1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 db = pParse->db; 131 if( db->mallocFailed ) return; 132 if( pParse->nested ) return; 133 if( pParse->nErr ) return; 134 135 /* Begin by generating some termination code at the end of the 136 ** vdbe program 137 */ 138 v = sqlite3GetVdbe(pParse); 139 assert( !pParse->isMultiWrite 140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 141 if( v ){ 142 sqlite3VdbeAddOp0(v, OP_Halt); 143 144 /* The cookie mask contains one bit for each database file open. 145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 146 ** set for each database that is used. Generate code to start a 147 ** transaction on each used database and to verify the schema cookie 148 ** on each used database. 149 */ 150 if( pParse->cookieGoto>0 ){ 151 yDbMask mask; 152 int iDb; 153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 155 if( (mask & pParse->cookieMask)==0 ) continue; 156 sqlite3VdbeUsesBtree(v, iDb); 157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 158 if( db->init.busy==0 ){ 159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 160 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 161 iDb, pParse->cookieValue[iDb], 162 db->aDb[iDb].pSchema->iGeneration); 163 } 164 } 165 #ifndef SQLITE_OMIT_VIRTUALTABLE 166 { 167 int i; 168 for(i=0; i<pParse->nVtabLock; i++){ 169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 171 } 172 pParse->nVtabLock = 0; 173 } 174 #endif 175 176 /* Once all the cookies have been verified and transactions opened, 177 ** obtain the required table-locks. This is a no-op unless the 178 ** shared-cache feature is enabled. 179 */ 180 codeTableLocks(pParse); 181 182 /* Initialize any AUTOINCREMENT data structures required. 183 */ 184 sqlite3AutoincrementBegin(pParse); 185 186 /* Finally, jump back to the beginning of the executable code. */ 187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 188 } 189 } 190 191 192 /* Get the VDBE program ready for execution 193 */ 194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 195 #ifdef SQLITE_DEBUG 196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 197 sqlite3VdbeTrace(v, trace); 198 #endif 199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 200 /* A minimum of one cursor is required if autoincrement is used 201 * See ticket [a696379c1f08866] */ 202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 203 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, 204 pParse->nTab, pParse->nMaxArg, pParse->explain, 205 pParse->isMultiWrite && pParse->mayAbort); 206 pParse->rc = SQLITE_DONE; 207 pParse->colNamesSet = 0; 208 }else{ 209 pParse->rc = SQLITE_ERROR; 210 } 211 pParse->nTab = 0; 212 pParse->nMem = 0; 213 pParse->nSet = 0; 214 pParse->nVar = 0; 215 pParse->cookieMask = 0; 216 pParse->cookieGoto = 0; 217 } 218 219 /* 220 ** Run the parser and code generator recursively in order to generate 221 ** code for the SQL statement given onto the end of the pParse context 222 ** currently under construction. When the parser is run recursively 223 ** this way, the final OP_Halt is not appended and other initialization 224 ** and finalization steps are omitted because those are handling by the 225 ** outermost parser. 226 ** 227 ** Not everything is nestable. This facility is designed to permit 228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 229 ** care if you decide to try to use this routine for some other purposes. 230 */ 231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 232 va_list ap; 233 char *zSql; 234 char *zErrMsg = 0; 235 sqlite3 *db = pParse->db; 236 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 237 char saveBuf[SAVE_SZ]; 238 239 if( pParse->nErr ) return; 240 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 241 va_start(ap, zFormat); 242 zSql = sqlite3VMPrintf(db, zFormat, ap); 243 va_end(ap); 244 if( zSql==0 ){ 245 return; /* A malloc must have failed */ 246 } 247 pParse->nested++; 248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 249 memset(&pParse->nVar, 0, SAVE_SZ); 250 sqlite3RunParser(pParse, zSql, &zErrMsg); 251 sqlite3DbFree(db, zErrMsg); 252 sqlite3DbFree(db, zSql); 253 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 254 pParse->nested--; 255 } 256 257 /* 258 ** Locate the in-memory structure that describes a particular database 259 ** table given the name of that table and (optionally) the name of the 260 ** database containing the table. Return NULL if not found. 261 ** 262 ** If zDatabase is 0, all databases are searched for the table and the 263 ** first matching table is returned. (No checking for duplicate table 264 ** names is done.) The search order is TEMP first, then MAIN, then any 265 ** auxiliary databases added using the ATTACH command. 266 ** 267 ** See also sqlite3LocateTable(). 268 */ 269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 270 Table *p = 0; 271 int i; 272 int nName; 273 assert( zName!=0 ); 274 nName = sqlite3Strlen30(zName); 275 /* All mutexes are required for schema access. Make sure we hold them. */ 276 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 277 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 280 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 281 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 282 if( p ) break; 283 } 284 return p; 285 } 286 287 /* 288 ** Locate the in-memory structure that describes a particular database 289 ** table given the name of that table and (optionally) the name of the 290 ** database containing the table. Return NULL if not found. Also leave an 291 ** error message in pParse->zErrMsg. 292 ** 293 ** The difference between this routine and sqlite3FindTable() is that this 294 ** routine leaves an error message in pParse->zErrMsg where 295 ** sqlite3FindTable() does not. 296 */ 297 Table *sqlite3LocateTable( 298 Parse *pParse, /* context in which to report errors */ 299 int isView, /* True if looking for a VIEW rather than a TABLE */ 300 const char *zName, /* Name of the table we are looking for */ 301 const char *zDbase /* Name of the database. Might be NULL */ 302 ){ 303 Table *p; 304 305 /* Read the database schema. If an error occurs, leave an error message 306 ** and code in pParse and return NULL. */ 307 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 308 return 0; 309 } 310 311 p = sqlite3FindTable(pParse->db, zName, zDbase); 312 if( p==0 ){ 313 const char *zMsg = isView ? "no such view" : "no such table"; 314 if( zDbase ){ 315 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 316 }else{ 317 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 318 } 319 pParse->checkSchema = 1; 320 } 321 return p; 322 } 323 324 /* 325 ** Locate the in-memory structure that describes 326 ** a particular index given the name of that index 327 ** and the name of the database that contains the index. 328 ** Return NULL if not found. 329 ** 330 ** If zDatabase is 0, all databases are searched for the 331 ** table and the first matching index is returned. (No checking 332 ** for duplicate index names is done.) The search order is 333 ** TEMP first, then MAIN, then any auxiliary databases added 334 ** using the ATTACH command. 335 */ 336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 337 Index *p = 0; 338 int i; 339 int nName = sqlite3Strlen30(zName); 340 /* All mutexes are required for schema access. Make sure we hold them. */ 341 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 342 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 343 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 344 Schema *pSchema = db->aDb[j].pSchema; 345 assert( pSchema ); 346 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 347 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 348 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 349 if( p ) break; 350 } 351 return p; 352 } 353 354 /* 355 ** Reclaim the memory used by an index 356 */ 357 static void freeIndex(sqlite3 *db, Index *p){ 358 #ifndef SQLITE_OMIT_ANALYZE 359 sqlite3DeleteIndexSamples(db, p); 360 #endif 361 sqlite3DbFree(db, p->zColAff); 362 sqlite3DbFree(db, p); 363 } 364 365 /* 366 ** For the index called zIdxName which is found in the database iDb, 367 ** unlike that index from its Table then remove the index from 368 ** the index hash table and free all memory structures associated 369 ** with the index. 370 */ 371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 372 Index *pIndex; 373 int len; 374 Hash *pHash; 375 376 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 377 pHash = &db->aDb[iDb].pSchema->idxHash; 378 len = sqlite3Strlen30(zIdxName); 379 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 380 if( ALWAYS(pIndex) ){ 381 if( pIndex->pTable->pIndex==pIndex ){ 382 pIndex->pTable->pIndex = pIndex->pNext; 383 }else{ 384 Index *p; 385 /* Justification of ALWAYS(); The index must be on the list of 386 ** indices. */ 387 p = pIndex->pTable->pIndex; 388 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 389 if( ALWAYS(p && p->pNext==pIndex) ){ 390 p->pNext = pIndex->pNext; 391 } 392 } 393 freeIndex(db, pIndex); 394 } 395 db->flags |= SQLITE_InternChanges; 396 } 397 398 /* 399 ** Erase all schema information from the in-memory hash tables of 400 ** a single database. This routine is called to reclaim memory 401 ** before the database closes. It is also called during a rollback 402 ** if there were schema changes during the transaction or if a 403 ** schema-cookie mismatch occurs. 404 ** 405 ** If iDb<0 then reset the internal schema tables for all database 406 ** files. If iDb>=0 then reset the internal schema for only the 407 ** single file indicated. 408 */ 409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 410 int i, j; 411 assert( iDb<db->nDb ); 412 413 if( iDb>=0 ){ 414 /* Case 1: Reset the single schema identified by iDb */ 415 Db *pDb = &db->aDb[iDb]; 416 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 417 assert( pDb->pSchema!=0 ); 418 sqlite3SchemaClear(pDb->pSchema); 419 420 /* If any database other than TEMP is reset, then also reset TEMP 421 ** since TEMP might be holding triggers that reference tables in the 422 ** other database. 423 */ 424 if( iDb!=1 ){ 425 pDb = &db->aDb[1]; 426 assert( pDb->pSchema!=0 ); 427 sqlite3SchemaClear(pDb->pSchema); 428 } 429 return; 430 } 431 /* Case 2 (from here to the end): Reset all schemas for all attached 432 ** databases. */ 433 assert( iDb<0 ); 434 sqlite3BtreeEnterAll(db); 435 for(i=0; i<db->nDb; i++){ 436 Db *pDb = &db->aDb[i]; 437 if( pDb->pSchema ){ 438 sqlite3SchemaClear(pDb->pSchema); 439 } 440 } 441 db->flags &= ~SQLITE_InternChanges; 442 sqlite3VtabUnlockList(db); 443 sqlite3BtreeLeaveAll(db); 444 445 /* If one or more of the auxiliary database files has been closed, 446 ** then remove them from the auxiliary database list. We take the 447 ** opportunity to do this here since we have just deleted all of the 448 ** schema hash tables and therefore do not have to make any changes 449 ** to any of those tables. 450 */ 451 for(i=j=2; i<db->nDb; i++){ 452 struct Db *pDb = &db->aDb[i]; 453 if( pDb->pBt==0 ){ 454 sqlite3DbFree(db, pDb->zName); 455 pDb->zName = 0; 456 continue; 457 } 458 if( j<i ){ 459 db->aDb[j] = db->aDb[i]; 460 } 461 j++; 462 } 463 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 464 db->nDb = j; 465 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 466 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 467 sqlite3DbFree(db, db->aDb); 468 db->aDb = db->aDbStatic; 469 } 470 } 471 472 /* 473 ** This routine is called when a commit occurs. 474 */ 475 void sqlite3CommitInternalChanges(sqlite3 *db){ 476 db->flags &= ~SQLITE_InternChanges; 477 } 478 479 /* 480 ** Delete memory allocated for the column names of a table or view (the 481 ** Table.aCol[] array). 482 */ 483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 484 int i; 485 Column *pCol; 486 assert( pTable!=0 ); 487 if( (pCol = pTable->aCol)!=0 ){ 488 for(i=0; i<pTable->nCol; i++, pCol++){ 489 sqlite3DbFree(db, pCol->zName); 490 sqlite3ExprDelete(db, pCol->pDflt); 491 sqlite3DbFree(db, pCol->zDflt); 492 sqlite3DbFree(db, pCol->zType); 493 sqlite3DbFree(db, pCol->zColl); 494 } 495 sqlite3DbFree(db, pTable->aCol); 496 } 497 } 498 499 /* 500 ** Remove the memory data structures associated with the given 501 ** Table. No changes are made to disk by this routine. 502 ** 503 ** This routine just deletes the data structure. It does not unlink 504 ** the table data structure from the hash table. But it does destroy 505 ** memory structures of the indices and foreign keys associated with 506 ** the table. 507 */ 508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 509 Index *pIndex, *pNext; 510 511 assert( !pTable || pTable->nRef>0 ); 512 513 /* Do not delete the table until the reference count reaches zero. */ 514 if( !pTable ) return; 515 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 516 517 /* Delete all indices associated with this table. */ 518 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 519 pNext = pIndex->pNext; 520 assert( pIndex->pSchema==pTable->pSchema ); 521 if( !db || db->pnBytesFreed==0 ){ 522 char *zName = pIndex->zName; 523 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 524 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 525 ); 526 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 527 assert( pOld==pIndex || pOld==0 ); 528 } 529 freeIndex(db, pIndex); 530 } 531 532 /* Delete any foreign keys attached to this table. */ 533 sqlite3FkDelete(db, pTable); 534 535 /* Delete the Table structure itself. 536 */ 537 sqliteDeleteColumnNames(db, pTable); 538 sqlite3DbFree(db, pTable->zName); 539 sqlite3DbFree(db, pTable->zColAff); 540 sqlite3SelectDelete(db, pTable->pSelect); 541 #ifndef SQLITE_OMIT_CHECK 542 sqlite3ExprDelete(db, pTable->pCheck); 543 #endif 544 #ifndef SQLITE_OMIT_VIRTUALTABLE 545 sqlite3VtabClear(db, pTable); 546 #endif 547 sqlite3DbFree(db, pTable); 548 } 549 550 /* 551 ** Unlink the given table from the hash tables and the delete the 552 ** table structure with all its indices and foreign keys. 553 */ 554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 555 Table *p; 556 Db *pDb; 557 558 assert( db!=0 ); 559 assert( iDb>=0 && iDb<db->nDb ); 560 assert( zTabName ); 561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 562 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 563 pDb = &db->aDb[iDb]; 564 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 565 sqlite3Strlen30(zTabName),0); 566 sqlite3DeleteTable(db, p); 567 db->flags |= SQLITE_InternChanges; 568 } 569 570 /* 571 ** Given a token, return a string that consists of the text of that 572 ** token. Space to hold the returned string 573 ** is obtained from sqliteMalloc() and must be freed by the calling 574 ** function. 575 ** 576 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 577 ** surround the body of the token are removed. 578 ** 579 ** Tokens are often just pointers into the original SQL text and so 580 ** are not \000 terminated and are not persistent. The returned string 581 ** is \000 terminated and is persistent. 582 */ 583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 584 char *zName; 585 if( pName ){ 586 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 587 sqlite3Dequote(zName); 588 }else{ 589 zName = 0; 590 } 591 return zName; 592 } 593 594 /* 595 ** Open the sqlite_master table stored in database number iDb for 596 ** writing. The table is opened using cursor 0. 597 */ 598 void sqlite3OpenMasterTable(Parse *p, int iDb){ 599 Vdbe *v = sqlite3GetVdbe(p); 600 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 601 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 602 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 603 if( p->nTab==0 ){ 604 p->nTab = 1; 605 } 606 } 607 608 /* 609 ** Parameter zName points to a nul-terminated buffer containing the name 610 ** of a database ("main", "temp" or the name of an attached db). This 611 ** function returns the index of the named database in db->aDb[], or 612 ** -1 if the named db cannot be found. 613 */ 614 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 615 int i = -1; /* Database number */ 616 if( zName ){ 617 Db *pDb; 618 int n = sqlite3Strlen30(zName); 619 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 620 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 621 0==sqlite3StrICmp(pDb->zName, zName) ){ 622 break; 623 } 624 } 625 } 626 return i; 627 } 628 629 /* 630 ** The token *pName contains the name of a database (either "main" or 631 ** "temp" or the name of an attached db). This routine returns the 632 ** index of the named database in db->aDb[], or -1 if the named db 633 ** does not exist. 634 */ 635 int sqlite3FindDb(sqlite3 *db, Token *pName){ 636 int i; /* Database number */ 637 char *zName; /* Name we are searching for */ 638 zName = sqlite3NameFromToken(db, pName); 639 i = sqlite3FindDbName(db, zName); 640 sqlite3DbFree(db, zName); 641 return i; 642 } 643 644 /* The table or view or trigger name is passed to this routine via tokens 645 ** pName1 and pName2. If the table name was fully qualified, for example: 646 ** 647 ** CREATE TABLE xxx.yyy (...); 648 ** 649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 650 ** the table name is not fully qualified, i.e.: 651 ** 652 ** CREATE TABLE yyy(...); 653 ** 654 ** Then pName1 is set to "yyy" and pName2 is "". 655 ** 656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 657 ** pName2) that stores the unqualified table name. The index of the 658 ** database "xxx" is returned. 659 */ 660 int sqlite3TwoPartName( 661 Parse *pParse, /* Parsing and code generating context */ 662 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 663 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 664 Token **pUnqual /* Write the unqualified object name here */ 665 ){ 666 int iDb; /* Database holding the object */ 667 sqlite3 *db = pParse->db; 668 669 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 670 if( db->init.busy ) { 671 sqlite3ErrorMsg(pParse, "corrupt database"); 672 pParse->nErr++; 673 return -1; 674 } 675 *pUnqual = pName2; 676 iDb = sqlite3FindDb(db, pName1); 677 if( iDb<0 ){ 678 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 679 pParse->nErr++; 680 return -1; 681 } 682 }else{ 683 assert( db->init.iDb==0 || db->init.busy ); 684 iDb = db->init.iDb; 685 *pUnqual = pName1; 686 } 687 return iDb; 688 } 689 690 /* 691 ** This routine is used to check if the UTF-8 string zName is a legal 692 ** unqualified name for a new schema object (table, index, view or 693 ** trigger). All names are legal except those that begin with the string 694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 695 ** is reserved for internal use. 696 */ 697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 698 if( !pParse->db->init.busy && pParse->nested==0 699 && (pParse->db->flags & SQLITE_WriteSchema)==0 700 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 701 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 702 return SQLITE_ERROR; 703 } 704 return SQLITE_OK; 705 } 706 707 /* 708 ** Begin constructing a new table representation in memory. This is 709 ** the first of several action routines that get called in response 710 ** to a CREATE TABLE statement. In particular, this routine is called 711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 712 ** flag is true if the table should be stored in the auxiliary database 713 ** file instead of in the main database file. This is normally the case 714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 715 ** CREATE and TABLE. 716 ** 717 ** The new table record is initialized and put in pParse->pNewTable. 718 ** As more of the CREATE TABLE statement is parsed, additional action 719 ** routines will be called to add more information to this record. 720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 721 ** is called to complete the construction of the new table record. 722 */ 723 void sqlite3StartTable( 724 Parse *pParse, /* Parser context */ 725 Token *pName1, /* First part of the name of the table or view */ 726 Token *pName2, /* Second part of the name of the table or view */ 727 int isTemp, /* True if this is a TEMP table */ 728 int isView, /* True if this is a VIEW */ 729 int isVirtual, /* True if this is a VIRTUAL table */ 730 int noErr /* Do nothing if table already exists */ 731 ){ 732 Table *pTable; 733 char *zName = 0; /* The name of the new table */ 734 sqlite3 *db = pParse->db; 735 Vdbe *v; 736 int iDb; /* Database number to create the table in */ 737 Token *pName; /* Unqualified name of the table to create */ 738 739 /* The table or view name to create is passed to this routine via tokens 740 ** pName1 and pName2. If the table name was fully qualified, for example: 741 ** 742 ** CREATE TABLE xxx.yyy (...); 743 ** 744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 745 ** the table name is not fully qualified, i.e.: 746 ** 747 ** CREATE TABLE yyy(...); 748 ** 749 ** Then pName1 is set to "yyy" and pName2 is "". 750 ** 751 ** The call below sets the pName pointer to point at the token (pName1 or 752 ** pName2) that stores the unqualified table name. The variable iDb is 753 ** set to the index of the database that the table or view is to be 754 ** created in. 755 */ 756 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 757 if( iDb<0 ) return; 758 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 759 /* If creating a temp table, the name may not be qualified. Unless 760 ** the database name is "temp" anyway. */ 761 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 762 return; 763 } 764 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 765 766 pParse->sNameToken = *pName; 767 zName = sqlite3NameFromToken(db, pName); 768 if( zName==0 ) return; 769 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 770 goto begin_table_error; 771 } 772 if( db->init.iDb==1 ) isTemp = 1; 773 #ifndef SQLITE_OMIT_AUTHORIZATION 774 assert( (isTemp & 1)==isTemp ); 775 { 776 int code; 777 char *zDb = db->aDb[iDb].zName; 778 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 779 goto begin_table_error; 780 } 781 if( isView ){ 782 if( !OMIT_TEMPDB && isTemp ){ 783 code = SQLITE_CREATE_TEMP_VIEW; 784 }else{ 785 code = SQLITE_CREATE_VIEW; 786 } 787 }else{ 788 if( !OMIT_TEMPDB && isTemp ){ 789 code = SQLITE_CREATE_TEMP_TABLE; 790 }else{ 791 code = SQLITE_CREATE_TABLE; 792 } 793 } 794 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 795 goto begin_table_error; 796 } 797 } 798 #endif 799 800 /* Make sure the new table name does not collide with an existing 801 ** index or table name in the same database. Issue an error message if 802 ** it does. The exception is if the statement being parsed was passed 803 ** to an sqlite3_declare_vtab() call. In that case only the column names 804 ** and types will be used, so there is no need to test for namespace 805 ** collisions. 806 */ 807 if( !IN_DECLARE_VTAB ){ 808 char *zDb = db->aDb[iDb].zName; 809 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 810 goto begin_table_error; 811 } 812 pTable = sqlite3FindTable(db, zName, zDb); 813 if( pTable ){ 814 if( !noErr ){ 815 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 816 } 817 goto begin_table_error; 818 } 819 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 820 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 821 goto begin_table_error; 822 } 823 } 824 825 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 826 if( pTable==0 ){ 827 db->mallocFailed = 1; 828 pParse->rc = SQLITE_NOMEM; 829 pParse->nErr++; 830 goto begin_table_error; 831 } 832 pTable->zName = zName; 833 pTable->iPKey = -1; 834 pTable->pSchema = db->aDb[iDb].pSchema; 835 pTable->nRef = 1; 836 pTable->nRowEst = 1000000; 837 assert( pParse->pNewTable==0 ); 838 pParse->pNewTable = pTable; 839 840 /* If this is the magic sqlite_sequence table used by autoincrement, 841 ** then record a pointer to this table in the main database structure 842 ** so that INSERT can find the table easily. 843 */ 844 #ifndef SQLITE_OMIT_AUTOINCREMENT 845 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 846 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 847 pTable->pSchema->pSeqTab = pTable; 848 } 849 #endif 850 851 /* Begin generating the code that will insert the table record into 852 ** the SQLITE_MASTER table. Note in particular that we must go ahead 853 ** and allocate the record number for the table entry now. Before any 854 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 855 ** indices to be created and the table record must come before the 856 ** indices. Hence, the record number for the table must be allocated 857 ** now. 858 */ 859 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 860 int j1; 861 int fileFormat; 862 int reg1, reg2, reg3; 863 sqlite3BeginWriteOperation(pParse, 0, iDb); 864 865 #ifndef SQLITE_OMIT_VIRTUALTABLE 866 if( isVirtual ){ 867 sqlite3VdbeAddOp0(v, OP_VBegin); 868 } 869 #endif 870 871 /* If the file format and encoding in the database have not been set, 872 ** set them now. 873 */ 874 reg1 = pParse->regRowid = ++pParse->nMem; 875 reg2 = pParse->regRoot = ++pParse->nMem; 876 reg3 = ++pParse->nMem; 877 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 878 sqlite3VdbeUsesBtree(v, iDb); 879 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 880 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 881 1 : SQLITE_MAX_FILE_FORMAT; 882 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 883 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 884 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 885 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 886 sqlite3VdbeJumpHere(v, j1); 887 888 /* This just creates a place-holder record in the sqlite_master table. 889 ** The record created does not contain anything yet. It will be replaced 890 ** by the real entry in code generated at sqlite3EndTable(). 891 ** 892 ** The rowid for the new entry is left in register pParse->regRowid. 893 ** The root page number of the new table is left in reg pParse->regRoot. 894 ** The rowid and root page number values are needed by the code that 895 ** sqlite3EndTable will generate. 896 */ 897 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 898 if( isView || isVirtual ){ 899 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 900 }else 901 #endif 902 { 903 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 904 } 905 sqlite3OpenMasterTable(pParse, iDb); 906 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 907 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 908 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 909 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 910 sqlite3VdbeAddOp0(v, OP_Close); 911 } 912 913 /* Normal (non-error) return. */ 914 return; 915 916 /* If an error occurs, we jump here */ 917 begin_table_error: 918 sqlite3DbFree(db, zName); 919 return; 920 } 921 922 /* 923 ** This macro is used to compare two strings in a case-insensitive manner. 924 ** It is slightly faster than calling sqlite3StrICmp() directly, but 925 ** produces larger code. 926 ** 927 ** WARNING: This macro is not compatible with the strcmp() family. It 928 ** returns true if the two strings are equal, otherwise false. 929 */ 930 #define STRICMP(x, y) (\ 931 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 932 sqlite3UpperToLower[*(unsigned char *)(y)] \ 933 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 934 935 /* 936 ** Add a new column to the table currently being constructed. 937 ** 938 ** The parser calls this routine once for each column declaration 939 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 940 ** first to get things going. Then this routine is called for each 941 ** column. 942 */ 943 void sqlite3AddColumn(Parse *pParse, Token *pName){ 944 Table *p; 945 int i; 946 char *z; 947 Column *pCol; 948 sqlite3 *db = pParse->db; 949 if( (p = pParse->pNewTable)==0 ) return; 950 #if SQLITE_MAX_COLUMN 951 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 952 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 953 return; 954 } 955 #endif 956 z = sqlite3NameFromToken(db, pName); 957 if( z==0 ) return; 958 for(i=0; i<p->nCol; i++){ 959 if( STRICMP(z, p->aCol[i].zName) ){ 960 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 961 sqlite3DbFree(db, z); 962 return; 963 } 964 } 965 if( (p->nCol & 0x7)==0 ){ 966 Column *aNew; 967 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 968 if( aNew==0 ){ 969 sqlite3DbFree(db, z); 970 return; 971 } 972 p->aCol = aNew; 973 } 974 pCol = &p->aCol[p->nCol]; 975 memset(pCol, 0, sizeof(p->aCol[0])); 976 pCol->zName = z; 977 978 /* If there is no type specified, columns have the default affinity 979 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 980 ** be called next to set pCol->affinity correctly. 981 */ 982 pCol->affinity = SQLITE_AFF_NONE; 983 p->nCol++; 984 } 985 986 /* 987 ** This routine is called by the parser while in the middle of 988 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 989 ** been seen on a column. This routine sets the notNull flag on 990 ** the column currently under construction. 991 */ 992 void sqlite3AddNotNull(Parse *pParse, int onError){ 993 Table *p; 994 p = pParse->pNewTable; 995 if( p==0 || NEVER(p->nCol<1) ) return; 996 p->aCol[p->nCol-1].notNull = (u8)onError; 997 } 998 999 /* 1000 ** Scan the column type name zType (length nType) and return the 1001 ** associated affinity type. 1002 ** 1003 ** This routine does a case-independent search of zType for the 1004 ** substrings in the following table. If one of the substrings is 1005 ** found, the corresponding affinity is returned. If zType contains 1006 ** more than one of the substrings, entries toward the top of 1007 ** the table take priority. For example, if zType is 'BLOBINT', 1008 ** SQLITE_AFF_INTEGER is returned. 1009 ** 1010 ** Substring | Affinity 1011 ** -------------------------------- 1012 ** 'INT' | SQLITE_AFF_INTEGER 1013 ** 'CHAR' | SQLITE_AFF_TEXT 1014 ** 'CLOB' | SQLITE_AFF_TEXT 1015 ** 'TEXT' | SQLITE_AFF_TEXT 1016 ** 'BLOB' | SQLITE_AFF_NONE 1017 ** 'REAL' | SQLITE_AFF_REAL 1018 ** 'FLOA' | SQLITE_AFF_REAL 1019 ** 'DOUB' | SQLITE_AFF_REAL 1020 ** 1021 ** If none of the substrings in the above table are found, 1022 ** SQLITE_AFF_NUMERIC is returned. 1023 */ 1024 char sqlite3AffinityType(const char *zIn){ 1025 u32 h = 0; 1026 char aff = SQLITE_AFF_NUMERIC; 1027 1028 if( zIn ) while( zIn[0] ){ 1029 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1030 zIn++; 1031 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1032 aff = SQLITE_AFF_TEXT; 1033 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1034 aff = SQLITE_AFF_TEXT; 1035 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1036 aff = SQLITE_AFF_TEXT; 1037 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1038 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1039 aff = SQLITE_AFF_NONE; 1040 #ifndef SQLITE_OMIT_FLOATING_POINT 1041 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1042 && aff==SQLITE_AFF_NUMERIC ){ 1043 aff = SQLITE_AFF_REAL; 1044 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1045 && aff==SQLITE_AFF_NUMERIC ){ 1046 aff = SQLITE_AFF_REAL; 1047 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1048 && aff==SQLITE_AFF_NUMERIC ){ 1049 aff = SQLITE_AFF_REAL; 1050 #endif 1051 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1052 aff = SQLITE_AFF_INTEGER; 1053 break; 1054 } 1055 } 1056 1057 return aff; 1058 } 1059 1060 /* 1061 ** This routine is called by the parser while in the middle of 1062 ** parsing a CREATE TABLE statement. The pFirst token is the first 1063 ** token in the sequence of tokens that describe the type of the 1064 ** column currently under construction. pLast is the last token 1065 ** in the sequence. Use this information to construct a string 1066 ** that contains the typename of the column and store that string 1067 ** in zType. 1068 */ 1069 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1070 Table *p; 1071 Column *pCol; 1072 1073 p = pParse->pNewTable; 1074 if( p==0 || NEVER(p->nCol<1) ) return; 1075 pCol = &p->aCol[p->nCol-1]; 1076 assert( pCol->zType==0 ); 1077 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1078 pCol->affinity = sqlite3AffinityType(pCol->zType); 1079 } 1080 1081 /* 1082 ** The expression is the default value for the most recently added column 1083 ** of the table currently under construction. 1084 ** 1085 ** Default value expressions must be constant. Raise an exception if this 1086 ** is not the case. 1087 ** 1088 ** This routine is called by the parser while in the middle of 1089 ** parsing a CREATE TABLE statement. 1090 */ 1091 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1092 Table *p; 1093 Column *pCol; 1094 sqlite3 *db = pParse->db; 1095 p = pParse->pNewTable; 1096 if( p!=0 ){ 1097 pCol = &(p->aCol[p->nCol-1]); 1098 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1099 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1100 pCol->zName); 1101 }else{ 1102 /* A copy of pExpr is used instead of the original, as pExpr contains 1103 ** tokens that point to volatile memory. The 'span' of the expression 1104 ** is required by pragma table_info. 1105 */ 1106 sqlite3ExprDelete(db, pCol->pDflt); 1107 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1108 sqlite3DbFree(db, pCol->zDflt); 1109 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1110 (int)(pSpan->zEnd - pSpan->zStart)); 1111 } 1112 } 1113 sqlite3ExprDelete(db, pSpan->pExpr); 1114 } 1115 1116 /* 1117 ** Designate the PRIMARY KEY for the table. pList is a list of names 1118 ** of columns that form the primary key. If pList is NULL, then the 1119 ** most recently added column of the table is the primary key. 1120 ** 1121 ** A table can have at most one primary key. If the table already has 1122 ** a primary key (and this is the second primary key) then create an 1123 ** error. 1124 ** 1125 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1126 ** then we will try to use that column as the rowid. Set the Table.iPKey 1127 ** field of the table under construction to be the index of the 1128 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1129 ** no INTEGER PRIMARY KEY. 1130 ** 1131 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1132 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1133 */ 1134 void sqlite3AddPrimaryKey( 1135 Parse *pParse, /* Parsing context */ 1136 ExprList *pList, /* List of field names to be indexed */ 1137 int onError, /* What to do with a uniqueness conflict */ 1138 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1139 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1140 ){ 1141 Table *pTab = pParse->pNewTable; 1142 char *zType = 0; 1143 int iCol = -1, i; 1144 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1145 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1146 sqlite3ErrorMsg(pParse, 1147 "table \"%s\" has more than one primary key", pTab->zName); 1148 goto primary_key_exit; 1149 } 1150 pTab->tabFlags |= TF_HasPrimaryKey; 1151 if( pList==0 ){ 1152 iCol = pTab->nCol - 1; 1153 pTab->aCol[iCol].isPrimKey = 1; 1154 }else{ 1155 for(i=0; i<pList->nExpr; i++){ 1156 for(iCol=0; iCol<pTab->nCol; iCol++){ 1157 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1158 break; 1159 } 1160 } 1161 if( iCol<pTab->nCol ){ 1162 pTab->aCol[iCol].isPrimKey = 1; 1163 } 1164 } 1165 if( pList->nExpr>1 ) iCol = -1; 1166 } 1167 if( iCol>=0 && iCol<pTab->nCol ){ 1168 zType = pTab->aCol[iCol].zType; 1169 } 1170 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1171 && sortOrder==SQLITE_SO_ASC ){ 1172 pTab->iPKey = iCol; 1173 pTab->keyConf = (u8)onError; 1174 assert( autoInc==0 || autoInc==1 ); 1175 pTab->tabFlags |= autoInc*TF_Autoincrement; 1176 }else if( autoInc ){ 1177 #ifndef SQLITE_OMIT_AUTOINCREMENT 1178 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1179 "INTEGER PRIMARY KEY"); 1180 #endif 1181 }else{ 1182 Index *p; 1183 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1184 if( p ){ 1185 p->autoIndex = 2; 1186 } 1187 pList = 0; 1188 } 1189 1190 primary_key_exit: 1191 sqlite3ExprListDelete(pParse->db, pList); 1192 return; 1193 } 1194 1195 /* 1196 ** Add a new CHECK constraint to the table currently under construction. 1197 */ 1198 void sqlite3AddCheckConstraint( 1199 Parse *pParse, /* Parsing context */ 1200 Expr *pCheckExpr /* The check expression */ 1201 ){ 1202 sqlite3 *db = pParse->db; 1203 #ifndef SQLITE_OMIT_CHECK 1204 Table *pTab = pParse->pNewTable; 1205 if( pTab && !IN_DECLARE_VTAB ){ 1206 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); 1207 }else 1208 #endif 1209 { 1210 sqlite3ExprDelete(db, pCheckExpr); 1211 } 1212 } 1213 1214 /* 1215 ** Set the collation function of the most recently parsed table column 1216 ** to the CollSeq given. 1217 */ 1218 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1219 Table *p; 1220 int i; 1221 char *zColl; /* Dequoted name of collation sequence */ 1222 sqlite3 *db; 1223 1224 if( (p = pParse->pNewTable)==0 ) return; 1225 i = p->nCol-1; 1226 db = pParse->db; 1227 zColl = sqlite3NameFromToken(db, pToken); 1228 if( !zColl ) return; 1229 1230 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1231 Index *pIdx; 1232 p->aCol[i].zColl = zColl; 1233 1234 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1235 ** then an index may have been created on this column before the 1236 ** collation type was added. Correct this if it is the case. 1237 */ 1238 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1239 assert( pIdx->nColumn==1 ); 1240 if( pIdx->aiColumn[0]==i ){ 1241 pIdx->azColl[0] = p->aCol[i].zColl; 1242 } 1243 } 1244 }else{ 1245 sqlite3DbFree(db, zColl); 1246 } 1247 } 1248 1249 /* 1250 ** This function returns the collation sequence for database native text 1251 ** encoding identified by the string zName, length nName. 1252 ** 1253 ** If the requested collation sequence is not available, or not available 1254 ** in the database native encoding, the collation factory is invoked to 1255 ** request it. If the collation factory does not supply such a sequence, 1256 ** and the sequence is available in another text encoding, then that is 1257 ** returned instead. 1258 ** 1259 ** If no versions of the requested collations sequence are available, or 1260 ** another error occurs, NULL is returned and an error message written into 1261 ** pParse. 1262 ** 1263 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1264 ** invokes the collation factory if the named collation cannot be found 1265 ** and generates an error message. 1266 ** 1267 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1268 */ 1269 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1270 sqlite3 *db = pParse->db; 1271 u8 enc = ENC(db); 1272 u8 initbusy = db->init.busy; 1273 CollSeq *pColl; 1274 1275 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1276 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1277 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); 1278 if( !pColl ){ 1279 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); 1280 } 1281 } 1282 1283 return pColl; 1284 } 1285 1286 1287 /* 1288 ** Generate code that will increment the schema cookie. 1289 ** 1290 ** The schema cookie is used to determine when the schema for the 1291 ** database changes. After each schema change, the cookie value 1292 ** changes. When a process first reads the schema it records the 1293 ** cookie. Thereafter, whenever it goes to access the database, 1294 ** it checks the cookie to make sure the schema has not changed 1295 ** since it was last read. 1296 ** 1297 ** This plan is not completely bullet-proof. It is possible for 1298 ** the schema to change multiple times and for the cookie to be 1299 ** set back to prior value. But schema changes are infrequent 1300 ** and the probability of hitting the same cookie value is only 1301 ** 1 chance in 2^32. So we're safe enough. 1302 */ 1303 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1304 int r1 = sqlite3GetTempReg(pParse); 1305 sqlite3 *db = pParse->db; 1306 Vdbe *v = pParse->pVdbe; 1307 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1308 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1309 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1310 sqlite3ReleaseTempReg(pParse, r1); 1311 } 1312 1313 /* 1314 ** Measure the number of characters needed to output the given 1315 ** identifier. The number returned includes any quotes used 1316 ** but does not include the null terminator. 1317 ** 1318 ** The estimate is conservative. It might be larger that what is 1319 ** really needed. 1320 */ 1321 static int identLength(const char *z){ 1322 int n; 1323 for(n=0; *z; n++, z++){ 1324 if( *z=='"' ){ n++; } 1325 } 1326 return n + 2; 1327 } 1328 1329 /* 1330 ** The first parameter is a pointer to an output buffer. The second 1331 ** parameter is a pointer to an integer that contains the offset at 1332 ** which to write into the output buffer. This function copies the 1333 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1334 ** to the specified offset in the buffer and updates *pIdx to refer 1335 ** to the first byte after the last byte written before returning. 1336 ** 1337 ** If the string zSignedIdent consists entirely of alpha-numeric 1338 ** characters, does not begin with a digit and is not an SQL keyword, 1339 ** then it is copied to the output buffer exactly as it is. Otherwise, 1340 ** it is quoted using double-quotes. 1341 */ 1342 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1343 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1344 int i, j, needQuote; 1345 i = *pIdx; 1346 1347 for(j=0; zIdent[j]; j++){ 1348 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1349 } 1350 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1351 if( !needQuote ){ 1352 needQuote = zIdent[j]; 1353 } 1354 1355 if( needQuote ) z[i++] = '"'; 1356 for(j=0; zIdent[j]; j++){ 1357 z[i++] = zIdent[j]; 1358 if( zIdent[j]=='"' ) z[i++] = '"'; 1359 } 1360 if( needQuote ) z[i++] = '"'; 1361 z[i] = 0; 1362 *pIdx = i; 1363 } 1364 1365 /* 1366 ** Generate a CREATE TABLE statement appropriate for the given 1367 ** table. Memory to hold the text of the statement is obtained 1368 ** from sqliteMalloc() and must be freed by the calling function. 1369 */ 1370 static char *createTableStmt(sqlite3 *db, Table *p){ 1371 int i, k, n; 1372 char *zStmt; 1373 char *zSep, *zSep2, *zEnd; 1374 Column *pCol; 1375 n = 0; 1376 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1377 n += identLength(pCol->zName) + 5; 1378 } 1379 n += identLength(p->zName); 1380 if( n<50 ){ 1381 zSep = ""; 1382 zSep2 = ","; 1383 zEnd = ")"; 1384 }else{ 1385 zSep = "\n "; 1386 zSep2 = ",\n "; 1387 zEnd = "\n)"; 1388 } 1389 n += 35 + 6*p->nCol; 1390 zStmt = sqlite3DbMallocRaw(0, n); 1391 if( zStmt==0 ){ 1392 db->mallocFailed = 1; 1393 return 0; 1394 } 1395 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1396 k = sqlite3Strlen30(zStmt); 1397 identPut(zStmt, &k, p->zName); 1398 zStmt[k++] = '('; 1399 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1400 static const char * const azType[] = { 1401 /* SQLITE_AFF_TEXT */ " TEXT", 1402 /* SQLITE_AFF_NONE */ "", 1403 /* SQLITE_AFF_NUMERIC */ " NUM", 1404 /* SQLITE_AFF_INTEGER */ " INT", 1405 /* SQLITE_AFF_REAL */ " REAL" 1406 }; 1407 int len; 1408 const char *zType; 1409 1410 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1411 k += sqlite3Strlen30(&zStmt[k]); 1412 zSep = zSep2; 1413 identPut(zStmt, &k, pCol->zName); 1414 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1415 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1416 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1417 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1418 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1419 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1420 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1421 1422 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1423 len = sqlite3Strlen30(zType); 1424 assert( pCol->affinity==SQLITE_AFF_NONE 1425 || pCol->affinity==sqlite3AffinityType(zType) ); 1426 memcpy(&zStmt[k], zType, len); 1427 k += len; 1428 assert( k<=n ); 1429 } 1430 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1431 return zStmt; 1432 } 1433 1434 /* 1435 ** This routine is called to report the final ")" that terminates 1436 ** a CREATE TABLE statement. 1437 ** 1438 ** The table structure that other action routines have been building 1439 ** is added to the internal hash tables, assuming no errors have 1440 ** occurred. 1441 ** 1442 ** An entry for the table is made in the master table on disk, unless 1443 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1444 ** it means we are reading the sqlite_master table because we just 1445 ** connected to the database or because the sqlite_master table has 1446 ** recently changed, so the entry for this table already exists in 1447 ** the sqlite_master table. We do not want to create it again. 1448 ** 1449 ** If the pSelect argument is not NULL, it means that this routine 1450 ** was called to create a table generated from a 1451 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1452 ** the new table will match the result set of the SELECT. 1453 */ 1454 void sqlite3EndTable( 1455 Parse *pParse, /* Parse context */ 1456 Token *pCons, /* The ',' token after the last column defn. */ 1457 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1458 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1459 ){ 1460 Table *p; 1461 sqlite3 *db = pParse->db; 1462 int iDb; 1463 1464 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1465 return; 1466 } 1467 p = pParse->pNewTable; 1468 if( p==0 ) return; 1469 1470 assert( !db->init.busy || !pSelect ); 1471 1472 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1473 1474 #ifndef SQLITE_OMIT_CHECK 1475 /* Resolve names in all CHECK constraint expressions. 1476 */ 1477 if( p->pCheck ){ 1478 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1479 NameContext sNC; /* Name context for pParse->pNewTable */ 1480 1481 memset(&sNC, 0, sizeof(sNC)); 1482 memset(&sSrc, 0, sizeof(sSrc)); 1483 sSrc.nSrc = 1; 1484 sSrc.a[0].zName = p->zName; 1485 sSrc.a[0].pTab = p; 1486 sSrc.a[0].iCursor = -1; 1487 sNC.pParse = pParse; 1488 sNC.pSrcList = &sSrc; 1489 sNC.isCheck = 1; 1490 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1491 return; 1492 } 1493 } 1494 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1495 1496 /* If the db->init.busy is 1 it means we are reading the SQL off the 1497 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1498 ** So do not write to the disk again. Extract the root page number 1499 ** for the table from the db->init.newTnum field. (The page number 1500 ** should have been put there by the sqliteOpenCb routine.) 1501 */ 1502 if( db->init.busy ){ 1503 p->tnum = db->init.newTnum; 1504 } 1505 1506 /* If not initializing, then create a record for the new table 1507 ** in the SQLITE_MASTER table of the database. 1508 ** 1509 ** If this is a TEMPORARY table, write the entry into the auxiliary 1510 ** file instead of into the main database file. 1511 */ 1512 if( !db->init.busy ){ 1513 int n; 1514 Vdbe *v; 1515 char *zType; /* "view" or "table" */ 1516 char *zType2; /* "VIEW" or "TABLE" */ 1517 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1518 1519 v = sqlite3GetVdbe(pParse); 1520 if( NEVER(v==0) ) return; 1521 1522 sqlite3VdbeAddOp1(v, OP_Close, 0); 1523 1524 /* 1525 ** Initialize zType for the new view or table. 1526 */ 1527 if( p->pSelect==0 ){ 1528 /* A regular table */ 1529 zType = "table"; 1530 zType2 = "TABLE"; 1531 #ifndef SQLITE_OMIT_VIEW 1532 }else{ 1533 /* A view */ 1534 zType = "view"; 1535 zType2 = "VIEW"; 1536 #endif 1537 } 1538 1539 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1540 ** statement to populate the new table. The root-page number for the 1541 ** new table is in register pParse->regRoot. 1542 ** 1543 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1544 ** suitable state to query for the column names and types to be used 1545 ** by the new table. 1546 ** 1547 ** A shared-cache write-lock is not required to write to the new table, 1548 ** as a schema-lock must have already been obtained to create it. Since 1549 ** a schema-lock excludes all other database users, the write-lock would 1550 ** be redundant. 1551 */ 1552 if( pSelect ){ 1553 SelectDest dest; 1554 Table *pSelTab; 1555 1556 assert(pParse->nTab==1); 1557 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1558 sqlite3VdbeChangeP5(v, 1); 1559 pParse->nTab = 2; 1560 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1561 sqlite3Select(pParse, pSelect, &dest); 1562 sqlite3VdbeAddOp1(v, OP_Close, 1); 1563 if( pParse->nErr==0 ){ 1564 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1565 if( pSelTab==0 ) return; 1566 assert( p->aCol==0 ); 1567 p->nCol = pSelTab->nCol; 1568 p->aCol = pSelTab->aCol; 1569 pSelTab->nCol = 0; 1570 pSelTab->aCol = 0; 1571 sqlite3DeleteTable(db, pSelTab); 1572 } 1573 } 1574 1575 /* Compute the complete text of the CREATE statement */ 1576 if( pSelect ){ 1577 zStmt = createTableStmt(db, p); 1578 }else{ 1579 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1580 zStmt = sqlite3MPrintf(db, 1581 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1582 ); 1583 } 1584 1585 /* A slot for the record has already been allocated in the 1586 ** SQLITE_MASTER table. We just need to update that slot with all 1587 ** the information we've collected. 1588 */ 1589 sqlite3NestedParse(pParse, 1590 "UPDATE %Q.%s " 1591 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1592 "WHERE rowid=#%d", 1593 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1594 zType, 1595 p->zName, 1596 p->zName, 1597 pParse->regRoot, 1598 zStmt, 1599 pParse->regRowid 1600 ); 1601 sqlite3DbFree(db, zStmt); 1602 sqlite3ChangeCookie(pParse, iDb); 1603 1604 #ifndef SQLITE_OMIT_AUTOINCREMENT 1605 /* Check to see if we need to create an sqlite_sequence table for 1606 ** keeping track of autoincrement keys. 1607 */ 1608 if( p->tabFlags & TF_Autoincrement ){ 1609 Db *pDb = &db->aDb[iDb]; 1610 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1611 if( pDb->pSchema->pSeqTab==0 ){ 1612 sqlite3NestedParse(pParse, 1613 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1614 pDb->zName 1615 ); 1616 } 1617 } 1618 #endif 1619 1620 /* Reparse everything to update our internal data structures */ 1621 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1622 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1623 } 1624 1625 1626 /* Add the table to the in-memory representation of the database. 1627 */ 1628 if( db->init.busy ){ 1629 Table *pOld; 1630 Schema *pSchema = p->pSchema; 1631 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1632 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1633 sqlite3Strlen30(p->zName),p); 1634 if( pOld ){ 1635 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1636 db->mallocFailed = 1; 1637 return; 1638 } 1639 pParse->pNewTable = 0; 1640 db->nTable++; 1641 db->flags |= SQLITE_InternChanges; 1642 1643 #ifndef SQLITE_OMIT_ALTERTABLE 1644 if( !p->pSelect ){ 1645 const char *zName = (const char *)pParse->sNameToken.z; 1646 int nName; 1647 assert( !pSelect && pCons && pEnd ); 1648 if( pCons->z==0 ){ 1649 pCons = pEnd; 1650 } 1651 nName = (int)((const char *)pCons->z - zName); 1652 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1653 } 1654 #endif 1655 } 1656 } 1657 1658 #ifndef SQLITE_OMIT_VIEW 1659 /* 1660 ** The parser calls this routine in order to create a new VIEW 1661 */ 1662 void sqlite3CreateView( 1663 Parse *pParse, /* The parsing context */ 1664 Token *pBegin, /* The CREATE token that begins the statement */ 1665 Token *pName1, /* The token that holds the name of the view */ 1666 Token *pName2, /* The token that holds the name of the view */ 1667 Select *pSelect, /* A SELECT statement that will become the new view */ 1668 int isTemp, /* TRUE for a TEMPORARY view */ 1669 int noErr /* Suppress error messages if VIEW already exists */ 1670 ){ 1671 Table *p; 1672 int n; 1673 const char *z; 1674 Token sEnd; 1675 DbFixer sFix; 1676 Token *pName; 1677 int iDb; 1678 sqlite3 *db = pParse->db; 1679 1680 if( pParse->nVar>0 ){ 1681 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1682 sqlite3SelectDelete(db, pSelect); 1683 return; 1684 } 1685 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1686 p = pParse->pNewTable; 1687 if( p==0 || pParse->nErr ){ 1688 sqlite3SelectDelete(db, pSelect); 1689 return; 1690 } 1691 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1692 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1693 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1694 && sqlite3FixSelect(&sFix, pSelect) 1695 ){ 1696 sqlite3SelectDelete(db, pSelect); 1697 return; 1698 } 1699 1700 /* Make a copy of the entire SELECT statement that defines the view. 1701 ** This will force all the Expr.token.z values to be dynamically 1702 ** allocated rather than point to the input string - which means that 1703 ** they will persist after the current sqlite3_exec() call returns. 1704 */ 1705 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1706 sqlite3SelectDelete(db, pSelect); 1707 if( db->mallocFailed ){ 1708 return; 1709 } 1710 if( !db->init.busy ){ 1711 sqlite3ViewGetColumnNames(pParse, p); 1712 } 1713 1714 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1715 ** the end. 1716 */ 1717 sEnd = pParse->sLastToken; 1718 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1719 sEnd.z += sEnd.n; 1720 } 1721 sEnd.n = 0; 1722 n = (int)(sEnd.z - pBegin->z); 1723 z = pBegin->z; 1724 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1725 sEnd.z = &z[n-1]; 1726 sEnd.n = 1; 1727 1728 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1729 sqlite3EndTable(pParse, 0, &sEnd, 0); 1730 return; 1731 } 1732 #endif /* SQLITE_OMIT_VIEW */ 1733 1734 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1735 /* 1736 ** The Table structure pTable is really a VIEW. Fill in the names of 1737 ** the columns of the view in the pTable structure. Return the number 1738 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1739 */ 1740 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1741 Table *pSelTab; /* A fake table from which we get the result set */ 1742 Select *pSel; /* Copy of the SELECT that implements the view */ 1743 int nErr = 0; /* Number of errors encountered */ 1744 int n; /* Temporarily holds the number of cursors assigned */ 1745 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1746 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1747 1748 assert( pTable ); 1749 1750 #ifndef SQLITE_OMIT_VIRTUALTABLE 1751 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1752 return SQLITE_ERROR; 1753 } 1754 if( IsVirtual(pTable) ) return 0; 1755 #endif 1756 1757 #ifndef SQLITE_OMIT_VIEW 1758 /* A positive nCol means the columns names for this view are 1759 ** already known. 1760 */ 1761 if( pTable->nCol>0 ) return 0; 1762 1763 /* A negative nCol is a special marker meaning that we are currently 1764 ** trying to compute the column names. If we enter this routine with 1765 ** a negative nCol, it means two or more views form a loop, like this: 1766 ** 1767 ** CREATE VIEW one AS SELECT * FROM two; 1768 ** CREATE VIEW two AS SELECT * FROM one; 1769 ** 1770 ** Actually, the error above is now caught prior to reaching this point. 1771 ** But the following test is still important as it does come up 1772 ** in the following: 1773 ** 1774 ** CREATE TABLE main.ex1(a); 1775 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1776 ** SELECT * FROM temp.ex1; 1777 */ 1778 if( pTable->nCol<0 ){ 1779 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1780 return 1; 1781 } 1782 assert( pTable->nCol>=0 ); 1783 1784 /* If we get this far, it means we need to compute the table names. 1785 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1786 ** "*" elements in the results set of the view and will assign cursors 1787 ** to the elements of the FROM clause. But we do not want these changes 1788 ** to be permanent. So the computation is done on a copy of the SELECT 1789 ** statement that defines the view. 1790 */ 1791 assert( pTable->pSelect ); 1792 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1793 if( pSel ){ 1794 u8 enableLookaside = db->lookaside.bEnabled; 1795 n = pParse->nTab; 1796 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1797 pTable->nCol = -1; 1798 db->lookaside.bEnabled = 0; 1799 #ifndef SQLITE_OMIT_AUTHORIZATION 1800 xAuth = db->xAuth; 1801 db->xAuth = 0; 1802 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1803 db->xAuth = xAuth; 1804 #else 1805 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1806 #endif 1807 db->lookaside.bEnabled = enableLookaside; 1808 pParse->nTab = n; 1809 if( pSelTab ){ 1810 assert( pTable->aCol==0 ); 1811 pTable->nCol = pSelTab->nCol; 1812 pTable->aCol = pSelTab->aCol; 1813 pSelTab->nCol = 0; 1814 pSelTab->aCol = 0; 1815 sqlite3DeleteTable(db, pSelTab); 1816 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 1817 pTable->pSchema->flags |= DB_UnresetViews; 1818 }else{ 1819 pTable->nCol = 0; 1820 nErr++; 1821 } 1822 sqlite3SelectDelete(db, pSel); 1823 } else { 1824 nErr++; 1825 } 1826 #endif /* SQLITE_OMIT_VIEW */ 1827 return nErr; 1828 } 1829 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1830 1831 #ifndef SQLITE_OMIT_VIEW 1832 /* 1833 ** Clear the column names from every VIEW in database idx. 1834 */ 1835 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1836 HashElem *i; 1837 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 1838 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1839 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1840 Table *pTab = sqliteHashData(i); 1841 if( pTab->pSelect ){ 1842 sqliteDeleteColumnNames(db, pTab); 1843 pTab->aCol = 0; 1844 pTab->nCol = 0; 1845 } 1846 } 1847 DbClearProperty(db, idx, DB_UnresetViews); 1848 } 1849 #else 1850 # define sqliteViewResetAll(A,B) 1851 #endif /* SQLITE_OMIT_VIEW */ 1852 1853 /* 1854 ** This function is called by the VDBE to adjust the internal schema 1855 ** used by SQLite when the btree layer moves a table root page. The 1856 ** root-page of a table or index in database iDb has changed from iFrom 1857 ** to iTo. 1858 ** 1859 ** Ticket #1728: The symbol table might still contain information 1860 ** on tables and/or indices that are the process of being deleted. 1861 ** If you are unlucky, one of those deleted indices or tables might 1862 ** have the same rootpage number as the real table or index that is 1863 ** being moved. So we cannot stop searching after the first match 1864 ** because the first match might be for one of the deleted indices 1865 ** or tables and not the table/index that is actually being moved. 1866 ** We must continue looping until all tables and indices with 1867 ** rootpage==iFrom have been converted to have a rootpage of iTo 1868 ** in order to be certain that we got the right one. 1869 */ 1870 #ifndef SQLITE_OMIT_AUTOVACUUM 1871 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 1872 HashElem *pElem; 1873 Hash *pHash; 1874 Db *pDb; 1875 1876 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1877 pDb = &db->aDb[iDb]; 1878 pHash = &pDb->pSchema->tblHash; 1879 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1880 Table *pTab = sqliteHashData(pElem); 1881 if( pTab->tnum==iFrom ){ 1882 pTab->tnum = iTo; 1883 } 1884 } 1885 pHash = &pDb->pSchema->idxHash; 1886 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1887 Index *pIdx = sqliteHashData(pElem); 1888 if( pIdx->tnum==iFrom ){ 1889 pIdx->tnum = iTo; 1890 } 1891 } 1892 } 1893 #endif 1894 1895 /* 1896 ** Write code to erase the table with root-page iTable from database iDb. 1897 ** Also write code to modify the sqlite_master table and internal schema 1898 ** if a root-page of another table is moved by the btree-layer whilst 1899 ** erasing iTable (this can happen with an auto-vacuum database). 1900 */ 1901 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1902 Vdbe *v = sqlite3GetVdbe(pParse); 1903 int r1 = sqlite3GetTempReg(pParse); 1904 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1905 sqlite3MayAbort(pParse); 1906 #ifndef SQLITE_OMIT_AUTOVACUUM 1907 /* OP_Destroy stores an in integer r1. If this integer 1908 ** is non-zero, then it is the root page number of a table moved to 1909 ** location iTable. The following code modifies the sqlite_master table to 1910 ** reflect this. 1911 ** 1912 ** The "#NNN" in the SQL is a special constant that means whatever value 1913 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1914 ** token for additional information. 1915 */ 1916 sqlite3NestedParse(pParse, 1917 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1918 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1919 #endif 1920 sqlite3ReleaseTempReg(pParse, r1); 1921 } 1922 1923 /* 1924 ** Write VDBE code to erase table pTab and all associated indices on disk. 1925 ** Code to update the sqlite_master tables and internal schema definitions 1926 ** in case a root-page belonging to another table is moved by the btree layer 1927 ** is also added (this can happen with an auto-vacuum database). 1928 */ 1929 static void destroyTable(Parse *pParse, Table *pTab){ 1930 #ifdef SQLITE_OMIT_AUTOVACUUM 1931 Index *pIdx; 1932 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1933 destroyRootPage(pParse, pTab->tnum, iDb); 1934 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1935 destroyRootPage(pParse, pIdx->tnum, iDb); 1936 } 1937 #else 1938 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1939 ** is not defined), then it is important to call OP_Destroy on the 1940 ** table and index root-pages in order, starting with the numerically 1941 ** largest root-page number. This guarantees that none of the root-pages 1942 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1943 ** following were coded: 1944 ** 1945 ** OP_Destroy 4 0 1946 ** ... 1947 ** OP_Destroy 5 0 1948 ** 1949 ** and root page 5 happened to be the largest root-page number in the 1950 ** database, then root page 5 would be moved to page 4 by the 1951 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1952 ** a free-list page. 1953 */ 1954 int iTab = pTab->tnum; 1955 int iDestroyed = 0; 1956 1957 while( 1 ){ 1958 Index *pIdx; 1959 int iLargest = 0; 1960 1961 if( iDestroyed==0 || iTab<iDestroyed ){ 1962 iLargest = iTab; 1963 } 1964 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1965 int iIdx = pIdx->tnum; 1966 assert( pIdx->pSchema==pTab->pSchema ); 1967 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1968 iLargest = iIdx; 1969 } 1970 } 1971 if( iLargest==0 ){ 1972 return; 1973 }else{ 1974 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1975 destroyRootPage(pParse, iLargest, iDb); 1976 iDestroyed = iLargest; 1977 } 1978 } 1979 #endif 1980 } 1981 1982 /* 1983 ** This routine is called to do the work of a DROP TABLE statement. 1984 ** pName is the name of the table to be dropped. 1985 */ 1986 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1987 Table *pTab; 1988 Vdbe *v; 1989 sqlite3 *db = pParse->db; 1990 int iDb; 1991 1992 if( db->mallocFailed ){ 1993 goto exit_drop_table; 1994 } 1995 assert( pParse->nErr==0 ); 1996 assert( pName->nSrc==1 ); 1997 if( noErr ) db->suppressErr++; 1998 pTab = sqlite3LocateTable(pParse, isView, 1999 pName->a[0].zName, pName->a[0].zDatabase); 2000 if( noErr ) db->suppressErr--; 2001 2002 if( pTab==0 ){ 2003 goto exit_drop_table; 2004 } 2005 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2006 assert( iDb>=0 && iDb<db->nDb ); 2007 2008 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2009 ** it is initialized. 2010 */ 2011 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2012 goto exit_drop_table; 2013 } 2014 #ifndef SQLITE_OMIT_AUTHORIZATION 2015 { 2016 int code; 2017 const char *zTab = SCHEMA_TABLE(iDb); 2018 const char *zDb = db->aDb[iDb].zName; 2019 const char *zArg2 = 0; 2020 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2021 goto exit_drop_table; 2022 } 2023 if( isView ){ 2024 if( !OMIT_TEMPDB && iDb==1 ){ 2025 code = SQLITE_DROP_TEMP_VIEW; 2026 }else{ 2027 code = SQLITE_DROP_VIEW; 2028 } 2029 #ifndef SQLITE_OMIT_VIRTUALTABLE 2030 }else if( IsVirtual(pTab) ){ 2031 code = SQLITE_DROP_VTABLE; 2032 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2033 #endif 2034 }else{ 2035 if( !OMIT_TEMPDB && iDb==1 ){ 2036 code = SQLITE_DROP_TEMP_TABLE; 2037 }else{ 2038 code = SQLITE_DROP_TABLE; 2039 } 2040 } 2041 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2042 goto exit_drop_table; 2043 } 2044 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2045 goto exit_drop_table; 2046 } 2047 } 2048 #endif 2049 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2050 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2051 goto exit_drop_table; 2052 } 2053 2054 #ifndef SQLITE_OMIT_VIEW 2055 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2056 ** on a table. 2057 */ 2058 if( isView && pTab->pSelect==0 ){ 2059 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2060 goto exit_drop_table; 2061 } 2062 if( !isView && pTab->pSelect ){ 2063 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2064 goto exit_drop_table; 2065 } 2066 #endif 2067 2068 /* Generate code to remove the table from the master table 2069 ** on disk. 2070 */ 2071 v = sqlite3GetVdbe(pParse); 2072 if( v ){ 2073 Trigger *pTrigger; 2074 Db *pDb = &db->aDb[iDb]; 2075 sqlite3BeginWriteOperation(pParse, 1, iDb); 2076 2077 #ifndef SQLITE_OMIT_VIRTUALTABLE 2078 if( IsVirtual(pTab) ){ 2079 sqlite3VdbeAddOp0(v, OP_VBegin); 2080 } 2081 #endif 2082 sqlite3FkDropTable(pParse, pName, pTab); 2083 2084 /* Drop all triggers associated with the table being dropped. Code 2085 ** is generated to remove entries from sqlite_master and/or 2086 ** sqlite_temp_master if required. 2087 */ 2088 pTrigger = sqlite3TriggerList(pParse, pTab); 2089 while( pTrigger ){ 2090 assert( pTrigger->pSchema==pTab->pSchema || 2091 pTrigger->pSchema==db->aDb[1].pSchema ); 2092 sqlite3DropTriggerPtr(pParse, pTrigger); 2093 pTrigger = pTrigger->pNext; 2094 } 2095 2096 #ifndef SQLITE_OMIT_AUTOINCREMENT 2097 /* Remove any entries of the sqlite_sequence table associated with 2098 ** the table being dropped. This is done before the table is dropped 2099 ** at the btree level, in case the sqlite_sequence table needs to 2100 ** move as a result of the drop (can happen in auto-vacuum mode). 2101 */ 2102 if( pTab->tabFlags & TF_Autoincrement ){ 2103 sqlite3NestedParse(pParse, 2104 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2105 pDb->zName, pTab->zName 2106 ); 2107 } 2108 #endif 2109 2110 /* Drop all SQLITE_MASTER table and index entries that refer to the 2111 ** table. The program name loops through the master table and deletes 2112 ** every row that refers to a table of the same name as the one being 2113 ** dropped. Triggers are handled seperately because a trigger can be 2114 ** created in the temp database that refers to a table in another 2115 ** database. 2116 */ 2117 sqlite3NestedParse(pParse, 2118 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2119 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2120 2121 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2122 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2123 sqlite3NestedParse(pParse, 2124 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2125 ); 2126 } 2127 2128 if( !isView && !IsVirtual(pTab) ){ 2129 destroyTable(pParse, pTab); 2130 } 2131 2132 /* Remove the table entry from SQLite's internal schema and modify 2133 ** the schema cookie. 2134 */ 2135 if( IsVirtual(pTab) ){ 2136 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2137 } 2138 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2139 sqlite3ChangeCookie(pParse, iDb); 2140 } 2141 sqliteViewResetAll(db, iDb); 2142 2143 exit_drop_table: 2144 sqlite3SrcListDelete(db, pName); 2145 } 2146 2147 /* 2148 ** This routine is called to create a new foreign key on the table 2149 ** currently under construction. pFromCol determines which columns 2150 ** in the current table point to the foreign key. If pFromCol==0 then 2151 ** connect the key to the last column inserted. pTo is the name of 2152 ** the table referred to. pToCol is a list of tables in the other 2153 ** pTo table that the foreign key points to. flags contains all 2154 ** information about the conflict resolution algorithms specified 2155 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2156 ** 2157 ** An FKey structure is created and added to the table currently 2158 ** under construction in the pParse->pNewTable field. 2159 ** 2160 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2161 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2162 */ 2163 void sqlite3CreateForeignKey( 2164 Parse *pParse, /* Parsing context */ 2165 ExprList *pFromCol, /* Columns in this table that point to other table */ 2166 Token *pTo, /* Name of the other table */ 2167 ExprList *pToCol, /* Columns in the other table */ 2168 int flags /* Conflict resolution algorithms. */ 2169 ){ 2170 sqlite3 *db = pParse->db; 2171 #ifndef SQLITE_OMIT_FOREIGN_KEY 2172 FKey *pFKey = 0; 2173 FKey *pNextTo; 2174 Table *p = pParse->pNewTable; 2175 int nByte; 2176 int i; 2177 int nCol; 2178 char *z; 2179 2180 assert( pTo!=0 ); 2181 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2182 if( pFromCol==0 ){ 2183 int iCol = p->nCol-1; 2184 if( NEVER(iCol<0) ) goto fk_end; 2185 if( pToCol && pToCol->nExpr!=1 ){ 2186 sqlite3ErrorMsg(pParse, "foreign key on %s" 2187 " should reference only one column of table %T", 2188 p->aCol[iCol].zName, pTo); 2189 goto fk_end; 2190 } 2191 nCol = 1; 2192 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2193 sqlite3ErrorMsg(pParse, 2194 "number of columns in foreign key does not match the number of " 2195 "columns in the referenced table"); 2196 goto fk_end; 2197 }else{ 2198 nCol = pFromCol->nExpr; 2199 } 2200 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2201 if( pToCol ){ 2202 for(i=0; i<pToCol->nExpr; i++){ 2203 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2204 } 2205 } 2206 pFKey = sqlite3DbMallocZero(db, nByte ); 2207 if( pFKey==0 ){ 2208 goto fk_end; 2209 } 2210 pFKey->pFrom = p; 2211 pFKey->pNextFrom = p->pFKey; 2212 z = (char*)&pFKey->aCol[nCol]; 2213 pFKey->zTo = z; 2214 memcpy(z, pTo->z, pTo->n); 2215 z[pTo->n] = 0; 2216 sqlite3Dequote(z); 2217 z += pTo->n+1; 2218 pFKey->nCol = nCol; 2219 if( pFromCol==0 ){ 2220 pFKey->aCol[0].iFrom = p->nCol-1; 2221 }else{ 2222 for(i=0; i<nCol; i++){ 2223 int j; 2224 for(j=0; j<p->nCol; j++){ 2225 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2226 pFKey->aCol[i].iFrom = j; 2227 break; 2228 } 2229 } 2230 if( j>=p->nCol ){ 2231 sqlite3ErrorMsg(pParse, 2232 "unknown column \"%s\" in foreign key definition", 2233 pFromCol->a[i].zName); 2234 goto fk_end; 2235 } 2236 } 2237 } 2238 if( pToCol ){ 2239 for(i=0; i<nCol; i++){ 2240 int n = sqlite3Strlen30(pToCol->a[i].zName); 2241 pFKey->aCol[i].zCol = z; 2242 memcpy(z, pToCol->a[i].zName, n); 2243 z[n] = 0; 2244 z += n+1; 2245 } 2246 } 2247 pFKey->isDeferred = 0; 2248 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2249 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2250 2251 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2252 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2253 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2254 ); 2255 if( pNextTo==pFKey ){ 2256 db->mallocFailed = 1; 2257 goto fk_end; 2258 } 2259 if( pNextTo ){ 2260 assert( pNextTo->pPrevTo==0 ); 2261 pFKey->pNextTo = pNextTo; 2262 pNextTo->pPrevTo = pFKey; 2263 } 2264 2265 /* Link the foreign key to the table as the last step. 2266 */ 2267 p->pFKey = pFKey; 2268 pFKey = 0; 2269 2270 fk_end: 2271 sqlite3DbFree(db, pFKey); 2272 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2273 sqlite3ExprListDelete(db, pFromCol); 2274 sqlite3ExprListDelete(db, pToCol); 2275 } 2276 2277 /* 2278 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2279 ** clause is seen as part of a foreign key definition. The isDeferred 2280 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2281 ** The behavior of the most recently created foreign key is adjusted 2282 ** accordingly. 2283 */ 2284 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2285 #ifndef SQLITE_OMIT_FOREIGN_KEY 2286 Table *pTab; 2287 FKey *pFKey; 2288 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2289 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2290 pFKey->isDeferred = (u8)isDeferred; 2291 #endif 2292 } 2293 2294 /* 2295 ** Generate code that will erase and refill index *pIdx. This is 2296 ** used to initialize a newly created index or to recompute the 2297 ** content of an index in response to a REINDEX command. 2298 ** 2299 ** if memRootPage is not negative, it means that the index is newly 2300 ** created. The register specified by memRootPage contains the 2301 ** root page number of the index. If memRootPage is negative, then 2302 ** the index already exists and must be cleared before being refilled and 2303 ** the root page number of the index is taken from pIndex->tnum. 2304 */ 2305 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2306 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2307 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2308 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2309 int addr1; /* Address of top of loop */ 2310 int tnum; /* Root page of index */ 2311 Vdbe *v; /* Generate code into this virtual machine */ 2312 KeyInfo *pKey; /* KeyInfo for index */ 2313 int regIdxKey; /* Registers containing the index key */ 2314 int regRecord; /* Register holding assemblied index record */ 2315 sqlite3 *db = pParse->db; /* The database connection */ 2316 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2317 2318 #ifndef SQLITE_OMIT_AUTHORIZATION 2319 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2320 db->aDb[iDb].zName ) ){ 2321 return; 2322 } 2323 #endif 2324 2325 /* Require a write-lock on the table to perform this operation */ 2326 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2327 2328 v = sqlite3GetVdbe(pParse); 2329 if( v==0 ) return; 2330 if( memRootPage>=0 ){ 2331 tnum = memRootPage; 2332 }else{ 2333 tnum = pIndex->tnum; 2334 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2335 } 2336 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2337 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2338 (char *)pKey, P4_KEYINFO_HANDOFF); 2339 if( memRootPage>=0 ){ 2340 sqlite3VdbeChangeP5(v, 1); 2341 } 2342 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2343 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2344 regRecord = sqlite3GetTempReg(pParse); 2345 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2346 if( pIndex->onError!=OE_None ){ 2347 const int regRowid = regIdxKey + pIndex->nColumn; 2348 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2349 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2350 2351 /* The registers accessed by the OP_IsUnique opcode were allocated 2352 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2353 ** call above. Just before that function was freed they were released 2354 ** (made available to the compiler for reuse) using 2355 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2356 ** opcode use the values stored within seems dangerous. However, since 2357 ** we can be sure that no other temp registers have been allocated 2358 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2359 */ 2360 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2361 sqlite3HaltConstraint( 2362 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); 2363 } 2364 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2365 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2366 sqlite3ReleaseTempReg(pParse, regRecord); 2367 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2368 sqlite3VdbeJumpHere(v, addr1); 2369 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2370 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2371 } 2372 2373 /* 2374 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2375 ** and pTblList is the name of the table that is to be indexed. Both will 2376 ** be NULL for a primary key or an index that is created to satisfy a 2377 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2378 ** as the table to be indexed. pParse->pNewTable is a table that is 2379 ** currently being constructed by a CREATE TABLE statement. 2380 ** 2381 ** pList is a list of columns to be indexed. pList will be NULL if this 2382 ** is a primary key or unique-constraint on the most recent column added 2383 ** to the table currently under construction. 2384 ** 2385 ** If the index is created successfully, return a pointer to the new Index 2386 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2387 ** as the tables primary key (Index.autoIndex==2). 2388 */ 2389 Index *sqlite3CreateIndex( 2390 Parse *pParse, /* All information about this parse */ 2391 Token *pName1, /* First part of index name. May be NULL */ 2392 Token *pName2, /* Second part of index name. May be NULL */ 2393 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2394 ExprList *pList, /* A list of columns to be indexed */ 2395 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2396 Token *pStart, /* The CREATE token that begins this statement */ 2397 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2398 int sortOrder, /* Sort order of primary key when pList==NULL */ 2399 int ifNotExist /* Omit error if index already exists */ 2400 ){ 2401 Index *pRet = 0; /* Pointer to return */ 2402 Table *pTab = 0; /* Table to be indexed */ 2403 Index *pIndex = 0; /* The index to be created */ 2404 char *zName = 0; /* Name of the index */ 2405 int nName; /* Number of characters in zName */ 2406 int i, j; 2407 Token nullId; /* Fake token for an empty ID list */ 2408 DbFixer sFix; /* For assigning database names to pTable */ 2409 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2410 sqlite3 *db = pParse->db; 2411 Db *pDb; /* The specific table containing the indexed database */ 2412 int iDb; /* Index of the database that is being written */ 2413 Token *pName = 0; /* Unqualified name of the index to create */ 2414 struct ExprList_item *pListItem; /* For looping over pList */ 2415 int nCol; 2416 int nExtra = 0; 2417 char *zExtra; 2418 2419 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2420 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2421 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2422 goto exit_create_index; 2423 } 2424 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2425 goto exit_create_index; 2426 } 2427 2428 /* 2429 ** Find the table that is to be indexed. Return early if not found. 2430 */ 2431 if( pTblName!=0 ){ 2432 2433 /* Use the two-part index name to determine the database 2434 ** to search for the table. 'Fix' the table name to this db 2435 ** before looking up the table. 2436 */ 2437 assert( pName1 && pName2 ); 2438 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2439 if( iDb<0 ) goto exit_create_index; 2440 2441 #ifndef SQLITE_OMIT_TEMPDB 2442 /* If the index name was unqualified, check if the the table 2443 ** is a temp table. If so, set the database to 1. Do not do this 2444 ** if initialising a database schema. 2445 */ 2446 if( !db->init.busy ){ 2447 pTab = sqlite3SrcListLookup(pParse, pTblName); 2448 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2449 iDb = 1; 2450 } 2451 } 2452 #endif 2453 2454 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2455 sqlite3FixSrcList(&sFix, pTblName) 2456 ){ 2457 /* Because the parser constructs pTblName from a single identifier, 2458 ** sqlite3FixSrcList can never fail. */ 2459 assert(0); 2460 } 2461 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2462 pTblName->a[0].zDatabase); 2463 if( !pTab || db->mallocFailed ) goto exit_create_index; 2464 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2465 }else{ 2466 assert( pName==0 ); 2467 pTab = pParse->pNewTable; 2468 if( !pTab ) goto exit_create_index; 2469 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2470 } 2471 pDb = &db->aDb[iDb]; 2472 2473 assert( pTab!=0 ); 2474 assert( pParse->nErr==0 ); 2475 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2476 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2477 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2478 goto exit_create_index; 2479 } 2480 #ifndef SQLITE_OMIT_VIEW 2481 if( pTab->pSelect ){ 2482 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2483 goto exit_create_index; 2484 } 2485 #endif 2486 #ifndef SQLITE_OMIT_VIRTUALTABLE 2487 if( IsVirtual(pTab) ){ 2488 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2489 goto exit_create_index; 2490 } 2491 #endif 2492 2493 /* 2494 ** Find the name of the index. Make sure there is not already another 2495 ** index or table with the same name. 2496 ** 2497 ** Exception: If we are reading the names of permanent indices from the 2498 ** sqlite_master table (because some other process changed the schema) and 2499 ** one of the index names collides with the name of a temporary table or 2500 ** index, then we will continue to process this index. 2501 ** 2502 ** If pName==0 it means that we are 2503 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2504 ** own name. 2505 */ 2506 if( pName ){ 2507 zName = sqlite3NameFromToken(db, pName); 2508 if( zName==0 ) goto exit_create_index; 2509 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2510 goto exit_create_index; 2511 } 2512 if( !db->init.busy ){ 2513 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2514 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2515 goto exit_create_index; 2516 } 2517 } 2518 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2519 if( !ifNotExist ){ 2520 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2521 } 2522 goto exit_create_index; 2523 } 2524 }else{ 2525 int n; 2526 Index *pLoop; 2527 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2528 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2529 if( zName==0 ){ 2530 goto exit_create_index; 2531 } 2532 } 2533 2534 /* Check for authorization to create an index. 2535 */ 2536 #ifndef SQLITE_OMIT_AUTHORIZATION 2537 { 2538 const char *zDb = pDb->zName; 2539 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2540 goto exit_create_index; 2541 } 2542 i = SQLITE_CREATE_INDEX; 2543 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2544 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2545 goto exit_create_index; 2546 } 2547 } 2548 #endif 2549 2550 /* If pList==0, it means this routine was called to make a primary 2551 ** key out of the last column added to the table under construction. 2552 ** So create a fake list to simulate this. 2553 */ 2554 if( pList==0 ){ 2555 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2556 nullId.n = sqlite3Strlen30((char*)nullId.z); 2557 pList = sqlite3ExprListAppend(pParse, 0, 0); 2558 if( pList==0 ) goto exit_create_index; 2559 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2560 pList->a[0].sortOrder = (u8)sortOrder; 2561 } 2562 2563 /* Figure out how many bytes of space are required to store explicitly 2564 ** specified collation sequence names. 2565 */ 2566 for(i=0; i<pList->nExpr; i++){ 2567 Expr *pExpr = pList->a[i].pExpr; 2568 if( pExpr ){ 2569 CollSeq *pColl = pExpr->pColl; 2570 /* Either pColl!=0 or there was an OOM failure. But if an OOM 2571 ** failure we have quit before reaching this point. */ 2572 if( ALWAYS(pColl) ){ 2573 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2574 } 2575 } 2576 } 2577 2578 /* 2579 ** Allocate the index structure. 2580 */ 2581 nName = sqlite3Strlen30(zName); 2582 nCol = pList->nExpr; 2583 pIndex = sqlite3DbMallocZero(db, 2584 sizeof(Index) + /* Index structure */ 2585 sizeof(int)*nCol + /* Index.aiColumn */ 2586 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2587 sizeof(char *)*nCol + /* Index.azColl */ 2588 sizeof(u8)*nCol + /* Index.aSortOrder */ 2589 nName + 1 + /* Index.zName */ 2590 nExtra /* Collation sequence names */ 2591 ); 2592 if( db->mallocFailed ){ 2593 goto exit_create_index; 2594 } 2595 pIndex->azColl = (char**)(&pIndex[1]); 2596 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2597 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2598 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2599 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2600 zExtra = (char *)(&pIndex->zName[nName+1]); 2601 memcpy(pIndex->zName, zName, nName+1); 2602 pIndex->pTable = pTab; 2603 pIndex->nColumn = pList->nExpr; 2604 pIndex->onError = (u8)onError; 2605 pIndex->autoIndex = (u8)(pName==0); 2606 pIndex->pSchema = db->aDb[iDb].pSchema; 2607 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2608 2609 /* Check to see if we should honor DESC requests on index columns 2610 */ 2611 if( pDb->pSchema->file_format>=4 ){ 2612 sortOrderMask = -1; /* Honor DESC */ 2613 }else{ 2614 sortOrderMask = 0; /* Ignore DESC */ 2615 } 2616 2617 /* Scan the names of the columns of the table to be indexed and 2618 ** load the column indices into the Index structure. Report an error 2619 ** if any column is not found. 2620 ** 2621 ** TODO: Add a test to make sure that the same column is not named 2622 ** more than once within the same index. Only the first instance of 2623 ** the column will ever be used by the optimizer. Note that using the 2624 ** same column more than once cannot be an error because that would 2625 ** break backwards compatibility - it needs to be a warning. 2626 */ 2627 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2628 const char *zColName = pListItem->zName; 2629 Column *pTabCol; 2630 int requestedSortOrder; 2631 char *zColl; /* Collation sequence name */ 2632 2633 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2634 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2635 } 2636 if( j>=pTab->nCol ){ 2637 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2638 pTab->zName, zColName); 2639 pParse->checkSchema = 1; 2640 goto exit_create_index; 2641 } 2642 pIndex->aiColumn[i] = j; 2643 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of 2644 ** the way the "idxlist" non-terminal is constructed by the parser, 2645 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl 2646 ** must exist or else there must have been an OOM error. But if there 2647 ** was an OOM error, we would never reach this point. */ 2648 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ 2649 int nColl; 2650 zColl = pListItem->pExpr->pColl->zName; 2651 nColl = sqlite3Strlen30(zColl) + 1; 2652 assert( nExtra>=nColl ); 2653 memcpy(zExtra, zColl, nColl); 2654 zColl = zExtra; 2655 zExtra += nColl; 2656 nExtra -= nColl; 2657 }else{ 2658 zColl = pTab->aCol[j].zColl; 2659 if( !zColl ){ 2660 zColl = db->pDfltColl->zName; 2661 } 2662 } 2663 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2664 goto exit_create_index; 2665 } 2666 pIndex->azColl[i] = zColl; 2667 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2668 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2669 } 2670 sqlite3DefaultRowEst(pIndex); 2671 2672 if( pTab==pParse->pNewTable ){ 2673 /* This routine has been called to create an automatic index as a 2674 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2675 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2676 ** i.e. one of: 2677 ** 2678 ** CREATE TABLE t(x PRIMARY KEY, y); 2679 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2680 ** 2681 ** Either way, check to see if the table already has such an index. If 2682 ** so, don't bother creating this one. This only applies to 2683 ** automatically created indices. Users can do as they wish with 2684 ** explicit indices. 2685 ** 2686 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2687 ** (and thus suppressing the second one) even if they have different 2688 ** sort orders. 2689 ** 2690 ** If there are different collating sequences or if the columns of 2691 ** the constraint occur in different orders, then the constraints are 2692 ** considered distinct and both result in separate indices. 2693 */ 2694 Index *pIdx; 2695 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2696 int k; 2697 assert( pIdx->onError!=OE_None ); 2698 assert( pIdx->autoIndex ); 2699 assert( pIndex->onError!=OE_None ); 2700 2701 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2702 for(k=0; k<pIdx->nColumn; k++){ 2703 const char *z1; 2704 const char *z2; 2705 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2706 z1 = pIdx->azColl[k]; 2707 z2 = pIndex->azColl[k]; 2708 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2709 } 2710 if( k==pIdx->nColumn ){ 2711 if( pIdx->onError!=pIndex->onError ){ 2712 /* This constraint creates the same index as a previous 2713 ** constraint specified somewhere in the CREATE TABLE statement. 2714 ** However the ON CONFLICT clauses are different. If both this 2715 ** constraint and the previous equivalent constraint have explicit 2716 ** ON CONFLICT clauses this is an error. Otherwise, use the 2717 ** explicitly specified behaviour for the index. 2718 */ 2719 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2720 sqlite3ErrorMsg(pParse, 2721 "conflicting ON CONFLICT clauses specified", 0); 2722 } 2723 if( pIdx->onError==OE_Default ){ 2724 pIdx->onError = pIndex->onError; 2725 } 2726 } 2727 goto exit_create_index; 2728 } 2729 } 2730 } 2731 2732 /* Link the new Index structure to its table and to the other 2733 ** in-memory database structures. 2734 */ 2735 if( db->init.busy ){ 2736 Index *p; 2737 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 2738 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2739 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2740 pIndex); 2741 if( p ){ 2742 assert( p==pIndex ); /* Malloc must have failed */ 2743 db->mallocFailed = 1; 2744 goto exit_create_index; 2745 } 2746 db->flags |= SQLITE_InternChanges; 2747 if( pTblName!=0 ){ 2748 pIndex->tnum = db->init.newTnum; 2749 } 2750 } 2751 2752 /* If the db->init.busy is 0 then create the index on disk. This 2753 ** involves writing the index into the master table and filling in the 2754 ** index with the current table contents. 2755 ** 2756 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2757 ** command. db->init.busy is 1 when a database is opened and 2758 ** CREATE INDEX statements are read out of the master table. In 2759 ** the latter case the index already exists on disk, which is why 2760 ** we don't want to recreate it. 2761 ** 2762 ** If pTblName==0 it means this index is generated as a primary key 2763 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2764 ** has just been created, it contains no data and the index initialization 2765 ** step can be skipped. 2766 */ 2767 else{ /* if( db->init.busy==0 ) */ 2768 Vdbe *v; 2769 char *zStmt; 2770 int iMem = ++pParse->nMem; 2771 2772 v = sqlite3GetVdbe(pParse); 2773 if( v==0 ) goto exit_create_index; 2774 2775 2776 /* Create the rootpage for the index 2777 */ 2778 sqlite3BeginWriteOperation(pParse, 1, iDb); 2779 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2780 2781 /* Gather the complete text of the CREATE INDEX statement into 2782 ** the zStmt variable 2783 */ 2784 if( pStart ){ 2785 assert( pEnd!=0 ); 2786 /* A named index with an explicit CREATE INDEX statement */ 2787 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2788 onError==OE_None ? "" : " UNIQUE", 2789 pEnd->z - pName->z + 1, 2790 pName->z); 2791 }else{ 2792 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2793 /* zStmt = sqlite3MPrintf(""); */ 2794 zStmt = 0; 2795 } 2796 2797 /* Add an entry in sqlite_master for this index 2798 */ 2799 sqlite3NestedParse(pParse, 2800 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2801 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2802 pIndex->zName, 2803 pTab->zName, 2804 iMem, 2805 zStmt 2806 ); 2807 sqlite3DbFree(db, zStmt); 2808 2809 /* Fill the index with data and reparse the schema. Code an OP_Expire 2810 ** to invalidate all pre-compiled statements. 2811 */ 2812 if( pTblName ){ 2813 sqlite3RefillIndex(pParse, pIndex, iMem); 2814 sqlite3ChangeCookie(pParse, iDb); 2815 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2816 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 2817 P4_DYNAMIC); 2818 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2819 } 2820 } 2821 2822 /* When adding an index to the list of indices for a table, make 2823 ** sure all indices labeled OE_Replace come after all those labeled 2824 ** OE_Ignore. This is necessary for the correct constraint check 2825 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2826 ** UPDATE and INSERT statements. 2827 */ 2828 if( db->init.busy || pTblName==0 ){ 2829 if( onError!=OE_Replace || pTab->pIndex==0 2830 || pTab->pIndex->onError==OE_Replace){ 2831 pIndex->pNext = pTab->pIndex; 2832 pTab->pIndex = pIndex; 2833 }else{ 2834 Index *pOther = pTab->pIndex; 2835 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2836 pOther = pOther->pNext; 2837 } 2838 pIndex->pNext = pOther->pNext; 2839 pOther->pNext = pIndex; 2840 } 2841 pRet = pIndex; 2842 pIndex = 0; 2843 } 2844 2845 /* Clean up before exiting */ 2846 exit_create_index: 2847 if( pIndex ){ 2848 sqlite3DbFree(db, pIndex->zColAff); 2849 sqlite3DbFree(db, pIndex); 2850 } 2851 sqlite3ExprListDelete(db, pList); 2852 sqlite3SrcListDelete(db, pTblName); 2853 sqlite3DbFree(db, zName); 2854 return pRet; 2855 } 2856 2857 /* 2858 ** Fill the Index.aiRowEst[] array with default information - information 2859 ** to be used when we have not run the ANALYZE command. 2860 ** 2861 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2862 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2863 ** number of rows in the table that match any particular value of the 2864 ** first column of the index. aiRowEst[2] is an estimate of the number 2865 ** of rows that match any particular combiniation of the first 2 columns 2866 ** of the index. And so forth. It must always be the case that 2867 * 2868 ** aiRowEst[N]<=aiRowEst[N-1] 2869 ** aiRowEst[N]>=1 2870 ** 2871 ** Apart from that, we have little to go on besides intuition as to 2872 ** how aiRowEst[] should be initialized. The numbers generated here 2873 ** are based on typical values found in actual indices. 2874 */ 2875 void sqlite3DefaultRowEst(Index *pIdx){ 2876 unsigned *a = pIdx->aiRowEst; 2877 int i; 2878 unsigned n; 2879 assert( a!=0 ); 2880 a[0] = pIdx->pTable->nRowEst; 2881 if( a[0]<10 ) a[0] = 10; 2882 n = 10; 2883 for(i=1; i<=pIdx->nColumn; i++){ 2884 a[i] = n; 2885 if( n>5 ) n--; 2886 } 2887 if( pIdx->onError!=OE_None ){ 2888 a[pIdx->nColumn] = 1; 2889 } 2890 } 2891 2892 /* 2893 ** This routine will drop an existing named index. This routine 2894 ** implements the DROP INDEX statement. 2895 */ 2896 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2897 Index *pIndex; 2898 Vdbe *v; 2899 sqlite3 *db = pParse->db; 2900 int iDb; 2901 2902 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2903 if( db->mallocFailed ){ 2904 goto exit_drop_index; 2905 } 2906 assert( pName->nSrc==1 ); 2907 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2908 goto exit_drop_index; 2909 } 2910 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2911 if( pIndex==0 ){ 2912 if( !ifExists ){ 2913 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2914 } 2915 pParse->checkSchema = 1; 2916 goto exit_drop_index; 2917 } 2918 if( pIndex->autoIndex ){ 2919 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2920 "or PRIMARY KEY constraint cannot be dropped", 0); 2921 goto exit_drop_index; 2922 } 2923 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2924 #ifndef SQLITE_OMIT_AUTHORIZATION 2925 { 2926 int code = SQLITE_DROP_INDEX; 2927 Table *pTab = pIndex->pTable; 2928 const char *zDb = db->aDb[iDb].zName; 2929 const char *zTab = SCHEMA_TABLE(iDb); 2930 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2931 goto exit_drop_index; 2932 } 2933 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2934 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2935 goto exit_drop_index; 2936 } 2937 } 2938 #endif 2939 2940 /* Generate code to remove the index and from the master table */ 2941 v = sqlite3GetVdbe(pParse); 2942 if( v ){ 2943 sqlite3BeginWriteOperation(pParse, 1, iDb); 2944 sqlite3NestedParse(pParse, 2945 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 2946 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2947 pIndex->zName 2948 ); 2949 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2950 sqlite3NestedParse(pParse, 2951 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2952 db->aDb[iDb].zName, pIndex->zName 2953 ); 2954 } 2955 sqlite3ChangeCookie(pParse, iDb); 2956 destroyRootPage(pParse, pIndex->tnum, iDb); 2957 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2958 } 2959 2960 exit_drop_index: 2961 sqlite3SrcListDelete(db, pName); 2962 } 2963 2964 /* 2965 ** pArray is a pointer to an array of objects. Each object in the 2966 ** array is szEntry bytes in size. This routine allocates a new 2967 ** object on the end of the array. 2968 ** 2969 ** *pnEntry is the number of entries already in use. *pnAlloc is 2970 ** the previously allocated size of the array. initSize is the 2971 ** suggested initial array size allocation. 2972 ** 2973 ** The index of the new entry is returned in *pIdx. 2974 ** 2975 ** This routine returns a pointer to the array of objects. This 2976 ** might be the same as the pArray parameter or it might be a different 2977 ** pointer if the array was resized. 2978 */ 2979 void *sqlite3ArrayAllocate( 2980 sqlite3 *db, /* Connection to notify of malloc failures */ 2981 void *pArray, /* Array of objects. Might be reallocated */ 2982 int szEntry, /* Size of each object in the array */ 2983 int initSize, /* Suggested initial allocation, in elements */ 2984 int *pnEntry, /* Number of objects currently in use */ 2985 int *pnAlloc, /* Current size of the allocation, in elements */ 2986 int *pIdx /* Write the index of a new slot here */ 2987 ){ 2988 char *z; 2989 if( *pnEntry >= *pnAlloc ){ 2990 void *pNew; 2991 int newSize; 2992 newSize = (*pnAlloc)*2 + initSize; 2993 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 2994 if( pNew==0 ){ 2995 *pIdx = -1; 2996 return pArray; 2997 } 2998 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 2999 pArray = pNew; 3000 } 3001 z = (char*)pArray; 3002 memset(&z[*pnEntry * szEntry], 0, szEntry); 3003 *pIdx = *pnEntry; 3004 ++*pnEntry; 3005 return pArray; 3006 } 3007 3008 /* 3009 ** Append a new element to the given IdList. Create a new IdList if 3010 ** need be. 3011 ** 3012 ** A new IdList is returned, or NULL if malloc() fails. 3013 */ 3014 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3015 int i; 3016 if( pList==0 ){ 3017 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3018 if( pList==0 ) return 0; 3019 pList->nAlloc = 0; 3020 } 3021 pList->a = sqlite3ArrayAllocate( 3022 db, 3023 pList->a, 3024 sizeof(pList->a[0]), 3025 5, 3026 &pList->nId, 3027 &pList->nAlloc, 3028 &i 3029 ); 3030 if( i<0 ){ 3031 sqlite3IdListDelete(db, pList); 3032 return 0; 3033 } 3034 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3035 return pList; 3036 } 3037 3038 /* 3039 ** Delete an IdList. 3040 */ 3041 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3042 int i; 3043 if( pList==0 ) return; 3044 for(i=0; i<pList->nId; i++){ 3045 sqlite3DbFree(db, pList->a[i].zName); 3046 } 3047 sqlite3DbFree(db, pList->a); 3048 sqlite3DbFree(db, pList); 3049 } 3050 3051 /* 3052 ** Return the index in pList of the identifier named zId. Return -1 3053 ** if not found. 3054 */ 3055 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3056 int i; 3057 if( pList==0 ) return -1; 3058 for(i=0; i<pList->nId; i++){ 3059 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3060 } 3061 return -1; 3062 } 3063 3064 /* 3065 ** Expand the space allocated for the given SrcList object by 3066 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3067 ** New slots are zeroed. 3068 ** 3069 ** For example, suppose a SrcList initially contains two entries: A,B. 3070 ** To append 3 new entries onto the end, do this: 3071 ** 3072 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3073 ** 3074 ** After the call above it would contain: A, B, nil, nil, nil. 3075 ** If the iStart argument had been 1 instead of 2, then the result 3076 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3077 ** the iStart value would be 0. The result then would 3078 ** be: nil, nil, nil, A, B. 3079 ** 3080 ** If a memory allocation fails the SrcList is unchanged. The 3081 ** db->mallocFailed flag will be set to true. 3082 */ 3083 SrcList *sqlite3SrcListEnlarge( 3084 sqlite3 *db, /* Database connection to notify of OOM errors */ 3085 SrcList *pSrc, /* The SrcList to be enlarged */ 3086 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3087 int iStart /* Index in pSrc->a[] of first new slot */ 3088 ){ 3089 int i; 3090 3091 /* Sanity checking on calling parameters */ 3092 assert( iStart>=0 ); 3093 assert( nExtra>=1 ); 3094 assert( pSrc!=0 ); 3095 assert( iStart<=pSrc->nSrc ); 3096 3097 /* Allocate additional space if needed */ 3098 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3099 SrcList *pNew; 3100 int nAlloc = pSrc->nSrc+nExtra; 3101 int nGot; 3102 pNew = sqlite3DbRealloc(db, pSrc, 3103 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3104 if( pNew==0 ){ 3105 assert( db->mallocFailed ); 3106 return pSrc; 3107 } 3108 pSrc = pNew; 3109 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3110 pSrc->nAlloc = (u16)nGot; 3111 } 3112 3113 /* Move existing slots that come after the newly inserted slots 3114 ** out of the way */ 3115 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3116 pSrc->a[i+nExtra] = pSrc->a[i]; 3117 } 3118 pSrc->nSrc += (i16)nExtra; 3119 3120 /* Zero the newly allocated slots */ 3121 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3122 for(i=iStart; i<iStart+nExtra; i++){ 3123 pSrc->a[i].iCursor = -1; 3124 } 3125 3126 /* Return a pointer to the enlarged SrcList */ 3127 return pSrc; 3128 } 3129 3130 3131 /* 3132 ** Append a new table name to the given SrcList. Create a new SrcList if 3133 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3134 ** 3135 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3136 ** SrcList might be the same as the SrcList that was input or it might be 3137 ** a new one. If an OOM error does occurs, then the prior value of pList 3138 ** that is input to this routine is automatically freed. 3139 ** 3140 ** If pDatabase is not null, it means that the table has an optional 3141 ** database name prefix. Like this: "database.table". The pDatabase 3142 ** points to the table name and the pTable points to the database name. 3143 ** The SrcList.a[].zName field is filled with the table name which might 3144 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3145 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3146 ** or with NULL if no database is specified. 3147 ** 3148 ** In other words, if call like this: 3149 ** 3150 ** sqlite3SrcListAppend(D,A,B,0); 3151 ** 3152 ** Then B is a table name and the database name is unspecified. If called 3153 ** like this: 3154 ** 3155 ** sqlite3SrcListAppend(D,A,B,C); 3156 ** 3157 ** Then C is the table name and B is the database name. If C is defined 3158 ** then so is B. In other words, we never have a case where: 3159 ** 3160 ** sqlite3SrcListAppend(D,A,0,C); 3161 ** 3162 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3163 ** before being added to the SrcList. 3164 */ 3165 SrcList *sqlite3SrcListAppend( 3166 sqlite3 *db, /* Connection to notify of malloc failures */ 3167 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3168 Token *pTable, /* Table to append */ 3169 Token *pDatabase /* Database of the table */ 3170 ){ 3171 struct SrcList_item *pItem; 3172 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3173 if( pList==0 ){ 3174 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3175 if( pList==0 ) return 0; 3176 pList->nAlloc = 1; 3177 } 3178 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3179 if( db->mallocFailed ){ 3180 sqlite3SrcListDelete(db, pList); 3181 return 0; 3182 } 3183 pItem = &pList->a[pList->nSrc-1]; 3184 if( pDatabase && pDatabase->z==0 ){ 3185 pDatabase = 0; 3186 } 3187 if( pDatabase ){ 3188 Token *pTemp = pDatabase; 3189 pDatabase = pTable; 3190 pTable = pTemp; 3191 } 3192 pItem->zName = sqlite3NameFromToken(db, pTable); 3193 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3194 return pList; 3195 } 3196 3197 /* 3198 ** Assign VdbeCursor index numbers to all tables in a SrcList 3199 */ 3200 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3201 int i; 3202 struct SrcList_item *pItem; 3203 assert(pList || pParse->db->mallocFailed ); 3204 if( pList ){ 3205 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3206 if( pItem->iCursor>=0 ) break; 3207 pItem->iCursor = pParse->nTab++; 3208 if( pItem->pSelect ){ 3209 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3210 } 3211 } 3212 } 3213 } 3214 3215 /* 3216 ** Delete an entire SrcList including all its substructure. 3217 */ 3218 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3219 int i; 3220 struct SrcList_item *pItem; 3221 if( pList==0 ) return; 3222 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3223 sqlite3DbFree(db, pItem->zDatabase); 3224 sqlite3DbFree(db, pItem->zName); 3225 sqlite3DbFree(db, pItem->zAlias); 3226 sqlite3DbFree(db, pItem->zIndex); 3227 sqlite3DeleteTable(db, pItem->pTab); 3228 sqlite3SelectDelete(db, pItem->pSelect); 3229 sqlite3ExprDelete(db, pItem->pOn); 3230 sqlite3IdListDelete(db, pItem->pUsing); 3231 } 3232 sqlite3DbFree(db, pList); 3233 } 3234 3235 /* 3236 ** This routine is called by the parser to add a new term to the 3237 ** end of a growing FROM clause. The "p" parameter is the part of 3238 ** the FROM clause that has already been constructed. "p" is NULL 3239 ** if this is the first term of the FROM clause. pTable and pDatabase 3240 ** are the name of the table and database named in the FROM clause term. 3241 ** pDatabase is NULL if the database name qualifier is missing - the 3242 ** usual case. If the term has a alias, then pAlias points to the 3243 ** alias token. If the term is a subquery, then pSubquery is the 3244 ** SELECT statement that the subquery encodes. The pTable and 3245 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3246 ** parameters are the content of the ON and USING clauses. 3247 ** 3248 ** Return a new SrcList which encodes is the FROM with the new 3249 ** term added. 3250 */ 3251 SrcList *sqlite3SrcListAppendFromTerm( 3252 Parse *pParse, /* Parsing context */ 3253 SrcList *p, /* The left part of the FROM clause already seen */ 3254 Token *pTable, /* Name of the table to add to the FROM clause */ 3255 Token *pDatabase, /* Name of the database containing pTable */ 3256 Token *pAlias, /* The right-hand side of the AS subexpression */ 3257 Select *pSubquery, /* A subquery used in place of a table name */ 3258 Expr *pOn, /* The ON clause of a join */ 3259 IdList *pUsing /* The USING clause of a join */ 3260 ){ 3261 struct SrcList_item *pItem; 3262 sqlite3 *db = pParse->db; 3263 if( !p && (pOn || pUsing) ){ 3264 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3265 (pOn ? "ON" : "USING") 3266 ); 3267 goto append_from_error; 3268 } 3269 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3270 if( p==0 || NEVER(p->nSrc==0) ){ 3271 goto append_from_error; 3272 } 3273 pItem = &p->a[p->nSrc-1]; 3274 assert( pAlias!=0 ); 3275 if( pAlias->n ){ 3276 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3277 } 3278 pItem->pSelect = pSubquery; 3279 pItem->pOn = pOn; 3280 pItem->pUsing = pUsing; 3281 return p; 3282 3283 append_from_error: 3284 assert( p==0 ); 3285 sqlite3ExprDelete(db, pOn); 3286 sqlite3IdListDelete(db, pUsing); 3287 sqlite3SelectDelete(db, pSubquery); 3288 return 0; 3289 } 3290 3291 /* 3292 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3293 ** element of the source-list passed as the second argument. 3294 */ 3295 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3296 assert( pIndexedBy!=0 ); 3297 if( p && ALWAYS(p->nSrc>0) ){ 3298 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3299 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3300 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3301 /* A "NOT INDEXED" clause was supplied. See parse.y 3302 ** construct "indexed_opt" for details. */ 3303 pItem->notIndexed = 1; 3304 }else{ 3305 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3306 } 3307 } 3308 } 3309 3310 /* 3311 ** When building up a FROM clause in the parser, the join operator 3312 ** is initially attached to the left operand. But the code generator 3313 ** expects the join operator to be on the right operand. This routine 3314 ** Shifts all join operators from left to right for an entire FROM 3315 ** clause. 3316 ** 3317 ** Example: Suppose the join is like this: 3318 ** 3319 ** A natural cross join B 3320 ** 3321 ** The operator is "natural cross join". The A and B operands are stored 3322 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3323 ** operator with A. This routine shifts that operator over to B. 3324 */ 3325 void sqlite3SrcListShiftJoinType(SrcList *p){ 3326 if( p && p->a ){ 3327 int i; 3328 for(i=p->nSrc-1; i>0; i--){ 3329 p->a[i].jointype = p->a[i-1].jointype; 3330 } 3331 p->a[0].jointype = 0; 3332 } 3333 } 3334 3335 /* 3336 ** Begin a transaction 3337 */ 3338 void sqlite3BeginTransaction(Parse *pParse, int type){ 3339 sqlite3 *db; 3340 Vdbe *v; 3341 int i; 3342 3343 assert( pParse!=0 ); 3344 db = pParse->db; 3345 assert( db!=0 ); 3346 /* if( db->aDb[0].pBt==0 ) return; */ 3347 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3348 return; 3349 } 3350 v = sqlite3GetVdbe(pParse); 3351 if( !v ) return; 3352 if( type!=TK_DEFERRED ){ 3353 for(i=0; i<db->nDb; i++){ 3354 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3355 sqlite3VdbeUsesBtree(v, i); 3356 } 3357 } 3358 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3359 } 3360 3361 /* 3362 ** Commit a transaction 3363 */ 3364 void sqlite3CommitTransaction(Parse *pParse){ 3365 sqlite3 *db; 3366 Vdbe *v; 3367 3368 assert( pParse!=0 ); 3369 db = pParse->db; 3370 assert( db!=0 ); 3371 /* if( db->aDb[0].pBt==0 ) return; */ 3372 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3373 return; 3374 } 3375 v = sqlite3GetVdbe(pParse); 3376 if( v ){ 3377 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3378 } 3379 } 3380 3381 /* 3382 ** Rollback a transaction 3383 */ 3384 void sqlite3RollbackTransaction(Parse *pParse){ 3385 sqlite3 *db; 3386 Vdbe *v; 3387 3388 assert( pParse!=0 ); 3389 db = pParse->db; 3390 assert( db!=0 ); 3391 /* if( db->aDb[0].pBt==0 ) return; */ 3392 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3393 return; 3394 } 3395 v = sqlite3GetVdbe(pParse); 3396 if( v ){ 3397 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3398 } 3399 } 3400 3401 /* 3402 ** This function is called by the parser when it parses a command to create, 3403 ** release or rollback an SQL savepoint. 3404 */ 3405 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3406 char *zName = sqlite3NameFromToken(pParse->db, pName); 3407 if( zName ){ 3408 Vdbe *v = sqlite3GetVdbe(pParse); 3409 #ifndef SQLITE_OMIT_AUTHORIZATION 3410 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3411 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3412 #endif 3413 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3414 sqlite3DbFree(pParse->db, zName); 3415 return; 3416 } 3417 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3418 } 3419 } 3420 3421 /* 3422 ** Make sure the TEMP database is open and available for use. Return 3423 ** the number of errors. Leave any error messages in the pParse structure. 3424 */ 3425 int sqlite3OpenTempDatabase(Parse *pParse){ 3426 sqlite3 *db = pParse->db; 3427 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3428 int rc; 3429 Btree *pBt; 3430 static const int flags = 3431 SQLITE_OPEN_READWRITE | 3432 SQLITE_OPEN_CREATE | 3433 SQLITE_OPEN_EXCLUSIVE | 3434 SQLITE_OPEN_DELETEONCLOSE | 3435 SQLITE_OPEN_TEMP_DB; 3436 3437 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); 3438 if( rc!=SQLITE_OK ){ 3439 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3440 "file for storing temporary tables"); 3441 pParse->rc = rc; 3442 return 1; 3443 } 3444 db->aDb[1].pBt = pBt; 3445 assert( db->aDb[1].pSchema ); 3446 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3447 db->mallocFailed = 1; 3448 return 1; 3449 } 3450 } 3451 return 0; 3452 } 3453 3454 /* 3455 ** Generate VDBE code that will verify the schema cookie and start 3456 ** a read-transaction for all named database files. 3457 ** 3458 ** It is important that all schema cookies be verified and all 3459 ** read transactions be started before anything else happens in 3460 ** the VDBE program. But this routine can be called after much other 3461 ** code has been generated. So here is what we do: 3462 ** 3463 ** The first time this routine is called, we code an OP_Goto that 3464 ** will jump to a subroutine at the end of the program. Then we 3465 ** record every database that needs its schema verified in the 3466 ** pParse->cookieMask field. Later, after all other code has been 3467 ** generated, the subroutine that does the cookie verifications and 3468 ** starts the transactions will be coded and the OP_Goto P2 value 3469 ** will be made to point to that subroutine. The generation of the 3470 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3471 ** 3472 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3473 ** schema on any databases. This can be used to position the OP_Goto 3474 ** early in the code, before we know if any database tables will be used. 3475 */ 3476 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3477 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3478 3479 if( pToplevel->cookieGoto==0 ){ 3480 Vdbe *v = sqlite3GetVdbe(pToplevel); 3481 if( v==0 ) return; /* This only happens if there was a prior error */ 3482 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3483 } 3484 if( iDb>=0 ){ 3485 sqlite3 *db = pToplevel->db; 3486 yDbMask mask; 3487 3488 assert( iDb<db->nDb ); 3489 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3490 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3491 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3492 mask = ((yDbMask)1)<<iDb; 3493 if( (pToplevel->cookieMask & mask)==0 ){ 3494 pToplevel->cookieMask |= mask; 3495 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3496 if( !OMIT_TEMPDB && iDb==1 ){ 3497 sqlite3OpenTempDatabase(pToplevel); 3498 } 3499 } 3500 } 3501 } 3502 3503 /* 3504 ** Generate VDBE code that prepares for doing an operation that 3505 ** might change the database. 3506 ** 3507 ** This routine starts a new transaction if we are not already within 3508 ** a transaction. If we are already within a transaction, then a checkpoint 3509 ** is set if the setStatement parameter is true. A checkpoint should 3510 ** be set for operations that might fail (due to a constraint) part of 3511 ** the way through and which will need to undo some writes without having to 3512 ** rollback the whole transaction. For operations where all constraints 3513 ** can be checked before any changes are made to the database, it is never 3514 ** necessary to undo a write and the checkpoint should not be set. 3515 */ 3516 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3517 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3518 sqlite3CodeVerifySchema(pParse, iDb); 3519 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3520 pToplevel->isMultiWrite |= setStatement; 3521 } 3522 3523 /* 3524 ** Indicate that the statement currently under construction might write 3525 ** more than one entry (example: deleting one row then inserting another, 3526 ** inserting multiple rows in a table, or inserting a row and index entries.) 3527 ** If an abort occurs after some of these writes have completed, then it will 3528 ** be necessary to undo the completed writes. 3529 */ 3530 void sqlite3MultiWrite(Parse *pParse){ 3531 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3532 pToplevel->isMultiWrite = 1; 3533 } 3534 3535 /* 3536 ** The code generator calls this routine if is discovers that it is 3537 ** possible to abort a statement prior to completion. In order to 3538 ** perform this abort without corrupting the database, we need to make 3539 ** sure that the statement is protected by a statement transaction. 3540 ** 3541 ** Technically, we only need to set the mayAbort flag if the 3542 ** isMultiWrite flag was previously set. There is a time dependency 3543 ** such that the abort must occur after the multiwrite. This makes 3544 ** some statements involving the REPLACE conflict resolution algorithm 3545 ** go a little faster. But taking advantage of this time dependency 3546 ** makes it more difficult to prove that the code is correct (in 3547 ** particular, it prevents us from writing an effective 3548 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3549 ** to take the safe route and skip the optimization. 3550 */ 3551 void sqlite3MayAbort(Parse *pParse){ 3552 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3553 pToplevel->mayAbort = 1; 3554 } 3555 3556 /* 3557 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3558 ** error. The onError parameter determines which (if any) of the statement 3559 ** and/or current transaction is rolled back. 3560 */ 3561 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ 3562 Vdbe *v = sqlite3GetVdbe(pParse); 3563 if( onError==OE_Abort ){ 3564 sqlite3MayAbort(pParse); 3565 } 3566 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); 3567 } 3568 3569 /* 3570 ** Check to see if pIndex uses the collating sequence pColl. Return 3571 ** true if it does and false if it does not. 3572 */ 3573 #ifndef SQLITE_OMIT_REINDEX 3574 static int collationMatch(const char *zColl, Index *pIndex){ 3575 int i; 3576 assert( zColl!=0 ); 3577 for(i=0; i<pIndex->nColumn; i++){ 3578 const char *z = pIndex->azColl[i]; 3579 assert( z!=0 ); 3580 if( 0==sqlite3StrICmp(z, zColl) ){ 3581 return 1; 3582 } 3583 } 3584 return 0; 3585 } 3586 #endif 3587 3588 /* 3589 ** Recompute all indices of pTab that use the collating sequence pColl. 3590 ** If pColl==0 then recompute all indices of pTab. 3591 */ 3592 #ifndef SQLITE_OMIT_REINDEX 3593 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3594 Index *pIndex; /* An index associated with pTab */ 3595 3596 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3597 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3598 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3599 sqlite3BeginWriteOperation(pParse, 0, iDb); 3600 sqlite3RefillIndex(pParse, pIndex, -1); 3601 } 3602 } 3603 } 3604 #endif 3605 3606 /* 3607 ** Recompute all indices of all tables in all databases where the 3608 ** indices use the collating sequence pColl. If pColl==0 then recompute 3609 ** all indices everywhere. 3610 */ 3611 #ifndef SQLITE_OMIT_REINDEX 3612 static void reindexDatabases(Parse *pParse, char const *zColl){ 3613 Db *pDb; /* A single database */ 3614 int iDb; /* The database index number */ 3615 sqlite3 *db = pParse->db; /* The database connection */ 3616 HashElem *k; /* For looping over tables in pDb */ 3617 Table *pTab; /* A table in the database */ 3618 3619 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 3620 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3621 assert( pDb!=0 ); 3622 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3623 pTab = (Table*)sqliteHashData(k); 3624 reindexTable(pParse, pTab, zColl); 3625 } 3626 } 3627 } 3628 #endif 3629 3630 /* 3631 ** Generate code for the REINDEX command. 3632 ** 3633 ** REINDEX -- 1 3634 ** REINDEX <collation> -- 2 3635 ** REINDEX ?<database>.?<tablename> -- 3 3636 ** REINDEX ?<database>.?<indexname> -- 4 3637 ** 3638 ** Form 1 causes all indices in all attached databases to be rebuilt. 3639 ** Form 2 rebuilds all indices in all databases that use the named 3640 ** collating function. Forms 3 and 4 rebuild the named index or all 3641 ** indices associated with the named table. 3642 */ 3643 #ifndef SQLITE_OMIT_REINDEX 3644 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3645 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3646 char *z; /* Name of a table or index */ 3647 const char *zDb; /* Name of the database */ 3648 Table *pTab; /* A table in the database */ 3649 Index *pIndex; /* An index associated with pTab */ 3650 int iDb; /* The database index number */ 3651 sqlite3 *db = pParse->db; /* The database connection */ 3652 Token *pObjName; /* Name of the table or index to be reindexed */ 3653 3654 /* Read the database schema. If an error occurs, leave an error message 3655 ** and code in pParse and return NULL. */ 3656 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3657 return; 3658 } 3659 3660 if( pName1==0 ){ 3661 reindexDatabases(pParse, 0); 3662 return; 3663 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3664 char *zColl; 3665 assert( pName1->z ); 3666 zColl = sqlite3NameFromToken(pParse->db, pName1); 3667 if( !zColl ) return; 3668 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3669 if( pColl ){ 3670 reindexDatabases(pParse, zColl); 3671 sqlite3DbFree(db, zColl); 3672 return; 3673 } 3674 sqlite3DbFree(db, zColl); 3675 } 3676 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3677 if( iDb<0 ) return; 3678 z = sqlite3NameFromToken(db, pObjName); 3679 if( z==0 ) return; 3680 zDb = db->aDb[iDb].zName; 3681 pTab = sqlite3FindTable(db, z, zDb); 3682 if( pTab ){ 3683 reindexTable(pParse, pTab, 0); 3684 sqlite3DbFree(db, z); 3685 return; 3686 } 3687 pIndex = sqlite3FindIndex(db, z, zDb); 3688 sqlite3DbFree(db, z); 3689 if( pIndex ){ 3690 sqlite3BeginWriteOperation(pParse, 0, iDb); 3691 sqlite3RefillIndex(pParse, pIndex, -1); 3692 return; 3693 } 3694 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3695 } 3696 #endif 3697 3698 /* 3699 ** Return a dynamicly allocated KeyInfo structure that can be used 3700 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3701 ** 3702 ** If successful, a pointer to the new structure is returned. In this case 3703 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3704 ** pointer. If an error occurs (out of memory or missing collation 3705 ** sequence), NULL is returned and the state of pParse updated to reflect 3706 ** the error. 3707 */ 3708 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3709 int i; 3710 int nCol = pIdx->nColumn; 3711 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3712 sqlite3 *db = pParse->db; 3713 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3714 3715 if( pKey ){ 3716 pKey->db = pParse->db; 3717 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3718 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3719 for(i=0; i<nCol; i++){ 3720 char *zColl = pIdx->azColl[i]; 3721 assert( zColl ); 3722 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3723 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3724 } 3725 pKey->nField = (u16)nCol; 3726 } 3727 3728 if( pParse->nErr ){ 3729 sqlite3DbFree(db, pKey); 3730 pKey = 0; 3731 } 3732 return pKey; 3733 } 3734