1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); 364 } 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 366 return pMod->pEpoTab; 367 } 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->mDbFlags |= DBFLAG_SchemaChange; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 518 ** Deferred resets may be run by calling with iDb<0. 519 */ 520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 521 int i; 522 assert( iDb<db->nDb ); 523 524 if( iDb>=0 ){ 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 DbSetProperty(db, iDb, DB_ResetWanted); 527 DbSetProperty(db, 1, DB_ResetWanted); 528 } 529 530 if( db->nSchemaLock==0 ){ 531 for(i=0; i<db->nDb; i++){ 532 if( DbHasProperty(db, i, DB_ResetWanted) ){ 533 sqlite3SchemaClear(db->aDb[i].pSchema); 534 } 535 } 536 } 537 } 538 539 /* 540 ** Erase all schema information from all attached databases (including 541 ** "main" and "temp") for a single database connection. 542 */ 543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 544 int i; 545 sqlite3BtreeEnterAll(db); 546 assert( db->nSchemaLock==0 ); 547 for(i=0; i<db->nDb; i++){ 548 Db *pDb = &db->aDb[i]; 549 if( pDb->pSchema ){ 550 sqlite3SchemaClear(pDb->pSchema); 551 } 552 } 553 db->mDbFlags &= ~DBFLAG_SchemaChange; 554 sqlite3VtabUnlockList(db); 555 sqlite3BtreeLeaveAll(db); 556 sqlite3CollapseDatabaseArray(db); 557 } 558 559 /* 560 ** This routine is called when a commit occurs. 561 */ 562 void sqlite3CommitInternalChanges(sqlite3 *db){ 563 db->mDbFlags &= ~DBFLAG_SchemaChange; 564 } 565 566 /* 567 ** Delete memory allocated for the column names of a table or view (the 568 ** Table.aCol[] array). 569 */ 570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 571 int i; 572 Column *pCol; 573 assert( pTable!=0 ); 574 if( (pCol = pTable->aCol)!=0 ){ 575 for(i=0; i<pTable->nCol; i++, pCol++){ 576 sqlite3DbFree(db, pCol->zName); 577 sqlite3ExprDelete(db, pCol->pDflt); 578 sqlite3DbFree(db, pCol->zColl); 579 } 580 sqlite3DbFree(db, pTable->aCol); 581 } 582 } 583 584 /* 585 ** Remove the memory data structures associated with the given 586 ** Table. No changes are made to disk by this routine. 587 ** 588 ** This routine just deletes the data structure. It does not unlink 589 ** the table data structure from the hash table. But it does destroy 590 ** memory structures of the indices and foreign keys associated with 591 ** the table. 592 ** 593 ** The db parameter is optional. It is needed if the Table object 594 ** contains lookaside memory. (Table objects in the schema do not use 595 ** lookaside memory, but some ephemeral Table objects do.) Or the 596 ** db parameter can be used with db->pnBytesFreed to measure the memory 597 ** used by the Table object. 598 */ 599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 600 Index *pIndex, *pNext; 601 602 #ifdef SQLITE_DEBUG 603 /* Record the number of outstanding lookaside allocations in schema Tables 604 ** prior to doing any free() operations. Since schema Tables do not use 605 ** lookaside, this number should not change. */ 606 int nLookaside = 0; 607 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){ 608 nLookaside = sqlite3LookasideUsed(db, 0); 609 } 610 #endif 611 612 /* Delete all indices associated with this table. */ 613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 614 pNext = pIndex->pNext; 615 assert( pIndex->pSchema==pTable->pSchema 616 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 617 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 618 char *zName = pIndex->zName; 619 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 620 &pIndex->pSchema->idxHash, zName, 0 621 ); 622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 623 assert( pOld==pIndex || pOld==0 ); 624 } 625 freeIndex(db, pIndex); 626 } 627 628 /* Delete any foreign keys attached to this table. */ 629 sqlite3FkDelete(db, pTable); 630 631 /* Delete the Table structure itself. 632 */ 633 sqlite3DeleteColumnNames(db, pTable); 634 sqlite3DbFree(db, pTable->zName); 635 sqlite3DbFree(db, pTable->zColAff); 636 sqlite3SelectDelete(db, pTable->pSelect); 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #ifndef SQLITE_OMIT_VIRTUALTABLE 639 sqlite3VtabClear(db, pTable); 640 #endif 641 sqlite3DbFree(db, pTable); 642 643 /* Verify that no lookaside memory was used by schema tables */ 644 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 645 } 646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 647 /* Do not delete the table until the reference count reaches zero. */ 648 if( !pTable ) return; 649 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 650 deleteTable(db, pTable); 651 } 652 653 654 /* 655 ** Unlink the given table from the hash tables and the delete the 656 ** table structure with all its indices and foreign keys. 657 */ 658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 659 Table *p; 660 Db *pDb; 661 662 assert( db!=0 ); 663 assert( iDb>=0 && iDb<db->nDb ); 664 assert( zTabName ); 665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 667 pDb = &db->aDb[iDb]; 668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 669 sqlite3DeleteTable(db, p); 670 db->mDbFlags |= DBFLAG_SchemaChange; 671 } 672 673 /* 674 ** Given a token, return a string that consists of the text of that 675 ** token. Space to hold the returned string 676 ** is obtained from sqliteMalloc() and must be freed by the calling 677 ** function. 678 ** 679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 680 ** surround the body of the token are removed. 681 ** 682 ** Tokens are often just pointers into the original SQL text and so 683 ** are not \000 terminated and are not persistent. The returned string 684 ** is \000 terminated and is persistent. 685 */ 686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 687 char *zName; 688 if( pName ){ 689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 690 sqlite3Dequote(zName); 691 }else{ 692 zName = 0; 693 } 694 return zName; 695 } 696 697 /* 698 ** Open the sqlite_master table stored in database number iDb for 699 ** writing. The table is opened using cursor 0. 700 */ 701 void sqlite3OpenMasterTable(Parse *p, int iDb){ 702 Vdbe *v = sqlite3GetVdbe(p); 703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 705 if( p->nTab==0 ){ 706 p->nTab = 1; 707 } 708 } 709 710 /* 711 ** Parameter zName points to a nul-terminated buffer containing the name 712 ** of a database ("main", "temp" or the name of an attached db). This 713 ** function returns the index of the named database in db->aDb[], or 714 ** -1 if the named db cannot be found. 715 */ 716 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 717 int i = -1; /* Database number */ 718 if( zName ){ 719 Db *pDb; 720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 721 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 722 /* "main" is always an acceptable alias for the primary database 723 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 724 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 725 } 726 } 727 return i; 728 } 729 730 /* 731 ** The token *pName contains the name of a database (either "main" or 732 ** "temp" or the name of an attached db). This routine returns the 733 ** index of the named database in db->aDb[], or -1 if the named db 734 ** does not exist. 735 */ 736 int sqlite3FindDb(sqlite3 *db, Token *pName){ 737 int i; /* Database number */ 738 char *zName; /* Name we are searching for */ 739 zName = sqlite3NameFromToken(db, pName); 740 i = sqlite3FindDbName(db, zName); 741 sqlite3DbFree(db, zName); 742 return i; 743 } 744 745 /* The table or view or trigger name is passed to this routine via tokens 746 ** pName1 and pName2. If the table name was fully qualified, for example: 747 ** 748 ** CREATE TABLE xxx.yyy (...); 749 ** 750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 751 ** the table name is not fully qualified, i.e.: 752 ** 753 ** CREATE TABLE yyy(...); 754 ** 755 ** Then pName1 is set to "yyy" and pName2 is "". 756 ** 757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 758 ** pName2) that stores the unqualified table name. The index of the 759 ** database "xxx" is returned. 760 */ 761 int sqlite3TwoPartName( 762 Parse *pParse, /* Parsing and code generating context */ 763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 765 Token **pUnqual /* Write the unqualified object name here */ 766 ){ 767 int iDb; /* Database holding the object */ 768 sqlite3 *db = pParse->db; 769 770 assert( pName2!=0 ); 771 if( pName2->n>0 ){ 772 if( db->init.busy ) { 773 sqlite3ErrorMsg(pParse, "corrupt database"); 774 return -1; 775 } 776 *pUnqual = pName2; 777 iDb = sqlite3FindDb(db, pName1); 778 if( iDb<0 ){ 779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 780 return -1; 781 } 782 }else{ 783 assert( db->init.iDb==0 || db->init.busy 784 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 785 iDb = db->init.iDb; 786 *pUnqual = pName1; 787 } 788 return iDb; 789 } 790 791 /* 792 ** This routine is used to check if the UTF-8 string zName is a legal 793 ** unqualified name for a new schema object (table, index, view or 794 ** trigger). All names are legal except those that begin with the string 795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 796 ** is reserved for internal use. 797 */ 798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 799 if( !pParse->db->init.busy && pParse->nested==0 800 && (pParse->db->flags & SQLITE_WriteSchema)==0 801 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 802 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 803 return SQLITE_ERROR; 804 } 805 return SQLITE_OK; 806 } 807 808 /* 809 ** Return the PRIMARY KEY index of a table 810 */ 811 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 812 Index *p; 813 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 814 return p; 815 } 816 817 /* 818 ** Return the column of index pIdx that corresponds to table 819 ** column iCol. Return -1 if not found. 820 */ 821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 822 int i; 823 for(i=0; i<pIdx->nColumn; i++){ 824 if( iCol==pIdx->aiColumn[i] ) return i; 825 } 826 return -1; 827 } 828 829 /* 830 ** Begin constructing a new table representation in memory. This is 831 ** the first of several action routines that get called in response 832 ** to a CREATE TABLE statement. In particular, this routine is called 833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 834 ** flag is true if the table should be stored in the auxiliary database 835 ** file instead of in the main database file. This is normally the case 836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 837 ** CREATE and TABLE. 838 ** 839 ** The new table record is initialized and put in pParse->pNewTable. 840 ** As more of the CREATE TABLE statement is parsed, additional action 841 ** routines will be called to add more information to this record. 842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 843 ** is called to complete the construction of the new table record. 844 */ 845 void sqlite3StartTable( 846 Parse *pParse, /* Parser context */ 847 Token *pName1, /* First part of the name of the table or view */ 848 Token *pName2, /* Second part of the name of the table or view */ 849 int isTemp, /* True if this is a TEMP table */ 850 int isView, /* True if this is a VIEW */ 851 int isVirtual, /* True if this is a VIRTUAL table */ 852 int noErr /* Do nothing if table already exists */ 853 ){ 854 Table *pTable; 855 char *zName = 0; /* The name of the new table */ 856 sqlite3 *db = pParse->db; 857 Vdbe *v; 858 int iDb; /* Database number to create the table in */ 859 Token *pName; /* Unqualified name of the table to create */ 860 861 if( db->init.busy && db->init.newTnum==1 ){ 862 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 863 iDb = db->init.iDb; 864 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 865 pName = pName1; 866 }else{ 867 /* The common case */ 868 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 869 if( iDb<0 ) return; 870 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 871 /* If creating a temp table, the name may not be qualified. Unless 872 ** the database name is "temp" anyway. */ 873 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 874 return; 875 } 876 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 877 zName = sqlite3NameFromToken(db, pName); 878 } 879 pParse->sNameToken = *pName; 880 if( zName==0 ) return; 881 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 882 goto begin_table_error; 883 } 884 if( db->init.iDb==1 ) isTemp = 1; 885 #ifndef SQLITE_OMIT_AUTHORIZATION 886 assert( isTemp==0 || isTemp==1 ); 887 assert( isView==0 || isView==1 ); 888 { 889 static const u8 aCode[] = { 890 SQLITE_CREATE_TABLE, 891 SQLITE_CREATE_TEMP_TABLE, 892 SQLITE_CREATE_VIEW, 893 SQLITE_CREATE_TEMP_VIEW 894 }; 895 char *zDb = db->aDb[iDb].zDbSName; 896 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 897 goto begin_table_error; 898 } 899 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 900 zName, 0, zDb) ){ 901 goto begin_table_error; 902 } 903 } 904 #endif 905 906 /* Make sure the new table name does not collide with an existing 907 ** index or table name in the same database. Issue an error message if 908 ** it does. The exception is if the statement being parsed was passed 909 ** to an sqlite3_declare_vtab() call. In that case only the column names 910 ** and types will be used, so there is no need to test for namespace 911 ** collisions. 912 */ 913 if( !IN_DECLARE_VTAB ){ 914 char *zDb = db->aDb[iDb].zDbSName; 915 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 916 goto begin_table_error; 917 } 918 pTable = sqlite3FindTable(db, zName, zDb); 919 if( pTable ){ 920 if( !noErr ){ 921 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 922 }else{ 923 assert( !db->init.busy || CORRUPT_DB ); 924 sqlite3CodeVerifySchema(pParse, iDb); 925 } 926 goto begin_table_error; 927 } 928 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 929 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 930 goto begin_table_error; 931 } 932 } 933 934 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 935 if( pTable==0 ){ 936 assert( db->mallocFailed ); 937 pParse->rc = SQLITE_NOMEM_BKPT; 938 pParse->nErr++; 939 goto begin_table_error; 940 } 941 pTable->zName = zName; 942 pTable->iPKey = -1; 943 pTable->pSchema = db->aDb[iDb].pSchema; 944 pTable->nTabRef = 1; 945 #ifdef SQLITE_DEFAULT_ROWEST 946 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 947 #else 948 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 949 #endif 950 assert( pParse->pNewTable==0 ); 951 pParse->pNewTable = pTable; 952 953 /* If this is the magic sqlite_sequence table used by autoincrement, 954 ** then record a pointer to this table in the main database structure 955 ** so that INSERT can find the table easily. 956 */ 957 #ifndef SQLITE_OMIT_AUTOINCREMENT 958 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 959 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 960 pTable->pSchema->pSeqTab = pTable; 961 } 962 #endif 963 964 /* Begin generating the code that will insert the table record into 965 ** the SQLITE_MASTER table. Note in particular that we must go ahead 966 ** and allocate the record number for the table entry now. Before any 967 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 968 ** indices to be created and the table record must come before the 969 ** indices. Hence, the record number for the table must be allocated 970 ** now. 971 */ 972 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 973 int addr1; 974 int fileFormat; 975 int reg1, reg2, reg3; 976 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 977 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 978 sqlite3BeginWriteOperation(pParse, 1, iDb); 979 980 #ifndef SQLITE_OMIT_VIRTUALTABLE 981 if( isVirtual ){ 982 sqlite3VdbeAddOp0(v, OP_VBegin); 983 } 984 #endif 985 986 /* If the file format and encoding in the database have not been set, 987 ** set them now. 988 */ 989 reg1 = pParse->regRowid = ++pParse->nMem; 990 reg2 = pParse->regRoot = ++pParse->nMem; 991 reg3 = ++pParse->nMem; 992 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 993 sqlite3VdbeUsesBtree(v, iDb); 994 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 995 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 996 1 : SQLITE_MAX_FILE_FORMAT; 997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 998 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 999 sqlite3VdbeJumpHere(v, addr1); 1000 1001 /* This just creates a place-holder record in the sqlite_master table. 1002 ** The record created does not contain anything yet. It will be replaced 1003 ** by the real entry in code generated at sqlite3EndTable(). 1004 ** 1005 ** The rowid for the new entry is left in register pParse->regRowid. 1006 ** The root page number of the new table is left in reg pParse->regRoot. 1007 ** The rowid and root page number values are needed by the code that 1008 ** sqlite3EndTable will generate. 1009 */ 1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1011 if( isView || isVirtual ){ 1012 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1013 }else 1014 #endif 1015 { 1016 pParse->addrCrTab = 1017 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1018 } 1019 sqlite3OpenMasterTable(pParse, iDb); 1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1021 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1024 sqlite3VdbeAddOp0(v, OP_Close); 1025 } 1026 1027 /* Normal (non-error) return. */ 1028 return; 1029 1030 /* If an error occurs, we jump here */ 1031 begin_table_error: 1032 sqlite3DbFree(db, zName); 1033 return; 1034 } 1035 1036 /* Set properties of a table column based on the (magical) 1037 ** name of the column. 1038 */ 1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1041 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1042 pCol->colFlags |= COLFLAG_HIDDEN; 1043 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1044 pTab->tabFlags |= TF_OOOHidden; 1045 } 1046 } 1047 #endif 1048 1049 1050 /* 1051 ** Add a new column to the table currently being constructed. 1052 ** 1053 ** The parser calls this routine once for each column declaration 1054 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1055 ** first to get things going. Then this routine is called for each 1056 ** column. 1057 */ 1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1059 Table *p; 1060 int i; 1061 char *z; 1062 char *zType; 1063 Column *pCol; 1064 sqlite3 *db = pParse->db; 1065 if( (p = pParse->pNewTable)==0 ) return; 1066 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1067 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1068 return; 1069 } 1070 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1071 if( z==0 ) return; 1072 memcpy(z, pName->z, pName->n); 1073 z[pName->n] = 0; 1074 sqlite3Dequote(z); 1075 for(i=0; i<p->nCol; i++){ 1076 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1077 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1078 sqlite3DbFree(db, z); 1079 return; 1080 } 1081 } 1082 if( (p->nCol & 0x7)==0 ){ 1083 Column *aNew; 1084 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1085 if( aNew==0 ){ 1086 sqlite3DbFree(db, z); 1087 return; 1088 } 1089 p->aCol = aNew; 1090 } 1091 pCol = &p->aCol[p->nCol]; 1092 memset(pCol, 0, sizeof(p->aCol[0])); 1093 pCol->zName = z; 1094 sqlite3ColumnPropertiesFromName(p, pCol); 1095 1096 if( pType->n==0 ){ 1097 /* If there is no type specified, columns have the default affinity 1098 ** 'BLOB' with a default size of 4 bytes. */ 1099 pCol->affinity = SQLITE_AFF_BLOB; 1100 pCol->szEst = 1; 1101 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1102 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1103 pCol->colFlags |= COLFLAG_SORTERREF; 1104 } 1105 #endif 1106 }else{ 1107 zType = z + sqlite3Strlen30(z) + 1; 1108 memcpy(zType, pType->z, pType->n); 1109 zType[pType->n] = 0; 1110 sqlite3Dequote(zType); 1111 pCol->affinity = sqlite3AffinityType(zType, pCol); 1112 pCol->colFlags |= COLFLAG_HASTYPE; 1113 } 1114 p->nCol++; 1115 pParse->constraintName.n = 0; 1116 } 1117 1118 /* 1119 ** This routine is called by the parser while in the middle of 1120 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1121 ** been seen on a column. This routine sets the notNull flag on 1122 ** the column currently under construction. 1123 */ 1124 void sqlite3AddNotNull(Parse *pParse, int onError){ 1125 Table *p; 1126 Column *pCol; 1127 p = pParse->pNewTable; 1128 if( p==0 || NEVER(p->nCol<1) ) return; 1129 pCol = &p->aCol[p->nCol-1]; 1130 pCol->notNull = (u8)onError; 1131 p->tabFlags |= TF_HasNotNull; 1132 1133 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1134 ** on this column. */ 1135 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1136 Index *pIdx; 1137 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1138 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1139 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1140 pIdx->uniqNotNull = 1; 1141 } 1142 } 1143 } 1144 } 1145 1146 /* 1147 ** Scan the column type name zType (length nType) and return the 1148 ** associated affinity type. 1149 ** 1150 ** This routine does a case-independent search of zType for the 1151 ** substrings in the following table. If one of the substrings is 1152 ** found, the corresponding affinity is returned. If zType contains 1153 ** more than one of the substrings, entries toward the top of 1154 ** the table take priority. For example, if zType is 'BLOBINT', 1155 ** SQLITE_AFF_INTEGER is returned. 1156 ** 1157 ** Substring | Affinity 1158 ** -------------------------------- 1159 ** 'INT' | SQLITE_AFF_INTEGER 1160 ** 'CHAR' | SQLITE_AFF_TEXT 1161 ** 'CLOB' | SQLITE_AFF_TEXT 1162 ** 'TEXT' | SQLITE_AFF_TEXT 1163 ** 'BLOB' | SQLITE_AFF_BLOB 1164 ** 'REAL' | SQLITE_AFF_REAL 1165 ** 'FLOA' | SQLITE_AFF_REAL 1166 ** 'DOUB' | SQLITE_AFF_REAL 1167 ** 1168 ** If none of the substrings in the above table are found, 1169 ** SQLITE_AFF_NUMERIC is returned. 1170 */ 1171 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1172 u32 h = 0; 1173 char aff = SQLITE_AFF_NUMERIC; 1174 const char *zChar = 0; 1175 1176 assert( zIn!=0 ); 1177 while( zIn[0] ){ 1178 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1179 zIn++; 1180 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1181 aff = SQLITE_AFF_TEXT; 1182 zChar = zIn; 1183 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1184 aff = SQLITE_AFF_TEXT; 1185 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1186 aff = SQLITE_AFF_TEXT; 1187 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1188 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1189 aff = SQLITE_AFF_BLOB; 1190 if( zIn[0]=='(' ) zChar = zIn; 1191 #ifndef SQLITE_OMIT_FLOATING_POINT 1192 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1193 && aff==SQLITE_AFF_NUMERIC ){ 1194 aff = SQLITE_AFF_REAL; 1195 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1196 && aff==SQLITE_AFF_NUMERIC ){ 1197 aff = SQLITE_AFF_REAL; 1198 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1199 && aff==SQLITE_AFF_NUMERIC ){ 1200 aff = SQLITE_AFF_REAL; 1201 #endif 1202 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1203 aff = SQLITE_AFF_INTEGER; 1204 break; 1205 } 1206 } 1207 1208 /* If pCol is not NULL, store an estimate of the field size. The 1209 ** estimate is scaled so that the size of an integer is 1. */ 1210 if( pCol ){ 1211 int v = 0; /* default size is approx 4 bytes */ 1212 if( aff<SQLITE_AFF_NUMERIC ){ 1213 if( zChar ){ 1214 while( zChar[0] ){ 1215 if( sqlite3Isdigit(zChar[0]) ){ 1216 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1217 sqlite3GetInt32(zChar, &v); 1218 break; 1219 } 1220 zChar++; 1221 } 1222 }else{ 1223 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1224 } 1225 } 1226 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1227 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1228 pCol->colFlags |= COLFLAG_SORTERREF; 1229 } 1230 #endif 1231 v = v/4 + 1; 1232 if( v>255 ) v = 255; 1233 pCol->szEst = v; 1234 } 1235 return aff; 1236 } 1237 1238 /* 1239 ** The expression is the default value for the most recently added column 1240 ** of the table currently under construction. 1241 ** 1242 ** Default value expressions must be constant. Raise an exception if this 1243 ** is not the case. 1244 ** 1245 ** This routine is called by the parser while in the middle of 1246 ** parsing a CREATE TABLE statement. 1247 */ 1248 void sqlite3AddDefaultValue( 1249 Parse *pParse, /* Parsing context */ 1250 Expr *pExpr, /* The parsed expression of the default value */ 1251 const char *zStart, /* Start of the default value text */ 1252 const char *zEnd /* First character past end of defaut value text */ 1253 ){ 1254 Table *p; 1255 Column *pCol; 1256 sqlite3 *db = pParse->db; 1257 p = pParse->pNewTable; 1258 if( p!=0 ){ 1259 pCol = &(p->aCol[p->nCol-1]); 1260 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1261 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1262 pCol->zName); 1263 }else{ 1264 /* A copy of pExpr is used instead of the original, as pExpr contains 1265 ** tokens that point to volatile memory. 1266 */ 1267 Expr x; 1268 sqlite3ExprDelete(db, pCol->pDflt); 1269 memset(&x, 0, sizeof(x)); 1270 x.op = TK_SPAN; 1271 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1272 x.pLeft = pExpr; 1273 x.flags = EP_Skip; 1274 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1275 sqlite3DbFree(db, x.u.zToken); 1276 } 1277 } 1278 sqlite3ExprDelete(db, pExpr); 1279 } 1280 1281 /* 1282 ** Backwards Compatibility Hack: 1283 ** 1284 ** Historical versions of SQLite accepted strings as column names in 1285 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1286 ** 1287 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1288 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1289 ** 1290 ** This is goofy. But to preserve backwards compatibility we continue to 1291 ** accept it. This routine does the necessary conversion. It converts 1292 ** the expression given in its argument from a TK_STRING into a TK_ID 1293 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1294 ** If the epxression is anything other than TK_STRING, the expression is 1295 ** unchanged. 1296 */ 1297 static void sqlite3StringToId(Expr *p){ 1298 if( p->op==TK_STRING ){ 1299 p->op = TK_ID; 1300 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1301 p->pLeft->op = TK_ID; 1302 } 1303 } 1304 1305 /* 1306 ** Designate the PRIMARY KEY for the table. pList is a list of names 1307 ** of columns that form the primary key. If pList is NULL, then the 1308 ** most recently added column of the table is the primary key. 1309 ** 1310 ** A table can have at most one primary key. If the table already has 1311 ** a primary key (and this is the second primary key) then create an 1312 ** error. 1313 ** 1314 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1315 ** then we will try to use that column as the rowid. Set the Table.iPKey 1316 ** field of the table under construction to be the index of the 1317 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1318 ** no INTEGER PRIMARY KEY. 1319 ** 1320 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1321 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1322 */ 1323 void sqlite3AddPrimaryKey( 1324 Parse *pParse, /* Parsing context */ 1325 ExprList *pList, /* List of field names to be indexed */ 1326 int onError, /* What to do with a uniqueness conflict */ 1327 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1328 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1329 ){ 1330 Table *pTab = pParse->pNewTable; 1331 Column *pCol = 0; 1332 int iCol = -1, i; 1333 int nTerm; 1334 if( pTab==0 ) goto primary_key_exit; 1335 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1336 sqlite3ErrorMsg(pParse, 1337 "table \"%s\" has more than one primary key", pTab->zName); 1338 goto primary_key_exit; 1339 } 1340 pTab->tabFlags |= TF_HasPrimaryKey; 1341 if( pList==0 ){ 1342 iCol = pTab->nCol - 1; 1343 pCol = &pTab->aCol[iCol]; 1344 pCol->colFlags |= COLFLAG_PRIMKEY; 1345 nTerm = 1; 1346 }else{ 1347 nTerm = pList->nExpr; 1348 for(i=0; i<nTerm; i++){ 1349 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1350 assert( pCExpr!=0 ); 1351 sqlite3StringToId(pCExpr); 1352 if( pCExpr->op==TK_ID ){ 1353 const char *zCName = pCExpr->u.zToken; 1354 for(iCol=0; iCol<pTab->nCol; iCol++){ 1355 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1356 pCol = &pTab->aCol[iCol]; 1357 pCol->colFlags |= COLFLAG_PRIMKEY; 1358 break; 1359 } 1360 } 1361 } 1362 } 1363 } 1364 if( nTerm==1 1365 && pCol 1366 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1367 && sortOrder!=SQLITE_SO_DESC 1368 ){ 1369 pTab->iPKey = iCol; 1370 pTab->keyConf = (u8)onError; 1371 assert( autoInc==0 || autoInc==1 ); 1372 pTab->tabFlags |= autoInc*TF_Autoincrement; 1373 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1374 }else if( autoInc ){ 1375 #ifndef SQLITE_OMIT_AUTOINCREMENT 1376 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1377 "INTEGER PRIMARY KEY"); 1378 #endif 1379 }else{ 1380 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1381 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1382 pList = 0; 1383 } 1384 1385 primary_key_exit: 1386 sqlite3ExprListDelete(pParse->db, pList); 1387 return; 1388 } 1389 1390 /* 1391 ** Add a new CHECK constraint to the table currently under construction. 1392 */ 1393 void sqlite3AddCheckConstraint( 1394 Parse *pParse, /* Parsing context */ 1395 Expr *pCheckExpr /* The check expression */ 1396 ){ 1397 #ifndef SQLITE_OMIT_CHECK 1398 Table *pTab = pParse->pNewTable; 1399 sqlite3 *db = pParse->db; 1400 if( pTab && !IN_DECLARE_VTAB 1401 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1402 ){ 1403 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1404 if( pParse->constraintName.n ){ 1405 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1406 } 1407 }else 1408 #endif 1409 { 1410 sqlite3ExprDelete(pParse->db, pCheckExpr); 1411 } 1412 } 1413 1414 /* 1415 ** Set the collation function of the most recently parsed table column 1416 ** to the CollSeq given. 1417 */ 1418 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1419 Table *p; 1420 int i; 1421 char *zColl; /* Dequoted name of collation sequence */ 1422 sqlite3 *db; 1423 1424 if( (p = pParse->pNewTable)==0 ) return; 1425 i = p->nCol-1; 1426 db = pParse->db; 1427 zColl = sqlite3NameFromToken(db, pToken); 1428 if( !zColl ) return; 1429 1430 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1431 Index *pIdx; 1432 sqlite3DbFree(db, p->aCol[i].zColl); 1433 p->aCol[i].zColl = zColl; 1434 1435 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1436 ** then an index may have been created on this column before the 1437 ** collation type was added. Correct this if it is the case. 1438 */ 1439 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1440 assert( pIdx->nKeyCol==1 ); 1441 if( pIdx->aiColumn[0]==i ){ 1442 pIdx->azColl[0] = p->aCol[i].zColl; 1443 } 1444 } 1445 }else{ 1446 sqlite3DbFree(db, zColl); 1447 } 1448 } 1449 1450 /* 1451 ** This function returns the collation sequence for database native text 1452 ** encoding identified by the string zName, length nName. 1453 ** 1454 ** If the requested collation sequence is not available, or not available 1455 ** in the database native encoding, the collation factory is invoked to 1456 ** request it. If the collation factory does not supply such a sequence, 1457 ** and the sequence is available in another text encoding, then that is 1458 ** returned instead. 1459 ** 1460 ** If no versions of the requested collations sequence are available, or 1461 ** another error occurs, NULL is returned and an error message written into 1462 ** pParse. 1463 ** 1464 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1465 ** invokes the collation factory if the named collation cannot be found 1466 ** and generates an error message. 1467 ** 1468 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1469 */ 1470 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1471 sqlite3 *db = pParse->db; 1472 u8 enc = ENC(db); 1473 u8 initbusy = db->init.busy; 1474 CollSeq *pColl; 1475 1476 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1477 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1478 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1479 } 1480 1481 return pColl; 1482 } 1483 1484 1485 /* 1486 ** Generate code that will increment the schema cookie. 1487 ** 1488 ** The schema cookie is used to determine when the schema for the 1489 ** database changes. After each schema change, the cookie value 1490 ** changes. When a process first reads the schema it records the 1491 ** cookie. Thereafter, whenever it goes to access the database, 1492 ** it checks the cookie to make sure the schema has not changed 1493 ** since it was last read. 1494 ** 1495 ** This plan is not completely bullet-proof. It is possible for 1496 ** the schema to change multiple times and for the cookie to be 1497 ** set back to prior value. But schema changes are infrequent 1498 ** and the probability of hitting the same cookie value is only 1499 ** 1 chance in 2^32. So we're safe enough. 1500 ** 1501 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1502 ** the schema-version whenever the schema changes. 1503 */ 1504 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1505 sqlite3 *db = pParse->db; 1506 Vdbe *v = pParse->pVdbe; 1507 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1508 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1509 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1510 } 1511 1512 /* 1513 ** Measure the number of characters needed to output the given 1514 ** identifier. The number returned includes any quotes used 1515 ** but does not include the null terminator. 1516 ** 1517 ** The estimate is conservative. It might be larger that what is 1518 ** really needed. 1519 */ 1520 static int identLength(const char *z){ 1521 int n; 1522 for(n=0; *z; n++, z++){ 1523 if( *z=='"' ){ n++; } 1524 } 1525 return n + 2; 1526 } 1527 1528 /* 1529 ** The first parameter is a pointer to an output buffer. The second 1530 ** parameter is a pointer to an integer that contains the offset at 1531 ** which to write into the output buffer. This function copies the 1532 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1533 ** to the specified offset in the buffer and updates *pIdx to refer 1534 ** to the first byte after the last byte written before returning. 1535 ** 1536 ** If the string zSignedIdent consists entirely of alpha-numeric 1537 ** characters, does not begin with a digit and is not an SQL keyword, 1538 ** then it is copied to the output buffer exactly as it is. Otherwise, 1539 ** it is quoted using double-quotes. 1540 */ 1541 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1542 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1543 int i, j, needQuote; 1544 i = *pIdx; 1545 1546 for(j=0; zIdent[j]; j++){ 1547 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1548 } 1549 needQuote = sqlite3Isdigit(zIdent[0]) 1550 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1551 || zIdent[j]!=0 1552 || j==0; 1553 1554 if( needQuote ) z[i++] = '"'; 1555 for(j=0; zIdent[j]; j++){ 1556 z[i++] = zIdent[j]; 1557 if( zIdent[j]=='"' ) z[i++] = '"'; 1558 } 1559 if( needQuote ) z[i++] = '"'; 1560 z[i] = 0; 1561 *pIdx = i; 1562 } 1563 1564 /* 1565 ** Generate a CREATE TABLE statement appropriate for the given 1566 ** table. Memory to hold the text of the statement is obtained 1567 ** from sqliteMalloc() and must be freed by the calling function. 1568 */ 1569 static char *createTableStmt(sqlite3 *db, Table *p){ 1570 int i, k, n; 1571 char *zStmt; 1572 char *zSep, *zSep2, *zEnd; 1573 Column *pCol; 1574 n = 0; 1575 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1576 n += identLength(pCol->zName) + 5; 1577 } 1578 n += identLength(p->zName); 1579 if( n<50 ){ 1580 zSep = ""; 1581 zSep2 = ","; 1582 zEnd = ")"; 1583 }else{ 1584 zSep = "\n "; 1585 zSep2 = ",\n "; 1586 zEnd = "\n)"; 1587 } 1588 n += 35 + 6*p->nCol; 1589 zStmt = sqlite3DbMallocRaw(0, n); 1590 if( zStmt==0 ){ 1591 sqlite3OomFault(db); 1592 return 0; 1593 } 1594 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1595 k = sqlite3Strlen30(zStmt); 1596 identPut(zStmt, &k, p->zName); 1597 zStmt[k++] = '('; 1598 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1599 static const char * const azType[] = { 1600 /* SQLITE_AFF_BLOB */ "", 1601 /* SQLITE_AFF_TEXT */ " TEXT", 1602 /* SQLITE_AFF_NUMERIC */ " NUM", 1603 /* SQLITE_AFF_INTEGER */ " INT", 1604 /* SQLITE_AFF_REAL */ " REAL" 1605 }; 1606 int len; 1607 const char *zType; 1608 1609 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1610 k += sqlite3Strlen30(&zStmt[k]); 1611 zSep = zSep2; 1612 identPut(zStmt, &k, pCol->zName); 1613 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1614 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1615 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1616 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1617 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1618 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1619 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1620 1621 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1622 len = sqlite3Strlen30(zType); 1623 assert( pCol->affinity==SQLITE_AFF_BLOB 1624 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1625 memcpy(&zStmt[k], zType, len); 1626 k += len; 1627 assert( k<=n ); 1628 } 1629 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1630 return zStmt; 1631 } 1632 1633 /* 1634 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1635 ** on success and SQLITE_NOMEM on an OOM error. 1636 */ 1637 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1638 char *zExtra; 1639 int nByte; 1640 if( pIdx->nColumn>=N ) return SQLITE_OK; 1641 assert( pIdx->isResized==0 ); 1642 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1643 zExtra = sqlite3DbMallocZero(db, nByte); 1644 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1645 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1646 pIdx->azColl = (const char**)zExtra; 1647 zExtra += sizeof(char*)*N; 1648 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1649 pIdx->aiColumn = (i16*)zExtra; 1650 zExtra += sizeof(i16)*N; 1651 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1652 pIdx->aSortOrder = (u8*)zExtra; 1653 pIdx->nColumn = N; 1654 pIdx->isResized = 1; 1655 return SQLITE_OK; 1656 } 1657 1658 /* 1659 ** Estimate the total row width for a table. 1660 */ 1661 static void estimateTableWidth(Table *pTab){ 1662 unsigned wTable = 0; 1663 const Column *pTabCol; 1664 int i; 1665 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1666 wTable += pTabCol->szEst; 1667 } 1668 if( pTab->iPKey<0 ) wTable++; 1669 pTab->szTabRow = sqlite3LogEst(wTable*4); 1670 } 1671 1672 /* 1673 ** Estimate the average size of a row for an index. 1674 */ 1675 static void estimateIndexWidth(Index *pIdx){ 1676 unsigned wIndex = 0; 1677 int i; 1678 const Column *aCol = pIdx->pTable->aCol; 1679 for(i=0; i<pIdx->nColumn; i++){ 1680 i16 x = pIdx->aiColumn[i]; 1681 assert( x<pIdx->pTable->nCol ); 1682 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1683 } 1684 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1685 } 1686 1687 /* Return true if value x is found any of the first nCol entries of aiCol[] 1688 */ 1689 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1690 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1691 return 0; 1692 } 1693 1694 /* 1695 ** This routine runs at the end of parsing a CREATE TABLE statement that 1696 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1697 ** internal schema data structures and the generated VDBE code so that they 1698 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1699 ** Changes include: 1700 ** 1701 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1702 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1703 ** into BTREE_BLOBKEY. 1704 ** (3) Bypass the creation of the sqlite_master table entry 1705 ** for the PRIMARY KEY as the primary key index is now 1706 ** identified by the sqlite_master table entry of the table itself. 1707 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1708 ** schema to the rootpage from the main table. 1709 ** (5) Add all table columns to the PRIMARY KEY Index object 1710 ** so that the PRIMARY KEY is a covering index. The surplus 1711 ** columns are part of KeyInfo.nAllField and are not used for 1712 ** sorting or lookup or uniqueness checks. 1713 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1714 ** indices with the PRIMARY KEY columns. 1715 ** 1716 ** For virtual tables, only (1) is performed. 1717 */ 1718 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1719 Index *pIdx; 1720 Index *pPk; 1721 int nPk; 1722 int i, j; 1723 sqlite3 *db = pParse->db; 1724 Vdbe *v = pParse->pVdbe; 1725 1726 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1727 */ 1728 if( !db->init.imposterTable ){ 1729 for(i=0; i<pTab->nCol; i++){ 1730 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1731 pTab->aCol[i].notNull = OE_Abort; 1732 } 1733 } 1734 } 1735 1736 /* The remaining transformations only apply to b-tree tables, not to 1737 ** virtual tables */ 1738 if( IN_DECLARE_VTAB ) return; 1739 1740 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1741 ** into BTREE_BLOBKEY. 1742 */ 1743 if( pParse->addrCrTab ){ 1744 assert( v ); 1745 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1746 } 1747 1748 /* Locate the PRIMARY KEY index. Or, if this table was originally 1749 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1750 */ 1751 if( pTab->iPKey>=0 ){ 1752 ExprList *pList; 1753 Token ipkToken; 1754 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1755 pList = sqlite3ExprListAppend(pParse, 0, 1756 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1757 if( pList==0 ) return; 1758 pList->a[0].sortOrder = pParse->iPkSortOrder; 1759 assert( pParse->pNewTable==pTab ); 1760 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1761 SQLITE_IDXTYPE_PRIMARYKEY); 1762 if( db->mallocFailed ) return; 1763 pPk = sqlite3PrimaryKeyIndex(pTab); 1764 pTab->iPKey = -1; 1765 }else{ 1766 pPk = sqlite3PrimaryKeyIndex(pTab); 1767 1768 /* 1769 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1770 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1771 ** code assumes the PRIMARY KEY contains no repeated columns. 1772 */ 1773 for(i=j=1; i<pPk->nKeyCol; i++){ 1774 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1775 pPk->nColumn--; 1776 }else{ 1777 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1778 } 1779 } 1780 pPk->nKeyCol = j; 1781 } 1782 assert( pPk!=0 ); 1783 pPk->isCovering = 1; 1784 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1785 nPk = pPk->nKeyCol; 1786 1787 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1788 ** table entry. This is only required if currently generating VDBE 1789 ** code for a CREATE TABLE (not when parsing one as part of reading 1790 ** a database schema). */ 1791 if( v && pPk->tnum>0 ){ 1792 assert( db->init.busy==0 ); 1793 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1794 } 1795 1796 /* The root page of the PRIMARY KEY is the table root page */ 1797 pPk->tnum = pTab->tnum; 1798 1799 /* Update the in-memory representation of all UNIQUE indices by converting 1800 ** the final rowid column into one or more columns of the PRIMARY KEY. 1801 */ 1802 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1803 int n; 1804 if( IsPrimaryKeyIndex(pIdx) ) continue; 1805 for(i=n=0; i<nPk; i++){ 1806 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1807 } 1808 if( n==0 ){ 1809 /* This index is a superset of the primary key */ 1810 pIdx->nColumn = pIdx->nKeyCol; 1811 continue; 1812 } 1813 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1814 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1815 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1816 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1817 pIdx->azColl[j] = pPk->azColl[i]; 1818 j++; 1819 } 1820 } 1821 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1822 assert( pIdx->nColumn>=j ); 1823 } 1824 1825 /* Add all table columns to the PRIMARY KEY index 1826 */ 1827 if( nPk<pTab->nCol ){ 1828 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1829 for(i=0, j=nPk; i<pTab->nCol; i++){ 1830 if( !hasColumn(pPk->aiColumn, j, i) ){ 1831 assert( j<pPk->nColumn ); 1832 pPk->aiColumn[j] = i; 1833 pPk->azColl[j] = sqlite3StrBINARY; 1834 j++; 1835 } 1836 } 1837 assert( pPk->nColumn==j ); 1838 assert( pTab->nCol==j ); 1839 }else{ 1840 pPk->nColumn = pTab->nCol; 1841 } 1842 } 1843 1844 /* 1845 ** This routine is called to report the final ")" that terminates 1846 ** a CREATE TABLE statement. 1847 ** 1848 ** The table structure that other action routines have been building 1849 ** is added to the internal hash tables, assuming no errors have 1850 ** occurred. 1851 ** 1852 ** An entry for the table is made in the master table on disk, unless 1853 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1854 ** it means we are reading the sqlite_master table because we just 1855 ** connected to the database or because the sqlite_master table has 1856 ** recently changed, so the entry for this table already exists in 1857 ** the sqlite_master table. We do not want to create it again. 1858 ** 1859 ** If the pSelect argument is not NULL, it means that this routine 1860 ** was called to create a table generated from a 1861 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1862 ** the new table will match the result set of the SELECT. 1863 */ 1864 void sqlite3EndTable( 1865 Parse *pParse, /* Parse context */ 1866 Token *pCons, /* The ',' token after the last column defn. */ 1867 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1868 u8 tabOpts, /* Extra table options. Usually 0. */ 1869 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1870 ){ 1871 Table *p; /* The new table */ 1872 sqlite3 *db = pParse->db; /* The database connection */ 1873 int iDb; /* Database in which the table lives */ 1874 Index *pIdx; /* An implied index of the table */ 1875 1876 if( pEnd==0 && pSelect==0 ){ 1877 return; 1878 } 1879 assert( !db->mallocFailed ); 1880 p = pParse->pNewTable; 1881 if( p==0 ) return; 1882 1883 /* If the db->init.busy is 1 it means we are reading the SQL off the 1884 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1885 ** So do not write to the disk again. Extract the root page number 1886 ** for the table from the db->init.newTnum field. (The page number 1887 ** should have been put there by the sqliteOpenCb routine.) 1888 ** 1889 ** If the root page number is 1, that means this is the sqlite_master 1890 ** table itself. So mark it read-only. 1891 */ 1892 if( db->init.busy ){ 1893 if( pSelect ){ 1894 sqlite3ErrorMsg(pParse, ""); 1895 return; 1896 } 1897 p->tnum = db->init.newTnum; 1898 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1899 } 1900 1901 /* Special processing for WITHOUT ROWID Tables */ 1902 if( tabOpts & TF_WithoutRowid ){ 1903 if( (p->tabFlags & TF_Autoincrement) ){ 1904 sqlite3ErrorMsg(pParse, 1905 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1906 return; 1907 } 1908 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1909 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1910 }else{ 1911 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1912 convertToWithoutRowidTable(pParse, p); 1913 } 1914 } 1915 1916 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1917 1918 #ifndef SQLITE_OMIT_CHECK 1919 /* Resolve names in all CHECK constraint expressions. 1920 */ 1921 if( p->pCheck ){ 1922 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1923 } 1924 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1925 1926 /* Estimate the average row size for the table and for all implied indices */ 1927 estimateTableWidth(p); 1928 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1929 estimateIndexWidth(pIdx); 1930 } 1931 1932 /* If not initializing, then create a record for the new table 1933 ** in the SQLITE_MASTER table of the database. 1934 ** 1935 ** If this is a TEMPORARY table, write the entry into the auxiliary 1936 ** file instead of into the main database file. 1937 */ 1938 if( !db->init.busy ){ 1939 int n; 1940 Vdbe *v; 1941 char *zType; /* "view" or "table" */ 1942 char *zType2; /* "VIEW" or "TABLE" */ 1943 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1944 1945 v = sqlite3GetVdbe(pParse); 1946 if( NEVER(v==0) ) return; 1947 1948 sqlite3VdbeAddOp1(v, OP_Close, 0); 1949 1950 /* 1951 ** Initialize zType for the new view or table. 1952 */ 1953 if( p->pSelect==0 ){ 1954 /* A regular table */ 1955 zType = "table"; 1956 zType2 = "TABLE"; 1957 #ifndef SQLITE_OMIT_VIEW 1958 }else{ 1959 /* A view */ 1960 zType = "view"; 1961 zType2 = "VIEW"; 1962 #endif 1963 } 1964 1965 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1966 ** statement to populate the new table. The root-page number for the 1967 ** new table is in register pParse->regRoot. 1968 ** 1969 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1970 ** suitable state to query for the column names and types to be used 1971 ** by the new table. 1972 ** 1973 ** A shared-cache write-lock is not required to write to the new table, 1974 ** as a schema-lock must have already been obtained to create it. Since 1975 ** a schema-lock excludes all other database users, the write-lock would 1976 ** be redundant. 1977 */ 1978 if( pSelect ){ 1979 SelectDest dest; /* Where the SELECT should store results */ 1980 int regYield; /* Register holding co-routine entry-point */ 1981 int addrTop; /* Top of the co-routine */ 1982 int regRec; /* A record to be insert into the new table */ 1983 int regRowid; /* Rowid of the next row to insert */ 1984 int addrInsLoop; /* Top of the loop for inserting rows */ 1985 Table *pSelTab; /* A table that describes the SELECT results */ 1986 1987 regYield = ++pParse->nMem; 1988 regRec = ++pParse->nMem; 1989 regRowid = ++pParse->nMem; 1990 assert(pParse->nTab==1); 1991 sqlite3MayAbort(pParse); 1992 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1993 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1994 pParse->nTab = 2; 1995 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1996 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1997 if( pParse->nErr ) return; 1998 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1999 if( pSelTab==0 ) return; 2000 assert( p->aCol==0 ); 2001 p->nCol = pSelTab->nCol; 2002 p->aCol = pSelTab->aCol; 2003 pSelTab->nCol = 0; 2004 pSelTab->aCol = 0; 2005 sqlite3DeleteTable(db, pSelTab); 2006 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2007 sqlite3Select(pParse, pSelect, &dest); 2008 if( pParse->nErr ) return; 2009 sqlite3VdbeEndCoroutine(v, regYield); 2010 sqlite3VdbeJumpHere(v, addrTop - 1); 2011 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2012 VdbeCoverage(v); 2013 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2014 sqlite3TableAffinity(v, p, 0); 2015 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2016 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2017 sqlite3VdbeGoto(v, addrInsLoop); 2018 sqlite3VdbeJumpHere(v, addrInsLoop); 2019 sqlite3VdbeAddOp1(v, OP_Close, 1); 2020 } 2021 2022 /* Compute the complete text of the CREATE statement */ 2023 if( pSelect ){ 2024 zStmt = createTableStmt(db, p); 2025 }else{ 2026 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2027 n = (int)(pEnd2->z - pParse->sNameToken.z); 2028 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2029 zStmt = sqlite3MPrintf(db, 2030 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2031 ); 2032 } 2033 2034 /* A slot for the record has already been allocated in the 2035 ** SQLITE_MASTER table. We just need to update that slot with all 2036 ** the information we've collected. 2037 */ 2038 sqlite3NestedParse(pParse, 2039 "UPDATE %Q.%s " 2040 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2041 "WHERE rowid=#%d", 2042 db->aDb[iDb].zDbSName, MASTER_NAME, 2043 zType, 2044 p->zName, 2045 p->zName, 2046 pParse->regRoot, 2047 zStmt, 2048 pParse->regRowid 2049 ); 2050 sqlite3DbFree(db, zStmt); 2051 sqlite3ChangeCookie(pParse, iDb); 2052 2053 #ifndef SQLITE_OMIT_AUTOINCREMENT 2054 /* Check to see if we need to create an sqlite_sequence table for 2055 ** keeping track of autoincrement keys. 2056 */ 2057 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2058 Db *pDb = &db->aDb[iDb]; 2059 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2060 if( pDb->pSchema->pSeqTab==0 ){ 2061 sqlite3NestedParse(pParse, 2062 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2063 pDb->zDbSName 2064 ); 2065 } 2066 } 2067 #endif 2068 2069 /* Reparse everything to update our internal data structures */ 2070 sqlite3VdbeAddParseSchemaOp(v, iDb, 2071 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2072 } 2073 2074 2075 /* Add the table to the in-memory representation of the database. 2076 */ 2077 if( db->init.busy ){ 2078 Table *pOld; 2079 Schema *pSchema = p->pSchema; 2080 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2081 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2082 if( pOld ){ 2083 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2084 sqlite3OomFault(db); 2085 return; 2086 } 2087 pParse->pNewTable = 0; 2088 db->mDbFlags |= DBFLAG_SchemaChange; 2089 2090 #ifndef SQLITE_OMIT_ALTERTABLE 2091 if( !p->pSelect ){ 2092 const char *zName = (const char *)pParse->sNameToken.z; 2093 int nName; 2094 assert( !pSelect && pCons && pEnd ); 2095 if( pCons->z==0 ){ 2096 pCons = pEnd; 2097 } 2098 nName = (int)((const char *)pCons->z - zName); 2099 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2100 } 2101 #endif 2102 } 2103 } 2104 2105 #ifndef SQLITE_OMIT_VIEW 2106 /* 2107 ** The parser calls this routine in order to create a new VIEW 2108 */ 2109 void sqlite3CreateView( 2110 Parse *pParse, /* The parsing context */ 2111 Token *pBegin, /* The CREATE token that begins the statement */ 2112 Token *pName1, /* The token that holds the name of the view */ 2113 Token *pName2, /* The token that holds the name of the view */ 2114 ExprList *pCNames, /* Optional list of view column names */ 2115 Select *pSelect, /* A SELECT statement that will become the new view */ 2116 int isTemp, /* TRUE for a TEMPORARY view */ 2117 int noErr /* Suppress error messages if VIEW already exists */ 2118 ){ 2119 Table *p; 2120 int n; 2121 const char *z; 2122 Token sEnd; 2123 DbFixer sFix; 2124 Token *pName = 0; 2125 int iDb; 2126 sqlite3 *db = pParse->db; 2127 2128 if( pParse->nVar>0 ){ 2129 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2130 goto create_view_fail; 2131 } 2132 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2133 p = pParse->pNewTable; 2134 if( p==0 || pParse->nErr ) goto create_view_fail; 2135 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2136 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2137 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2138 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2139 2140 /* Make a copy of the entire SELECT statement that defines the view. 2141 ** This will force all the Expr.token.z values to be dynamically 2142 ** allocated rather than point to the input string - which means that 2143 ** they will persist after the current sqlite3_exec() call returns. 2144 */ 2145 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2146 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2147 if( db->mallocFailed ) goto create_view_fail; 2148 2149 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2150 ** the end. 2151 */ 2152 sEnd = pParse->sLastToken; 2153 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2154 if( sEnd.z[0]!=';' ){ 2155 sEnd.z += sEnd.n; 2156 } 2157 sEnd.n = 0; 2158 n = (int)(sEnd.z - pBegin->z); 2159 assert( n>0 ); 2160 z = pBegin->z; 2161 while( sqlite3Isspace(z[n-1]) ){ n--; } 2162 sEnd.z = &z[n-1]; 2163 sEnd.n = 1; 2164 2165 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2166 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2167 2168 create_view_fail: 2169 sqlite3SelectDelete(db, pSelect); 2170 sqlite3ExprListDelete(db, pCNames); 2171 return; 2172 } 2173 #endif /* SQLITE_OMIT_VIEW */ 2174 2175 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2176 /* 2177 ** The Table structure pTable is really a VIEW. Fill in the names of 2178 ** the columns of the view in the pTable structure. Return the number 2179 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2180 */ 2181 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2182 Table *pSelTab; /* A fake table from which we get the result set */ 2183 Select *pSel; /* Copy of the SELECT that implements the view */ 2184 int nErr = 0; /* Number of errors encountered */ 2185 int n; /* Temporarily holds the number of cursors assigned */ 2186 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2187 #ifndef SQLITE_OMIT_VIRTUALTABLE 2188 int rc; 2189 #endif 2190 #ifndef SQLITE_OMIT_AUTHORIZATION 2191 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2192 #endif 2193 2194 assert( pTable ); 2195 2196 #ifndef SQLITE_OMIT_VIRTUALTABLE 2197 db->nSchemaLock++; 2198 rc = sqlite3VtabCallConnect(pParse, pTable); 2199 db->nSchemaLock--; 2200 if( rc ){ 2201 return 1; 2202 } 2203 if( IsVirtual(pTable) ) return 0; 2204 #endif 2205 2206 #ifndef SQLITE_OMIT_VIEW 2207 /* A positive nCol means the columns names for this view are 2208 ** already known. 2209 */ 2210 if( pTable->nCol>0 ) return 0; 2211 2212 /* A negative nCol is a special marker meaning that we are currently 2213 ** trying to compute the column names. If we enter this routine with 2214 ** a negative nCol, it means two or more views form a loop, like this: 2215 ** 2216 ** CREATE VIEW one AS SELECT * FROM two; 2217 ** CREATE VIEW two AS SELECT * FROM one; 2218 ** 2219 ** Actually, the error above is now caught prior to reaching this point. 2220 ** But the following test is still important as it does come up 2221 ** in the following: 2222 ** 2223 ** CREATE TABLE main.ex1(a); 2224 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2225 ** SELECT * FROM temp.ex1; 2226 */ 2227 if( pTable->nCol<0 ){ 2228 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2229 return 1; 2230 } 2231 assert( pTable->nCol>=0 ); 2232 2233 /* If we get this far, it means we need to compute the table names. 2234 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2235 ** "*" elements in the results set of the view and will assign cursors 2236 ** to the elements of the FROM clause. But we do not want these changes 2237 ** to be permanent. So the computation is done on a copy of the SELECT 2238 ** statement that defines the view. 2239 */ 2240 assert( pTable->pSelect ); 2241 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2242 if( pSel ){ 2243 n = pParse->nTab; 2244 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2245 pTable->nCol = -1; 2246 db->lookaside.bDisable++; 2247 #ifndef SQLITE_OMIT_AUTHORIZATION 2248 xAuth = db->xAuth; 2249 db->xAuth = 0; 2250 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2251 db->xAuth = xAuth; 2252 #else 2253 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2254 #endif 2255 pParse->nTab = n; 2256 if( pTable->pCheck ){ 2257 /* CREATE VIEW name(arglist) AS ... 2258 ** The names of the columns in the table are taken from 2259 ** arglist which is stored in pTable->pCheck. The pCheck field 2260 ** normally holds CHECK constraints on an ordinary table, but for 2261 ** a VIEW it holds the list of column names. 2262 */ 2263 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2264 &pTable->nCol, &pTable->aCol); 2265 if( db->mallocFailed==0 2266 && pParse->nErr==0 2267 && pTable->nCol==pSel->pEList->nExpr 2268 ){ 2269 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2270 } 2271 }else if( pSelTab ){ 2272 /* CREATE VIEW name AS... without an argument list. Construct 2273 ** the column names from the SELECT statement that defines the view. 2274 */ 2275 assert( pTable->aCol==0 ); 2276 pTable->nCol = pSelTab->nCol; 2277 pTable->aCol = pSelTab->aCol; 2278 pSelTab->nCol = 0; 2279 pSelTab->aCol = 0; 2280 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2281 }else{ 2282 pTable->nCol = 0; 2283 nErr++; 2284 } 2285 sqlite3DeleteTable(db, pSelTab); 2286 sqlite3SelectDelete(db, pSel); 2287 db->lookaside.bDisable--; 2288 } else { 2289 nErr++; 2290 } 2291 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2292 #endif /* SQLITE_OMIT_VIEW */ 2293 return nErr; 2294 } 2295 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2296 2297 #ifndef SQLITE_OMIT_VIEW 2298 /* 2299 ** Clear the column names from every VIEW in database idx. 2300 */ 2301 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2302 HashElem *i; 2303 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2304 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2305 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2306 Table *pTab = sqliteHashData(i); 2307 if( pTab->pSelect ){ 2308 sqlite3DeleteColumnNames(db, pTab); 2309 pTab->aCol = 0; 2310 pTab->nCol = 0; 2311 } 2312 } 2313 DbClearProperty(db, idx, DB_UnresetViews); 2314 } 2315 #else 2316 # define sqliteViewResetAll(A,B) 2317 #endif /* SQLITE_OMIT_VIEW */ 2318 2319 /* 2320 ** This function is called by the VDBE to adjust the internal schema 2321 ** used by SQLite when the btree layer moves a table root page. The 2322 ** root-page of a table or index in database iDb has changed from iFrom 2323 ** to iTo. 2324 ** 2325 ** Ticket #1728: The symbol table might still contain information 2326 ** on tables and/or indices that are the process of being deleted. 2327 ** If you are unlucky, one of those deleted indices or tables might 2328 ** have the same rootpage number as the real table or index that is 2329 ** being moved. So we cannot stop searching after the first match 2330 ** because the first match might be for one of the deleted indices 2331 ** or tables and not the table/index that is actually being moved. 2332 ** We must continue looping until all tables and indices with 2333 ** rootpage==iFrom have been converted to have a rootpage of iTo 2334 ** in order to be certain that we got the right one. 2335 */ 2336 #ifndef SQLITE_OMIT_AUTOVACUUM 2337 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2338 HashElem *pElem; 2339 Hash *pHash; 2340 Db *pDb; 2341 2342 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2343 pDb = &db->aDb[iDb]; 2344 pHash = &pDb->pSchema->tblHash; 2345 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2346 Table *pTab = sqliteHashData(pElem); 2347 if( pTab->tnum==iFrom ){ 2348 pTab->tnum = iTo; 2349 } 2350 } 2351 pHash = &pDb->pSchema->idxHash; 2352 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2353 Index *pIdx = sqliteHashData(pElem); 2354 if( pIdx->tnum==iFrom ){ 2355 pIdx->tnum = iTo; 2356 } 2357 } 2358 } 2359 #endif 2360 2361 /* 2362 ** Write code to erase the table with root-page iTable from database iDb. 2363 ** Also write code to modify the sqlite_master table and internal schema 2364 ** if a root-page of another table is moved by the btree-layer whilst 2365 ** erasing iTable (this can happen with an auto-vacuum database). 2366 */ 2367 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2368 Vdbe *v = sqlite3GetVdbe(pParse); 2369 int r1 = sqlite3GetTempReg(pParse); 2370 assert( iTable>1 ); 2371 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2372 sqlite3MayAbort(pParse); 2373 #ifndef SQLITE_OMIT_AUTOVACUUM 2374 /* OP_Destroy stores an in integer r1. If this integer 2375 ** is non-zero, then it is the root page number of a table moved to 2376 ** location iTable. The following code modifies the sqlite_master table to 2377 ** reflect this. 2378 ** 2379 ** The "#NNN" in the SQL is a special constant that means whatever value 2380 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2381 ** token for additional information. 2382 */ 2383 sqlite3NestedParse(pParse, 2384 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2385 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2386 #endif 2387 sqlite3ReleaseTempReg(pParse, r1); 2388 } 2389 2390 /* 2391 ** Write VDBE code to erase table pTab and all associated indices on disk. 2392 ** Code to update the sqlite_master tables and internal schema definitions 2393 ** in case a root-page belonging to another table is moved by the btree layer 2394 ** is also added (this can happen with an auto-vacuum database). 2395 */ 2396 static void destroyTable(Parse *pParse, Table *pTab){ 2397 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2398 ** is not defined), then it is important to call OP_Destroy on the 2399 ** table and index root-pages in order, starting with the numerically 2400 ** largest root-page number. This guarantees that none of the root-pages 2401 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2402 ** following were coded: 2403 ** 2404 ** OP_Destroy 4 0 2405 ** ... 2406 ** OP_Destroy 5 0 2407 ** 2408 ** and root page 5 happened to be the largest root-page number in the 2409 ** database, then root page 5 would be moved to page 4 by the 2410 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2411 ** a free-list page. 2412 */ 2413 int iTab = pTab->tnum; 2414 int iDestroyed = 0; 2415 2416 while( 1 ){ 2417 Index *pIdx; 2418 int iLargest = 0; 2419 2420 if( iDestroyed==0 || iTab<iDestroyed ){ 2421 iLargest = iTab; 2422 } 2423 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2424 int iIdx = pIdx->tnum; 2425 assert( pIdx->pSchema==pTab->pSchema ); 2426 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2427 iLargest = iIdx; 2428 } 2429 } 2430 if( iLargest==0 ){ 2431 return; 2432 }else{ 2433 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2434 assert( iDb>=0 && iDb<pParse->db->nDb ); 2435 destroyRootPage(pParse, iLargest, iDb); 2436 iDestroyed = iLargest; 2437 } 2438 } 2439 } 2440 2441 /* 2442 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2443 ** after a DROP INDEX or DROP TABLE command. 2444 */ 2445 static void sqlite3ClearStatTables( 2446 Parse *pParse, /* The parsing context */ 2447 int iDb, /* The database number */ 2448 const char *zType, /* "idx" or "tbl" */ 2449 const char *zName /* Name of index or table */ 2450 ){ 2451 int i; 2452 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2453 for(i=1; i<=4; i++){ 2454 char zTab[24]; 2455 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2456 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2457 sqlite3NestedParse(pParse, 2458 "DELETE FROM %Q.%s WHERE %s=%Q", 2459 zDbName, zTab, zType, zName 2460 ); 2461 } 2462 } 2463 } 2464 2465 /* 2466 ** Generate code to drop a table. 2467 */ 2468 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2469 Vdbe *v; 2470 sqlite3 *db = pParse->db; 2471 Trigger *pTrigger; 2472 Db *pDb = &db->aDb[iDb]; 2473 2474 v = sqlite3GetVdbe(pParse); 2475 assert( v!=0 ); 2476 sqlite3BeginWriteOperation(pParse, 1, iDb); 2477 2478 #ifndef SQLITE_OMIT_VIRTUALTABLE 2479 if( IsVirtual(pTab) ){ 2480 sqlite3VdbeAddOp0(v, OP_VBegin); 2481 } 2482 #endif 2483 2484 /* Drop all triggers associated with the table being dropped. Code 2485 ** is generated to remove entries from sqlite_master and/or 2486 ** sqlite_temp_master if required. 2487 */ 2488 pTrigger = sqlite3TriggerList(pParse, pTab); 2489 while( pTrigger ){ 2490 assert( pTrigger->pSchema==pTab->pSchema || 2491 pTrigger->pSchema==db->aDb[1].pSchema ); 2492 sqlite3DropTriggerPtr(pParse, pTrigger); 2493 pTrigger = pTrigger->pNext; 2494 } 2495 2496 #ifndef SQLITE_OMIT_AUTOINCREMENT 2497 /* Remove any entries of the sqlite_sequence table associated with 2498 ** the table being dropped. This is done before the table is dropped 2499 ** at the btree level, in case the sqlite_sequence table needs to 2500 ** move as a result of the drop (can happen in auto-vacuum mode). 2501 */ 2502 if( pTab->tabFlags & TF_Autoincrement ){ 2503 sqlite3NestedParse(pParse, 2504 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2505 pDb->zDbSName, pTab->zName 2506 ); 2507 } 2508 #endif 2509 2510 /* Drop all SQLITE_MASTER table and index entries that refer to the 2511 ** table. The program name loops through the master table and deletes 2512 ** every row that refers to a table of the same name as the one being 2513 ** dropped. Triggers are handled separately because a trigger can be 2514 ** created in the temp database that refers to a table in another 2515 ** database. 2516 */ 2517 sqlite3NestedParse(pParse, 2518 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2519 pDb->zDbSName, MASTER_NAME, pTab->zName); 2520 if( !isView && !IsVirtual(pTab) ){ 2521 destroyTable(pParse, pTab); 2522 } 2523 2524 /* Remove the table entry from SQLite's internal schema and modify 2525 ** the schema cookie. 2526 */ 2527 if( IsVirtual(pTab) ){ 2528 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2529 } 2530 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2531 sqlite3ChangeCookie(pParse, iDb); 2532 sqliteViewResetAll(db, iDb); 2533 } 2534 2535 /* 2536 ** This routine is called to do the work of a DROP TABLE statement. 2537 ** pName is the name of the table to be dropped. 2538 */ 2539 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2540 Table *pTab; 2541 Vdbe *v; 2542 sqlite3 *db = pParse->db; 2543 int iDb; 2544 2545 if( db->mallocFailed ){ 2546 goto exit_drop_table; 2547 } 2548 assert( pParse->nErr==0 ); 2549 assert( pName->nSrc==1 ); 2550 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2551 if( noErr ) db->suppressErr++; 2552 assert( isView==0 || isView==LOCATE_VIEW ); 2553 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2554 if( noErr ) db->suppressErr--; 2555 2556 if( pTab==0 ){ 2557 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2558 goto exit_drop_table; 2559 } 2560 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2561 assert( iDb>=0 && iDb<db->nDb ); 2562 2563 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2564 ** it is initialized. 2565 */ 2566 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2567 goto exit_drop_table; 2568 } 2569 #ifndef SQLITE_OMIT_AUTHORIZATION 2570 { 2571 int code; 2572 const char *zTab = SCHEMA_TABLE(iDb); 2573 const char *zDb = db->aDb[iDb].zDbSName; 2574 const char *zArg2 = 0; 2575 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2576 goto exit_drop_table; 2577 } 2578 if( isView ){ 2579 if( !OMIT_TEMPDB && iDb==1 ){ 2580 code = SQLITE_DROP_TEMP_VIEW; 2581 }else{ 2582 code = SQLITE_DROP_VIEW; 2583 } 2584 #ifndef SQLITE_OMIT_VIRTUALTABLE 2585 }else if( IsVirtual(pTab) ){ 2586 code = SQLITE_DROP_VTABLE; 2587 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2588 #endif 2589 }else{ 2590 if( !OMIT_TEMPDB && iDb==1 ){ 2591 code = SQLITE_DROP_TEMP_TABLE; 2592 }else{ 2593 code = SQLITE_DROP_TABLE; 2594 } 2595 } 2596 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2597 goto exit_drop_table; 2598 } 2599 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2600 goto exit_drop_table; 2601 } 2602 } 2603 #endif 2604 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2605 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2606 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2607 goto exit_drop_table; 2608 } 2609 2610 #ifndef SQLITE_OMIT_VIEW 2611 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2612 ** on a table. 2613 */ 2614 if( isView && pTab->pSelect==0 ){ 2615 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2616 goto exit_drop_table; 2617 } 2618 if( !isView && pTab->pSelect ){ 2619 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2620 goto exit_drop_table; 2621 } 2622 #endif 2623 2624 /* Generate code to remove the table from the master table 2625 ** on disk. 2626 */ 2627 v = sqlite3GetVdbe(pParse); 2628 if( v ){ 2629 sqlite3BeginWriteOperation(pParse, 1, iDb); 2630 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2631 sqlite3FkDropTable(pParse, pName, pTab); 2632 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2633 } 2634 2635 exit_drop_table: 2636 sqlite3SrcListDelete(db, pName); 2637 } 2638 2639 /* 2640 ** This routine is called to create a new foreign key on the table 2641 ** currently under construction. pFromCol determines which columns 2642 ** in the current table point to the foreign key. If pFromCol==0 then 2643 ** connect the key to the last column inserted. pTo is the name of 2644 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2645 ** of tables in the parent pTo table. flags contains all 2646 ** information about the conflict resolution algorithms specified 2647 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2648 ** 2649 ** An FKey structure is created and added to the table currently 2650 ** under construction in the pParse->pNewTable field. 2651 ** 2652 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2653 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2654 */ 2655 void sqlite3CreateForeignKey( 2656 Parse *pParse, /* Parsing context */ 2657 ExprList *pFromCol, /* Columns in this table that point to other table */ 2658 Token *pTo, /* Name of the other table */ 2659 ExprList *pToCol, /* Columns in the other table */ 2660 int flags /* Conflict resolution algorithms. */ 2661 ){ 2662 sqlite3 *db = pParse->db; 2663 #ifndef SQLITE_OMIT_FOREIGN_KEY 2664 FKey *pFKey = 0; 2665 FKey *pNextTo; 2666 Table *p = pParse->pNewTable; 2667 int nByte; 2668 int i; 2669 int nCol; 2670 char *z; 2671 2672 assert( pTo!=0 ); 2673 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2674 if( pFromCol==0 ){ 2675 int iCol = p->nCol-1; 2676 if( NEVER(iCol<0) ) goto fk_end; 2677 if( pToCol && pToCol->nExpr!=1 ){ 2678 sqlite3ErrorMsg(pParse, "foreign key on %s" 2679 " should reference only one column of table %T", 2680 p->aCol[iCol].zName, pTo); 2681 goto fk_end; 2682 } 2683 nCol = 1; 2684 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2685 sqlite3ErrorMsg(pParse, 2686 "number of columns in foreign key does not match the number of " 2687 "columns in the referenced table"); 2688 goto fk_end; 2689 }else{ 2690 nCol = pFromCol->nExpr; 2691 } 2692 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2693 if( pToCol ){ 2694 for(i=0; i<pToCol->nExpr; i++){ 2695 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2696 } 2697 } 2698 pFKey = sqlite3DbMallocZero(db, nByte ); 2699 if( pFKey==0 ){ 2700 goto fk_end; 2701 } 2702 pFKey->pFrom = p; 2703 pFKey->pNextFrom = p->pFKey; 2704 z = (char*)&pFKey->aCol[nCol]; 2705 pFKey->zTo = z; 2706 memcpy(z, pTo->z, pTo->n); 2707 z[pTo->n] = 0; 2708 sqlite3Dequote(z); 2709 z += pTo->n+1; 2710 pFKey->nCol = nCol; 2711 if( pFromCol==0 ){ 2712 pFKey->aCol[0].iFrom = p->nCol-1; 2713 }else{ 2714 for(i=0; i<nCol; i++){ 2715 int j; 2716 for(j=0; j<p->nCol; j++){ 2717 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2718 pFKey->aCol[i].iFrom = j; 2719 break; 2720 } 2721 } 2722 if( j>=p->nCol ){ 2723 sqlite3ErrorMsg(pParse, 2724 "unknown column \"%s\" in foreign key definition", 2725 pFromCol->a[i].zName); 2726 goto fk_end; 2727 } 2728 } 2729 } 2730 if( pToCol ){ 2731 for(i=0; i<nCol; i++){ 2732 int n = sqlite3Strlen30(pToCol->a[i].zName); 2733 pFKey->aCol[i].zCol = z; 2734 memcpy(z, pToCol->a[i].zName, n); 2735 z[n] = 0; 2736 z += n+1; 2737 } 2738 } 2739 pFKey->isDeferred = 0; 2740 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2741 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2742 2743 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2744 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2745 pFKey->zTo, (void *)pFKey 2746 ); 2747 if( pNextTo==pFKey ){ 2748 sqlite3OomFault(db); 2749 goto fk_end; 2750 } 2751 if( pNextTo ){ 2752 assert( pNextTo->pPrevTo==0 ); 2753 pFKey->pNextTo = pNextTo; 2754 pNextTo->pPrevTo = pFKey; 2755 } 2756 2757 /* Link the foreign key to the table as the last step. 2758 */ 2759 p->pFKey = pFKey; 2760 pFKey = 0; 2761 2762 fk_end: 2763 sqlite3DbFree(db, pFKey); 2764 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2765 sqlite3ExprListDelete(db, pFromCol); 2766 sqlite3ExprListDelete(db, pToCol); 2767 } 2768 2769 /* 2770 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2771 ** clause is seen as part of a foreign key definition. The isDeferred 2772 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2773 ** The behavior of the most recently created foreign key is adjusted 2774 ** accordingly. 2775 */ 2776 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2777 #ifndef SQLITE_OMIT_FOREIGN_KEY 2778 Table *pTab; 2779 FKey *pFKey; 2780 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2781 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2782 pFKey->isDeferred = (u8)isDeferred; 2783 #endif 2784 } 2785 2786 /* 2787 ** Generate code that will erase and refill index *pIdx. This is 2788 ** used to initialize a newly created index or to recompute the 2789 ** content of an index in response to a REINDEX command. 2790 ** 2791 ** if memRootPage is not negative, it means that the index is newly 2792 ** created. The register specified by memRootPage contains the 2793 ** root page number of the index. If memRootPage is negative, then 2794 ** the index already exists and must be cleared before being refilled and 2795 ** the root page number of the index is taken from pIndex->tnum. 2796 */ 2797 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2798 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2799 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2800 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2801 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2802 int addr1; /* Address of top of loop */ 2803 int addr2; /* Address to jump to for next iteration */ 2804 int tnum; /* Root page of index */ 2805 int iPartIdxLabel; /* Jump to this label to skip a row */ 2806 Vdbe *v; /* Generate code into this virtual machine */ 2807 KeyInfo *pKey; /* KeyInfo for index */ 2808 int regRecord; /* Register holding assembled index record */ 2809 sqlite3 *db = pParse->db; /* The database connection */ 2810 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2811 2812 #ifndef SQLITE_OMIT_AUTHORIZATION 2813 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2814 db->aDb[iDb].zDbSName ) ){ 2815 return; 2816 } 2817 #endif 2818 2819 /* Require a write-lock on the table to perform this operation */ 2820 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2821 2822 v = sqlite3GetVdbe(pParse); 2823 if( v==0 ) return; 2824 if( memRootPage>=0 ){ 2825 tnum = memRootPage; 2826 }else{ 2827 tnum = pIndex->tnum; 2828 } 2829 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2830 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2831 2832 /* Open the sorter cursor if we are to use one. */ 2833 iSorter = pParse->nTab++; 2834 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2835 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2836 2837 /* Open the table. Loop through all rows of the table, inserting index 2838 ** records into the sorter. */ 2839 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2840 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2841 regRecord = sqlite3GetTempReg(pParse); 2842 2843 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2844 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2845 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2846 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2847 sqlite3VdbeJumpHere(v, addr1); 2848 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2849 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2850 (char *)pKey, P4_KEYINFO); 2851 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2852 2853 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2854 if( IsUniqueIndex(pIndex) ){ 2855 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2856 sqlite3VdbeGoto(v, j2); 2857 addr2 = sqlite3VdbeCurrentAddr(v); 2858 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2859 pIndex->nKeyCol); VdbeCoverage(v); 2860 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2861 }else{ 2862 addr2 = sqlite3VdbeCurrentAddr(v); 2863 } 2864 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2865 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 2866 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2867 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2868 sqlite3ReleaseTempReg(pParse, regRecord); 2869 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2870 sqlite3VdbeJumpHere(v, addr1); 2871 2872 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2873 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2874 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2875 } 2876 2877 /* 2878 ** Allocate heap space to hold an Index object with nCol columns. 2879 ** 2880 ** Increase the allocation size to provide an extra nExtra bytes 2881 ** of 8-byte aligned space after the Index object and return a 2882 ** pointer to this extra space in *ppExtra. 2883 */ 2884 Index *sqlite3AllocateIndexObject( 2885 sqlite3 *db, /* Database connection */ 2886 i16 nCol, /* Total number of columns in the index */ 2887 int nExtra, /* Number of bytes of extra space to alloc */ 2888 char **ppExtra /* Pointer to the "extra" space */ 2889 ){ 2890 Index *p; /* Allocated index object */ 2891 int nByte; /* Bytes of space for Index object + arrays */ 2892 2893 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2894 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2895 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2896 sizeof(i16)*nCol + /* Index.aiColumn */ 2897 sizeof(u8)*nCol); /* Index.aSortOrder */ 2898 p = sqlite3DbMallocZero(db, nByte + nExtra); 2899 if( p ){ 2900 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2901 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2902 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2903 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2904 p->aSortOrder = (u8*)pExtra; 2905 p->nColumn = nCol; 2906 p->nKeyCol = nCol - 1; 2907 *ppExtra = ((char*)p) + nByte; 2908 } 2909 return p; 2910 } 2911 2912 /* 2913 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2914 ** and pTblList is the name of the table that is to be indexed. Both will 2915 ** be NULL for a primary key or an index that is created to satisfy a 2916 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2917 ** as the table to be indexed. pParse->pNewTable is a table that is 2918 ** currently being constructed by a CREATE TABLE statement. 2919 ** 2920 ** pList is a list of columns to be indexed. pList will be NULL if this 2921 ** is a primary key or unique-constraint on the most recent column added 2922 ** to the table currently under construction. 2923 */ 2924 void sqlite3CreateIndex( 2925 Parse *pParse, /* All information about this parse */ 2926 Token *pName1, /* First part of index name. May be NULL */ 2927 Token *pName2, /* Second part of index name. May be NULL */ 2928 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2929 ExprList *pList, /* A list of columns to be indexed */ 2930 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2931 Token *pStart, /* The CREATE token that begins this statement */ 2932 Expr *pPIWhere, /* WHERE clause for partial indices */ 2933 int sortOrder, /* Sort order of primary key when pList==NULL */ 2934 int ifNotExist, /* Omit error if index already exists */ 2935 u8 idxType /* The index type */ 2936 ){ 2937 Table *pTab = 0; /* Table to be indexed */ 2938 Index *pIndex = 0; /* The index to be created */ 2939 char *zName = 0; /* Name of the index */ 2940 int nName; /* Number of characters in zName */ 2941 int i, j; 2942 DbFixer sFix; /* For assigning database names to pTable */ 2943 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2944 sqlite3 *db = pParse->db; 2945 Db *pDb; /* The specific table containing the indexed database */ 2946 int iDb; /* Index of the database that is being written */ 2947 Token *pName = 0; /* Unqualified name of the index to create */ 2948 struct ExprList_item *pListItem; /* For looping over pList */ 2949 int nExtra = 0; /* Space allocated for zExtra[] */ 2950 int nExtraCol; /* Number of extra columns needed */ 2951 char *zExtra = 0; /* Extra space after the Index object */ 2952 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2953 2954 if( db->mallocFailed || pParse->nErr>0 ){ 2955 goto exit_create_index; 2956 } 2957 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2958 goto exit_create_index; 2959 } 2960 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2961 goto exit_create_index; 2962 } 2963 2964 /* 2965 ** Find the table that is to be indexed. Return early if not found. 2966 */ 2967 if( pTblName!=0 ){ 2968 2969 /* Use the two-part index name to determine the database 2970 ** to search for the table. 'Fix' the table name to this db 2971 ** before looking up the table. 2972 */ 2973 assert( pName1 && pName2 ); 2974 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2975 if( iDb<0 ) goto exit_create_index; 2976 assert( pName && pName->z ); 2977 2978 #ifndef SQLITE_OMIT_TEMPDB 2979 /* If the index name was unqualified, check if the table 2980 ** is a temp table. If so, set the database to 1. Do not do this 2981 ** if initialising a database schema. 2982 */ 2983 if( !db->init.busy ){ 2984 pTab = sqlite3SrcListLookup(pParse, pTblName); 2985 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2986 iDb = 1; 2987 } 2988 } 2989 #endif 2990 2991 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2992 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2993 /* Because the parser constructs pTblName from a single identifier, 2994 ** sqlite3FixSrcList can never fail. */ 2995 assert(0); 2996 } 2997 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2998 assert( db->mallocFailed==0 || pTab==0 ); 2999 if( pTab==0 ) goto exit_create_index; 3000 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3001 sqlite3ErrorMsg(pParse, 3002 "cannot create a TEMP index on non-TEMP table \"%s\"", 3003 pTab->zName); 3004 goto exit_create_index; 3005 } 3006 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3007 }else{ 3008 assert( pName==0 ); 3009 assert( pStart==0 ); 3010 pTab = pParse->pNewTable; 3011 if( !pTab ) goto exit_create_index; 3012 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3013 } 3014 pDb = &db->aDb[iDb]; 3015 3016 assert( pTab!=0 ); 3017 assert( pParse->nErr==0 ); 3018 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3019 && db->init.busy==0 3020 #if SQLITE_USER_AUTHENTICATION 3021 && sqlite3UserAuthTable(pTab->zName)==0 3022 #endif 3023 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 3024 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3025 goto exit_create_index; 3026 } 3027 #ifndef SQLITE_OMIT_VIEW 3028 if( pTab->pSelect ){ 3029 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3030 goto exit_create_index; 3031 } 3032 #endif 3033 #ifndef SQLITE_OMIT_VIRTUALTABLE 3034 if( IsVirtual(pTab) ){ 3035 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3036 goto exit_create_index; 3037 } 3038 #endif 3039 3040 /* 3041 ** Find the name of the index. Make sure there is not already another 3042 ** index or table with the same name. 3043 ** 3044 ** Exception: If we are reading the names of permanent indices from the 3045 ** sqlite_master table (because some other process changed the schema) and 3046 ** one of the index names collides with the name of a temporary table or 3047 ** index, then we will continue to process this index. 3048 ** 3049 ** If pName==0 it means that we are 3050 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3051 ** own name. 3052 */ 3053 if( pName ){ 3054 zName = sqlite3NameFromToken(db, pName); 3055 if( zName==0 ) goto exit_create_index; 3056 assert( pName->z!=0 ); 3057 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3058 goto exit_create_index; 3059 } 3060 if( !db->init.busy ){ 3061 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3062 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3063 goto exit_create_index; 3064 } 3065 } 3066 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3067 if( !ifNotExist ){ 3068 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3069 }else{ 3070 assert( !db->init.busy ); 3071 sqlite3CodeVerifySchema(pParse, iDb); 3072 } 3073 goto exit_create_index; 3074 } 3075 }else{ 3076 int n; 3077 Index *pLoop; 3078 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3079 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3080 if( zName==0 ){ 3081 goto exit_create_index; 3082 } 3083 3084 /* Automatic index names generated from within sqlite3_declare_vtab() 3085 ** must have names that are distinct from normal automatic index names. 3086 ** The following statement converts "sqlite3_autoindex..." into 3087 ** "sqlite3_butoindex..." in order to make the names distinct. 3088 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3089 if( IN_DECLARE_VTAB ) zName[7]++; 3090 } 3091 3092 /* Check for authorization to create an index. 3093 */ 3094 #ifndef SQLITE_OMIT_AUTHORIZATION 3095 { 3096 const char *zDb = pDb->zDbSName; 3097 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3098 goto exit_create_index; 3099 } 3100 i = SQLITE_CREATE_INDEX; 3101 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3102 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3103 goto exit_create_index; 3104 } 3105 } 3106 #endif 3107 3108 /* If pList==0, it means this routine was called to make a primary 3109 ** key out of the last column added to the table under construction. 3110 ** So create a fake list to simulate this. 3111 */ 3112 if( pList==0 ){ 3113 Token prevCol; 3114 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3115 pCol->colFlags |= COLFLAG_UNIQUE; 3116 sqlite3TokenInit(&prevCol, pCol->zName); 3117 pList = sqlite3ExprListAppend(pParse, 0, 3118 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3119 if( pList==0 ) goto exit_create_index; 3120 assert( pList->nExpr==1 ); 3121 sqlite3ExprListSetSortOrder(pList, sortOrder); 3122 }else{ 3123 sqlite3ExprListCheckLength(pParse, pList, "index"); 3124 } 3125 3126 /* Figure out how many bytes of space are required to store explicitly 3127 ** specified collation sequence names. 3128 */ 3129 for(i=0; i<pList->nExpr; i++){ 3130 Expr *pExpr = pList->a[i].pExpr; 3131 assert( pExpr!=0 ); 3132 if( pExpr->op==TK_COLLATE ){ 3133 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3134 } 3135 } 3136 3137 /* 3138 ** Allocate the index structure. 3139 */ 3140 nName = sqlite3Strlen30(zName); 3141 nExtraCol = pPk ? pPk->nKeyCol : 1; 3142 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3143 nName + nExtra + 1, &zExtra); 3144 if( db->mallocFailed ){ 3145 goto exit_create_index; 3146 } 3147 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3148 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3149 pIndex->zName = zExtra; 3150 zExtra += nName + 1; 3151 memcpy(pIndex->zName, zName, nName+1); 3152 pIndex->pTable = pTab; 3153 pIndex->onError = (u8)onError; 3154 pIndex->uniqNotNull = onError!=OE_None; 3155 pIndex->idxType = idxType; 3156 pIndex->pSchema = db->aDb[iDb].pSchema; 3157 pIndex->nKeyCol = pList->nExpr; 3158 if( pPIWhere ){ 3159 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3160 pIndex->pPartIdxWhere = pPIWhere; 3161 pPIWhere = 0; 3162 } 3163 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3164 3165 /* Check to see if we should honor DESC requests on index columns 3166 */ 3167 if( pDb->pSchema->file_format>=4 ){ 3168 sortOrderMask = -1; /* Honor DESC */ 3169 }else{ 3170 sortOrderMask = 0; /* Ignore DESC */ 3171 } 3172 3173 /* Analyze the list of expressions that form the terms of the index and 3174 ** report any errors. In the common case where the expression is exactly 3175 ** a table column, store that column in aiColumn[]. For general expressions, 3176 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3177 ** 3178 ** TODO: Issue a warning if two or more columns of the index are identical. 3179 ** TODO: Issue a warning if the table primary key is used as part of the 3180 ** index key. 3181 */ 3182 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3183 Expr *pCExpr; /* The i-th index expression */ 3184 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3185 const char *zColl; /* Collation sequence name */ 3186 3187 sqlite3StringToId(pListItem->pExpr); 3188 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3189 if( pParse->nErr ) goto exit_create_index; 3190 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3191 if( pCExpr->op!=TK_COLUMN ){ 3192 if( pTab==pParse->pNewTable ){ 3193 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3194 "UNIQUE constraints"); 3195 goto exit_create_index; 3196 } 3197 if( pIndex->aColExpr==0 ){ 3198 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3199 pIndex->aColExpr = pCopy; 3200 if( !db->mallocFailed ){ 3201 assert( pCopy!=0 ); 3202 pListItem = &pCopy->a[i]; 3203 } 3204 } 3205 j = XN_EXPR; 3206 pIndex->aiColumn[i] = XN_EXPR; 3207 pIndex->uniqNotNull = 0; 3208 }else{ 3209 j = pCExpr->iColumn; 3210 assert( j<=0x7fff ); 3211 if( j<0 ){ 3212 j = pTab->iPKey; 3213 }else if( pTab->aCol[j].notNull==0 ){ 3214 pIndex->uniqNotNull = 0; 3215 } 3216 pIndex->aiColumn[i] = (i16)j; 3217 } 3218 zColl = 0; 3219 if( pListItem->pExpr->op==TK_COLLATE ){ 3220 int nColl; 3221 zColl = pListItem->pExpr->u.zToken; 3222 nColl = sqlite3Strlen30(zColl) + 1; 3223 assert( nExtra>=nColl ); 3224 memcpy(zExtra, zColl, nColl); 3225 zColl = zExtra; 3226 zExtra += nColl; 3227 nExtra -= nColl; 3228 }else if( j>=0 ){ 3229 zColl = pTab->aCol[j].zColl; 3230 } 3231 if( !zColl ) zColl = sqlite3StrBINARY; 3232 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3233 goto exit_create_index; 3234 } 3235 pIndex->azColl[i] = zColl; 3236 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3237 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3238 } 3239 3240 /* Append the table key to the end of the index. For WITHOUT ROWID 3241 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3242 ** normal tables (when pPk==0) this will be the rowid. 3243 */ 3244 if( pPk ){ 3245 for(j=0; j<pPk->nKeyCol; j++){ 3246 int x = pPk->aiColumn[j]; 3247 assert( x>=0 ); 3248 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3249 pIndex->nColumn--; 3250 }else{ 3251 pIndex->aiColumn[i] = x; 3252 pIndex->azColl[i] = pPk->azColl[j]; 3253 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3254 i++; 3255 } 3256 } 3257 assert( i==pIndex->nColumn ); 3258 }else{ 3259 pIndex->aiColumn[i] = XN_ROWID; 3260 pIndex->azColl[i] = sqlite3StrBINARY; 3261 } 3262 sqlite3DefaultRowEst(pIndex); 3263 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3264 3265 /* If this index contains every column of its table, then mark 3266 ** it as a covering index */ 3267 assert( HasRowid(pTab) 3268 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3269 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3270 pIndex->isCovering = 1; 3271 for(j=0; j<pTab->nCol; j++){ 3272 if( j==pTab->iPKey ) continue; 3273 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3274 pIndex->isCovering = 0; 3275 break; 3276 } 3277 } 3278 3279 if( pTab==pParse->pNewTable ){ 3280 /* This routine has been called to create an automatic index as a 3281 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3282 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3283 ** i.e. one of: 3284 ** 3285 ** CREATE TABLE t(x PRIMARY KEY, y); 3286 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3287 ** 3288 ** Either way, check to see if the table already has such an index. If 3289 ** so, don't bother creating this one. This only applies to 3290 ** automatically created indices. Users can do as they wish with 3291 ** explicit indices. 3292 ** 3293 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3294 ** (and thus suppressing the second one) even if they have different 3295 ** sort orders. 3296 ** 3297 ** If there are different collating sequences or if the columns of 3298 ** the constraint occur in different orders, then the constraints are 3299 ** considered distinct and both result in separate indices. 3300 */ 3301 Index *pIdx; 3302 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3303 int k; 3304 assert( IsUniqueIndex(pIdx) ); 3305 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3306 assert( IsUniqueIndex(pIndex) ); 3307 3308 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3309 for(k=0; k<pIdx->nKeyCol; k++){ 3310 const char *z1; 3311 const char *z2; 3312 assert( pIdx->aiColumn[k]>=0 ); 3313 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3314 z1 = pIdx->azColl[k]; 3315 z2 = pIndex->azColl[k]; 3316 if( sqlite3StrICmp(z1, z2) ) break; 3317 } 3318 if( k==pIdx->nKeyCol ){ 3319 if( pIdx->onError!=pIndex->onError ){ 3320 /* This constraint creates the same index as a previous 3321 ** constraint specified somewhere in the CREATE TABLE statement. 3322 ** However the ON CONFLICT clauses are different. If both this 3323 ** constraint and the previous equivalent constraint have explicit 3324 ** ON CONFLICT clauses this is an error. Otherwise, use the 3325 ** explicitly specified behavior for the index. 3326 */ 3327 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3328 sqlite3ErrorMsg(pParse, 3329 "conflicting ON CONFLICT clauses specified", 0); 3330 } 3331 if( pIdx->onError==OE_Default ){ 3332 pIdx->onError = pIndex->onError; 3333 } 3334 } 3335 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3336 goto exit_create_index; 3337 } 3338 } 3339 } 3340 3341 /* Link the new Index structure to its table and to the other 3342 ** in-memory database structures. 3343 */ 3344 assert( pParse->nErr==0 ); 3345 if( db->init.busy ){ 3346 Index *p; 3347 assert( !IN_DECLARE_VTAB ); 3348 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3349 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3350 pIndex->zName, pIndex); 3351 if( p ){ 3352 assert( p==pIndex ); /* Malloc must have failed */ 3353 sqlite3OomFault(db); 3354 goto exit_create_index; 3355 } 3356 db->mDbFlags |= DBFLAG_SchemaChange; 3357 if( pTblName!=0 ){ 3358 pIndex->tnum = db->init.newTnum; 3359 } 3360 } 3361 3362 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3363 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3364 ** emit code to allocate the index rootpage on disk and make an entry for 3365 ** the index in the sqlite_master table and populate the index with 3366 ** content. But, do not do this if we are simply reading the sqlite_master 3367 ** table to parse the schema, or if this index is the PRIMARY KEY index 3368 ** of a WITHOUT ROWID table. 3369 ** 3370 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3371 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3372 ** has just been created, it contains no data and the index initialization 3373 ** step can be skipped. 3374 */ 3375 else if( HasRowid(pTab) || pTblName!=0 ){ 3376 Vdbe *v; 3377 char *zStmt; 3378 int iMem = ++pParse->nMem; 3379 3380 v = sqlite3GetVdbe(pParse); 3381 if( v==0 ) goto exit_create_index; 3382 3383 sqlite3BeginWriteOperation(pParse, 1, iDb); 3384 3385 /* Create the rootpage for the index using CreateIndex. But before 3386 ** doing so, code a Noop instruction and store its address in 3387 ** Index.tnum. This is required in case this index is actually a 3388 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3389 ** that case the convertToWithoutRowidTable() routine will replace 3390 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3391 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3392 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3393 3394 /* Gather the complete text of the CREATE INDEX statement into 3395 ** the zStmt variable 3396 */ 3397 if( pStart ){ 3398 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3399 if( pName->z[n-1]==';' ) n--; 3400 /* A named index with an explicit CREATE INDEX statement */ 3401 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3402 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3403 }else{ 3404 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3405 /* zStmt = sqlite3MPrintf(""); */ 3406 zStmt = 0; 3407 } 3408 3409 /* Add an entry in sqlite_master for this index 3410 */ 3411 sqlite3NestedParse(pParse, 3412 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3413 db->aDb[iDb].zDbSName, MASTER_NAME, 3414 pIndex->zName, 3415 pTab->zName, 3416 iMem, 3417 zStmt 3418 ); 3419 sqlite3DbFree(db, zStmt); 3420 3421 /* Fill the index with data and reparse the schema. Code an OP_Expire 3422 ** to invalidate all pre-compiled statements. 3423 */ 3424 if( pTblName ){ 3425 sqlite3RefillIndex(pParse, pIndex, iMem); 3426 sqlite3ChangeCookie(pParse, iDb); 3427 sqlite3VdbeAddParseSchemaOp(v, iDb, 3428 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3429 sqlite3VdbeAddOp0(v, OP_Expire); 3430 } 3431 3432 sqlite3VdbeJumpHere(v, pIndex->tnum); 3433 } 3434 3435 /* When adding an index to the list of indices for a table, make 3436 ** sure all indices labeled OE_Replace come after all those labeled 3437 ** OE_Ignore. This is necessary for the correct constraint check 3438 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3439 ** UPDATE and INSERT statements. 3440 */ 3441 if( db->init.busy || pTblName==0 ){ 3442 if( onError!=OE_Replace || pTab->pIndex==0 3443 || pTab->pIndex->onError==OE_Replace){ 3444 pIndex->pNext = pTab->pIndex; 3445 pTab->pIndex = pIndex; 3446 }else{ 3447 Index *pOther = pTab->pIndex; 3448 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3449 pOther = pOther->pNext; 3450 } 3451 pIndex->pNext = pOther->pNext; 3452 pOther->pNext = pIndex; 3453 } 3454 pIndex = 0; 3455 } 3456 3457 /* Clean up before exiting */ 3458 exit_create_index: 3459 if( pIndex ) freeIndex(db, pIndex); 3460 sqlite3ExprDelete(db, pPIWhere); 3461 sqlite3ExprListDelete(db, pList); 3462 sqlite3SrcListDelete(db, pTblName); 3463 sqlite3DbFree(db, zName); 3464 } 3465 3466 /* 3467 ** Fill the Index.aiRowEst[] array with default information - information 3468 ** to be used when we have not run the ANALYZE command. 3469 ** 3470 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3471 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3472 ** number of rows in the table that match any particular value of the 3473 ** first column of the index. aiRowEst[2] is an estimate of the number 3474 ** of rows that match any particular combination of the first 2 columns 3475 ** of the index. And so forth. It must always be the case that 3476 * 3477 ** aiRowEst[N]<=aiRowEst[N-1] 3478 ** aiRowEst[N]>=1 3479 ** 3480 ** Apart from that, we have little to go on besides intuition as to 3481 ** how aiRowEst[] should be initialized. The numbers generated here 3482 ** are based on typical values found in actual indices. 3483 */ 3484 void sqlite3DefaultRowEst(Index *pIdx){ 3485 /* 10, 9, 8, 7, 6 */ 3486 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3487 LogEst *a = pIdx->aiRowLogEst; 3488 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3489 int i; 3490 3491 /* Indexes with default row estimates should not have stat1 data */ 3492 assert( !pIdx->hasStat1 ); 3493 3494 /* Set the first entry (number of rows in the index) to the estimated 3495 ** number of rows in the table, or half the number of rows in the table 3496 ** for a partial index. But do not let the estimate drop below 10. */ 3497 a[0] = pIdx->pTable->nRowLogEst; 3498 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3499 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3500 3501 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3502 ** 6 and each subsequent value (if any) is 5. */ 3503 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3504 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3505 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3506 } 3507 3508 assert( 0==sqlite3LogEst(1) ); 3509 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3510 } 3511 3512 /* 3513 ** This routine will drop an existing named index. This routine 3514 ** implements the DROP INDEX statement. 3515 */ 3516 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3517 Index *pIndex; 3518 Vdbe *v; 3519 sqlite3 *db = pParse->db; 3520 int iDb; 3521 3522 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3523 if( db->mallocFailed ){ 3524 goto exit_drop_index; 3525 } 3526 assert( pName->nSrc==1 ); 3527 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3528 goto exit_drop_index; 3529 } 3530 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3531 if( pIndex==0 ){ 3532 if( !ifExists ){ 3533 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3534 }else{ 3535 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3536 } 3537 pParse->checkSchema = 1; 3538 goto exit_drop_index; 3539 } 3540 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3541 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3542 "or PRIMARY KEY constraint cannot be dropped", 0); 3543 goto exit_drop_index; 3544 } 3545 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3546 #ifndef SQLITE_OMIT_AUTHORIZATION 3547 { 3548 int code = SQLITE_DROP_INDEX; 3549 Table *pTab = pIndex->pTable; 3550 const char *zDb = db->aDb[iDb].zDbSName; 3551 const char *zTab = SCHEMA_TABLE(iDb); 3552 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3553 goto exit_drop_index; 3554 } 3555 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3556 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3557 goto exit_drop_index; 3558 } 3559 } 3560 #endif 3561 3562 /* Generate code to remove the index and from the master table */ 3563 v = sqlite3GetVdbe(pParse); 3564 if( v ){ 3565 sqlite3BeginWriteOperation(pParse, 1, iDb); 3566 sqlite3NestedParse(pParse, 3567 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3568 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3569 ); 3570 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3571 sqlite3ChangeCookie(pParse, iDb); 3572 destroyRootPage(pParse, pIndex->tnum, iDb); 3573 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3574 } 3575 3576 exit_drop_index: 3577 sqlite3SrcListDelete(db, pName); 3578 } 3579 3580 /* 3581 ** pArray is a pointer to an array of objects. Each object in the 3582 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3583 ** to extend the array so that there is space for a new object at the end. 3584 ** 3585 ** When this function is called, *pnEntry contains the current size of 3586 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3587 ** in total). 3588 ** 3589 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3590 ** space allocated for the new object is zeroed, *pnEntry updated to 3591 ** reflect the new size of the array and a pointer to the new allocation 3592 ** returned. *pIdx is set to the index of the new array entry in this case. 3593 ** 3594 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3595 ** unchanged and a copy of pArray returned. 3596 */ 3597 void *sqlite3ArrayAllocate( 3598 sqlite3 *db, /* Connection to notify of malloc failures */ 3599 void *pArray, /* Array of objects. Might be reallocated */ 3600 int szEntry, /* Size of each object in the array */ 3601 int *pnEntry, /* Number of objects currently in use */ 3602 int *pIdx /* Write the index of a new slot here */ 3603 ){ 3604 char *z; 3605 int n = *pnEntry; 3606 if( (n & (n-1))==0 ){ 3607 int sz = (n==0) ? 1 : 2*n; 3608 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3609 if( pNew==0 ){ 3610 *pIdx = -1; 3611 return pArray; 3612 } 3613 pArray = pNew; 3614 } 3615 z = (char*)pArray; 3616 memset(&z[n * szEntry], 0, szEntry); 3617 *pIdx = n; 3618 ++*pnEntry; 3619 return pArray; 3620 } 3621 3622 /* 3623 ** Append a new element to the given IdList. Create a new IdList if 3624 ** need be. 3625 ** 3626 ** A new IdList is returned, or NULL if malloc() fails. 3627 */ 3628 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3629 int i; 3630 if( pList==0 ){ 3631 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3632 if( pList==0 ) return 0; 3633 } 3634 pList->a = sqlite3ArrayAllocate( 3635 db, 3636 pList->a, 3637 sizeof(pList->a[0]), 3638 &pList->nId, 3639 &i 3640 ); 3641 if( i<0 ){ 3642 sqlite3IdListDelete(db, pList); 3643 return 0; 3644 } 3645 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3646 return pList; 3647 } 3648 3649 /* 3650 ** Delete an IdList. 3651 */ 3652 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3653 int i; 3654 if( pList==0 ) return; 3655 for(i=0; i<pList->nId; i++){ 3656 sqlite3DbFree(db, pList->a[i].zName); 3657 } 3658 sqlite3DbFree(db, pList->a); 3659 sqlite3DbFreeNN(db, pList); 3660 } 3661 3662 /* 3663 ** Return the index in pList of the identifier named zId. Return -1 3664 ** if not found. 3665 */ 3666 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3667 int i; 3668 if( pList==0 ) return -1; 3669 for(i=0; i<pList->nId; i++){ 3670 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3671 } 3672 return -1; 3673 } 3674 3675 /* 3676 ** Expand the space allocated for the given SrcList object by 3677 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3678 ** New slots are zeroed. 3679 ** 3680 ** For example, suppose a SrcList initially contains two entries: A,B. 3681 ** To append 3 new entries onto the end, do this: 3682 ** 3683 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3684 ** 3685 ** After the call above it would contain: A, B, nil, nil, nil. 3686 ** If the iStart argument had been 1 instead of 2, then the result 3687 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3688 ** the iStart value would be 0. The result then would 3689 ** be: nil, nil, nil, A, B. 3690 ** 3691 ** If a memory allocation fails the SrcList is unchanged. The 3692 ** db->mallocFailed flag will be set to true. 3693 */ 3694 SrcList *sqlite3SrcListEnlarge( 3695 sqlite3 *db, /* Database connection to notify of OOM errors */ 3696 SrcList *pSrc, /* The SrcList to be enlarged */ 3697 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3698 int iStart /* Index in pSrc->a[] of first new slot */ 3699 ){ 3700 int i; 3701 3702 /* Sanity checking on calling parameters */ 3703 assert( iStart>=0 ); 3704 assert( nExtra>=1 ); 3705 assert( pSrc!=0 ); 3706 assert( iStart<=pSrc->nSrc ); 3707 3708 /* Allocate additional space if needed */ 3709 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3710 SrcList *pNew; 3711 int nAlloc = pSrc->nSrc*2+nExtra; 3712 int nGot; 3713 pNew = sqlite3DbRealloc(db, pSrc, 3714 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3715 if( pNew==0 ){ 3716 assert( db->mallocFailed ); 3717 return pSrc; 3718 } 3719 pSrc = pNew; 3720 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3721 pSrc->nAlloc = nGot; 3722 } 3723 3724 /* Move existing slots that come after the newly inserted slots 3725 ** out of the way */ 3726 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3727 pSrc->a[i+nExtra] = pSrc->a[i]; 3728 } 3729 pSrc->nSrc += nExtra; 3730 3731 /* Zero the newly allocated slots */ 3732 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3733 for(i=iStart; i<iStart+nExtra; i++){ 3734 pSrc->a[i].iCursor = -1; 3735 } 3736 3737 /* Return a pointer to the enlarged SrcList */ 3738 return pSrc; 3739 } 3740 3741 3742 /* 3743 ** Append a new table name to the given SrcList. Create a new SrcList if 3744 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3745 ** 3746 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3747 ** SrcList might be the same as the SrcList that was input or it might be 3748 ** a new one. If an OOM error does occurs, then the prior value of pList 3749 ** that is input to this routine is automatically freed. 3750 ** 3751 ** If pDatabase is not null, it means that the table has an optional 3752 ** database name prefix. Like this: "database.table". The pDatabase 3753 ** points to the table name and the pTable points to the database name. 3754 ** The SrcList.a[].zName field is filled with the table name which might 3755 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3756 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3757 ** or with NULL if no database is specified. 3758 ** 3759 ** In other words, if call like this: 3760 ** 3761 ** sqlite3SrcListAppend(D,A,B,0); 3762 ** 3763 ** Then B is a table name and the database name is unspecified. If called 3764 ** like this: 3765 ** 3766 ** sqlite3SrcListAppend(D,A,B,C); 3767 ** 3768 ** Then C is the table name and B is the database name. If C is defined 3769 ** then so is B. In other words, we never have a case where: 3770 ** 3771 ** sqlite3SrcListAppend(D,A,0,C); 3772 ** 3773 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3774 ** before being added to the SrcList. 3775 */ 3776 SrcList *sqlite3SrcListAppend( 3777 sqlite3 *db, /* Connection to notify of malloc failures */ 3778 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3779 Token *pTable, /* Table to append */ 3780 Token *pDatabase /* Database of the table */ 3781 ){ 3782 struct SrcList_item *pItem; 3783 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3784 assert( db!=0 ); 3785 if( pList==0 ){ 3786 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3787 if( pList==0 ) return 0; 3788 pList->nAlloc = 1; 3789 pList->nSrc = 1; 3790 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3791 pList->a[0].iCursor = -1; 3792 }else{ 3793 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3794 } 3795 if( db->mallocFailed ){ 3796 sqlite3SrcListDelete(db, pList); 3797 return 0; 3798 } 3799 pItem = &pList->a[pList->nSrc-1]; 3800 if( pDatabase && pDatabase->z==0 ){ 3801 pDatabase = 0; 3802 } 3803 if( pDatabase ){ 3804 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3805 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3806 }else{ 3807 pItem->zName = sqlite3NameFromToken(db, pTable); 3808 pItem->zDatabase = 0; 3809 } 3810 return pList; 3811 } 3812 3813 /* 3814 ** Assign VdbeCursor index numbers to all tables in a SrcList 3815 */ 3816 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3817 int i; 3818 struct SrcList_item *pItem; 3819 assert(pList || pParse->db->mallocFailed ); 3820 if( pList ){ 3821 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3822 if( pItem->iCursor>=0 ) break; 3823 pItem->iCursor = pParse->nTab++; 3824 if( pItem->pSelect ){ 3825 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3826 } 3827 } 3828 } 3829 } 3830 3831 /* 3832 ** Delete an entire SrcList including all its substructure. 3833 */ 3834 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3835 int i; 3836 struct SrcList_item *pItem; 3837 if( pList==0 ) return; 3838 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3839 sqlite3DbFree(db, pItem->zDatabase); 3840 sqlite3DbFree(db, pItem->zName); 3841 sqlite3DbFree(db, pItem->zAlias); 3842 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3843 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3844 sqlite3DeleteTable(db, pItem->pTab); 3845 sqlite3SelectDelete(db, pItem->pSelect); 3846 sqlite3ExprDelete(db, pItem->pOn); 3847 sqlite3IdListDelete(db, pItem->pUsing); 3848 } 3849 sqlite3DbFreeNN(db, pList); 3850 } 3851 3852 /* 3853 ** This routine is called by the parser to add a new term to the 3854 ** end of a growing FROM clause. The "p" parameter is the part of 3855 ** the FROM clause that has already been constructed. "p" is NULL 3856 ** if this is the first term of the FROM clause. pTable and pDatabase 3857 ** are the name of the table and database named in the FROM clause term. 3858 ** pDatabase is NULL if the database name qualifier is missing - the 3859 ** usual case. If the term has an alias, then pAlias points to the 3860 ** alias token. If the term is a subquery, then pSubquery is the 3861 ** SELECT statement that the subquery encodes. The pTable and 3862 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3863 ** parameters are the content of the ON and USING clauses. 3864 ** 3865 ** Return a new SrcList which encodes is the FROM with the new 3866 ** term added. 3867 */ 3868 SrcList *sqlite3SrcListAppendFromTerm( 3869 Parse *pParse, /* Parsing context */ 3870 SrcList *p, /* The left part of the FROM clause already seen */ 3871 Token *pTable, /* Name of the table to add to the FROM clause */ 3872 Token *pDatabase, /* Name of the database containing pTable */ 3873 Token *pAlias, /* The right-hand side of the AS subexpression */ 3874 Select *pSubquery, /* A subquery used in place of a table name */ 3875 Expr *pOn, /* The ON clause of a join */ 3876 IdList *pUsing /* The USING clause of a join */ 3877 ){ 3878 struct SrcList_item *pItem; 3879 sqlite3 *db = pParse->db; 3880 if( !p && (pOn || pUsing) ){ 3881 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3882 (pOn ? "ON" : "USING") 3883 ); 3884 goto append_from_error; 3885 } 3886 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3887 if( p==0 ){ 3888 goto append_from_error; 3889 } 3890 assert( p->nSrc>0 ); 3891 pItem = &p->a[p->nSrc-1]; 3892 assert( pAlias!=0 ); 3893 if( pAlias->n ){ 3894 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3895 } 3896 pItem->pSelect = pSubquery; 3897 pItem->pOn = pOn; 3898 pItem->pUsing = pUsing; 3899 return p; 3900 3901 append_from_error: 3902 assert( p==0 ); 3903 sqlite3ExprDelete(db, pOn); 3904 sqlite3IdListDelete(db, pUsing); 3905 sqlite3SelectDelete(db, pSubquery); 3906 return 0; 3907 } 3908 3909 /* 3910 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3911 ** element of the source-list passed as the second argument. 3912 */ 3913 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3914 assert( pIndexedBy!=0 ); 3915 if( p && pIndexedBy->n>0 ){ 3916 struct SrcList_item *pItem; 3917 assert( p->nSrc>0 ); 3918 pItem = &p->a[p->nSrc-1]; 3919 assert( pItem->fg.notIndexed==0 ); 3920 assert( pItem->fg.isIndexedBy==0 ); 3921 assert( pItem->fg.isTabFunc==0 ); 3922 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3923 /* A "NOT INDEXED" clause was supplied. See parse.y 3924 ** construct "indexed_opt" for details. */ 3925 pItem->fg.notIndexed = 1; 3926 }else{ 3927 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3928 pItem->fg.isIndexedBy = 1; 3929 } 3930 } 3931 } 3932 3933 /* 3934 ** Add the list of function arguments to the SrcList entry for a 3935 ** table-valued-function. 3936 */ 3937 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3938 if( p ){ 3939 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3940 assert( pItem->fg.notIndexed==0 ); 3941 assert( pItem->fg.isIndexedBy==0 ); 3942 assert( pItem->fg.isTabFunc==0 ); 3943 pItem->u1.pFuncArg = pList; 3944 pItem->fg.isTabFunc = 1; 3945 }else{ 3946 sqlite3ExprListDelete(pParse->db, pList); 3947 } 3948 } 3949 3950 /* 3951 ** When building up a FROM clause in the parser, the join operator 3952 ** is initially attached to the left operand. But the code generator 3953 ** expects the join operator to be on the right operand. This routine 3954 ** Shifts all join operators from left to right for an entire FROM 3955 ** clause. 3956 ** 3957 ** Example: Suppose the join is like this: 3958 ** 3959 ** A natural cross join B 3960 ** 3961 ** The operator is "natural cross join". The A and B operands are stored 3962 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3963 ** operator with A. This routine shifts that operator over to B. 3964 */ 3965 void sqlite3SrcListShiftJoinType(SrcList *p){ 3966 if( p ){ 3967 int i; 3968 for(i=p->nSrc-1; i>0; i--){ 3969 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3970 } 3971 p->a[0].fg.jointype = 0; 3972 } 3973 } 3974 3975 /* 3976 ** Generate VDBE code for a BEGIN statement. 3977 */ 3978 void sqlite3BeginTransaction(Parse *pParse, int type){ 3979 sqlite3 *db; 3980 Vdbe *v; 3981 int i; 3982 3983 assert( pParse!=0 ); 3984 db = pParse->db; 3985 assert( db!=0 ); 3986 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3987 return; 3988 } 3989 v = sqlite3GetVdbe(pParse); 3990 if( !v ) return; 3991 if( type!=TK_DEFERRED ){ 3992 for(i=0; i<db->nDb; i++){ 3993 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3994 sqlite3VdbeUsesBtree(v, i); 3995 } 3996 } 3997 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3998 } 3999 4000 /* 4001 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4002 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4003 ** code is generated for a COMMIT. 4004 */ 4005 void sqlite3EndTransaction(Parse *pParse, int eType){ 4006 Vdbe *v; 4007 int isRollback; 4008 4009 assert( pParse!=0 ); 4010 assert( pParse->db!=0 ); 4011 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4012 isRollback = eType==TK_ROLLBACK; 4013 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4014 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4015 return; 4016 } 4017 v = sqlite3GetVdbe(pParse); 4018 if( v ){ 4019 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4020 } 4021 } 4022 4023 /* 4024 ** This function is called by the parser when it parses a command to create, 4025 ** release or rollback an SQL savepoint. 4026 */ 4027 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4028 char *zName = sqlite3NameFromToken(pParse->db, pName); 4029 if( zName ){ 4030 Vdbe *v = sqlite3GetVdbe(pParse); 4031 #ifndef SQLITE_OMIT_AUTHORIZATION 4032 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4033 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4034 #endif 4035 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4036 sqlite3DbFree(pParse->db, zName); 4037 return; 4038 } 4039 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4040 } 4041 } 4042 4043 /* 4044 ** Make sure the TEMP database is open and available for use. Return 4045 ** the number of errors. Leave any error messages in the pParse structure. 4046 */ 4047 int sqlite3OpenTempDatabase(Parse *pParse){ 4048 sqlite3 *db = pParse->db; 4049 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4050 int rc; 4051 Btree *pBt; 4052 static const int flags = 4053 SQLITE_OPEN_READWRITE | 4054 SQLITE_OPEN_CREATE | 4055 SQLITE_OPEN_EXCLUSIVE | 4056 SQLITE_OPEN_DELETEONCLOSE | 4057 SQLITE_OPEN_TEMP_DB; 4058 4059 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4060 if( rc!=SQLITE_OK ){ 4061 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4062 "file for storing temporary tables"); 4063 pParse->rc = rc; 4064 return 1; 4065 } 4066 db->aDb[1].pBt = pBt; 4067 assert( db->aDb[1].pSchema ); 4068 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4069 sqlite3OomFault(db); 4070 return 1; 4071 } 4072 } 4073 return 0; 4074 } 4075 4076 /* 4077 ** Record the fact that the schema cookie will need to be verified 4078 ** for database iDb. The code to actually verify the schema cookie 4079 ** will occur at the end of the top-level VDBE and will be generated 4080 ** later, by sqlite3FinishCoding(). 4081 */ 4082 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4083 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4084 4085 assert( iDb>=0 && iDb<pParse->db->nDb ); 4086 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4087 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4088 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4089 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4090 DbMaskSet(pToplevel->cookieMask, iDb); 4091 if( !OMIT_TEMPDB && iDb==1 ){ 4092 sqlite3OpenTempDatabase(pToplevel); 4093 } 4094 } 4095 } 4096 4097 /* 4098 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4099 ** attached database. Otherwise, invoke it for the database named zDb only. 4100 */ 4101 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4102 sqlite3 *db = pParse->db; 4103 int i; 4104 for(i=0; i<db->nDb; i++){ 4105 Db *pDb = &db->aDb[i]; 4106 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4107 sqlite3CodeVerifySchema(pParse, i); 4108 } 4109 } 4110 } 4111 4112 /* 4113 ** Generate VDBE code that prepares for doing an operation that 4114 ** might change the database. 4115 ** 4116 ** This routine starts a new transaction if we are not already within 4117 ** a transaction. If we are already within a transaction, then a checkpoint 4118 ** is set if the setStatement parameter is true. A checkpoint should 4119 ** be set for operations that might fail (due to a constraint) part of 4120 ** the way through and which will need to undo some writes without having to 4121 ** rollback the whole transaction. For operations where all constraints 4122 ** can be checked before any changes are made to the database, it is never 4123 ** necessary to undo a write and the checkpoint should not be set. 4124 */ 4125 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4126 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4127 sqlite3CodeVerifySchema(pParse, iDb); 4128 DbMaskSet(pToplevel->writeMask, iDb); 4129 pToplevel->isMultiWrite |= setStatement; 4130 } 4131 4132 /* 4133 ** Indicate that the statement currently under construction might write 4134 ** more than one entry (example: deleting one row then inserting another, 4135 ** inserting multiple rows in a table, or inserting a row and index entries.) 4136 ** If an abort occurs after some of these writes have completed, then it will 4137 ** be necessary to undo the completed writes. 4138 */ 4139 void sqlite3MultiWrite(Parse *pParse){ 4140 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4141 pToplevel->isMultiWrite = 1; 4142 } 4143 4144 /* 4145 ** The code generator calls this routine if is discovers that it is 4146 ** possible to abort a statement prior to completion. In order to 4147 ** perform this abort without corrupting the database, we need to make 4148 ** sure that the statement is protected by a statement transaction. 4149 ** 4150 ** Technically, we only need to set the mayAbort flag if the 4151 ** isMultiWrite flag was previously set. There is a time dependency 4152 ** such that the abort must occur after the multiwrite. This makes 4153 ** some statements involving the REPLACE conflict resolution algorithm 4154 ** go a little faster. But taking advantage of this time dependency 4155 ** makes it more difficult to prove that the code is correct (in 4156 ** particular, it prevents us from writing an effective 4157 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4158 ** to take the safe route and skip the optimization. 4159 */ 4160 void sqlite3MayAbort(Parse *pParse){ 4161 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4162 pToplevel->mayAbort = 1; 4163 } 4164 4165 /* 4166 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4167 ** error. The onError parameter determines which (if any) of the statement 4168 ** and/or current transaction is rolled back. 4169 */ 4170 void sqlite3HaltConstraint( 4171 Parse *pParse, /* Parsing context */ 4172 int errCode, /* extended error code */ 4173 int onError, /* Constraint type */ 4174 char *p4, /* Error message */ 4175 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4176 u8 p5Errmsg /* P5_ErrMsg type */ 4177 ){ 4178 Vdbe *v = sqlite3GetVdbe(pParse); 4179 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4180 if( onError==OE_Abort ){ 4181 sqlite3MayAbort(pParse); 4182 } 4183 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4184 sqlite3VdbeChangeP5(v, p5Errmsg); 4185 } 4186 4187 /* 4188 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4189 */ 4190 void sqlite3UniqueConstraint( 4191 Parse *pParse, /* Parsing context */ 4192 int onError, /* Constraint type */ 4193 Index *pIdx /* The index that triggers the constraint */ 4194 ){ 4195 char *zErr; 4196 int j; 4197 StrAccum errMsg; 4198 Table *pTab = pIdx->pTable; 4199 4200 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4201 if( pIdx->aColExpr ){ 4202 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4203 }else{ 4204 for(j=0; j<pIdx->nKeyCol; j++){ 4205 char *zCol; 4206 assert( pIdx->aiColumn[j]>=0 ); 4207 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4208 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4209 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4210 sqlite3StrAccumAppend(&errMsg, ".", 1); 4211 sqlite3StrAccumAppendAll(&errMsg, zCol); 4212 } 4213 } 4214 zErr = sqlite3StrAccumFinish(&errMsg); 4215 sqlite3HaltConstraint(pParse, 4216 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4217 : SQLITE_CONSTRAINT_UNIQUE, 4218 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4219 } 4220 4221 4222 /* 4223 ** Code an OP_Halt due to non-unique rowid. 4224 */ 4225 void sqlite3RowidConstraint( 4226 Parse *pParse, /* Parsing context */ 4227 int onError, /* Conflict resolution algorithm */ 4228 Table *pTab /* The table with the non-unique rowid */ 4229 ){ 4230 char *zMsg; 4231 int rc; 4232 if( pTab->iPKey>=0 ){ 4233 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4234 pTab->aCol[pTab->iPKey].zName); 4235 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4236 }else{ 4237 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4238 rc = SQLITE_CONSTRAINT_ROWID; 4239 } 4240 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4241 P5_ConstraintUnique); 4242 } 4243 4244 /* 4245 ** Check to see if pIndex uses the collating sequence pColl. Return 4246 ** true if it does and false if it does not. 4247 */ 4248 #ifndef SQLITE_OMIT_REINDEX 4249 static int collationMatch(const char *zColl, Index *pIndex){ 4250 int i; 4251 assert( zColl!=0 ); 4252 for(i=0; i<pIndex->nColumn; i++){ 4253 const char *z = pIndex->azColl[i]; 4254 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4255 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4256 return 1; 4257 } 4258 } 4259 return 0; 4260 } 4261 #endif 4262 4263 /* 4264 ** Recompute all indices of pTab that use the collating sequence pColl. 4265 ** If pColl==0 then recompute all indices of pTab. 4266 */ 4267 #ifndef SQLITE_OMIT_REINDEX 4268 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4269 Index *pIndex; /* An index associated with pTab */ 4270 4271 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4272 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4273 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4274 sqlite3BeginWriteOperation(pParse, 0, iDb); 4275 sqlite3RefillIndex(pParse, pIndex, -1); 4276 } 4277 } 4278 } 4279 #endif 4280 4281 /* 4282 ** Recompute all indices of all tables in all databases where the 4283 ** indices use the collating sequence pColl. If pColl==0 then recompute 4284 ** all indices everywhere. 4285 */ 4286 #ifndef SQLITE_OMIT_REINDEX 4287 static void reindexDatabases(Parse *pParse, char const *zColl){ 4288 Db *pDb; /* A single database */ 4289 int iDb; /* The database index number */ 4290 sqlite3 *db = pParse->db; /* The database connection */ 4291 HashElem *k; /* For looping over tables in pDb */ 4292 Table *pTab; /* A table in the database */ 4293 4294 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4295 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4296 assert( pDb!=0 ); 4297 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4298 pTab = (Table*)sqliteHashData(k); 4299 reindexTable(pParse, pTab, zColl); 4300 } 4301 } 4302 } 4303 #endif 4304 4305 /* 4306 ** Generate code for the REINDEX command. 4307 ** 4308 ** REINDEX -- 1 4309 ** REINDEX <collation> -- 2 4310 ** REINDEX ?<database>.?<tablename> -- 3 4311 ** REINDEX ?<database>.?<indexname> -- 4 4312 ** 4313 ** Form 1 causes all indices in all attached databases to be rebuilt. 4314 ** Form 2 rebuilds all indices in all databases that use the named 4315 ** collating function. Forms 3 and 4 rebuild the named index or all 4316 ** indices associated with the named table. 4317 */ 4318 #ifndef SQLITE_OMIT_REINDEX 4319 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4320 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4321 char *z; /* Name of a table or index */ 4322 const char *zDb; /* Name of the database */ 4323 Table *pTab; /* A table in the database */ 4324 Index *pIndex; /* An index associated with pTab */ 4325 int iDb; /* The database index number */ 4326 sqlite3 *db = pParse->db; /* The database connection */ 4327 Token *pObjName; /* Name of the table or index to be reindexed */ 4328 4329 /* Read the database schema. If an error occurs, leave an error message 4330 ** and code in pParse and return NULL. */ 4331 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4332 return; 4333 } 4334 4335 if( pName1==0 ){ 4336 reindexDatabases(pParse, 0); 4337 return; 4338 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4339 char *zColl; 4340 assert( pName1->z ); 4341 zColl = sqlite3NameFromToken(pParse->db, pName1); 4342 if( !zColl ) return; 4343 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4344 if( pColl ){ 4345 reindexDatabases(pParse, zColl); 4346 sqlite3DbFree(db, zColl); 4347 return; 4348 } 4349 sqlite3DbFree(db, zColl); 4350 } 4351 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4352 if( iDb<0 ) return; 4353 z = sqlite3NameFromToken(db, pObjName); 4354 if( z==0 ) return; 4355 zDb = db->aDb[iDb].zDbSName; 4356 pTab = sqlite3FindTable(db, z, zDb); 4357 if( pTab ){ 4358 reindexTable(pParse, pTab, 0); 4359 sqlite3DbFree(db, z); 4360 return; 4361 } 4362 pIndex = sqlite3FindIndex(db, z, zDb); 4363 sqlite3DbFree(db, z); 4364 if( pIndex ){ 4365 sqlite3BeginWriteOperation(pParse, 0, iDb); 4366 sqlite3RefillIndex(pParse, pIndex, -1); 4367 return; 4368 } 4369 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4370 } 4371 #endif 4372 4373 /* 4374 ** Return a KeyInfo structure that is appropriate for the given Index. 4375 ** 4376 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4377 ** when it has finished using it. 4378 */ 4379 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4380 int i; 4381 int nCol = pIdx->nColumn; 4382 int nKey = pIdx->nKeyCol; 4383 KeyInfo *pKey; 4384 if( pParse->nErr ) return 0; 4385 if( pIdx->uniqNotNull ){ 4386 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4387 }else{ 4388 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4389 } 4390 if( pKey ){ 4391 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4392 for(i=0; i<nCol; i++){ 4393 const char *zColl = pIdx->azColl[i]; 4394 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4395 sqlite3LocateCollSeq(pParse, zColl); 4396 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4397 } 4398 if( pParse->nErr ){ 4399 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4400 if( pIdx->bNoQuery==0 ){ 4401 /* Deactivate the index because it contains an unknown collating 4402 ** sequence. The only way to reactive the index is to reload the 4403 ** schema. Adding the missing collating sequence later does not 4404 ** reactive the index. The application had the chance to register 4405 ** the missing index using the collation-needed callback. For 4406 ** simplicity, SQLite will not give the application a second chance. 4407 */ 4408 pIdx->bNoQuery = 1; 4409 pParse->rc = SQLITE_ERROR_RETRY; 4410 } 4411 sqlite3KeyInfoUnref(pKey); 4412 pKey = 0; 4413 } 4414 } 4415 return pKey; 4416 } 4417 4418 #ifndef SQLITE_OMIT_CTE 4419 /* 4420 ** This routine is invoked once per CTE by the parser while parsing a 4421 ** WITH clause. 4422 */ 4423 With *sqlite3WithAdd( 4424 Parse *pParse, /* Parsing context */ 4425 With *pWith, /* Existing WITH clause, or NULL */ 4426 Token *pName, /* Name of the common-table */ 4427 ExprList *pArglist, /* Optional column name list for the table */ 4428 Select *pQuery /* Query used to initialize the table */ 4429 ){ 4430 sqlite3 *db = pParse->db; 4431 With *pNew; 4432 char *zName; 4433 4434 /* Check that the CTE name is unique within this WITH clause. If 4435 ** not, store an error in the Parse structure. */ 4436 zName = sqlite3NameFromToken(pParse->db, pName); 4437 if( zName && pWith ){ 4438 int i; 4439 for(i=0; i<pWith->nCte; i++){ 4440 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4441 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4442 } 4443 } 4444 } 4445 4446 if( pWith ){ 4447 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4448 pNew = sqlite3DbRealloc(db, pWith, nByte); 4449 }else{ 4450 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4451 } 4452 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4453 4454 if( db->mallocFailed ){ 4455 sqlite3ExprListDelete(db, pArglist); 4456 sqlite3SelectDelete(db, pQuery); 4457 sqlite3DbFree(db, zName); 4458 pNew = pWith; 4459 }else{ 4460 pNew->a[pNew->nCte].pSelect = pQuery; 4461 pNew->a[pNew->nCte].pCols = pArglist; 4462 pNew->a[pNew->nCte].zName = zName; 4463 pNew->a[pNew->nCte].zCteErr = 0; 4464 pNew->nCte++; 4465 } 4466 4467 return pNew; 4468 } 4469 4470 /* 4471 ** Free the contents of the With object passed as the second argument. 4472 */ 4473 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4474 if( pWith ){ 4475 int i; 4476 for(i=0; i<pWith->nCte; i++){ 4477 struct Cte *pCte = &pWith->a[i]; 4478 sqlite3ExprListDelete(db, pCte->pCols); 4479 sqlite3SelectDelete(db, pCte->pSelect); 4480 sqlite3DbFree(db, pCte->zName); 4481 } 4482 sqlite3DbFree(db, pWith); 4483 } 4484 } 4485 #endif /* !defined(SQLITE_OMIT_CTE) */ 4486