1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 pParse->nErr++; 268 return; 269 } 270 pParse->nested++; 271 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 272 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 273 sqlite3RunParser(pParse, zSql, &zErrMsg); 274 sqlite3DbFree(db, zErrMsg); 275 sqlite3DbFree(db, zSql); 276 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 277 pParse->nested--; 278 } 279 280 #if SQLITE_USER_AUTHENTICATION 281 /* 282 ** Return TRUE if zTable is the name of the system table that stores the 283 ** list of users and their access credentials. 284 */ 285 int sqlite3UserAuthTable(const char *zTable){ 286 return sqlite3_stricmp(zTable, "sqlite_user")==0; 287 } 288 #endif 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. 294 ** 295 ** If zDatabase is 0, all databases are searched for the table and the 296 ** first matching table is returned. (No checking for duplicate table 297 ** names is done.) The search order is TEMP first, then MAIN, then any 298 ** auxiliary databases added using the ATTACH command. 299 ** 300 ** See also sqlite3LocateTable(). 301 */ 302 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 303 Table *p = 0; 304 int i; 305 306 /* All mutexes are required for schema access. Make sure we hold them. */ 307 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 308 #if SQLITE_USER_AUTHENTICATION 309 /* Only the admin user is allowed to know that the sqlite_user table 310 ** exists */ 311 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 312 return 0; 313 } 314 #endif 315 while(1){ 316 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 317 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 318 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 319 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 320 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 321 if( p ) return p; 322 } 323 } 324 /* Not found. If the name we were looking for was temp.sqlite_master 325 ** then change the name to sqlite_temp_master and try again. */ 326 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 327 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 328 zName = TEMP_MASTER_NAME; 329 } 330 return 0; 331 } 332 333 /* 334 ** Locate the in-memory structure that describes a particular database 335 ** table given the name of that table and (optionally) the name of the 336 ** database containing the table. Return NULL if not found. Also leave an 337 ** error message in pParse->zErrMsg. 338 ** 339 ** The difference between this routine and sqlite3FindTable() is that this 340 ** routine leaves an error message in pParse->zErrMsg where 341 ** sqlite3FindTable() does not. 342 */ 343 Table *sqlite3LocateTable( 344 Parse *pParse, /* context in which to report errors */ 345 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 346 const char *zName, /* Name of the table we are looking for */ 347 const char *zDbase /* Name of the database. Might be NULL */ 348 ){ 349 Table *p; 350 sqlite3 *db = pParse->db; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 355 && SQLITE_OK!=sqlite3ReadSchema(pParse) 356 ){ 357 return 0; 358 } 359 360 p = sqlite3FindTable(db, zName, zDbase); 361 if( p==0 ){ 362 #ifndef SQLITE_OMIT_VIRTUALTABLE 363 /* If zName is the not the name of a table in the schema created using 364 ** CREATE, then check to see if it is the name of an virtual table that 365 ** can be an eponymous virtual table. */ 366 if( pParse->disableVtab==0 ){ 367 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 368 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 369 pMod = sqlite3PragmaVtabRegister(db, zName); 370 } 371 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 372 return pMod->pEpoTab; 373 } 374 } 375 #endif 376 if( flags & LOCATE_NOERR ) return 0; 377 pParse->checkSchema = 1; 378 }else if( IsVirtual(p) && pParse->disableVtab ){ 379 p = 0; 380 } 381 382 if( p==0 ){ 383 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 384 if( zDbase ){ 385 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 386 }else{ 387 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 388 } 389 } 390 391 return p; 392 } 393 394 /* 395 ** Locate the table identified by *p. 396 ** 397 ** This is a wrapper around sqlite3LocateTable(). The difference between 398 ** sqlite3LocateTable() and this function is that this function restricts 399 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 400 ** non-NULL if it is part of a view or trigger program definition. See 401 ** sqlite3FixSrcList() for details. 402 */ 403 Table *sqlite3LocateTableItem( 404 Parse *pParse, 405 u32 flags, 406 struct SrcList_item *p 407 ){ 408 const char *zDb; 409 assert( p->pSchema==0 || p->zDatabase==0 ); 410 if( p->pSchema ){ 411 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 412 zDb = pParse->db->aDb[iDb].zDbSName; 413 }else{ 414 zDb = p->zDatabase; 415 } 416 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 417 } 418 419 /* 420 ** Locate the in-memory structure that describes 421 ** a particular index given the name of that index 422 ** and the name of the database that contains the index. 423 ** Return NULL if not found. 424 ** 425 ** If zDatabase is 0, all databases are searched for the 426 ** table and the first matching index is returned. (No checking 427 ** for duplicate index names is done.) The search order is 428 ** TEMP first, then MAIN, then any auxiliary databases added 429 ** using the ATTACH command. 430 */ 431 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 432 Index *p = 0; 433 int i; 434 /* All mutexes are required for schema access. Make sure we hold them. */ 435 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 436 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 437 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 438 Schema *pSchema = db->aDb[j].pSchema; 439 assert( pSchema ); 440 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 441 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 442 p = sqlite3HashFind(&pSchema->idxHash, zName); 443 if( p ) break; 444 } 445 return p; 446 } 447 448 /* 449 ** Reclaim the memory used by an index 450 */ 451 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 452 #ifndef SQLITE_OMIT_ANALYZE 453 sqlite3DeleteIndexSamples(db, p); 454 #endif 455 sqlite3ExprDelete(db, p->pPartIdxWhere); 456 sqlite3ExprListDelete(db, p->aColExpr); 457 sqlite3DbFree(db, p->zColAff); 458 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 459 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 460 sqlite3_free(p->aiRowEst); 461 #endif 462 sqlite3DbFree(db, p); 463 } 464 465 /* 466 ** For the index called zIdxName which is found in the database iDb, 467 ** unlike that index from its Table then remove the index from 468 ** the index hash table and free all memory structures associated 469 ** with the index. 470 */ 471 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 472 Index *pIndex; 473 Hash *pHash; 474 475 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 476 pHash = &db->aDb[iDb].pSchema->idxHash; 477 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 478 if( ALWAYS(pIndex) ){ 479 if( pIndex->pTable->pIndex==pIndex ){ 480 pIndex->pTable->pIndex = pIndex->pNext; 481 }else{ 482 Index *p; 483 /* Justification of ALWAYS(); The index must be on the list of 484 ** indices. */ 485 p = pIndex->pTable->pIndex; 486 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 487 if( ALWAYS(p && p->pNext==pIndex) ){ 488 p->pNext = pIndex->pNext; 489 } 490 } 491 sqlite3FreeIndex(db, pIndex); 492 } 493 db->mDbFlags |= DBFLAG_SchemaChange; 494 } 495 496 /* 497 ** Look through the list of open database files in db->aDb[] and if 498 ** any have been closed, remove them from the list. Reallocate the 499 ** db->aDb[] structure to a smaller size, if possible. 500 ** 501 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 502 ** are never candidates for being collapsed. 503 */ 504 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 505 int i, j; 506 for(i=j=2; i<db->nDb; i++){ 507 struct Db *pDb = &db->aDb[i]; 508 if( pDb->pBt==0 ){ 509 sqlite3DbFree(db, pDb->zDbSName); 510 pDb->zDbSName = 0; 511 continue; 512 } 513 if( j<i ){ 514 db->aDb[j] = db->aDb[i]; 515 } 516 j++; 517 } 518 db->nDb = j; 519 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 520 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 521 sqlite3DbFree(db, db->aDb); 522 db->aDb = db->aDbStatic; 523 } 524 } 525 526 /* 527 ** Reset the schema for the database at index iDb. Also reset the 528 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 529 ** Deferred resets may be run by calling with iDb<0. 530 */ 531 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 532 int i; 533 assert( iDb<db->nDb ); 534 535 if( iDb>=0 ){ 536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 537 DbSetProperty(db, iDb, DB_ResetWanted); 538 DbSetProperty(db, 1, DB_ResetWanted); 539 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 540 } 541 542 if( db->nSchemaLock==0 ){ 543 for(i=0; i<db->nDb; i++){ 544 if( DbHasProperty(db, i, DB_ResetWanted) ){ 545 sqlite3SchemaClear(db->aDb[i].pSchema); 546 } 547 } 548 } 549 } 550 551 /* 552 ** Erase all schema information from all attached databases (including 553 ** "main" and "temp") for a single database connection. 554 */ 555 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 556 int i; 557 sqlite3BtreeEnterAll(db); 558 for(i=0; i<db->nDb; i++){ 559 Db *pDb = &db->aDb[i]; 560 if( pDb->pSchema ){ 561 if( db->nSchemaLock==0 ){ 562 sqlite3SchemaClear(pDb->pSchema); 563 }else{ 564 DbSetProperty(db, i, DB_ResetWanted); 565 } 566 } 567 } 568 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 569 sqlite3VtabUnlockList(db); 570 sqlite3BtreeLeaveAll(db); 571 if( db->nSchemaLock==0 ){ 572 sqlite3CollapseDatabaseArray(db); 573 } 574 } 575 576 /* 577 ** This routine is called when a commit occurs. 578 */ 579 void sqlite3CommitInternalChanges(sqlite3 *db){ 580 db->mDbFlags &= ~DBFLAG_SchemaChange; 581 } 582 583 /* 584 ** Delete memory allocated for the column names of a table or view (the 585 ** Table.aCol[] array). 586 */ 587 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 588 int i; 589 Column *pCol; 590 assert( pTable!=0 ); 591 if( (pCol = pTable->aCol)!=0 ){ 592 for(i=0; i<pTable->nCol; i++, pCol++){ 593 sqlite3DbFree(db, pCol->zName); 594 sqlite3ExprDelete(db, pCol->pDflt); 595 sqlite3DbFree(db, pCol->zColl); 596 } 597 sqlite3DbFree(db, pTable->aCol); 598 } 599 } 600 601 /* 602 ** Remove the memory data structures associated with the given 603 ** Table. No changes are made to disk by this routine. 604 ** 605 ** This routine just deletes the data structure. It does not unlink 606 ** the table data structure from the hash table. But it does destroy 607 ** memory structures of the indices and foreign keys associated with 608 ** the table. 609 ** 610 ** The db parameter is optional. It is needed if the Table object 611 ** contains lookaside memory. (Table objects in the schema do not use 612 ** lookaside memory, but some ephemeral Table objects do.) Or the 613 ** db parameter can be used with db->pnBytesFreed to measure the memory 614 ** used by the Table object. 615 */ 616 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 617 Index *pIndex, *pNext; 618 619 #ifdef SQLITE_DEBUG 620 /* Record the number of outstanding lookaside allocations in schema Tables 621 ** prior to doing any free() operations. Since schema Tables do not use 622 ** lookaside, this number should not change. 623 ** 624 ** If malloc has already failed, it may be that it failed while allocating 625 ** a Table object that was going to be marked ephemeral. So do not check 626 ** that no lookaside memory is used in this case either. */ 627 int nLookaside = 0; 628 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 629 nLookaside = sqlite3LookasideUsed(db, 0); 630 } 631 #endif 632 633 /* Delete all indices associated with this table. */ 634 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 635 pNext = pIndex->pNext; 636 assert( pIndex->pSchema==pTable->pSchema 637 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 638 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 639 char *zName = pIndex->zName; 640 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 641 &pIndex->pSchema->idxHash, zName, 0 642 ); 643 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 644 assert( pOld==pIndex || pOld==0 ); 645 } 646 sqlite3FreeIndex(db, pIndex); 647 } 648 649 /* Delete any foreign keys attached to this table. */ 650 sqlite3FkDelete(db, pTable); 651 652 /* Delete the Table structure itself. 653 */ 654 sqlite3DeleteColumnNames(db, pTable); 655 sqlite3DbFree(db, pTable->zName); 656 sqlite3DbFree(db, pTable->zColAff); 657 sqlite3SelectDelete(db, pTable->pSelect); 658 sqlite3ExprListDelete(db, pTable->pCheck); 659 #ifndef SQLITE_OMIT_VIRTUALTABLE 660 sqlite3VtabClear(db, pTable); 661 #endif 662 sqlite3DbFree(db, pTable); 663 664 /* Verify that no lookaside memory was used by schema tables */ 665 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 666 } 667 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 668 /* Do not delete the table until the reference count reaches zero. */ 669 if( !pTable ) return; 670 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 671 deleteTable(db, pTable); 672 } 673 674 675 /* 676 ** Unlink the given table from the hash tables and the delete the 677 ** table structure with all its indices and foreign keys. 678 */ 679 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 680 Table *p; 681 Db *pDb; 682 683 assert( db!=0 ); 684 assert( iDb>=0 && iDb<db->nDb ); 685 assert( zTabName ); 686 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 687 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 688 pDb = &db->aDb[iDb]; 689 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 690 sqlite3DeleteTable(db, p); 691 db->mDbFlags |= DBFLAG_SchemaChange; 692 } 693 694 /* 695 ** Given a token, return a string that consists of the text of that 696 ** token. Space to hold the returned string 697 ** is obtained from sqliteMalloc() and must be freed by the calling 698 ** function. 699 ** 700 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 701 ** surround the body of the token are removed. 702 ** 703 ** Tokens are often just pointers into the original SQL text and so 704 ** are not \000 terminated and are not persistent. The returned string 705 ** is \000 terminated and is persistent. 706 */ 707 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 708 char *zName; 709 if( pName ){ 710 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 711 sqlite3Dequote(zName); 712 }else{ 713 zName = 0; 714 } 715 return zName; 716 } 717 718 /* 719 ** Open the sqlite_master table stored in database number iDb for 720 ** writing. The table is opened using cursor 0. 721 */ 722 void sqlite3OpenMasterTable(Parse *p, int iDb){ 723 Vdbe *v = sqlite3GetVdbe(p); 724 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 725 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 726 if( p->nTab==0 ){ 727 p->nTab = 1; 728 } 729 } 730 731 /* 732 ** Parameter zName points to a nul-terminated buffer containing the name 733 ** of a database ("main", "temp" or the name of an attached db). This 734 ** function returns the index of the named database in db->aDb[], or 735 ** -1 if the named db cannot be found. 736 */ 737 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 738 int i = -1; /* Database number */ 739 if( zName ){ 740 Db *pDb; 741 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 742 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 743 /* "main" is always an acceptable alias for the primary database 744 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 745 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 746 } 747 } 748 return i; 749 } 750 751 /* 752 ** The token *pName contains the name of a database (either "main" or 753 ** "temp" or the name of an attached db). This routine returns the 754 ** index of the named database in db->aDb[], or -1 if the named db 755 ** does not exist. 756 */ 757 int sqlite3FindDb(sqlite3 *db, Token *pName){ 758 int i; /* Database number */ 759 char *zName; /* Name we are searching for */ 760 zName = sqlite3NameFromToken(db, pName); 761 i = sqlite3FindDbName(db, zName); 762 sqlite3DbFree(db, zName); 763 return i; 764 } 765 766 /* The table or view or trigger name is passed to this routine via tokens 767 ** pName1 and pName2. If the table name was fully qualified, for example: 768 ** 769 ** CREATE TABLE xxx.yyy (...); 770 ** 771 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 772 ** the table name is not fully qualified, i.e.: 773 ** 774 ** CREATE TABLE yyy(...); 775 ** 776 ** Then pName1 is set to "yyy" and pName2 is "". 777 ** 778 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 779 ** pName2) that stores the unqualified table name. The index of the 780 ** database "xxx" is returned. 781 */ 782 int sqlite3TwoPartName( 783 Parse *pParse, /* Parsing and code generating context */ 784 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 785 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 786 Token **pUnqual /* Write the unqualified object name here */ 787 ){ 788 int iDb; /* Database holding the object */ 789 sqlite3 *db = pParse->db; 790 791 assert( pName2!=0 ); 792 if( pName2->n>0 ){ 793 if( db->init.busy ) { 794 sqlite3ErrorMsg(pParse, "corrupt database"); 795 return -1; 796 } 797 *pUnqual = pName2; 798 iDb = sqlite3FindDb(db, pName1); 799 if( iDb<0 ){ 800 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 801 return -1; 802 } 803 }else{ 804 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 805 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 806 iDb = db->init.iDb; 807 *pUnqual = pName1; 808 } 809 return iDb; 810 } 811 812 /* 813 ** True if PRAGMA writable_schema is ON 814 */ 815 int sqlite3WritableSchema(sqlite3 *db){ 816 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 817 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 818 SQLITE_WriteSchema ); 819 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 820 SQLITE_Defensive ); 821 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 822 (SQLITE_WriteSchema|SQLITE_Defensive) ); 823 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 824 } 825 826 /* 827 ** This routine is used to check if the UTF-8 string zName is a legal 828 ** unqualified name for a new schema object (table, index, view or 829 ** trigger). All names are legal except those that begin with the string 830 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 831 ** is reserved for internal use. 832 */ 833 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 834 if( !pParse->db->init.busy && pParse->nested==0 835 && sqlite3WritableSchema(pParse->db)==0 836 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 837 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 838 return SQLITE_ERROR; 839 } 840 return SQLITE_OK; 841 } 842 843 /* 844 ** Return the PRIMARY KEY index of a table 845 */ 846 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 847 Index *p; 848 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 849 return p; 850 } 851 852 /* 853 ** Return the column of index pIdx that corresponds to table 854 ** column iCol. Return -1 if not found. 855 */ 856 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 857 int i; 858 for(i=0; i<pIdx->nColumn; i++){ 859 if( iCol==pIdx->aiColumn[i] ) return i; 860 } 861 return -1; 862 } 863 864 /* 865 ** Begin constructing a new table representation in memory. This is 866 ** the first of several action routines that get called in response 867 ** to a CREATE TABLE statement. In particular, this routine is called 868 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 869 ** flag is true if the table should be stored in the auxiliary database 870 ** file instead of in the main database file. This is normally the case 871 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 872 ** CREATE and TABLE. 873 ** 874 ** The new table record is initialized and put in pParse->pNewTable. 875 ** As more of the CREATE TABLE statement is parsed, additional action 876 ** routines will be called to add more information to this record. 877 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 878 ** is called to complete the construction of the new table record. 879 */ 880 void sqlite3StartTable( 881 Parse *pParse, /* Parser context */ 882 Token *pName1, /* First part of the name of the table or view */ 883 Token *pName2, /* Second part of the name of the table or view */ 884 int isTemp, /* True if this is a TEMP table */ 885 int isView, /* True if this is a VIEW */ 886 int isVirtual, /* True if this is a VIRTUAL table */ 887 int noErr /* Do nothing if table already exists */ 888 ){ 889 Table *pTable; 890 char *zName = 0; /* The name of the new table */ 891 sqlite3 *db = pParse->db; 892 Vdbe *v; 893 int iDb; /* Database number to create the table in */ 894 Token *pName; /* Unqualified name of the table to create */ 895 896 if( db->init.busy && db->init.newTnum==1 ){ 897 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 898 iDb = db->init.iDb; 899 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 900 pName = pName1; 901 }else{ 902 /* The common case */ 903 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 904 if( iDb<0 ) return; 905 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 906 /* If creating a temp table, the name may not be qualified. Unless 907 ** the database name is "temp" anyway. */ 908 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 909 return; 910 } 911 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 912 zName = sqlite3NameFromToken(db, pName); 913 if( IN_RENAME_OBJECT ){ 914 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 915 } 916 } 917 pParse->sNameToken = *pName; 918 if( zName==0 ) return; 919 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 920 goto begin_table_error; 921 } 922 if( db->init.iDb==1 ) isTemp = 1; 923 #ifndef SQLITE_OMIT_AUTHORIZATION 924 assert( isTemp==0 || isTemp==1 ); 925 assert( isView==0 || isView==1 ); 926 { 927 static const u8 aCode[] = { 928 SQLITE_CREATE_TABLE, 929 SQLITE_CREATE_TEMP_TABLE, 930 SQLITE_CREATE_VIEW, 931 SQLITE_CREATE_TEMP_VIEW 932 }; 933 char *zDb = db->aDb[iDb].zDbSName; 934 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 935 goto begin_table_error; 936 } 937 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 938 zName, 0, zDb) ){ 939 goto begin_table_error; 940 } 941 } 942 #endif 943 944 /* Make sure the new table name does not collide with an existing 945 ** index or table name in the same database. Issue an error message if 946 ** it does. The exception is if the statement being parsed was passed 947 ** to an sqlite3_declare_vtab() call. In that case only the column names 948 ** and types will be used, so there is no need to test for namespace 949 ** collisions. 950 */ 951 if( !IN_SPECIAL_PARSE ){ 952 char *zDb = db->aDb[iDb].zDbSName; 953 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 954 goto begin_table_error; 955 } 956 pTable = sqlite3FindTable(db, zName, zDb); 957 if( pTable ){ 958 if( !noErr ){ 959 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 960 }else{ 961 assert( !db->init.busy || CORRUPT_DB ); 962 sqlite3CodeVerifySchema(pParse, iDb); 963 } 964 goto begin_table_error; 965 } 966 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 967 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 968 goto begin_table_error; 969 } 970 } 971 972 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 973 if( pTable==0 ){ 974 assert( db->mallocFailed ); 975 pParse->rc = SQLITE_NOMEM_BKPT; 976 pParse->nErr++; 977 goto begin_table_error; 978 } 979 pTable->zName = zName; 980 pTable->iPKey = -1; 981 pTable->pSchema = db->aDb[iDb].pSchema; 982 pTable->nTabRef = 1; 983 #ifdef SQLITE_DEFAULT_ROWEST 984 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 985 #else 986 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 987 #endif 988 assert( pParse->pNewTable==0 ); 989 pParse->pNewTable = pTable; 990 991 /* If this is the magic sqlite_sequence table used by autoincrement, 992 ** then record a pointer to this table in the main database structure 993 ** so that INSERT can find the table easily. 994 */ 995 #ifndef SQLITE_OMIT_AUTOINCREMENT 996 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 997 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 998 pTable->pSchema->pSeqTab = pTable; 999 } 1000 #endif 1001 1002 /* Begin generating the code that will insert the table record into 1003 ** the SQLITE_MASTER table. Note in particular that we must go ahead 1004 ** and allocate the record number for the table entry now. Before any 1005 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1006 ** indices to be created and the table record must come before the 1007 ** indices. Hence, the record number for the table must be allocated 1008 ** now. 1009 */ 1010 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1011 int addr1; 1012 int fileFormat; 1013 int reg1, reg2, reg3; 1014 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1015 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1016 sqlite3BeginWriteOperation(pParse, 1, iDb); 1017 1018 #ifndef SQLITE_OMIT_VIRTUALTABLE 1019 if( isVirtual ){ 1020 sqlite3VdbeAddOp0(v, OP_VBegin); 1021 } 1022 #endif 1023 1024 /* If the file format and encoding in the database have not been set, 1025 ** set them now. 1026 */ 1027 reg1 = pParse->regRowid = ++pParse->nMem; 1028 reg2 = pParse->regRoot = ++pParse->nMem; 1029 reg3 = ++pParse->nMem; 1030 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1031 sqlite3VdbeUsesBtree(v, iDb); 1032 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1033 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1034 1 : SQLITE_MAX_FILE_FORMAT; 1035 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1036 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1037 sqlite3VdbeJumpHere(v, addr1); 1038 1039 /* This just creates a place-holder record in the sqlite_master table. 1040 ** The record created does not contain anything yet. It will be replaced 1041 ** by the real entry in code generated at sqlite3EndTable(). 1042 ** 1043 ** The rowid for the new entry is left in register pParse->regRowid. 1044 ** The root page number of the new table is left in reg pParse->regRoot. 1045 ** The rowid and root page number values are needed by the code that 1046 ** sqlite3EndTable will generate. 1047 */ 1048 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1049 if( isView || isVirtual ){ 1050 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1051 }else 1052 #endif 1053 { 1054 pParse->addrCrTab = 1055 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1056 } 1057 sqlite3OpenMasterTable(pParse, iDb); 1058 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1059 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1060 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1061 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1062 sqlite3VdbeAddOp0(v, OP_Close); 1063 } 1064 1065 /* Normal (non-error) return. */ 1066 return; 1067 1068 /* If an error occurs, we jump here */ 1069 begin_table_error: 1070 sqlite3DbFree(db, zName); 1071 return; 1072 } 1073 1074 /* Set properties of a table column based on the (magical) 1075 ** name of the column. 1076 */ 1077 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1078 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1079 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1080 pCol->colFlags |= COLFLAG_HIDDEN; 1081 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1082 pTab->tabFlags |= TF_OOOHidden; 1083 } 1084 } 1085 #endif 1086 1087 1088 /* 1089 ** Add a new column to the table currently being constructed. 1090 ** 1091 ** The parser calls this routine once for each column declaration 1092 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1093 ** first to get things going. Then this routine is called for each 1094 ** column. 1095 */ 1096 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1097 Table *p; 1098 int i; 1099 char *z; 1100 char *zType; 1101 Column *pCol; 1102 sqlite3 *db = pParse->db; 1103 if( (p = pParse->pNewTable)==0 ) return; 1104 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1105 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1106 return; 1107 } 1108 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1109 if( z==0 ) return; 1110 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1111 memcpy(z, pName->z, pName->n); 1112 z[pName->n] = 0; 1113 sqlite3Dequote(z); 1114 for(i=0; i<p->nCol; i++){ 1115 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1116 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1117 sqlite3DbFree(db, z); 1118 return; 1119 } 1120 } 1121 if( (p->nCol & 0x7)==0 ){ 1122 Column *aNew; 1123 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1124 if( aNew==0 ){ 1125 sqlite3DbFree(db, z); 1126 return; 1127 } 1128 p->aCol = aNew; 1129 } 1130 pCol = &p->aCol[p->nCol]; 1131 memset(pCol, 0, sizeof(p->aCol[0])); 1132 pCol->zName = z; 1133 sqlite3ColumnPropertiesFromName(p, pCol); 1134 1135 if( pType->n==0 ){ 1136 /* If there is no type specified, columns have the default affinity 1137 ** 'BLOB' with a default size of 4 bytes. */ 1138 pCol->affinity = SQLITE_AFF_BLOB; 1139 pCol->szEst = 1; 1140 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1141 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1142 pCol->colFlags |= COLFLAG_SORTERREF; 1143 } 1144 #endif 1145 }else{ 1146 zType = z + sqlite3Strlen30(z) + 1; 1147 memcpy(zType, pType->z, pType->n); 1148 zType[pType->n] = 0; 1149 sqlite3Dequote(zType); 1150 pCol->affinity = sqlite3AffinityType(zType, pCol); 1151 pCol->colFlags |= COLFLAG_HASTYPE; 1152 } 1153 p->nCol++; 1154 pParse->constraintName.n = 0; 1155 } 1156 1157 /* 1158 ** This routine is called by the parser while in the middle of 1159 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1160 ** been seen on a column. This routine sets the notNull flag on 1161 ** the column currently under construction. 1162 */ 1163 void sqlite3AddNotNull(Parse *pParse, int onError){ 1164 Table *p; 1165 Column *pCol; 1166 p = pParse->pNewTable; 1167 if( p==0 || NEVER(p->nCol<1) ) return; 1168 pCol = &p->aCol[p->nCol-1]; 1169 pCol->notNull = (u8)onError; 1170 p->tabFlags |= TF_HasNotNull; 1171 1172 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1173 ** on this column. */ 1174 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1175 Index *pIdx; 1176 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1177 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1178 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1179 pIdx->uniqNotNull = 1; 1180 } 1181 } 1182 } 1183 } 1184 1185 /* 1186 ** Scan the column type name zType (length nType) and return the 1187 ** associated affinity type. 1188 ** 1189 ** This routine does a case-independent search of zType for the 1190 ** substrings in the following table. If one of the substrings is 1191 ** found, the corresponding affinity is returned. If zType contains 1192 ** more than one of the substrings, entries toward the top of 1193 ** the table take priority. For example, if zType is 'BLOBINT', 1194 ** SQLITE_AFF_INTEGER is returned. 1195 ** 1196 ** Substring | Affinity 1197 ** -------------------------------- 1198 ** 'INT' | SQLITE_AFF_INTEGER 1199 ** 'CHAR' | SQLITE_AFF_TEXT 1200 ** 'CLOB' | SQLITE_AFF_TEXT 1201 ** 'TEXT' | SQLITE_AFF_TEXT 1202 ** 'BLOB' | SQLITE_AFF_BLOB 1203 ** 'REAL' | SQLITE_AFF_REAL 1204 ** 'FLOA' | SQLITE_AFF_REAL 1205 ** 'DOUB' | SQLITE_AFF_REAL 1206 ** 1207 ** If none of the substrings in the above table are found, 1208 ** SQLITE_AFF_NUMERIC is returned. 1209 */ 1210 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1211 u32 h = 0; 1212 char aff = SQLITE_AFF_NUMERIC; 1213 const char *zChar = 0; 1214 1215 assert( zIn!=0 ); 1216 while( zIn[0] ){ 1217 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1218 zIn++; 1219 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1220 aff = SQLITE_AFF_TEXT; 1221 zChar = zIn; 1222 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1223 aff = SQLITE_AFF_TEXT; 1224 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1225 aff = SQLITE_AFF_TEXT; 1226 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1227 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1228 aff = SQLITE_AFF_BLOB; 1229 if( zIn[0]=='(' ) zChar = zIn; 1230 #ifndef SQLITE_OMIT_FLOATING_POINT 1231 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1232 && aff==SQLITE_AFF_NUMERIC ){ 1233 aff = SQLITE_AFF_REAL; 1234 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1235 && aff==SQLITE_AFF_NUMERIC ){ 1236 aff = SQLITE_AFF_REAL; 1237 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1238 && aff==SQLITE_AFF_NUMERIC ){ 1239 aff = SQLITE_AFF_REAL; 1240 #endif 1241 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1242 aff = SQLITE_AFF_INTEGER; 1243 break; 1244 } 1245 } 1246 1247 /* If pCol is not NULL, store an estimate of the field size. The 1248 ** estimate is scaled so that the size of an integer is 1. */ 1249 if( pCol ){ 1250 int v = 0; /* default size is approx 4 bytes */ 1251 if( aff<SQLITE_AFF_NUMERIC ){ 1252 if( zChar ){ 1253 while( zChar[0] ){ 1254 if( sqlite3Isdigit(zChar[0]) ){ 1255 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1256 sqlite3GetInt32(zChar, &v); 1257 break; 1258 } 1259 zChar++; 1260 } 1261 }else{ 1262 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1263 } 1264 } 1265 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1266 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1267 pCol->colFlags |= COLFLAG_SORTERREF; 1268 } 1269 #endif 1270 v = v/4 + 1; 1271 if( v>255 ) v = 255; 1272 pCol->szEst = v; 1273 } 1274 return aff; 1275 } 1276 1277 /* 1278 ** The expression is the default value for the most recently added column 1279 ** of the table currently under construction. 1280 ** 1281 ** Default value expressions must be constant. Raise an exception if this 1282 ** is not the case. 1283 ** 1284 ** This routine is called by the parser while in the middle of 1285 ** parsing a CREATE TABLE statement. 1286 */ 1287 void sqlite3AddDefaultValue( 1288 Parse *pParse, /* Parsing context */ 1289 Expr *pExpr, /* The parsed expression of the default value */ 1290 const char *zStart, /* Start of the default value text */ 1291 const char *zEnd /* First character past end of defaut value text */ 1292 ){ 1293 Table *p; 1294 Column *pCol; 1295 sqlite3 *db = pParse->db; 1296 p = pParse->pNewTable; 1297 if( p!=0 ){ 1298 pCol = &(p->aCol[p->nCol-1]); 1299 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1300 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1301 pCol->zName); 1302 }else{ 1303 /* A copy of pExpr is used instead of the original, as pExpr contains 1304 ** tokens that point to volatile memory. 1305 */ 1306 Expr x; 1307 sqlite3ExprDelete(db, pCol->pDflt); 1308 memset(&x, 0, sizeof(x)); 1309 x.op = TK_SPAN; 1310 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1311 x.pLeft = pExpr; 1312 x.flags = EP_Skip; 1313 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1314 sqlite3DbFree(db, x.u.zToken); 1315 } 1316 } 1317 if( IN_RENAME_OBJECT ){ 1318 sqlite3RenameExprUnmap(pParse, pExpr); 1319 } 1320 sqlite3ExprDelete(db, pExpr); 1321 } 1322 1323 /* 1324 ** Backwards Compatibility Hack: 1325 ** 1326 ** Historical versions of SQLite accepted strings as column names in 1327 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1328 ** 1329 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1330 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1331 ** 1332 ** This is goofy. But to preserve backwards compatibility we continue to 1333 ** accept it. This routine does the necessary conversion. It converts 1334 ** the expression given in its argument from a TK_STRING into a TK_ID 1335 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1336 ** If the expression is anything other than TK_STRING, the expression is 1337 ** unchanged. 1338 */ 1339 static void sqlite3StringToId(Expr *p){ 1340 if( p->op==TK_STRING ){ 1341 p->op = TK_ID; 1342 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1343 p->pLeft->op = TK_ID; 1344 } 1345 } 1346 1347 /* 1348 ** Designate the PRIMARY KEY for the table. pList is a list of names 1349 ** of columns that form the primary key. If pList is NULL, then the 1350 ** most recently added column of the table is the primary key. 1351 ** 1352 ** A table can have at most one primary key. If the table already has 1353 ** a primary key (and this is the second primary key) then create an 1354 ** error. 1355 ** 1356 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1357 ** then we will try to use that column as the rowid. Set the Table.iPKey 1358 ** field of the table under construction to be the index of the 1359 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1360 ** no INTEGER PRIMARY KEY. 1361 ** 1362 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1363 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1364 */ 1365 void sqlite3AddPrimaryKey( 1366 Parse *pParse, /* Parsing context */ 1367 ExprList *pList, /* List of field names to be indexed */ 1368 int onError, /* What to do with a uniqueness conflict */ 1369 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1370 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1371 ){ 1372 Table *pTab = pParse->pNewTable; 1373 Column *pCol = 0; 1374 int iCol = -1, i; 1375 int nTerm; 1376 if( pTab==0 ) goto primary_key_exit; 1377 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1378 sqlite3ErrorMsg(pParse, 1379 "table \"%s\" has more than one primary key", pTab->zName); 1380 goto primary_key_exit; 1381 } 1382 pTab->tabFlags |= TF_HasPrimaryKey; 1383 if( pList==0 ){ 1384 iCol = pTab->nCol - 1; 1385 pCol = &pTab->aCol[iCol]; 1386 pCol->colFlags |= COLFLAG_PRIMKEY; 1387 nTerm = 1; 1388 }else{ 1389 nTerm = pList->nExpr; 1390 for(i=0; i<nTerm; i++){ 1391 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1392 assert( pCExpr!=0 ); 1393 sqlite3StringToId(pCExpr); 1394 if( pCExpr->op==TK_ID ){ 1395 const char *zCName = pCExpr->u.zToken; 1396 for(iCol=0; iCol<pTab->nCol; iCol++){ 1397 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1398 pCol = &pTab->aCol[iCol]; 1399 pCol->colFlags |= COLFLAG_PRIMKEY; 1400 break; 1401 } 1402 } 1403 } 1404 } 1405 } 1406 if( nTerm==1 1407 && pCol 1408 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1409 && sortOrder!=SQLITE_SO_DESC 1410 ){ 1411 if( IN_RENAME_OBJECT && pList ){ 1412 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1413 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1414 } 1415 pTab->iPKey = iCol; 1416 pTab->keyConf = (u8)onError; 1417 assert( autoInc==0 || autoInc==1 ); 1418 pTab->tabFlags |= autoInc*TF_Autoincrement; 1419 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1420 }else if( autoInc ){ 1421 #ifndef SQLITE_OMIT_AUTOINCREMENT 1422 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1423 "INTEGER PRIMARY KEY"); 1424 #endif 1425 }else{ 1426 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1427 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1428 pList = 0; 1429 } 1430 1431 primary_key_exit: 1432 sqlite3ExprListDelete(pParse->db, pList); 1433 return; 1434 } 1435 1436 /* 1437 ** Add a new CHECK constraint to the table currently under construction. 1438 */ 1439 void sqlite3AddCheckConstraint( 1440 Parse *pParse, /* Parsing context */ 1441 Expr *pCheckExpr /* The check expression */ 1442 ){ 1443 #ifndef SQLITE_OMIT_CHECK 1444 Table *pTab = pParse->pNewTable; 1445 sqlite3 *db = pParse->db; 1446 if( pTab && !IN_DECLARE_VTAB 1447 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1448 ){ 1449 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1450 if( pParse->constraintName.n ){ 1451 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1452 } 1453 }else 1454 #endif 1455 { 1456 sqlite3ExprDelete(pParse->db, pCheckExpr); 1457 } 1458 } 1459 1460 /* 1461 ** Set the collation function of the most recently parsed table column 1462 ** to the CollSeq given. 1463 */ 1464 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1465 Table *p; 1466 int i; 1467 char *zColl; /* Dequoted name of collation sequence */ 1468 sqlite3 *db; 1469 1470 if( (p = pParse->pNewTable)==0 ) return; 1471 i = p->nCol-1; 1472 db = pParse->db; 1473 zColl = sqlite3NameFromToken(db, pToken); 1474 if( !zColl ) return; 1475 1476 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1477 Index *pIdx; 1478 sqlite3DbFree(db, p->aCol[i].zColl); 1479 p->aCol[i].zColl = zColl; 1480 1481 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1482 ** then an index may have been created on this column before the 1483 ** collation type was added. Correct this if it is the case. 1484 */ 1485 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1486 assert( pIdx->nKeyCol==1 ); 1487 if( pIdx->aiColumn[0]==i ){ 1488 pIdx->azColl[0] = p->aCol[i].zColl; 1489 } 1490 } 1491 }else{ 1492 sqlite3DbFree(db, zColl); 1493 } 1494 } 1495 1496 /* 1497 ** This function returns the collation sequence for database native text 1498 ** encoding identified by the string zName, length nName. 1499 ** 1500 ** If the requested collation sequence is not available, or not available 1501 ** in the database native encoding, the collation factory is invoked to 1502 ** request it. If the collation factory does not supply such a sequence, 1503 ** and the sequence is available in another text encoding, then that is 1504 ** returned instead. 1505 ** 1506 ** If no versions of the requested collations sequence are available, or 1507 ** another error occurs, NULL is returned and an error message written into 1508 ** pParse. 1509 ** 1510 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1511 ** invokes the collation factory if the named collation cannot be found 1512 ** and generates an error message. 1513 ** 1514 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1515 */ 1516 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1517 sqlite3 *db = pParse->db; 1518 u8 enc = ENC(db); 1519 u8 initbusy = db->init.busy; 1520 CollSeq *pColl; 1521 1522 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1523 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1524 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1525 } 1526 1527 return pColl; 1528 } 1529 1530 1531 /* 1532 ** Generate code that will increment the schema cookie. 1533 ** 1534 ** The schema cookie is used to determine when the schema for the 1535 ** database changes. After each schema change, the cookie value 1536 ** changes. When a process first reads the schema it records the 1537 ** cookie. Thereafter, whenever it goes to access the database, 1538 ** it checks the cookie to make sure the schema has not changed 1539 ** since it was last read. 1540 ** 1541 ** This plan is not completely bullet-proof. It is possible for 1542 ** the schema to change multiple times and for the cookie to be 1543 ** set back to prior value. But schema changes are infrequent 1544 ** and the probability of hitting the same cookie value is only 1545 ** 1 chance in 2^32. So we're safe enough. 1546 ** 1547 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1548 ** the schema-version whenever the schema changes. 1549 */ 1550 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1551 sqlite3 *db = pParse->db; 1552 Vdbe *v = pParse->pVdbe; 1553 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1554 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1555 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1556 } 1557 1558 /* 1559 ** Measure the number of characters needed to output the given 1560 ** identifier. The number returned includes any quotes used 1561 ** but does not include the null terminator. 1562 ** 1563 ** The estimate is conservative. It might be larger that what is 1564 ** really needed. 1565 */ 1566 static int identLength(const char *z){ 1567 int n; 1568 for(n=0; *z; n++, z++){ 1569 if( *z=='"' ){ n++; } 1570 } 1571 return n + 2; 1572 } 1573 1574 /* 1575 ** The first parameter is a pointer to an output buffer. The second 1576 ** parameter is a pointer to an integer that contains the offset at 1577 ** which to write into the output buffer. This function copies the 1578 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1579 ** to the specified offset in the buffer and updates *pIdx to refer 1580 ** to the first byte after the last byte written before returning. 1581 ** 1582 ** If the string zSignedIdent consists entirely of alpha-numeric 1583 ** characters, does not begin with a digit and is not an SQL keyword, 1584 ** then it is copied to the output buffer exactly as it is. Otherwise, 1585 ** it is quoted using double-quotes. 1586 */ 1587 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1588 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1589 int i, j, needQuote; 1590 i = *pIdx; 1591 1592 for(j=0; zIdent[j]; j++){ 1593 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1594 } 1595 needQuote = sqlite3Isdigit(zIdent[0]) 1596 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1597 || zIdent[j]!=0 1598 || j==0; 1599 1600 if( needQuote ) z[i++] = '"'; 1601 for(j=0; zIdent[j]; j++){ 1602 z[i++] = zIdent[j]; 1603 if( zIdent[j]=='"' ) z[i++] = '"'; 1604 } 1605 if( needQuote ) z[i++] = '"'; 1606 z[i] = 0; 1607 *pIdx = i; 1608 } 1609 1610 /* 1611 ** Generate a CREATE TABLE statement appropriate for the given 1612 ** table. Memory to hold the text of the statement is obtained 1613 ** from sqliteMalloc() and must be freed by the calling function. 1614 */ 1615 static char *createTableStmt(sqlite3 *db, Table *p){ 1616 int i, k, n; 1617 char *zStmt; 1618 char *zSep, *zSep2, *zEnd; 1619 Column *pCol; 1620 n = 0; 1621 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1622 n += identLength(pCol->zName) + 5; 1623 } 1624 n += identLength(p->zName); 1625 if( n<50 ){ 1626 zSep = ""; 1627 zSep2 = ","; 1628 zEnd = ")"; 1629 }else{ 1630 zSep = "\n "; 1631 zSep2 = ",\n "; 1632 zEnd = "\n)"; 1633 } 1634 n += 35 + 6*p->nCol; 1635 zStmt = sqlite3DbMallocRaw(0, n); 1636 if( zStmt==0 ){ 1637 sqlite3OomFault(db); 1638 return 0; 1639 } 1640 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1641 k = sqlite3Strlen30(zStmt); 1642 identPut(zStmt, &k, p->zName); 1643 zStmt[k++] = '('; 1644 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1645 static const char * const azType[] = { 1646 /* SQLITE_AFF_BLOB */ "", 1647 /* SQLITE_AFF_TEXT */ " TEXT", 1648 /* SQLITE_AFF_NUMERIC */ " NUM", 1649 /* SQLITE_AFF_INTEGER */ " INT", 1650 /* SQLITE_AFF_REAL */ " REAL" 1651 }; 1652 int len; 1653 const char *zType; 1654 1655 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1656 k += sqlite3Strlen30(&zStmt[k]); 1657 zSep = zSep2; 1658 identPut(zStmt, &k, pCol->zName); 1659 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1660 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1661 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1662 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1663 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1664 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1665 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1666 1667 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1668 len = sqlite3Strlen30(zType); 1669 assert( pCol->affinity==SQLITE_AFF_BLOB 1670 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1671 memcpy(&zStmt[k], zType, len); 1672 k += len; 1673 assert( k<=n ); 1674 } 1675 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1676 return zStmt; 1677 } 1678 1679 /* 1680 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1681 ** on success and SQLITE_NOMEM on an OOM error. 1682 */ 1683 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1684 char *zExtra; 1685 int nByte; 1686 if( pIdx->nColumn>=N ) return SQLITE_OK; 1687 assert( pIdx->isResized==0 ); 1688 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1689 zExtra = sqlite3DbMallocZero(db, nByte); 1690 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1691 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1692 pIdx->azColl = (const char**)zExtra; 1693 zExtra += sizeof(char*)*N; 1694 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1695 pIdx->aiColumn = (i16*)zExtra; 1696 zExtra += sizeof(i16)*N; 1697 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1698 pIdx->aSortOrder = (u8*)zExtra; 1699 pIdx->nColumn = N; 1700 pIdx->isResized = 1; 1701 return SQLITE_OK; 1702 } 1703 1704 /* 1705 ** Estimate the total row width for a table. 1706 */ 1707 static void estimateTableWidth(Table *pTab){ 1708 unsigned wTable = 0; 1709 const Column *pTabCol; 1710 int i; 1711 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1712 wTable += pTabCol->szEst; 1713 } 1714 if( pTab->iPKey<0 ) wTable++; 1715 pTab->szTabRow = sqlite3LogEst(wTable*4); 1716 } 1717 1718 /* 1719 ** Estimate the average size of a row for an index. 1720 */ 1721 static void estimateIndexWidth(Index *pIdx){ 1722 unsigned wIndex = 0; 1723 int i; 1724 const Column *aCol = pIdx->pTable->aCol; 1725 for(i=0; i<pIdx->nColumn; i++){ 1726 i16 x = pIdx->aiColumn[i]; 1727 assert( x<pIdx->pTable->nCol ); 1728 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1729 } 1730 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1731 } 1732 1733 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1734 ** This is used to determine if the column number x appears in any of the 1735 ** first nCol entries of an index. 1736 */ 1737 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1738 while( nCol-- > 0 ){ 1739 assert( aiCol[0]>=0 ); 1740 if( x==*(aiCol++) ){ 1741 return 1; 1742 } 1743 } 1744 return 0; 1745 } 1746 1747 /* 1748 ** Return true if any of the first nKey entries of index pIdx exactly 1749 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1750 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1751 ** or may not be the same index as pPk. 1752 ** 1753 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1754 ** not a rowid or expression. 1755 ** 1756 ** This routine differs from hasColumn() in that both the column and the 1757 ** collating sequence must match for this routine, but for hasColumn() only 1758 ** the column name must match. 1759 */ 1760 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1761 int i, j; 1762 assert( nKey<=pIdx->nColumn ); 1763 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1764 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1765 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1766 assert( pPk->pTable==pIdx->pTable ); 1767 testcase( pPk==pIdx ); 1768 j = pPk->aiColumn[iCol]; 1769 assert( j!=XN_ROWID && j!=XN_EXPR ); 1770 for(i=0; i<nKey; i++){ 1771 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1772 if( pIdx->aiColumn[i]==j 1773 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1774 ){ 1775 return 1; 1776 } 1777 } 1778 return 0; 1779 } 1780 1781 /* Recompute the colNotIdxed field of the Index. 1782 ** 1783 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1784 ** columns that are within the first 63 columns of the table. The 1785 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1786 ** of the table have a 1. 1787 ** 1788 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1789 ** to determine if the index is covering index. 1790 */ 1791 static void recomputeColumnsNotIndexed(Index *pIdx){ 1792 Bitmask m = 0; 1793 int j; 1794 for(j=pIdx->nColumn-1; j>=0; j--){ 1795 int x = pIdx->aiColumn[j]; 1796 if( x>=0 ){ 1797 testcase( x==BMS-1 ); 1798 testcase( x==BMS-2 ); 1799 if( x<BMS-1 ) m |= MASKBIT(x); 1800 } 1801 } 1802 pIdx->colNotIdxed = ~m; 1803 assert( (pIdx->colNotIdxed>>63)==1 ); 1804 } 1805 1806 /* 1807 ** This routine runs at the end of parsing a CREATE TABLE statement that 1808 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1809 ** internal schema data structures and the generated VDBE code so that they 1810 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1811 ** Changes include: 1812 ** 1813 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1814 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1815 ** into BTREE_BLOBKEY. 1816 ** (3) Bypass the creation of the sqlite_master table entry 1817 ** for the PRIMARY KEY as the primary key index is now 1818 ** identified by the sqlite_master table entry of the table itself. 1819 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1820 ** schema to the rootpage from the main table. 1821 ** (5) Add all table columns to the PRIMARY KEY Index object 1822 ** so that the PRIMARY KEY is a covering index. The surplus 1823 ** columns are part of KeyInfo.nAllField and are not used for 1824 ** sorting or lookup or uniqueness checks. 1825 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1826 ** indices with the PRIMARY KEY columns. 1827 ** 1828 ** For virtual tables, only (1) is performed. 1829 */ 1830 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1831 Index *pIdx; 1832 Index *pPk; 1833 int nPk; 1834 int nExtra; 1835 int i, j; 1836 sqlite3 *db = pParse->db; 1837 Vdbe *v = pParse->pVdbe; 1838 1839 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1840 */ 1841 if( !db->init.imposterTable ){ 1842 for(i=0; i<pTab->nCol; i++){ 1843 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1844 pTab->aCol[i].notNull = OE_Abort; 1845 } 1846 } 1847 } 1848 1849 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1850 ** into BTREE_BLOBKEY. 1851 */ 1852 if( pParse->addrCrTab ){ 1853 assert( v ); 1854 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1855 } 1856 1857 /* Locate the PRIMARY KEY index. Or, if this table was originally 1858 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1859 */ 1860 if( pTab->iPKey>=0 ){ 1861 ExprList *pList; 1862 Token ipkToken; 1863 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1864 pList = sqlite3ExprListAppend(pParse, 0, 1865 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1866 if( pList==0 ) return; 1867 if( IN_RENAME_OBJECT ){ 1868 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 1869 } 1870 pList->a[0].sortOrder = pParse->iPkSortOrder; 1871 assert( pParse->pNewTable==pTab ); 1872 pTab->iPKey = -1; 1873 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1874 SQLITE_IDXTYPE_PRIMARYKEY); 1875 if( db->mallocFailed || pParse->nErr ) return; 1876 pPk = sqlite3PrimaryKeyIndex(pTab); 1877 assert( pPk->nKeyCol==1 ); 1878 }else{ 1879 pPk = sqlite3PrimaryKeyIndex(pTab); 1880 assert( pPk!=0 ); 1881 1882 /* 1883 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1884 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1885 ** code assumes the PRIMARY KEY contains no repeated columns. 1886 */ 1887 for(i=j=1; i<pPk->nKeyCol; i++){ 1888 if( isDupColumn(pPk, j, pPk, i) ){ 1889 pPk->nColumn--; 1890 }else{ 1891 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 1892 pPk->azColl[j] = pPk->azColl[i]; 1893 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 1894 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1895 } 1896 } 1897 pPk->nKeyCol = j; 1898 } 1899 assert( pPk!=0 ); 1900 pPk->isCovering = 1; 1901 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1902 nPk = pPk->nColumn = pPk->nKeyCol; 1903 1904 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1905 ** table entry. This is only required if currently generating VDBE 1906 ** code for a CREATE TABLE (not when parsing one as part of reading 1907 ** a database schema). */ 1908 if( v && pPk->tnum>0 ){ 1909 assert( db->init.busy==0 ); 1910 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1911 } 1912 1913 /* The root page of the PRIMARY KEY is the table root page */ 1914 pPk->tnum = pTab->tnum; 1915 1916 /* Update the in-memory representation of all UNIQUE indices by converting 1917 ** the final rowid column into one or more columns of the PRIMARY KEY. 1918 */ 1919 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1920 int n; 1921 if( IsPrimaryKeyIndex(pIdx) ) continue; 1922 for(i=n=0; i<nPk; i++){ 1923 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 1924 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 1925 n++; 1926 } 1927 } 1928 if( n==0 ){ 1929 /* This index is a superset of the primary key */ 1930 pIdx->nColumn = pIdx->nKeyCol; 1931 continue; 1932 } 1933 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1934 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1935 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 1936 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 1937 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1938 pIdx->azColl[j] = pPk->azColl[i]; 1939 if( pPk->aSortOrder[i] ){ 1940 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 1941 pIdx->bAscKeyBug = 1; 1942 } 1943 j++; 1944 } 1945 } 1946 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1947 assert( pIdx->nColumn>=j ); 1948 } 1949 1950 /* Add all table columns to the PRIMARY KEY index 1951 */ 1952 nExtra = 0; 1953 for(i=0; i<pTab->nCol; i++){ 1954 if( !hasColumn(pPk->aiColumn, nPk, i) ) nExtra++; 1955 } 1956 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 1957 for(i=0, j=nPk; i<pTab->nCol; i++){ 1958 if( !hasColumn(pPk->aiColumn, j, i) ){ 1959 assert( j<pPk->nColumn ); 1960 pPk->aiColumn[j] = i; 1961 pPk->azColl[j] = sqlite3StrBINARY; 1962 j++; 1963 } 1964 } 1965 assert( pPk->nColumn==j ); 1966 assert( pTab->nCol<=j ); 1967 recomputeColumnsNotIndexed(pPk); 1968 } 1969 1970 #ifndef SQLITE_OMIT_VIRTUALTABLE 1971 /* 1972 ** Return true if zName is a shadow table name in the current database 1973 ** connection. 1974 ** 1975 ** zName is temporarily modified while this routine is running, but is 1976 ** restored to its original value prior to this routine returning. 1977 */ 1978 static int isShadowTableName(sqlite3 *db, char *zName){ 1979 char *zTail; /* Pointer to the last "_" in zName */ 1980 Table *pTab; /* Table that zName is a shadow of */ 1981 Module *pMod; /* Module for the virtual table */ 1982 1983 zTail = strrchr(zName, '_'); 1984 if( zTail==0 ) return 0; 1985 *zTail = 0; 1986 pTab = sqlite3FindTable(db, zName, 0); 1987 *zTail = '_'; 1988 if( pTab==0 ) return 0; 1989 if( !IsVirtual(pTab) ) return 0; 1990 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 1991 if( pMod==0 ) return 0; 1992 if( pMod->pModule->iVersion<3 ) return 0; 1993 if( pMod->pModule->xShadowName==0 ) return 0; 1994 return pMod->pModule->xShadowName(zTail+1); 1995 } 1996 #else 1997 # define isShadowTableName(x,y) 0 1998 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 1999 2000 /* 2001 ** This routine is called to report the final ")" that terminates 2002 ** a CREATE TABLE statement. 2003 ** 2004 ** The table structure that other action routines have been building 2005 ** is added to the internal hash tables, assuming no errors have 2006 ** occurred. 2007 ** 2008 ** An entry for the table is made in the master table on disk, unless 2009 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2010 ** it means we are reading the sqlite_master table because we just 2011 ** connected to the database or because the sqlite_master table has 2012 ** recently changed, so the entry for this table already exists in 2013 ** the sqlite_master table. We do not want to create it again. 2014 ** 2015 ** If the pSelect argument is not NULL, it means that this routine 2016 ** was called to create a table generated from a 2017 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2018 ** the new table will match the result set of the SELECT. 2019 */ 2020 void sqlite3EndTable( 2021 Parse *pParse, /* Parse context */ 2022 Token *pCons, /* The ',' token after the last column defn. */ 2023 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2024 u8 tabOpts, /* Extra table options. Usually 0. */ 2025 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2026 ){ 2027 Table *p; /* The new table */ 2028 sqlite3 *db = pParse->db; /* The database connection */ 2029 int iDb; /* Database in which the table lives */ 2030 Index *pIdx; /* An implied index of the table */ 2031 2032 if( pEnd==0 && pSelect==0 ){ 2033 return; 2034 } 2035 assert( !db->mallocFailed ); 2036 p = pParse->pNewTable; 2037 if( p==0 ) return; 2038 2039 if( pSelect==0 && isShadowTableName(db, p->zName) ){ 2040 p->tabFlags |= TF_Shadow; 2041 } 2042 2043 /* If the db->init.busy is 1 it means we are reading the SQL off the 2044 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2045 ** So do not write to the disk again. Extract the root page number 2046 ** for the table from the db->init.newTnum field. (The page number 2047 ** should have been put there by the sqliteOpenCb routine.) 2048 ** 2049 ** If the root page number is 1, that means this is the sqlite_master 2050 ** table itself. So mark it read-only. 2051 */ 2052 if( db->init.busy ){ 2053 if( pSelect ){ 2054 sqlite3ErrorMsg(pParse, ""); 2055 return; 2056 } 2057 p->tnum = db->init.newTnum; 2058 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2059 } 2060 2061 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2062 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2063 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2064 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2065 2066 /* Special processing for WITHOUT ROWID Tables */ 2067 if( tabOpts & TF_WithoutRowid ){ 2068 if( (p->tabFlags & TF_Autoincrement) ){ 2069 sqlite3ErrorMsg(pParse, 2070 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2071 return; 2072 } 2073 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2074 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2075 }else{ 2076 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2077 convertToWithoutRowidTable(pParse, p); 2078 } 2079 } 2080 2081 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2082 2083 #ifndef SQLITE_OMIT_CHECK 2084 /* Resolve names in all CHECK constraint expressions. 2085 */ 2086 if( p->pCheck ){ 2087 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2088 } 2089 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2090 2091 /* Estimate the average row size for the table and for all implied indices */ 2092 estimateTableWidth(p); 2093 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2094 estimateIndexWidth(pIdx); 2095 } 2096 2097 /* If not initializing, then create a record for the new table 2098 ** in the SQLITE_MASTER table of the database. 2099 ** 2100 ** If this is a TEMPORARY table, write the entry into the auxiliary 2101 ** file instead of into the main database file. 2102 */ 2103 if( !db->init.busy ){ 2104 int n; 2105 Vdbe *v; 2106 char *zType; /* "view" or "table" */ 2107 char *zType2; /* "VIEW" or "TABLE" */ 2108 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2109 2110 v = sqlite3GetVdbe(pParse); 2111 if( NEVER(v==0) ) return; 2112 2113 sqlite3VdbeAddOp1(v, OP_Close, 0); 2114 2115 /* 2116 ** Initialize zType for the new view or table. 2117 */ 2118 if( p->pSelect==0 ){ 2119 /* A regular table */ 2120 zType = "table"; 2121 zType2 = "TABLE"; 2122 #ifndef SQLITE_OMIT_VIEW 2123 }else{ 2124 /* A view */ 2125 zType = "view"; 2126 zType2 = "VIEW"; 2127 #endif 2128 } 2129 2130 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2131 ** statement to populate the new table. The root-page number for the 2132 ** new table is in register pParse->regRoot. 2133 ** 2134 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2135 ** suitable state to query for the column names and types to be used 2136 ** by the new table. 2137 ** 2138 ** A shared-cache write-lock is not required to write to the new table, 2139 ** as a schema-lock must have already been obtained to create it. Since 2140 ** a schema-lock excludes all other database users, the write-lock would 2141 ** be redundant. 2142 */ 2143 if( pSelect ){ 2144 SelectDest dest; /* Where the SELECT should store results */ 2145 int regYield; /* Register holding co-routine entry-point */ 2146 int addrTop; /* Top of the co-routine */ 2147 int regRec; /* A record to be insert into the new table */ 2148 int regRowid; /* Rowid of the next row to insert */ 2149 int addrInsLoop; /* Top of the loop for inserting rows */ 2150 Table *pSelTab; /* A table that describes the SELECT results */ 2151 2152 regYield = ++pParse->nMem; 2153 regRec = ++pParse->nMem; 2154 regRowid = ++pParse->nMem; 2155 assert(pParse->nTab==1); 2156 sqlite3MayAbort(pParse); 2157 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2158 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2159 pParse->nTab = 2; 2160 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2161 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2162 if( pParse->nErr ) return; 2163 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 2164 if( pSelTab==0 ) return; 2165 assert( p->aCol==0 ); 2166 p->nCol = pSelTab->nCol; 2167 p->aCol = pSelTab->aCol; 2168 pSelTab->nCol = 0; 2169 pSelTab->aCol = 0; 2170 sqlite3DeleteTable(db, pSelTab); 2171 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2172 sqlite3Select(pParse, pSelect, &dest); 2173 if( pParse->nErr ) return; 2174 sqlite3VdbeEndCoroutine(v, regYield); 2175 sqlite3VdbeJumpHere(v, addrTop - 1); 2176 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2177 VdbeCoverage(v); 2178 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2179 sqlite3TableAffinity(v, p, 0); 2180 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2181 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2182 sqlite3VdbeGoto(v, addrInsLoop); 2183 sqlite3VdbeJumpHere(v, addrInsLoop); 2184 sqlite3VdbeAddOp1(v, OP_Close, 1); 2185 } 2186 2187 /* Compute the complete text of the CREATE statement */ 2188 if( pSelect ){ 2189 zStmt = createTableStmt(db, p); 2190 }else{ 2191 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2192 n = (int)(pEnd2->z - pParse->sNameToken.z); 2193 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2194 zStmt = sqlite3MPrintf(db, 2195 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2196 ); 2197 } 2198 2199 /* A slot for the record has already been allocated in the 2200 ** SQLITE_MASTER table. We just need to update that slot with all 2201 ** the information we've collected. 2202 */ 2203 sqlite3NestedParse(pParse, 2204 "UPDATE %Q.%s " 2205 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2206 "WHERE rowid=#%d", 2207 db->aDb[iDb].zDbSName, MASTER_NAME, 2208 zType, 2209 p->zName, 2210 p->zName, 2211 pParse->regRoot, 2212 zStmt, 2213 pParse->regRowid 2214 ); 2215 sqlite3DbFree(db, zStmt); 2216 sqlite3ChangeCookie(pParse, iDb); 2217 2218 #ifndef SQLITE_OMIT_AUTOINCREMENT 2219 /* Check to see if we need to create an sqlite_sequence table for 2220 ** keeping track of autoincrement keys. 2221 */ 2222 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2223 Db *pDb = &db->aDb[iDb]; 2224 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2225 if( pDb->pSchema->pSeqTab==0 ){ 2226 sqlite3NestedParse(pParse, 2227 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2228 pDb->zDbSName 2229 ); 2230 } 2231 } 2232 #endif 2233 2234 /* Reparse everything to update our internal data structures */ 2235 sqlite3VdbeAddParseSchemaOp(v, iDb, 2236 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2237 } 2238 2239 2240 /* Add the table to the in-memory representation of the database. 2241 */ 2242 if( db->init.busy ){ 2243 Table *pOld; 2244 Schema *pSchema = p->pSchema; 2245 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2246 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2247 if( pOld ){ 2248 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2249 sqlite3OomFault(db); 2250 return; 2251 } 2252 pParse->pNewTable = 0; 2253 db->mDbFlags |= DBFLAG_SchemaChange; 2254 2255 #ifndef SQLITE_OMIT_ALTERTABLE 2256 if( !p->pSelect ){ 2257 const char *zName = (const char *)pParse->sNameToken.z; 2258 int nName; 2259 assert( !pSelect && pCons && pEnd ); 2260 if( pCons->z==0 ){ 2261 pCons = pEnd; 2262 } 2263 nName = (int)((const char *)pCons->z - zName); 2264 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2265 } 2266 #endif 2267 } 2268 } 2269 2270 #ifndef SQLITE_OMIT_VIEW 2271 /* 2272 ** The parser calls this routine in order to create a new VIEW 2273 */ 2274 void sqlite3CreateView( 2275 Parse *pParse, /* The parsing context */ 2276 Token *pBegin, /* The CREATE token that begins the statement */ 2277 Token *pName1, /* The token that holds the name of the view */ 2278 Token *pName2, /* The token that holds the name of the view */ 2279 ExprList *pCNames, /* Optional list of view column names */ 2280 Select *pSelect, /* A SELECT statement that will become the new view */ 2281 int isTemp, /* TRUE for a TEMPORARY view */ 2282 int noErr /* Suppress error messages if VIEW already exists */ 2283 ){ 2284 Table *p; 2285 int n; 2286 const char *z; 2287 Token sEnd; 2288 DbFixer sFix; 2289 Token *pName = 0; 2290 int iDb; 2291 sqlite3 *db = pParse->db; 2292 2293 if( pParse->nVar>0 ){ 2294 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2295 goto create_view_fail; 2296 } 2297 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2298 p = pParse->pNewTable; 2299 if( p==0 || pParse->nErr ) goto create_view_fail; 2300 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2301 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2302 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2303 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2304 2305 /* Make a copy of the entire SELECT statement that defines the view. 2306 ** This will force all the Expr.token.z values to be dynamically 2307 ** allocated rather than point to the input string - which means that 2308 ** they will persist after the current sqlite3_exec() call returns. 2309 */ 2310 if( IN_RENAME_OBJECT ){ 2311 p->pSelect = pSelect; 2312 pSelect = 0; 2313 }else{ 2314 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2315 } 2316 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2317 if( db->mallocFailed ) goto create_view_fail; 2318 2319 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2320 ** the end. 2321 */ 2322 sEnd = pParse->sLastToken; 2323 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2324 if( sEnd.z[0]!=';' ){ 2325 sEnd.z += sEnd.n; 2326 } 2327 sEnd.n = 0; 2328 n = (int)(sEnd.z - pBegin->z); 2329 assert( n>0 ); 2330 z = pBegin->z; 2331 while( sqlite3Isspace(z[n-1]) ){ n--; } 2332 sEnd.z = &z[n-1]; 2333 sEnd.n = 1; 2334 2335 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2336 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2337 2338 create_view_fail: 2339 sqlite3SelectDelete(db, pSelect); 2340 if( IN_RENAME_OBJECT ){ 2341 sqlite3RenameExprlistUnmap(pParse, pCNames); 2342 } 2343 sqlite3ExprListDelete(db, pCNames); 2344 return; 2345 } 2346 #endif /* SQLITE_OMIT_VIEW */ 2347 2348 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2349 /* 2350 ** The Table structure pTable is really a VIEW. Fill in the names of 2351 ** the columns of the view in the pTable structure. Return the number 2352 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2353 */ 2354 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2355 Table *pSelTab; /* A fake table from which we get the result set */ 2356 Select *pSel; /* Copy of the SELECT that implements the view */ 2357 int nErr = 0; /* Number of errors encountered */ 2358 int n; /* Temporarily holds the number of cursors assigned */ 2359 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2360 #ifndef SQLITE_OMIT_VIRTUALTABLE 2361 int rc; 2362 #endif 2363 #ifndef SQLITE_OMIT_AUTHORIZATION 2364 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2365 #endif 2366 2367 assert( pTable ); 2368 2369 #ifndef SQLITE_OMIT_VIRTUALTABLE 2370 db->nSchemaLock++; 2371 rc = sqlite3VtabCallConnect(pParse, pTable); 2372 db->nSchemaLock--; 2373 if( rc ){ 2374 return 1; 2375 } 2376 if( IsVirtual(pTable) ) return 0; 2377 #endif 2378 2379 #ifndef SQLITE_OMIT_VIEW 2380 /* A positive nCol means the columns names for this view are 2381 ** already known. 2382 */ 2383 if( pTable->nCol>0 ) return 0; 2384 2385 /* A negative nCol is a special marker meaning that we are currently 2386 ** trying to compute the column names. If we enter this routine with 2387 ** a negative nCol, it means two or more views form a loop, like this: 2388 ** 2389 ** CREATE VIEW one AS SELECT * FROM two; 2390 ** CREATE VIEW two AS SELECT * FROM one; 2391 ** 2392 ** Actually, the error above is now caught prior to reaching this point. 2393 ** But the following test is still important as it does come up 2394 ** in the following: 2395 ** 2396 ** CREATE TABLE main.ex1(a); 2397 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2398 ** SELECT * FROM temp.ex1; 2399 */ 2400 if( pTable->nCol<0 ){ 2401 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2402 return 1; 2403 } 2404 assert( pTable->nCol>=0 ); 2405 2406 /* If we get this far, it means we need to compute the table names. 2407 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2408 ** "*" elements in the results set of the view and will assign cursors 2409 ** to the elements of the FROM clause. But we do not want these changes 2410 ** to be permanent. So the computation is done on a copy of the SELECT 2411 ** statement that defines the view. 2412 */ 2413 assert( pTable->pSelect ); 2414 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2415 if( pSel ){ 2416 #ifndef SQLITE_OMIT_ALTERTABLE 2417 u8 eParseMode = pParse->eParseMode; 2418 pParse->eParseMode = PARSE_MODE_NORMAL; 2419 #endif 2420 n = pParse->nTab; 2421 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2422 pTable->nCol = -1; 2423 db->lookaside.bDisable++; 2424 #ifndef SQLITE_OMIT_AUTHORIZATION 2425 xAuth = db->xAuth; 2426 db->xAuth = 0; 2427 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2428 db->xAuth = xAuth; 2429 #else 2430 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2431 #endif 2432 pParse->nTab = n; 2433 if( pTable->pCheck ){ 2434 /* CREATE VIEW name(arglist) AS ... 2435 ** The names of the columns in the table are taken from 2436 ** arglist which is stored in pTable->pCheck. The pCheck field 2437 ** normally holds CHECK constraints on an ordinary table, but for 2438 ** a VIEW it holds the list of column names. 2439 */ 2440 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2441 &pTable->nCol, &pTable->aCol); 2442 if( db->mallocFailed==0 2443 && pParse->nErr==0 2444 && pTable->nCol==pSel->pEList->nExpr 2445 ){ 2446 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2447 } 2448 }else if( pSelTab ){ 2449 /* CREATE VIEW name AS... without an argument list. Construct 2450 ** the column names from the SELECT statement that defines the view. 2451 */ 2452 assert( pTable->aCol==0 ); 2453 pTable->nCol = pSelTab->nCol; 2454 pTable->aCol = pSelTab->aCol; 2455 pSelTab->nCol = 0; 2456 pSelTab->aCol = 0; 2457 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2458 }else{ 2459 pTable->nCol = 0; 2460 nErr++; 2461 } 2462 sqlite3DeleteTable(db, pSelTab); 2463 sqlite3SelectDelete(db, pSel); 2464 db->lookaside.bDisable--; 2465 #ifndef SQLITE_OMIT_ALTERTABLE 2466 pParse->eParseMode = eParseMode; 2467 #endif 2468 } else { 2469 nErr++; 2470 } 2471 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2472 if( db->mallocFailed ){ 2473 sqlite3DeleteColumnNames(db, pTable); 2474 pTable->aCol = 0; 2475 pTable->nCol = 0; 2476 } 2477 #endif /* SQLITE_OMIT_VIEW */ 2478 return nErr; 2479 } 2480 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2481 2482 #ifndef SQLITE_OMIT_VIEW 2483 /* 2484 ** Clear the column names from every VIEW in database idx. 2485 */ 2486 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2487 HashElem *i; 2488 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2489 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2490 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2491 Table *pTab = sqliteHashData(i); 2492 if( pTab->pSelect ){ 2493 sqlite3DeleteColumnNames(db, pTab); 2494 pTab->aCol = 0; 2495 pTab->nCol = 0; 2496 } 2497 } 2498 DbClearProperty(db, idx, DB_UnresetViews); 2499 } 2500 #else 2501 # define sqliteViewResetAll(A,B) 2502 #endif /* SQLITE_OMIT_VIEW */ 2503 2504 /* 2505 ** This function is called by the VDBE to adjust the internal schema 2506 ** used by SQLite when the btree layer moves a table root page. The 2507 ** root-page of a table or index in database iDb has changed from iFrom 2508 ** to iTo. 2509 ** 2510 ** Ticket #1728: The symbol table might still contain information 2511 ** on tables and/or indices that are the process of being deleted. 2512 ** If you are unlucky, one of those deleted indices or tables might 2513 ** have the same rootpage number as the real table or index that is 2514 ** being moved. So we cannot stop searching after the first match 2515 ** because the first match might be for one of the deleted indices 2516 ** or tables and not the table/index that is actually being moved. 2517 ** We must continue looping until all tables and indices with 2518 ** rootpage==iFrom have been converted to have a rootpage of iTo 2519 ** in order to be certain that we got the right one. 2520 */ 2521 #ifndef SQLITE_OMIT_AUTOVACUUM 2522 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2523 HashElem *pElem; 2524 Hash *pHash; 2525 Db *pDb; 2526 2527 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2528 pDb = &db->aDb[iDb]; 2529 pHash = &pDb->pSchema->tblHash; 2530 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2531 Table *pTab = sqliteHashData(pElem); 2532 if( pTab->tnum==iFrom ){ 2533 pTab->tnum = iTo; 2534 } 2535 } 2536 pHash = &pDb->pSchema->idxHash; 2537 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2538 Index *pIdx = sqliteHashData(pElem); 2539 if( pIdx->tnum==iFrom ){ 2540 pIdx->tnum = iTo; 2541 } 2542 } 2543 } 2544 #endif 2545 2546 /* 2547 ** Write code to erase the table with root-page iTable from database iDb. 2548 ** Also write code to modify the sqlite_master table and internal schema 2549 ** if a root-page of another table is moved by the btree-layer whilst 2550 ** erasing iTable (this can happen with an auto-vacuum database). 2551 */ 2552 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2553 Vdbe *v = sqlite3GetVdbe(pParse); 2554 int r1 = sqlite3GetTempReg(pParse); 2555 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2556 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2557 sqlite3MayAbort(pParse); 2558 #ifndef SQLITE_OMIT_AUTOVACUUM 2559 /* OP_Destroy stores an in integer r1. If this integer 2560 ** is non-zero, then it is the root page number of a table moved to 2561 ** location iTable. The following code modifies the sqlite_master table to 2562 ** reflect this. 2563 ** 2564 ** The "#NNN" in the SQL is a special constant that means whatever value 2565 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2566 ** token for additional information. 2567 */ 2568 sqlite3NestedParse(pParse, 2569 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2570 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2571 #endif 2572 sqlite3ReleaseTempReg(pParse, r1); 2573 } 2574 2575 /* 2576 ** Write VDBE code to erase table pTab and all associated indices on disk. 2577 ** Code to update the sqlite_master tables and internal schema definitions 2578 ** in case a root-page belonging to another table is moved by the btree layer 2579 ** is also added (this can happen with an auto-vacuum database). 2580 */ 2581 static void destroyTable(Parse *pParse, Table *pTab){ 2582 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2583 ** is not defined), then it is important to call OP_Destroy on the 2584 ** table and index root-pages in order, starting with the numerically 2585 ** largest root-page number. This guarantees that none of the root-pages 2586 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2587 ** following were coded: 2588 ** 2589 ** OP_Destroy 4 0 2590 ** ... 2591 ** OP_Destroy 5 0 2592 ** 2593 ** and root page 5 happened to be the largest root-page number in the 2594 ** database, then root page 5 would be moved to page 4 by the 2595 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2596 ** a free-list page. 2597 */ 2598 int iTab = pTab->tnum; 2599 int iDestroyed = 0; 2600 2601 while( 1 ){ 2602 Index *pIdx; 2603 int iLargest = 0; 2604 2605 if( iDestroyed==0 || iTab<iDestroyed ){ 2606 iLargest = iTab; 2607 } 2608 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2609 int iIdx = pIdx->tnum; 2610 assert( pIdx->pSchema==pTab->pSchema ); 2611 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2612 iLargest = iIdx; 2613 } 2614 } 2615 if( iLargest==0 ){ 2616 return; 2617 }else{ 2618 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2619 assert( iDb>=0 && iDb<pParse->db->nDb ); 2620 destroyRootPage(pParse, iLargest, iDb); 2621 iDestroyed = iLargest; 2622 } 2623 } 2624 } 2625 2626 /* 2627 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2628 ** after a DROP INDEX or DROP TABLE command. 2629 */ 2630 static void sqlite3ClearStatTables( 2631 Parse *pParse, /* The parsing context */ 2632 int iDb, /* The database number */ 2633 const char *zType, /* "idx" or "tbl" */ 2634 const char *zName /* Name of index or table */ 2635 ){ 2636 int i; 2637 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2638 for(i=1; i<=4; i++){ 2639 char zTab[24]; 2640 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2641 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2642 sqlite3NestedParse(pParse, 2643 "DELETE FROM %Q.%s WHERE %s=%Q", 2644 zDbName, zTab, zType, zName 2645 ); 2646 } 2647 } 2648 } 2649 2650 /* 2651 ** Generate code to drop a table. 2652 */ 2653 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2654 Vdbe *v; 2655 sqlite3 *db = pParse->db; 2656 Trigger *pTrigger; 2657 Db *pDb = &db->aDb[iDb]; 2658 2659 v = sqlite3GetVdbe(pParse); 2660 assert( v!=0 ); 2661 sqlite3BeginWriteOperation(pParse, 1, iDb); 2662 2663 #ifndef SQLITE_OMIT_VIRTUALTABLE 2664 if( IsVirtual(pTab) ){ 2665 sqlite3VdbeAddOp0(v, OP_VBegin); 2666 } 2667 #endif 2668 2669 /* Drop all triggers associated with the table being dropped. Code 2670 ** is generated to remove entries from sqlite_master and/or 2671 ** sqlite_temp_master if required. 2672 */ 2673 pTrigger = sqlite3TriggerList(pParse, pTab); 2674 while( pTrigger ){ 2675 assert( pTrigger->pSchema==pTab->pSchema || 2676 pTrigger->pSchema==db->aDb[1].pSchema ); 2677 sqlite3DropTriggerPtr(pParse, pTrigger); 2678 pTrigger = pTrigger->pNext; 2679 } 2680 2681 #ifndef SQLITE_OMIT_AUTOINCREMENT 2682 /* Remove any entries of the sqlite_sequence table associated with 2683 ** the table being dropped. This is done before the table is dropped 2684 ** at the btree level, in case the sqlite_sequence table needs to 2685 ** move as a result of the drop (can happen in auto-vacuum mode). 2686 */ 2687 if( pTab->tabFlags & TF_Autoincrement ){ 2688 sqlite3NestedParse(pParse, 2689 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2690 pDb->zDbSName, pTab->zName 2691 ); 2692 } 2693 #endif 2694 2695 /* Drop all SQLITE_MASTER table and index entries that refer to the 2696 ** table. The program name loops through the master table and deletes 2697 ** every row that refers to a table of the same name as the one being 2698 ** dropped. Triggers are handled separately because a trigger can be 2699 ** created in the temp database that refers to a table in another 2700 ** database. 2701 */ 2702 sqlite3NestedParse(pParse, 2703 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2704 pDb->zDbSName, MASTER_NAME, pTab->zName); 2705 if( !isView && !IsVirtual(pTab) ){ 2706 destroyTable(pParse, pTab); 2707 } 2708 2709 /* Remove the table entry from SQLite's internal schema and modify 2710 ** the schema cookie. 2711 */ 2712 if( IsVirtual(pTab) ){ 2713 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2714 sqlite3MayAbort(pParse); 2715 } 2716 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2717 sqlite3ChangeCookie(pParse, iDb); 2718 sqliteViewResetAll(db, iDb); 2719 } 2720 2721 /* 2722 ** This routine is called to do the work of a DROP TABLE statement. 2723 ** pName is the name of the table to be dropped. 2724 */ 2725 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2726 Table *pTab; 2727 Vdbe *v; 2728 sqlite3 *db = pParse->db; 2729 int iDb; 2730 2731 if( db->mallocFailed ){ 2732 goto exit_drop_table; 2733 } 2734 assert( pParse->nErr==0 ); 2735 assert( pName->nSrc==1 ); 2736 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2737 if( noErr ) db->suppressErr++; 2738 assert( isView==0 || isView==LOCATE_VIEW ); 2739 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2740 if( noErr ) db->suppressErr--; 2741 2742 if( pTab==0 ){ 2743 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2744 goto exit_drop_table; 2745 } 2746 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2747 assert( iDb>=0 && iDb<db->nDb ); 2748 2749 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2750 ** it is initialized. 2751 */ 2752 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2753 goto exit_drop_table; 2754 } 2755 #ifndef SQLITE_OMIT_AUTHORIZATION 2756 { 2757 int code; 2758 const char *zTab = SCHEMA_TABLE(iDb); 2759 const char *zDb = db->aDb[iDb].zDbSName; 2760 const char *zArg2 = 0; 2761 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2762 goto exit_drop_table; 2763 } 2764 if( isView ){ 2765 if( !OMIT_TEMPDB && iDb==1 ){ 2766 code = SQLITE_DROP_TEMP_VIEW; 2767 }else{ 2768 code = SQLITE_DROP_VIEW; 2769 } 2770 #ifndef SQLITE_OMIT_VIRTUALTABLE 2771 }else if( IsVirtual(pTab) ){ 2772 code = SQLITE_DROP_VTABLE; 2773 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2774 #endif 2775 }else{ 2776 if( !OMIT_TEMPDB && iDb==1 ){ 2777 code = SQLITE_DROP_TEMP_TABLE; 2778 }else{ 2779 code = SQLITE_DROP_TABLE; 2780 } 2781 } 2782 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2783 goto exit_drop_table; 2784 } 2785 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2786 goto exit_drop_table; 2787 } 2788 } 2789 #endif 2790 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2791 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2792 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2793 goto exit_drop_table; 2794 } 2795 2796 #ifndef SQLITE_OMIT_VIEW 2797 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2798 ** on a table. 2799 */ 2800 if( isView && pTab->pSelect==0 ){ 2801 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2802 goto exit_drop_table; 2803 } 2804 if( !isView && pTab->pSelect ){ 2805 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2806 goto exit_drop_table; 2807 } 2808 #endif 2809 2810 /* Generate code to remove the table from the master table 2811 ** on disk. 2812 */ 2813 v = sqlite3GetVdbe(pParse); 2814 if( v ){ 2815 sqlite3BeginWriteOperation(pParse, 1, iDb); 2816 if( !isView ){ 2817 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2818 sqlite3FkDropTable(pParse, pName, pTab); 2819 } 2820 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2821 } 2822 2823 exit_drop_table: 2824 sqlite3SrcListDelete(db, pName); 2825 } 2826 2827 /* 2828 ** This routine is called to create a new foreign key on the table 2829 ** currently under construction. pFromCol determines which columns 2830 ** in the current table point to the foreign key. If pFromCol==0 then 2831 ** connect the key to the last column inserted. pTo is the name of 2832 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2833 ** of tables in the parent pTo table. flags contains all 2834 ** information about the conflict resolution algorithms specified 2835 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2836 ** 2837 ** An FKey structure is created and added to the table currently 2838 ** under construction in the pParse->pNewTable field. 2839 ** 2840 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2841 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2842 */ 2843 void sqlite3CreateForeignKey( 2844 Parse *pParse, /* Parsing context */ 2845 ExprList *pFromCol, /* Columns in this table that point to other table */ 2846 Token *pTo, /* Name of the other table */ 2847 ExprList *pToCol, /* Columns in the other table */ 2848 int flags /* Conflict resolution algorithms. */ 2849 ){ 2850 sqlite3 *db = pParse->db; 2851 #ifndef SQLITE_OMIT_FOREIGN_KEY 2852 FKey *pFKey = 0; 2853 FKey *pNextTo; 2854 Table *p = pParse->pNewTable; 2855 int nByte; 2856 int i; 2857 int nCol; 2858 char *z; 2859 2860 assert( pTo!=0 ); 2861 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2862 if( pFromCol==0 ){ 2863 int iCol = p->nCol-1; 2864 if( NEVER(iCol<0) ) goto fk_end; 2865 if( pToCol && pToCol->nExpr!=1 ){ 2866 sqlite3ErrorMsg(pParse, "foreign key on %s" 2867 " should reference only one column of table %T", 2868 p->aCol[iCol].zName, pTo); 2869 goto fk_end; 2870 } 2871 nCol = 1; 2872 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2873 sqlite3ErrorMsg(pParse, 2874 "number of columns in foreign key does not match the number of " 2875 "columns in the referenced table"); 2876 goto fk_end; 2877 }else{ 2878 nCol = pFromCol->nExpr; 2879 } 2880 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2881 if( pToCol ){ 2882 for(i=0; i<pToCol->nExpr; i++){ 2883 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2884 } 2885 } 2886 pFKey = sqlite3DbMallocZero(db, nByte ); 2887 if( pFKey==0 ){ 2888 goto fk_end; 2889 } 2890 pFKey->pFrom = p; 2891 pFKey->pNextFrom = p->pFKey; 2892 z = (char*)&pFKey->aCol[nCol]; 2893 pFKey->zTo = z; 2894 if( IN_RENAME_OBJECT ){ 2895 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 2896 } 2897 memcpy(z, pTo->z, pTo->n); 2898 z[pTo->n] = 0; 2899 sqlite3Dequote(z); 2900 z += pTo->n+1; 2901 pFKey->nCol = nCol; 2902 if( pFromCol==0 ){ 2903 pFKey->aCol[0].iFrom = p->nCol-1; 2904 }else{ 2905 for(i=0; i<nCol; i++){ 2906 int j; 2907 for(j=0; j<p->nCol; j++){ 2908 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2909 pFKey->aCol[i].iFrom = j; 2910 break; 2911 } 2912 } 2913 if( j>=p->nCol ){ 2914 sqlite3ErrorMsg(pParse, 2915 "unknown column \"%s\" in foreign key definition", 2916 pFromCol->a[i].zName); 2917 goto fk_end; 2918 } 2919 if( IN_RENAME_OBJECT ){ 2920 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName); 2921 } 2922 } 2923 } 2924 if( pToCol ){ 2925 for(i=0; i<nCol; i++){ 2926 int n = sqlite3Strlen30(pToCol->a[i].zName); 2927 pFKey->aCol[i].zCol = z; 2928 if( IN_RENAME_OBJECT ){ 2929 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName); 2930 } 2931 memcpy(z, pToCol->a[i].zName, n); 2932 z[n] = 0; 2933 z += n+1; 2934 } 2935 } 2936 pFKey->isDeferred = 0; 2937 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2938 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2939 2940 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2941 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2942 pFKey->zTo, (void *)pFKey 2943 ); 2944 if( pNextTo==pFKey ){ 2945 sqlite3OomFault(db); 2946 goto fk_end; 2947 } 2948 if( pNextTo ){ 2949 assert( pNextTo->pPrevTo==0 ); 2950 pFKey->pNextTo = pNextTo; 2951 pNextTo->pPrevTo = pFKey; 2952 } 2953 2954 /* Link the foreign key to the table as the last step. 2955 */ 2956 p->pFKey = pFKey; 2957 pFKey = 0; 2958 2959 fk_end: 2960 sqlite3DbFree(db, pFKey); 2961 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2962 sqlite3ExprListDelete(db, pFromCol); 2963 sqlite3ExprListDelete(db, pToCol); 2964 } 2965 2966 /* 2967 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2968 ** clause is seen as part of a foreign key definition. The isDeferred 2969 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2970 ** The behavior of the most recently created foreign key is adjusted 2971 ** accordingly. 2972 */ 2973 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2974 #ifndef SQLITE_OMIT_FOREIGN_KEY 2975 Table *pTab; 2976 FKey *pFKey; 2977 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2978 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2979 pFKey->isDeferred = (u8)isDeferred; 2980 #endif 2981 } 2982 2983 /* 2984 ** Generate code that will erase and refill index *pIdx. This is 2985 ** used to initialize a newly created index or to recompute the 2986 ** content of an index in response to a REINDEX command. 2987 ** 2988 ** if memRootPage is not negative, it means that the index is newly 2989 ** created. The register specified by memRootPage contains the 2990 ** root page number of the index. If memRootPage is negative, then 2991 ** the index already exists and must be cleared before being refilled and 2992 ** the root page number of the index is taken from pIndex->tnum. 2993 */ 2994 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2995 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2996 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2997 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2998 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2999 int addr1; /* Address of top of loop */ 3000 int addr2; /* Address to jump to for next iteration */ 3001 int tnum; /* Root page of index */ 3002 int iPartIdxLabel; /* Jump to this label to skip a row */ 3003 Vdbe *v; /* Generate code into this virtual machine */ 3004 KeyInfo *pKey; /* KeyInfo for index */ 3005 int regRecord; /* Register holding assembled index record */ 3006 sqlite3 *db = pParse->db; /* The database connection */ 3007 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3008 3009 #ifndef SQLITE_OMIT_AUTHORIZATION 3010 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3011 db->aDb[iDb].zDbSName ) ){ 3012 return; 3013 } 3014 #endif 3015 3016 /* Require a write-lock on the table to perform this operation */ 3017 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3018 3019 v = sqlite3GetVdbe(pParse); 3020 if( v==0 ) return; 3021 if( memRootPage>=0 ){ 3022 tnum = memRootPage; 3023 }else{ 3024 tnum = pIndex->tnum; 3025 } 3026 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3027 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3028 3029 /* Open the sorter cursor if we are to use one. */ 3030 iSorter = pParse->nTab++; 3031 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3032 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3033 3034 /* Open the table. Loop through all rows of the table, inserting index 3035 ** records into the sorter. */ 3036 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3037 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3038 regRecord = sqlite3GetTempReg(pParse); 3039 sqlite3MultiWrite(pParse); 3040 3041 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3042 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3043 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3044 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3045 sqlite3VdbeJumpHere(v, addr1); 3046 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3047 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3048 (char *)pKey, P4_KEYINFO); 3049 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3050 3051 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3052 if( IsUniqueIndex(pIndex) ){ 3053 int j2 = sqlite3VdbeGoto(v, 1); 3054 addr2 = sqlite3VdbeCurrentAddr(v); 3055 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3056 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3057 pIndex->nKeyCol); VdbeCoverage(v); 3058 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3059 sqlite3VdbeJumpHere(v, j2); 3060 }else{ 3061 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3062 ** abort. The exception is if one of the indexed expressions contains a 3063 ** user function that throws an exception when it is evaluated. But the 3064 ** overhead of adding a statement journal to a CREATE INDEX statement is 3065 ** very small (since most of the pages written do not contain content that 3066 ** needs to be restored if the statement aborts), so we call 3067 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3068 sqlite3MayAbort(pParse); 3069 addr2 = sqlite3VdbeCurrentAddr(v); 3070 } 3071 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3072 if( !pIndex->bAscKeyBug ){ 3073 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3074 ** faster by avoiding unnecessary seeks. But the optimization does 3075 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3076 ** with DESC primary keys, since those indexes have there keys in 3077 ** a different order from the main table. 3078 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3079 */ 3080 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3081 } 3082 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3083 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3084 sqlite3ReleaseTempReg(pParse, regRecord); 3085 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3086 sqlite3VdbeJumpHere(v, addr1); 3087 3088 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3089 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3090 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3091 } 3092 3093 /* 3094 ** Allocate heap space to hold an Index object with nCol columns. 3095 ** 3096 ** Increase the allocation size to provide an extra nExtra bytes 3097 ** of 8-byte aligned space after the Index object and return a 3098 ** pointer to this extra space in *ppExtra. 3099 */ 3100 Index *sqlite3AllocateIndexObject( 3101 sqlite3 *db, /* Database connection */ 3102 i16 nCol, /* Total number of columns in the index */ 3103 int nExtra, /* Number of bytes of extra space to alloc */ 3104 char **ppExtra /* Pointer to the "extra" space */ 3105 ){ 3106 Index *p; /* Allocated index object */ 3107 int nByte; /* Bytes of space for Index object + arrays */ 3108 3109 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3110 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3111 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3112 sizeof(i16)*nCol + /* Index.aiColumn */ 3113 sizeof(u8)*nCol); /* Index.aSortOrder */ 3114 p = sqlite3DbMallocZero(db, nByte + nExtra); 3115 if( p ){ 3116 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3117 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3118 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3119 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3120 p->aSortOrder = (u8*)pExtra; 3121 p->nColumn = nCol; 3122 p->nKeyCol = nCol - 1; 3123 *ppExtra = ((char*)p) + nByte; 3124 } 3125 return p; 3126 } 3127 3128 /* 3129 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3130 ** and pTblList is the name of the table that is to be indexed. Both will 3131 ** be NULL for a primary key or an index that is created to satisfy a 3132 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3133 ** as the table to be indexed. pParse->pNewTable is a table that is 3134 ** currently being constructed by a CREATE TABLE statement. 3135 ** 3136 ** pList is a list of columns to be indexed. pList will be NULL if this 3137 ** is a primary key or unique-constraint on the most recent column added 3138 ** to the table currently under construction. 3139 */ 3140 void sqlite3CreateIndex( 3141 Parse *pParse, /* All information about this parse */ 3142 Token *pName1, /* First part of index name. May be NULL */ 3143 Token *pName2, /* Second part of index name. May be NULL */ 3144 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3145 ExprList *pList, /* A list of columns to be indexed */ 3146 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3147 Token *pStart, /* The CREATE token that begins this statement */ 3148 Expr *pPIWhere, /* WHERE clause for partial indices */ 3149 int sortOrder, /* Sort order of primary key when pList==NULL */ 3150 int ifNotExist, /* Omit error if index already exists */ 3151 u8 idxType /* The index type */ 3152 ){ 3153 Table *pTab = 0; /* Table to be indexed */ 3154 Index *pIndex = 0; /* The index to be created */ 3155 char *zName = 0; /* Name of the index */ 3156 int nName; /* Number of characters in zName */ 3157 int i, j; 3158 DbFixer sFix; /* For assigning database names to pTable */ 3159 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3160 sqlite3 *db = pParse->db; 3161 Db *pDb; /* The specific table containing the indexed database */ 3162 int iDb; /* Index of the database that is being written */ 3163 Token *pName = 0; /* Unqualified name of the index to create */ 3164 struct ExprList_item *pListItem; /* For looping over pList */ 3165 int nExtra = 0; /* Space allocated for zExtra[] */ 3166 int nExtraCol; /* Number of extra columns needed */ 3167 char *zExtra = 0; /* Extra space after the Index object */ 3168 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3169 3170 if( db->mallocFailed || pParse->nErr>0 ){ 3171 goto exit_create_index; 3172 } 3173 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3174 goto exit_create_index; 3175 } 3176 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3177 goto exit_create_index; 3178 } 3179 3180 /* 3181 ** Find the table that is to be indexed. Return early if not found. 3182 */ 3183 if( pTblName!=0 ){ 3184 3185 /* Use the two-part index name to determine the database 3186 ** to search for the table. 'Fix' the table name to this db 3187 ** before looking up the table. 3188 */ 3189 assert( pName1 && pName2 ); 3190 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3191 if( iDb<0 ) goto exit_create_index; 3192 assert( pName && pName->z ); 3193 3194 #ifndef SQLITE_OMIT_TEMPDB 3195 /* If the index name was unqualified, check if the table 3196 ** is a temp table. If so, set the database to 1. Do not do this 3197 ** if initialising a database schema. 3198 */ 3199 if( !db->init.busy ){ 3200 pTab = sqlite3SrcListLookup(pParse, pTblName); 3201 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3202 iDb = 1; 3203 } 3204 } 3205 #endif 3206 3207 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3208 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3209 /* Because the parser constructs pTblName from a single identifier, 3210 ** sqlite3FixSrcList can never fail. */ 3211 assert(0); 3212 } 3213 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3214 assert( db->mallocFailed==0 || pTab==0 ); 3215 if( pTab==0 ) goto exit_create_index; 3216 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3217 sqlite3ErrorMsg(pParse, 3218 "cannot create a TEMP index on non-TEMP table \"%s\"", 3219 pTab->zName); 3220 goto exit_create_index; 3221 } 3222 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3223 }else{ 3224 assert( pName==0 ); 3225 assert( pStart==0 ); 3226 pTab = pParse->pNewTable; 3227 if( !pTab ) goto exit_create_index; 3228 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3229 } 3230 pDb = &db->aDb[iDb]; 3231 3232 assert( pTab!=0 ); 3233 assert( pParse->nErr==0 ); 3234 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3235 && db->init.busy==0 3236 && pTblName!=0 3237 #if SQLITE_USER_AUTHENTICATION 3238 && sqlite3UserAuthTable(pTab->zName)==0 3239 #endif 3240 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3241 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3242 #endif 3243 ){ 3244 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3245 goto exit_create_index; 3246 } 3247 #ifndef SQLITE_OMIT_VIEW 3248 if( pTab->pSelect ){ 3249 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3250 goto exit_create_index; 3251 } 3252 #endif 3253 #ifndef SQLITE_OMIT_VIRTUALTABLE 3254 if( IsVirtual(pTab) ){ 3255 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3256 goto exit_create_index; 3257 } 3258 #endif 3259 3260 /* 3261 ** Find the name of the index. Make sure there is not already another 3262 ** index or table with the same name. 3263 ** 3264 ** Exception: If we are reading the names of permanent indices from the 3265 ** sqlite_master table (because some other process changed the schema) and 3266 ** one of the index names collides with the name of a temporary table or 3267 ** index, then we will continue to process this index. 3268 ** 3269 ** If pName==0 it means that we are 3270 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3271 ** own name. 3272 */ 3273 if( pName ){ 3274 zName = sqlite3NameFromToken(db, pName); 3275 if( zName==0 ) goto exit_create_index; 3276 assert( pName->z!=0 ); 3277 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3278 goto exit_create_index; 3279 } 3280 if( !IN_RENAME_OBJECT ){ 3281 if( !db->init.busy ){ 3282 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3283 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3284 goto exit_create_index; 3285 } 3286 } 3287 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3288 if( !ifNotExist ){ 3289 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3290 }else{ 3291 assert( !db->init.busy ); 3292 sqlite3CodeVerifySchema(pParse, iDb); 3293 } 3294 goto exit_create_index; 3295 } 3296 } 3297 }else{ 3298 int n; 3299 Index *pLoop; 3300 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3301 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3302 if( zName==0 ){ 3303 goto exit_create_index; 3304 } 3305 3306 /* Automatic index names generated from within sqlite3_declare_vtab() 3307 ** must have names that are distinct from normal automatic index names. 3308 ** The following statement converts "sqlite3_autoindex..." into 3309 ** "sqlite3_butoindex..." in order to make the names distinct. 3310 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3311 if( IN_SPECIAL_PARSE ) zName[7]++; 3312 } 3313 3314 /* Check for authorization to create an index. 3315 */ 3316 #ifndef SQLITE_OMIT_AUTHORIZATION 3317 if( !IN_RENAME_OBJECT ){ 3318 const char *zDb = pDb->zDbSName; 3319 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3320 goto exit_create_index; 3321 } 3322 i = SQLITE_CREATE_INDEX; 3323 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3324 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3325 goto exit_create_index; 3326 } 3327 } 3328 #endif 3329 3330 /* If pList==0, it means this routine was called to make a primary 3331 ** key out of the last column added to the table under construction. 3332 ** So create a fake list to simulate this. 3333 */ 3334 if( pList==0 ){ 3335 Token prevCol; 3336 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3337 pCol->colFlags |= COLFLAG_UNIQUE; 3338 sqlite3TokenInit(&prevCol, pCol->zName); 3339 pList = sqlite3ExprListAppend(pParse, 0, 3340 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3341 if( pList==0 ) goto exit_create_index; 3342 assert( pList->nExpr==1 ); 3343 sqlite3ExprListSetSortOrder(pList, sortOrder); 3344 }else{ 3345 sqlite3ExprListCheckLength(pParse, pList, "index"); 3346 if( pParse->nErr ) goto exit_create_index; 3347 } 3348 3349 /* Figure out how many bytes of space are required to store explicitly 3350 ** specified collation sequence names. 3351 */ 3352 for(i=0; i<pList->nExpr; i++){ 3353 Expr *pExpr = pList->a[i].pExpr; 3354 assert( pExpr!=0 ); 3355 if( pExpr->op==TK_COLLATE ){ 3356 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3357 } 3358 } 3359 3360 /* 3361 ** Allocate the index structure. 3362 */ 3363 nName = sqlite3Strlen30(zName); 3364 nExtraCol = pPk ? pPk->nKeyCol : 1; 3365 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3366 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3367 nName + nExtra + 1, &zExtra); 3368 if( db->mallocFailed ){ 3369 goto exit_create_index; 3370 } 3371 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3372 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3373 pIndex->zName = zExtra; 3374 zExtra += nName + 1; 3375 memcpy(pIndex->zName, zName, nName+1); 3376 pIndex->pTable = pTab; 3377 pIndex->onError = (u8)onError; 3378 pIndex->uniqNotNull = onError!=OE_None; 3379 pIndex->idxType = idxType; 3380 pIndex->pSchema = db->aDb[iDb].pSchema; 3381 pIndex->nKeyCol = pList->nExpr; 3382 if( pPIWhere ){ 3383 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3384 pIndex->pPartIdxWhere = pPIWhere; 3385 pPIWhere = 0; 3386 } 3387 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3388 3389 /* Check to see if we should honor DESC requests on index columns 3390 */ 3391 if( pDb->pSchema->file_format>=4 ){ 3392 sortOrderMask = -1; /* Honor DESC */ 3393 }else{ 3394 sortOrderMask = 0; /* Ignore DESC */ 3395 } 3396 3397 /* Analyze the list of expressions that form the terms of the index and 3398 ** report any errors. In the common case where the expression is exactly 3399 ** a table column, store that column in aiColumn[]. For general expressions, 3400 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3401 ** 3402 ** TODO: Issue a warning if two or more columns of the index are identical. 3403 ** TODO: Issue a warning if the table primary key is used as part of the 3404 ** index key. 3405 */ 3406 pListItem = pList->a; 3407 if( IN_RENAME_OBJECT ){ 3408 pIndex->aColExpr = pList; 3409 pList = 0; 3410 } 3411 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3412 Expr *pCExpr; /* The i-th index expression */ 3413 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3414 const char *zColl; /* Collation sequence name */ 3415 3416 sqlite3StringToId(pListItem->pExpr); 3417 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3418 if( pParse->nErr ) goto exit_create_index; 3419 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3420 if( pCExpr->op!=TK_COLUMN ){ 3421 if( pTab==pParse->pNewTable ){ 3422 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3423 "UNIQUE constraints"); 3424 goto exit_create_index; 3425 } 3426 if( pIndex->aColExpr==0 ){ 3427 pIndex->aColExpr = pList; 3428 pList = 0; 3429 } 3430 j = XN_EXPR; 3431 pIndex->aiColumn[i] = XN_EXPR; 3432 pIndex->uniqNotNull = 0; 3433 }else{ 3434 j = pCExpr->iColumn; 3435 assert( j<=0x7fff ); 3436 if( j<0 ){ 3437 j = pTab->iPKey; 3438 }else if( pTab->aCol[j].notNull==0 ){ 3439 pIndex->uniqNotNull = 0; 3440 } 3441 pIndex->aiColumn[i] = (i16)j; 3442 } 3443 zColl = 0; 3444 if( pListItem->pExpr->op==TK_COLLATE ){ 3445 int nColl; 3446 zColl = pListItem->pExpr->u.zToken; 3447 nColl = sqlite3Strlen30(zColl) + 1; 3448 assert( nExtra>=nColl ); 3449 memcpy(zExtra, zColl, nColl); 3450 zColl = zExtra; 3451 zExtra += nColl; 3452 nExtra -= nColl; 3453 }else if( j>=0 ){ 3454 zColl = pTab->aCol[j].zColl; 3455 } 3456 if( !zColl ) zColl = sqlite3StrBINARY; 3457 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3458 goto exit_create_index; 3459 } 3460 pIndex->azColl[i] = zColl; 3461 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3462 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3463 } 3464 3465 /* Append the table key to the end of the index. For WITHOUT ROWID 3466 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3467 ** normal tables (when pPk==0) this will be the rowid. 3468 */ 3469 if( pPk ){ 3470 for(j=0; j<pPk->nKeyCol; j++){ 3471 int x = pPk->aiColumn[j]; 3472 assert( x>=0 ); 3473 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3474 pIndex->nColumn--; 3475 }else{ 3476 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3477 pIndex->aiColumn[i] = x; 3478 pIndex->azColl[i] = pPk->azColl[j]; 3479 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3480 i++; 3481 } 3482 } 3483 assert( i==pIndex->nColumn ); 3484 }else{ 3485 pIndex->aiColumn[i] = XN_ROWID; 3486 pIndex->azColl[i] = sqlite3StrBINARY; 3487 } 3488 sqlite3DefaultRowEst(pIndex); 3489 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3490 3491 /* If this index contains every column of its table, then mark 3492 ** it as a covering index */ 3493 assert( HasRowid(pTab) 3494 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3495 recomputeColumnsNotIndexed(pIndex); 3496 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3497 pIndex->isCovering = 1; 3498 for(j=0; j<pTab->nCol; j++){ 3499 if( j==pTab->iPKey ) continue; 3500 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3501 pIndex->isCovering = 0; 3502 break; 3503 } 3504 } 3505 3506 if( pTab==pParse->pNewTable ){ 3507 /* This routine has been called to create an automatic index as a 3508 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3509 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3510 ** i.e. one of: 3511 ** 3512 ** CREATE TABLE t(x PRIMARY KEY, y); 3513 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3514 ** 3515 ** Either way, check to see if the table already has such an index. If 3516 ** so, don't bother creating this one. This only applies to 3517 ** automatically created indices. Users can do as they wish with 3518 ** explicit indices. 3519 ** 3520 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3521 ** (and thus suppressing the second one) even if they have different 3522 ** sort orders. 3523 ** 3524 ** If there are different collating sequences or if the columns of 3525 ** the constraint occur in different orders, then the constraints are 3526 ** considered distinct and both result in separate indices. 3527 */ 3528 Index *pIdx; 3529 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3530 int k; 3531 assert( IsUniqueIndex(pIdx) ); 3532 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3533 assert( IsUniqueIndex(pIndex) ); 3534 3535 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3536 for(k=0; k<pIdx->nKeyCol; k++){ 3537 const char *z1; 3538 const char *z2; 3539 assert( pIdx->aiColumn[k]>=0 ); 3540 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3541 z1 = pIdx->azColl[k]; 3542 z2 = pIndex->azColl[k]; 3543 if( sqlite3StrICmp(z1, z2) ) break; 3544 } 3545 if( k==pIdx->nKeyCol ){ 3546 if( pIdx->onError!=pIndex->onError ){ 3547 /* This constraint creates the same index as a previous 3548 ** constraint specified somewhere in the CREATE TABLE statement. 3549 ** However the ON CONFLICT clauses are different. If both this 3550 ** constraint and the previous equivalent constraint have explicit 3551 ** ON CONFLICT clauses this is an error. Otherwise, use the 3552 ** explicitly specified behavior for the index. 3553 */ 3554 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3555 sqlite3ErrorMsg(pParse, 3556 "conflicting ON CONFLICT clauses specified", 0); 3557 } 3558 if( pIdx->onError==OE_Default ){ 3559 pIdx->onError = pIndex->onError; 3560 } 3561 } 3562 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3563 if( IN_RENAME_OBJECT ){ 3564 pIndex->pNext = pParse->pNewIndex; 3565 pParse->pNewIndex = pIndex; 3566 pIndex = 0; 3567 } 3568 goto exit_create_index; 3569 } 3570 } 3571 } 3572 3573 if( !IN_RENAME_OBJECT ){ 3574 3575 /* Link the new Index structure to its table and to the other 3576 ** in-memory database structures. 3577 */ 3578 assert( pParse->nErr==0 ); 3579 if( db->init.busy ){ 3580 Index *p; 3581 assert( !IN_SPECIAL_PARSE ); 3582 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3583 if( pTblName!=0 ){ 3584 pIndex->tnum = db->init.newTnum; 3585 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3586 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3587 pParse->rc = SQLITE_CORRUPT_BKPT; 3588 goto exit_create_index; 3589 } 3590 } 3591 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3592 pIndex->zName, pIndex); 3593 if( p ){ 3594 assert( p==pIndex ); /* Malloc must have failed */ 3595 sqlite3OomFault(db); 3596 goto exit_create_index; 3597 } 3598 db->mDbFlags |= DBFLAG_SchemaChange; 3599 } 3600 3601 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3602 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3603 ** emit code to allocate the index rootpage on disk and make an entry for 3604 ** the index in the sqlite_master table and populate the index with 3605 ** content. But, do not do this if we are simply reading the sqlite_master 3606 ** table to parse the schema, or if this index is the PRIMARY KEY index 3607 ** of a WITHOUT ROWID table. 3608 ** 3609 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3610 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3611 ** has just been created, it contains no data and the index initialization 3612 ** step can be skipped. 3613 */ 3614 else if( HasRowid(pTab) || pTblName!=0 ){ 3615 Vdbe *v; 3616 char *zStmt; 3617 int iMem = ++pParse->nMem; 3618 3619 v = sqlite3GetVdbe(pParse); 3620 if( v==0 ) goto exit_create_index; 3621 3622 sqlite3BeginWriteOperation(pParse, 1, iDb); 3623 3624 /* Create the rootpage for the index using CreateIndex. But before 3625 ** doing so, code a Noop instruction and store its address in 3626 ** Index.tnum. This is required in case this index is actually a 3627 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3628 ** that case the convertToWithoutRowidTable() routine will replace 3629 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3630 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3631 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3632 3633 /* Gather the complete text of the CREATE INDEX statement into 3634 ** the zStmt variable 3635 */ 3636 assert( pName!=0 || pStart==0 ); 3637 if( pStart ){ 3638 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3639 if( pName->z[n-1]==';' ) n--; 3640 /* A named index with an explicit CREATE INDEX statement */ 3641 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3642 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3643 }else{ 3644 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3645 /* zStmt = sqlite3MPrintf(""); */ 3646 zStmt = 0; 3647 } 3648 3649 /* Add an entry in sqlite_master for this index 3650 */ 3651 sqlite3NestedParse(pParse, 3652 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3653 db->aDb[iDb].zDbSName, MASTER_NAME, 3654 pIndex->zName, 3655 pTab->zName, 3656 iMem, 3657 zStmt 3658 ); 3659 sqlite3DbFree(db, zStmt); 3660 3661 /* Fill the index with data and reparse the schema. Code an OP_Expire 3662 ** to invalidate all pre-compiled statements. 3663 */ 3664 if( pTblName ){ 3665 sqlite3RefillIndex(pParse, pIndex, iMem); 3666 sqlite3ChangeCookie(pParse, iDb); 3667 sqlite3VdbeAddParseSchemaOp(v, iDb, 3668 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3669 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3670 } 3671 3672 sqlite3VdbeJumpHere(v, pIndex->tnum); 3673 } 3674 } 3675 3676 /* When adding an index to the list of indices for a table, make 3677 ** sure all indices labeled OE_Replace come after all those labeled 3678 ** OE_Ignore. This is necessary for the correct constraint check 3679 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3680 ** UPDATE and INSERT statements. 3681 */ 3682 if( db->init.busy || pTblName==0 ){ 3683 if( onError!=OE_Replace || pTab->pIndex==0 3684 || pTab->pIndex->onError==OE_Replace){ 3685 pIndex->pNext = pTab->pIndex; 3686 pTab->pIndex = pIndex; 3687 }else{ 3688 Index *pOther = pTab->pIndex; 3689 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3690 pOther = pOther->pNext; 3691 } 3692 pIndex->pNext = pOther->pNext; 3693 pOther->pNext = pIndex; 3694 } 3695 pIndex = 0; 3696 } 3697 else if( IN_RENAME_OBJECT ){ 3698 assert( pParse->pNewIndex==0 ); 3699 pParse->pNewIndex = pIndex; 3700 pIndex = 0; 3701 } 3702 3703 /* Clean up before exiting */ 3704 exit_create_index: 3705 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3706 sqlite3ExprDelete(db, pPIWhere); 3707 sqlite3ExprListDelete(db, pList); 3708 sqlite3SrcListDelete(db, pTblName); 3709 sqlite3DbFree(db, zName); 3710 } 3711 3712 /* 3713 ** Fill the Index.aiRowEst[] array with default information - information 3714 ** to be used when we have not run the ANALYZE command. 3715 ** 3716 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3717 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3718 ** number of rows in the table that match any particular value of the 3719 ** first column of the index. aiRowEst[2] is an estimate of the number 3720 ** of rows that match any particular combination of the first 2 columns 3721 ** of the index. And so forth. It must always be the case that 3722 * 3723 ** aiRowEst[N]<=aiRowEst[N-1] 3724 ** aiRowEst[N]>=1 3725 ** 3726 ** Apart from that, we have little to go on besides intuition as to 3727 ** how aiRowEst[] should be initialized. The numbers generated here 3728 ** are based on typical values found in actual indices. 3729 */ 3730 void sqlite3DefaultRowEst(Index *pIdx){ 3731 /* 10, 9, 8, 7, 6 */ 3732 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3733 LogEst *a = pIdx->aiRowLogEst; 3734 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3735 int i; 3736 3737 /* Indexes with default row estimates should not have stat1 data */ 3738 assert( !pIdx->hasStat1 ); 3739 3740 /* Set the first entry (number of rows in the index) to the estimated 3741 ** number of rows in the table, or half the number of rows in the table 3742 ** for a partial index. But do not let the estimate drop below 10. */ 3743 a[0] = pIdx->pTable->nRowLogEst; 3744 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3745 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3746 3747 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3748 ** 6 and each subsequent value (if any) is 5. */ 3749 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3750 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3751 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3752 } 3753 3754 assert( 0==sqlite3LogEst(1) ); 3755 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3756 } 3757 3758 /* 3759 ** This routine will drop an existing named index. This routine 3760 ** implements the DROP INDEX statement. 3761 */ 3762 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3763 Index *pIndex; 3764 Vdbe *v; 3765 sqlite3 *db = pParse->db; 3766 int iDb; 3767 3768 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3769 if( db->mallocFailed ){ 3770 goto exit_drop_index; 3771 } 3772 assert( pName->nSrc==1 ); 3773 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3774 goto exit_drop_index; 3775 } 3776 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3777 if( pIndex==0 ){ 3778 if( !ifExists ){ 3779 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3780 }else{ 3781 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3782 } 3783 pParse->checkSchema = 1; 3784 goto exit_drop_index; 3785 } 3786 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3787 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3788 "or PRIMARY KEY constraint cannot be dropped", 0); 3789 goto exit_drop_index; 3790 } 3791 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3792 #ifndef SQLITE_OMIT_AUTHORIZATION 3793 { 3794 int code = SQLITE_DROP_INDEX; 3795 Table *pTab = pIndex->pTable; 3796 const char *zDb = db->aDb[iDb].zDbSName; 3797 const char *zTab = SCHEMA_TABLE(iDb); 3798 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3799 goto exit_drop_index; 3800 } 3801 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3802 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3803 goto exit_drop_index; 3804 } 3805 } 3806 #endif 3807 3808 /* Generate code to remove the index and from the master table */ 3809 v = sqlite3GetVdbe(pParse); 3810 if( v ){ 3811 sqlite3BeginWriteOperation(pParse, 1, iDb); 3812 sqlite3NestedParse(pParse, 3813 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3814 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3815 ); 3816 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3817 sqlite3ChangeCookie(pParse, iDb); 3818 destroyRootPage(pParse, pIndex->tnum, iDb); 3819 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3820 } 3821 3822 exit_drop_index: 3823 sqlite3SrcListDelete(db, pName); 3824 } 3825 3826 /* 3827 ** pArray is a pointer to an array of objects. Each object in the 3828 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3829 ** to extend the array so that there is space for a new object at the end. 3830 ** 3831 ** When this function is called, *pnEntry contains the current size of 3832 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3833 ** in total). 3834 ** 3835 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3836 ** space allocated for the new object is zeroed, *pnEntry updated to 3837 ** reflect the new size of the array and a pointer to the new allocation 3838 ** returned. *pIdx is set to the index of the new array entry in this case. 3839 ** 3840 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3841 ** unchanged and a copy of pArray returned. 3842 */ 3843 void *sqlite3ArrayAllocate( 3844 sqlite3 *db, /* Connection to notify of malloc failures */ 3845 void *pArray, /* Array of objects. Might be reallocated */ 3846 int szEntry, /* Size of each object in the array */ 3847 int *pnEntry, /* Number of objects currently in use */ 3848 int *pIdx /* Write the index of a new slot here */ 3849 ){ 3850 char *z; 3851 sqlite3_int64 n = *pIdx = *pnEntry; 3852 if( (n & (n-1))==0 ){ 3853 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 3854 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3855 if( pNew==0 ){ 3856 *pIdx = -1; 3857 return pArray; 3858 } 3859 pArray = pNew; 3860 } 3861 z = (char*)pArray; 3862 memset(&z[n * szEntry], 0, szEntry); 3863 ++*pnEntry; 3864 return pArray; 3865 } 3866 3867 /* 3868 ** Append a new element to the given IdList. Create a new IdList if 3869 ** need be. 3870 ** 3871 ** A new IdList is returned, or NULL if malloc() fails. 3872 */ 3873 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 3874 sqlite3 *db = pParse->db; 3875 int i; 3876 if( pList==0 ){ 3877 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3878 if( pList==0 ) return 0; 3879 } 3880 pList->a = sqlite3ArrayAllocate( 3881 db, 3882 pList->a, 3883 sizeof(pList->a[0]), 3884 &pList->nId, 3885 &i 3886 ); 3887 if( i<0 ){ 3888 sqlite3IdListDelete(db, pList); 3889 return 0; 3890 } 3891 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3892 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 3893 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 3894 } 3895 return pList; 3896 } 3897 3898 /* 3899 ** Delete an IdList. 3900 */ 3901 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3902 int i; 3903 if( pList==0 ) return; 3904 for(i=0; i<pList->nId; i++){ 3905 sqlite3DbFree(db, pList->a[i].zName); 3906 } 3907 sqlite3DbFree(db, pList->a); 3908 sqlite3DbFreeNN(db, pList); 3909 } 3910 3911 /* 3912 ** Return the index in pList of the identifier named zId. Return -1 3913 ** if not found. 3914 */ 3915 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3916 int i; 3917 if( pList==0 ) return -1; 3918 for(i=0; i<pList->nId; i++){ 3919 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3920 } 3921 return -1; 3922 } 3923 3924 /* 3925 ** Maximum size of a SrcList object. 3926 ** The SrcList object is used to represent the FROM clause of a 3927 ** SELECT statement, and the query planner cannot deal with more 3928 ** than 64 tables in a join. So any value larger than 64 here 3929 ** is sufficient for most uses. Smaller values, like say 10, are 3930 ** appropriate for small and memory-limited applications. 3931 */ 3932 #ifndef SQLITE_MAX_SRCLIST 3933 # define SQLITE_MAX_SRCLIST 200 3934 #endif 3935 3936 /* 3937 ** Expand the space allocated for the given SrcList object by 3938 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3939 ** New slots are zeroed. 3940 ** 3941 ** For example, suppose a SrcList initially contains two entries: A,B. 3942 ** To append 3 new entries onto the end, do this: 3943 ** 3944 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3945 ** 3946 ** After the call above it would contain: A, B, nil, nil, nil. 3947 ** If the iStart argument had been 1 instead of 2, then the result 3948 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3949 ** the iStart value would be 0. The result then would 3950 ** be: nil, nil, nil, A, B. 3951 ** 3952 ** If a memory allocation fails or the SrcList becomes too large, leave 3953 ** the original SrcList unchanged, return NULL, and leave an error message 3954 ** in pParse. 3955 */ 3956 SrcList *sqlite3SrcListEnlarge( 3957 Parse *pParse, /* Parsing context into which errors are reported */ 3958 SrcList *pSrc, /* The SrcList to be enlarged */ 3959 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3960 int iStart /* Index in pSrc->a[] of first new slot */ 3961 ){ 3962 int i; 3963 3964 /* Sanity checking on calling parameters */ 3965 assert( iStart>=0 ); 3966 assert( nExtra>=1 ); 3967 assert( pSrc!=0 ); 3968 assert( iStart<=pSrc->nSrc ); 3969 3970 /* Allocate additional space if needed */ 3971 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3972 SrcList *pNew; 3973 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 3974 sqlite3 *db = pParse->db; 3975 3976 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 3977 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 3978 SQLITE_MAX_SRCLIST); 3979 return 0; 3980 } 3981 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 3982 pNew = sqlite3DbRealloc(db, pSrc, 3983 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3984 if( pNew==0 ){ 3985 assert( db->mallocFailed ); 3986 return 0; 3987 } 3988 pSrc = pNew; 3989 pSrc->nAlloc = nAlloc; 3990 } 3991 3992 /* Move existing slots that come after the newly inserted slots 3993 ** out of the way */ 3994 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3995 pSrc->a[i+nExtra] = pSrc->a[i]; 3996 } 3997 pSrc->nSrc += nExtra; 3998 3999 /* Zero the newly allocated slots */ 4000 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4001 for(i=iStart; i<iStart+nExtra; i++){ 4002 pSrc->a[i].iCursor = -1; 4003 } 4004 4005 /* Return a pointer to the enlarged SrcList */ 4006 return pSrc; 4007 } 4008 4009 4010 /* 4011 ** Append a new table name to the given SrcList. Create a new SrcList if 4012 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4013 ** 4014 ** A SrcList is returned, or NULL if there is an OOM error or if the 4015 ** SrcList grows to large. The returned 4016 ** SrcList might be the same as the SrcList that was input or it might be 4017 ** a new one. If an OOM error does occurs, then the prior value of pList 4018 ** that is input to this routine is automatically freed. 4019 ** 4020 ** If pDatabase is not null, it means that the table has an optional 4021 ** database name prefix. Like this: "database.table". The pDatabase 4022 ** points to the table name and the pTable points to the database name. 4023 ** The SrcList.a[].zName field is filled with the table name which might 4024 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4025 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4026 ** or with NULL if no database is specified. 4027 ** 4028 ** In other words, if call like this: 4029 ** 4030 ** sqlite3SrcListAppend(D,A,B,0); 4031 ** 4032 ** Then B is a table name and the database name is unspecified. If called 4033 ** like this: 4034 ** 4035 ** sqlite3SrcListAppend(D,A,B,C); 4036 ** 4037 ** Then C is the table name and B is the database name. If C is defined 4038 ** then so is B. In other words, we never have a case where: 4039 ** 4040 ** sqlite3SrcListAppend(D,A,0,C); 4041 ** 4042 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4043 ** before being added to the SrcList. 4044 */ 4045 SrcList *sqlite3SrcListAppend( 4046 Parse *pParse, /* Parsing context, in which errors are reported */ 4047 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4048 Token *pTable, /* Table to append */ 4049 Token *pDatabase /* Database of the table */ 4050 ){ 4051 struct SrcList_item *pItem; 4052 sqlite3 *db; 4053 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4054 assert( pParse!=0 ); 4055 assert( pParse->db!=0 ); 4056 db = pParse->db; 4057 if( pList==0 ){ 4058 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4059 if( pList==0 ) return 0; 4060 pList->nAlloc = 1; 4061 pList->nSrc = 1; 4062 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4063 pList->a[0].iCursor = -1; 4064 }else{ 4065 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4066 if( pNew==0 ){ 4067 sqlite3SrcListDelete(db, pList); 4068 return 0; 4069 }else{ 4070 pList = pNew; 4071 } 4072 } 4073 pItem = &pList->a[pList->nSrc-1]; 4074 if( pDatabase && pDatabase->z==0 ){ 4075 pDatabase = 0; 4076 } 4077 if( pDatabase ){ 4078 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4079 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4080 }else{ 4081 pItem->zName = sqlite3NameFromToken(db, pTable); 4082 pItem->zDatabase = 0; 4083 } 4084 return pList; 4085 } 4086 4087 /* 4088 ** Assign VdbeCursor index numbers to all tables in a SrcList 4089 */ 4090 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4091 int i; 4092 struct SrcList_item *pItem; 4093 assert(pList || pParse->db->mallocFailed ); 4094 if( pList ){ 4095 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4096 if( pItem->iCursor>=0 ) break; 4097 pItem->iCursor = pParse->nTab++; 4098 if( pItem->pSelect ){ 4099 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4100 } 4101 } 4102 } 4103 } 4104 4105 /* 4106 ** Delete an entire SrcList including all its substructure. 4107 */ 4108 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4109 int i; 4110 struct SrcList_item *pItem; 4111 if( pList==0 ) return; 4112 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4113 sqlite3DbFree(db, pItem->zDatabase); 4114 sqlite3DbFree(db, pItem->zName); 4115 sqlite3DbFree(db, pItem->zAlias); 4116 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4117 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4118 sqlite3DeleteTable(db, pItem->pTab); 4119 sqlite3SelectDelete(db, pItem->pSelect); 4120 sqlite3ExprDelete(db, pItem->pOn); 4121 sqlite3IdListDelete(db, pItem->pUsing); 4122 } 4123 sqlite3DbFreeNN(db, pList); 4124 } 4125 4126 /* 4127 ** This routine is called by the parser to add a new term to the 4128 ** end of a growing FROM clause. The "p" parameter is the part of 4129 ** the FROM clause that has already been constructed. "p" is NULL 4130 ** if this is the first term of the FROM clause. pTable and pDatabase 4131 ** are the name of the table and database named in the FROM clause term. 4132 ** pDatabase is NULL if the database name qualifier is missing - the 4133 ** usual case. If the term has an alias, then pAlias points to the 4134 ** alias token. If the term is a subquery, then pSubquery is the 4135 ** SELECT statement that the subquery encodes. The pTable and 4136 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4137 ** parameters are the content of the ON and USING clauses. 4138 ** 4139 ** Return a new SrcList which encodes is the FROM with the new 4140 ** term added. 4141 */ 4142 SrcList *sqlite3SrcListAppendFromTerm( 4143 Parse *pParse, /* Parsing context */ 4144 SrcList *p, /* The left part of the FROM clause already seen */ 4145 Token *pTable, /* Name of the table to add to the FROM clause */ 4146 Token *pDatabase, /* Name of the database containing pTable */ 4147 Token *pAlias, /* The right-hand side of the AS subexpression */ 4148 Select *pSubquery, /* A subquery used in place of a table name */ 4149 Expr *pOn, /* The ON clause of a join */ 4150 IdList *pUsing /* The USING clause of a join */ 4151 ){ 4152 struct SrcList_item *pItem; 4153 sqlite3 *db = pParse->db; 4154 if( !p && (pOn || pUsing) ){ 4155 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4156 (pOn ? "ON" : "USING") 4157 ); 4158 goto append_from_error; 4159 } 4160 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4161 if( p==0 ){ 4162 goto append_from_error; 4163 } 4164 assert( p->nSrc>0 ); 4165 pItem = &p->a[p->nSrc-1]; 4166 assert( (pTable==0)==(pDatabase==0) ); 4167 assert( pItem->zName==0 || pDatabase!=0 ); 4168 if( IN_RENAME_OBJECT && pItem->zName ){ 4169 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4170 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4171 } 4172 assert( pAlias!=0 ); 4173 if( pAlias->n ){ 4174 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4175 } 4176 pItem->pSelect = pSubquery; 4177 pItem->pOn = pOn; 4178 pItem->pUsing = pUsing; 4179 return p; 4180 4181 append_from_error: 4182 assert( p==0 ); 4183 sqlite3ExprDelete(db, pOn); 4184 sqlite3IdListDelete(db, pUsing); 4185 sqlite3SelectDelete(db, pSubquery); 4186 return 0; 4187 } 4188 4189 /* 4190 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4191 ** element of the source-list passed as the second argument. 4192 */ 4193 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4194 assert( pIndexedBy!=0 ); 4195 if( p && pIndexedBy->n>0 ){ 4196 struct SrcList_item *pItem; 4197 assert( p->nSrc>0 ); 4198 pItem = &p->a[p->nSrc-1]; 4199 assert( pItem->fg.notIndexed==0 ); 4200 assert( pItem->fg.isIndexedBy==0 ); 4201 assert( pItem->fg.isTabFunc==0 ); 4202 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4203 /* A "NOT INDEXED" clause was supplied. See parse.y 4204 ** construct "indexed_opt" for details. */ 4205 pItem->fg.notIndexed = 1; 4206 }else{ 4207 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4208 pItem->fg.isIndexedBy = 1; 4209 } 4210 } 4211 } 4212 4213 /* 4214 ** Add the list of function arguments to the SrcList entry for a 4215 ** table-valued-function. 4216 */ 4217 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4218 if( p ){ 4219 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4220 assert( pItem->fg.notIndexed==0 ); 4221 assert( pItem->fg.isIndexedBy==0 ); 4222 assert( pItem->fg.isTabFunc==0 ); 4223 pItem->u1.pFuncArg = pList; 4224 pItem->fg.isTabFunc = 1; 4225 }else{ 4226 sqlite3ExprListDelete(pParse->db, pList); 4227 } 4228 } 4229 4230 /* 4231 ** When building up a FROM clause in the parser, the join operator 4232 ** is initially attached to the left operand. But the code generator 4233 ** expects the join operator to be on the right operand. This routine 4234 ** Shifts all join operators from left to right for an entire FROM 4235 ** clause. 4236 ** 4237 ** Example: Suppose the join is like this: 4238 ** 4239 ** A natural cross join B 4240 ** 4241 ** The operator is "natural cross join". The A and B operands are stored 4242 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4243 ** operator with A. This routine shifts that operator over to B. 4244 */ 4245 void sqlite3SrcListShiftJoinType(SrcList *p){ 4246 if( p ){ 4247 int i; 4248 for(i=p->nSrc-1; i>0; i--){ 4249 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4250 } 4251 p->a[0].fg.jointype = 0; 4252 } 4253 } 4254 4255 /* 4256 ** Generate VDBE code for a BEGIN statement. 4257 */ 4258 void sqlite3BeginTransaction(Parse *pParse, int type){ 4259 sqlite3 *db; 4260 Vdbe *v; 4261 int i; 4262 4263 assert( pParse!=0 ); 4264 db = pParse->db; 4265 assert( db!=0 ); 4266 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4267 return; 4268 } 4269 v = sqlite3GetVdbe(pParse); 4270 if( !v ) return; 4271 if( type!=TK_DEFERRED ){ 4272 for(i=0; i<db->nDb; i++){ 4273 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4274 sqlite3VdbeUsesBtree(v, i); 4275 } 4276 } 4277 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4278 } 4279 4280 /* 4281 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4282 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4283 ** code is generated for a COMMIT. 4284 */ 4285 void sqlite3EndTransaction(Parse *pParse, int eType){ 4286 Vdbe *v; 4287 int isRollback; 4288 4289 assert( pParse!=0 ); 4290 assert( pParse->db!=0 ); 4291 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4292 isRollback = eType==TK_ROLLBACK; 4293 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4294 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4295 return; 4296 } 4297 v = sqlite3GetVdbe(pParse); 4298 if( v ){ 4299 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4300 } 4301 } 4302 4303 /* 4304 ** This function is called by the parser when it parses a command to create, 4305 ** release or rollback an SQL savepoint. 4306 */ 4307 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4308 char *zName = sqlite3NameFromToken(pParse->db, pName); 4309 if( zName ){ 4310 Vdbe *v = sqlite3GetVdbe(pParse); 4311 #ifndef SQLITE_OMIT_AUTHORIZATION 4312 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4313 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4314 #endif 4315 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4316 sqlite3DbFree(pParse->db, zName); 4317 return; 4318 } 4319 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4320 } 4321 } 4322 4323 /* 4324 ** Make sure the TEMP database is open and available for use. Return 4325 ** the number of errors. Leave any error messages in the pParse structure. 4326 */ 4327 int sqlite3OpenTempDatabase(Parse *pParse){ 4328 sqlite3 *db = pParse->db; 4329 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4330 int rc; 4331 Btree *pBt; 4332 static const int flags = 4333 SQLITE_OPEN_READWRITE | 4334 SQLITE_OPEN_CREATE | 4335 SQLITE_OPEN_EXCLUSIVE | 4336 SQLITE_OPEN_DELETEONCLOSE | 4337 SQLITE_OPEN_TEMP_DB; 4338 4339 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4340 if( rc!=SQLITE_OK ){ 4341 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4342 "file for storing temporary tables"); 4343 pParse->rc = rc; 4344 return 1; 4345 } 4346 db->aDb[1].pBt = pBt; 4347 assert( db->aDb[1].pSchema ); 4348 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4349 sqlite3OomFault(db); 4350 return 1; 4351 } 4352 } 4353 return 0; 4354 } 4355 4356 /* 4357 ** Record the fact that the schema cookie will need to be verified 4358 ** for database iDb. The code to actually verify the schema cookie 4359 ** will occur at the end of the top-level VDBE and will be generated 4360 ** later, by sqlite3FinishCoding(). 4361 */ 4362 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4363 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4364 4365 assert( iDb>=0 && iDb<pParse->db->nDb ); 4366 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4367 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4368 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4369 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4370 DbMaskSet(pToplevel->cookieMask, iDb); 4371 if( !OMIT_TEMPDB && iDb==1 ){ 4372 sqlite3OpenTempDatabase(pToplevel); 4373 } 4374 } 4375 } 4376 4377 /* 4378 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4379 ** attached database. Otherwise, invoke it for the database named zDb only. 4380 */ 4381 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4382 sqlite3 *db = pParse->db; 4383 int i; 4384 for(i=0; i<db->nDb; i++){ 4385 Db *pDb = &db->aDb[i]; 4386 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4387 sqlite3CodeVerifySchema(pParse, i); 4388 } 4389 } 4390 } 4391 4392 /* 4393 ** Generate VDBE code that prepares for doing an operation that 4394 ** might change the database. 4395 ** 4396 ** This routine starts a new transaction if we are not already within 4397 ** a transaction. If we are already within a transaction, then a checkpoint 4398 ** is set if the setStatement parameter is true. A checkpoint should 4399 ** be set for operations that might fail (due to a constraint) part of 4400 ** the way through and which will need to undo some writes without having to 4401 ** rollback the whole transaction. For operations where all constraints 4402 ** can be checked before any changes are made to the database, it is never 4403 ** necessary to undo a write and the checkpoint should not be set. 4404 */ 4405 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4406 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4407 sqlite3CodeVerifySchema(pParse, iDb); 4408 DbMaskSet(pToplevel->writeMask, iDb); 4409 pToplevel->isMultiWrite |= setStatement; 4410 } 4411 4412 /* 4413 ** Indicate that the statement currently under construction might write 4414 ** more than one entry (example: deleting one row then inserting another, 4415 ** inserting multiple rows in a table, or inserting a row and index entries.) 4416 ** If an abort occurs after some of these writes have completed, then it will 4417 ** be necessary to undo the completed writes. 4418 */ 4419 void sqlite3MultiWrite(Parse *pParse){ 4420 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4421 pToplevel->isMultiWrite = 1; 4422 } 4423 4424 /* 4425 ** The code generator calls this routine if is discovers that it is 4426 ** possible to abort a statement prior to completion. In order to 4427 ** perform this abort without corrupting the database, we need to make 4428 ** sure that the statement is protected by a statement transaction. 4429 ** 4430 ** Technically, we only need to set the mayAbort flag if the 4431 ** isMultiWrite flag was previously set. There is a time dependency 4432 ** such that the abort must occur after the multiwrite. This makes 4433 ** some statements involving the REPLACE conflict resolution algorithm 4434 ** go a little faster. But taking advantage of this time dependency 4435 ** makes it more difficult to prove that the code is correct (in 4436 ** particular, it prevents us from writing an effective 4437 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4438 ** to take the safe route and skip the optimization. 4439 */ 4440 void sqlite3MayAbort(Parse *pParse){ 4441 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4442 pToplevel->mayAbort = 1; 4443 } 4444 4445 /* 4446 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4447 ** error. The onError parameter determines which (if any) of the statement 4448 ** and/or current transaction is rolled back. 4449 */ 4450 void sqlite3HaltConstraint( 4451 Parse *pParse, /* Parsing context */ 4452 int errCode, /* extended error code */ 4453 int onError, /* Constraint type */ 4454 char *p4, /* Error message */ 4455 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4456 u8 p5Errmsg /* P5_ErrMsg type */ 4457 ){ 4458 Vdbe *v = sqlite3GetVdbe(pParse); 4459 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4460 if( onError==OE_Abort ){ 4461 sqlite3MayAbort(pParse); 4462 } 4463 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4464 sqlite3VdbeChangeP5(v, p5Errmsg); 4465 } 4466 4467 /* 4468 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4469 */ 4470 void sqlite3UniqueConstraint( 4471 Parse *pParse, /* Parsing context */ 4472 int onError, /* Constraint type */ 4473 Index *pIdx /* The index that triggers the constraint */ 4474 ){ 4475 char *zErr; 4476 int j; 4477 StrAccum errMsg; 4478 Table *pTab = pIdx->pTable; 4479 4480 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4481 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4482 if( pIdx->aColExpr ){ 4483 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4484 }else{ 4485 for(j=0; j<pIdx->nKeyCol; j++){ 4486 char *zCol; 4487 assert( pIdx->aiColumn[j]>=0 ); 4488 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4489 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4490 sqlite3_str_appendall(&errMsg, pTab->zName); 4491 sqlite3_str_append(&errMsg, ".", 1); 4492 sqlite3_str_appendall(&errMsg, zCol); 4493 } 4494 } 4495 zErr = sqlite3StrAccumFinish(&errMsg); 4496 sqlite3HaltConstraint(pParse, 4497 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4498 : SQLITE_CONSTRAINT_UNIQUE, 4499 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4500 } 4501 4502 4503 /* 4504 ** Code an OP_Halt due to non-unique rowid. 4505 */ 4506 void sqlite3RowidConstraint( 4507 Parse *pParse, /* Parsing context */ 4508 int onError, /* Conflict resolution algorithm */ 4509 Table *pTab /* The table with the non-unique rowid */ 4510 ){ 4511 char *zMsg; 4512 int rc; 4513 if( pTab->iPKey>=0 ){ 4514 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4515 pTab->aCol[pTab->iPKey].zName); 4516 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4517 }else{ 4518 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4519 rc = SQLITE_CONSTRAINT_ROWID; 4520 } 4521 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4522 P5_ConstraintUnique); 4523 } 4524 4525 /* 4526 ** Check to see if pIndex uses the collating sequence pColl. Return 4527 ** true if it does and false if it does not. 4528 */ 4529 #ifndef SQLITE_OMIT_REINDEX 4530 static int collationMatch(const char *zColl, Index *pIndex){ 4531 int i; 4532 assert( zColl!=0 ); 4533 for(i=0; i<pIndex->nColumn; i++){ 4534 const char *z = pIndex->azColl[i]; 4535 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4536 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4537 return 1; 4538 } 4539 } 4540 return 0; 4541 } 4542 #endif 4543 4544 /* 4545 ** Recompute all indices of pTab that use the collating sequence pColl. 4546 ** If pColl==0 then recompute all indices of pTab. 4547 */ 4548 #ifndef SQLITE_OMIT_REINDEX 4549 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4550 if( !IsVirtual(pTab) ){ 4551 Index *pIndex; /* An index associated with pTab */ 4552 4553 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4554 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4555 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4556 sqlite3BeginWriteOperation(pParse, 0, iDb); 4557 sqlite3RefillIndex(pParse, pIndex, -1); 4558 } 4559 } 4560 } 4561 } 4562 #endif 4563 4564 /* 4565 ** Recompute all indices of all tables in all databases where the 4566 ** indices use the collating sequence pColl. If pColl==0 then recompute 4567 ** all indices everywhere. 4568 */ 4569 #ifndef SQLITE_OMIT_REINDEX 4570 static void reindexDatabases(Parse *pParse, char const *zColl){ 4571 Db *pDb; /* A single database */ 4572 int iDb; /* The database index number */ 4573 sqlite3 *db = pParse->db; /* The database connection */ 4574 HashElem *k; /* For looping over tables in pDb */ 4575 Table *pTab; /* A table in the database */ 4576 4577 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4578 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4579 assert( pDb!=0 ); 4580 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4581 pTab = (Table*)sqliteHashData(k); 4582 reindexTable(pParse, pTab, zColl); 4583 } 4584 } 4585 } 4586 #endif 4587 4588 /* 4589 ** Generate code for the REINDEX command. 4590 ** 4591 ** REINDEX -- 1 4592 ** REINDEX <collation> -- 2 4593 ** REINDEX ?<database>.?<tablename> -- 3 4594 ** REINDEX ?<database>.?<indexname> -- 4 4595 ** 4596 ** Form 1 causes all indices in all attached databases to be rebuilt. 4597 ** Form 2 rebuilds all indices in all databases that use the named 4598 ** collating function. Forms 3 and 4 rebuild the named index or all 4599 ** indices associated with the named table. 4600 */ 4601 #ifndef SQLITE_OMIT_REINDEX 4602 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4603 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4604 char *z; /* Name of a table or index */ 4605 const char *zDb; /* Name of the database */ 4606 Table *pTab; /* A table in the database */ 4607 Index *pIndex; /* An index associated with pTab */ 4608 int iDb; /* The database index number */ 4609 sqlite3 *db = pParse->db; /* The database connection */ 4610 Token *pObjName; /* Name of the table or index to be reindexed */ 4611 4612 /* Read the database schema. If an error occurs, leave an error message 4613 ** and code in pParse and return NULL. */ 4614 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4615 return; 4616 } 4617 4618 if( pName1==0 ){ 4619 reindexDatabases(pParse, 0); 4620 return; 4621 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4622 char *zColl; 4623 assert( pName1->z ); 4624 zColl = sqlite3NameFromToken(pParse->db, pName1); 4625 if( !zColl ) return; 4626 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4627 if( pColl ){ 4628 reindexDatabases(pParse, zColl); 4629 sqlite3DbFree(db, zColl); 4630 return; 4631 } 4632 sqlite3DbFree(db, zColl); 4633 } 4634 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4635 if( iDb<0 ) return; 4636 z = sqlite3NameFromToken(db, pObjName); 4637 if( z==0 ) return; 4638 zDb = db->aDb[iDb].zDbSName; 4639 pTab = sqlite3FindTable(db, z, zDb); 4640 if( pTab ){ 4641 reindexTable(pParse, pTab, 0); 4642 sqlite3DbFree(db, z); 4643 return; 4644 } 4645 pIndex = sqlite3FindIndex(db, z, zDb); 4646 sqlite3DbFree(db, z); 4647 if( pIndex ){ 4648 sqlite3BeginWriteOperation(pParse, 0, iDb); 4649 sqlite3RefillIndex(pParse, pIndex, -1); 4650 return; 4651 } 4652 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4653 } 4654 #endif 4655 4656 /* 4657 ** Return a KeyInfo structure that is appropriate for the given Index. 4658 ** 4659 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4660 ** when it has finished using it. 4661 */ 4662 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4663 int i; 4664 int nCol = pIdx->nColumn; 4665 int nKey = pIdx->nKeyCol; 4666 KeyInfo *pKey; 4667 if( pParse->nErr ) return 0; 4668 if( pIdx->uniqNotNull ){ 4669 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4670 }else{ 4671 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4672 } 4673 if( pKey ){ 4674 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4675 for(i=0; i<nCol; i++){ 4676 const char *zColl = pIdx->azColl[i]; 4677 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4678 sqlite3LocateCollSeq(pParse, zColl); 4679 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4680 } 4681 if( pParse->nErr ){ 4682 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4683 if( pIdx->bNoQuery==0 ){ 4684 /* Deactivate the index because it contains an unknown collating 4685 ** sequence. The only way to reactive the index is to reload the 4686 ** schema. Adding the missing collating sequence later does not 4687 ** reactive the index. The application had the chance to register 4688 ** the missing index using the collation-needed callback. For 4689 ** simplicity, SQLite will not give the application a second chance. 4690 */ 4691 pIdx->bNoQuery = 1; 4692 pParse->rc = SQLITE_ERROR_RETRY; 4693 } 4694 sqlite3KeyInfoUnref(pKey); 4695 pKey = 0; 4696 } 4697 } 4698 return pKey; 4699 } 4700 4701 #ifndef SQLITE_OMIT_CTE 4702 /* 4703 ** This routine is invoked once per CTE by the parser while parsing a 4704 ** WITH clause. 4705 */ 4706 With *sqlite3WithAdd( 4707 Parse *pParse, /* Parsing context */ 4708 With *pWith, /* Existing WITH clause, or NULL */ 4709 Token *pName, /* Name of the common-table */ 4710 ExprList *pArglist, /* Optional column name list for the table */ 4711 Select *pQuery /* Query used to initialize the table */ 4712 ){ 4713 sqlite3 *db = pParse->db; 4714 With *pNew; 4715 char *zName; 4716 4717 /* Check that the CTE name is unique within this WITH clause. If 4718 ** not, store an error in the Parse structure. */ 4719 zName = sqlite3NameFromToken(pParse->db, pName); 4720 if( zName && pWith ){ 4721 int i; 4722 for(i=0; i<pWith->nCte; i++){ 4723 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4724 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4725 } 4726 } 4727 } 4728 4729 if( pWith ){ 4730 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4731 pNew = sqlite3DbRealloc(db, pWith, nByte); 4732 }else{ 4733 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4734 } 4735 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4736 4737 if( db->mallocFailed ){ 4738 sqlite3ExprListDelete(db, pArglist); 4739 sqlite3SelectDelete(db, pQuery); 4740 sqlite3DbFree(db, zName); 4741 pNew = pWith; 4742 }else{ 4743 pNew->a[pNew->nCte].pSelect = pQuery; 4744 pNew->a[pNew->nCte].pCols = pArglist; 4745 pNew->a[pNew->nCte].zName = zName; 4746 pNew->a[pNew->nCte].zCteErr = 0; 4747 pNew->nCte++; 4748 } 4749 4750 return pNew; 4751 } 4752 4753 /* 4754 ** Free the contents of the With object passed as the second argument. 4755 */ 4756 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4757 if( pWith ){ 4758 int i; 4759 for(i=0; i<pWith->nCte; i++){ 4760 struct Cte *pCte = &pWith->a[i]; 4761 sqlite3ExprListDelete(db, pCte->pCols); 4762 sqlite3SelectDelete(db, pCte->pSelect); 4763 sqlite3DbFree(db, pCte->zName); 4764 } 4765 sqlite3DbFree(db, pWith); 4766 } 4767 } 4768 #endif /* !defined(SQLITE_OMIT_CTE) */ 4769