb); 4448 sqlite3NestedParse(pParse, 4449 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4450 db->aDb[iDb].zDbSName, pIndex->zName 4451 ); 4452 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4453 sqlite3ChangeCookie(pParse, iDb); 4454 destroyRootPage(pParse, pIndex->tnum, iDb); 4455 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4456 } 4457 4458 exit_drop_index: 4459 sqlite3SrcListDelete(db, pName); 4460 } 4461 4462 /* 4463 ** pArray is a pointer to an array of objects. Each object in the 4464 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4465 ** to extend the array so that there is space for a new object at the end. 4466 ** 4467 ** When this function is called, *pnEntry contains the current size of 4468 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4469 ** in total). 4470 ** 4471 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4472 ** space allocated for the new object is zeroed, *pnEntry updated to 4473 ** reflect the new size of the array and a pointer to the new allocation 4474 ** returned. *pIdx is set to the index of the new array entry in this case. 4475 ** 4476 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4477 ** unchanged and a copy of pArray returned. 4478 */ 4479 void *sqlite3ArrayAllocate( 4480 sqlite3 *db, /* Connection to notify of malloc failures */ 4481 void *pArray, /* Array of objects. Might be reallocated */ 4482 int szEntry, /* Size of each object in the array */ 4483 int *pnEntry, /* Number of objects currently in use */ 4484 int *pIdx /* Write the index of a new slot here */ 4485 ){ 4486 char *z; 4487 sqlite3_int64 n = *pIdx = *pnEntry; 4488 if( (n & (n-1))==0 ){ 4489 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4490 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4491 if( pNew==0 ){ 4492 *pIdx = -1; 4493 return pArray; 4494 } 4495 pArray = pNew; 4496 } 4497 z = (char*)pArray; 4498 memset(&z[n * szEntry], 0, szEntry); 4499 ++*pnEntry; 4500 return pArray; 4501 } 4502 4503 /* 4504 ** Append a new element to the given IdList. Create a new IdList if 4505 ** need be. 4506 ** 4507 ** A new IdList is returned, or NULL if malloc() fails. 4508 */ 4509 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4510 sqlite3 *db = pParse->db; 4511 int i; 4512 if( pList==0 ){ 4513 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4514 if( pList==0 ) return 0; 4515 } 4516 pList->a = sqlite3ArrayAllocate( 4517 db, 4518 pList->a, 4519 sizeof(pList->a[0]), 4520 &pList->nId, 4521 &i 4522 ); 4523 if( i<0 ){ 4524 sqlite3IdListDelete(db, pList); 4525 return 0; 4526 } 4527 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4528 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4529 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4530 } 4531 return pList; 4532 } 4533 4534 /* 4535 ** Delete an IdList. 4536 */ 4537 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4538 int i; 4539 if( pList==0 ) return; 4540 for(i=0; i<pList->nId; i++){ 4541 sqlite3DbFree(db, pList->a[i].zName); 4542 } 4543 sqlite3DbFree(db, pList->a); 4544 sqlite3DbFreeNN(db, pList); 4545 } 4546 4547 /* 4548 ** Return the index in pList of the identifier named zId. Return -1 4549 ** if not found. 4550 */ 4551 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4552 int i; 4553 if( pList==0 ) return -1; 4554 for(i=0; i<pList->nId; i++){ 4555 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4556 } 4557 return -1; 4558 } 4559 4560 /* 4561 ** Maximum size of a SrcList object. 4562 ** The SrcList object is used to represent the FROM clause of a 4563 ** SELECT statement, and the query planner cannot deal with more 4564 ** than 64 tables in a join. So any value larger than 64 here 4565 ** is sufficient for most uses. Smaller values, like say 10, are 4566 ** appropriate for small and memory-limited applications. 4567 */ 4568 #ifndef SQLITE_MAX_SRCLIST 4569 # define SQLITE_MAX_SRCLIST 200 4570 #endif 4571 4572 /* 4573 ** Expand the space allocated for the given SrcList object by 4574 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4575 ** New slots are zeroed. 4576 ** 4577 ** For example, suppose a SrcList initially contains two entries: A,B. 4578 ** To append 3 new entries onto the end, do this: 4579 ** 4580 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4581 ** 4582 ** After the call above it would contain: A, B, nil, nil, nil. 4583 ** If the iStart argument had been 1 instead of 2, then the result 4584 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4585 ** the iStart value would be 0. The result then would 4586 ** be: nil, nil, nil, A, B. 4587 ** 4588 ** If a memory allocation fails or the SrcList becomes too large, leave 4589 ** the original SrcList unchanged, return NULL, and leave an error message 4590 ** in pParse. 4591 */ 4592 SrcList *sqlite3SrcListEnlarge( 4593 Parse *pParse, /* Parsing context into which errors are reported */ 4594 SrcList *pSrc, /* The SrcList to be enlarged */ 4595 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4596 int iStart /* Index in pSrc->a[] of first new slot */ 4597 ){ 4598 int i; 4599 4600 /* Sanity checking on calling parameters */ 4601 assert( iStart>=0 ); 4602 assert( nExtra>=1 ); 4603 assert( pSrc!=0 ); 4604 assert( iStart<=pSrc->nSrc ); 4605 4606 /* Allocate additional space if needed */ 4607 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4608 SrcList *pNew; 4609 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4610 sqlite3 *db = pParse->db; 4611 4612 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4613 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4614 SQLITE_MAX_SRCLIST); 4615 return 0; 4616 } 4617 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4618 pNew = sqlite3DbRealloc(db, pSrc, 4619 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4620 if( pNew==0 ){ 4621 assert( db->mallocFailed ); 4622 return 0; 4623 } 4624 pSrc = pNew; 4625 pSrc->nAlloc = nAlloc; 4626 } 4627 4628 /* Move existing slots that come after the newly inserted slots 4629 ** out of the way */ 4630 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4631 pSrc->a[i+nExtra] = pSrc->a[i]; 4632 } 4633 pSrc->nSrc += nExtra; 4634 4635 /* Zero the newly allocated slots */ 4636 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4637 for(i=iStart; i<iStart+nExtra; i++){ 4638 pSrc->a[i].iCursor = -1; 4639 } 4640 4641 /* Return a pointer to the enlarged SrcList */ 4642 return pSrc; 4643 } 4644 4645 4646 /* 4647 ** Append a new table name to the given SrcList. Create a new SrcList if 4648 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4649 ** 4650 ** A SrcList is returned, or NULL if there is an OOM error or if the 4651 ** SrcList grows to large. The returned 4652 ** SrcList might be the same as the SrcList that was input or it might be 4653 ** a new one. If an OOM error does occurs, then the prior value of pList 4654 ** that is input to this routine is automatically freed. 4655 ** 4656 ** If pDatabase is not null, it means that the table has an optional 4657 ** database name prefix. Like this: "database.table". The pDatabase 4658 ** points to the table name and the pTable points to the database name. 4659 ** The SrcList.a[].zName field is filled with the table name which might 4660 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4661 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4662 ** or with NULL if no database is specified. 4663 ** 4664 ** In other words, if call like this: 4665 ** 4666 ** sqlite3SrcListAppend(D,A,B,0); 4667 ** 4668 ** Then B is a table name and the database name is unspecified. If called 4669 ** like this: 4670 ** 4671 ** sqlite3SrcListAppend(D,A,B,C); 4672 ** 4673 ** Then C is the table name and B is the database name. If C is defined 4674 ** then so is B. In other words, we never have a case where: 4675 ** 4676 ** sqlite3SrcListAppend(D,A,0,C); 4677 ** 4678 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4679 ** before being added to the SrcList. 4680 */ 4681 SrcList *sqlite3SrcListAppend( 4682 Parse *pParse, /* Parsing context, in which errors are reported */ 4683 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4684 Token *pTable, /* Table to append */ 4685 Token *pDatabase /* Database of the table */ 4686 ){ 4687 SrcItem *pItem; 4688 sqlite3 *db; 4689 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4690 assert( pParse!=0 ); 4691 assert( pParse->db!=0 ); 4692 db = pParse->db; 4693 if( pList==0 ){ 4694 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4695 if( pList==0 ) return 0; 4696 pList->nAlloc = 1; 4697 pList->nSrc = 1; 4698 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4699 pList->a[0].iCursor = -1; 4700 }else{ 4701 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4702 if( pNew==0 ){ 4703 sqlite3SrcListDelete(db, pList); 4704 return 0; 4705 }else{ 4706 pList = pNew; 4707 } 4708 } 4709 pItem = &pList->a[pList->nSrc-1]; 4710 if( pDatabase && pDatabase->z==0 ){ 4711 pDatabase = 0; 4712 } 4713 if( pDatabase ){ 4714 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4715 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4716 }else{ 4717 pItem->zName = sqlite3NameFromToken(db, pTable); 4718 pItem->zDatabase = 0; 4719 } 4720 return pList; 4721 } 4722 4723 /* 4724 ** Assign VdbeCursor index numbers to all tables in a SrcList 4725 */ 4726 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4727 int i; 4728 SrcItem *pItem; 4729 assert( pList || pParse->db->mallocFailed ); 4730 if( ALWAYS(pList) ){ 4731 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4732 if( pItem->iCursor>=0 ) continue; 4733 pItem->iCursor = pParse->nTab++; 4734 if( pItem->pSelect ){ 4735 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4736 } 4737 } 4738 } 4739 } 4740 4741 /* 4742 ** Delete an entire SrcList including all its substructure. 4743 */ 4744 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4745 int i; 4746 SrcItem *pItem; 4747 if( pList==0 ) return; 4748 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4749 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4750 sqlite3DbFree(db, pItem->zName); 4751 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4752 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4753 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4754 sqlite3DeleteTable(db, pItem->pTab); 4755 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4756 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4757 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4758 } 4759 sqlite3DbFreeNN(db, pList); 4760 } 4761 4762 /* 4763 ** This routine is called by the parser to add a new term to the 4764 ** end of a growing FROM clause. The "p" parameter is the part of 4765 ** the FROM clause that has already been constructed. "p" is NULL 4766 ** if this is the first term of the FROM clause. pTable and pDatabase 4767 ** are the name of the table and database named in the FROM clause term. 4768 ** pDatabase is NULL if the database name qualifier is missing - the 4769 ** usual case. If the term has an alias, then pAlias points to the 4770 ** alias token. If the term is a subquery, then pSubquery is the 4771 ** SELECT statement that the subquery encodes. The pTable and 4772 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4773 ** parameters are the content of the ON and USING clauses. 4774 ** 4775 ** Return a new SrcList which encodes is the FROM with the new 4776 ** term added. 4777 */ 4778 SrcList *sqlite3SrcListAppendFromTerm( 4779 Parse *pParse, /* Parsing context */ 4780 SrcList *p, /* The left part of the FROM clause already seen */ 4781 Token *pTable, /* Name of the table to add to the FROM clause */ 4782 Token *pDatabase, /* Name of the database containing pTable */ 4783 Token *pAlias, /* The right-hand side of the AS subexpression */ 4784 Select *pSubquery, /* A subquery used in place of a table name */ 4785 Expr *pOn, /* The ON clause of a join */ 4786 IdList *pUsing /* The USING clause of a join */ 4787 ){ 4788 SrcItem *pItem; 4789 sqlite3 *db = pParse->db; 4790 if( !p && (pOn || pUsing) ){ 4791 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4792 (pOn ? "ON" : "USING") 4793 ); 4794 goto append_from_error; 4795 } 4796 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4797 if( p==0 ){ 4798 goto append_from_error; 4799 } 4800 assert( p->nSrc>0 ); 4801 pItem = &p->a[p->nSrc-1]; 4802 assert( (pTable==0)==(pDatabase==0) ); 4803 assert( pItem->zName==0 || pDatabase!=0 ); 4804 if( IN_RENAME_OBJECT && pItem->zName ){ 4805 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4806 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4807 } 4808 assert( pAlias!=0 ); 4809 if( pAlias->n ){ 4810 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4811 } 4812 pItem->pSelect = pSubquery; 4813 pItem->pOn = pOn; 4814 pItem->pUsing = pUsing; 4815 return p; 4816 4817 append_from_error: 4818 assert( p==0 ); 4819 sqlite3ExprDelete(db, pOn); 4820 sqlite3IdListDelete(db, pUsing); 4821 sqlite3SelectDelete(db, pSubquery); 4822 return 0; 4823 } 4824 4825 /* 4826 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4827 ** element of the source-list passed as the second argument. 4828 */ 4829 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4830 assert( pIndexedBy!=0 ); 4831 if( p && pIndexedBy->n>0 ){ 4832 SrcItem *pItem; 4833 assert( p->nSrc>0 ); 4834 pItem = &p->a[p->nSrc-1]; 4835 assert( pItem->fg.notIndexed==0 ); 4836 assert( pItem->fg.isIndexedBy==0 ); 4837 assert( pItem->fg.isTabFunc==0 ); 4838 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4839 /* A "NOT INDEXED" clause was supplied. See parse.y 4840 ** construct "indexed_opt" for details. */ 4841 pItem->fg.notIndexed = 1; 4842 }else{ 4843 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4844 pItem->fg.isIndexedBy = 1; 4845 } 4846 } 4847 } 4848 4849 /* 4850 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4851 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4852 ** are deleted by this function. 4853 */ 4854 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4855 assert( p1 && p1->nSrc==1 ); 4856 if( p2 ){ 4857 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4858 if( pNew==0 ){ 4859 sqlite3SrcListDelete(pParse->db, p2); 4860 }else{ 4861 p1 = pNew; 4862 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4863 sqlite3DbFree(pParse->db, p2); 4864 } 4865 } 4866 return p1; 4867 } 4868 4869 /* 4870 ** Add the list of function arguments to the SrcList entry for a 4871 ** table-valued-function. 4872 */ 4873 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4874 if( p ){ 4875 SrcItem *pItem = &p->a[p->nSrc-1]; 4876 assert( pItem->fg.notIndexed==0 ); 4877 assert( pItem->fg.isIndexedBy==0 ); 4878 assert( pItem->fg.isTabFunc==0 ); 4879 pItem->u1.pFuncArg = pList; 4880 pItem->fg.isTabFunc = 1; 4881 }else{ 4882 sqlite3ExprListDelete(pParse->db, pList); 4883 } 4884 } 4885 4886 /* 4887 ** When building up a FROM clause in the parser, the join operator 4888 ** is initially attached to the left operand. But the code generator 4889 ** expects the join operator to be on the right operand. This routine 4890 ** Shifts all join operators from left to right for an entire FROM 4891 ** clause. 4892 ** 4893 ** Example: Suppose the join is like this: 4894 ** 4895 ** A natural cross join B 4896 ** 4897 ** The operator is "natural cross join". The A and B operands are stored 4898 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4899 ** operator with A. This routine shifts that operator over to B. 4900 */ 4901 void sqlite3SrcListShiftJoinType(SrcList *p){ 4902 if( p ){ 4903 int i; 4904 for(i=p->nSrc-1; i>0; i--){ 4905 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4906 } 4907 p->a[0].fg.jointype = 0; 4908 } 4909 } 4910 4911 /* 4912 ** Generate VDBE code for a BEGIN statement. 4913 */ 4914 void sqlite3BeginTransaction(Parse *pParse, int type){ 4915 sqlite3 *db; 4916 Vdbe *v; 4917 int i; 4918 4919 assert( pParse!=0 ); 4920 db = pParse->db; 4921 assert( db!=0 ); 4922 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4923 return; 4924 } 4925 v = sqlite3GetVdbe(pParse); 4926 if( !v ) return; 4927 if( type!=TK_DEFERRED ){ 4928 for(i=0; i<db->nDb; i++){ 4929 int eTxnType; 4930 Btree *pBt = db->aDb[i].pBt; 4931 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4932 eTxnType = 0; /* Read txn */ 4933 }else if( type==TK_EXCLUSIVE ){ 4934 eTxnType = 2; /* Exclusive txn */ 4935 }else{ 4936 eTxnType = 1; /* Write txn */ 4937 } 4938 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4939 sqlite3VdbeUsesBtree(v, i); 4940 } 4941 } 4942 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4943 } 4944 4945 /* 4946 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4947 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4948 ** code is generated for a COMMIT. 4949 */ 4950 void sqlite3EndTransaction(Parse *pParse, int eType){ 4951 Vdbe *v; 4952 int isRollback; 4953 4954 assert( pParse!=0 ); 4955 assert( pParse->db!=0 ); 4956 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4957 isRollback = eType==TK_ROLLBACK; 4958 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4959 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4960 return; 4961 } 4962 v = sqlite3GetVdbe(pParse); 4963 if( v ){ 4964 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4965 } 4966 } 4967 4968 /* 4969 ** This function is called by the parser when it parses a command to create, 4970 ** release or rollback an SQL savepoint. 4971 */ 4972 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4973 char *zName = sqlite3NameFromToken(pParse->db, pName); 4974 if( zName ){ 4975 Vdbe *v = sqlite3GetVdbe(pParse); 4976 #ifndef SQLITE_OMIT_AUTHORIZATION 4977 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4978 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4979 #endif 4980 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4981 sqlite3DbFree(pParse->db, zName); 4982 return; 4983 } 4984 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4985 } 4986 } 4987 4988 /* 4989 ** Make sure the TEMP database is open and available for use. Return 4990 ** the number of errors. Leave any error messages in the pParse structure. 4991 */ 4992 int sqlite3OpenTempDatabase(Parse *pParse){ 4993 sqlite3 *db = pParse->db; 4994 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4995 int rc; 4996 Btree *pBt; 4997 static const int flags = 4998 SQLITE_OPEN_READWRITE | 4999 SQLITE_OPEN_CREATE | 5000 SQLITE_OPEN_EXCLUSIVE | 5001 SQLITE_OPEN_DELETEONCLOSE | 5002 SQLITE_OPEN_TEMP_DB; 5003 5004 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 5005 if( rc!=SQLITE_OK ){ 5006 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 5007 "file for storing temporary tables"); 5008 pParse->rc = rc; 5009 return 1; 5010 } 5011 db->aDb[1].pBt = pBt; 5012 assert( db->aDb[1].pSchema ); 5013 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 5014 sqlite3OomFault(db); 5015 return 1; 5016 } 5017 } 5018 return 0; 5019 } 5020 5021 /* 5022 ** Record the fact that the schema cookie will need to be verified 5023 ** for database iDb. The code to actually verify the schema cookie 5024 ** will occur at the end of the top-level VDBE and will be generated 5025 ** later, by sqlite3FinishCoding(). 5026 */ 5027 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 5028 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 5029 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 5030 assert( iDb<SQLITE_MAX_DB ); 5031 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 5032 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 5033 DbMaskSet(pToplevel->cookieMask, iDb); 5034 if( !OMIT_TEMPDB && iDb==1 ){ 5035 sqlite3OpenTempDatabase(pToplevel); 5036 } 5037 } 5038 } 5039 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 5040 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 5041 } 5042 5043 5044 /* 5045 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 5046 ** attached database. Otherwise, invoke it for the database named zDb only. 5047 */ 5048 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 5049 sqlite3 *db = pParse->db; 5050 int i; 5051 for(i=0; i<db->nDb; i++){ 5052 Db *pDb = &db->aDb[i]; 5053 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 5054 sqlite3CodeVerifySchema(pParse, i); 5055 } 5056 } 5057 } 5058 5059 /* 5060 ** Generate VDBE code that prepares for doing an operation that 5061 ** might change the database. 5062 ** 5063 ** This routine starts a new transaction if we are not already within 5064 ** a transaction. If we are already within a transaction, then a checkpoint 5065 ** is set if the setStatement parameter is true. A checkpoint should 5066 ** be set for operations that might fail (due to a constraint) part of 5067 ** the way through and which will need to undo some writes without having to 5068 ** rollback the whole transaction. For operations where all constraints 5069 ** can be checked before any changes are made to the database, it is never 5070 ** necessary to undo a write and the checkpoint should not be set. 5071 */ 5072 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 5073 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5074 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 5075 DbMaskSet(pToplevel->writeMask, iDb); 5076 pToplevel->isMultiWrite |= setStatement; 5077 } 5078 5079 /* 5080 ** Indicate that the statement currently under construction might write 5081 ** more than one entry (example: deleting one row then inserting another, 5082 ** inserting multiple rows in a table, or inserting a row and index entries.) 5083 ** If an abort occurs after some of these writes have completed, then it will 5084 ** be necessary to undo the completed writes. 5085 */ 5086 void sqlite3MultiWrite(Parse *pParse){ 5087 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5088 pToplevel->isMultiWrite = 1; 5089 } 5090 5091 /* 5092 ** The code generator calls this routine if is discovers that it is 5093 ** possible to abort a statement prior to completion. In order to 5094 ** perform this abort without corrupting the database, we need to make 5095 ** sure that the statement is protected by a statement transaction. 5096 ** 5097 ** Technically, we only need to set the mayAbort flag if the 5098 ** isMultiWrite flag was previously set. There is a time dependency 5099 ** such that the abort must occur after the multiwrite. This makes 5100 ** some statements involving the REPLACE conflict resolution algorithm 5101 ** go a little faster. But taking advantage of this time dependency 5102 ** makes it more difficult to prove that the code is correct (in 5103 ** particular, it prevents us from writing an effective 5104 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5105 ** to take the safe route and skip the optimization. 5106 */ 5107 void sqlite3MayAbort(Parse *pParse){ 5108 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5109 pToplevel->mayAbort = 1; 5110 } 5111 5112 /* 5113 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5114 ** error. The onError parameter determines which (if any) of the statement 5115 ** and/or current transaction is rolled back. 5116 */ 5117 void sqlite3HaltConstraint( 5118 Parse *pParse, /* Parsing context */ 5119 int errCode, /* extended error code */ 5120 int onError, /* Constraint type */ 5121 char *p4, /* Error message */ 5122 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5123 u8 p5Errmsg /* P5_ErrMsg type */ 5124 ){ 5125 Vdbe *v; 5126 assert( pParse->pVdbe!=0 ); 5127 v = sqlite3GetVdbe(pParse); 5128 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5129 if( onError==OE_Abort ){ 5130 sqlite3MayAbort(pParse); 5131 } 5132 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5133 sqlite3VdbeChangeP5(v, p5Errmsg); 5134 } 5135 5136 /* 5137 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5138 */ 5139 void sqlite3UniqueConstraint( 5140 Parse *pParse, /* Parsing context */ 5141 int onError, /* Constraint type */ 5142 Index *pIdx /* The index that triggers the constraint */ 5143 ){ 5144 char *zErr; 5145 int j; 5146 StrAccum errMsg; 5147 Table *pTab = pIdx->pTable; 5148 5149 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5150 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5151 if( pIdx->aColExpr ){ 5152 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5153 }else{ 5154 for(j=0; j<pIdx->nKeyCol; j++){ 5155 char *zCol; 5156 assert( pIdx->aiColumn[j]>=0 ); 5157 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; 5158 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5159 sqlite3_str_appendall(&errMsg, pTab->zName); 5160 sqlite3_str_append(&errMsg, ".", 1); 5161 sqlite3_str_appendall(&errMsg, zCol); 5162 } 5163 } 5164 zErr = sqlite3StrAccumFinish(&errMsg); 5165 sqlite3HaltConstraint(pParse, 5166 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5167 : SQLITE_CONSTRAINT_UNIQUE, 5168 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5169 } 5170 5171 5172 /* 5173 ** Code an OP_Halt due to non-unique rowid. 5174 */ 5175 void sqlite3RowidConstraint( 5176 Parse *pParse, /* Parsing context */ 5177 int onError, /* Conflict resolution algorithm */ 5178 Table *pTab /* The table with the non-unique rowid */ 5179 ){ 5180 char *zMsg; 5181 int rc; 5182 if( pTab->iPKey>=0 ){ 5183 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5184 pTab->aCol[pTab->iPKey].zCnName); 5185 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5186 }else{ 5187 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5188 rc = SQLITE_CONSTRAINT_ROWID; 5189 } 5190 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5191 P5_ConstraintUnique); 5192 } 5193 5194 /* 5195 ** Check to see if pIndex uses the collating sequence pColl. Return 5196 ** true if it does and false if it does not. 5197 */ 5198 #ifndef SQLITE_OMIT_REINDEX 5199 static int collationMatch(const char *zColl, Index *pIndex){ 5200 int i; 5201 assert( zColl!=0 ); 5202 for(i=0; i<pIndex->nColumn; i++){ 5203 const char *z = pIndex->azColl[i]; 5204 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5205 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5206 return 1; 5207 } 5208 } 5209 return 0; 5210 } 5211 #endif 5212 5213 /* 5214 ** Recompute all indices of pTab that use the collating sequence pColl. 5215 ** If pColl==0 then recompute all indices of pTab. 5216 */ 5217 #ifndef SQLITE_OMIT_REINDEX 5218 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5219 if( !IsVirtual(pTab) ){ 5220 Index *pIndex; /* An index associated with pTab */ 5221 5222 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5223 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5224 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5225 sqlite3BeginWriteOperation(pParse, 0, iDb); 5226 sqlite3RefillIndex(pParse, pIndex, -1); 5227 } 5228 } 5229 } 5230 } 5231 #endif 5232 5233 /* 5234 ** Recompute all indices of all tables in all databases where the 5235 ** indices use the collating sequence pColl. If pColl==0 then recompute 5236 ** all indices everywhere. 5237 */ 5238 #ifndef SQLITE_OMIT_REINDEX 5239 static void reindexDatabases(Parse *pParse, char const *zColl){ 5240 Db *pDb; /* A single database */ 5241 int iDb; /* The database index number */ 5242 sqlite3 *db = pParse->db; /* The database connection */ 5243 HashElem *k; /* For looping over tables in pDb */ 5244 Table *pTab; /* A table in the database */ 5245 5246 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5247 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5248 assert( pDb!=0 ); 5249 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5250 pTab = (Table*)sqliteHashData(k); 5251 reindexTable(pParse, pTab, zColl); 5252 } 5253 } 5254 } 5255 #endif 5256 5257 /* 5258 ** Generate code for the REINDEX command. 5259 ** 5260 ** REINDEX -- 1 5261 ** REINDEX <collation> -- 2 5262 ** REINDEX ?<database>.?<tablename> -- 3 5263 ** REINDEX ?<database>.?<indexname> -- 4 5264 ** 5265 ** Form 1 causes all indices in all attached databases to be rebuilt. 5266 ** Form 2 rebuilds all indices in all databases that use the named 5267 ** collating function. Forms 3 and 4 rebuild the named index or all 5268 ** indices associated with the named table. 5269 */ 5270 #ifndef SQLITE_OMIT_REINDEX 5271 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5272 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5273 char *z; /* Name of a table or index */ 5274 const char *zDb; /* Name of the database */ 5275 Table *pTab; /* A table in the database */ 5276 Index *pIndex; /* An index associated with pTab */ 5277 int iDb; /* The database index number */ 5278 sqlite3 *db = pParse->db; /* The database connection */ 5279 Token *pObjName; /* Name of the table or index to be reindexed */ 5280 5281 /* Read the database schema. If an error occurs, leave an error message 5282 ** and code in pParse and return NULL. */ 5283 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5284 return; 5285 } 5286 5287 if( pName1==0 ){ 5288 reindexDatabases(pParse, 0); 5289 return; 5290 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5291 char *zColl; 5292 assert( pName1->z ); 5293 zColl = sqlite3NameFromToken(pParse->db, pName1); 5294 if( !zColl ) return; 5295 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5296 if( pColl ){ 5297 reindexDatabases(pParse, zColl); 5298 sqlite3DbFree(db, zColl); 5299 return; 5300 } 5301 sqlite3DbFree(db, zColl); 5302 } 5303 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5304 if( iDb<0 ) return; 5305 z = sqlite3NameFromToken(db, pObjName); 5306 if( z==0 ) return; 5307 zDb = db->aDb[iDb].zDbSName; 5308 pTab = sqlite3FindTable(db, z, zDb); 5309 if( pTab ){ 5310 reindexTable(pParse, pTab, 0); 5311 sqlite3DbFree(db, z); 5312 return; 5313 } 5314 pIndex = sqlite3FindIndex(db, z, zDb); 5315 sqlite3DbFree(db, z); 5316 if( pIndex ){ 5317 sqlite3BeginWriteOperation(pParse, 0, iDb); 5318 sqlite3RefillIndex(pParse, pIndex, -1); 5319 return; 5320 } 5321 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5322 } 5323 #endif 5324 5325 /* 5326 ** Return a KeyInfo structure that is appropriate for the given Index. 5327 ** 5328 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5329 ** when it has finished using it. 5330 */ 5331 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5332 int i; 5333 int nCol = pIdx->nColumn; 5334 int nKey = pIdx->nKeyCol; 5335 KeyInfo *pKey; 5336 if( pParse->nErr ) return 0; 5337 if( pIdx->uniqNotNull ){ 5338 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5339 }else{ 5340 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5341 } 5342 if( pKey ){ 5343 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5344 for(i=0; i<nCol; i++){ 5345 const char *zColl = pIdx->azColl[i]; 5346 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5347 sqlite3LocateCollSeq(pParse, zColl); 5348 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5349 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5350 } 5351 if( pParse->nErr ){ 5352 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5353 if( pIdx->bNoQuery==0 ){ 5354 /* Deactivate the index because it contains an unknown collating 5355 ** sequence. The only way to reactive the index is to reload the 5356 ** schema. Adding the missing collating sequence later does not 5357 ** reactive the index. The application had the chance to register 5358 ** the missing index using the collation-needed callback. For 5359 ** simplicity, SQLite will not give the application a second chance. 5360 */ 5361 pIdx->bNoQuery = 1; 5362 pParse->rc = SQLITE_ERROR_RETRY; 5363 } 5364 sqlite3KeyInfoUnref(pKey); 5365 pKey = 0; 5366 } 5367 } 5368 return pKey; 5369 } 5370 5371 #ifndef SQLITE_OMIT_CTE 5372 /* 5373 ** Create a new CTE object 5374 */ 5375 Cte *sqlite3CteNew( 5376 Parse *pParse, /* Parsing context */ 5377 Token *pName, /* Name of the common-table */ 5378 ExprList *pArglist, /* Optional column name list for the table */ 5379 Select *pQuery, /* Query used to initialize the table */ 5380 u8 eM10d /* The MATERIALIZED flag */ 5381 ){ 5382 Cte *pNew; 5383 sqlite3 *db = pParse->db; 5384 5385 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5386 assert( pNew!=0 || db->mallocFailed ); 5387 5388 if( db->mallocFailed ){ 5389 sqlite3ExprListDelete(db, pArglist); 5390 sqlite3SelectDelete(db, pQuery); 5391 }else{ 5392 pNew->pSelect = pQuery; 5393 pNew->pCols = pArglist; 5394 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5395 pNew->eM10d = eM10d; 5396 } 5397 return pNew; 5398 } 5399 5400 /* 5401 ** Clear information from a Cte object, but do not deallocate storage 5402 ** for the object itself. 5403 */ 5404 static void cteClear(sqlite3 *db, Cte *pCte){ 5405 assert( pCte!=0 ); 5406 sqlite3ExprListDelete(db, pCte->pCols); 5407 sqlite3SelectDelete(db, pCte->pSelect); 5408 sqlite3DbFree(db, pCte->zName); 5409 } 5410 5411 /* 5412 ** Free the contents of the CTE object passed as the second argument. 5413 */ 5414 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5415 assert( pCte!=0 ); 5416 cteClear(db, pCte); 5417 sqlite3DbFree(db, pCte); 5418 } 5419 5420 /* 5421 ** This routine is invoked once per CTE by the parser while parsing a 5422 ** WITH clause. The CTE described by teh third argument is added to 5423 ** the WITH clause of the second argument. If the second argument is 5424 ** NULL, then a new WITH argument is created. 5425 */ 5426 With *sqlite3WithAdd( 5427 Parse *pParse, /* Parsing context */ 5428 With *pWith, /* Existing WITH clause, or NULL */ 5429 Cte *pCte /* CTE to add to the WITH clause */ 5430 ){ 5431 sqlite3 *db = pParse->db; 5432 With *pNew; 5433 char *zName; 5434 5435 if( pCte==0 ){ 5436 return pWith; 5437 } 5438 5439 /* Check that the CTE name is unique within this WITH clause. If 5440 ** not, store an error in the Parse structure. */ 5441 zName = pCte->zName; 5442 if( zName && pWith ){ 5443 int i; 5444 for(i=0; i<pWith->nCte; i++){ 5445 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5446 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5447 } 5448 } 5449 } 5450 5451 if( pWith ){ 5452 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5453 pNew = sqlite3DbRealloc(db, pWith, nByte); 5454 }else{ 5455 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5456 } 5457 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5458 5459 if( db->mallocFailed ){ 5460 sqlite3CteDelete(db, pCte); 5461 pNew = pWith; 5462 }else{ 5463 pNew->a[pNew->nCte++] = *pCte; 5464 sqlite3DbFree(db, pCte); 5465 } 5466 5467 return pNew; 5468 } 5469 5470 /* 5471 ** Free the contents of the With object passed as the second argument. 5472 */ 5473 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5474 if( pWith ){ 5475 int i; 5476 for(i=0; i<pWith->nCte; i++){ 5477 cteClear(db, &pWith->a[i]); 5478 } 5479 sqlite3DbFree(db, pWith); 5480 } 5481 } 5482 #endif /* !defined(SQLITE_OMIT_CTE) */ 5483