1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 if( pParse->nested ) return; 147 if( db->mallocFailed || pParse->nErr ){ 148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 149 return; 150 } 151 152 /* Begin by generating some termination code at the end of the 153 ** vdbe program 154 */ 155 v = pParse->pVdbe; 156 if( v==0 ){ 157 if( db->init.busy ){ 158 pParse->rc = SQLITE_DONE; 159 return; 160 } 161 v = sqlite3GetVdbe(pParse); 162 if( v==0 ) pParse->rc = SQLITE_ERROR; 163 } 164 assert( !pParse->isMultiWrite 165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 166 if( v ){ 167 if( pParse->bReturning ){ 168 Returning *pReturning = pParse->u1.pReturning; 169 int addrRewind; 170 int i; 171 int reg; 172 173 if( NEVER(pReturning->nRetCol==0) ){ 174 assert( CORRUPT_DB ); 175 }else{ 176 sqlite3VdbeAddOp0(v, OP_FkCheck); 177 addrRewind = 178 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 179 VdbeCoverage(v); 180 reg = pReturning->iRetReg; 181 for(i=0; i<pReturning->nRetCol; i++){ 182 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 183 } 184 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 185 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 186 VdbeCoverage(v); 187 sqlite3VdbeJumpHere(v, addrRewind); 188 } 189 } 190 sqlite3VdbeAddOp0(v, OP_Halt); 191 192 #if SQLITE_USER_AUTHENTICATION 193 if( pParse->nTableLock>0 && db->init.busy==0 ){ 194 sqlite3UserAuthInit(db); 195 if( db->auth.authLevel<UAUTH_User ){ 196 sqlite3ErrorMsg(pParse, "user not authenticated"); 197 pParse->rc = SQLITE_AUTH_USER; 198 return; 199 } 200 } 201 #endif 202 203 /* The cookie mask contains one bit for each database file open. 204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 205 ** set for each database that is used. Generate code to start a 206 ** transaction on each used database and to verify the schema cookie 207 ** on each used database. 208 */ 209 if( db->mallocFailed==0 210 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 211 ){ 212 int iDb, i; 213 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 214 sqlite3VdbeJumpHere(v, 0); 215 for(iDb=0; iDb<db->nDb; iDb++){ 216 Schema *pSchema; 217 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 218 sqlite3VdbeUsesBtree(v, iDb); 219 pSchema = db->aDb[iDb].pSchema; 220 sqlite3VdbeAddOp4Int(v, 221 OP_Transaction, /* Opcode */ 222 iDb, /* P1 */ 223 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 224 pSchema->schema_cookie, /* P3 */ 225 pSchema->iGeneration /* P4 */ 226 ); 227 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 228 VdbeComment((v, 229 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 230 } 231 #ifndef SQLITE_OMIT_VIRTUALTABLE 232 for(i=0; i<pParse->nVtabLock; i++){ 233 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 234 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 235 } 236 pParse->nVtabLock = 0; 237 #endif 238 239 /* Once all the cookies have been verified and transactions opened, 240 ** obtain the required table-locks. This is a no-op unless the 241 ** shared-cache feature is enabled. 242 */ 243 codeTableLocks(pParse); 244 245 /* Initialize any AUTOINCREMENT data structures required. 246 */ 247 sqlite3AutoincrementBegin(pParse); 248 249 /* Code constant expressions that where factored out of inner loops. 250 ** 251 ** The pConstExpr list might also contain expressions that we simply 252 ** want to keep around until the Parse object is deleted. Such 253 ** expressions have iConstExprReg==0. Do not generate code for 254 ** those expressions, of course. 255 */ 256 if( pParse->pConstExpr ){ 257 ExprList *pEL = pParse->pConstExpr; 258 pParse->okConstFactor = 0; 259 for(i=0; i<pEL->nExpr; i++){ 260 int iReg = pEL->a[i].u.iConstExprReg; 261 if( iReg>0 ){ 262 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 263 } 264 } 265 } 266 267 if( pParse->bReturning ){ 268 Returning *pRet = pParse->u1.pReturning; 269 if( NEVER(pRet->nRetCol==0) ){ 270 assert( CORRUPT_DB ); 271 }else{ 272 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 273 } 274 } 275 276 /* Finally, jump back to the beginning of the executable code. */ 277 sqlite3VdbeGoto(v, 1); 278 } 279 } 280 281 /* Get the VDBE program ready for execution 282 */ 283 if( v && pParse->nErr==0 && !db->mallocFailed ){ 284 /* A minimum of one cursor is required if autoincrement is used 285 * See ticket [a696379c1f08866] */ 286 assert( pParse->pAinc==0 || pParse->nTab>0 ); 287 sqlite3VdbeMakeReady(v, pParse); 288 pParse->rc = SQLITE_DONE; 289 }else{ 290 pParse->rc = SQLITE_ERROR; 291 } 292 } 293 294 /* 295 ** Run the parser and code generator recursively in order to generate 296 ** code for the SQL statement given onto the end of the pParse context 297 ** currently under construction. Notes: 298 ** 299 ** * The final OP_Halt is not appended and other initialization 300 ** and finalization steps are omitted because those are handling by the 301 ** outermost parser. 302 ** 303 ** * Built-in SQL functions always take precedence over application-defined 304 ** SQL functions. In other words, it is not possible to override a 305 ** built-in function. 306 */ 307 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 308 va_list ap; 309 char *zSql; 310 sqlite3 *db = pParse->db; 311 u32 savedDbFlags = db->mDbFlags; 312 char saveBuf[PARSE_TAIL_SZ]; 313 314 if( pParse->nErr ) return; 315 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 316 va_start(ap, zFormat); 317 zSql = sqlite3VMPrintf(db, zFormat, ap); 318 va_end(ap); 319 if( zSql==0 ){ 320 /* This can result either from an OOM or because the formatted string 321 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 322 ** an error */ 323 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 324 pParse->nErr++; 325 return; 326 } 327 pParse->nested++; 328 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 329 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 330 db->mDbFlags |= DBFLAG_PreferBuiltin; 331 sqlite3RunParser(pParse, zSql); 332 db->mDbFlags = savedDbFlags; 333 sqlite3DbFree(db, zSql); 334 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 335 pParse->nested--; 336 } 337 338 #if SQLITE_USER_AUTHENTICATION 339 /* 340 ** Return TRUE if zTable is the name of the system table that stores the 341 ** list of users and their access credentials. 342 */ 343 int sqlite3UserAuthTable(const char *zTable){ 344 return sqlite3_stricmp(zTable, "sqlite_user")==0; 345 } 346 #endif 347 348 /* 349 ** Locate the in-memory structure that describes a particular database 350 ** table given the name of that table and (optionally) the name of the 351 ** database containing the table. Return NULL if not found. 352 ** 353 ** If zDatabase is 0, all databases are searched for the table and the 354 ** first matching table is returned. (No checking for duplicate table 355 ** names is done.) The search order is TEMP first, then MAIN, then any 356 ** auxiliary databases added using the ATTACH command. 357 ** 358 ** See also sqlite3LocateTable(). 359 */ 360 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 361 Table *p = 0; 362 int i; 363 364 /* All mutexes are required for schema access. Make sure we hold them. */ 365 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 366 #if SQLITE_USER_AUTHENTICATION 367 /* Only the admin user is allowed to know that the sqlite_user table 368 ** exists */ 369 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 370 return 0; 371 } 372 #endif 373 if( zDatabase ){ 374 for(i=0; i<db->nDb; i++){ 375 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 376 } 377 if( i>=db->nDb ){ 378 /* No match against the official names. But always match "main" 379 ** to schema 0 as a legacy fallback. */ 380 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 381 i = 0; 382 }else{ 383 return 0; 384 } 385 } 386 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 387 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 388 if( i==1 ){ 389 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 390 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 391 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 392 ){ 393 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 394 LEGACY_TEMP_SCHEMA_TABLE); 395 } 396 }else{ 397 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 398 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 399 LEGACY_SCHEMA_TABLE); 400 } 401 } 402 } 403 }else{ 404 /* Match against TEMP first */ 405 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 406 if( p ) return p; 407 /* The main database is second */ 408 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 409 if( p ) return p; 410 /* Attached databases are in order of attachment */ 411 for(i=2; i<db->nDb; i++){ 412 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 413 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 414 if( p ) break; 415 } 416 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 417 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 418 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); 419 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ 420 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 421 LEGACY_TEMP_SCHEMA_TABLE); 422 } 423 } 424 } 425 return p; 426 } 427 428 /* 429 ** Locate the in-memory structure that describes a particular database 430 ** table given the name of that table and (optionally) the name of the 431 ** database containing the table. Return NULL if not found. Also leave an 432 ** error message in pParse->zErrMsg. 433 ** 434 ** The difference between this routine and sqlite3FindTable() is that this 435 ** routine leaves an error message in pParse->zErrMsg where 436 ** sqlite3FindTable() does not. 437 */ 438 Table *sqlite3LocateTable( 439 Parse *pParse, /* context in which to report errors */ 440 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 441 const char *zName, /* Name of the table we are looking for */ 442 const char *zDbase /* Name of the database. Might be NULL */ 443 ){ 444 Table *p; 445 sqlite3 *db = pParse->db; 446 447 /* Read the database schema. If an error occurs, leave an error message 448 ** and code in pParse and return NULL. */ 449 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 450 && SQLITE_OK!=sqlite3ReadSchema(pParse) 451 ){ 452 return 0; 453 } 454 455 p = sqlite3FindTable(db, zName, zDbase); 456 if( p==0 ){ 457 #ifndef SQLITE_OMIT_VIRTUALTABLE 458 /* If zName is the not the name of a table in the schema created using 459 ** CREATE, then check to see if it is the name of an virtual table that 460 ** can be an eponymous virtual table. */ 461 if( pParse->disableVtab==0 && db->init.busy==0 ){ 462 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 463 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 464 pMod = sqlite3PragmaVtabRegister(db, zName); 465 } 466 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 467 testcase( pMod->pEpoTab==0 ); 468 return pMod->pEpoTab; 469 } 470 } 471 #endif 472 if( flags & LOCATE_NOERR ) return 0; 473 pParse->checkSchema = 1; 474 }else if( IsVirtual(p) && pParse->disableVtab ){ 475 p = 0; 476 } 477 478 if( p==0 ){ 479 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 480 if( zDbase ){ 481 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 482 }else{ 483 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 484 } 485 }else{ 486 assert( HasRowid(p) || p->iPKey<0 ); 487 } 488 489 return p; 490 } 491 492 /* 493 ** Locate the table identified by *p. 494 ** 495 ** This is a wrapper around sqlite3LocateTable(). The difference between 496 ** sqlite3LocateTable() and this function is that this function restricts 497 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 498 ** non-NULL if it is part of a view or trigger program definition. See 499 ** sqlite3FixSrcList() for details. 500 */ 501 Table *sqlite3LocateTableItem( 502 Parse *pParse, 503 u32 flags, 504 SrcItem *p 505 ){ 506 const char *zDb; 507 assert( p->pSchema==0 || p->zDatabase==0 ); 508 if( p->pSchema ){ 509 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 510 zDb = pParse->db->aDb[iDb].zDbSName; 511 }else{ 512 zDb = p->zDatabase; 513 } 514 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 515 } 516 517 /* 518 ** Return the preferred table name for system tables. Translate legacy 519 ** names into the new preferred names, as appropriate. 520 */ 521 const char *sqlite3PreferredTableName(const char *zName){ 522 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 523 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ 524 return PREFERRED_SCHEMA_TABLE; 525 } 526 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ 527 return PREFERRED_TEMP_SCHEMA_TABLE; 528 } 529 } 530 return zName; 531 } 532 533 /* 534 ** Locate the in-memory structure that describes 535 ** a particular index given the name of that index 536 ** and the name of the database that contains the index. 537 ** Return NULL if not found. 538 ** 539 ** If zDatabase is 0, all databases are searched for the 540 ** table and the first matching index is returned. (No checking 541 ** for duplicate index names is done.) The search order is 542 ** TEMP first, then MAIN, then any auxiliary databases added 543 ** using the ATTACH command. 544 */ 545 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 546 Index *p = 0; 547 int i; 548 /* All mutexes are required for schema access. Make sure we hold them. */ 549 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 550 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 551 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 552 Schema *pSchema = db->aDb[j].pSchema; 553 assert( pSchema ); 554 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 555 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 556 p = sqlite3HashFind(&pSchema->idxHash, zName); 557 if( p ) break; 558 } 559 return p; 560 } 561 562 /* 563 ** Reclaim the memory used by an index 564 */ 565 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 566 #ifndef SQLITE_OMIT_ANALYZE 567 sqlite3DeleteIndexSamples(db, p); 568 #endif 569 sqlite3ExprDelete(db, p->pPartIdxWhere); 570 sqlite3ExprListDelete(db, p->aColExpr); 571 sqlite3DbFree(db, p->zColAff); 572 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 573 #ifdef SQLITE_ENABLE_STAT4 574 sqlite3_free(p->aiRowEst); 575 #endif 576 sqlite3DbFree(db, p); 577 } 578 579 /* 580 ** For the index called zIdxName which is found in the database iDb, 581 ** unlike that index from its Table then remove the index from 582 ** the index hash table and free all memory structures associated 583 ** with the index. 584 */ 585 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 586 Index *pIndex; 587 Hash *pHash; 588 589 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 590 pHash = &db->aDb[iDb].pSchema->idxHash; 591 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 592 if( ALWAYS(pIndex) ){ 593 if( pIndex->pTable->pIndex==pIndex ){ 594 pIndex->pTable->pIndex = pIndex->pNext; 595 }else{ 596 Index *p; 597 /* Justification of ALWAYS(); The index must be on the list of 598 ** indices. */ 599 p = pIndex->pTable->pIndex; 600 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 601 if( ALWAYS(p && p->pNext==pIndex) ){ 602 p->pNext = pIndex->pNext; 603 } 604 } 605 sqlite3FreeIndex(db, pIndex); 606 } 607 db->mDbFlags |= DBFLAG_SchemaChange; 608 } 609 610 /* 611 ** Look through the list of open database files in db->aDb[] and if 612 ** any have been closed, remove them from the list. Reallocate the 613 ** db->aDb[] structure to a smaller size, if possible. 614 ** 615 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 616 ** are never candidates for being collapsed. 617 */ 618 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 619 int i, j; 620 for(i=j=2; i<db->nDb; i++){ 621 struct Db *pDb = &db->aDb[i]; 622 if( pDb->pBt==0 ){ 623 sqlite3DbFree(db, pDb->zDbSName); 624 pDb->zDbSName = 0; 625 continue; 626 } 627 if( j<i ){ 628 db->aDb[j] = db->aDb[i]; 629 } 630 j++; 631 } 632 db->nDb = j; 633 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 634 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 635 sqlite3DbFree(db, db->aDb); 636 db->aDb = db->aDbStatic; 637 } 638 } 639 640 /* 641 ** Reset the schema for the database at index iDb. Also reset the 642 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 643 ** Deferred resets may be run by calling with iDb<0. 644 */ 645 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 646 int i; 647 assert( iDb<db->nDb ); 648 649 if( iDb>=0 ){ 650 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 651 DbSetProperty(db, iDb, DB_ResetWanted); 652 DbSetProperty(db, 1, DB_ResetWanted); 653 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 654 } 655 656 if( db->nSchemaLock==0 ){ 657 for(i=0; i<db->nDb; i++){ 658 if( DbHasProperty(db, i, DB_ResetWanted) ){ 659 sqlite3SchemaClear(db->aDb[i].pSchema); 660 } 661 } 662 } 663 } 664 665 /* 666 ** Erase all schema information from all attached databases (including 667 ** "main" and "temp") for a single database connection. 668 */ 669 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 670 int i; 671 sqlite3BtreeEnterAll(db); 672 for(i=0; i<db->nDb; i++){ 673 Db *pDb = &db->aDb[i]; 674 if( pDb->pSchema ){ 675 if( db->nSchemaLock==0 ){ 676 sqlite3SchemaClear(pDb->pSchema); 677 }else{ 678 DbSetProperty(db, i, DB_ResetWanted); 679 } 680 } 681 } 682 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 683 sqlite3VtabUnlockList(db); 684 sqlite3BtreeLeaveAll(db); 685 if( db->nSchemaLock==0 ){ 686 sqlite3CollapseDatabaseArray(db); 687 } 688 } 689 690 /* 691 ** This routine is called when a commit occurs. 692 */ 693 void sqlite3CommitInternalChanges(sqlite3 *db){ 694 db->mDbFlags &= ~DBFLAG_SchemaChange; 695 } 696 697 /* 698 ** Set the expression associated with a column. This is usually 699 ** the DEFAULT value, but might also be the expression that computes 700 ** the value for a generated column. 701 */ 702 void sqlite3ColumnSetExpr( 703 Parse *pParse, /* Parsing context */ 704 Table *pTab, /* The table containing the column */ 705 Column *pCol, /* The column to receive the new DEFAULT expression */ 706 Expr *pExpr /* The new default expression */ 707 ){ 708 ExprList *pList; 709 assert( IsOrdinaryTable(pTab) ); 710 pList = pTab->u.tab.pDfltList; 711 if( pCol->iDflt==0 712 || NEVER(pList==0) 713 || NEVER(pList->nExpr<pCol->iDflt) 714 ){ 715 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; 716 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); 717 }else{ 718 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); 719 pList->a[pCol->iDflt-1].pExpr = pExpr; 720 } 721 } 722 723 /* 724 ** Return the expression associated with a column. The expression might be 725 ** the DEFAULT clause or the AS clause of a generated column. 726 ** Return NULL if the column has no associated expression. 727 */ 728 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ 729 if( pCol->iDflt==0 ) return 0; 730 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0; 731 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; 732 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0; 733 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 734 } 735 736 /* 737 ** Set the collating sequence name for a column. 738 */ 739 void sqlite3ColumnSetColl( 740 sqlite3 *db, 741 Column *pCol, 742 const char *zColl 743 ){ 744 i64 nColl; 745 i64 n; 746 char *zNew; 747 assert( zColl!=0 ); 748 n = sqlite3Strlen30(pCol->zCnName) + 1; 749 if( pCol->colFlags & COLFLAG_HASTYPE ){ 750 n += sqlite3Strlen30(pCol->zCnName+n) + 1; 751 } 752 nColl = sqlite3Strlen30(zColl) + 1; 753 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); 754 if( zNew ){ 755 pCol->zCnName = zNew; 756 memcpy(pCol->zCnName + n, zColl, nColl); 757 pCol->colFlags |= COLFLAG_HASCOLL; 758 } 759 } 760 761 /* 762 ** Return the collating squence name for a column 763 */ 764 const char *sqlite3ColumnColl(Column *pCol){ 765 const char *z; 766 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; 767 z = pCol->zCnName; 768 while( *z ){ z++; } 769 if( pCol->colFlags & COLFLAG_HASTYPE ){ 770 do{ z++; }while( *z ); 771 } 772 return z+1; 773 } 774 775 /* 776 ** Delete memory allocated for the column names of a table or view (the 777 ** Table.aCol[] array). 778 */ 779 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 780 int i; 781 Column *pCol; 782 assert( pTable!=0 ); 783 if( (pCol = pTable->aCol)!=0 ){ 784 for(i=0; i<pTable->nCol; i++, pCol++){ 785 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); 786 sqlite3DbFree(db, pCol->zCnName); 787 } 788 sqlite3DbFree(db, pTable->aCol); 789 if( IsOrdinaryTable(pTable) ){ 790 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); 791 } 792 if( db==0 || db->pnBytesFreed==0 ){ 793 pTable->aCol = 0; 794 pTable->nCol = 0; 795 if( IsOrdinaryTable(pTable) ){ 796 pTable->u.tab.pDfltList = 0; 797 } 798 } 799 } 800 } 801 802 /* 803 ** Remove the memory data structures associated with the given 804 ** Table. No changes are made to disk by this routine. 805 ** 806 ** This routine just deletes the data structure. It does not unlink 807 ** the table data structure from the hash table. But it does destroy 808 ** memory structures of the indices and foreign keys associated with 809 ** the table. 810 ** 811 ** The db parameter is optional. It is needed if the Table object 812 ** contains lookaside memory. (Table objects in the schema do not use 813 ** lookaside memory, but some ephemeral Table objects do.) Or the 814 ** db parameter can be used with db->pnBytesFreed to measure the memory 815 ** used by the Table object. 816 */ 817 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 818 Index *pIndex, *pNext; 819 820 #ifdef SQLITE_DEBUG 821 /* Record the number of outstanding lookaside allocations in schema Tables 822 ** prior to doing any free() operations. Since schema Tables do not use 823 ** lookaside, this number should not change. 824 ** 825 ** If malloc has already failed, it may be that it failed while allocating 826 ** a Table object that was going to be marked ephemeral. So do not check 827 ** that no lookaside memory is used in this case either. */ 828 int nLookaside = 0; 829 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 830 nLookaside = sqlite3LookasideUsed(db, 0); 831 } 832 #endif 833 834 /* Delete all indices associated with this table. */ 835 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 836 pNext = pIndex->pNext; 837 assert( pIndex->pSchema==pTable->pSchema 838 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 839 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 840 char *zName = pIndex->zName; 841 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 842 &pIndex->pSchema->idxHash, zName, 0 843 ); 844 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 845 assert( pOld==pIndex || pOld==0 ); 846 } 847 sqlite3FreeIndex(db, pIndex); 848 } 849 850 if( IsOrdinaryTable(pTable) ){ 851 sqlite3FkDelete(db, pTable); 852 } 853 #ifndef SQLITE_OMIT_VIRTUAL_TABLE 854 else if( IsVirtual(pTable) ){ 855 sqlite3VtabClear(db, pTable); 856 } 857 #endif 858 else{ 859 assert( IsView(pTable) ); 860 sqlite3SelectDelete(db, pTable->u.view.pSelect); 861 } 862 863 /* Delete the Table structure itself. 864 */ 865 sqlite3DeleteColumnNames(db, pTable); 866 sqlite3DbFree(db, pTable->zName); 867 sqlite3DbFree(db, pTable->zColAff); 868 sqlite3ExprListDelete(db, pTable->pCheck); 869 sqlite3DbFree(db, pTable); 870 871 /* Verify that no lookaside memory was used by schema tables */ 872 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 873 } 874 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 875 /* Do not delete the table until the reference count reaches zero. */ 876 if( !pTable ) return; 877 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 878 deleteTable(db, pTable); 879 } 880 881 882 /* 883 ** Unlink the given table from the hash tables and the delete the 884 ** table structure with all its indices and foreign keys. 885 */ 886 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 887 Table *p; 888 Db *pDb; 889 890 assert( db!=0 ); 891 assert( iDb>=0 && iDb<db->nDb ); 892 assert( zTabName ); 893 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 894 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 895 pDb = &db->aDb[iDb]; 896 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 897 sqlite3DeleteTable(db, p); 898 db->mDbFlags |= DBFLAG_SchemaChange; 899 } 900 901 /* 902 ** Given a token, return a string that consists of the text of that 903 ** token. Space to hold the returned string 904 ** is obtained from sqliteMalloc() and must be freed by the calling 905 ** function. 906 ** 907 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 908 ** surround the body of the token are removed. 909 ** 910 ** Tokens are often just pointers into the original SQL text and so 911 ** are not \000 terminated and are not persistent. The returned string 912 ** is \000 terminated and is persistent. 913 */ 914 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ 915 char *zName; 916 if( pName ){ 917 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); 918 sqlite3Dequote(zName); 919 }else{ 920 zName = 0; 921 } 922 return zName; 923 } 924 925 /* 926 ** Open the sqlite_schema table stored in database number iDb for 927 ** writing. The table is opened using cursor 0. 928 */ 929 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 930 Vdbe *v = sqlite3GetVdbe(p); 931 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); 932 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 933 if( p->nTab==0 ){ 934 p->nTab = 1; 935 } 936 } 937 938 /* 939 ** Parameter zName points to a nul-terminated buffer containing the name 940 ** of a database ("main", "temp" or the name of an attached db). This 941 ** function returns the index of the named database in db->aDb[], or 942 ** -1 if the named db cannot be found. 943 */ 944 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 945 int i = -1; /* Database number */ 946 if( zName ){ 947 Db *pDb; 948 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 949 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 950 /* "main" is always an acceptable alias for the primary database 951 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 952 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 953 } 954 } 955 return i; 956 } 957 958 /* 959 ** The token *pName contains the name of a database (either "main" or 960 ** "temp" or the name of an attached db). This routine returns the 961 ** index of the named database in db->aDb[], or -1 if the named db 962 ** does not exist. 963 */ 964 int sqlite3FindDb(sqlite3 *db, Token *pName){ 965 int i; /* Database number */ 966 char *zName; /* Name we are searching for */ 967 zName = sqlite3NameFromToken(db, pName); 968 i = sqlite3FindDbName(db, zName); 969 sqlite3DbFree(db, zName); 970 return i; 971 } 972 973 /* The table or view or trigger name is passed to this routine via tokens 974 ** pName1 and pName2. If the table name was fully qualified, for example: 975 ** 976 ** CREATE TABLE xxx.yyy (...); 977 ** 978 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 979 ** the table name is not fully qualified, i.e.: 980 ** 981 ** CREATE TABLE yyy(...); 982 ** 983 ** Then pName1 is set to "yyy" and pName2 is "". 984 ** 985 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 986 ** pName2) that stores the unqualified table name. The index of the 987 ** database "xxx" is returned. 988 */ 989 int sqlite3TwoPartName( 990 Parse *pParse, /* Parsing and code generating context */ 991 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 992 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 993 Token **pUnqual /* Write the unqualified object name here */ 994 ){ 995 int iDb; /* Database holding the object */ 996 sqlite3 *db = pParse->db; 997 998 assert( pName2!=0 ); 999 if( pName2->n>0 ){ 1000 if( db->init.busy ) { 1001 sqlite3ErrorMsg(pParse, "corrupt database"); 1002 return -1; 1003 } 1004 *pUnqual = pName2; 1005 iDb = sqlite3FindDb(db, pName1); 1006 if( iDb<0 ){ 1007 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 1008 return -1; 1009 } 1010 }else{ 1011 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 1012 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 1013 iDb = db->init.iDb; 1014 *pUnqual = pName1; 1015 } 1016 return iDb; 1017 } 1018 1019 /* 1020 ** True if PRAGMA writable_schema is ON 1021 */ 1022 int sqlite3WritableSchema(sqlite3 *db){ 1023 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 1024 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1025 SQLITE_WriteSchema ); 1026 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1027 SQLITE_Defensive ); 1028 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1029 (SQLITE_WriteSchema|SQLITE_Defensive) ); 1030 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 1031 } 1032 1033 /* 1034 ** This routine is used to check if the UTF-8 string zName is a legal 1035 ** unqualified name for a new schema object (table, index, view or 1036 ** trigger). All names are legal except those that begin with the string 1037 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 1038 ** is reserved for internal use. 1039 ** 1040 ** When parsing the sqlite_schema table, this routine also checks to 1041 ** make sure the "type", "name", and "tbl_name" columns are consistent 1042 ** with the SQL. 1043 */ 1044 int sqlite3CheckObjectName( 1045 Parse *pParse, /* Parsing context */ 1046 const char *zName, /* Name of the object to check */ 1047 const char *zType, /* Type of this object */ 1048 const char *zTblName /* Parent table name for triggers and indexes */ 1049 ){ 1050 sqlite3 *db = pParse->db; 1051 if( sqlite3WritableSchema(db) 1052 || db->init.imposterTable 1053 || !sqlite3Config.bExtraSchemaChecks 1054 ){ 1055 /* Skip these error checks for writable_schema=ON */ 1056 return SQLITE_OK; 1057 } 1058 if( db->init.busy ){ 1059 if( sqlite3_stricmp(zType, db->init.azInit[0]) 1060 || sqlite3_stricmp(zName, db->init.azInit[1]) 1061 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 1062 ){ 1063 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 1064 return SQLITE_ERROR; 1065 } 1066 }else{ 1067 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 1068 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 1069 ){ 1070 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 1071 zName); 1072 return SQLITE_ERROR; 1073 } 1074 1075 } 1076 return SQLITE_OK; 1077 } 1078 1079 /* 1080 ** Return the PRIMARY KEY index of a table 1081 */ 1082 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 1083 Index *p; 1084 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 1085 return p; 1086 } 1087 1088 /* 1089 ** Convert an table column number into a index column number. That is, 1090 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 1091 ** find the (first) offset of that column in index pIdx. Or return -1 1092 ** if column iCol is not used in index pIdx. 1093 */ 1094 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 1095 int i; 1096 for(i=0; i<pIdx->nColumn; i++){ 1097 if( iCol==pIdx->aiColumn[i] ) return i; 1098 } 1099 return -1; 1100 } 1101 1102 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1103 /* Convert a storage column number into a table column number. 1104 ** 1105 ** The storage column number (0,1,2,....) is the index of the value 1106 ** as it appears in the record on disk. The true column number 1107 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 1108 ** 1109 ** The storage column number is less than the table column number if 1110 ** and only there are VIRTUAL columns to the left. 1111 ** 1112 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 1113 */ 1114 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 1115 if( pTab->tabFlags & TF_HasVirtual ){ 1116 int i; 1117 for(i=0; i<=iCol; i++){ 1118 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 1119 } 1120 } 1121 return iCol; 1122 } 1123 #endif 1124 1125 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1126 /* Convert a table column number into a storage column number. 1127 ** 1128 ** The storage column number (0,1,2,....) is the index of the value 1129 ** as it appears in the record on disk. Or, if the input column is 1130 ** the N-th virtual column (zero-based) then the storage number is 1131 ** the number of non-virtual columns in the table plus N. 1132 ** 1133 ** The true column number is the index (0,1,2,...) of the column in 1134 ** the CREATE TABLE statement. 1135 ** 1136 ** If the input column is a VIRTUAL column, then it should not appear 1137 ** in storage. But the value sometimes is cached in registers that 1138 ** follow the range of registers used to construct storage. This 1139 ** avoids computing the same VIRTUAL column multiple times, and provides 1140 ** values for use by OP_Param opcodes in triggers. Hence, if the 1141 ** input column is a VIRTUAL table, put it after all the other columns. 1142 ** 1143 ** In the following, N means "normal column", S means STORED, and 1144 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1145 ** 1146 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1147 ** -- 0 1 2 3 4 5 6 7 8 1148 ** 1149 ** Then the mapping from this function is as follows: 1150 ** 1151 ** INPUTS: 0 1 2 3 4 5 6 7 8 1152 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1153 ** 1154 ** So, in other words, this routine shifts all the virtual columns to 1155 ** the end. 1156 ** 1157 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1158 ** this routine is a no-op macro. If the pTab does not have any virtual 1159 ** columns, then this routine is no-op that always return iCol. If iCol 1160 ** is negative (indicating the ROWID column) then this routine return iCol. 1161 */ 1162 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1163 int i; 1164 i16 n; 1165 assert( iCol<pTab->nCol ); 1166 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1167 for(i=0, n=0; i<iCol; i++){ 1168 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1169 } 1170 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1171 /* iCol is a virtual column itself */ 1172 return pTab->nNVCol + i - n; 1173 }else{ 1174 /* iCol is a normal or stored column */ 1175 return n; 1176 } 1177 } 1178 #endif 1179 1180 /* 1181 ** Insert a single OP_JournalMode query opcode in order to force the 1182 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1183 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1184 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1185 ** will return false for sqlite3_stmt_readonly() even if that statement 1186 ** is a read-only no-op. 1187 */ 1188 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1189 int iReg = ++pParse->nMem; 1190 Vdbe *v = sqlite3GetVdbe(pParse); 1191 if( v ){ 1192 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1193 sqlite3VdbeUsesBtree(v, 0); 1194 } 1195 } 1196 1197 /* 1198 ** Begin constructing a new table representation in memory. This is 1199 ** the first of several action routines that get called in response 1200 ** to a CREATE TABLE statement. In particular, this routine is called 1201 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1202 ** flag is true if the table should be stored in the auxiliary database 1203 ** file instead of in the main database file. This is normally the case 1204 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1205 ** CREATE and TABLE. 1206 ** 1207 ** The new table record is initialized and put in pParse->pNewTable. 1208 ** As more of the CREATE TABLE statement is parsed, additional action 1209 ** routines will be called to add more information to this record. 1210 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1211 ** is called to complete the construction of the new table record. 1212 */ 1213 void sqlite3StartTable( 1214 Parse *pParse, /* Parser context */ 1215 Token *pName1, /* First part of the name of the table or view */ 1216 Token *pName2, /* Second part of the name of the table or view */ 1217 int isTemp, /* True if this is a TEMP table */ 1218 int isView, /* True if this is a VIEW */ 1219 int isVirtual, /* True if this is a VIRTUAL table */ 1220 int noErr /* Do nothing if table already exists */ 1221 ){ 1222 Table *pTable; 1223 char *zName = 0; /* The name of the new table */ 1224 sqlite3 *db = pParse->db; 1225 Vdbe *v; 1226 int iDb; /* Database number to create the table in */ 1227 Token *pName; /* Unqualified name of the table to create */ 1228 1229 if( db->init.busy && db->init.newTnum==1 ){ 1230 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1231 iDb = db->init.iDb; 1232 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1233 pName = pName1; 1234 }else{ 1235 /* The common case */ 1236 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1237 if( iDb<0 ) return; 1238 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1239 /* If creating a temp table, the name may not be qualified. Unless 1240 ** the database name is "temp" anyway. */ 1241 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1242 return; 1243 } 1244 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1245 zName = sqlite3NameFromToken(db, pName); 1246 if( IN_RENAME_OBJECT ){ 1247 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1248 } 1249 } 1250 pParse->sNameToken = *pName; 1251 if( zName==0 ) return; 1252 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1253 goto begin_table_error; 1254 } 1255 if( db->init.iDb==1 ) isTemp = 1; 1256 #ifndef SQLITE_OMIT_AUTHORIZATION 1257 assert( isTemp==0 || isTemp==1 ); 1258 assert( isView==0 || isView==1 ); 1259 { 1260 static const u8 aCode[] = { 1261 SQLITE_CREATE_TABLE, 1262 SQLITE_CREATE_TEMP_TABLE, 1263 SQLITE_CREATE_VIEW, 1264 SQLITE_CREATE_TEMP_VIEW 1265 }; 1266 char *zDb = db->aDb[iDb].zDbSName; 1267 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1268 goto begin_table_error; 1269 } 1270 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1271 zName, 0, zDb) ){ 1272 goto begin_table_error; 1273 } 1274 } 1275 #endif 1276 1277 /* Make sure the new table name does not collide with an existing 1278 ** index or table name in the same database. Issue an error message if 1279 ** it does. The exception is if the statement being parsed was passed 1280 ** to an sqlite3_declare_vtab() call. In that case only the column names 1281 ** and types will be used, so there is no need to test for namespace 1282 ** collisions. 1283 */ 1284 if( !IN_SPECIAL_PARSE ){ 1285 char *zDb = db->aDb[iDb].zDbSName; 1286 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1287 goto begin_table_error; 1288 } 1289 pTable = sqlite3FindTable(db, zName, zDb); 1290 if( pTable ){ 1291 if( !noErr ){ 1292 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1293 }else{ 1294 assert( !db->init.busy || CORRUPT_DB ); 1295 sqlite3CodeVerifySchema(pParse, iDb); 1296 sqlite3ForceNotReadOnly(pParse); 1297 } 1298 goto begin_table_error; 1299 } 1300 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1301 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1302 goto begin_table_error; 1303 } 1304 } 1305 1306 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1307 if( pTable==0 ){ 1308 assert( db->mallocFailed ); 1309 pParse->rc = SQLITE_NOMEM_BKPT; 1310 pParse->nErr++; 1311 goto begin_table_error; 1312 } 1313 pTable->zName = zName; 1314 pTable->iPKey = -1; 1315 pTable->pSchema = db->aDb[iDb].pSchema; 1316 pTable->nTabRef = 1; 1317 #ifdef SQLITE_DEFAULT_ROWEST 1318 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1319 #else 1320 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1321 #endif 1322 assert( pParse->pNewTable==0 ); 1323 pParse->pNewTable = pTable; 1324 1325 /* Begin generating the code that will insert the table record into 1326 ** the schema table. Note in particular that we must go ahead 1327 ** and allocate the record number for the table entry now. Before any 1328 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1329 ** indices to be created and the table record must come before the 1330 ** indices. Hence, the record number for the table must be allocated 1331 ** now. 1332 */ 1333 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1334 int addr1; 1335 int fileFormat; 1336 int reg1, reg2, reg3; 1337 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1338 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1339 sqlite3BeginWriteOperation(pParse, 1, iDb); 1340 1341 #ifndef SQLITE_OMIT_VIRTUALTABLE 1342 if( isVirtual ){ 1343 sqlite3VdbeAddOp0(v, OP_VBegin); 1344 } 1345 #endif 1346 1347 /* If the file format and encoding in the database have not been set, 1348 ** set them now. 1349 */ 1350 reg1 = pParse->regRowid = ++pParse->nMem; 1351 reg2 = pParse->regRoot = ++pParse->nMem; 1352 reg3 = ++pParse->nMem; 1353 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1354 sqlite3VdbeUsesBtree(v, iDb); 1355 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1356 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1357 1 : SQLITE_MAX_FILE_FORMAT; 1358 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1359 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1360 sqlite3VdbeJumpHere(v, addr1); 1361 1362 /* This just creates a place-holder record in the sqlite_schema table. 1363 ** The record created does not contain anything yet. It will be replaced 1364 ** by the real entry in code generated at sqlite3EndTable(). 1365 ** 1366 ** The rowid for the new entry is left in register pParse->regRowid. 1367 ** The root page number of the new table is left in reg pParse->regRoot. 1368 ** The rowid and root page number values are needed by the code that 1369 ** sqlite3EndTable will generate. 1370 */ 1371 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1372 if( isView || isVirtual ){ 1373 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1374 }else 1375 #endif 1376 { 1377 assert( !pParse->bReturning ); 1378 pParse->u1.addrCrTab = 1379 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1380 } 1381 sqlite3OpenSchemaTable(pParse, iDb); 1382 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1383 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1384 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1385 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1386 sqlite3VdbeAddOp0(v, OP_Close); 1387 } 1388 1389 /* Normal (non-error) return. */ 1390 return; 1391 1392 /* If an error occurs, we jump here */ 1393 begin_table_error: 1394 pParse->checkSchema = 1; 1395 sqlite3DbFree(db, zName); 1396 return; 1397 } 1398 1399 /* Set properties of a table column based on the (magical) 1400 ** name of the column. 1401 */ 1402 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1403 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1404 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ 1405 pCol->colFlags |= COLFLAG_HIDDEN; 1406 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1407 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1408 pTab->tabFlags |= TF_OOOHidden; 1409 } 1410 } 1411 #endif 1412 1413 /* 1414 ** Name of the special TEMP trigger used to implement RETURNING. The 1415 ** name begins with "sqlite_" so that it is guaranteed not to collide 1416 ** with any application-generated triggers. 1417 */ 1418 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1419 1420 /* 1421 ** Clean up the data structures associated with the RETURNING clause. 1422 */ 1423 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1424 Hash *pHash; 1425 pHash = &(db->aDb[1].pSchema->trigHash); 1426 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1427 sqlite3ExprListDelete(db, pRet->pReturnEL); 1428 sqlite3DbFree(db, pRet); 1429 } 1430 1431 /* 1432 ** Add the RETURNING clause to the parse currently underway. 1433 ** 1434 ** This routine creates a special TEMP trigger that will fire for each row 1435 ** of the DML statement. That TEMP trigger contains a single SELECT 1436 ** statement with a result set that is the argument of the RETURNING clause. 1437 ** The trigger has the Trigger.bReturning flag and an opcode of 1438 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1439 ** knows to handle it specially. The TEMP trigger is automatically 1440 ** removed at the end of the parse. 1441 ** 1442 ** When this routine is called, we do not yet know if the RETURNING clause 1443 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1444 ** RETURNING trigger instead. It will then be converted into the appropriate 1445 ** type on the first call to sqlite3TriggersExist(). 1446 */ 1447 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1448 Returning *pRet; 1449 Hash *pHash; 1450 sqlite3 *db = pParse->db; 1451 if( pParse->pNewTrigger ){ 1452 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1453 }else{ 1454 assert( pParse->bReturning==0 ); 1455 } 1456 pParse->bReturning = 1; 1457 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1458 if( pRet==0 ){ 1459 sqlite3ExprListDelete(db, pList); 1460 return; 1461 } 1462 pParse->u1.pReturning = pRet; 1463 pRet->pParse = pParse; 1464 pRet->pReturnEL = pList; 1465 sqlite3ParserAddCleanup(pParse, 1466 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1467 testcase( pParse->earlyCleanup ); 1468 if( db->mallocFailed ) return; 1469 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1470 pRet->retTrig.op = TK_RETURNING; 1471 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1472 pRet->retTrig.bReturning = 1; 1473 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1474 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1475 pRet->retTrig.step_list = &pRet->retTStep; 1476 pRet->retTStep.op = TK_RETURNING; 1477 pRet->retTStep.pTrig = &pRet->retTrig; 1478 pRet->retTStep.pExprList = pList; 1479 pHash = &(db->aDb[1].pSchema->trigHash); 1480 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1481 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1482 ==&pRet->retTrig ){ 1483 sqlite3OomFault(db); 1484 } 1485 } 1486 1487 /* 1488 ** Add a new column to the table currently being constructed. 1489 ** 1490 ** The parser calls this routine once for each column declaration 1491 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1492 ** first to get things going. Then this routine is called for each 1493 ** column. 1494 */ 1495 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ 1496 Table *p; 1497 int i; 1498 char *z; 1499 char *zType; 1500 Column *pCol; 1501 sqlite3 *db = pParse->db; 1502 u8 hName; 1503 Column *aNew; 1504 u8 eType = COLTYPE_CUSTOM; 1505 u8 szEst = 1; 1506 char affinity = SQLITE_AFF_BLOB; 1507 1508 if( (p = pParse->pNewTable)==0 ) return; 1509 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1510 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1511 return; 1512 } 1513 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); 1514 1515 /* Because keywords GENERATE ALWAYS can be converted into indentifiers 1516 ** by the parser, we can sometimes end up with a typename that ends 1517 ** with "generated always". Check for this case and omit the surplus 1518 ** text. */ 1519 if( sType.n>=16 1520 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 1521 ){ 1522 sType.n -= 6; 1523 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1524 if( sType.n>=9 1525 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 1526 ){ 1527 sType.n -= 9; 1528 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1529 } 1530 } 1531 1532 /* Check for standard typenames. For standard typenames we will 1533 ** set the Column.eType field rather than storing the typename after 1534 ** the column name, in order to save space. */ 1535 if( sType.n>=3 ){ 1536 sqlite3DequoteToken(&sType); 1537 for(i=0; i<SQLITE_N_STDTYPE; i++){ 1538 if( sType.n==sqlite3StdTypeLen[i] 1539 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0 1540 ){ 1541 sType.n = 0; 1542 eType = i+1; 1543 affinity = sqlite3StdTypeAffinity[i]; 1544 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5; 1545 break; 1546 } 1547 } 1548 } 1549 1550 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) ); 1551 if( z==0 ) return; 1552 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); 1553 memcpy(z, sName.z, sName.n); 1554 z[sName.n] = 0; 1555 sqlite3Dequote(z); 1556 hName = sqlite3StrIHash(z); 1557 for(i=0; i<p->nCol; i++){ 1558 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ 1559 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1560 sqlite3DbFree(db, z); 1561 return; 1562 } 1563 } 1564 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); 1565 if( aNew==0 ){ 1566 sqlite3DbFree(db, z); 1567 return; 1568 } 1569 p->aCol = aNew; 1570 pCol = &p->aCol[p->nCol]; 1571 memset(pCol, 0, sizeof(p->aCol[0])); 1572 pCol->zCnName = z; 1573 pCol->hName = hName; 1574 sqlite3ColumnPropertiesFromName(p, pCol); 1575 1576 if( sType.n==0 ){ 1577 /* If there is no type specified, columns have the default affinity 1578 ** 'BLOB' with a default size of 4 bytes. */ 1579 pCol->affinity = affinity; 1580 pCol->eCType = eType; 1581 pCol->szEst = szEst; 1582 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1583 if( affinity==SQLITE_AFF_BLOB ){ 1584 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1585 pCol->colFlags |= COLFLAG_SORTERREF; 1586 } 1587 } 1588 #endif 1589 }else{ 1590 zType = z + sqlite3Strlen30(z) + 1; 1591 memcpy(zType, sType.z, sType.n); 1592 zType[sType.n] = 0; 1593 sqlite3Dequote(zType); 1594 pCol->affinity = sqlite3AffinityType(zType, pCol); 1595 pCol->colFlags |= COLFLAG_HASTYPE; 1596 } 1597 p->nCol++; 1598 p->nNVCol++; 1599 pParse->constraintName.n = 0; 1600 } 1601 1602 /* 1603 ** This routine is called by the parser while in the middle of 1604 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1605 ** been seen on a column. This routine sets the notNull flag on 1606 ** the column currently under construction. 1607 */ 1608 void sqlite3AddNotNull(Parse *pParse, int onError){ 1609 Table *p; 1610 Column *pCol; 1611 p = pParse->pNewTable; 1612 if( p==0 || NEVER(p->nCol<1) ) return; 1613 pCol = &p->aCol[p->nCol-1]; 1614 pCol->notNull = (u8)onError; 1615 p->tabFlags |= TF_HasNotNull; 1616 1617 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1618 ** on this column. */ 1619 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1620 Index *pIdx; 1621 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1622 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1623 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1624 pIdx->uniqNotNull = 1; 1625 } 1626 } 1627 } 1628 } 1629 1630 /* 1631 ** Scan the column type name zType (length nType) and return the 1632 ** associated affinity type. 1633 ** 1634 ** This routine does a case-independent search of zType for the 1635 ** substrings in the following table. If one of the substrings is 1636 ** found, the corresponding affinity is returned. If zType contains 1637 ** more than one of the substrings, entries toward the top of 1638 ** the table take priority. For example, if zType is 'BLOBINT', 1639 ** SQLITE_AFF_INTEGER is returned. 1640 ** 1641 ** Substring | Affinity 1642 ** -------------------------------- 1643 ** 'INT' | SQLITE_AFF_INTEGER 1644 ** 'CHAR' | SQLITE_AFF_TEXT 1645 ** 'CLOB' | SQLITE_AFF_TEXT 1646 ** 'TEXT' | SQLITE_AFF_TEXT 1647 ** 'BLOB' | SQLITE_AFF_BLOB 1648 ** 'REAL' | SQLITE_AFF_REAL 1649 ** 'FLOA' | SQLITE_AFF_REAL 1650 ** 'DOUB' | SQLITE_AFF_REAL 1651 ** 1652 ** If none of the substrings in the above table are found, 1653 ** SQLITE_AFF_NUMERIC is returned. 1654 */ 1655 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1656 u32 h = 0; 1657 char aff = SQLITE_AFF_NUMERIC; 1658 const char *zChar = 0; 1659 1660 assert( zIn!=0 ); 1661 while( zIn[0] ){ 1662 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1663 zIn++; 1664 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1665 aff = SQLITE_AFF_TEXT; 1666 zChar = zIn; 1667 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1668 aff = SQLITE_AFF_TEXT; 1669 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1670 aff = SQLITE_AFF_TEXT; 1671 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1672 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1673 aff = SQLITE_AFF_BLOB; 1674 if( zIn[0]=='(' ) zChar = zIn; 1675 #ifndef SQLITE_OMIT_FLOATING_POINT 1676 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1677 && aff==SQLITE_AFF_NUMERIC ){ 1678 aff = SQLITE_AFF_REAL; 1679 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1680 && aff==SQLITE_AFF_NUMERIC ){ 1681 aff = SQLITE_AFF_REAL; 1682 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1683 && aff==SQLITE_AFF_NUMERIC ){ 1684 aff = SQLITE_AFF_REAL; 1685 #endif 1686 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1687 aff = SQLITE_AFF_INTEGER; 1688 break; 1689 } 1690 } 1691 1692 /* If pCol is not NULL, store an estimate of the field size. The 1693 ** estimate is scaled so that the size of an integer is 1. */ 1694 if( pCol ){ 1695 int v = 0; /* default size is approx 4 bytes */ 1696 if( aff<SQLITE_AFF_NUMERIC ){ 1697 if( zChar ){ 1698 while( zChar[0] ){ 1699 if( sqlite3Isdigit(zChar[0]) ){ 1700 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1701 sqlite3GetInt32(zChar, &v); 1702 break; 1703 } 1704 zChar++; 1705 } 1706 }else{ 1707 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1708 } 1709 } 1710 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1711 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1712 pCol->colFlags |= COLFLAG_SORTERREF; 1713 } 1714 #endif 1715 v = v/4 + 1; 1716 if( v>255 ) v = 255; 1717 pCol->szEst = v; 1718 } 1719 return aff; 1720 } 1721 1722 /* 1723 ** The expression is the default value for the most recently added column 1724 ** of the table currently under construction. 1725 ** 1726 ** Default value expressions must be constant. Raise an exception if this 1727 ** is not the case. 1728 ** 1729 ** This routine is called by the parser while in the middle of 1730 ** parsing a CREATE TABLE statement. 1731 */ 1732 void sqlite3AddDefaultValue( 1733 Parse *pParse, /* Parsing context */ 1734 Expr *pExpr, /* The parsed expression of the default value */ 1735 const char *zStart, /* Start of the default value text */ 1736 const char *zEnd /* First character past end of defaut value text */ 1737 ){ 1738 Table *p; 1739 Column *pCol; 1740 sqlite3 *db = pParse->db; 1741 p = pParse->pNewTable; 1742 if( p!=0 ){ 1743 int isInit = db->init.busy && db->init.iDb!=1; 1744 pCol = &(p->aCol[p->nCol-1]); 1745 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1746 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1747 pCol->zCnName); 1748 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1749 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1750 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1751 testcase( pCol->colFlags & COLFLAG_STORED ); 1752 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1753 #endif 1754 }else{ 1755 /* A copy of pExpr is used instead of the original, as pExpr contains 1756 ** tokens that point to volatile memory. 1757 */ 1758 Expr x, *pDfltExpr; 1759 memset(&x, 0, sizeof(x)); 1760 x.op = TK_SPAN; 1761 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1762 x.pLeft = pExpr; 1763 x.flags = EP_Skip; 1764 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1765 sqlite3DbFree(db, x.u.zToken); 1766 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); 1767 } 1768 } 1769 if( IN_RENAME_OBJECT ){ 1770 sqlite3RenameExprUnmap(pParse, pExpr); 1771 } 1772 sqlite3ExprDelete(db, pExpr); 1773 } 1774 1775 /* 1776 ** Backwards Compatibility Hack: 1777 ** 1778 ** Historical versions of SQLite accepted strings as column names in 1779 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1780 ** 1781 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1782 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1783 ** 1784 ** This is goofy. But to preserve backwards compatibility we continue to 1785 ** accept it. This routine does the necessary conversion. It converts 1786 ** the expression given in its argument from a TK_STRING into a TK_ID 1787 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1788 ** If the expression is anything other than TK_STRING, the expression is 1789 ** unchanged. 1790 */ 1791 static void sqlite3StringToId(Expr *p){ 1792 if( p->op==TK_STRING ){ 1793 p->op = TK_ID; 1794 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1795 p->pLeft->op = TK_ID; 1796 } 1797 } 1798 1799 /* 1800 ** Tag the given column as being part of the PRIMARY KEY 1801 */ 1802 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1803 pCol->colFlags |= COLFLAG_PRIMKEY; 1804 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1805 if( pCol->colFlags & COLFLAG_GENERATED ){ 1806 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1807 testcase( pCol->colFlags & COLFLAG_STORED ); 1808 sqlite3ErrorMsg(pParse, 1809 "generated columns cannot be part of the PRIMARY KEY"); 1810 } 1811 #endif 1812 } 1813 1814 /* 1815 ** Designate the PRIMARY KEY for the table. pList is a list of names 1816 ** of columns that form the primary key. If pList is NULL, then the 1817 ** most recently added column of the table is the primary key. 1818 ** 1819 ** A table can have at most one primary key. If the table already has 1820 ** a primary key (and this is the second primary key) then create an 1821 ** error. 1822 ** 1823 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1824 ** then we will try to use that column as the rowid. Set the Table.iPKey 1825 ** field of the table under construction to be the index of the 1826 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1827 ** no INTEGER PRIMARY KEY. 1828 ** 1829 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1830 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1831 */ 1832 void sqlite3AddPrimaryKey( 1833 Parse *pParse, /* Parsing context */ 1834 ExprList *pList, /* List of field names to be indexed */ 1835 int onError, /* What to do with a uniqueness conflict */ 1836 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1837 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1838 ){ 1839 Table *pTab = pParse->pNewTable; 1840 Column *pCol = 0; 1841 int iCol = -1, i; 1842 int nTerm; 1843 if( pTab==0 ) goto primary_key_exit; 1844 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1845 sqlite3ErrorMsg(pParse, 1846 "table \"%s\" has more than one primary key", pTab->zName); 1847 goto primary_key_exit; 1848 } 1849 pTab->tabFlags |= TF_HasPrimaryKey; 1850 if( pList==0 ){ 1851 iCol = pTab->nCol - 1; 1852 pCol = &pTab->aCol[iCol]; 1853 makeColumnPartOfPrimaryKey(pParse, pCol); 1854 nTerm = 1; 1855 }else{ 1856 nTerm = pList->nExpr; 1857 for(i=0; i<nTerm; i++){ 1858 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1859 assert( pCExpr!=0 ); 1860 sqlite3StringToId(pCExpr); 1861 if( pCExpr->op==TK_ID ){ 1862 const char *zCName; 1863 assert( !ExprHasProperty(pCExpr, EP_IntValue) ); 1864 zCName = pCExpr->u.zToken; 1865 for(iCol=0; iCol<pTab->nCol; iCol++){ 1866 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ 1867 pCol = &pTab->aCol[iCol]; 1868 makeColumnPartOfPrimaryKey(pParse, pCol); 1869 break; 1870 } 1871 } 1872 } 1873 } 1874 } 1875 if( nTerm==1 1876 && pCol 1877 && pCol->eCType==COLTYPE_INTEGER 1878 && sortOrder!=SQLITE_SO_DESC 1879 ){ 1880 if( IN_RENAME_OBJECT && pList ){ 1881 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1882 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1883 } 1884 pTab->iPKey = iCol; 1885 pTab->keyConf = (u8)onError; 1886 assert( autoInc==0 || autoInc==1 ); 1887 pTab->tabFlags |= autoInc*TF_Autoincrement; 1888 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1889 (void)sqlite3HasExplicitNulls(pParse, pList); 1890 }else if( autoInc ){ 1891 #ifndef SQLITE_OMIT_AUTOINCREMENT 1892 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1893 "INTEGER PRIMARY KEY"); 1894 #endif 1895 }else{ 1896 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1897 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1898 pList = 0; 1899 } 1900 1901 primary_key_exit: 1902 sqlite3ExprListDelete(pParse->db, pList); 1903 return; 1904 } 1905 1906 /* 1907 ** Add a new CHECK constraint to the table currently under construction. 1908 */ 1909 void sqlite3AddCheckConstraint( 1910 Parse *pParse, /* Parsing context */ 1911 Expr *pCheckExpr, /* The check expression */ 1912 const char *zStart, /* Opening "(" */ 1913 const char *zEnd /* Closing ")" */ 1914 ){ 1915 #ifndef SQLITE_OMIT_CHECK 1916 Table *pTab = pParse->pNewTable; 1917 sqlite3 *db = pParse->db; 1918 if( pTab && !IN_DECLARE_VTAB 1919 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1920 ){ 1921 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1922 if( pParse->constraintName.n ){ 1923 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1924 }else{ 1925 Token t; 1926 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1927 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1928 t.z = zStart; 1929 t.n = (int)(zEnd - t.z); 1930 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1931 } 1932 }else 1933 #endif 1934 { 1935 sqlite3ExprDelete(pParse->db, pCheckExpr); 1936 } 1937 } 1938 1939 /* 1940 ** Set the collation function of the most recently parsed table column 1941 ** to the CollSeq given. 1942 */ 1943 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1944 Table *p; 1945 int i; 1946 char *zColl; /* Dequoted name of collation sequence */ 1947 sqlite3 *db; 1948 1949 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1950 i = p->nCol-1; 1951 db = pParse->db; 1952 zColl = sqlite3NameFromToken(db, pToken); 1953 if( !zColl ) return; 1954 1955 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1956 Index *pIdx; 1957 sqlite3ColumnSetColl(db, &p->aCol[i], zColl); 1958 1959 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1960 ** then an index may have been created on this column before the 1961 ** collation type was added. Correct this if it is the case. 1962 */ 1963 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1964 assert( pIdx->nKeyCol==1 ); 1965 if( pIdx->aiColumn[0]==i ){ 1966 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); 1967 } 1968 } 1969 } 1970 sqlite3DbFree(db, zColl); 1971 } 1972 1973 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1974 ** column. 1975 */ 1976 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1977 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1978 u8 eType = COLFLAG_VIRTUAL; 1979 Table *pTab = pParse->pNewTable; 1980 Column *pCol; 1981 if( pTab==0 ){ 1982 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1983 goto generated_done; 1984 } 1985 pCol = &(pTab->aCol[pTab->nCol-1]); 1986 if( IN_DECLARE_VTAB ){ 1987 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1988 goto generated_done; 1989 } 1990 if( pCol->iDflt>0 ) goto generated_error; 1991 if( pType ){ 1992 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1993 /* no-op */ 1994 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1995 eType = COLFLAG_STORED; 1996 }else{ 1997 goto generated_error; 1998 } 1999 } 2000 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 2001 pCol->colFlags |= eType; 2002 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 2003 assert( TF_HasStored==COLFLAG_STORED ); 2004 pTab->tabFlags |= eType; 2005 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 2006 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 2007 } 2008 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); 2009 pExpr = 0; 2010 goto generated_done; 2011 2012 generated_error: 2013 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 2014 pCol->zCnName); 2015 generated_done: 2016 sqlite3ExprDelete(pParse->db, pExpr); 2017 #else 2018 /* Throw and error for the GENERATED ALWAYS AS clause if the 2019 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 2020 sqlite3ErrorMsg(pParse, "generated columns not supported"); 2021 sqlite3ExprDelete(pParse->db, pExpr); 2022 #endif 2023 } 2024 2025 /* 2026 ** Generate code that will increment the schema cookie. 2027 ** 2028 ** The schema cookie is used to determine when the schema for the 2029 ** database changes. After each schema change, the cookie value 2030 ** changes. When a process first reads the schema it records the 2031 ** cookie. Thereafter, whenever it goes to access the database, 2032 ** it checks the cookie to make sure the schema has not changed 2033 ** since it was last read. 2034 ** 2035 ** This plan is not completely bullet-proof. It is possible for 2036 ** the schema to change multiple times and for the cookie to be 2037 ** set back to prior value. But schema changes are infrequent 2038 ** and the probability of hitting the same cookie value is only 2039 ** 1 chance in 2^32. So we're safe enough. 2040 ** 2041 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 2042 ** the schema-version whenever the schema changes. 2043 */ 2044 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 2045 sqlite3 *db = pParse->db; 2046 Vdbe *v = pParse->pVdbe; 2047 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2048 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 2049 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 2050 } 2051 2052 /* 2053 ** Measure the number of characters needed to output the given 2054 ** identifier. The number returned includes any quotes used 2055 ** but does not include the null terminator. 2056 ** 2057 ** The estimate is conservative. It might be larger that what is 2058 ** really needed. 2059 */ 2060 static int identLength(const char *z){ 2061 int n; 2062 for(n=0; *z; n++, z++){ 2063 if( *z=='"' ){ n++; } 2064 } 2065 return n + 2; 2066 } 2067 2068 /* 2069 ** The first parameter is a pointer to an output buffer. The second 2070 ** parameter is a pointer to an integer that contains the offset at 2071 ** which to write into the output buffer. This function copies the 2072 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 2073 ** to the specified offset in the buffer and updates *pIdx to refer 2074 ** to the first byte after the last byte written before returning. 2075 ** 2076 ** If the string zSignedIdent consists entirely of alpha-numeric 2077 ** characters, does not begin with a digit and is not an SQL keyword, 2078 ** then it is copied to the output buffer exactly as it is. Otherwise, 2079 ** it is quoted using double-quotes. 2080 */ 2081 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 2082 unsigned char *zIdent = (unsigned char*)zSignedIdent; 2083 int i, j, needQuote; 2084 i = *pIdx; 2085 2086 for(j=0; zIdent[j]; j++){ 2087 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 2088 } 2089 needQuote = sqlite3Isdigit(zIdent[0]) 2090 || sqlite3KeywordCode(zIdent, j)!=TK_ID 2091 || zIdent[j]!=0 2092 || j==0; 2093 2094 if( needQuote ) z[i++] = '"'; 2095 for(j=0; zIdent[j]; j++){ 2096 z[i++] = zIdent[j]; 2097 if( zIdent[j]=='"' ) z[i++] = '"'; 2098 } 2099 if( needQuote ) z[i++] = '"'; 2100 z[i] = 0; 2101 *pIdx = i; 2102 } 2103 2104 /* 2105 ** Generate a CREATE TABLE statement appropriate for the given 2106 ** table. Memory to hold the text of the statement is obtained 2107 ** from sqliteMalloc() and must be freed by the calling function. 2108 */ 2109 static char *createTableStmt(sqlite3 *db, Table *p){ 2110 int i, k, n; 2111 char *zStmt; 2112 char *zSep, *zSep2, *zEnd; 2113 Column *pCol; 2114 n = 0; 2115 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 2116 n += identLength(pCol->zCnName) + 5; 2117 } 2118 n += identLength(p->zName); 2119 if( n<50 ){ 2120 zSep = ""; 2121 zSep2 = ","; 2122 zEnd = ")"; 2123 }else{ 2124 zSep = "\n "; 2125 zSep2 = ",\n "; 2126 zEnd = "\n)"; 2127 } 2128 n += 35 + 6*p->nCol; 2129 zStmt = sqlite3DbMallocRaw(0, n); 2130 if( zStmt==0 ){ 2131 sqlite3OomFault(db); 2132 return 0; 2133 } 2134 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 2135 k = sqlite3Strlen30(zStmt); 2136 identPut(zStmt, &k, p->zName); 2137 zStmt[k++] = '('; 2138 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 2139 static const char * const azType[] = { 2140 /* SQLITE_AFF_BLOB */ "", 2141 /* SQLITE_AFF_TEXT */ " TEXT", 2142 /* SQLITE_AFF_NUMERIC */ " NUM", 2143 /* SQLITE_AFF_INTEGER */ " INT", 2144 /* SQLITE_AFF_REAL */ " REAL" 2145 }; 2146 int len; 2147 const char *zType; 2148 2149 sqlite3_snprintf(n-k, &zStmt[k], zSep); 2150 k += sqlite3Strlen30(&zStmt[k]); 2151 zSep = zSep2; 2152 identPut(zStmt, &k, pCol->zCnName); 2153 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 2154 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 2155 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 2156 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 2157 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 2158 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 2159 testcase( pCol->affinity==SQLITE_AFF_REAL ); 2160 2161 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2162 len = sqlite3Strlen30(zType); 2163 assert( pCol->affinity==SQLITE_AFF_BLOB 2164 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2165 memcpy(&zStmt[k], zType, len); 2166 k += len; 2167 assert( k<=n ); 2168 } 2169 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2170 return zStmt; 2171 } 2172 2173 /* 2174 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2175 ** on success and SQLITE_NOMEM on an OOM error. 2176 */ 2177 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2178 char *zExtra; 2179 int nByte; 2180 if( pIdx->nColumn>=N ) return SQLITE_OK; 2181 assert( pIdx->isResized==0 ); 2182 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2183 zExtra = sqlite3DbMallocZero(db, nByte); 2184 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2185 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2186 pIdx->azColl = (const char**)zExtra; 2187 zExtra += sizeof(char*)*N; 2188 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2189 pIdx->aiRowLogEst = (LogEst*)zExtra; 2190 zExtra += sizeof(LogEst)*N; 2191 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2192 pIdx->aiColumn = (i16*)zExtra; 2193 zExtra += sizeof(i16)*N; 2194 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2195 pIdx->aSortOrder = (u8*)zExtra; 2196 pIdx->nColumn = N; 2197 pIdx->isResized = 1; 2198 return SQLITE_OK; 2199 } 2200 2201 /* 2202 ** Estimate the total row width for a table. 2203 */ 2204 static void estimateTableWidth(Table *pTab){ 2205 unsigned wTable = 0; 2206 const Column *pTabCol; 2207 int i; 2208 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2209 wTable += pTabCol->szEst; 2210 } 2211 if( pTab->iPKey<0 ) wTable++; 2212 pTab->szTabRow = sqlite3LogEst(wTable*4); 2213 } 2214 2215 /* 2216 ** Estimate the average size of a row for an index. 2217 */ 2218 static void estimateIndexWidth(Index *pIdx){ 2219 unsigned wIndex = 0; 2220 int i; 2221 const Column *aCol = pIdx->pTable->aCol; 2222 for(i=0; i<pIdx->nColumn; i++){ 2223 i16 x = pIdx->aiColumn[i]; 2224 assert( x<pIdx->pTable->nCol ); 2225 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2226 } 2227 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2228 } 2229 2230 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2231 ** This is used to determine if the column number x appears in any of the 2232 ** first nCol entries of an index. 2233 */ 2234 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2235 while( nCol-- > 0 ){ 2236 if( x==*(aiCol++) ){ 2237 return 1; 2238 } 2239 } 2240 return 0; 2241 } 2242 2243 /* 2244 ** Return true if any of the first nKey entries of index pIdx exactly 2245 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2246 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2247 ** or may not be the same index as pPk. 2248 ** 2249 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2250 ** not a rowid or expression. 2251 ** 2252 ** This routine differs from hasColumn() in that both the column and the 2253 ** collating sequence must match for this routine, but for hasColumn() only 2254 ** the column name must match. 2255 */ 2256 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2257 int i, j; 2258 assert( nKey<=pIdx->nColumn ); 2259 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2260 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2261 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2262 assert( pPk->pTable==pIdx->pTable ); 2263 testcase( pPk==pIdx ); 2264 j = pPk->aiColumn[iCol]; 2265 assert( j!=XN_ROWID && j!=XN_EXPR ); 2266 for(i=0; i<nKey; i++){ 2267 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2268 if( pIdx->aiColumn[i]==j 2269 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2270 ){ 2271 return 1; 2272 } 2273 } 2274 return 0; 2275 } 2276 2277 /* Recompute the colNotIdxed field of the Index. 2278 ** 2279 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2280 ** columns that are within the first 63 columns of the table. The 2281 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2282 ** of the table have a 1. 2283 ** 2284 ** 2019-10-24: For the purpose of this computation, virtual columns are 2285 ** not considered to be covered by the index, even if they are in the 2286 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2287 ** able to find all instances of a reference to the indexed table column 2288 ** and convert them into references to the index. Hence we always want 2289 ** the actual table at hand in order to recompute the virtual column, if 2290 ** necessary. 2291 ** 2292 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2293 ** to determine if the index is covering index. 2294 */ 2295 static void recomputeColumnsNotIndexed(Index *pIdx){ 2296 Bitmask m = 0; 2297 int j; 2298 Table *pTab = pIdx->pTable; 2299 for(j=pIdx->nColumn-1; j>=0; j--){ 2300 int x = pIdx->aiColumn[j]; 2301 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2302 testcase( x==BMS-1 ); 2303 testcase( x==BMS-2 ); 2304 if( x<BMS-1 ) m |= MASKBIT(x); 2305 } 2306 } 2307 pIdx->colNotIdxed = ~m; 2308 assert( (pIdx->colNotIdxed>>63)==1 ); 2309 } 2310 2311 /* 2312 ** This routine runs at the end of parsing a CREATE TABLE statement that 2313 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2314 ** internal schema data structures and the generated VDBE code so that they 2315 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2316 ** Changes include: 2317 ** 2318 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2319 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2320 ** into BTREE_BLOBKEY. 2321 ** (3) Bypass the creation of the sqlite_schema table entry 2322 ** for the PRIMARY KEY as the primary key index is now 2323 ** identified by the sqlite_schema table entry of the table itself. 2324 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2325 ** schema to the rootpage from the main table. 2326 ** (5) Add all table columns to the PRIMARY KEY Index object 2327 ** so that the PRIMARY KEY is a covering index. The surplus 2328 ** columns are part of KeyInfo.nAllField and are not used for 2329 ** sorting or lookup or uniqueness checks. 2330 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2331 ** indices with the PRIMARY KEY columns. 2332 ** 2333 ** For virtual tables, only (1) is performed. 2334 */ 2335 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2336 Index *pIdx; 2337 Index *pPk; 2338 int nPk; 2339 int nExtra; 2340 int i, j; 2341 sqlite3 *db = pParse->db; 2342 Vdbe *v = pParse->pVdbe; 2343 2344 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2345 */ 2346 if( !db->init.imposterTable ){ 2347 for(i=0; i<pTab->nCol; i++){ 2348 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 2349 && (pTab->aCol[i].notNull==OE_None) 2350 ){ 2351 pTab->aCol[i].notNull = OE_Abort; 2352 } 2353 } 2354 pTab->tabFlags |= TF_HasNotNull; 2355 } 2356 2357 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2358 ** into BTREE_BLOBKEY. 2359 */ 2360 assert( !pParse->bReturning ); 2361 if( pParse->u1.addrCrTab ){ 2362 assert( v ); 2363 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2364 } 2365 2366 /* Locate the PRIMARY KEY index. Or, if this table was originally 2367 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2368 */ 2369 if( pTab->iPKey>=0 ){ 2370 ExprList *pList; 2371 Token ipkToken; 2372 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); 2373 pList = sqlite3ExprListAppend(pParse, 0, 2374 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2375 if( pList==0 ){ 2376 pTab->tabFlags &= ~TF_WithoutRowid; 2377 return; 2378 } 2379 if( IN_RENAME_OBJECT ){ 2380 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2381 } 2382 pList->a[0].sortFlags = pParse->iPkSortOrder; 2383 assert( pParse->pNewTable==pTab ); 2384 pTab->iPKey = -1; 2385 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2386 SQLITE_IDXTYPE_PRIMARYKEY); 2387 if( db->mallocFailed || pParse->nErr ){ 2388 pTab->tabFlags &= ~TF_WithoutRowid; 2389 return; 2390 } 2391 pPk = sqlite3PrimaryKeyIndex(pTab); 2392 assert( pPk->nKeyCol==1 ); 2393 }else{ 2394 pPk = sqlite3PrimaryKeyIndex(pTab); 2395 assert( pPk!=0 ); 2396 2397 /* 2398 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2399 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2400 ** code assumes the PRIMARY KEY contains no repeated columns. 2401 */ 2402 for(i=j=1; i<pPk->nKeyCol; i++){ 2403 if( isDupColumn(pPk, j, pPk, i) ){ 2404 pPk->nColumn--; 2405 }else{ 2406 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2407 pPk->azColl[j] = pPk->azColl[i]; 2408 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2409 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2410 } 2411 } 2412 pPk->nKeyCol = j; 2413 } 2414 assert( pPk!=0 ); 2415 pPk->isCovering = 1; 2416 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2417 nPk = pPk->nColumn = pPk->nKeyCol; 2418 2419 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2420 ** table entry. This is only required if currently generating VDBE 2421 ** code for a CREATE TABLE (not when parsing one as part of reading 2422 ** a database schema). */ 2423 if( v && pPk->tnum>0 ){ 2424 assert( db->init.busy==0 ); 2425 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2426 } 2427 2428 /* The root page of the PRIMARY KEY is the table root page */ 2429 pPk->tnum = pTab->tnum; 2430 2431 /* Update the in-memory representation of all UNIQUE indices by converting 2432 ** the final rowid column into one or more columns of the PRIMARY KEY. 2433 */ 2434 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2435 int n; 2436 if( IsPrimaryKeyIndex(pIdx) ) continue; 2437 for(i=n=0; i<nPk; i++){ 2438 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2439 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2440 n++; 2441 } 2442 } 2443 if( n==0 ){ 2444 /* This index is a superset of the primary key */ 2445 pIdx->nColumn = pIdx->nKeyCol; 2446 continue; 2447 } 2448 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2449 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2450 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2451 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2452 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2453 pIdx->azColl[j] = pPk->azColl[i]; 2454 if( pPk->aSortOrder[i] ){ 2455 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2456 pIdx->bAscKeyBug = 1; 2457 } 2458 j++; 2459 } 2460 } 2461 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2462 assert( pIdx->nColumn>=j ); 2463 } 2464 2465 /* Add all table columns to the PRIMARY KEY index 2466 */ 2467 nExtra = 0; 2468 for(i=0; i<pTab->nCol; i++){ 2469 if( !hasColumn(pPk->aiColumn, nPk, i) 2470 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2471 } 2472 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2473 for(i=0, j=nPk; i<pTab->nCol; i++){ 2474 if( !hasColumn(pPk->aiColumn, j, i) 2475 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2476 ){ 2477 assert( j<pPk->nColumn ); 2478 pPk->aiColumn[j] = i; 2479 pPk->azColl[j] = sqlite3StrBINARY; 2480 j++; 2481 } 2482 } 2483 assert( pPk->nColumn==j ); 2484 assert( pTab->nNVCol<=j ); 2485 recomputeColumnsNotIndexed(pPk); 2486 } 2487 2488 2489 #ifndef SQLITE_OMIT_VIRTUALTABLE 2490 /* 2491 ** Return true if pTab is a virtual table and zName is a shadow table name 2492 ** for that virtual table. 2493 */ 2494 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2495 int nName; /* Length of zName */ 2496 Module *pMod; /* Module for the virtual table */ 2497 2498 if( !IsVirtual(pTab) ) return 0; 2499 nName = sqlite3Strlen30(pTab->zName); 2500 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2501 if( zName[nName]!='_' ) return 0; 2502 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2503 if( pMod==0 ) return 0; 2504 if( pMod->pModule->iVersion<3 ) return 0; 2505 if( pMod->pModule->xShadowName==0 ) return 0; 2506 return pMod->pModule->xShadowName(zName+nName+1); 2507 } 2508 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2509 2510 #ifndef SQLITE_OMIT_VIRTUALTABLE 2511 /* 2512 ** Table pTab is a virtual table. If it the virtual table implementation 2513 ** exists and has an xShadowName method, then loop over all other ordinary 2514 ** tables within the same schema looking for shadow tables of pTab, and mark 2515 ** any shadow tables seen using the TF_Shadow flag. 2516 */ 2517 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ 2518 int nName; /* Length of pTab->zName */ 2519 Module *pMod; /* Module for the virtual table */ 2520 HashElem *k; /* For looping through the symbol table */ 2521 2522 assert( IsVirtual(pTab) ); 2523 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2524 if( pMod==0 ) return; 2525 if( NEVER(pMod->pModule==0) ) return; 2526 if( pMod->pModule->iVersion<3 ) return; 2527 if( pMod->pModule->xShadowName==0 ) return; 2528 assert( pTab->zName!=0 ); 2529 nName = sqlite3Strlen30(pTab->zName); 2530 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ 2531 Table *pOther = sqliteHashData(k); 2532 assert( pOther->zName!=0 ); 2533 if( !IsOrdinaryTable(pOther) ) continue; 2534 if( pOther->tabFlags & TF_Shadow ) continue; 2535 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 2536 && pOther->zName[nName]=='_' 2537 && pMod->pModule->xShadowName(pOther->zName+nName+1) 2538 ){ 2539 pOther->tabFlags |= TF_Shadow; 2540 } 2541 } 2542 } 2543 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2544 2545 #ifndef SQLITE_OMIT_VIRTUALTABLE 2546 /* 2547 ** Return true if zName is a shadow table name in the current database 2548 ** connection. 2549 ** 2550 ** zName is temporarily modified while this routine is running, but is 2551 ** restored to its original value prior to this routine returning. 2552 */ 2553 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2554 char *zTail; /* Pointer to the last "_" in zName */ 2555 Table *pTab; /* Table that zName is a shadow of */ 2556 zTail = strrchr(zName, '_'); 2557 if( zTail==0 ) return 0; 2558 *zTail = 0; 2559 pTab = sqlite3FindTable(db, zName, 0); 2560 *zTail = '_'; 2561 if( pTab==0 ) return 0; 2562 if( !IsVirtual(pTab) ) return 0; 2563 return sqlite3IsShadowTableOf(db, pTab, zName); 2564 } 2565 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2566 2567 2568 #ifdef SQLITE_DEBUG 2569 /* 2570 ** Mark all nodes of an expression as EP_Immutable, indicating that 2571 ** they should not be changed. Expressions attached to a table or 2572 ** index definition are tagged this way to help ensure that we do 2573 ** not pass them into code generator routines by mistake. 2574 */ 2575 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2576 ExprSetVVAProperty(pExpr, EP_Immutable); 2577 return WRC_Continue; 2578 } 2579 static void markExprListImmutable(ExprList *pList){ 2580 if( pList ){ 2581 Walker w; 2582 memset(&w, 0, sizeof(w)); 2583 w.xExprCallback = markImmutableExprStep; 2584 w.xSelectCallback = sqlite3SelectWalkNoop; 2585 w.xSelectCallback2 = 0; 2586 sqlite3WalkExprList(&w, pList); 2587 } 2588 } 2589 #else 2590 #define markExprListImmutable(X) /* no-op */ 2591 #endif /* SQLITE_DEBUG */ 2592 2593 2594 /* 2595 ** This routine is called to report the final ")" that terminates 2596 ** a CREATE TABLE statement. 2597 ** 2598 ** The table structure that other action routines have been building 2599 ** is added to the internal hash tables, assuming no errors have 2600 ** occurred. 2601 ** 2602 ** An entry for the table is made in the schema table on disk, unless 2603 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2604 ** it means we are reading the sqlite_schema table because we just 2605 ** connected to the database or because the sqlite_schema table has 2606 ** recently changed, so the entry for this table already exists in 2607 ** the sqlite_schema table. We do not want to create it again. 2608 ** 2609 ** If the pSelect argument is not NULL, it means that this routine 2610 ** was called to create a table generated from a 2611 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2612 ** the new table will match the result set of the SELECT. 2613 */ 2614 void sqlite3EndTable( 2615 Parse *pParse, /* Parse context */ 2616 Token *pCons, /* The ',' token after the last column defn. */ 2617 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2618 u32 tabOpts, /* Extra table options. Usually 0. */ 2619 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2620 ){ 2621 Table *p; /* The new table */ 2622 sqlite3 *db = pParse->db; /* The database connection */ 2623 int iDb; /* Database in which the table lives */ 2624 Index *pIdx; /* An implied index of the table */ 2625 2626 if( pEnd==0 && pSelect==0 ){ 2627 return; 2628 } 2629 p = pParse->pNewTable; 2630 if( p==0 ) return; 2631 2632 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2633 p->tabFlags |= TF_Shadow; 2634 } 2635 2636 /* If the db->init.busy is 1 it means we are reading the SQL off the 2637 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2638 ** So do not write to the disk again. Extract the root page number 2639 ** for the table from the db->init.newTnum field. (The page number 2640 ** should have been put there by the sqliteOpenCb routine.) 2641 ** 2642 ** If the root page number is 1, that means this is the sqlite_schema 2643 ** table itself. So mark it read-only. 2644 */ 2645 if( db->init.busy ){ 2646 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ 2647 sqlite3ErrorMsg(pParse, ""); 2648 return; 2649 } 2650 p->tnum = db->init.newTnum; 2651 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2652 } 2653 2654 /* Special processing for tables that include the STRICT keyword: 2655 ** 2656 ** * Do not allow custom column datatypes. Every column must have 2657 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. 2658 ** 2659 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, 2660 ** then all columns of the PRIMARY KEY must have a NOT NULL 2661 ** constraint. 2662 */ 2663 if( tabOpts & TF_Strict ){ 2664 int ii; 2665 p->tabFlags |= TF_Strict; 2666 for(ii=0; ii<p->nCol; ii++){ 2667 Column *pCol = &p->aCol[ii]; 2668 if( pCol->eCType==COLTYPE_CUSTOM ){ 2669 if( pCol->colFlags & COLFLAG_HASTYPE ){ 2670 sqlite3ErrorMsg(pParse, 2671 "unknown datatype for %s.%s: \"%s\"", 2672 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") 2673 ); 2674 }else{ 2675 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", 2676 p->zName, pCol->zCnName); 2677 } 2678 return; 2679 }else if( pCol->eCType==COLTYPE_ANY ){ 2680 pCol->affinity = SQLITE_AFF_BLOB; 2681 } 2682 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 2683 && p->iPKey!=ii 2684 && pCol->notNull == OE_None 2685 ){ 2686 pCol->notNull = OE_Abort; 2687 p->tabFlags |= TF_HasNotNull; 2688 } 2689 } 2690 } 2691 2692 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2693 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2694 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2695 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2696 2697 /* Special processing for WITHOUT ROWID Tables */ 2698 if( tabOpts & TF_WithoutRowid ){ 2699 if( (p->tabFlags & TF_Autoincrement) ){ 2700 sqlite3ErrorMsg(pParse, 2701 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2702 return; 2703 } 2704 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2705 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2706 return; 2707 } 2708 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2709 convertToWithoutRowidTable(pParse, p); 2710 } 2711 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2712 2713 #ifndef SQLITE_OMIT_CHECK 2714 /* Resolve names in all CHECK constraint expressions. 2715 */ 2716 if( p->pCheck ){ 2717 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2718 if( pParse->nErr ){ 2719 /* If errors are seen, delete the CHECK constraints now, else they might 2720 ** actually be used if PRAGMA writable_schema=ON is set. */ 2721 sqlite3ExprListDelete(db, p->pCheck); 2722 p->pCheck = 0; 2723 }else{ 2724 markExprListImmutable(p->pCheck); 2725 } 2726 } 2727 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2728 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2729 if( p->tabFlags & TF_HasGenerated ){ 2730 int ii, nNG = 0; 2731 testcase( p->tabFlags & TF_HasVirtual ); 2732 testcase( p->tabFlags & TF_HasStored ); 2733 for(ii=0; ii<p->nCol; ii++){ 2734 u32 colFlags = p->aCol[ii].colFlags; 2735 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2736 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); 2737 testcase( colFlags & COLFLAG_VIRTUAL ); 2738 testcase( colFlags & COLFLAG_STORED ); 2739 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2740 /* If there are errors in resolving the expression, change the 2741 ** expression to a NULL. This prevents code generators that operate 2742 ** on the expression from inserting extra parts into the expression 2743 ** tree that have been allocated from lookaside memory, which is 2744 ** illegal in a schema and will lead to errors or heap corruption 2745 ** when the database connection closes. */ 2746 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], 2747 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 2748 } 2749 }else{ 2750 nNG++; 2751 } 2752 } 2753 if( nNG==0 ){ 2754 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2755 return; 2756 } 2757 } 2758 #endif 2759 2760 /* Estimate the average row size for the table and for all implied indices */ 2761 estimateTableWidth(p); 2762 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2763 estimateIndexWidth(pIdx); 2764 } 2765 2766 /* If not initializing, then create a record for the new table 2767 ** in the schema table of the database. 2768 ** 2769 ** If this is a TEMPORARY table, write the entry into the auxiliary 2770 ** file instead of into the main database file. 2771 */ 2772 if( !db->init.busy ){ 2773 int n; 2774 Vdbe *v; 2775 char *zType; /* "view" or "table" */ 2776 char *zType2; /* "VIEW" or "TABLE" */ 2777 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2778 2779 v = sqlite3GetVdbe(pParse); 2780 if( NEVER(v==0) ) return; 2781 2782 sqlite3VdbeAddOp1(v, OP_Close, 0); 2783 2784 /* 2785 ** Initialize zType for the new view or table. 2786 */ 2787 if( IsOrdinaryTable(p) ){ 2788 /* A regular table */ 2789 zType = "table"; 2790 zType2 = "TABLE"; 2791 #ifndef SQLITE_OMIT_VIEW 2792 }else{ 2793 /* A view */ 2794 zType = "view"; 2795 zType2 = "VIEW"; 2796 #endif 2797 } 2798 2799 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2800 ** statement to populate the new table. The root-page number for the 2801 ** new table is in register pParse->regRoot. 2802 ** 2803 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2804 ** suitable state to query for the column names and types to be used 2805 ** by the new table. 2806 ** 2807 ** A shared-cache write-lock is not required to write to the new table, 2808 ** as a schema-lock must have already been obtained to create it. Since 2809 ** a schema-lock excludes all other database users, the write-lock would 2810 ** be redundant. 2811 */ 2812 if( pSelect ){ 2813 SelectDest dest; /* Where the SELECT should store results */ 2814 int regYield; /* Register holding co-routine entry-point */ 2815 int addrTop; /* Top of the co-routine */ 2816 int regRec; /* A record to be insert into the new table */ 2817 int regRowid; /* Rowid of the next row to insert */ 2818 int addrInsLoop; /* Top of the loop for inserting rows */ 2819 Table *pSelTab; /* A table that describes the SELECT results */ 2820 2821 regYield = ++pParse->nMem; 2822 regRec = ++pParse->nMem; 2823 regRowid = ++pParse->nMem; 2824 assert(pParse->nTab==1); 2825 sqlite3MayAbort(pParse); 2826 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2827 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2828 pParse->nTab = 2; 2829 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2830 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2831 if( pParse->nErr ) return; 2832 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2833 if( pSelTab==0 ) return; 2834 assert( p->aCol==0 ); 2835 p->nCol = p->nNVCol = pSelTab->nCol; 2836 p->aCol = pSelTab->aCol; 2837 pSelTab->nCol = 0; 2838 pSelTab->aCol = 0; 2839 sqlite3DeleteTable(db, pSelTab); 2840 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2841 sqlite3Select(pParse, pSelect, &dest); 2842 if( pParse->nErr ) return; 2843 sqlite3VdbeEndCoroutine(v, regYield); 2844 sqlite3VdbeJumpHere(v, addrTop - 1); 2845 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2846 VdbeCoverage(v); 2847 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2848 sqlite3TableAffinity(v, p, 0); 2849 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2850 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2851 sqlite3VdbeGoto(v, addrInsLoop); 2852 sqlite3VdbeJumpHere(v, addrInsLoop); 2853 sqlite3VdbeAddOp1(v, OP_Close, 1); 2854 } 2855 2856 /* Compute the complete text of the CREATE statement */ 2857 if( pSelect ){ 2858 zStmt = createTableStmt(db, p); 2859 }else{ 2860 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2861 n = (int)(pEnd2->z - pParse->sNameToken.z); 2862 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2863 zStmt = sqlite3MPrintf(db, 2864 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2865 ); 2866 } 2867 2868 /* A slot for the record has already been allocated in the 2869 ** schema table. We just need to update that slot with all 2870 ** the information we've collected. 2871 */ 2872 sqlite3NestedParse(pParse, 2873 "UPDATE %Q." LEGACY_SCHEMA_TABLE 2874 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2875 " WHERE rowid=#%d", 2876 db->aDb[iDb].zDbSName, 2877 zType, 2878 p->zName, 2879 p->zName, 2880 pParse->regRoot, 2881 zStmt, 2882 pParse->regRowid 2883 ); 2884 sqlite3DbFree(db, zStmt); 2885 sqlite3ChangeCookie(pParse, iDb); 2886 2887 #ifndef SQLITE_OMIT_AUTOINCREMENT 2888 /* Check to see if we need to create an sqlite_sequence table for 2889 ** keeping track of autoincrement keys. 2890 */ 2891 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2892 Db *pDb = &db->aDb[iDb]; 2893 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2894 if( pDb->pSchema->pSeqTab==0 ){ 2895 sqlite3NestedParse(pParse, 2896 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2897 pDb->zDbSName 2898 ); 2899 } 2900 } 2901 #endif 2902 2903 /* Reparse everything to update our internal data structures */ 2904 sqlite3VdbeAddParseSchemaOp(v, iDb, 2905 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2906 } 2907 2908 /* Add the table to the in-memory representation of the database. 2909 */ 2910 if( db->init.busy ){ 2911 Table *pOld; 2912 Schema *pSchema = p->pSchema; 2913 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2914 assert( HasRowid(p) || p->iPKey<0 ); 2915 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2916 if( pOld ){ 2917 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2918 sqlite3OomFault(db); 2919 return; 2920 } 2921 pParse->pNewTable = 0; 2922 db->mDbFlags |= DBFLAG_SchemaChange; 2923 2924 /* If this is the magic sqlite_sequence table used by autoincrement, 2925 ** then record a pointer to this table in the main database structure 2926 ** so that INSERT can find the table easily. */ 2927 assert( !pParse->nested ); 2928 #ifndef SQLITE_OMIT_AUTOINCREMENT 2929 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2930 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2931 p->pSchema->pSeqTab = p; 2932 } 2933 #endif 2934 } 2935 2936 #ifndef SQLITE_OMIT_ALTERTABLE 2937 if( !pSelect && IsOrdinaryTable(p) ){ 2938 assert( pCons && pEnd ); 2939 if( pCons->z==0 ){ 2940 pCons = pEnd; 2941 } 2942 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2943 } 2944 #endif 2945 } 2946 2947 #ifndef SQLITE_OMIT_VIEW 2948 /* 2949 ** The parser calls this routine in order to create a new VIEW 2950 */ 2951 void sqlite3CreateView( 2952 Parse *pParse, /* The parsing context */ 2953 Token *pBegin, /* The CREATE token that begins the statement */ 2954 Token *pName1, /* The token that holds the name of the view */ 2955 Token *pName2, /* The token that holds the name of the view */ 2956 ExprList *pCNames, /* Optional list of view column names */ 2957 Select *pSelect, /* A SELECT statement that will become the new view */ 2958 int isTemp, /* TRUE for a TEMPORARY view */ 2959 int noErr /* Suppress error messages if VIEW already exists */ 2960 ){ 2961 Table *p; 2962 int n; 2963 const char *z; 2964 Token sEnd; 2965 DbFixer sFix; 2966 Token *pName = 0; 2967 int iDb; 2968 sqlite3 *db = pParse->db; 2969 2970 if( pParse->nVar>0 ){ 2971 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2972 goto create_view_fail; 2973 } 2974 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2975 p = pParse->pNewTable; 2976 if( p==0 || pParse->nErr ) goto create_view_fail; 2977 2978 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2979 ** on a view, even though views do not have rowids. The following flag 2980 ** setting fixes this problem. But the fix can be disabled by compiling 2981 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2982 ** depend upon the old buggy behavior. */ 2983 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2984 p->tabFlags |= TF_NoVisibleRowid; 2985 #endif 2986 2987 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2988 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2989 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2990 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2991 2992 /* Make a copy of the entire SELECT statement that defines the view. 2993 ** This will force all the Expr.token.z values to be dynamically 2994 ** allocated rather than point to the input string - which means that 2995 ** they will persist after the current sqlite3_exec() call returns. 2996 */ 2997 pSelect->selFlags |= SF_View; 2998 if( IN_RENAME_OBJECT ){ 2999 p->u.view.pSelect = pSelect; 3000 pSelect = 0; 3001 }else{ 3002 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 3003 } 3004 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 3005 p->eTabType = TABTYP_VIEW; 3006 if( db->mallocFailed ) goto create_view_fail; 3007 3008 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 3009 ** the end. 3010 */ 3011 sEnd = pParse->sLastToken; 3012 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 3013 if( sEnd.z[0]!=';' ){ 3014 sEnd.z += sEnd.n; 3015 } 3016 sEnd.n = 0; 3017 n = (int)(sEnd.z - pBegin->z); 3018 assert( n>0 ); 3019 z = pBegin->z; 3020 while( sqlite3Isspace(z[n-1]) ){ n--; } 3021 sEnd.z = &z[n-1]; 3022 sEnd.n = 1; 3023 3024 /* Use sqlite3EndTable() to add the view to the schema table */ 3025 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 3026 3027 create_view_fail: 3028 sqlite3SelectDelete(db, pSelect); 3029 if( IN_RENAME_OBJECT ){ 3030 sqlite3RenameExprlistUnmap(pParse, pCNames); 3031 } 3032 sqlite3ExprListDelete(db, pCNames); 3033 return; 3034 } 3035 #endif /* SQLITE_OMIT_VIEW */ 3036 3037 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3038 /* 3039 ** The Table structure pTable is really a VIEW. Fill in the names of 3040 ** the columns of the view in the pTable structure. Return the number 3041 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 3042 */ 3043 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 3044 Table *pSelTab; /* A fake table from which we get the result set */ 3045 Select *pSel; /* Copy of the SELECT that implements the view */ 3046 int nErr = 0; /* Number of errors encountered */ 3047 int n; /* Temporarily holds the number of cursors assigned */ 3048 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 3049 #ifndef SQLITE_OMIT_VIRTUALTABLE 3050 int rc; 3051 #endif 3052 #ifndef SQLITE_OMIT_AUTHORIZATION 3053 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 3054 #endif 3055 3056 assert( pTable ); 3057 3058 #ifndef SQLITE_OMIT_VIRTUALTABLE 3059 if( IsVirtual(pTable) ){ 3060 db->nSchemaLock++; 3061 rc = sqlite3VtabCallConnect(pParse, pTable); 3062 db->nSchemaLock--; 3063 return rc; 3064 } 3065 #endif 3066 3067 #ifndef SQLITE_OMIT_VIEW 3068 /* A positive nCol means the columns names for this view are 3069 ** already known. 3070 */ 3071 if( pTable->nCol>0 ) return 0; 3072 3073 /* A negative nCol is a special marker meaning that we are currently 3074 ** trying to compute the column names. If we enter this routine with 3075 ** a negative nCol, it means two or more views form a loop, like this: 3076 ** 3077 ** CREATE VIEW one AS SELECT * FROM two; 3078 ** CREATE VIEW two AS SELECT * FROM one; 3079 ** 3080 ** Actually, the error above is now caught prior to reaching this point. 3081 ** But the following test is still important as it does come up 3082 ** in the following: 3083 ** 3084 ** CREATE TABLE main.ex1(a); 3085 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 3086 ** SELECT * FROM temp.ex1; 3087 */ 3088 if( pTable->nCol<0 ){ 3089 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 3090 return 1; 3091 } 3092 assert( pTable->nCol>=0 ); 3093 3094 /* If we get this far, it means we need to compute the table names. 3095 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 3096 ** "*" elements in the results set of the view and will assign cursors 3097 ** to the elements of the FROM clause. But we do not want these changes 3098 ** to be permanent. So the computation is done on a copy of the SELECT 3099 ** statement that defines the view. 3100 */ 3101 assert( IsView(pTable) ); 3102 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); 3103 if( pSel ){ 3104 u8 eParseMode = pParse->eParseMode; 3105 pParse->eParseMode = PARSE_MODE_NORMAL; 3106 n = pParse->nTab; 3107 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 3108 pTable->nCol = -1; 3109 DisableLookaside; 3110 #ifndef SQLITE_OMIT_AUTHORIZATION 3111 xAuth = db->xAuth; 3112 db->xAuth = 0; 3113 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3114 db->xAuth = xAuth; 3115 #else 3116 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3117 #endif 3118 pParse->nTab = n; 3119 if( pSelTab==0 ){ 3120 pTable->nCol = 0; 3121 nErr++; 3122 }else if( pTable->pCheck ){ 3123 /* CREATE VIEW name(arglist) AS ... 3124 ** The names of the columns in the table are taken from 3125 ** arglist which is stored in pTable->pCheck. The pCheck field 3126 ** normally holds CHECK constraints on an ordinary table, but for 3127 ** a VIEW it holds the list of column names. 3128 */ 3129 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 3130 &pTable->nCol, &pTable->aCol); 3131 if( db->mallocFailed==0 3132 && pParse->nErr==0 3133 && pTable->nCol==pSel->pEList->nExpr 3134 ){ 3135 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 3136 SQLITE_AFF_NONE); 3137 } 3138 }else{ 3139 /* CREATE VIEW name AS... without an argument list. Construct 3140 ** the column names from the SELECT statement that defines the view. 3141 */ 3142 assert( pTable->aCol==0 ); 3143 pTable->nCol = pSelTab->nCol; 3144 pTable->aCol = pSelTab->aCol; 3145 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 3146 pSelTab->nCol = 0; 3147 pSelTab->aCol = 0; 3148 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 3149 } 3150 pTable->nNVCol = pTable->nCol; 3151 sqlite3DeleteTable(db, pSelTab); 3152 sqlite3SelectDelete(db, pSel); 3153 EnableLookaside; 3154 pParse->eParseMode = eParseMode; 3155 } else { 3156 nErr++; 3157 } 3158 pTable->pSchema->schemaFlags |= DB_UnresetViews; 3159 if( db->mallocFailed ){ 3160 sqlite3DeleteColumnNames(db, pTable); 3161 } 3162 #endif /* SQLITE_OMIT_VIEW */ 3163 return nErr; 3164 } 3165 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 3166 3167 #ifndef SQLITE_OMIT_VIEW 3168 /* 3169 ** Clear the column names from every VIEW in database idx. 3170 */ 3171 static void sqliteViewResetAll(sqlite3 *db, int idx){ 3172 HashElem *i; 3173 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 3174 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 3175 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 3176 Table *pTab = sqliteHashData(i); 3177 if( IsView(pTab) ){ 3178 sqlite3DeleteColumnNames(db, pTab); 3179 } 3180 } 3181 DbClearProperty(db, idx, DB_UnresetViews); 3182 } 3183 #else 3184 # define sqliteViewResetAll(A,B) 3185 #endif /* SQLITE_OMIT_VIEW */ 3186 3187 /* 3188 ** This function is called by the VDBE to adjust the internal schema 3189 ** used by SQLite when the btree layer moves a table root page. The 3190 ** root-page of a table or index in database iDb has changed from iFrom 3191 ** to iTo. 3192 ** 3193 ** Ticket #1728: The symbol table might still contain information 3194 ** on tables and/or indices that are the process of being deleted. 3195 ** If you are unlucky, one of those deleted indices or tables might 3196 ** have the same rootpage number as the real table or index that is 3197 ** being moved. So we cannot stop searching after the first match 3198 ** because the first match might be for one of the deleted indices 3199 ** or tables and not the table/index that is actually being moved. 3200 ** We must continue looping until all tables and indices with 3201 ** rootpage==iFrom have been converted to have a rootpage of iTo 3202 ** in order to be certain that we got the right one. 3203 */ 3204 #ifndef SQLITE_OMIT_AUTOVACUUM 3205 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 3206 HashElem *pElem; 3207 Hash *pHash; 3208 Db *pDb; 3209 3210 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3211 pDb = &db->aDb[iDb]; 3212 pHash = &pDb->pSchema->tblHash; 3213 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3214 Table *pTab = sqliteHashData(pElem); 3215 if( pTab->tnum==iFrom ){ 3216 pTab->tnum = iTo; 3217 } 3218 } 3219 pHash = &pDb->pSchema->idxHash; 3220 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3221 Index *pIdx = sqliteHashData(pElem); 3222 if( pIdx->tnum==iFrom ){ 3223 pIdx->tnum = iTo; 3224 } 3225 } 3226 } 3227 #endif 3228 3229 /* 3230 ** Write code to erase the table with root-page iTable from database iDb. 3231 ** Also write code to modify the sqlite_schema table and internal schema 3232 ** if a root-page of another table is moved by the btree-layer whilst 3233 ** erasing iTable (this can happen with an auto-vacuum database). 3234 */ 3235 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3236 Vdbe *v = sqlite3GetVdbe(pParse); 3237 int r1 = sqlite3GetTempReg(pParse); 3238 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3239 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3240 sqlite3MayAbort(pParse); 3241 #ifndef SQLITE_OMIT_AUTOVACUUM 3242 /* OP_Destroy stores an in integer r1. If this integer 3243 ** is non-zero, then it is the root page number of a table moved to 3244 ** location iTable. The following code modifies the sqlite_schema table to 3245 ** reflect this. 3246 ** 3247 ** The "#NNN" in the SQL is a special constant that means whatever value 3248 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3249 ** token for additional information. 3250 */ 3251 sqlite3NestedParse(pParse, 3252 "UPDATE %Q." LEGACY_SCHEMA_TABLE 3253 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3254 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3255 #endif 3256 sqlite3ReleaseTempReg(pParse, r1); 3257 } 3258 3259 /* 3260 ** Write VDBE code to erase table pTab and all associated indices on disk. 3261 ** Code to update the sqlite_schema tables and internal schema definitions 3262 ** in case a root-page belonging to another table is moved by the btree layer 3263 ** is also added (this can happen with an auto-vacuum database). 3264 */ 3265 static void destroyTable(Parse *pParse, Table *pTab){ 3266 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3267 ** is not defined), then it is important to call OP_Destroy on the 3268 ** table and index root-pages in order, starting with the numerically 3269 ** largest root-page number. This guarantees that none of the root-pages 3270 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3271 ** following were coded: 3272 ** 3273 ** OP_Destroy 4 0 3274 ** ... 3275 ** OP_Destroy 5 0 3276 ** 3277 ** and root page 5 happened to be the largest root-page number in the 3278 ** database, then root page 5 would be moved to page 4 by the 3279 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3280 ** a free-list page. 3281 */ 3282 Pgno iTab = pTab->tnum; 3283 Pgno iDestroyed = 0; 3284 3285 while( 1 ){ 3286 Index *pIdx; 3287 Pgno iLargest = 0; 3288 3289 if( iDestroyed==0 || iTab<iDestroyed ){ 3290 iLargest = iTab; 3291 } 3292 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3293 Pgno iIdx = pIdx->tnum; 3294 assert( pIdx->pSchema==pTab->pSchema ); 3295 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3296 iLargest = iIdx; 3297 } 3298 } 3299 if( iLargest==0 ){ 3300 return; 3301 }else{ 3302 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3303 assert( iDb>=0 && iDb<pParse->db->nDb ); 3304 destroyRootPage(pParse, iLargest, iDb); 3305 iDestroyed = iLargest; 3306 } 3307 } 3308 } 3309 3310 /* 3311 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3312 ** after a DROP INDEX or DROP TABLE command. 3313 */ 3314 static void sqlite3ClearStatTables( 3315 Parse *pParse, /* The parsing context */ 3316 int iDb, /* The database number */ 3317 const char *zType, /* "idx" or "tbl" */ 3318 const char *zName /* Name of index or table */ 3319 ){ 3320 int i; 3321 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3322 for(i=1; i<=4; i++){ 3323 char zTab[24]; 3324 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3325 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3326 sqlite3NestedParse(pParse, 3327 "DELETE FROM %Q.%s WHERE %s=%Q", 3328 zDbName, zTab, zType, zName 3329 ); 3330 } 3331 } 3332 } 3333 3334 /* 3335 ** Generate code to drop a table. 3336 */ 3337 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3338 Vdbe *v; 3339 sqlite3 *db = pParse->db; 3340 Trigger *pTrigger; 3341 Db *pDb = &db->aDb[iDb]; 3342 3343 v = sqlite3GetVdbe(pParse); 3344 assert( v!=0 ); 3345 sqlite3BeginWriteOperation(pParse, 1, iDb); 3346 3347 #ifndef SQLITE_OMIT_VIRTUALTABLE 3348 if( IsVirtual(pTab) ){ 3349 sqlite3VdbeAddOp0(v, OP_VBegin); 3350 } 3351 #endif 3352 3353 /* Drop all triggers associated with the table being dropped. Code 3354 ** is generated to remove entries from sqlite_schema and/or 3355 ** sqlite_temp_schema if required. 3356 */ 3357 pTrigger = sqlite3TriggerList(pParse, pTab); 3358 while( pTrigger ){ 3359 assert( pTrigger->pSchema==pTab->pSchema || 3360 pTrigger->pSchema==db->aDb[1].pSchema ); 3361 sqlite3DropTriggerPtr(pParse, pTrigger); 3362 pTrigger = pTrigger->pNext; 3363 } 3364 3365 #ifndef SQLITE_OMIT_AUTOINCREMENT 3366 /* Remove any entries of the sqlite_sequence table associated with 3367 ** the table being dropped. This is done before the table is dropped 3368 ** at the btree level, in case the sqlite_sequence table needs to 3369 ** move as a result of the drop (can happen in auto-vacuum mode). 3370 */ 3371 if( pTab->tabFlags & TF_Autoincrement ){ 3372 sqlite3NestedParse(pParse, 3373 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3374 pDb->zDbSName, pTab->zName 3375 ); 3376 } 3377 #endif 3378 3379 /* Drop all entries in the schema table that refer to the 3380 ** table. The program name loops through the schema table and deletes 3381 ** every row that refers to a table of the same name as the one being 3382 ** dropped. Triggers are handled separately because a trigger can be 3383 ** created in the temp database that refers to a table in another 3384 ** database. 3385 */ 3386 sqlite3NestedParse(pParse, 3387 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE 3388 " WHERE tbl_name=%Q and type!='trigger'", 3389 pDb->zDbSName, pTab->zName); 3390 if( !isView && !IsVirtual(pTab) ){ 3391 destroyTable(pParse, pTab); 3392 } 3393 3394 /* Remove the table entry from SQLite's internal schema and modify 3395 ** the schema cookie. 3396 */ 3397 if( IsVirtual(pTab) ){ 3398 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3399 sqlite3MayAbort(pParse); 3400 } 3401 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3402 sqlite3ChangeCookie(pParse, iDb); 3403 sqliteViewResetAll(db, iDb); 3404 } 3405 3406 /* 3407 ** Return TRUE if shadow tables should be read-only in the current 3408 ** context. 3409 */ 3410 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3411 #ifndef SQLITE_OMIT_VIRTUALTABLE 3412 if( (db->flags & SQLITE_Defensive)!=0 3413 && db->pVtabCtx==0 3414 && db->nVdbeExec==0 3415 && !sqlite3VtabInSync(db) 3416 ){ 3417 return 1; 3418 } 3419 #endif 3420 return 0; 3421 } 3422 3423 /* 3424 ** Return true if it is not allowed to drop the given table 3425 */ 3426 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3427 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3428 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3429 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3430 return 1; 3431 } 3432 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3433 return 1; 3434 } 3435 if( pTab->tabFlags & TF_Eponymous ){ 3436 return 1; 3437 } 3438 return 0; 3439 } 3440 3441 /* 3442 ** This routine is called to do the work of a DROP TABLE statement. 3443 ** pName is the name of the table to be dropped. 3444 */ 3445 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3446 Table *pTab; 3447 Vdbe *v; 3448 sqlite3 *db = pParse->db; 3449 int iDb; 3450 3451 if( db->mallocFailed ){ 3452 goto exit_drop_table; 3453 } 3454 assert( pParse->nErr==0 ); 3455 assert( pName->nSrc==1 ); 3456 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3457 if( noErr ) db->suppressErr++; 3458 assert( isView==0 || isView==LOCATE_VIEW ); 3459 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3460 if( noErr ) db->suppressErr--; 3461 3462 if( pTab==0 ){ 3463 if( noErr ){ 3464 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3465 sqlite3ForceNotReadOnly(pParse); 3466 } 3467 goto exit_drop_table; 3468 } 3469 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3470 assert( iDb>=0 && iDb<db->nDb ); 3471 3472 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3473 ** it is initialized. 3474 */ 3475 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3476 goto exit_drop_table; 3477 } 3478 #ifndef SQLITE_OMIT_AUTHORIZATION 3479 { 3480 int code; 3481 const char *zTab = SCHEMA_TABLE(iDb); 3482 const char *zDb = db->aDb[iDb].zDbSName; 3483 const char *zArg2 = 0; 3484 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3485 goto exit_drop_table; 3486 } 3487 if( isView ){ 3488 if( !OMIT_TEMPDB && iDb==1 ){ 3489 code = SQLITE_DROP_TEMP_VIEW; 3490 }else{ 3491 code = SQLITE_DROP_VIEW; 3492 } 3493 #ifndef SQLITE_OMIT_VIRTUALTABLE 3494 }else if( IsVirtual(pTab) ){ 3495 code = SQLITE_DROP_VTABLE; 3496 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3497 #endif 3498 }else{ 3499 if( !OMIT_TEMPDB && iDb==1 ){ 3500 code = SQLITE_DROP_TEMP_TABLE; 3501 }else{ 3502 code = SQLITE_DROP_TABLE; 3503 } 3504 } 3505 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3506 goto exit_drop_table; 3507 } 3508 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3509 goto exit_drop_table; 3510 } 3511 } 3512 #endif 3513 if( tableMayNotBeDropped(db, pTab) ){ 3514 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3515 goto exit_drop_table; 3516 } 3517 3518 #ifndef SQLITE_OMIT_VIEW 3519 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3520 ** on a table. 3521 */ 3522 if( isView && !IsView(pTab) ){ 3523 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3524 goto exit_drop_table; 3525 } 3526 if( !isView && IsView(pTab) ){ 3527 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3528 goto exit_drop_table; 3529 } 3530 #endif 3531 3532 /* Generate code to remove the table from the schema table 3533 ** on disk. 3534 */ 3535 v = sqlite3GetVdbe(pParse); 3536 if( v ){ 3537 sqlite3BeginWriteOperation(pParse, 1, iDb); 3538 if( !isView ){ 3539 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3540 sqlite3FkDropTable(pParse, pName, pTab); 3541 } 3542 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3543 } 3544 3545 exit_drop_table: 3546 sqlite3SrcListDelete(db, pName); 3547 } 3548 3549 /* 3550 ** This routine is called to create a new foreign key on the table 3551 ** currently under construction. pFromCol determines which columns 3552 ** in the current table point to the foreign key. If pFromCol==0 then 3553 ** connect the key to the last column inserted. pTo is the name of 3554 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3555 ** of tables in the parent pTo table. flags contains all 3556 ** information about the conflict resolution algorithms specified 3557 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3558 ** 3559 ** An FKey structure is created and added to the table currently 3560 ** under construction in the pParse->pNewTable field. 3561 ** 3562 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3563 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3564 */ 3565 void sqlite3CreateForeignKey( 3566 Parse *pParse, /* Parsing context */ 3567 ExprList *pFromCol, /* Columns in this table that point to other table */ 3568 Token *pTo, /* Name of the other table */ 3569 ExprList *pToCol, /* Columns in the other table */ 3570 int flags /* Conflict resolution algorithms. */ 3571 ){ 3572 sqlite3 *db = pParse->db; 3573 #ifndef SQLITE_OMIT_FOREIGN_KEY 3574 FKey *pFKey = 0; 3575 FKey *pNextTo; 3576 Table *p = pParse->pNewTable; 3577 i64 nByte; 3578 int i; 3579 int nCol; 3580 char *z; 3581 3582 assert( pTo!=0 ); 3583 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3584 if( pFromCol==0 ){ 3585 int iCol = p->nCol-1; 3586 if( NEVER(iCol<0) ) goto fk_end; 3587 if( pToCol && pToCol->nExpr!=1 ){ 3588 sqlite3ErrorMsg(pParse, "foreign key on %s" 3589 " should reference only one column of table %T", 3590 p->aCol[iCol].zCnName, pTo); 3591 goto fk_end; 3592 } 3593 nCol = 1; 3594 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3595 sqlite3ErrorMsg(pParse, 3596 "number of columns in foreign key does not match the number of " 3597 "columns in the referenced table"); 3598 goto fk_end; 3599 }else{ 3600 nCol = pFromCol->nExpr; 3601 } 3602 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3603 if( pToCol ){ 3604 for(i=0; i<pToCol->nExpr; i++){ 3605 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3606 } 3607 } 3608 pFKey = sqlite3DbMallocZero(db, nByte ); 3609 if( pFKey==0 ){ 3610 goto fk_end; 3611 } 3612 pFKey->pFrom = p; 3613 assert( IsOrdinaryTable(p) ); 3614 pFKey->pNextFrom = p->u.tab.pFKey; 3615 z = (char*)&pFKey->aCol[nCol]; 3616 pFKey->zTo = z; 3617 if( IN_RENAME_OBJECT ){ 3618 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3619 } 3620 memcpy(z, pTo->z, pTo->n); 3621 z[pTo->n] = 0; 3622 sqlite3Dequote(z); 3623 z += pTo->n+1; 3624 pFKey->nCol = nCol; 3625 if( pFromCol==0 ){ 3626 pFKey->aCol[0].iFrom = p->nCol-1; 3627 }else{ 3628 for(i=0; i<nCol; i++){ 3629 int j; 3630 for(j=0; j<p->nCol; j++){ 3631 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ 3632 pFKey->aCol[i].iFrom = j; 3633 break; 3634 } 3635 } 3636 if( j>=p->nCol ){ 3637 sqlite3ErrorMsg(pParse, 3638 "unknown column \"%s\" in foreign key definition", 3639 pFromCol->a[i].zEName); 3640 goto fk_end; 3641 } 3642 if( IN_RENAME_OBJECT ){ 3643 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3644 } 3645 } 3646 } 3647 if( pToCol ){ 3648 for(i=0; i<nCol; i++){ 3649 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3650 pFKey->aCol[i].zCol = z; 3651 if( IN_RENAME_OBJECT ){ 3652 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3653 } 3654 memcpy(z, pToCol->a[i].zEName, n); 3655 z[n] = 0; 3656 z += n+1; 3657 } 3658 } 3659 pFKey->isDeferred = 0; 3660 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3661 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3662 3663 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3664 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3665 pFKey->zTo, (void *)pFKey 3666 ); 3667 if( pNextTo==pFKey ){ 3668 sqlite3OomFault(db); 3669 goto fk_end; 3670 } 3671 if( pNextTo ){ 3672 assert( pNextTo->pPrevTo==0 ); 3673 pFKey->pNextTo = pNextTo; 3674 pNextTo->pPrevTo = pFKey; 3675 } 3676 3677 /* Link the foreign key to the table as the last step. 3678 */ 3679 assert( IsOrdinaryTable(p) ); 3680 p->u.tab.pFKey = pFKey; 3681 pFKey = 0; 3682 3683 fk_end: 3684 sqlite3DbFree(db, pFKey); 3685 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3686 sqlite3ExprListDelete(db, pFromCol); 3687 sqlite3ExprListDelete(db, pToCol); 3688 } 3689 3690 /* 3691 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3692 ** clause is seen as part of a foreign key definition. The isDeferred 3693 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3694 ** The behavior of the most recently created foreign key is adjusted 3695 ** accordingly. 3696 */ 3697 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3698 #ifndef SQLITE_OMIT_FOREIGN_KEY 3699 Table *pTab; 3700 FKey *pFKey; 3701 if( (pTab = pParse->pNewTable)==0 ) return; 3702 if( NEVER(!IsOrdinaryTable(pTab)) ) return; 3703 if( (pFKey = pTab->u.tab.pFKey)==0 ) return; 3704 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3705 pFKey->isDeferred = (u8)isDeferred; 3706 #endif 3707 } 3708 3709 /* 3710 ** Generate code that will erase and refill index *pIdx. This is 3711 ** used to initialize a newly created index or to recompute the 3712 ** content of an index in response to a REINDEX command. 3713 ** 3714 ** if memRootPage is not negative, it means that the index is newly 3715 ** created. The register specified by memRootPage contains the 3716 ** root page number of the index. If memRootPage is negative, then 3717 ** the index already exists and must be cleared before being refilled and 3718 ** the root page number of the index is taken from pIndex->tnum. 3719 */ 3720 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3721 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3722 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3723 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3724 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3725 int addr1; /* Address of top of loop */ 3726 int addr2; /* Address to jump to for next iteration */ 3727 Pgno tnum; /* Root page of index */ 3728 int iPartIdxLabel; /* Jump to this label to skip a row */ 3729 Vdbe *v; /* Generate code into this virtual machine */ 3730 KeyInfo *pKey; /* KeyInfo for index */ 3731 int regRecord; /* Register holding assembled index record */ 3732 sqlite3 *db = pParse->db; /* The database connection */ 3733 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3734 3735 #ifndef SQLITE_OMIT_AUTHORIZATION 3736 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3737 db->aDb[iDb].zDbSName ) ){ 3738 return; 3739 } 3740 #endif 3741 3742 /* Require a write-lock on the table to perform this operation */ 3743 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3744 3745 v = sqlite3GetVdbe(pParse); 3746 if( v==0 ) return; 3747 if( memRootPage>=0 ){ 3748 tnum = (Pgno)memRootPage; 3749 }else{ 3750 tnum = pIndex->tnum; 3751 } 3752 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3753 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3754 3755 /* Open the sorter cursor if we are to use one. */ 3756 iSorter = pParse->nTab++; 3757 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3758 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3759 3760 /* Open the table. Loop through all rows of the table, inserting index 3761 ** records into the sorter. */ 3762 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3763 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3764 regRecord = sqlite3GetTempReg(pParse); 3765 sqlite3MultiWrite(pParse); 3766 3767 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3768 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3769 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3770 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3771 sqlite3VdbeJumpHere(v, addr1); 3772 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3773 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3774 (char *)pKey, P4_KEYINFO); 3775 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3776 3777 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3778 if( IsUniqueIndex(pIndex) ){ 3779 int j2 = sqlite3VdbeGoto(v, 1); 3780 addr2 = sqlite3VdbeCurrentAddr(v); 3781 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3782 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3783 pIndex->nKeyCol); VdbeCoverage(v); 3784 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3785 sqlite3VdbeJumpHere(v, j2); 3786 }else{ 3787 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3788 ** abort. The exception is if one of the indexed expressions contains a 3789 ** user function that throws an exception when it is evaluated. But the 3790 ** overhead of adding a statement journal to a CREATE INDEX statement is 3791 ** very small (since most of the pages written do not contain content that 3792 ** needs to be restored if the statement aborts), so we call 3793 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3794 sqlite3MayAbort(pParse); 3795 addr2 = sqlite3VdbeCurrentAddr(v); 3796 } 3797 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3798 if( !pIndex->bAscKeyBug ){ 3799 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3800 ** faster by avoiding unnecessary seeks. But the optimization does 3801 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3802 ** with DESC primary keys, since those indexes have there keys in 3803 ** a different order from the main table. 3804 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3805 */ 3806 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3807 } 3808 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3809 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3810 sqlite3ReleaseTempReg(pParse, regRecord); 3811 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3812 sqlite3VdbeJumpHere(v, addr1); 3813 3814 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3815 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3816 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3817 } 3818 3819 /* 3820 ** Allocate heap space to hold an Index object with nCol columns. 3821 ** 3822 ** Increase the allocation size to provide an extra nExtra bytes 3823 ** of 8-byte aligned space after the Index object and return a 3824 ** pointer to this extra space in *ppExtra. 3825 */ 3826 Index *sqlite3AllocateIndexObject( 3827 sqlite3 *db, /* Database connection */ 3828 i16 nCol, /* Total number of columns in the index */ 3829 int nExtra, /* Number of bytes of extra space to alloc */ 3830 char **ppExtra /* Pointer to the "extra" space */ 3831 ){ 3832 Index *p; /* Allocated index object */ 3833 int nByte; /* Bytes of space for Index object + arrays */ 3834 3835 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3836 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3837 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3838 sizeof(i16)*nCol + /* Index.aiColumn */ 3839 sizeof(u8)*nCol); /* Index.aSortOrder */ 3840 p = sqlite3DbMallocZero(db, nByte + nExtra); 3841 if( p ){ 3842 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3843 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3844 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3845 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3846 p->aSortOrder = (u8*)pExtra; 3847 p->nColumn = nCol; 3848 p->nKeyCol = nCol - 1; 3849 *ppExtra = ((char*)p) + nByte; 3850 } 3851 return p; 3852 } 3853 3854 /* 3855 ** If expression list pList contains an expression that was parsed with 3856 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3857 ** pParse and return non-zero. Otherwise, return zero. 3858 */ 3859 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3860 if( pList ){ 3861 int i; 3862 for(i=0; i<pList->nExpr; i++){ 3863 if( pList->a[i].bNulls ){ 3864 u8 sf = pList->a[i].sortFlags; 3865 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3866 (sf==0 || sf==3) ? "FIRST" : "LAST" 3867 ); 3868 return 1; 3869 } 3870 } 3871 } 3872 return 0; 3873 } 3874 3875 /* 3876 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3877 ** and pTblList is the name of the table that is to be indexed. Both will 3878 ** be NULL for a primary key or an index that is created to satisfy a 3879 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3880 ** as the table to be indexed. pParse->pNewTable is a table that is 3881 ** currently being constructed by a CREATE TABLE statement. 3882 ** 3883 ** pList is a list of columns to be indexed. pList will be NULL if this 3884 ** is a primary key or unique-constraint on the most recent column added 3885 ** to the table currently under construction. 3886 */ 3887 void sqlite3CreateIndex( 3888 Parse *pParse, /* All information about this parse */ 3889 Token *pName1, /* First part of index name. May be NULL */ 3890 Token *pName2, /* Second part of index name. May be NULL */ 3891 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3892 ExprList *pList, /* A list of columns to be indexed */ 3893 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3894 Token *pStart, /* The CREATE token that begins this statement */ 3895 Expr *pPIWhere, /* WHERE clause for partial indices */ 3896 int sortOrder, /* Sort order of primary key when pList==NULL */ 3897 int ifNotExist, /* Omit error if index already exists */ 3898 u8 idxType /* The index type */ 3899 ){ 3900 Table *pTab = 0; /* Table to be indexed */ 3901 Index *pIndex = 0; /* The index to be created */ 3902 char *zName = 0; /* Name of the index */ 3903 int nName; /* Number of characters in zName */ 3904 int i, j; 3905 DbFixer sFix; /* For assigning database names to pTable */ 3906 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3907 sqlite3 *db = pParse->db; 3908 Db *pDb; /* The specific table containing the indexed database */ 3909 int iDb; /* Index of the database that is being written */ 3910 Token *pName = 0; /* Unqualified name of the index to create */ 3911 struct ExprList_item *pListItem; /* For looping over pList */ 3912 int nExtra = 0; /* Space allocated for zExtra[] */ 3913 int nExtraCol; /* Number of extra columns needed */ 3914 char *zExtra = 0; /* Extra space after the Index object */ 3915 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3916 3917 if( db->mallocFailed || pParse->nErr>0 ){ 3918 goto exit_create_index; 3919 } 3920 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3921 goto exit_create_index; 3922 } 3923 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3924 goto exit_create_index; 3925 } 3926 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3927 goto exit_create_index; 3928 } 3929 3930 /* 3931 ** Find the table that is to be indexed. Return early if not found. 3932 */ 3933 if( pTblName!=0 ){ 3934 3935 /* Use the two-part index name to determine the database 3936 ** to search for the table. 'Fix' the table name to this db 3937 ** before looking up the table. 3938 */ 3939 assert( pName1 && pName2 ); 3940 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3941 if( iDb<0 ) goto exit_create_index; 3942 assert( pName && pName->z ); 3943 3944 #ifndef SQLITE_OMIT_TEMPDB 3945 /* If the index name was unqualified, check if the table 3946 ** is a temp table. If so, set the database to 1. Do not do this 3947 ** if initialising a database schema. 3948 */ 3949 if( !db->init.busy ){ 3950 pTab = sqlite3SrcListLookup(pParse, pTblName); 3951 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3952 iDb = 1; 3953 } 3954 } 3955 #endif 3956 3957 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3958 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3959 /* Because the parser constructs pTblName from a single identifier, 3960 ** sqlite3FixSrcList can never fail. */ 3961 assert(0); 3962 } 3963 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3964 assert( db->mallocFailed==0 || pTab==0 ); 3965 if( pTab==0 ) goto exit_create_index; 3966 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3967 sqlite3ErrorMsg(pParse, 3968 "cannot create a TEMP index on non-TEMP table \"%s\"", 3969 pTab->zName); 3970 goto exit_create_index; 3971 } 3972 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3973 }else{ 3974 assert( pName==0 ); 3975 assert( pStart==0 ); 3976 pTab = pParse->pNewTable; 3977 if( !pTab ) goto exit_create_index; 3978 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3979 } 3980 pDb = &db->aDb[iDb]; 3981 3982 assert( pTab!=0 ); 3983 assert( pParse->nErr==0 ); 3984 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3985 && db->init.busy==0 3986 && pTblName!=0 3987 #if SQLITE_USER_AUTHENTICATION 3988 && sqlite3UserAuthTable(pTab->zName)==0 3989 #endif 3990 ){ 3991 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3992 goto exit_create_index; 3993 } 3994 #ifndef SQLITE_OMIT_VIEW 3995 if( IsView(pTab) ){ 3996 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3997 goto exit_create_index; 3998 } 3999 #endif 4000 #ifndef SQLITE_OMIT_VIRTUALTABLE 4001 if( IsVirtual(pTab) ){ 4002 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 4003 goto exit_create_index; 4004 } 4005 #endif 4006 4007 /* 4008 ** Find the name of the index. Make sure there is not already another 4009 ** index or table with the same name. 4010 ** 4011 ** Exception: If we are reading the names of permanent indices from the 4012 ** sqlite_schema table (because some other process changed the schema) and 4013 ** one of the index names collides with the name of a temporary table or 4014 ** index, then we will continue to process this index. 4015 ** 4016 ** If pName==0 it means that we are 4017 ** dealing with a primary key or UNIQUE constraint. We have to invent our 4018 ** own name. 4019 */ 4020 if( pName ){ 4021 zName = sqlite3NameFromToken(db, pName); 4022 if( zName==0 ) goto exit_create_index; 4023 assert( pName->z!=0 ); 4024 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 4025 goto exit_create_index; 4026 } 4027 if( !IN_RENAME_OBJECT ){ 4028 if( !db->init.busy ){ 4029 if( sqlite3FindTable(db, zName, 0)!=0 ){ 4030 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 4031 goto exit_create_index; 4032 } 4033 } 4034 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 4035 if( !ifNotExist ){ 4036 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 4037 }else{ 4038 assert( !db->init.busy ); 4039 sqlite3CodeVerifySchema(pParse, iDb); 4040 sqlite3ForceNotReadOnly(pParse); 4041 } 4042 goto exit_create_index; 4043 } 4044 } 4045 }else{ 4046 int n; 4047 Index *pLoop; 4048 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 4049 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 4050 if( zName==0 ){ 4051 goto exit_create_index; 4052 } 4053 4054 /* Automatic index names generated from within sqlite3_declare_vtab() 4055 ** must have names that are distinct from normal automatic index names. 4056 ** The following statement converts "sqlite3_autoindex..." into 4057 ** "sqlite3_butoindex..." in order to make the names distinct. 4058 ** The "vtab_err.test" test demonstrates the need of this statement. */ 4059 if( IN_SPECIAL_PARSE ) zName[7]++; 4060 } 4061 4062 /* Check for authorization to create an index. 4063 */ 4064 #ifndef SQLITE_OMIT_AUTHORIZATION 4065 if( !IN_RENAME_OBJECT ){ 4066 const char *zDb = pDb->zDbSName; 4067 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 4068 goto exit_create_index; 4069 } 4070 i = SQLITE_CREATE_INDEX; 4071 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 4072 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 4073 goto exit_create_index; 4074 } 4075 } 4076 #endif 4077 4078 /* If pList==0, it means this routine was called to make a primary 4079 ** key out of the last column added to the table under construction. 4080 ** So create a fake list to simulate this. 4081 */ 4082 if( pList==0 ){ 4083 Token prevCol; 4084 Column *pCol = &pTab->aCol[pTab->nCol-1]; 4085 pCol->colFlags |= COLFLAG_UNIQUE; 4086 sqlite3TokenInit(&prevCol, pCol->zCnName); 4087 pList = sqlite3ExprListAppend(pParse, 0, 4088 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 4089 if( pList==0 ) goto exit_create_index; 4090 assert( pList->nExpr==1 ); 4091 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 4092 }else{ 4093 sqlite3ExprListCheckLength(pParse, pList, "index"); 4094 if( pParse->nErr ) goto exit_create_index; 4095 } 4096 4097 /* Figure out how many bytes of space are required to store explicitly 4098 ** specified collation sequence names. 4099 */ 4100 for(i=0; i<pList->nExpr; i++){ 4101 Expr *pExpr = pList->a[i].pExpr; 4102 assert( pExpr!=0 ); 4103 if( pExpr->op==TK_COLLATE ){ 4104 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4105 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 4106 } 4107 } 4108 4109 /* 4110 ** Allocate the index structure. 4111 */ 4112 nName = sqlite3Strlen30(zName); 4113 nExtraCol = pPk ? pPk->nKeyCol : 1; 4114 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 4115 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 4116 nName + nExtra + 1, &zExtra); 4117 if( db->mallocFailed ){ 4118 goto exit_create_index; 4119 } 4120 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 4121 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 4122 pIndex->zName = zExtra; 4123 zExtra += nName + 1; 4124 memcpy(pIndex->zName, zName, nName+1); 4125 pIndex->pTable = pTab; 4126 pIndex->onError = (u8)onError; 4127 pIndex->uniqNotNull = onError!=OE_None; 4128 pIndex->idxType = idxType; 4129 pIndex->pSchema = db->aDb[iDb].pSchema; 4130 pIndex->nKeyCol = pList->nExpr; 4131 if( pPIWhere ){ 4132 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 4133 pIndex->pPartIdxWhere = pPIWhere; 4134 pPIWhere = 0; 4135 } 4136 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4137 4138 /* Check to see if we should honor DESC requests on index columns 4139 */ 4140 if( pDb->pSchema->file_format>=4 ){ 4141 sortOrderMask = -1; /* Honor DESC */ 4142 }else{ 4143 sortOrderMask = 0; /* Ignore DESC */ 4144 } 4145 4146 /* Analyze the list of expressions that form the terms of the index and 4147 ** report any errors. In the common case where the expression is exactly 4148 ** a table column, store that column in aiColumn[]. For general expressions, 4149 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 4150 ** 4151 ** TODO: Issue a warning if two or more columns of the index are identical. 4152 ** TODO: Issue a warning if the table primary key is used as part of the 4153 ** index key. 4154 */ 4155 pListItem = pList->a; 4156 if( IN_RENAME_OBJECT ){ 4157 pIndex->aColExpr = pList; 4158 pList = 0; 4159 } 4160 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 4161 Expr *pCExpr; /* The i-th index expression */ 4162 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 4163 const char *zColl; /* Collation sequence name */ 4164 4165 sqlite3StringToId(pListItem->pExpr); 4166 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 4167 if( pParse->nErr ) goto exit_create_index; 4168 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 4169 if( pCExpr->op!=TK_COLUMN ){ 4170 if( pTab==pParse->pNewTable ){ 4171 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 4172 "UNIQUE constraints"); 4173 goto exit_create_index; 4174 } 4175 if( pIndex->aColExpr==0 ){ 4176 pIndex->aColExpr = pList; 4177 pList = 0; 4178 } 4179 j = XN_EXPR; 4180 pIndex->aiColumn[i] = XN_EXPR; 4181 pIndex->uniqNotNull = 0; 4182 }else{ 4183 j = pCExpr->iColumn; 4184 assert( j<=0x7fff ); 4185 if( j<0 ){ 4186 j = pTab->iPKey; 4187 }else{ 4188 if( pTab->aCol[j].notNull==0 ){ 4189 pIndex->uniqNotNull = 0; 4190 } 4191 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 4192 pIndex->bHasVCol = 1; 4193 } 4194 } 4195 pIndex->aiColumn[i] = (i16)j; 4196 } 4197 zColl = 0; 4198 if( pListItem->pExpr->op==TK_COLLATE ){ 4199 int nColl; 4200 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); 4201 zColl = pListItem->pExpr->u.zToken; 4202 nColl = sqlite3Strlen30(zColl) + 1; 4203 assert( nExtra>=nColl ); 4204 memcpy(zExtra, zColl, nColl); 4205 zColl = zExtra; 4206 zExtra += nColl; 4207 nExtra -= nColl; 4208 }else if( j>=0 ){ 4209 zColl = sqlite3ColumnColl(&pTab->aCol[j]); 4210 } 4211 if( !zColl ) zColl = sqlite3StrBINARY; 4212 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 4213 goto exit_create_index; 4214 } 4215 pIndex->azColl[i] = zColl; 4216 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 4217 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 4218 } 4219 4220 /* Append the table key to the end of the index. For WITHOUT ROWID 4221 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 4222 ** normal tables (when pPk==0) this will be the rowid. 4223 */ 4224 if( pPk ){ 4225 for(j=0; j<pPk->nKeyCol; j++){ 4226 int x = pPk->aiColumn[j]; 4227 assert( x>=0 ); 4228 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 4229 pIndex->nColumn--; 4230 }else{ 4231 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 4232 pIndex->aiColumn[i] = x; 4233 pIndex->azColl[i] = pPk->azColl[j]; 4234 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 4235 i++; 4236 } 4237 } 4238 assert( i==pIndex->nColumn ); 4239 }else{ 4240 pIndex->aiColumn[i] = XN_ROWID; 4241 pIndex->azColl[i] = sqlite3StrBINARY; 4242 } 4243 sqlite3DefaultRowEst(pIndex); 4244 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4245 4246 /* If this index contains every column of its table, then mark 4247 ** it as a covering index */ 4248 assert( HasRowid(pTab) 4249 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4250 recomputeColumnsNotIndexed(pIndex); 4251 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4252 pIndex->isCovering = 1; 4253 for(j=0; j<pTab->nCol; j++){ 4254 if( j==pTab->iPKey ) continue; 4255 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4256 pIndex->isCovering = 0; 4257 break; 4258 } 4259 } 4260 4261 if( pTab==pParse->pNewTable ){ 4262 /* This routine has been called to create an automatic index as a 4263 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4264 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4265 ** i.e. one of: 4266 ** 4267 ** CREATE TABLE t(x PRIMARY KEY, y); 4268 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4269 ** 4270 ** Either way, check to see if the table already has such an index. If 4271 ** so, don't bother creating this one. This only applies to 4272 ** automatically created indices. Users can do as they wish with 4273 ** explicit indices. 4274 ** 4275 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4276 ** (and thus suppressing the second one) even if they have different 4277 ** sort orders. 4278 ** 4279 ** If there are different collating sequences or if the columns of 4280 ** the constraint occur in different orders, then the constraints are 4281 ** considered distinct and both result in separate indices. 4282 */ 4283 Index *pIdx; 4284 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4285 int k; 4286 assert( IsUniqueIndex(pIdx) ); 4287 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4288 assert( IsUniqueIndex(pIndex) ); 4289 4290 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4291 for(k=0; k<pIdx->nKeyCol; k++){ 4292 const char *z1; 4293 const char *z2; 4294 assert( pIdx->aiColumn[k]>=0 ); 4295 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4296 z1 = pIdx->azColl[k]; 4297 z2 = pIndex->azColl[k]; 4298 if( sqlite3StrICmp(z1, z2) ) break; 4299 } 4300 if( k==pIdx->nKeyCol ){ 4301 if( pIdx->onError!=pIndex->onError ){ 4302 /* This constraint creates the same index as a previous 4303 ** constraint specified somewhere in the CREATE TABLE statement. 4304 ** However the ON CONFLICT clauses are different. If both this 4305 ** constraint and the previous equivalent constraint have explicit 4306 ** ON CONFLICT clauses this is an error. Otherwise, use the 4307 ** explicitly specified behavior for the index. 4308 */ 4309 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4310 sqlite3ErrorMsg(pParse, 4311 "conflicting ON CONFLICT clauses specified", 0); 4312 } 4313 if( pIdx->onError==OE_Default ){ 4314 pIdx->onError = pIndex->onError; 4315 } 4316 } 4317 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4318 if( IN_RENAME_OBJECT ){ 4319 pIndex->pNext = pParse->pNewIndex; 4320 pParse->pNewIndex = pIndex; 4321 pIndex = 0; 4322 } 4323 goto exit_create_index; 4324 } 4325 } 4326 } 4327 4328 if( !IN_RENAME_OBJECT ){ 4329 4330 /* Link the new Index structure to its table and to the other 4331 ** in-memory database structures. 4332 */ 4333 assert( pParse->nErr==0 ); 4334 if( db->init.busy ){ 4335 Index *p; 4336 assert( !IN_SPECIAL_PARSE ); 4337 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4338 if( pTblName!=0 ){ 4339 pIndex->tnum = db->init.newTnum; 4340 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4341 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4342 pParse->rc = SQLITE_CORRUPT_BKPT; 4343 goto exit_create_index; 4344 } 4345 } 4346 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4347 pIndex->zName, pIndex); 4348 if( p ){ 4349 assert( p==pIndex ); /* Malloc must have failed */ 4350 sqlite3OomFault(db); 4351 goto exit_create_index; 4352 } 4353 db->mDbFlags |= DBFLAG_SchemaChange; 4354 } 4355 4356 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4357 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4358 ** emit code to allocate the index rootpage on disk and make an entry for 4359 ** the index in the sqlite_schema table and populate the index with 4360 ** content. But, do not do this if we are simply reading the sqlite_schema 4361 ** table to parse the schema, or if this index is the PRIMARY KEY index 4362 ** of a WITHOUT ROWID table. 4363 ** 4364 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4365 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4366 ** has just been created, it contains no data and the index initialization 4367 ** step can be skipped. 4368 */ 4369 else if( HasRowid(pTab) || pTblName!=0 ){ 4370 Vdbe *v; 4371 char *zStmt; 4372 int iMem = ++pParse->nMem; 4373 4374 v = sqlite3GetVdbe(pParse); 4375 if( v==0 ) goto exit_create_index; 4376 4377 sqlite3BeginWriteOperation(pParse, 1, iDb); 4378 4379 /* Create the rootpage for the index using CreateIndex. But before 4380 ** doing so, code a Noop instruction and store its address in 4381 ** Index.tnum. This is required in case this index is actually a 4382 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4383 ** that case the convertToWithoutRowidTable() routine will replace 4384 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4385 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4386 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4387 4388 /* Gather the complete text of the CREATE INDEX statement into 4389 ** the zStmt variable 4390 */ 4391 assert( pName!=0 || pStart==0 ); 4392 if( pStart ){ 4393 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4394 if( pName->z[n-1]==';' ) n--; 4395 /* A named index with an explicit CREATE INDEX statement */ 4396 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4397 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4398 }else{ 4399 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4400 /* zStmt = sqlite3MPrintf(""); */ 4401 zStmt = 0; 4402 } 4403 4404 /* Add an entry in sqlite_schema for this index 4405 */ 4406 sqlite3NestedParse(pParse, 4407 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4408 db->aDb[iDb].zDbSName, 4409 pIndex->zName, 4410 pTab->zName, 4411 iMem, 4412 zStmt 4413 ); 4414 sqlite3DbFree(db, zStmt); 4415 4416 /* Fill the index with data and reparse the schema. Code an OP_Expire 4417 ** to invalidate all pre-compiled statements. 4418 */ 4419 if( pTblName ){ 4420 sqlite3RefillIndex(pParse, pIndex, iMem); 4421 sqlite3ChangeCookie(pParse, iDb); 4422 sqlite3VdbeAddParseSchemaOp(v, iDb, 4423 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4424 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4425 } 4426 4427 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4428 } 4429 } 4430 if( db->init.busy || pTblName==0 ){ 4431 pIndex->pNext = pTab->pIndex; 4432 pTab->pIndex = pIndex; 4433 pIndex = 0; 4434 } 4435 else if( IN_RENAME_OBJECT ){ 4436 assert( pParse->pNewIndex==0 ); 4437 pParse->pNewIndex = pIndex; 4438 pIndex = 0; 4439 } 4440 4441 /* Clean up before exiting */ 4442 exit_create_index: 4443 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4444 if( pTab ){ 4445 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4446 ** The list was already ordered when this routine was entered, so at this 4447 ** point at most a single index (the newly added index) will be out of 4448 ** order. So we have to reorder at most one index. */ 4449 Index **ppFrom; 4450 Index *pThis; 4451 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4452 Index *pNext; 4453 if( pThis->onError!=OE_Replace ) continue; 4454 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4455 *ppFrom = pNext; 4456 pThis->pNext = pNext->pNext; 4457 pNext->pNext = pThis; 4458 ppFrom = &pNext->pNext; 4459 } 4460 break; 4461 } 4462 #ifdef SQLITE_DEBUG 4463 /* Verify that all REPLACE indexes really are now at the end 4464 ** of the index list. In other words, no other index type ever 4465 ** comes after a REPLACE index on the list. */ 4466 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4467 assert( pThis->onError!=OE_Replace 4468 || pThis->pNext==0 4469 || pThis->pNext->onError==OE_Replace ); 4470 } 4471 #endif 4472 } 4473 sqlite3ExprDelete(db, pPIWhere); 4474 sqlite3ExprListDelete(db, pList); 4475 sqlite3SrcListDelete(db, pTblName); 4476 sqlite3DbFree(db, zName); 4477 } 4478 4479 /* 4480 ** Fill the Index.aiRowEst[] array with default information - information 4481 ** to be used when we have not run the ANALYZE command. 4482 ** 4483 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4484 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4485 ** number of rows in the table that match any particular value of the 4486 ** first column of the index. aiRowEst[2] is an estimate of the number 4487 ** of rows that match any particular combination of the first 2 columns 4488 ** of the index. And so forth. It must always be the case that 4489 * 4490 ** aiRowEst[N]<=aiRowEst[N-1] 4491 ** aiRowEst[N]>=1 4492 ** 4493 ** Apart from that, we have little to go on besides intuition as to 4494 ** how aiRowEst[] should be initialized. The numbers generated here 4495 ** are based on typical values found in actual indices. 4496 */ 4497 void sqlite3DefaultRowEst(Index *pIdx){ 4498 /* 10, 9, 8, 7, 6 */ 4499 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4500 LogEst *a = pIdx->aiRowLogEst; 4501 LogEst x; 4502 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4503 int i; 4504 4505 /* Indexes with default row estimates should not have stat1 data */ 4506 assert( !pIdx->hasStat1 ); 4507 4508 /* Set the first entry (number of rows in the index) to the estimated 4509 ** number of rows in the table, or half the number of rows in the table 4510 ** for a partial index. 4511 ** 4512 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4513 ** table but other parts we are having to guess at, then do not let the 4514 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4515 ** Failure to do this can cause the indexes for which we do not have 4516 ** stat1 data to be ignored by the query planner. 4517 */ 4518 x = pIdx->pTable->nRowLogEst; 4519 assert( 99==sqlite3LogEst(1000) ); 4520 if( x<99 ){ 4521 pIdx->pTable->nRowLogEst = x = 99; 4522 } 4523 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4524 a[0] = x; 4525 4526 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4527 ** 6 and each subsequent value (if any) is 5. */ 4528 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4529 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4530 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4531 } 4532 4533 assert( 0==sqlite3LogEst(1) ); 4534 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4535 } 4536 4537 /* 4538 ** This routine will drop an existing named index. This routine 4539 ** implements the DROP INDEX statement. 4540 */ 4541 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4542 Index *pIndex; 4543 Vdbe *v; 4544 sqlite3 *db = pParse->db; 4545 int iDb; 4546 4547 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4548 if( db->mallocFailed ){ 4549 goto exit_drop_index; 4550 } 4551 assert( pName->nSrc==1 ); 4552 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4553 goto exit_drop_index; 4554 } 4555 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4556 if( pIndex==0 ){ 4557 if( !ifExists ){ 4558 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4559 }else{ 4560 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4561 sqlite3ForceNotReadOnly(pParse); 4562 } 4563 pParse->checkSchema = 1; 4564 goto exit_drop_index; 4565 } 4566 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4567 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4568 "or PRIMARY KEY constraint cannot be dropped", 0); 4569 goto exit_drop_index; 4570 } 4571 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4572 #ifndef SQLITE_OMIT_AUTHORIZATION 4573 { 4574 int code = SQLITE_DROP_INDEX; 4575 Table *pTab = pIndex->pTable; 4576 const char *zDb = db->aDb[iDb].zDbSName; 4577 const char *zTab = SCHEMA_TABLE(iDb); 4578 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4579 goto exit_drop_index; 4580 } 4581 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 4582 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4583 goto exit_drop_index; 4584 } 4585 } 4586 #endif 4587 4588 /* Generate code to remove the index and from the schema table */ 4589 v = sqlite3GetVdbe(pParse); 4590 if( v ){ 4591 sqlite3BeginWriteOperation(pParse, 1, iDb); 4592 sqlite3NestedParse(pParse, 4593 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4594 db->aDb[iDb].zDbSName, pIndex->zName 4595 ); 4596 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4597 sqlite3ChangeCookie(pParse, iDb); 4598 destroyRootPage(pParse, pIndex->tnum, iDb); 4599 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4600 } 4601 4602 exit_drop_index: 4603 sqlite3SrcListDelete(db, pName); 4604 } 4605 4606 /* 4607 ** pArray is a pointer to an array of objects. Each object in the 4608 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4609 ** to extend the array so that there is space for a new object at the end. 4610 ** 4611 ** When this function is called, *pnEntry contains the current size of 4612 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4613 ** in total). 4614 ** 4615 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4616 ** space allocated for the new object is zeroed, *pnEntry updated to 4617 ** reflect the new size of the array and a pointer to the new allocation 4618 ** returned. *pIdx is set to the index of the new array entry in this case. 4619 ** 4620 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4621 ** unchanged and a copy of pArray returned. 4622 */ 4623 void *sqlite3ArrayAllocate( 4624 sqlite3 *db, /* Connection to notify of malloc failures */ 4625 void *pArray, /* Array of objects. Might be reallocated */ 4626 int szEntry, /* Size of each object in the array */ 4627 int *pnEntry, /* Number of objects currently in use */ 4628 int *pIdx /* Write the index of a new slot here */ 4629 ){ 4630 char *z; 4631 sqlite3_int64 n = *pIdx = *pnEntry; 4632 if( (n & (n-1))==0 ){ 4633 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4634 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4635 if( pNew==0 ){ 4636 *pIdx = -1; 4637 return pArray; 4638 } 4639 pArray = pNew; 4640 } 4641 z = (char*)pArray; 4642 memset(&z[n * szEntry], 0, szEntry); 4643 ++*pnEntry; 4644 return pArray; 4645 } 4646 4647 /* 4648 ** Append a new element to the given IdList. Create a new IdList if 4649 ** need be. 4650 ** 4651 ** A new IdList is returned, or NULL if malloc() fails. 4652 */ 4653 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4654 sqlite3 *db = pParse->db; 4655 int i; 4656 if( pList==0 ){ 4657 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4658 if( pList==0 ) return 0; 4659 } 4660 pList->a = sqlite3ArrayAllocate( 4661 db, 4662 pList->a, 4663 sizeof(pList->a[0]), 4664 &pList->nId, 4665 &i 4666 ); 4667 if( i<0 ){ 4668 sqlite3IdListDelete(db, pList); 4669 return 0; 4670 } 4671 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4672 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4673 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4674 } 4675 return pList; 4676 } 4677 4678 /* 4679 ** Delete an IdList. 4680 */ 4681 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4682 int i; 4683 if( pList==0 ) return; 4684 for(i=0; i<pList->nId; i++){ 4685 sqlite3DbFree(db, pList->a[i].zName); 4686 } 4687 sqlite3DbFree(db, pList->a); 4688 sqlite3DbFreeNN(db, pList); 4689 } 4690 4691 /* 4692 ** Return the index in pList of the identifier named zId. Return -1 4693 ** if not found. 4694 */ 4695 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4696 int i; 4697 if( pList==0 ) return -1; 4698 for(i=0; i<pList->nId; i++){ 4699 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4700 } 4701 return -1; 4702 } 4703 4704 /* 4705 ** Maximum size of a SrcList object. 4706 ** The SrcList object is used to represent the FROM clause of a 4707 ** SELECT statement, and the query planner cannot deal with more 4708 ** than 64 tables in a join. So any value larger than 64 here 4709 ** is sufficient for most uses. Smaller values, like say 10, are 4710 ** appropriate for small and memory-limited applications. 4711 */ 4712 #ifndef SQLITE_MAX_SRCLIST 4713 # define SQLITE_MAX_SRCLIST 200 4714 #endif 4715 4716 /* 4717 ** Expand the space allocated for the given SrcList object by 4718 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4719 ** New slots are zeroed. 4720 ** 4721 ** For example, suppose a SrcList initially contains two entries: A,B. 4722 ** To append 3 new entries onto the end, do this: 4723 ** 4724 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4725 ** 4726 ** After the call above it would contain: A, B, nil, nil, nil. 4727 ** If the iStart argument had been 1 instead of 2, then the result 4728 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4729 ** the iStart value would be 0. The result then would 4730 ** be: nil, nil, nil, A, B. 4731 ** 4732 ** If a memory allocation fails or the SrcList becomes too large, leave 4733 ** the original SrcList unchanged, return NULL, and leave an error message 4734 ** in pParse. 4735 */ 4736 SrcList *sqlite3SrcListEnlarge( 4737 Parse *pParse, /* Parsing context into which errors are reported */ 4738 SrcList *pSrc, /* The SrcList to be enlarged */ 4739 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4740 int iStart /* Index in pSrc->a[] of first new slot */ 4741 ){ 4742 int i; 4743 4744 /* Sanity checking on calling parameters */ 4745 assert( iStart>=0 ); 4746 assert( nExtra>=1 ); 4747 assert( pSrc!=0 ); 4748 assert( iStart<=pSrc->nSrc ); 4749 4750 /* Allocate additional space if needed */ 4751 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4752 SrcList *pNew; 4753 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4754 sqlite3 *db = pParse->db; 4755 4756 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4757 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4758 SQLITE_MAX_SRCLIST); 4759 return 0; 4760 } 4761 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4762 pNew = sqlite3DbRealloc(db, pSrc, 4763 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4764 if( pNew==0 ){ 4765 assert( db->mallocFailed ); 4766 return 0; 4767 } 4768 pSrc = pNew; 4769 pSrc->nAlloc = nAlloc; 4770 } 4771 4772 /* Move existing slots that come after the newly inserted slots 4773 ** out of the way */ 4774 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4775 pSrc->a[i+nExtra] = pSrc->a[i]; 4776 } 4777 pSrc->nSrc += nExtra; 4778 4779 /* Zero the newly allocated slots */ 4780 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4781 for(i=iStart; i<iStart+nExtra; i++){ 4782 pSrc->a[i].iCursor = -1; 4783 } 4784 4785 /* Return a pointer to the enlarged SrcList */ 4786 return pSrc; 4787 } 4788 4789 4790 /* 4791 ** Append a new table name to the given SrcList. Create a new SrcList if 4792 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4793 ** 4794 ** A SrcList is returned, or NULL if there is an OOM error or if the 4795 ** SrcList grows to large. The returned 4796 ** SrcList might be the same as the SrcList that was input or it might be 4797 ** a new one. If an OOM error does occurs, then the prior value of pList 4798 ** that is input to this routine is automatically freed. 4799 ** 4800 ** If pDatabase is not null, it means that the table has an optional 4801 ** database name prefix. Like this: "database.table". The pDatabase 4802 ** points to the table name and the pTable points to the database name. 4803 ** The SrcList.a[].zName field is filled with the table name which might 4804 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4805 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4806 ** or with NULL if no database is specified. 4807 ** 4808 ** In other words, if call like this: 4809 ** 4810 ** sqlite3SrcListAppend(D,A,B,0); 4811 ** 4812 ** Then B is a table name and the database name is unspecified. If called 4813 ** like this: 4814 ** 4815 ** sqlite3SrcListAppend(D,A,B,C); 4816 ** 4817 ** Then C is the table name and B is the database name. If C is defined 4818 ** then so is B. In other words, we never have a case where: 4819 ** 4820 ** sqlite3SrcListAppend(D,A,0,C); 4821 ** 4822 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4823 ** before being added to the SrcList. 4824 */ 4825 SrcList *sqlite3SrcListAppend( 4826 Parse *pParse, /* Parsing context, in which errors are reported */ 4827 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4828 Token *pTable, /* Table to append */ 4829 Token *pDatabase /* Database of the table */ 4830 ){ 4831 SrcItem *pItem; 4832 sqlite3 *db; 4833 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4834 assert( pParse!=0 ); 4835 assert( pParse->db!=0 ); 4836 db = pParse->db; 4837 if( pList==0 ){ 4838 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4839 if( pList==0 ) return 0; 4840 pList->nAlloc = 1; 4841 pList->nSrc = 1; 4842 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4843 pList->a[0].iCursor = -1; 4844 }else{ 4845 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4846 if( pNew==0 ){ 4847 sqlite3SrcListDelete(db, pList); 4848 return 0; 4849 }else{ 4850 pList = pNew; 4851 } 4852 } 4853 pItem = &pList->a[pList->nSrc-1]; 4854 if( pDatabase && pDatabase->z==0 ){ 4855 pDatabase = 0; 4856 } 4857 if( pDatabase ){ 4858 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4859 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4860 }else{ 4861 pItem->zName = sqlite3NameFromToken(db, pTable); 4862 pItem->zDatabase = 0; 4863 } 4864 return pList; 4865 } 4866 4867 /* 4868 ** Assign VdbeCursor index numbers to all tables in a SrcList 4869 */ 4870 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4871 int i; 4872 SrcItem *pItem; 4873 assert( pList || pParse->db->mallocFailed ); 4874 if( ALWAYS(pList) ){ 4875 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4876 if( pItem->iCursor>=0 ) continue; 4877 pItem->iCursor = pParse->nTab++; 4878 if( pItem->pSelect ){ 4879 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4880 } 4881 } 4882 } 4883 } 4884 4885 /* 4886 ** Delete an entire SrcList including all its substructure. 4887 */ 4888 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4889 int i; 4890 SrcItem *pItem; 4891 if( pList==0 ) return; 4892 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4893 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4894 sqlite3DbFree(db, pItem->zName); 4895 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4896 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4897 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4898 sqlite3DeleteTable(db, pItem->pTab); 4899 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4900 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4901 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4902 } 4903 sqlite3DbFreeNN(db, pList); 4904 } 4905 4906 /* 4907 ** This routine is called by the parser to add a new term to the 4908 ** end of a growing FROM clause. The "p" parameter is the part of 4909 ** the FROM clause that has already been constructed. "p" is NULL 4910 ** if this is the first term of the FROM clause. pTable and pDatabase 4911 ** are the name of the table and database named in the FROM clause term. 4912 ** pDatabase is NULL if the database name qualifier is missing - the 4913 ** usual case. If the term has an alias, then pAlias points to the 4914 ** alias token. If the term is a subquery, then pSubquery is the 4915 ** SELECT statement that the subquery encodes. The pTable and 4916 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4917 ** parameters are the content of the ON and USING clauses. 4918 ** 4919 ** Return a new SrcList which encodes is the FROM with the new 4920 ** term added. 4921 */ 4922 SrcList *sqlite3SrcListAppendFromTerm( 4923 Parse *pParse, /* Parsing context */ 4924 SrcList *p, /* The left part of the FROM clause already seen */ 4925 Token *pTable, /* Name of the table to add to the FROM clause */ 4926 Token *pDatabase, /* Name of the database containing pTable */ 4927 Token *pAlias, /* The right-hand side of the AS subexpression */ 4928 Select *pSubquery, /* A subquery used in place of a table name */ 4929 Expr *pOn, /* The ON clause of a join */ 4930 IdList *pUsing /* The USING clause of a join */ 4931 ){ 4932 SrcItem *pItem; 4933 sqlite3 *db = pParse->db; 4934 if( !p && (pOn || pUsing) ){ 4935 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4936 (pOn ? "ON" : "USING") 4937 ); 4938 goto append_from_error; 4939 } 4940 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4941 if( p==0 ){ 4942 goto append_from_error; 4943 } 4944 assert( p->nSrc>0 ); 4945 pItem = &p->a[p->nSrc-1]; 4946 assert( (pTable==0)==(pDatabase==0) ); 4947 assert( pItem->zName==0 || pDatabase!=0 ); 4948 if( IN_RENAME_OBJECT && pItem->zName ){ 4949 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4950 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4951 } 4952 assert( pAlias!=0 ); 4953 if( pAlias->n ){ 4954 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4955 } 4956 pItem->pSelect = pSubquery; 4957 pItem->pOn = pOn; 4958 pItem->pUsing = pUsing; 4959 return p; 4960 4961 append_from_error: 4962 assert( p==0 ); 4963 sqlite3ExprDelete(db, pOn); 4964 sqlite3IdListDelete(db, pUsing); 4965 sqlite3SelectDelete(db, pSubquery); 4966 return 0; 4967 } 4968 4969 /* 4970 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4971 ** element of the source-list passed as the second argument. 4972 */ 4973 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4974 assert( pIndexedBy!=0 ); 4975 if( p && pIndexedBy->n>0 ){ 4976 SrcItem *pItem; 4977 assert( p->nSrc>0 ); 4978 pItem = &p->a[p->nSrc-1]; 4979 assert( pItem->fg.notIndexed==0 ); 4980 assert( pItem->fg.isIndexedBy==0 ); 4981 assert( pItem->fg.isTabFunc==0 ); 4982 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4983 /* A "NOT INDEXED" clause was supplied. See parse.y 4984 ** construct "indexed_opt" for details. */ 4985 pItem->fg.notIndexed = 1; 4986 }else{ 4987 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4988 pItem->fg.isIndexedBy = 1; 4989 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ 4990 } 4991 } 4992 } 4993 4994 /* 4995 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4996 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4997 ** are deleted by this function. 4998 */ 4999 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 5000 assert( p1 && p1->nSrc==1 ); 5001 if( p2 ){ 5002 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 5003 if( pNew==0 ){ 5004 sqlite3SrcListDelete(pParse->db, p2); 5005 }else{ 5006 p1 = pNew; 5007 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 5008 sqlite3DbFree(pParse->db, p2); 5009 } 5010 } 5011 return p1; 5012 } 5013 5014 /* 5015 ** Add the list of function arguments to the SrcList entry for a 5016 ** table-valued-function. 5017 */ 5018 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 5019 if( p ){ 5020 SrcItem *pItem = &p->a[p->nSrc-1]; 5021 assert( pItem->fg.notIndexed==0 ); 5022 assert( pItem->fg.isIndexedBy==0 ); 5023 assert( pItem->fg.isTabFunc==0 ); 5024 pItem->u1.pFuncArg = pList; 5025 pItem->fg.isTabFunc = 1; 5026 }else{ 5027 sqlite3ExprListDelete(pParse->db, pList); 5028 } 5029 } 5030 5031 /* 5032 ** When building up a FROM clause in the parser, the join operator 5033 ** is initially attached to the left operand. But the code generator 5034 ** expects the join operator to be on the right operand. This routine 5035 ** Shifts all join operators from left to right for an entire FROM 5036 ** clause. 5037 ** 5038 ** Example: Suppose the join is like this: 5039 ** 5040 ** A natural cross join B 5041 ** 5042 ** The operator is "natural cross join". The A and B operands are stored 5043 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 5044 ** operator with A. This routine shifts that operator over to B. 5045 */ 5046 void sqlite3SrcListShiftJoinType(SrcList *p){ 5047 if( p ){ 5048 int i; 5049 for(i=p->nSrc-1; i>0; i--){ 5050 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 5051 } 5052 p->a[0].fg.jointype = 0; 5053 } 5054 } 5055 5056 /* 5057 ** Generate VDBE code for a BEGIN statement. 5058 */ 5059 void sqlite3BeginTransaction(Parse *pParse, int type){ 5060 sqlite3 *db; 5061 Vdbe *v; 5062 int i; 5063 5064 assert( pParse!=0 ); 5065 db = pParse->db; 5066 assert( db!=0 ); 5067 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 5068 return; 5069 } 5070 v = sqlite3GetVdbe(pParse); 5071 if( !v ) return; 5072 if( type!=TK_DEFERRED ){ 5073 for(i=0; i<db->nDb; i++){ 5074 int eTxnType; 5075 Btree *pBt = db->aDb[i].pBt; 5076 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 5077 eTxnType = 0; /* Read txn */ 5078 }else if( type==TK_EXCLUSIVE ){ 5079 eTxnType = 2; /* Exclusive txn */ 5080 }else{ 5081 eTxnType = 1; /* Write txn */ 5082 } 5083 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 5084 sqlite3VdbeUsesBtree(v, i); 5085 } 5086 } 5087 sqlite3VdbeAddOp0(v, OP_AutoCommit); 5088 } 5089 5090 /* 5091 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 5092 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 5093 ** code is generated for a COMMIT. 5094 */ 5095 void sqlite3EndTransaction(Parse *pParse, int eType){ 5096 Vdbe *v; 5097 int isRollback; 5098 5099 assert( pParse!=0 ); 5100 assert( pParse->db!=0 ); 5101 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 5102 isRollback = eType==TK_ROLLBACK; 5103 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 5104 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 5105 return; 5106 } 5107 v = sqlite3GetVdbe(pParse); 5108 if( v ){ 5109 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 5110 } 5111 } 5112 5113 /* 5114 ** This function is called by the parser when it parses a command to create, 5115 ** release or rollback an SQL savepoint. 5116 */ 5117 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 5118 char *zName = sqlite3NameFromToken(pParse->db, pName); 5119 if( zName ){ 5120 Vdbe *v = sqlite3GetVdbe(pParse); 5121 #ifndef SQLITE_OMIT_AUTHORIZATION 5122 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 5123 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 5124 #endif 5125 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 5126 sqlite3DbFree(pParse->db, zName); 5127 return; 5128 } 5129 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 5130 } 5131 } 5132 5133 /* 5134 ** Make sure the TEMP database is open and available for use. Return 5135 ** the number of errors. Leave any error messages in the pParse structure. 5136 */ 5137 int sqlite3OpenTempDatabase(Parse *pParse){ 5138 sqlite3 *db = pParse->db; 5139 if( db->aDb[1].pBt==0 && !pParse->explain ){ 5140 int rc; 5141 Btree *pBt; 5142 static const int flags = 5143 SQLITE_OPEN_READWRITE | 5144 SQLITE_OPEN_CREATE | 5145 SQLITE_OPEN_EXCLUSIVE | 5146 SQLITE_OPEN_DELETEONCLOSE | 5147 SQLITE_OPEN_TEMP_DB; 5148 5149 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 5150 if( rc!=SQLITE_OK ){ 5151 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 5152 "file for storing temporary tables"); 5153 pParse->rc = rc; 5154 return 1; 5155 } 5156 db->aDb[1].pBt = pBt; 5157 assert( db->aDb[1].pSchema ); 5158 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 5159 sqlite3OomFault(db); 5160 return 1; 5161 } 5162 } 5163 return 0; 5164 } 5165 5166 /* 5167 ** Record the fact that the schema cookie will need to be verified 5168 ** for database iDb. The code to actually verify the schema cookie 5169 ** will occur at the end of the top-level VDBE and will be generated 5170 ** later, by sqlite3FinishCoding(). 5171 */ 5172 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 5173 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 5174 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 5175 assert( iDb<SQLITE_MAX_DB ); 5176 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 5177 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 5178 DbMaskSet(pToplevel->cookieMask, iDb); 5179 if( !OMIT_TEMPDB && iDb==1 ){ 5180 sqlite3OpenTempDatabase(pToplevel); 5181 } 5182 } 5183 } 5184 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 5185 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 5186 } 5187 5188 5189 /* 5190 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 5191 ** attached database. Otherwise, invoke it for the database named zDb only. 5192 */ 5193 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 5194 sqlite3 *db = pParse->db; 5195 int i; 5196 for(i=0; i<db->nDb; i++){ 5197 Db *pDb = &db->aDb[i]; 5198 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 5199 sqlite3CodeVerifySchema(pParse, i); 5200 } 5201 } 5202 } 5203 5204 /* 5205 ** Generate VDBE code that prepares for doing an operation that 5206 ** might change the database. 5207 ** 5208 ** This routine starts a new transaction if we are not already within 5209 ** a transaction. If we are already within a transaction, then a checkpoint 5210 ** is set if the setStatement parameter is true. A checkpoint should 5211 ** be set for operations that might fail (due to a constraint) part of 5212 ** the way through and which will need to undo some writes without having to 5213 ** rollback the whole transaction. For operations where all constraints 5214 ** can be checked before any changes are made to the database, it is never 5215 ** necessary to undo a write and the checkpoint should not be set. 5216 */ 5217 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 5218 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5219 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 5220 DbMaskSet(pToplevel->writeMask, iDb); 5221 pToplevel->isMultiWrite |= setStatement; 5222 } 5223 5224 /* 5225 ** Indicate that the statement currently under construction might write 5226 ** more than one entry (example: deleting one row then inserting another, 5227 ** inserting multiple rows in a table, or inserting a row and index entries.) 5228 ** If an abort occurs after some of these writes have completed, then it will 5229 ** be necessary to undo the completed writes. 5230 */ 5231 void sqlite3MultiWrite(Parse *pParse){ 5232 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5233 pToplevel->isMultiWrite = 1; 5234 } 5235 5236 /* 5237 ** The code generator calls this routine if is discovers that it is 5238 ** possible to abort a statement prior to completion. In order to 5239 ** perform this abort without corrupting the database, we need to make 5240 ** sure that the statement is protected by a statement transaction. 5241 ** 5242 ** Technically, we only need to set the mayAbort flag if the 5243 ** isMultiWrite flag was previously set. There is a time dependency 5244 ** such that the abort must occur after the multiwrite. This makes 5245 ** some statements involving the REPLACE conflict resolution algorithm 5246 ** go a little faster. But taking advantage of this time dependency 5247 ** makes it more difficult to prove that the code is correct (in 5248 ** particular, it prevents us from writing an effective 5249 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5250 ** to take the safe route and skip the optimization. 5251 */ 5252 void sqlite3MayAbort(Parse *pParse){ 5253 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5254 pToplevel->mayAbort = 1; 5255 } 5256 5257 /* 5258 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5259 ** error. The onError parameter determines which (if any) of the statement 5260 ** and/or current transaction is rolled back. 5261 */ 5262 void sqlite3HaltConstraint( 5263 Parse *pParse, /* Parsing context */ 5264 int errCode, /* extended error code */ 5265 int onError, /* Constraint type */ 5266 char *p4, /* Error message */ 5267 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5268 u8 p5Errmsg /* P5_ErrMsg type */ 5269 ){ 5270 Vdbe *v; 5271 assert( pParse->pVdbe!=0 ); 5272 v = sqlite3GetVdbe(pParse); 5273 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5274 if( onError==OE_Abort ){ 5275 sqlite3MayAbort(pParse); 5276 } 5277 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5278 sqlite3VdbeChangeP5(v, p5Errmsg); 5279 } 5280 5281 /* 5282 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5283 */ 5284 void sqlite3UniqueConstraint( 5285 Parse *pParse, /* Parsing context */ 5286 int onError, /* Constraint type */ 5287 Index *pIdx /* The index that triggers the constraint */ 5288 ){ 5289 char *zErr; 5290 int j; 5291 StrAccum errMsg; 5292 Table *pTab = pIdx->pTable; 5293 5294 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5295 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5296 if( pIdx->aColExpr ){ 5297 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5298 }else{ 5299 for(j=0; j<pIdx->nKeyCol; j++){ 5300 char *zCol; 5301 assert( pIdx->aiColumn[j]>=0 ); 5302 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; 5303 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5304 sqlite3_str_appendall(&errMsg, pTab->zName); 5305 sqlite3_str_append(&errMsg, ".", 1); 5306 sqlite3_str_appendall(&errMsg, zCol); 5307 } 5308 } 5309 zErr = sqlite3StrAccumFinish(&errMsg); 5310 sqlite3HaltConstraint(pParse, 5311 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5312 : SQLITE_CONSTRAINT_UNIQUE, 5313 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5314 } 5315 5316 5317 /* 5318 ** Code an OP_Halt due to non-unique rowid. 5319 */ 5320 void sqlite3RowidConstraint( 5321 Parse *pParse, /* Parsing context */ 5322 int onError, /* Conflict resolution algorithm */ 5323 Table *pTab /* The table with the non-unique rowid */ 5324 ){ 5325 char *zMsg; 5326 int rc; 5327 if( pTab->iPKey>=0 ){ 5328 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5329 pTab->aCol[pTab->iPKey].zCnName); 5330 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5331 }else{ 5332 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5333 rc = SQLITE_CONSTRAINT_ROWID; 5334 } 5335 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5336 P5_ConstraintUnique); 5337 } 5338 5339 /* 5340 ** Check to see if pIndex uses the collating sequence pColl. Return 5341 ** true if it does and false if it does not. 5342 */ 5343 #ifndef SQLITE_OMIT_REINDEX 5344 static int collationMatch(const char *zColl, Index *pIndex){ 5345 int i; 5346 assert( zColl!=0 ); 5347 for(i=0; i<pIndex->nColumn; i++){ 5348 const char *z = pIndex->azColl[i]; 5349 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5350 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5351 return 1; 5352 } 5353 } 5354 return 0; 5355 } 5356 #endif 5357 5358 /* 5359 ** Recompute all indices of pTab that use the collating sequence pColl. 5360 ** If pColl==0 then recompute all indices of pTab. 5361 */ 5362 #ifndef SQLITE_OMIT_REINDEX 5363 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5364 if( !IsVirtual(pTab) ){ 5365 Index *pIndex; /* An index associated with pTab */ 5366 5367 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5368 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5369 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5370 sqlite3BeginWriteOperation(pParse, 0, iDb); 5371 sqlite3RefillIndex(pParse, pIndex, -1); 5372 } 5373 } 5374 } 5375 } 5376 #endif 5377 5378 /* 5379 ** Recompute all indices of all tables in all databases where the 5380 ** indices use the collating sequence pColl. If pColl==0 then recompute 5381 ** all indices everywhere. 5382 */ 5383 #ifndef SQLITE_OMIT_REINDEX 5384 static void reindexDatabases(Parse *pParse, char const *zColl){ 5385 Db *pDb; /* A single database */ 5386 int iDb; /* The database index number */ 5387 sqlite3 *db = pParse->db; /* The database connection */ 5388 HashElem *k; /* For looping over tables in pDb */ 5389 Table *pTab; /* A table in the database */ 5390 5391 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5392 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5393 assert( pDb!=0 ); 5394 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5395 pTab = (Table*)sqliteHashData(k); 5396 reindexTable(pParse, pTab, zColl); 5397 } 5398 } 5399 } 5400 #endif 5401 5402 /* 5403 ** Generate code for the REINDEX command. 5404 ** 5405 ** REINDEX -- 1 5406 ** REINDEX <collation> -- 2 5407 ** REINDEX ?<database>.?<tablename> -- 3 5408 ** REINDEX ?<database>.?<indexname> -- 4 5409 ** 5410 ** Form 1 causes all indices in all attached databases to be rebuilt. 5411 ** Form 2 rebuilds all indices in all databases that use the named 5412 ** collating function. Forms 3 and 4 rebuild the named index or all 5413 ** indices associated with the named table. 5414 */ 5415 #ifndef SQLITE_OMIT_REINDEX 5416 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5417 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5418 char *z; /* Name of a table or index */ 5419 const char *zDb; /* Name of the database */ 5420 Table *pTab; /* A table in the database */ 5421 Index *pIndex; /* An index associated with pTab */ 5422 int iDb; /* The database index number */ 5423 sqlite3 *db = pParse->db; /* The database connection */ 5424 Token *pObjName; /* Name of the table or index to be reindexed */ 5425 5426 /* Read the database schema. If an error occurs, leave an error message 5427 ** and code in pParse and return NULL. */ 5428 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5429 return; 5430 } 5431 5432 if( pName1==0 ){ 5433 reindexDatabases(pParse, 0); 5434 return; 5435 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5436 char *zColl; 5437 assert( pName1->z ); 5438 zColl = sqlite3NameFromToken(pParse->db, pName1); 5439 if( !zColl ) return; 5440 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5441 if( pColl ){ 5442 reindexDatabases(pParse, zColl); 5443 sqlite3DbFree(db, zColl); 5444 return; 5445 } 5446 sqlite3DbFree(db, zColl); 5447 } 5448 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5449 if( iDb<0 ) return; 5450 z = sqlite3NameFromToken(db, pObjName); 5451 if( z==0 ) return; 5452 zDb = db->aDb[iDb].zDbSName; 5453 pTab = sqlite3FindTable(db, z, zDb); 5454 if( pTab ){ 5455 reindexTable(pParse, pTab, 0); 5456 sqlite3DbFree(db, z); 5457 return; 5458 } 5459 pIndex = sqlite3FindIndex(db, z, zDb); 5460 sqlite3DbFree(db, z); 5461 if( pIndex ){ 5462 sqlite3BeginWriteOperation(pParse, 0, iDb); 5463 sqlite3RefillIndex(pParse, pIndex, -1); 5464 return; 5465 } 5466 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5467 } 5468 #endif 5469 5470 /* 5471 ** Return a KeyInfo structure that is appropriate for the given Index. 5472 ** 5473 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5474 ** when it has finished using it. 5475 */ 5476 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5477 int i; 5478 int nCol = pIdx->nColumn; 5479 int nKey = pIdx->nKeyCol; 5480 KeyInfo *pKey; 5481 if( pParse->nErr ) return 0; 5482 if( pIdx->uniqNotNull ){ 5483 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5484 }else{ 5485 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5486 } 5487 if( pKey ){ 5488 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5489 for(i=0; i<nCol; i++){ 5490 const char *zColl = pIdx->azColl[i]; 5491 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5492 sqlite3LocateCollSeq(pParse, zColl); 5493 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5494 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5495 } 5496 if( pParse->nErr ){ 5497 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5498 if( pIdx->bNoQuery==0 ){ 5499 /* Deactivate the index because it contains an unknown collating 5500 ** sequence. The only way to reactive the index is to reload the 5501 ** schema. Adding the missing collating sequence later does not 5502 ** reactive the index. The application had the chance to register 5503 ** the missing index using the collation-needed callback. For 5504 ** simplicity, SQLite will not give the application a second chance. 5505 */ 5506 pIdx->bNoQuery = 1; 5507 pParse->rc = SQLITE_ERROR_RETRY; 5508 } 5509 sqlite3KeyInfoUnref(pKey); 5510 pKey = 0; 5511 } 5512 } 5513 return pKey; 5514 } 5515 5516 #ifndef SQLITE_OMIT_CTE 5517 /* 5518 ** Create a new CTE object 5519 */ 5520 Cte *sqlite3CteNew( 5521 Parse *pParse, /* Parsing context */ 5522 Token *pName, /* Name of the common-table */ 5523 ExprList *pArglist, /* Optional column name list for the table */ 5524 Select *pQuery, /* Query used to initialize the table */ 5525 u8 eM10d /* The MATERIALIZED flag */ 5526 ){ 5527 Cte *pNew; 5528 sqlite3 *db = pParse->db; 5529 5530 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5531 assert( pNew!=0 || db->mallocFailed ); 5532 5533 if( db->mallocFailed ){ 5534 sqlite3ExprListDelete(db, pArglist); 5535 sqlite3SelectDelete(db, pQuery); 5536 }else{ 5537 pNew->pSelect = pQuery; 5538 pNew->pCols = pArglist; 5539 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5540 pNew->eM10d = eM10d; 5541 } 5542 return pNew; 5543 } 5544 5545 /* 5546 ** Clear information from a Cte object, but do not deallocate storage 5547 ** for the object itself. 5548 */ 5549 static void cteClear(sqlite3 *db, Cte *pCte){ 5550 assert( pCte!=0 ); 5551 sqlite3ExprListDelete(db, pCte->pCols); 5552 sqlite3SelectDelete(db, pCte->pSelect); 5553 sqlite3DbFree(db, pCte->zName); 5554 } 5555 5556 /* 5557 ** Free the contents of the CTE object passed as the second argument. 5558 */ 5559 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5560 assert( pCte!=0 ); 5561 cteClear(db, pCte); 5562 sqlite3DbFree(db, pCte); 5563 } 5564 5565 /* 5566 ** This routine is invoked once per CTE by the parser while parsing a 5567 ** WITH clause. The CTE described by teh third argument is added to 5568 ** the WITH clause of the second argument. If the second argument is 5569 ** NULL, then a new WITH argument is created. 5570 */ 5571 With *sqlite3WithAdd( 5572 Parse *pParse, /* Parsing context */ 5573 With *pWith, /* Existing WITH clause, or NULL */ 5574 Cte *pCte /* CTE to add to the WITH clause */ 5575 ){ 5576 sqlite3 *db = pParse->db; 5577 With *pNew; 5578 char *zName; 5579 5580 if( pCte==0 ){ 5581 return pWith; 5582 } 5583 5584 /* Check that the CTE name is unique within this WITH clause. If 5585 ** not, store an error in the Parse structure. */ 5586 zName = pCte->zName; 5587 if( zName && pWith ){ 5588 int i; 5589 for(i=0; i<pWith->nCte; i++){ 5590 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5591 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5592 } 5593 } 5594 } 5595 5596 if( pWith ){ 5597 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5598 pNew = sqlite3DbRealloc(db, pWith, nByte); 5599 }else{ 5600 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5601 } 5602 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5603 5604 if( db->mallocFailed ){ 5605 sqlite3CteDelete(db, pCte); 5606 pNew = pWith; 5607 }else{ 5608 pNew->a[pNew->nCte++] = *pCte; 5609 sqlite3DbFree(db, pCte); 5610 } 5611 5612 return pNew; 5613 } 5614 5615 /* 5616 ** Free the contents of the With object passed as the second argument. 5617 */ 5618 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5619 if( pWith ){ 5620 int i; 5621 for(i=0; i<pWith->nCte; i++){ 5622 cteClear(db, &pWith->a[i]); 5623 } 5624 sqlite3DbFree(db, pWith); 5625 } 5626 } 5627 #endif /* !defined(SQLITE_OMIT_CTE) */ 5628