1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 sqlite3OomFault(pToplevel->db); 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 int isView, /* True if looking for a VIEW rather than a TABLE */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = isView ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( zDbase ){ 368 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 369 }else{ 370 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 371 } 372 pParse->checkSchema = 1; 373 } 374 375 return p; 376 } 377 378 /* 379 ** Locate the table identified by *p. 380 ** 381 ** This is a wrapper around sqlite3LocateTable(). The difference between 382 ** sqlite3LocateTable() and this function is that this function restricts 383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 384 ** non-NULL if it is part of a view or trigger program definition. See 385 ** sqlite3FixSrcList() for details. 386 */ 387 Table *sqlite3LocateTableItem( 388 Parse *pParse, 389 int isView, 390 struct SrcList_item *p 391 ){ 392 const char *zDb; 393 assert( p->pSchema==0 || p->zDatabase==0 ); 394 if( p->pSchema ){ 395 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 396 zDb = pParse->db->aDb[iDb].zName; 397 }else{ 398 zDb = p->zDatabase; 399 } 400 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 401 } 402 403 /* 404 ** Locate the in-memory structure that describes 405 ** a particular index given the name of that index 406 ** and the name of the database that contains the index. 407 ** Return NULL if not found. 408 ** 409 ** If zDatabase is 0, all databases are searched for the 410 ** table and the first matching index is returned. (No checking 411 ** for duplicate index names is done.) The search order is 412 ** TEMP first, then MAIN, then any auxiliary databases added 413 ** using the ATTACH command. 414 */ 415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 416 Index *p = 0; 417 int i; 418 /* All mutexes are required for schema access. Make sure we hold them. */ 419 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 420 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 421 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 422 Schema *pSchema = db->aDb[j].pSchema; 423 assert( pSchema ); 424 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 425 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 426 p = sqlite3HashFind(&pSchema->idxHash, zName); 427 if( p ) break; 428 } 429 return p; 430 } 431 432 /* 433 ** Reclaim the memory used by an index 434 */ 435 static void freeIndex(sqlite3 *db, Index *p){ 436 #ifndef SQLITE_OMIT_ANALYZE 437 sqlite3DeleteIndexSamples(db, p); 438 #endif 439 sqlite3ExprDelete(db, p->pPartIdxWhere); 440 sqlite3ExprListDelete(db, p->aColExpr); 441 sqlite3DbFree(db, p->zColAff); 442 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 sqlite3_free(p->aiRowEst); 445 #endif 446 sqlite3DbFree(db, p); 447 } 448 449 /* 450 ** For the index called zIdxName which is found in the database iDb, 451 ** unlike that index from its Table then remove the index from 452 ** the index hash table and free all memory structures associated 453 ** with the index. 454 */ 455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 456 Index *pIndex; 457 Hash *pHash; 458 459 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 460 pHash = &db->aDb[iDb].pSchema->idxHash; 461 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 462 if( ALWAYS(pIndex) ){ 463 if( pIndex->pTable->pIndex==pIndex ){ 464 pIndex->pTable->pIndex = pIndex->pNext; 465 }else{ 466 Index *p; 467 /* Justification of ALWAYS(); The index must be on the list of 468 ** indices. */ 469 p = pIndex->pTable->pIndex; 470 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 471 if( ALWAYS(p && p->pNext==pIndex) ){ 472 p->pNext = pIndex->pNext; 473 } 474 } 475 freeIndex(db, pIndex); 476 } 477 db->flags |= SQLITE_InternChanges; 478 } 479 480 /* 481 ** Look through the list of open database files in db->aDb[] and if 482 ** any have been closed, remove them from the list. Reallocate the 483 ** db->aDb[] structure to a smaller size, if possible. 484 ** 485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 486 ** are never candidates for being collapsed. 487 */ 488 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 489 int i, j; 490 for(i=j=2; i<db->nDb; i++){ 491 struct Db *pDb = &db->aDb[i]; 492 if( pDb->pBt==0 ){ 493 sqlite3DbFree(db, pDb->zName); 494 pDb->zName = 0; 495 continue; 496 } 497 if( j<i ){ 498 db->aDb[j] = db->aDb[i]; 499 } 500 j++; 501 } 502 db->nDb = j; 503 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 504 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 505 sqlite3DbFree(db, db->aDb); 506 db->aDb = db->aDbStatic; 507 } 508 } 509 510 /* 511 ** Reset the schema for the database at index iDb. Also reset the 512 ** TEMP schema. 513 */ 514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 515 Db *pDb; 516 assert( iDb<db->nDb ); 517 518 /* Case 1: Reset the single schema identified by iDb */ 519 pDb = &db->aDb[iDb]; 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 assert( pDb->pSchema!=0 ); 522 sqlite3SchemaClear(pDb->pSchema); 523 524 /* If any database other than TEMP is reset, then also reset TEMP 525 ** since TEMP might be holding triggers that reference tables in the 526 ** other database. 527 */ 528 if( iDb!=1 ){ 529 pDb = &db->aDb[1]; 530 assert( pDb->pSchema!=0 ); 531 sqlite3SchemaClear(pDb->pSchema); 532 } 533 return; 534 } 535 536 /* 537 ** Erase all schema information from all attached databases (including 538 ** "main" and "temp") for a single database connection. 539 */ 540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 541 int i; 542 sqlite3BtreeEnterAll(db); 543 for(i=0; i<db->nDb; i++){ 544 Db *pDb = &db->aDb[i]; 545 if( pDb->pSchema ){ 546 sqlite3SchemaClear(pDb->pSchema); 547 } 548 } 549 db->flags &= ~SQLITE_InternChanges; 550 sqlite3VtabUnlockList(db); 551 sqlite3BtreeLeaveAll(db); 552 sqlite3CollapseDatabaseArray(db); 553 } 554 555 /* 556 ** This routine is called when a commit occurs. 557 */ 558 void sqlite3CommitInternalChanges(sqlite3 *db){ 559 db->flags &= ~SQLITE_InternChanges; 560 } 561 562 /* 563 ** Delete memory allocated for the column names of a table or view (the 564 ** Table.aCol[] array). 565 */ 566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 567 int i; 568 Column *pCol; 569 assert( pTable!=0 ); 570 if( (pCol = pTable->aCol)!=0 ){ 571 for(i=0; i<pTable->nCol; i++, pCol++){ 572 sqlite3DbFree(db, pCol->zName); 573 sqlite3ExprDelete(db, pCol->pDflt); 574 sqlite3DbFree(db, pCol->zColl); 575 } 576 sqlite3DbFree(db, pTable->aCol); 577 } 578 } 579 580 /* 581 ** Remove the memory data structures associated with the given 582 ** Table. No changes are made to disk by this routine. 583 ** 584 ** This routine just deletes the data structure. It does not unlink 585 ** the table data structure from the hash table. But it does destroy 586 ** memory structures of the indices and foreign keys associated with 587 ** the table. 588 ** 589 ** The db parameter is optional. It is needed if the Table object 590 ** contains lookaside memory. (Table objects in the schema do not use 591 ** lookaside memory, but some ephemeral Table objects do.) Or the 592 ** db parameter can be used with db->pnBytesFreed to measure the memory 593 ** used by the Table object. 594 */ 595 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 596 Index *pIndex, *pNext; 597 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 598 599 assert( !pTable || pTable->nRef>0 ); 600 601 /* Do not delete the table until the reference count reaches zero. */ 602 if( !pTable ) return; 603 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 604 605 /* Record the number of outstanding lookaside allocations in schema Tables 606 ** prior to doing any free() operations. Since schema Tables do not use 607 ** lookaside, this number should not change. */ 608 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 609 db->lookaside.nOut : 0 ); 610 611 /* Delete all indices associated with this table. */ 612 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 613 pNext = pIndex->pNext; 614 assert( pIndex->pSchema==pTable->pSchema ); 615 if( !db || db->pnBytesFreed==0 ){ 616 char *zName = pIndex->zName; 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 618 &pIndex->pSchema->idxHash, zName, 0 619 ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 621 assert( pOld==pIndex || pOld==0 ); 622 } 623 freeIndex(db, pIndex); 624 } 625 626 /* Delete any foreign keys attached to this table. */ 627 sqlite3FkDelete(db, pTable); 628 629 /* Delete the Table structure itself. 630 */ 631 sqlite3DeleteColumnNames(db, pTable); 632 sqlite3DbFree(db, pTable->zName); 633 sqlite3DbFree(db, pTable->zColAff); 634 sqlite3SelectDelete(db, pTable->pSelect); 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #ifndef SQLITE_OMIT_VIRTUALTABLE 637 sqlite3VtabClear(db, pTable); 638 #endif 639 sqlite3DbFree(db, pTable); 640 641 /* Verify that no lookaside memory was used by schema tables */ 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 643 } 644 645 /* 646 ** Unlink the given table from the hash tables and the delete the 647 ** table structure with all its indices and foreign keys. 648 */ 649 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 650 Table *p; 651 Db *pDb; 652 653 assert( db!=0 ); 654 assert( iDb>=0 && iDb<db->nDb ); 655 assert( zTabName ); 656 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 657 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 658 pDb = &db->aDb[iDb]; 659 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 660 sqlite3DeleteTable(db, p); 661 db->flags |= SQLITE_InternChanges; 662 } 663 664 /* 665 ** Given a token, return a string that consists of the text of that 666 ** token. Space to hold the returned string 667 ** is obtained from sqliteMalloc() and must be freed by the calling 668 ** function. 669 ** 670 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 671 ** surround the body of the token are removed. 672 ** 673 ** Tokens are often just pointers into the original SQL text and so 674 ** are not \000 terminated and are not persistent. The returned string 675 ** is \000 terminated and is persistent. 676 */ 677 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 678 char *zName; 679 if( pName ){ 680 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 681 sqlite3Dequote(zName); 682 }else{ 683 zName = 0; 684 } 685 return zName; 686 } 687 688 /* 689 ** Open the sqlite_master table stored in database number iDb for 690 ** writing. The table is opened using cursor 0. 691 */ 692 void sqlite3OpenMasterTable(Parse *p, int iDb){ 693 Vdbe *v = sqlite3GetVdbe(p); 694 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 695 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 696 if( p->nTab==0 ){ 697 p->nTab = 1; 698 } 699 } 700 701 /* 702 ** Parameter zName points to a nul-terminated buffer containing the name 703 ** of a database ("main", "temp" or the name of an attached db). This 704 ** function returns the index of the named database in db->aDb[], or 705 ** -1 if the named db cannot be found. 706 */ 707 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 708 int i = -1; /* Database number */ 709 if( zName ){ 710 Db *pDb; 711 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 712 if( 0==sqlite3StrICmp(pDb->zName, zName) ) break; 713 } 714 } 715 return i; 716 } 717 718 /* 719 ** The token *pName contains the name of a database (either "main" or 720 ** "temp" or the name of an attached db). This routine returns the 721 ** index of the named database in db->aDb[], or -1 if the named db 722 ** does not exist. 723 */ 724 int sqlite3FindDb(sqlite3 *db, Token *pName){ 725 int i; /* Database number */ 726 char *zName; /* Name we are searching for */ 727 zName = sqlite3NameFromToken(db, pName); 728 i = sqlite3FindDbName(db, zName); 729 sqlite3DbFree(db, zName); 730 return i; 731 } 732 733 /* The table or view or trigger name is passed to this routine via tokens 734 ** pName1 and pName2. If the table name was fully qualified, for example: 735 ** 736 ** CREATE TABLE xxx.yyy (...); 737 ** 738 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 739 ** the table name is not fully qualified, i.e.: 740 ** 741 ** CREATE TABLE yyy(...); 742 ** 743 ** Then pName1 is set to "yyy" and pName2 is "". 744 ** 745 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 746 ** pName2) that stores the unqualified table name. The index of the 747 ** database "xxx" is returned. 748 */ 749 int sqlite3TwoPartName( 750 Parse *pParse, /* Parsing and code generating context */ 751 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 752 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 753 Token **pUnqual /* Write the unqualified object name here */ 754 ){ 755 int iDb; /* Database holding the object */ 756 sqlite3 *db = pParse->db; 757 758 assert( pName2!=0 ); 759 if( pName2->n>0 ){ 760 if( db->init.busy ) { 761 sqlite3ErrorMsg(pParse, "corrupt database"); 762 return -1; 763 } 764 *pUnqual = pName2; 765 iDb = sqlite3FindDb(db, pName1); 766 if( iDb<0 ){ 767 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 768 return -1; 769 } 770 }else{ 771 assert( db->init.iDb==0 || db->init.busy ); 772 iDb = db->init.iDb; 773 *pUnqual = pName1; 774 } 775 return iDb; 776 } 777 778 /* 779 ** This routine is used to check if the UTF-8 string zName is a legal 780 ** unqualified name for a new schema object (table, index, view or 781 ** trigger). All names are legal except those that begin with the string 782 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 783 ** is reserved for internal use. 784 */ 785 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 786 if( !pParse->db->init.busy && pParse->nested==0 787 && (pParse->db->flags & SQLITE_WriteSchema)==0 788 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 789 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 790 return SQLITE_ERROR; 791 } 792 return SQLITE_OK; 793 } 794 795 /* 796 ** Return the PRIMARY KEY index of a table 797 */ 798 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 799 Index *p; 800 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 801 return p; 802 } 803 804 /* 805 ** Return the column of index pIdx that corresponds to table 806 ** column iCol. Return -1 if not found. 807 */ 808 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 809 int i; 810 for(i=0; i<pIdx->nColumn; i++){ 811 if( iCol==pIdx->aiColumn[i] ) return i; 812 } 813 return -1; 814 } 815 816 /* 817 ** Begin constructing a new table representation in memory. This is 818 ** the first of several action routines that get called in response 819 ** to a CREATE TABLE statement. In particular, this routine is called 820 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 821 ** flag is true if the table should be stored in the auxiliary database 822 ** file instead of in the main database file. This is normally the case 823 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 824 ** CREATE and TABLE. 825 ** 826 ** The new table record is initialized and put in pParse->pNewTable. 827 ** As more of the CREATE TABLE statement is parsed, additional action 828 ** routines will be called to add more information to this record. 829 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 830 ** is called to complete the construction of the new table record. 831 */ 832 void sqlite3StartTable( 833 Parse *pParse, /* Parser context */ 834 Token *pName1, /* First part of the name of the table or view */ 835 Token *pName2, /* Second part of the name of the table or view */ 836 int isTemp, /* True if this is a TEMP table */ 837 int isView, /* True if this is a VIEW */ 838 int isVirtual, /* True if this is a VIRTUAL table */ 839 int noErr /* Do nothing if table already exists */ 840 ){ 841 Table *pTable; 842 char *zName = 0; /* The name of the new table */ 843 sqlite3 *db = pParse->db; 844 Vdbe *v; 845 int iDb; /* Database number to create the table in */ 846 Token *pName; /* Unqualified name of the table to create */ 847 848 if( db->init.busy && db->init.newTnum==1 ){ 849 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 850 iDb = db->init.iDb; 851 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 852 pName = pName1; 853 }else{ 854 /* The common case */ 855 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 856 if( iDb<0 ) return; 857 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 858 /* If creating a temp table, the name may not be qualified. Unless 859 ** the database name is "temp" anyway. */ 860 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 861 return; 862 } 863 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 864 zName = sqlite3NameFromToken(db, pName); 865 } 866 pParse->sNameToken = *pName; 867 if( zName==0 ) return; 868 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 869 goto begin_table_error; 870 } 871 if( db->init.iDb==1 ) isTemp = 1; 872 #ifndef SQLITE_OMIT_AUTHORIZATION 873 assert( isTemp==0 || isTemp==1 ); 874 assert( isView==0 || isView==1 ); 875 { 876 static const u8 aCode[] = { 877 SQLITE_CREATE_TABLE, 878 SQLITE_CREATE_TEMP_TABLE, 879 SQLITE_CREATE_VIEW, 880 SQLITE_CREATE_TEMP_VIEW 881 }; 882 char *zDb = db->aDb[iDb].zName; 883 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 884 goto begin_table_error; 885 } 886 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 887 zName, 0, zDb) ){ 888 goto begin_table_error; 889 } 890 } 891 #endif 892 893 /* Make sure the new table name does not collide with an existing 894 ** index or table name in the same database. Issue an error message if 895 ** it does. The exception is if the statement being parsed was passed 896 ** to an sqlite3_declare_vtab() call. In that case only the column names 897 ** and types will be used, so there is no need to test for namespace 898 ** collisions. 899 */ 900 if( !IN_DECLARE_VTAB ){ 901 char *zDb = db->aDb[iDb].zName; 902 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 903 goto begin_table_error; 904 } 905 pTable = sqlite3FindTable(db, zName, zDb); 906 if( pTable ){ 907 if( !noErr ){ 908 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 909 }else{ 910 assert( !db->init.busy || CORRUPT_DB ); 911 sqlite3CodeVerifySchema(pParse, iDb); 912 } 913 goto begin_table_error; 914 } 915 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 916 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 917 goto begin_table_error; 918 } 919 } 920 921 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 922 if( pTable==0 ){ 923 assert( db->mallocFailed ); 924 pParse->rc = SQLITE_NOMEM_BKPT; 925 pParse->nErr++; 926 goto begin_table_error; 927 } 928 pTable->zName = zName; 929 pTable->iPKey = -1; 930 pTable->pSchema = db->aDb[iDb].pSchema; 931 pTable->nRef = 1; 932 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 933 assert( pParse->pNewTable==0 ); 934 pParse->pNewTable = pTable; 935 936 /* If this is the magic sqlite_sequence table used by autoincrement, 937 ** then record a pointer to this table in the main database structure 938 ** so that INSERT can find the table easily. 939 */ 940 #ifndef SQLITE_OMIT_AUTOINCREMENT 941 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 942 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 943 pTable->pSchema->pSeqTab = pTable; 944 } 945 #endif 946 947 /* Begin generating the code that will insert the table record into 948 ** the SQLITE_MASTER table. Note in particular that we must go ahead 949 ** and allocate the record number for the table entry now. Before any 950 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 951 ** indices to be created and the table record must come before the 952 ** indices. Hence, the record number for the table must be allocated 953 ** now. 954 */ 955 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 956 int addr1; 957 int fileFormat; 958 int reg1, reg2, reg3; 959 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 960 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 961 sqlite3BeginWriteOperation(pParse, 1, iDb); 962 963 #ifndef SQLITE_OMIT_VIRTUALTABLE 964 if( isVirtual ){ 965 sqlite3VdbeAddOp0(v, OP_VBegin); 966 } 967 #endif 968 969 /* If the file format and encoding in the database have not been set, 970 ** set them now. 971 */ 972 reg1 = pParse->regRowid = ++pParse->nMem; 973 reg2 = pParse->regRoot = ++pParse->nMem; 974 reg3 = ++pParse->nMem; 975 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 976 sqlite3VdbeUsesBtree(v, iDb); 977 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 978 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 979 1 : SQLITE_MAX_FILE_FORMAT; 980 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 981 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 982 sqlite3VdbeJumpHere(v, addr1); 983 984 /* This just creates a place-holder record in the sqlite_master table. 985 ** The record created does not contain anything yet. It will be replaced 986 ** by the real entry in code generated at sqlite3EndTable(). 987 ** 988 ** The rowid for the new entry is left in register pParse->regRowid. 989 ** The root page number of the new table is left in reg pParse->regRoot. 990 ** The rowid and root page number values are needed by the code that 991 ** sqlite3EndTable will generate. 992 */ 993 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 994 if( isView || isVirtual ){ 995 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 996 }else 997 #endif 998 { 999 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1000 } 1001 sqlite3OpenMasterTable(pParse, iDb); 1002 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1003 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1004 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1005 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1006 sqlite3VdbeAddOp0(v, OP_Close); 1007 } 1008 1009 /* Normal (non-error) return. */ 1010 return; 1011 1012 /* If an error occurs, we jump here */ 1013 begin_table_error: 1014 sqlite3DbFree(db, zName); 1015 return; 1016 } 1017 1018 /* Set properties of a table column based on the (magical) 1019 ** name of the column. 1020 */ 1021 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1022 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1023 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1024 pCol->colFlags |= COLFLAG_HIDDEN; 1025 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1026 pTab->tabFlags |= TF_OOOHidden; 1027 } 1028 } 1029 #endif 1030 1031 1032 /* 1033 ** Add a new column to the table currently being constructed. 1034 ** 1035 ** The parser calls this routine once for each column declaration 1036 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1037 ** first to get things going. Then this routine is called for each 1038 ** column. 1039 */ 1040 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1041 Table *p; 1042 int i; 1043 char *z; 1044 char *zType; 1045 Column *pCol; 1046 sqlite3 *db = pParse->db; 1047 if( (p = pParse->pNewTable)==0 ) return; 1048 #if SQLITE_MAX_COLUMN 1049 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1050 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1051 return; 1052 } 1053 #endif 1054 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1055 if( z==0 ) return; 1056 memcpy(z, pName->z, pName->n); 1057 z[pName->n] = 0; 1058 sqlite3Dequote(z); 1059 zType = z + sqlite3Strlen30(z) + 1; 1060 memcpy(zType, pType->z, pType->n); 1061 zType[pType->n] = 0; 1062 for(i=0; i<p->nCol; i++){ 1063 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1064 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1065 sqlite3DbFree(db, z); 1066 return; 1067 } 1068 } 1069 if( (p->nCol & 0x7)==0 ){ 1070 Column *aNew; 1071 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1072 if( aNew==0 ){ 1073 sqlite3DbFree(db, z); 1074 return; 1075 } 1076 p->aCol = aNew; 1077 } 1078 pCol = &p->aCol[p->nCol]; 1079 memset(pCol, 0, sizeof(p->aCol[0])); 1080 pCol->zName = z; 1081 sqlite3ColumnPropertiesFromName(p, pCol); 1082 1083 if( pType->n==0 ){ 1084 /* If there is no type specified, columns have the default affinity 1085 ** 'BLOB'. */ 1086 pCol->affinity = SQLITE_AFF_BLOB; 1087 pCol->szEst = 1; 1088 }else{ 1089 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1090 } 1091 p->nCol++; 1092 pParse->constraintName.n = 0; 1093 } 1094 1095 /* 1096 ** This routine is called by the parser while in the middle of 1097 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1098 ** been seen on a column. This routine sets the notNull flag on 1099 ** the column currently under construction. 1100 */ 1101 void sqlite3AddNotNull(Parse *pParse, int onError){ 1102 Table *p; 1103 p = pParse->pNewTable; 1104 if( p==0 || NEVER(p->nCol<1) ) return; 1105 p->aCol[p->nCol-1].notNull = (u8)onError; 1106 } 1107 1108 /* 1109 ** Scan the column type name zType (length nType) and return the 1110 ** associated affinity type. 1111 ** 1112 ** This routine does a case-independent search of zType for the 1113 ** substrings in the following table. If one of the substrings is 1114 ** found, the corresponding affinity is returned. If zType contains 1115 ** more than one of the substrings, entries toward the top of 1116 ** the table take priority. For example, if zType is 'BLOBINT', 1117 ** SQLITE_AFF_INTEGER is returned. 1118 ** 1119 ** Substring | Affinity 1120 ** -------------------------------- 1121 ** 'INT' | SQLITE_AFF_INTEGER 1122 ** 'CHAR' | SQLITE_AFF_TEXT 1123 ** 'CLOB' | SQLITE_AFF_TEXT 1124 ** 'TEXT' | SQLITE_AFF_TEXT 1125 ** 'BLOB' | SQLITE_AFF_BLOB 1126 ** 'REAL' | SQLITE_AFF_REAL 1127 ** 'FLOA' | SQLITE_AFF_REAL 1128 ** 'DOUB' | SQLITE_AFF_REAL 1129 ** 1130 ** If none of the substrings in the above table are found, 1131 ** SQLITE_AFF_NUMERIC is returned. 1132 */ 1133 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1134 u32 h = 0; 1135 char aff = SQLITE_AFF_NUMERIC; 1136 const char *zChar = 0; 1137 1138 assert( zIn!=0 ); 1139 while( zIn[0] ){ 1140 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1141 zIn++; 1142 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1143 aff = SQLITE_AFF_TEXT; 1144 zChar = zIn; 1145 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1146 aff = SQLITE_AFF_TEXT; 1147 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1148 aff = SQLITE_AFF_TEXT; 1149 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1150 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1151 aff = SQLITE_AFF_BLOB; 1152 if( zIn[0]=='(' ) zChar = zIn; 1153 #ifndef SQLITE_OMIT_FLOATING_POINT 1154 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1155 && aff==SQLITE_AFF_NUMERIC ){ 1156 aff = SQLITE_AFF_REAL; 1157 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1158 && aff==SQLITE_AFF_NUMERIC ){ 1159 aff = SQLITE_AFF_REAL; 1160 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1161 && aff==SQLITE_AFF_NUMERIC ){ 1162 aff = SQLITE_AFF_REAL; 1163 #endif 1164 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1165 aff = SQLITE_AFF_INTEGER; 1166 break; 1167 } 1168 } 1169 1170 /* If pszEst is not NULL, store an estimate of the field size. The 1171 ** estimate is scaled so that the size of an integer is 1. */ 1172 if( pszEst ){ 1173 *pszEst = 1; /* default size is approx 4 bytes */ 1174 if( aff<SQLITE_AFF_NUMERIC ){ 1175 if( zChar ){ 1176 while( zChar[0] ){ 1177 if( sqlite3Isdigit(zChar[0]) ){ 1178 int v = 0; 1179 sqlite3GetInt32(zChar, &v); 1180 v = v/4 + 1; 1181 if( v>255 ) v = 255; 1182 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1183 break; 1184 } 1185 zChar++; 1186 } 1187 }else{ 1188 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1189 } 1190 } 1191 } 1192 return aff; 1193 } 1194 1195 /* 1196 ** The expression is the default value for the most recently added column 1197 ** of the table currently under construction. 1198 ** 1199 ** Default value expressions must be constant. Raise an exception if this 1200 ** is not the case. 1201 ** 1202 ** This routine is called by the parser while in the middle of 1203 ** parsing a CREATE TABLE statement. 1204 */ 1205 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1206 Table *p; 1207 Column *pCol; 1208 sqlite3 *db = pParse->db; 1209 p = pParse->pNewTable; 1210 if( p!=0 ){ 1211 pCol = &(p->aCol[p->nCol-1]); 1212 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1213 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1214 pCol->zName); 1215 }else{ 1216 /* A copy of pExpr is used instead of the original, as pExpr contains 1217 ** tokens that point to volatile memory. The 'span' of the expression 1218 ** is required by pragma table_info. 1219 */ 1220 Expr x; 1221 sqlite3ExprDelete(db, pCol->pDflt); 1222 memset(&x, 0, sizeof(x)); 1223 x.op = TK_SPAN; 1224 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1225 (int)(pSpan->zEnd - pSpan->zStart)); 1226 x.pLeft = pSpan->pExpr; 1227 x.flags = EP_Skip; 1228 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1229 sqlite3DbFree(db, x.u.zToken); 1230 } 1231 } 1232 sqlite3ExprDelete(db, pSpan->pExpr); 1233 } 1234 1235 /* 1236 ** Backwards Compatibility Hack: 1237 ** 1238 ** Historical versions of SQLite accepted strings as column names in 1239 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1240 ** 1241 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1242 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1243 ** 1244 ** This is goofy. But to preserve backwards compatibility we continue to 1245 ** accept it. This routine does the necessary conversion. It converts 1246 ** the expression given in its argument from a TK_STRING into a TK_ID 1247 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1248 ** If the epxression is anything other than TK_STRING, the expression is 1249 ** unchanged. 1250 */ 1251 static void sqlite3StringToId(Expr *p){ 1252 if( p->op==TK_STRING ){ 1253 p->op = TK_ID; 1254 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1255 p->pLeft->op = TK_ID; 1256 } 1257 } 1258 1259 /* 1260 ** Designate the PRIMARY KEY for the table. pList is a list of names 1261 ** of columns that form the primary key. If pList is NULL, then the 1262 ** most recently added column of the table is the primary key. 1263 ** 1264 ** A table can have at most one primary key. If the table already has 1265 ** a primary key (and this is the second primary key) then create an 1266 ** error. 1267 ** 1268 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1269 ** then we will try to use that column as the rowid. Set the Table.iPKey 1270 ** field of the table under construction to be the index of the 1271 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1272 ** no INTEGER PRIMARY KEY. 1273 ** 1274 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1275 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1276 */ 1277 void sqlite3AddPrimaryKey( 1278 Parse *pParse, /* Parsing context */ 1279 ExprList *pList, /* List of field names to be indexed */ 1280 int onError, /* What to do with a uniqueness conflict */ 1281 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1282 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1283 ){ 1284 Table *pTab = pParse->pNewTable; 1285 const char *zName = 0; 1286 int iCol = -1, i; 1287 int nTerm; 1288 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1289 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1290 sqlite3ErrorMsg(pParse, 1291 "table \"%s\" has more than one primary key", pTab->zName); 1292 goto primary_key_exit; 1293 } 1294 pTab->tabFlags |= TF_HasPrimaryKey; 1295 if( pList==0 ){ 1296 iCol = pTab->nCol - 1; 1297 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1298 zName = pTab->aCol[iCol].zName; 1299 nTerm = 1; 1300 }else{ 1301 nTerm = pList->nExpr; 1302 for(i=0; i<nTerm; i++){ 1303 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1304 assert( pCExpr!=0 ); 1305 sqlite3StringToId(pCExpr); 1306 if( pCExpr->op==TK_ID ){ 1307 const char *zCName = pCExpr->u.zToken; 1308 for(iCol=0; iCol<pTab->nCol; iCol++){ 1309 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1310 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1311 zName = pTab->aCol[iCol].zName; 1312 break; 1313 } 1314 } 1315 } 1316 } 1317 } 1318 if( nTerm==1 1319 && zName 1320 && sqlite3StrICmp(sqlite3StrNext(zName), "INTEGER")==0 1321 && sortOrder!=SQLITE_SO_DESC 1322 ){ 1323 pTab->iPKey = iCol; 1324 pTab->keyConf = (u8)onError; 1325 assert( autoInc==0 || autoInc==1 ); 1326 pTab->tabFlags |= autoInc*TF_Autoincrement; 1327 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1328 }else if( autoInc ){ 1329 #ifndef SQLITE_OMIT_AUTOINCREMENT 1330 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1331 "INTEGER PRIMARY KEY"); 1332 #endif 1333 }else{ 1334 Index *p; 1335 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1336 0, sortOrder, 0); 1337 if( p ){ 1338 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1339 } 1340 pList = 0; 1341 } 1342 1343 primary_key_exit: 1344 sqlite3ExprListDelete(pParse->db, pList); 1345 return; 1346 } 1347 1348 /* 1349 ** Add a new CHECK constraint to the table currently under construction. 1350 */ 1351 void sqlite3AddCheckConstraint( 1352 Parse *pParse, /* Parsing context */ 1353 Expr *pCheckExpr /* The check expression */ 1354 ){ 1355 #ifndef SQLITE_OMIT_CHECK 1356 Table *pTab = pParse->pNewTable; 1357 sqlite3 *db = pParse->db; 1358 if( pTab && !IN_DECLARE_VTAB 1359 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1360 ){ 1361 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1362 if( pParse->constraintName.n ){ 1363 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1364 } 1365 }else 1366 #endif 1367 { 1368 sqlite3ExprDelete(pParse->db, pCheckExpr); 1369 } 1370 } 1371 1372 /* 1373 ** Set the collation function of the most recently parsed table column 1374 ** to the CollSeq given. 1375 */ 1376 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1377 Table *p; 1378 int i; 1379 char *zColl; /* Dequoted name of collation sequence */ 1380 sqlite3 *db; 1381 1382 if( (p = pParse->pNewTable)==0 ) return; 1383 i = p->nCol-1; 1384 db = pParse->db; 1385 zColl = sqlite3NameFromToken(db, pToken); 1386 if( !zColl ) return; 1387 1388 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1389 Index *pIdx; 1390 sqlite3DbFree(db, p->aCol[i].zColl); 1391 p->aCol[i].zColl = zColl; 1392 1393 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1394 ** then an index may have been created on this column before the 1395 ** collation type was added. Correct this if it is the case. 1396 */ 1397 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1398 assert( pIdx->nKeyCol==1 ); 1399 if( pIdx->aiColumn[0]==i ){ 1400 pIdx->azColl[0] = p->aCol[i].zColl; 1401 } 1402 } 1403 }else{ 1404 sqlite3DbFree(db, zColl); 1405 } 1406 } 1407 1408 /* 1409 ** This function returns the collation sequence for database native text 1410 ** encoding identified by the string zName, length nName. 1411 ** 1412 ** If the requested collation sequence is not available, or not available 1413 ** in the database native encoding, the collation factory is invoked to 1414 ** request it. If the collation factory does not supply such a sequence, 1415 ** and the sequence is available in another text encoding, then that is 1416 ** returned instead. 1417 ** 1418 ** If no versions of the requested collations sequence are available, or 1419 ** another error occurs, NULL is returned and an error message written into 1420 ** pParse. 1421 ** 1422 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1423 ** invokes the collation factory if the named collation cannot be found 1424 ** and generates an error message. 1425 ** 1426 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1427 */ 1428 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1429 sqlite3 *db = pParse->db; 1430 u8 enc = ENC(db); 1431 u8 initbusy = db->init.busy; 1432 CollSeq *pColl; 1433 1434 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1435 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1436 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1437 } 1438 1439 return pColl; 1440 } 1441 1442 1443 /* 1444 ** Generate code that will increment the schema cookie. 1445 ** 1446 ** The schema cookie is used to determine when the schema for the 1447 ** database changes. After each schema change, the cookie value 1448 ** changes. When a process first reads the schema it records the 1449 ** cookie. Thereafter, whenever it goes to access the database, 1450 ** it checks the cookie to make sure the schema has not changed 1451 ** since it was last read. 1452 ** 1453 ** This plan is not completely bullet-proof. It is possible for 1454 ** the schema to change multiple times and for the cookie to be 1455 ** set back to prior value. But schema changes are infrequent 1456 ** and the probability of hitting the same cookie value is only 1457 ** 1 chance in 2^32. So we're safe enough. 1458 */ 1459 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1460 sqlite3 *db = pParse->db; 1461 Vdbe *v = pParse->pVdbe; 1462 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1463 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1464 db->aDb[iDb].pSchema->schema_cookie+1); 1465 } 1466 1467 /* 1468 ** Measure the number of characters needed to output the given 1469 ** identifier. The number returned includes any quotes used 1470 ** but does not include the null terminator. 1471 ** 1472 ** The estimate is conservative. It might be larger that what is 1473 ** really needed. 1474 */ 1475 static int identLength(const char *z){ 1476 int n; 1477 for(n=0; *z; n++, z++){ 1478 if( *z=='"' ){ n++; } 1479 } 1480 return n + 2; 1481 } 1482 1483 /* 1484 ** The first parameter is a pointer to an output buffer. The second 1485 ** parameter is a pointer to an integer that contains the offset at 1486 ** which to write into the output buffer. This function copies the 1487 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1488 ** to the specified offset in the buffer and updates *pIdx to refer 1489 ** to the first byte after the last byte written before returning. 1490 ** 1491 ** If the string zSignedIdent consists entirely of alpha-numeric 1492 ** characters, does not begin with a digit and is not an SQL keyword, 1493 ** then it is copied to the output buffer exactly as it is. Otherwise, 1494 ** it is quoted using double-quotes. 1495 */ 1496 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1497 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1498 int i, j, needQuote; 1499 i = *pIdx; 1500 1501 for(j=0; zIdent[j]; j++){ 1502 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1503 } 1504 needQuote = sqlite3Isdigit(zIdent[0]) 1505 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1506 || zIdent[j]!=0 1507 || j==0; 1508 1509 if( needQuote ) z[i++] = '"'; 1510 for(j=0; zIdent[j]; j++){ 1511 z[i++] = zIdent[j]; 1512 if( zIdent[j]=='"' ) z[i++] = '"'; 1513 } 1514 if( needQuote ) z[i++] = '"'; 1515 z[i] = 0; 1516 *pIdx = i; 1517 } 1518 1519 /* 1520 ** Generate a CREATE TABLE statement appropriate for the given 1521 ** table. Memory to hold the text of the statement is obtained 1522 ** from sqliteMalloc() and must be freed by the calling function. 1523 */ 1524 static char *createTableStmt(sqlite3 *db, Table *p){ 1525 int i, k, n; 1526 char *zStmt; 1527 char *zSep, *zSep2, *zEnd; 1528 Column *pCol; 1529 n = 0; 1530 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1531 n += identLength(pCol->zName) + 5; 1532 } 1533 n += identLength(p->zName); 1534 if( n<50 ){ 1535 zSep = ""; 1536 zSep2 = ","; 1537 zEnd = ")"; 1538 }else{ 1539 zSep = "\n "; 1540 zSep2 = ",\n "; 1541 zEnd = "\n)"; 1542 } 1543 n += 35 + 6*p->nCol; 1544 zStmt = sqlite3DbMallocRaw(0, n); 1545 if( zStmt==0 ){ 1546 sqlite3OomFault(db); 1547 return 0; 1548 } 1549 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1550 k = sqlite3Strlen30(zStmt); 1551 identPut(zStmt, &k, p->zName); 1552 zStmt[k++] = '('; 1553 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1554 static const char * const azType[] = { 1555 /* SQLITE_AFF_BLOB */ "", 1556 /* SQLITE_AFF_TEXT */ " TEXT", 1557 /* SQLITE_AFF_NUMERIC */ " NUM", 1558 /* SQLITE_AFF_INTEGER */ " INT", 1559 /* SQLITE_AFF_REAL */ " REAL" 1560 }; 1561 int len; 1562 const char *zType; 1563 1564 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1565 k += sqlite3Strlen30(&zStmt[k]); 1566 zSep = zSep2; 1567 identPut(zStmt, &k, pCol->zName); 1568 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1569 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1570 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1571 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1572 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1573 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1574 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1575 1576 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1577 len = sqlite3Strlen30(zType); 1578 assert( pCol->affinity==SQLITE_AFF_BLOB 1579 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1580 memcpy(&zStmt[k], zType, len); 1581 k += len; 1582 assert( k<=n ); 1583 } 1584 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1585 return zStmt; 1586 } 1587 1588 /* 1589 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1590 ** on success and SQLITE_NOMEM on an OOM error. 1591 */ 1592 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1593 char *zExtra; 1594 int nByte; 1595 if( pIdx->nColumn>=N ) return SQLITE_OK; 1596 assert( pIdx->isResized==0 ); 1597 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1598 zExtra = sqlite3DbMallocZero(db, nByte); 1599 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1600 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1601 pIdx->azColl = (const char**)zExtra; 1602 zExtra += sizeof(char*)*N; 1603 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1604 pIdx->aiColumn = (i16*)zExtra; 1605 zExtra += sizeof(i16)*N; 1606 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1607 pIdx->aSortOrder = (u8*)zExtra; 1608 pIdx->nColumn = N; 1609 pIdx->isResized = 1; 1610 return SQLITE_OK; 1611 } 1612 1613 /* 1614 ** Estimate the total row width for a table. 1615 */ 1616 static void estimateTableWidth(Table *pTab){ 1617 unsigned wTable = 0; 1618 const Column *pTabCol; 1619 int i; 1620 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1621 wTable += pTabCol->szEst; 1622 } 1623 if( pTab->iPKey<0 ) wTable++; 1624 pTab->szTabRow = sqlite3LogEst(wTable*4); 1625 } 1626 1627 /* 1628 ** Estimate the average size of a row for an index. 1629 */ 1630 static void estimateIndexWidth(Index *pIdx){ 1631 unsigned wIndex = 0; 1632 int i; 1633 const Column *aCol = pIdx->pTable->aCol; 1634 for(i=0; i<pIdx->nColumn; i++){ 1635 i16 x = pIdx->aiColumn[i]; 1636 assert( x<pIdx->pTable->nCol ); 1637 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1638 } 1639 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1640 } 1641 1642 /* Return true if value x is found any of the first nCol entries of aiCol[] 1643 */ 1644 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1645 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1646 return 0; 1647 } 1648 1649 /* 1650 ** This routine runs at the end of parsing a CREATE TABLE statement that 1651 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1652 ** internal schema data structures and the generated VDBE code so that they 1653 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1654 ** Changes include: 1655 ** 1656 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1657 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1658 ** data storage is a covering index btree. 1659 ** (2) Bypass the creation of the sqlite_master table entry 1660 ** for the PRIMARY KEY as the primary key index is now 1661 ** identified by the sqlite_master table entry of the table itself. 1662 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1663 ** schema to the rootpage from the main table. 1664 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1665 ** (5) Add all table columns to the PRIMARY KEY Index object 1666 ** so that the PRIMARY KEY is a covering index. The surplus 1667 ** columns are part of KeyInfo.nXField and are not used for 1668 ** sorting or lookup or uniqueness checks. 1669 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1670 ** indices with the PRIMARY KEY columns. 1671 */ 1672 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1673 Index *pIdx; 1674 Index *pPk; 1675 int nPk; 1676 int i, j; 1677 sqlite3 *db = pParse->db; 1678 Vdbe *v = pParse->pVdbe; 1679 1680 /* Convert the OP_CreateTable opcode that would normally create the 1681 ** root-page for the table into an OP_CreateIndex opcode. The index 1682 ** created will become the PRIMARY KEY index. 1683 */ 1684 if( pParse->addrCrTab ){ 1685 assert( v ); 1686 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1687 } 1688 1689 /* Locate the PRIMARY KEY index. Or, if this table was originally 1690 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1691 */ 1692 if( pTab->iPKey>=0 ){ 1693 ExprList *pList; 1694 Token ipkToken; 1695 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1696 pList = sqlite3ExprListAppend(pParse, 0, 1697 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1698 if( pList==0 ) return; 1699 pList->a[0].sortOrder = pParse->iPkSortOrder; 1700 assert( pParse->pNewTable==pTab ); 1701 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1702 if( pPk==0 ) return; 1703 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1704 pTab->iPKey = -1; 1705 }else{ 1706 pPk = sqlite3PrimaryKeyIndex(pTab); 1707 1708 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1709 ** table entry. This is only required if currently generating VDBE 1710 ** code for a CREATE TABLE (not when parsing one as part of reading 1711 ** a database schema). */ 1712 if( v ){ 1713 assert( db->init.busy==0 ); 1714 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1715 } 1716 1717 /* 1718 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1719 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1720 ** code assumes the PRIMARY KEY contains no repeated columns. 1721 */ 1722 for(i=j=1; i<pPk->nKeyCol; i++){ 1723 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1724 pPk->nColumn--; 1725 }else{ 1726 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1727 } 1728 } 1729 pPk->nKeyCol = j; 1730 } 1731 pPk->isCovering = 1; 1732 assert( pPk!=0 ); 1733 nPk = pPk->nKeyCol; 1734 1735 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1736 ** do not enforce this for imposter tables.) */ 1737 if( !db->init.imposterTable ){ 1738 for(i=0; i<nPk; i++){ 1739 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort; 1740 } 1741 pPk->uniqNotNull = 1; 1742 } 1743 1744 /* The root page of the PRIMARY KEY is the table root page */ 1745 pPk->tnum = pTab->tnum; 1746 1747 /* Update the in-memory representation of all UNIQUE indices by converting 1748 ** the final rowid column into one or more columns of the PRIMARY KEY. 1749 */ 1750 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1751 int n; 1752 if( IsPrimaryKeyIndex(pIdx) ) continue; 1753 for(i=n=0; i<nPk; i++){ 1754 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1755 } 1756 if( n==0 ){ 1757 /* This index is a superset of the primary key */ 1758 pIdx->nColumn = pIdx->nKeyCol; 1759 continue; 1760 } 1761 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1762 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1763 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1764 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1765 pIdx->azColl[j] = pPk->azColl[i]; 1766 j++; 1767 } 1768 } 1769 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1770 assert( pIdx->nColumn>=j ); 1771 } 1772 1773 /* Add all table columns to the PRIMARY KEY index 1774 */ 1775 if( nPk<pTab->nCol ){ 1776 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1777 for(i=0, j=nPk; i<pTab->nCol; i++){ 1778 if( !hasColumn(pPk->aiColumn, j, i) ){ 1779 assert( j<pPk->nColumn ); 1780 pPk->aiColumn[j] = i; 1781 pPk->azColl[j] = sqlite3StrBINARY; 1782 j++; 1783 } 1784 } 1785 assert( pPk->nColumn==j ); 1786 assert( pTab->nCol==j ); 1787 }else{ 1788 pPk->nColumn = pTab->nCol; 1789 } 1790 } 1791 1792 /* 1793 ** This routine is called to report the final ")" that terminates 1794 ** a CREATE TABLE statement. 1795 ** 1796 ** The table structure that other action routines have been building 1797 ** is added to the internal hash tables, assuming no errors have 1798 ** occurred. 1799 ** 1800 ** An entry for the table is made in the master table on disk, unless 1801 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1802 ** it means we are reading the sqlite_master table because we just 1803 ** connected to the database or because the sqlite_master table has 1804 ** recently changed, so the entry for this table already exists in 1805 ** the sqlite_master table. We do not want to create it again. 1806 ** 1807 ** If the pSelect argument is not NULL, it means that this routine 1808 ** was called to create a table generated from a 1809 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1810 ** the new table will match the result set of the SELECT. 1811 */ 1812 void sqlite3EndTable( 1813 Parse *pParse, /* Parse context */ 1814 Token *pCons, /* The ',' token after the last column defn. */ 1815 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1816 u8 tabOpts, /* Extra table options. Usually 0. */ 1817 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1818 ){ 1819 Table *p; /* The new table */ 1820 sqlite3 *db = pParse->db; /* The database connection */ 1821 int iDb; /* Database in which the table lives */ 1822 Index *pIdx; /* An implied index of the table */ 1823 1824 if( pEnd==0 && pSelect==0 ){ 1825 return; 1826 } 1827 assert( !db->mallocFailed ); 1828 p = pParse->pNewTable; 1829 if( p==0 ) return; 1830 1831 assert( !db->init.busy || !pSelect ); 1832 1833 /* If the db->init.busy is 1 it means we are reading the SQL off the 1834 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1835 ** So do not write to the disk again. Extract the root page number 1836 ** for the table from the db->init.newTnum field. (The page number 1837 ** should have been put there by the sqliteOpenCb routine.) 1838 ** 1839 ** If the root page number is 1, that means this is the sqlite_master 1840 ** table itself. So mark it read-only. 1841 */ 1842 if( db->init.busy ){ 1843 p->tnum = db->init.newTnum; 1844 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1845 } 1846 1847 /* Special processing for WITHOUT ROWID Tables */ 1848 if( tabOpts & TF_WithoutRowid ){ 1849 if( (p->tabFlags & TF_Autoincrement) ){ 1850 sqlite3ErrorMsg(pParse, 1851 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1852 return; 1853 } 1854 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1855 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1856 }else{ 1857 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1858 convertToWithoutRowidTable(pParse, p); 1859 } 1860 } 1861 1862 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1863 1864 #ifndef SQLITE_OMIT_CHECK 1865 /* Resolve names in all CHECK constraint expressions. 1866 */ 1867 if( p->pCheck ){ 1868 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1869 } 1870 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1871 1872 /* Estimate the average row size for the table and for all implied indices */ 1873 estimateTableWidth(p); 1874 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1875 estimateIndexWidth(pIdx); 1876 } 1877 1878 /* If not initializing, then create a record for the new table 1879 ** in the SQLITE_MASTER table of the database. 1880 ** 1881 ** If this is a TEMPORARY table, write the entry into the auxiliary 1882 ** file instead of into the main database file. 1883 */ 1884 if( !db->init.busy ){ 1885 int n; 1886 Vdbe *v; 1887 char *zType; /* "view" or "table" */ 1888 char *zType2; /* "VIEW" or "TABLE" */ 1889 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1890 1891 v = sqlite3GetVdbe(pParse); 1892 if( NEVER(v==0) ) return; 1893 1894 sqlite3VdbeAddOp1(v, OP_Close, 0); 1895 1896 /* 1897 ** Initialize zType for the new view or table. 1898 */ 1899 if( p->pSelect==0 ){ 1900 /* A regular table */ 1901 zType = "table"; 1902 zType2 = "TABLE"; 1903 #ifndef SQLITE_OMIT_VIEW 1904 }else{ 1905 /* A view */ 1906 zType = "view"; 1907 zType2 = "VIEW"; 1908 #endif 1909 } 1910 1911 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1912 ** statement to populate the new table. The root-page number for the 1913 ** new table is in register pParse->regRoot. 1914 ** 1915 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1916 ** suitable state to query for the column names and types to be used 1917 ** by the new table. 1918 ** 1919 ** A shared-cache write-lock is not required to write to the new table, 1920 ** as a schema-lock must have already been obtained to create it. Since 1921 ** a schema-lock excludes all other database users, the write-lock would 1922 ** be redundant. 1923 */ 1924 if( pSelect ){ 1925 SelectDest dest; /* Where the SELECT should store results */ 1926 int regYield; /* Register holding co-routine entry-point */ 1927 int addrTop; /* Top of the co-routine */ 1928 int regRec; /* A record to be insert into the new table */ 1929 int regRowid; /* Rowid of the next row to insert */ 1930 int addrInsLoop; /* Top of the loop for inserting rows */ 1931 Table *pSelTab; /* A table that describes the SELECT results */ 1932 1933 regYield = ++pParse->nMem; 1934 regRec = ++pParse->nMem; 1935 regRowid = ++pParse->nMem; 1936 assert(pParse->nTab==1); 1937 sqlite3MayAbort(pParse); 1938 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1939 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1940 pParse->nTab = 2; 1941 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1942 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1943 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1944 sqlite3Select(pParse, pSelect, &dest); 1945 sqlite3VdbeEndCoroutine(v, regYield); 1946 sqlite3VdbeJumpHere(v, addrTop - 1); 1947 if( pParse->nErr ) return; 1948 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1949 if( pSelTab==0 ) return; 1950 assert( p->aCol==0 ); 1951 p->nCol = pSelTab->nCol; 1952 p->aCol = pSelTab->aCol; 1953 pSelTab->nCol = 0; 1954 pSelTab->aCol = 0; 1955 sqlite3DeleteTable(db, pSelTab); 1956 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1957 VdbeCoverage(v); 1958 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1959 sqlite3TableAffinity(v, p, 0); 1960 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1961 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1962 sqlite3VdbeGoto(v, addrInsLoop); 1963 sqlite3VdbeJumpHere(v, addrInsLoop); 1964 sqlite3VdbeAddOp1(v, OP_Close, 1); 1965 } 1966 1967 /* Compute the complete text of the CREATE statement */ 1968 if( pSelect ){ 1969 zStmt = createTableStmt(db, p); 1970 }else{ 1971 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1972 n = (int)(pEnd2->z - pParse->sNameToken.z); 1973 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1974 zStmt = sqlite3MPrintf(db, 1975 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1976 ); 1977 } 1978 1979 /* A slot for the record has already been allocated in the 1980 ** SQLITE_MASTER table. We just need to update that slot with all 1981 ** the information we've collected. 1982 */ 1983 sqlite3NestedParse(pParse, 1984 "UPDATE %Q.%s " 1985 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1986 "WHERE rowid=#%d", 1987 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1988 zType, 1989 p->zName, 1990 p->zName, 1991 pParse->regRoot, 1992 zStmt, 1993 pParse->regRowid 1994 ); 1995 sqlite3DbFree(db, zStmt); 1996 sqlite3ChangeCookie(pParse, iDb); 1997 1998 #ifndef SQLITE_OMIT_AUTOINCREMENT 1999 /* Check to see if we need to create an sqlite_sequence table for 2000 ** keeping track of autoincrement keys. 2001 */ 2002 if( p->tabFlags & TF_Autoincrement ){ 2003 Db *pDb = &db->aDb[iDb]; 2004 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2005 if( pDb->pSchema->pSeqTab==0 ){ 2006 sqlite3NestedParse(pParse, 2007 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2008 pDb->zName 2009 ); 2010 } 2011 } 2012 #endif 2013 2014 /* Reparse everything to update our internal data structures */ 2015 sqlite3VdbeAddParseSchemaOp(v, iDb, 2016 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2017 } 2018 2019 2020 /* Add the table to the in-memory representation of the database. 2021 */ 2022 if( db->init.busy ){ 2023 Table *pOld; 2024 Schema *pSchema = p->pSchema; 2025 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2026 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2027 if( pOld ){ 2028 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2029 sqlite3OomFault(db); 2030 return; 2031 } 2032 pParse->pNewTable = 0; 2033 db->flags |= SQLITE_InternChanges; 2034 2035 #ifndef SQLITE_OMIT_ALTERTABLE 2036 if( !p->pSelect ){ 2037 const char *zName = (const char *)pParse->sNameToken.z; 2038 int nName; 2039 assert( !pSelect && pCons && pEnd ); 2040 if( pCons->z==0 ){ 2041 pCons = pEnd; 2042 } 2043 nName = (int)((const char *)pCons->z - zName); 2044 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2045 } 2046 #endif 2047 } 2048 } 2049 2050 #ifndef SQLITE_OMIT_VIEW 2051 /* 2052 ** The parser calls this routine in order to create a new VIEW 2053 */ 2054 void sqlite3CreateView( 2055 Parse *pParse, /* The parsing context */ 2056 Token *pBegin, /* The CREATE token that begins the statement */ 2057 Token *pName1, /* The token that holds the name of the view */ 2058 Token *pName2, /* The token that holds the name of the view */ 2059 ExprList *pCNames, /* Optional list of view column names */ 2060 Select *pSelect, /* A SELECT statement that will become the new view */ 2061 int isTemp, /* TRUE for a TEMPORARY view */ 2062 int noErr /* Suppress error messages if VIEW already exists */ 2063 ){ 2064 Table *p; 2065 int n; 2066 const char *z; 2067 Token sEnd; 2068 DbFixer sFix; 2069 Token *pName = 0; 2070 int iDb; 2071 sqlite3 *db = pParse->db; 2072 2073 if( pParse->nVar>0 ){ 2074 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2075 goto create_view_fail; 2076 } 2077 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2078 p = pParse->pNewTable; 2079 if( p==0 || pParse->nErr ) goto create_view_fail; 2080 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2081 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2082 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2083 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2084 2085 /* Make a copy of the entire SELECT statement that defines the view. 2086 ** This will force all the Expr.token.z values to be dynamically 2087 ** allocated rather than point to the input string - which means that 2088 ** they will persist after the current sqlite3_exec() call returns. 2089 */ 2090 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2091 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2092 if( db->mallocFailed ) goto create_view_fail; 2093 2094 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2095 ** the end. 2096 */ 2097 sEnd = pParse->sLastToken; 2098 assert( sEnd.z[0]!=0 ); 2099 if( sEnd.z[0]!=';' ){ 2100 sEnd.z += sEnd.n; 2101 } 2102 sEnd.n = 0; 2103 n = (int)(sEnd.z - pBegin->z); 2104 assert( n>0 ); 2105 z = pBegin->z; 2106 while( sqlite3Isspace(z[n-1]) ){ n--; } 2107 sEnd.z = &z[n-1]; 2108 sEnd.n = 1; 2109 2110 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2111 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2112 2113 create_view_fail: 2114 sqlite3SelectDelete(db, pSelect); 2115 sqlite3ExprListDelete(db, pCNames); 2116 return; 2117 } 2118 #endif /* SQLITE_OMIT_VIEW */ 2119 2120 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2121 /* 2122 ** The Table structure pTable is really a VIEW. Fill in the names of 2123 ** the columns of the view in the pTable structure. Return the number 2124 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2125 */ 2126 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2127 Table *pSelTab; /* A fake table from which we get the result set */ 2128 Select *pSel; /* Copy of the SELECT that implements the view */ 2129 int nErr = 0; /* Number of errors encountered */ 2130 int n; /* Temporarily holds the number of cursors assigned */ 2131 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2132 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2133 2134 assert( pTable ); 2135 2136 #ifndef SQLITE_OMIT_VIRTUALTABLE 2137 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2138 return SQLITE_ERROR; 2139 } 2140 if( IsVirtual(pTable) ) return 0; 2141 #endif 2142 2143 #ifndef SQLITE_OMIT_VIEW 2144 /* A positive nCol means the columns names for this view are 2145 ** already known. 2146 */ 2147 if( pTable->nCol>0 ) return 0; 2148 2149 /* A negative nCol is a special marker meaning that we are currently 2150 ** trying to compute the column names. If we enter this routine with 2151 ** a negative nCol, it means two or more views form a loop, like this: 2152 ** 2153 ** CREATE VIEW one AS SELECT * FROM two; 2154 ** CREATE VIEW two AS SELECT * FROM one; 2155 ** 2156 ** Actually, the error above is now caught prior to reaching this point. 2157 ** But the following test is still important as it does come up 2158 ** in the following: 2159 ** 2160 ** CREATE TABLE main.ex1(a); 2161 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2162 ** SELECT * FROM temp.ex1; 2163 */ 2164 if( pTable->nCol<0 ){ 2165 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2166 return 1; 2167 } 2168 assert( pTable->nCol>=0 ); 2169 2170 /* If we get this far, it means we need to compute the table names. 2171 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2172 ** "*" elements in the results set of the view and will assign cursors 2173 ** to the elements of the FROM clause. But we do not want these changes 2174 ** to be permanent. So the computation is done on a copy of the SELECT 2175 ** statement that defines the view. 2176 */ 2177 assert( pTable->pSelect ); 2178 if( pTable->pCheck ){ 2179 db->lookaside.bDisable++; 2180 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2181 &pTable->nCol, &pTable->aCol); 2182 db->lookaside.bDisable--; 2183 }else{ 2184 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2185 if( pSel ){ 2186 n = pParse->nTab; 2187 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2188 pTable->nCol = -1; 2189 db->lookaside.bDisable++; 2190 #ifndef SQLITE_OMIT_AUTHORIZATION 2191 xAuth = db->xAuth; 2192 db->xAuth = 0; 2193 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2194 db->xAuth = xAuth; 2195 #else 2196 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2197 #endif 2198 db->lookaside.bDisable--; 2199 pParse->nTab = n; 2200 if( pSelTab ){ 2201 assert( pTable->aCol==0 ); 2202 pTable->nCol = pSelTab->nCol; 2203 pTable->aCol = pSelTab->aCol; 2204 pSelTab->nCol = 0; 2205 pSelTab->aCol = 0; 2206 sqlite3DeleteTable(db, pSelTab); 2207 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2208 }else{ 2209 pTable->nCol = 0; 2210 nErr++; 2211 } 2212 sqlite3SelectDelete(db, pSel); 2213 } else { 2214 nErr++; 2215 } 2216 } 2217 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2218 #endif /* SQLITE_OMIT_VIEW */ 2219 return nErr; 2220 } 2221 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2222 2223 #ifndef SQLITE_OMIT_VIEW 2224 /* 2225 ** Clear the column names from every VIEW in database idx. 2226 */ 2227 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2228 HashElem *i; 2229 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2230 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2231 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2232 Table *pTab = sqliteHashData(i); 2233 if( pTab->pSelect ){ 2234 sqlite3DeleteColumnNames(db, pTab); 2235 pTab->aCol = 0; 2236 pTab->nCol = 0; 2237 } 2238 } 2239 DbClearProperty(db, idx, DB_UnresetViews); 2240 } 2241 #else 2242 # define sqliteViewResetAll(A,B) 2243 #endif /* SQLITE_OMIT_VIEW */ 2244 2245 /* 2246 ** This function is called by the VDBE to adjust the internal schema 2247 ** used by SQLite when the btree layer moves a table root page. The 2248 ** root-page of a table or index in database iDb has changed from iFrom 2249 ** to iTo. 2250 ** 2251 ** Ticket #1728: The symbol table might still contain information 2252 ** on tables and/or indices that are the process of being deleted. 2253 ** If you are unlucky, one of those deleted indices or tables might 2254 ** have the same rootpage number as the real table or index that is 2255 ** being moved. So we cannot stop searching after the first match 2256 ** because the first match might be for one of the deleted indices 2257 ** or tables and not the table/index that is actually being moved. 2258 ** We must continue looping until all tables and indices with 2259 ** rootpage==iFrom have been converted to have a rootpage of iTo 2260 ** in order to be certain that we got the right one. 2261 */ 2262 #ifndef SQLITE_OMIT_AUTOVACUUM 2263 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2264 HashElem *pElem; 2265 Hash *pHash; 2266 Db *pDb; 2267 2268 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2269 pDb = &db->aDb[iDb]; 2270 pHash = &pDb->pSchema->tblHash; 2271 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2272 Table *pTab = sqliteHashData(pElem); 2273 if( pTab->tnum==iFrom ){ 2274 pTab->tnum = iTo; 2275 } 2276 } 2277 pHash = &pDb->pSchema->idxHash; 2278 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2279 Index *pIdx = sqliteHashData(pElem); 2280 if( pIdx->tnum==iFrom ){ 2281 pIdx->tnum = iTo; 2282 } 2283 } 2284 } 2285 #endif 2286 2287 /* 2288 ** Write code to erase the table with root-page iTable from database iDb. 2289 ** Also write code to modify the sqlite_master table and internal schema 2290 ** if a root-page of another table is moved by the btree-layer whilst 2291 ** erasing iTable (this can happen with an auto-vacuum database). 2292 */ 2293 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2294 Vdbe *v = sqlite3GetVdbe(pParse); 2295 int r1 = sqlite3GetTempReg(pParse); 2296 assert( iTable>1 ); 2297 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2298 sqlite3MayAbort(pParse); 2299 #ifndef SQLITE_OMIT_AUTOVACUUM 2300 /* OP_Destroy stores an in integer r1. If this integer 2301 ** is non-zero, then it is the root page number of a table moved to 2302 ** location iTable. The following code modifies the sqlite_master table to 2303 ** reflect this. 2304 ** 2305 ** The "#NNN" in the SQL is a special constant that means whatever value 2306 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2307 ** token for additional information. 2308 */ 2309 sqlite3NestedParse(pParse, 2310 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2311 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2312 #endif 2313 sqlite3ReleaseTempReg(pParse, r1); 2314 } 2315 2316 /* 2317 ** Write VDBE code to erase table pTab and all associated indices on disk. 2318 ** Code to update the sqlite_master tables and internal schema definitions 2319 ** in case a root-page belonging to another table is moved by the btree layer 2320 ** is also added (this can happen with an auto-vacuum database). 2321 */ 2322 static void destroyTable(Parse *pParse, Table *pTab){ 2323 #ifdef SQLITE_OMIT_AUTOVACUUM 2324 Index *pIdx; 2325 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2326 destroyRootPage(pParse, pTab->tnum, iDb); 2327 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2328 destroyRootPage(pParse, pIdx->tnum, iDb); 2329 } 2330 #else 2331 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2332 ** is not defined), then it is important to call OP_Destroy on the 2333 ** table and index root-pages in order, starting with the numerically 2334 ** largest root-page number. This guarantees that none of the root-pages 2335 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2336 ** following were coded: 2337 ** 2338 ** OP_Destroy 4 0 2339 ** ... 2340 ** OP_Destroy 5 0 2341 ** 2342 ** and root page 5 happened to be the largest root-page number in the 2343 ** database, then root page 5 would be moved to page 4 by the 2344 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2345 ** a free-list page. 2346 */ 2347 int iTab = pTab->tnum; 2348 int iDestroyed = 0; 2349 2350 while( 1 ){ 2351 Index *pIdx; 2352 int iLargest = 0; 2353 2354 if( iDestroyed==0 || iTab<iDestroyed ){ 2355 iLargest = iTab; 2356 } 2357 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2358 int iIdx = pIdx->tnum; 2359 assert( pIdx->pSchema==pTab->pSchema ); 2360 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2361 iLargest = iIdx; 2362 } 2363 } 2364 if( iLargest==0 ){ 2365 return; 2366 }else{ 2367 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2368 assert( iDb>=0 && iDb<pParse->db->nDb ); 2369 destroyRootPage(pParse, iLargest, iDb); 2370 iDestroyed = iLargest; 2371 } 2372 } 2373 #endif 2374 } 2375 2376 /* 2377 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2378 ** after a DROP INDEX or DROP TABLE command. 2379 */ 2380 static void sqlite3ClearStatTables( 2381 Parse *pParse, /* The parsing context */ 2382 int iDb, /* The database number */ 2383 const char *zType, /* "idx" or "tbl" */ 2384 const char *zName /* Name of index or table */ 2385 ){ 2386 int i; 2387 const char *zDbName = pParse->db->aDb[iDb].zName; 2388 for(i=1; i<=4; i++){ 2389 char zTab[24]; 2390 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2391 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2392 sqlite3NestedParse(pParse, 2393 "DELETE FROM %Q.%s WHERE %s=%Q", 2394 zDbName, zTab, zType, zName 2395 ); 2396 } 2397 } 2398 } 2399 2400 /* 2401 ** Generate code to drop a table. 2402 */ 2403 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2404 Vdbe *v; 2405 sqlite3 *db = pParse->db; 2406 Trigger *pTrigger; 2407 Db *pDb = &db->aDb[iDb]; 2408 2409 v = sqlite3GetVdbe(pParse); 2410 assert( v!=0 ); 2411 sqlite3BeginWriteOperation(pParse, 1, iDb); 2412 2413 #ifndef SQLITE_OMIT_VIRTUALTABLE 2414 if( IsVirtual(pTab) ){ 2415 sqlite3VdbeAddOp0(v, OP_VBegin); 2416 } 2417 #endif 2418 2419 /* Drop all triggers associated with the table being dropped. Code 2420 ** is generated to remove entries from sqlite_master and/or 2421 ** sqlite_temp_master if required. 2422 */ 2423 pTrigger = sqlite3TriggerList(pParse, pTab); 2424 while( pTrigger ){ 2425 assert( pTrigger->pSchema==pTab->pSchema || 2426 pTrigger->pSchema==db->aDb[1].pSchema ); 2427 sqlite3DropTriggerPtr(pParse, pTrigger); 2428 pTrigger = pTrigger->pNext; 2429 } 2430 2431 #ifndef SQLITE_OMIT_AUTOINCREMENT 2432 /* Remove any entries of the sqlite_sequence table associated with 2433 ** the table being dropped. This is done before the table is dropped 2434 ** at the btree level, in case the sqlite_sequence table needs to 2435 ** move as a result of the drop (can happen in auto-vacuum mode). 2436 */ 2437 if( pTab->tabFlags & TF_Autoincrement ){ 2438 sqlite3NestedParse(pParse, 2439 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2440 pDb->zName, pTab->zName 2441 ); 2442 } 2443 #endif 2444 2445 /* Drop all SQLITE_MASTER table and index entries that refer to the 2446 ** table. The program name loops through the master table and deletes 2447 ** every row that refers to a table of the same name as the one being 2448 ** dropped. Triggers are handled separately because a trigger can be 2449 ** created in the temp database that refers to a table in another 2450 ** database. 2451 */ 2452 sqlite3NestedParse(pParse, 2453 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2454 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2455 if( !isView && !IsVirtual(pTab) ){ 2456 destroyTable(pParse, pTab); 2457 } 2458 2459 /* Remove the table entry from SQLite's internal schema and modify 2460 ** the schema cookie. 2461 */ 2462 if( IsVirtual(pTab) ){ 2463 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2464 } 2465 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2466 sqlite3ChangeCookie(pParse, iDb); 2467 sqliteViewResetAll(db, iDb); 2468 } 2469 2470 /* 2471 ** This routine is called to do the work of a DROP TABLE statement. 2472 ** pName is the name of the table to be dropped. 2473 */ 2474 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2475 Table *pTab; 2476 Vdbe *v; 2477 sqlite3 *db = pParse->db; 2478 int iDb; 2479 2480 if( db->mallocFailed ){ 2481 goto exit_drop_table; 2482 } 2483 assert( pParse->nErr==0 ); 2484 assert( pName->nSrc==1 ); 2485 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2486 if( noErr ) db->suppressErr++; 2487 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2488 if( noErr ) db->suppressErr--; 2489 2490 if( pTab==0 ){ 2491 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2492 goto exit_drop_table; 2493 } 2494 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2495 assert( iDb>=0 && iDb<db->nDb ); 2496 2497 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2498 ** it is initialized. 2499 */ 2500 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2501 goto exit_drop_table; 2502 } 2503 #ifndef SQLITE_OMIT_AUTHORIZATION 2504 { 2505 int code; 2506 const char *zTab = SCHEMA_TABLE(iDb); 2507 const char *zDb = db->aDb[iDb].zName; 2508 const char *zArg2 = 0; 2509 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2510 goto exit_drop_table; 2511 } 2512 if( isView ){ 2513 if( !OMIT_TEMPDB && iDb==1 ){ 2514 code = SQLITE_DROP_TEMP_VIEW; 2515 }else{ 2516 code = SQLITE_DROP_VIEW; 2517 } 2518 #ifndef SQLITE_OMIT_VIRTUALTABLE 2519 }else if( IsVirtual(pTab) ){ 2520 code = SQLITE_DROP_VTABLE; 2521 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2522 #endif 2523 }else{ 2524 if( !OMIT_TEMPDB && iDb==1 ){ 2525 code = SQLITE_DROP_TEMP_TABLE; 2526 }else{ 2527 code = SQLITE_DROP_TABLE; 2528 } 2529 } 2530 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2531 goto exit_drop_table; 2532 } 2533 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2534 goto exit_drop_table; 2535 } 2536 } 2537 #endif 2538 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2539 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2540 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2541 goto exit_drop_table; 2542 } 2543 2544 #ifndef SQLITE_OMIT_VIEW 2545 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2546 ** on a table. 2547 */ 2548 if( isView && pTab->pSelect==0 ){ 2549 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2550 goto exit_drop_table; 2551 } 2552 if( !isView && pTab->pSelect ){ 2553 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2554 goto exit_drop_table; 2555 } 2556 #endif 2557 2558 /* Generate code to remove the table from the master table 2559 ** on disk. 2560 */ 2561 v = sqlite3GetVdbe(pParse); 2562 if( v ){ 2563 sqlite3BeginWriteOperation(pParse, 1, iDb); 2564 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2565 sqlite3FkDropTable(pParse, pName, pTab); 2566 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2567 } 2568 2569 exit_drop_table: 2570 sqlite3SrcListDelete(db, pName); 2571 } 2572 2573 /* 2574 ** This routine is called to create a new foreign key on the table 2575 ** currently under construction. pFromCol determines which columns 2576 ** in the current table point to the foreign key. If pFromCol==0 then 2577 ** connect the key to the last column inserted. pTo is the name of 2578 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2579 ** of tables in the parent pTo table. flags contains all 2580 ** information about the conflict resolution algorithms specified 2581 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2582 ** 2583 ** An FKey structure is created and added to the table currently 2584 ** under construction in the pParse->pNewTable field. 2585 ** 2586 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2587 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2588 */ 2589 void sqlite3CreateForeignKey( 2590 Parse *pParse, /* Parsing context */ 2591 ExprList *pFromCol, /* Columns in this table that point to other table */ 2592 Token *pTo, /* Name of the other table */ 2593 ExprList *pToCol, /* Columns in the other table */ 2594 int flags /* Conflict resolution algorithms. */ 2595 ){ 2596 sqlite3 *db = pParse->db; 2597 #ifndef SQLITE_OMIT_FOREIGN_KEY 2598 FKey *pFKey = 0; 2599 FKey *pNextTo; 2600 Table *p = pParse->pNewTable; 2601 int nByte; 2602 int i; 2603 int nCol; 2604 char *z; 2605 2606 assert( pTo!=0 ); 2607 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2608 if( pFromCol==0 ){ 2609 int iCol = p->nCol-1; 2610 if( NEVER(iCol<0) ) goto fk_end; 2611 if( pToCol && pToCol->nExpr!=1 ){ 2612 sqlite3ErrorMsg(pParse, "foreign key on %s" 2613 " should reference only one column of table %T", 2614 p->aCol[iCol].zName, pTo); 2615 goto fk_end; 2616 } 2617 nCol = 1; 2618 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2619 sqlite3ErrorMsg(pParse, 2620 "number of columns in foreign key does not match the number of " 2621 "columns in the referenced table"); 2622 goto fk_end; 2623 }else{ 2624 nCol = pFromCol->nExpr; 2625 } 2626 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2627 if( pToCol ){ 2628 for(i=0; i<pToCol->nExpr; i++){ 2629 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2630 } 2631 } 2632 pFKey = sqlite3DbMallocZero(db, nByte ); 2633 if( pFKey==0 ){ 2634 goto fk_end; 2635 } 2636 pFKey->pFrom = p; 2637 pFKey->pNextFrom = p->pFKey; 2638 z = (char*)&pFKey->aCol[nCol]; 2639 pFKey->zTo = z; 2640 memcpy(z, pTo->z, pTo->n); 2641 z[pTo->n] = 0; 2642 sqlite3Dequote(z); 2643 z += pTo->n+1; 2644 pFKey->nCol = nCol; 2645 if( pFromCol==0 ){ 2646 pFKey->aCol[0].iFrom = p->nCol-1; 2647 }else{ 2648 for(i=0; i<nCol; i++){ 2649 int j; 2650 for(j=0; j<p->nCol; j++){ 2651 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2652 pFKey->aCol[i].iFrom = j; 2653 break; 2654 } 2655 } 2656 if( j>=p->nCol ){ 2657 sqlite3ErrorMsg(pParse, 2658 "unknown column \"%s\" in foreign key definition", 2659 pFromCol->a[i].zName); 2660 goto fk_end; 2661 } 2662 } 2663 } 2664 if( pToCol ){ 2665 for(i=0; i<nCol; i++){ 2666 int n = sqlite3Strlen30(pToCol->a[i].zName); 2667 pFKey->aCol[i].zCol = z; 2668 memcpy(z, pToCol->a[i].zName, n); 2669 z[n] = 0; 2670 z += n+1; 2671 } 2672 } 2673 pFKey->isDeferred = 0; 2674 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2675 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2676 2677 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2678 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2679 pFKey->zTo, (void *)pFKey 2680 ); 2681 if( pNextTo==pFKey ){ 2682 sqlite3OomFault(db); 2683 goto fk_end; 2684 } 2685 if( pNextTo ){ 2686 assert( pNextTo->pPrevTo==0 ); 2687 pFKey->pNextTo = pNextTo; 2688 pNextTo->pPrevTo = pFKey; 2689 } 2690 2691 /* Link the foreign key to the table as the last step. 2692 */ 2693 p->pFKey = pFKey; 2694 pFKey = 0; 2695 2696 fk_end: 2697 sqlite3DbFree(db, pFKey); 2698 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2699 sqlite3ExprListDelete(db, pFromCol); 2700 sqlite3ExprListDelete(db, pToCol); 2701 } 2702 2703 /* 2704 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2705 ** clause is seen as part of a foreign key definition. The isDeferred 2706 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2707 ** The behavior of the most recently created foreign key is adjusted 2708 ** accordingly. 2709 */ 2710 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2711 #ifndef SQLITE_OMIT_FOREIGN_KEY 2712 Table *pTab; 2713 FKey *pFKey; 2714 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2715 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2716 pFKey->isDeferred = (u8)isDeferred; 2717 #endif 2718 } 2719 2720 /* 2721 ** Generate code that will erase and refill index *pIdx. This is 2722 ** used to initialize a newly created index or to recompute the 2723 ** content of an index in response to a REINDEX command. 2724 ** 2725 ** if memRootPage is not negative, it means that the index is newly 2726 ** created. The register specified by memRootPage contains the 2727 ** root page number of the index. If memRootPage is negative, then 2728 ** the index already exists and must be cleared before being refilled and 2729 ** the root page number of the index is taken from pIndex->tnum. 2730 */ 2731 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2732 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2733 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2734 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2735 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2736 int addr1; /* Address of top of loop */ 2737 int addr2; /* Address to jump to for next iteration */ 2738 int tnum; /* Root page of index */ 2739 int iPartIdxLabel; /* Jump to this label to skip a row */ 2740 Vdbe *v; /* Generate code into this virtual machine */ 2741 KeyInfo *pKey; /* KeyInfo for index */ 2742 int regRecord; /* Register holding assembled index record */ 2743 sqlite3 *db = pParse->db; /* The database connection */ 2744 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2745 2746 #ifndef SQLITE_OMIT_AUTHORIZATION 2747 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2748 db->aDb[iDb].zName ) ){ 2749 return; 2750 } 2751 #endif 2752 2753 /* Require a write-lock on the table to perform this operation */ 2754 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2755 2756 v = sqlite3GetVdbe(pParse); 2757 if( v==0 ) return; 2758 if( memRootPage>=0 ){ 2759 tnum = memRootPage; 2760 }else{ 2761 tnum = pIndex->tnum; 2762 } 2763 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2764 2765 /* Open the sorter cursor if we are to use one. */ 2766 iSorter = pParse->nTab++; 2767 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2768 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2769 2770 /* Open the table. Loop through all rows of the table, inserting index 2771 ** records into the sorter. */ 2772 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2773 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2774 regRecord = sqlite3GetTempReg(pParse); 2775 2776 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2777 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2778 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2779 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2780 sqlite3VdbeJumpHere(v, addr1); 2781 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2782 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2783 (char *)pKey, P4_KEYINFO); 2784 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2785 2786 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2787 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2788 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2789 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2790 sqlite3VdbeGoto(v, j2); 2791 addr2 = sqlite3VdbeCurrentAddr(v); 2792 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2793 pIndex->nKeyCol); VdbeCoverage(v); 2794 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2795 }else{ 2796 addr2 = sqlite3VdbeCurrentAddr(v); 2797 } 2798 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2799 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2800 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2801 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2802 sqlite3ReleaseTempReg(pParse, regRecord); 2803 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2804 sqlite3VdbeJumpHere(v, addr1); 2805 2806 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2807 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2808 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2809 } 2810 2811 /* 2812 ** Allocate heap space to hold an Index object with nCol columns. 2813 ** 2814 ** Increase the allocation size to provide an extra nExtra bytes 2815 ** of 8-byte aligned space after the Index object and return a 2816 ** pointer to this extra space in *ppExtra. 2817 */ 2818 Index *sqlite3AllocateIndexObject( 2819 sqlite3 *db, /* Database connection */ 2820 i16 nCol, /* Total number of columns in the index */ 2821 int nExtra, /* Number of bytes of extra space to alloc */ 2822 char **ppExtra /* Pointer to the "extra" space */ 2823 ){ 2824 Index *p; /* Allocated index object */ 2825 int nByte; /* Bytes of space for Index object + arrays */ 2826 2827 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2828 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2829 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2830 sizeof(i16)*nCol + /* Index.aiColumn */ 2831 sizeof(u8)*nCol); /* Index.aSortOrder */ 2832 p = sqlite3DbMallocZero(db, nByte + nExtra); 2833 if( p ){ 2834 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2835 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2836 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2837 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2838 p->aSortOrder = (u8*)pExtra; 2839 p->nColumn = nCol; 2840 p->nKeyCol = nCol - 1; 2841 *ppExtra = ((char*)p) + nByte; 2842 } 2843 return p; 2844 } 2845 2846 /* 2847 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2848 ** and pTblList is the name of the table that is to be indexed. Both will 2849 ** be NULL for a primary key or an index that is created to satisfy a 2850 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2851 ** as the table to be indexed. pParse->pNewTable is a table that is 2852 ** currently being constructed by a CREATE TABLE statement. 2853 ** 2854 ** pList is a list of columns to be indexed. pList will be NULL if this 2855 ** is a primary key or unique-constraint on the most recent column added 2856 ** to the table currently under construction. 2857 ** 2858 ** If the index is created successfully, return a pointer to the new Index 2859 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2860 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2861 */ 2862 Index *sqlite3CreateIndex( 2863 Parse *pParse, /* All information about this parse */ 2864 Token *pName1, /* First part of index name. May be NULL */ 2865 Token *pName2, /* Second part of index name. May be NULL */ 2866 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2867 ExprList *pList, /* A list of columns to be indexed */ 2868 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2869 Token *pStart, /* The CREATE token that begins this statement */ 2870 Expr *pPIWhere, /* WHERE clause for partial indices */ 2871 int sortOrder, /* Sort order of primary key when pList==NULL */ 2872 int ifNotExist /* Omit error if index already exists */ 2873 ){ 2874 Index *pRet = 0; /* Pointer to return */ 2875 Table *pTab = 0; /* Table to be indexed */ 2876 Index *pIndex = 0; /* The index to be created */ 2877 char *zName = 0; /* Name of the index */ 2878 int nName; /* Number of characters in zName */ 2879 int i, j; 2880 DbFixer sFix; /* For assigning database names to pTable */ 2881 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2882 sqlite3 *db = pParse->db; 2883 Db *pDb; /* The specific table containing the indexed database */ 2884 int iDb; /* Index of the database that is being written */ 2885 Token *pName = 0; /* Unqualified name of the index to create */ 2886 struct ExprList_item *pListItem; /* For looping over pList */ 2887 int nExtra = 0; /* Space allocated for zExtra[] */ 2888 int nExtraCol; /* Number of extra columns needed */ 2889 char *zExtra = 0; /* Extra space after the Index object */ 2890 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2891 2892 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2893 goto exit_create_index; 2894 } 2895 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2896 goto exit_create_index; 2897 } 2898 2899 /* 2900 ** Find the table that is to be indexed. Return early if not found. 2901 */ 2902 if( pTblName!=0 ){ 2903 2904 /* Use the two-part index name to determine the database 2905 ** to search for the table. 'Fix' the table name to this db 2906 ** before looking up the table. 2907 */ 2908 assert( pName1 && pName2 ); 2909 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2910 if( iDb<0 ) goto exit_create_index; 2911 assert( pName && pName->z ); 2912 2913 #ifndef SQLITE_OMIT_TEMPDB 2914 /* If the index name was unqualified, check if the table 2915 ** is a temp table. If so, set the database to 1. Do not do this 2916 ** if initialising a database schema. 2917 */ 2918 if( !db->init.busy ){ 2919 pTab = sqlite3SrcListLookup(pParse, pTblName); 2920 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2921 iDb = 1; 2922 } 2923 } 2924 #endif 2925 2926 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2927 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2928 /* Because the parser constructs pTblName from a single identifier, 2929 ** sqlite3FixSrcList can never fail. */ 2930 assert(0); 2931 } 2932 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2933 assert( db->mallocFailed==0 || pTab==0 ); 2934 if( pTab==0 ) goto exit_create_index; 2935 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2936 sqlite3ErrorMsg(pParse, 2937 "cannot create a TEMP index on non-TEMP table \"%s\"", 2938 pTab->zName); 2939 goto exit_create_index; 2940 } 2941 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2942 }else{ 2943 assert( pName==0 ); 2944 assert( pStart==0 ); 2945 pTab = pParse->pNewTable; 2946 if( !pTab ) goto exit_create_index; 2947 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2948 } 2949 pDb = &db->aDb[iDb]; 2950 2951 assert( pTab!=0 ); 2952 assert( pParse->nErr==0 ); 2953 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2954 && db->init.busy==0 2955 #if SQLITE_USER_AUTHENTICATION 2956 && sqlite3UserAuthTable(pTab->zName)==0 2957 #endif 2958 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2959 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2960 goto exit_create_index; 2961 } 2962 #ifndef SQLITE_OMIT_VIEW 2963 if( pTab->pSelect ){ 2964 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2965 goto exit_create_index; 2966 } 2967 #endif 2968 #ifndef SQLITE_OMIT_VIRTUALTABLE 2969 if( IsVirtual(pTab) ){ 2970 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2971 goto exit_create_index; 2972 } 2973 #endif 2974 2975 /* 2976 ** Find the name of the index. Make sure there is not already another 2977 ** index or table with the same name. 2978 ** 2979 ** Exception: If we are reading the names of permanent indices from the 2980 ** sqlite_master table (because some other process changed the schema) and 2981 ** one of the index names collides with the name of a temporary table or 2982 ** index, then we will continue to process this index. 2983 ** 2984 ** If pName==0 it means that we are 2985 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2986 ** own name. 2987 */ 2988 if( pName ){ 2989 zName = sqlite3NameFromToken(db, pName); 2990 if( zName==0 ) goto exit_create_index; 2991 assert( pName->z!=0 ); 2992 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2993 goto exit_create_index; 2994 } 2995 if( !db->init.busy ){ 2996 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2997 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2998 goto exit_create_index; 2999 } 3000 } 3001 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3002 if( !ifNotExist ){ 3003 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3004 }else{ 3005 assert( !db->init.busy ); 3006 sqlite3CodeVerifySchema(pParse, iDb); 3007 } 3008 goto exit_create_index; 3009 } 3010 }else{ 3011 int n; 3012 Index *pLoop; 3013 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3014 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3015 if( zName==0 ){ 3016 goto exit_create_index; 3017 } 3018 } 3019 3020 /* Check for authorization to create an index. 3021 */ 3022 #ifndef SQLITE_OMIT_AUTHORIZATION 3023 { 3024 const char *zDb = pDb->zName; 3025 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3026 goto exit_create_index; 3027 } 3028 i = SQLITE_CREATE_INDEX; 3029 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3030 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3031 goto exit_create_index; 3032 } 3033 } 3034 #endif 3035 3036 /* If pList==0, it means this routine was called to make a primary 3037 ** key out of the last column added to the table under construction. 3038 ** So create a fake list to simulate this. 3039 */ 3040 if( pList==0 ){ 3041 Token prevCol; 3042 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3043 pList = sqlite3ExprListAppend(pParse, 0, 3044 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3045 if( pList==0 ) goto exit_create_index; 3046 assert( pList->nExpr==1 ); 3047 sqlite3ExprListSetSortOrder(pList, sortOrder); 3048 }else{ 3049 sqlite3ExprListCheckLength(pParse, pList, "index"); 3050 } 3051 3052 /* Figure out how many bytes of space are required to store explicitly 3053 ** specified collation sequence names. 3054 */ 3055 for(i=0; i<pList->nExpr; i++){ 3056 Expr *pExpr = pList->a[i].pExpr; 3057 assert( pExpr!=0 ); 3058 if( pExpr->op==TK_COLLATE ){ 3059 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3060 } 3061 } 3062 3063 /* 3064 ** Allocate the index structure. 3065 */ 3066 nName = sqlite3Strlen30(zName); 3067 nExtraCol = pPk ? pPk->nKeyCol : 1; 3068 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3069 nName + nExtra + 1, &zExtra); 3070 if( db->mallocFailed ){ 3071 goto exit_create_index; 3072 } 3073 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3074 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3075 pIndex->zName = zExtra; 3076 zExtra += nName + 1; 3077 memcpy(pIndex->zName, zName, nName+1); 3078 pIndex->pTable = pTab; 3079 pIndex->onError = (u8)onError; 3080 pIndex->uniqNotNull = onError!=OE_None; 3081 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3082 pIndex->pSchema = db->aDb[iDb].pSchema; 3083 pIndex->nKeyCol = pList->nExpr; 3084 if( pPIWhere ){ 3085 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3086 pIndex->pPartIdxWhere = pPIWhere; 3087 pPIWhere = 0; 3088 } 3089 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3090 3091 /* Check to see if we should honor DESC requests on index columns 3092 */ 3093 if( pDb->pSchema->file_format>=4 ){ 3094 sortOrderMask = -1; /* Honor DESC */ 3095 }else{ 3096 sortOrderMask = 0; /* Ignore DESC */ 3097 } 3098 3099 /* Analyze the list of expressions that form the terms of the index and 3100 ** report any errors. In the common case where the expression is exactly 3101 ** a table column, store that column in aiColumn[]. For general expressions, 3102 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3103 ** 3104 ** TODO: Issue a warning if two or more columns of the index are identical. 3105 ** TODO: Issue a warning if the table primary key is used as part of the 3106 ** index key. 3107 */ 3108 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3109 Expr *pCExpr; /* The i-th index expression */ 3110 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3111 const char *zColl; /* Collation sequence name */ 3112 3113 sqlite3StringToId(pListItem->pExpr); 3114 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3115 if( pParse->nErr ) goto exit_create_index; 3116 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3117 if( pCExpr->op!=TK_COLUMN ){ 3118 if( pTab==pParse->pNewTable ){ 3119 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3120 "UNIQUE constraints"); 3121 goto exit_create_index; 3122 } 3123 if( pIndex->aColExpr==0 ){ 3124 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3125 pIndex->aColExpr = pCopy; 3126 if( !db->mallocFailed ){ 3127 assert( pCopy!=0 ); 3128 pListItem = &pCopy->a[i]; 3129 } 3130 } 3131 j = XN_EXPR; 3132 pIndex->aiColumn[i] = XN_EXPR; 3133 pIndex->uniqNotNull = 0; 3134 }else{ 3135 j = pCExpr->iColumn; 3136 assert( j<=0x7fff ); 3137 if( j<0 ){ 3138 j = pTab->iPKey; 3139 }else if( pTab->aCol[j].notNull==0 ){ 3140 pIndex->uniqNotNull = 0; 3141 } 3142 pIndex->aiColumn[i] = (i16)j; 3143 } 3144 zColl = 0; 3145 if( pListItem->pExpr->op==TK_COLLATE ){ 3146 int nColl; 3147 zColl = pListItem->pExpr->u.zToken; 3148 nColl = sqlite3Strlen30(zColl) + 1; 3149 assert( nExtra>=nColl ); 3150 memcpy(zExtra, zColl, nColl); 3151 zColl = zExtra; 3152 zExtra += nColl; 3153 nExtra -= nColl; 3154 }else if( j>=0 ){ 3155 zColl = pTab->aCol[j].zColl; 3156 } 3157 if( !zColl ) zColl = sqlite3StrBINARY; 3158 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3159 goto exit_create_index; 3160 } 3161 pIndex->azColl[i] = zColl; 3162 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3163 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3164 } 3165 3166 /* Append the table key to the end of the index. For WITHOUT ROWID 3167 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3168 ** normal tables (when pPk==0) this will be the rowid. 3169 */ 3170 if( pPk ){ 3171 for(j=0; j<pPk->nKeyCol; j++){ 3172 int x = pPk->aiColumn[j]; 3173 assert( x>=0 ); 3174 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3175 pIndex->nColumn--; 3176 }else{ 3177 pIndex->aiColumn[i] = x; 3178 pIndex->azColl[i] = pPk->azColl[j]; 3179 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3180 i++; 3181 } 3182 } 3183 assert( i==pIndex->nColumn ); 3184 }else{ 3185 pIndex->aiColumn[i] = XN_ROWID; 3186 pIndex->azColl[i] = sqlite3StrBINARY; 3187 } 3188 sqlite3DefaultRowEst(pIndex); 3189 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3190 3191 /* If this index contains every column of its table, then mark 3192 ** it as a covering index */ 3193 assert( HasRowid(pTab) 3194 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3195 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3196 pIndex->isCovering = 1; 3197 for(j=0; j<pTab->nCol; j++){ 3198 if( j==pTab->iPKey ) continue; 3199 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3200 pIndex->isCovering = 0; 3201 break; 3202 } 3203 } 3204 3205 if( pTab==pParse->pNewTable ){ 3206 /* This routine has been called to create an automatic index as a 3207 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3208 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3209 ** i.e. one of: 3210 ** 3211 ** CREATE TABLE t(x PRIMARY KEY, y); 3212 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3213 ** 3214 ** Either way, check to see if the table already has such an index. If 3215 ** so, don't bother creating this one. This only applies to 3216 ** automatically created indices. Users can do as they wish with 3217 ** explicit indices. 3218 ** 3219 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3220 ** (and thus suppressing the second one) even if they have different 3221 ** sort orders. 3222 ** 3223 ** If there are different collating sequences or if the columns of 3224 ** the constraint occur in different orders, then the constraints are 3225 ** considered distinct and both result in separate indices. 3226 */ 3227 Index *pIdx; 3228 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3229 int k; 3230 assert( IsUniqueIndex(pIdx) ); 3231 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3232 assert( IsUniqueIndex(pIndex) ); 3233 3234 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3235 for(k=0; k<pIdx->nKeyCol; k++){ 3236 const char *z1; 3237 const char *z2; 3238 assert( pIdx->aiColumn[k]>=0 ); 3239 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3240 z1 = pIdx->azColl[k]; 3241 z2 = pIndex->azColl[k]; 3242 if( sqlite3StrICmp(z1, z2) ) break; 3243 } 3244 if( k==pIdx->nKeyCol ){ 3245 if( pIdx->onError!=pIndex->onError ){ 3246 /* This constraint creates the same index as a previous 3247 ** constraint specified somewhere in the CREATE TABLE statement. 3248 ** However the ON CONFLICT clauses are different. If both this 3249 ** constraint and the previous equivalent constraint have explicit 3250 ** ON CONFLICT clauses this is an error. Otherwise, use the 3251 ** explicitly specified behavior for the index. 3252 */ 3253 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3254 sqlite3ErrorMsg(pParse, 3255 "conflicting ON CONFLICT clauses specified", 0); 3256 } 3257 if( pIdx->onError==OE_Default ){ 3258 pIdx->onError = pIndex->onError; 3259 } 3260 } 3261 pRet = pIdx; 3262 goto exit_create_index; 3263 } 3264 } 3265 } 3266 3267 /* Link the new Index structure to its table and to the other 3268 ** in-memory database structures. 3269 */ 3270 assert( pParse->nErr==0 ); 3271 if( db->init.busy ){ 3272 Index *p; 3273 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3274 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3275 pIndex->zName, pIndex); 3276 if( p ){ 3277 assert( p==pIndex ); /* Malloc must have failed */ 3278 sqlite3OomFault(db); 3279 goto exit_create_index; 3280 } 3281 db->flags |= SQLITE_InternChanges; 3282 if( pTblName!=0 ){ 3283 pIndex->tnum = db->init.newTnum; 3284 } 3285 } 3286 3287 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3288 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3289 ** emit code to allocate the index rootpage on disk and make an entry for 3290 ** the index in the sqlite_master table and populate the index with 3291 ** content. But, do not do this if we are simply reading the sqlite_master 3292 ** table to parse the schema, or if this index is the PRIMARY KEY index 3293 ** of a WITHOUT ROWID table. 3294 ** 3295 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3296 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3297 ** has just been created, it contains no data and the index initialization 3298 ** step can be skipped. 3299 */ 3300 else if( HasRowid(pTab) || pTblName!=0 ){ 3301 Vdbe *v; 3302 char *zStmt; 3303 int iMem = ++pParse->nMem; 3304 3305 v = sqlite3GetVdbe(pParse); 3306 if( v==0 ) goto exit_create_index; 3307 3308 sqlite3BeginWriteOperation(pParse, 1, iDb); 3309 3310 /* Create the rootpage for the index using CreateIndex. But before 3311 ** doing so, code a Noop instruction and store its address in 3312 ** Index.tnum. This is required in case this index is actually a 3313 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3314 ** that case the convertToWithoutRowidTable() routine will replace 3315 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3316 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3317 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3318 3319 /* Gather the complete text of the CREATE INDEX statement into 3320 ** the zStmt variable 3321 */ 3322 if( pStart ){ 3323 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3324 if( pName->z[n-1]==';' ) n--; 3325 /* A named index with an explicit CREATE INDEX statement */ 3326 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3327 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3328 }else{ 3329 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3330 /* zStmt = sqlite3MPrintf(""); */ 3331 zStmt = 0; 3332 } 3333 3334 /* Add an entry in sqlite_master for this index 3335 */ 3336 sqlite3NestedParse(pParse, 3337 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3338 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3339 pIndex->zName, 3340 pTab->zName, 3341 iMem, 3342 zStmt 3343 ); 3344 sqlite3DbFree(db, zStmt); 3345 3346 /* Fill the index with data and reparse the schema. Code an OP_Expire 3347 ** to invalidate all pre-compiled statements. 3348 */ 3349 if( pTblName ){ 3350 sqlite3RefillIndex(pParse, pIndex, iMem); 3351 sqlite3ChangeCookie(pParse, iDb); 3352 sqlite3VdbeAddParseSchemaOp(v, iDb, 3353 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3354 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3355 } 3356 3357 sqlite3VdbeJumpHere(v, pIndex->tnum); 3358 } 3359 3360 /* When adding an index to the list of indices for a table, make 3361 ** sure all indices labeled OE_Replace come after all those labeled 3362 ** OE_Ignore. This is necessary for the correct constraint check 3363 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3364 ** UPDATE and INSERT statements. 3365 */ 3366 if( db->init.busy || pTblName==0 ){ 3367 if( onError!=OE_Replace || pTab->pIndex==0 3368 || pTab->pIndex->onError==OE_Replace){ 3369 pIndex->pNext = pTab->pIndex; 3370 pTab->pIndex = pIndex; 3371 }else{ 3372 Index *pOther = pTab->pIndex; 3373 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3374 pOther = pOther->pNext; 3375 } 3376 pIndex->pNext = pOther->pNext; 3377 pOther->pNext = pIndex; 3378 } 3379 pRet = pIndex; 3380 pIndex = 0; 3381 } 3382 3383 /* Clean up before exiting */ 3384 exit_create_index: 3385 if( pIndex ) freeIndex(db, pIndex); 3386 sqlite3ExprDelete(db, pPIWhere); 3387 sqlite3ExprListDelete(db, pList); 3388 sqlite3SrcListDelete(db, pTblName); 3389 sqlite3DbFree(db, zName); 3390 return pRet; 3391 } 3392 3393 /* 3394 ** Fill the Index.aiRowEst[] array with default information - information 3395 ** to be used when we have not run the ANALYZE command. 3396 ** 3397 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3398 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3399 ** number of rows in the table that match any particular value of the 3400 ** first column of the index. aiRowEst[2] is an estimate of the number 3401 ** of rows that match any particular combination of the first 2 columns 3402 ** of the index. And so forth. It must always be the case that 3403 * 3404 ** aiRowEst[N]<=aiRowEst[N-1] 3405 ** aiRowEst[N]>=1 3406 ** 3407 ** Apart from that, we have little to go on besides intuition as to 3408 ** how aiRowEst[] should be initialized. The numbers generated here 3409 ** are based on typical values found in actual indices. 3410 */ 3411 void sqlite3DefaultRowEst(Index *pIdx){ 3412 /* 10, 9, 8, 7, 6 */ 3413 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3414 LogEst *a = pIdx->aiRowLogEst; 3415 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3416 int i; 3417 3418 /* Set the first entry (number of rows in the index) to the estimated 3419 ** number of rows in the table. Or 10, if the estimated number of rows 3420 ** in the table is less than that. */ 3421 a[0] = pIdx->pTable->nRowLogEst; 3422 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3423 3424 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3425 ** 6 and each subsequent value (if any) is 5. */ 3426 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3427 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3428 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3429 } 3430 3431 assert( 0==sqlite3LogEst(1) ); 3432 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3433 } 3434 3435 /* 3436 ** This routine will drop an existing named index. This routine 3437 ** implements the DROP INDEX statement. 3438 */ 3439 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3440 Index *pIndex; 3441 Vdbe *v; 3442 sqlite3 *db = pParse->db; 3443 int iDb; 3444 3445 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3446 if( db->mallocFailed ){ 3447 goto exit_drop_index; 3448 } 3449 assert( pName->nSrc==1 ); 3450 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3451 goto exit_drop_index; 3452 } 3453 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3454 if( pIndex==0 ){ 3455 if( !ifExists ){ 3456 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3457 }else{ 3458 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3459 } 3460 pParse->checkSchema = 1; 3461 goto exit_drop_index; 3462 } 3463 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3464 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3465 "or PRIMARY KEY constraint cannot be dropped", 0); 3466 goto exit_drop_index; 3467 } 3468 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3469 #ifndef SQLITE_OMIT_AUTHORIZATION 3470 { 3471 int code = SQLITE_DROP_INDEX; 3472 Table *pTab = pIndex->pTable; 3473 const char *zDb = db->aDb[iDb].zName; 3474 const char *zTab = SCHEMA_TABLE(iDb); 3475 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3476 goto exit_drop_index; 3477 } 3478 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3479 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3480 goto exit_drop_index; 3481 } 3482 } 3483 #endif 3484 3485 /* Generate code to remove the index and from the master table */ 3486 v = sqlite3GetVdbe(pParse); 3487 if( v ){ 3488 sqlite3BeginWriteOperation(pParse, 1, iDb); 3489 sqlite3NestedParse(pParse, 3490 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3491 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3492 ); 3493 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3494 sqlite3ChangeCookie(pParse, iDb); 3495 destroyRootPage(pParse, pIndex->tnum, iDb); 3496 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3497 } 3498 3499 exit_drop_index: 3500 sqlite3SrcListDelete(db, pName); 3501 } 3502 3503 /* 3504 ** pArray is a pointer to an array of objects. Each object in the 3505 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3506 ** to extend the array so that there is space for a new object at the end. 3507 ** 3508 ** When this function is called, *pnEntry contains the current size of 3509 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3510 ** in total). 3511 ** 3512 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3513 ** space allocated for the new object is zeroed, *pnEntry updated to 3514 ** reflect the new size of the array and a pointer to the new allocation 3515 ** returned. *pIdx is set to the index of the new array entry in this case. 3516 ** 3517 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3518 ** unchanged and a copy of pArray returned. 3519 */ 3520 void *sqlite3ArrayAllocate( 3521 sqlite3 *db, /* Connection to notify of malloc failures */ 3522 void *pArray, /* Array of objects. Might be reallocated */ 3523 int szEntry, /* Size of each object in the array */ 3524 int *pnEntry, /* Number of objects currently in use */ 3525 int *pIdx /* Write the index of a new slot here */ 3526 ){ 3527 char *z; 3528 int n = *pnEntry; 3529 if( (n & (n-1))==0 ){ 3530 int sz = (n==0) ? 1 : 2*n; 3531 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3532 if( pNew==0 ){ 3533 *pIdx = -1; 3534 return pArray; 3535 } 3536 pArray = pNew; 3537 } 3538 z = (char*)pArray; 3539 memset(&z[n * szEntry], 0, szEntry); 3540 *pIdx = n; 3541 ++*pnEntry; 3542 return pArray; 3543 } 3544 3545 /* 3546 ** Append a new element to the given IdList. Create a new IdList if 3547 ** need be. 3548 ** 3549 ** A new IdList is returned, or NULL if malloc() fails. 3550 */ 3551 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3552 int i; 3553 if( pList==0 ){ 3554 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3555 if( pList==0 ) return 0; 3556 } 3557 pList->a = sqlite3ArrayAllocate( 3558 db, 3559 pList->a, 3560 sizeof(pList->a[0]), 3561 &pList->nId, 3562 &i 3563 ); 3564 if( i<0 ){ 3565 sqlite3IdListDelete(db, pList); 3566 return 0; 3567 } 3568 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3569 return pList; 3570 } 3571 3572 /* 3573 ** Delete an IdList. 3574 */ 3575 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3576 int i; 3577 if( pList==0 ) return; 3578 for(i=0; i<pList->nId; i++){ 3579 sqlite3DbFree(db, pList->a[i].zName); 3580 } 3581 sqlite3DbFree(db, pList->a); 3582 sqlite3DbFree(db, pList); 3583 } 3584 3585 /* 3586 ** Return the index in pList of the identifier named zId. Return -1 3587 ** if not found. 3588 */ 3589 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3590 int i; 3591 if( pList==0 ) return -1; 3592 for(i=0; i<pList->nId; i++){ 3593 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3594 } 3595 return -1; 3596 } 3597 3598 /* 3599 ** Expand the space allocated for the given SrcList object by 3600 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3601 ** New slots are zeroed. 3602 ** 3603 ** For example, suppose a SrcList initially contains two entries: A,B. 3604 ** To append 3 new entries onto the end, do this: 3605 ** 3606 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3607 ** 3608 ** After the call above it would contain: A, B, nil, nil, nil. 3609 ** If the iStart argument had been 1 instead of 2, then the result 3610 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3611 ** the iStart value would be 0. The result then would 3612 ** be: nil, nil, nil, A, B. 3613 ** 3614 ** If a memory allocation fails the SrcList is unchanged. The 3615 ** db->mallocFailed flag will be set to true. 3616 */ 3617 SrcList *sqlite3SrcListEnlarge( 3618 sqlite3 *db, /* Database connection to notify of OOM errors */ 3619 SrcList *pSrc, /* The SrcList to be enlarged */ 3620 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3621 int iStart /* Index in pSrc->a[] of first new slot */ 3622 ){ 3623 int i; 3624 3625 /* Sanity checking on calling parameters */ 3626 assert( iStart>=0 ); 3627 assert( nExtra>=1 ); 3628 assert( pSrc!=0 ); 3629 assert( iStart<=pSrc->nSrc ); 3630 3631 /* Allocate additional space if needed */ 3632 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3633 SrcList *pNew; 3634 int nAlloc = pSrc->nSrc+nExtra; 3635 int nGot; 3636 pNew = sqlite3DbRealloc(db, pSrc, 3637 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3638 if( pNew==0 ){ 3639 assert( db->mallocFailed ); 3640 return pSrc; 3641 } 3642 pSrc = pNew; 3643 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3644 pSrc->nAlloc = nGot; 3645 } 3646 3647 /* Move existing slots that come after the newly inserted slots 3648 ** out of the way */ 3649 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3650 pSrc->a[i+nExtra] = pSrc->a[i]; 3651 } 3652 pSrc->nSrc += nExtra; 3653 3654 /* Zero the newly allocated slots */ 3655 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3656 for(i=iStart; i<iStart+nExtra; i++){ 3657 pSrc->a[i].iCursor = -1; 3658 } 3659 3660 /* Return a pointer to the enlarged SrcList */ 3661 return pSrc; 3662 } 3663 3664 3665 /* 3666 ** Append a new table name to the given SrcList. Create a new SrcList if 3667 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3668 ** 3669 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3670 ** SrcList might be the same as the SrcList that was input or it might be 3671 ** a new one. If an OOM error does occurs, then the prior value of pList 3672 ** that is input to this routine is automatically freed. 3673 ** 3674 ** If pDatabase is not null, it means that the table has an optional 3675 ** database name prefix. Like this: "database.table". The pDatabase 3676 ** points to the table name and the pTable points to the database name. 3677 ** The SrcList.a[].zName field is filled with the table name which might 3678 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3679 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3680 ** or with NULL if no database is specified. 3681 ** 3682 ** In other words, if call like this: 3683 ** 3684 ** sqlite3SrcListAppend(D,A,B,0); 3685 ** 3686 ** Then B is a table name and the database name is unspecified. If called 3687 ** like this: 3688 ** 3689 ** sqlite3SrcListAppend(D,A,B,C); 3690 ** 3691 ** Then C is the table name and B is the database name. If C is defined 3692 ** then so is B. In other words, we never have a case where: 3693 ** 3694 ** sqlite3SrcListAppend(D,A,0,C); 3695 ** 3696 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3697 ** before being added to the SrcList. 3698 */ 3699 SrcList *sqlite3SrcListAppend( 3700 sqlite3 *db, /* Connection to notify of malloc failures */ 3701 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3702 Token *pTable, /* Table to append */ 3703 Token *pDatabase /* Database of the table */ 3704 ){ 3705 struct SrcList_item *pItem; 3706 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3707 assert( db!=0 ); 3708 if( pList==0 ){ 3709 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3710 if( pList==0 ) return 0; 3711 pList->nAlloc = 1; 3712 pList->nSrc = 0; 3713 } 3714 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3715 if( db->mallocFailed ){ 3716 sqlite3SrcListDelete(db, pList); 3717 return 0; 3718 } 3719 pItem = &pList->a[pList->nSrc-1]; 3720 if( pDatabase && pDatabase->z==0 ){ 3721 pDatabase = 0; 3722 } 3723 if( pDatabase ){ 3724 Token *pTemp = pDatabase; 3725 pDatabase = pTable; 3726 pTable = pTemp; 3727 } 3728 pItem->zName = sqlite3NameFromToken(db, pTable); 3729 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3730 return pList; 3731 } 3732 3733 /* 3734 ** Assign VdbeCursor index numbers to all tables in a SrcList 3735 */ 3736 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3737 int i; 3738 struct SrcList_item *pItem; 3739 assert(pList || pParse->db->mallocFailed ); 3740 if( pList ){ 3741 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3742 if( pItem->iCursor>=0 ) break; 3743 pItem->iCursor = pParse->nTab++; 3744 if( pItem->pSelect ){ 3745 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3746 } 3747 } 3748 } 3749 } 3750 3751 /* 3752 ** Delete an entire SrcList including all its substructure. 3753 */ 3754 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3755 int i; 3756 struct SrcList_item *pItem; 3757 if( pList==0 ) return; 3758 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3759 sqlite3DbFree(db, pItem->zDatabase); 3760 sqlite3DbFree(db, pItem->zName); 3761 sqlite3DbFree(db, pItem->zAlias); 3762 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3763 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3764 sqlite3DeleteTable(db, pItem->pTab); 3765 sqlite3SelectDelete(db, pItem->pSelect); 3766 sqlite3ExprDelete(db, pItem->pOn); 3767 sqlite3IdListDelete(db, pItem->pUsing); 3768 } 3769 sqlite3DbFree(db, pList); 3770 } 3771 3772 /* 3773 ** This routine is called by the parser to add a new term to the 3774 ** end of a growing FROM clause. The "p" parameter is the part of 3775 ** the FROM clause that has already been constructed. "p" is NULL 3776 ** if this is the first term of the FROM clause. pTable and pDatabase 3777 ** are the name of the table and database named in the FROM clause term. 3778 ** pDatabase is NULL if the database name qualifier is missing - the 3779 ** usual case. If the term has an alias, then pAlias points to the 3780 ** alias token. If the term is a subquery, then pSubquery is the 3781 ** SELECT statement that the subquery encodes. The pTable and 3782 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3783 ** parameters are the content of the ON and USING clauses. 3784 ** 3785 ** Return a new SrcList which encodes is the FROM with the new 3786 ** term added. 3787 */ 3788 SrcList *sqlite3SrcListAppendFromTerm( 3789 Parse *pParse, /* Parsing context */ 3790 SrcList *p, /* The left part of the FROM clause already seen */ 3791 Token *pTable, /* Name of the table to add to the FROM clause */ 3792 Token *pDatabase, /* Name of the database containing pTable */ 3793 Token *pAlias, /* The right-hand side of the AS subexpression */ 3794 Select *pSubquery, /* A subquery used in place of a table name */ 3795 Expr *pOn, /* The ON clause of a join */ 3796 IdList *pUsing /* The USING clause of a join */ 3797 ){ 3798 struct SrcList_item *pItem; 3799 sqlite3 *db = pParse->db; 3800 if( !p && (pOn || pUsing) ){ 3801 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3802 (pOn ? "ON" : "USING") 3803 ); 3804 goto append_from_error; 3805 } 3806 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3807 if( p==0 || NEVER(p->nSrc==0) ){ 3808 goto append_from_error; 3809 } 3810 pItem = &p->a[p->nSrc-1]; 3811 assert( pAlias!=0 ); 3812 if( pAlias->n ){ 3813 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3814 } 3815 pItem->pSelect = pSubquery; 3816 pItem->pOn = pOn; 3817 pItem->pUsing = pUsing; 3818 return p; 3819 3820 append_from_error: 3821 assert( p==0 ); 3822 sqlite3ExprDelete(db, pOn); 3823 sqlite3IdListDelete(db, pUsing); 3824 sqlite3SelectDelete(db, pSubquery); 3825 return 0; 3826 } 3827 3828 /* 3829 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3830 ** element of the source-list passed as the second argument. 3831 */ 3832 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3833 assert( pIndexedBy!=0 ); 3834 if( p && ALWAYS(p->nSrc>0) ){ 3835 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3836 assert( pItem->fg.notIndexed==0 ); 3837 assert( pItem->fg.isIndexedBy==0 ); 3838 assert( pItem->fg.isTabFunc==0 ); 3839 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3840 /* A "NOT INDEXED" clause was supplied. See parse.y 3841 ** construct "indexed_opt" for details. */ 3842 pItem->fg.notIndexed = 1; 3843 }else{ 3844 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3845 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3846 } 3847 } 3848 } 3849 3850 /* 3851 ** Add the list of function arguments to the SrcList entry for a 3852 ** table-valued-function. 3853 */ 3854 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3855 if( p ){ 3856 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3857 assert( pItem->fg.notIndexed==0 ); 3858 assert( pItem->fg.isIndexedBy==0 ); 3859 assert( pItem->fg.isTabFunc==0 ); 3860 pItem->u1.pFuncArg = pList; 3861 pItem->fg.isTabFunc = 1; 3862 }else{ 3863 sqlite3ExprListDelete(pParse->db, pList); 3864 } 3865 } 3866 3867 /* 3868 ** When building up a FROM clause in the parser, the join operator 3869 ** is initially attached to the left operand. But the code generator 3870 ** expects the join operator to be on the right operand. This routine 3871 ** Shifts all join operators from left to right for an entire FROM 3872 ** clause. 3873 ** 3874 ** Example: Suppose the join is like this: 3875 ** 3876 ** A natural cross join B 3877 ** 3878 ** The operator is "natural cross join". The A and B operands are stored 3879 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3880 ** operator with A. This routine shifts that operator over to B. 3881 */ 3882 void sqlite3SrcListShiftJoinType(SrcList *p){ 3883 if( p ){ 3884 int i; 3885 for(i=p->nSrc-1; i>0; i--){ 3886 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3887 } 3888 p->a[0].fg.jointype = 0; 3889 } 3890 } 3891 3892 /* 3893 ** Generate VDBE code for a BEGIN statement. 3894 */ 3895 void sqlite3BeginTransaction(Parse *pParse, int type){ 3896 sqlite3 *db; 3897 Vdbe *v; 3898 int i; 3899 3900 assert( pParse!=0 ); 3901 db = pParse->db; 3902 assert( db!=0 ); 3903 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3904 return; 3905 } 3906 v = sqlite3GetVdbe(pParse); 3907 if( !v ) return; 3908 if( type!=TK_DEFERRED ){ 3909 for(i=0; i<db->nDb; i++){ 3910 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3911 sqlite3VdbeUsesBtree(v, i); 3912 } 3913 } 3914 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3915 } 3916 3917 /* 3918 ** Generate VDBE code for a COMMIT statement. 3919 */ 3920 void sqlite3CommitTransaction(Parse *pParse){ 3921 Vdbe *v; 3922 3923 assert( pParse!=0 ); 3924 assert( pParse->db!=0 ); 3925 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3926 return; 3927 } 3928 v = sqlite3GetVdbe(pParse); 3929 if( v ){ 3930 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3931 } 3932 } 3933 3934 /* 3935 ** Generate VDBE code for a ROLLBACK statement. 3936 */ 3937 void sqlite3RollbackTransaction(Parse *pParse){ 3938 Vdbe *v; 3939 3940 assert( pParse!=0 ); 3941 assert( pParse->db!=0 ); 3942 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3943 return; 3944 } 3945 v = sqlite3GetVdbe(pParse); 3946 if( v ){ 3947 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3948 } 3949 } 3950 3951 /* 3952 ** This function is called by the parser when it parses a command to create, 3953 ** release or rollback an SQL savepoint. 3954 */ 3955 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3956 char *zName = sqlite3NameFromToken(pParse->db, pName); 3957 if( zName ){ 3958 Vdbe *v = sqlite3GetVdbe(pParse); 3959 #ifndef SQLITE_OMIT_AUTHORIZATION 3960 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3961 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3962 #endif 3963 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3964 sqlite3DbFree(pParse->db, zName); 3965 return; 3966 } 3967 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3968 } 3969 } 3970 3971 /* 3972 ** Make sure the TEMP database is open and available for use. Return 3973 ** the number of errors. Leave any error messages in the pParse structure. 3974 */ 3975 int sqlite3OpenTempDatabase(Parse *pParse){ 3976 sqlite3 *db = pParse->db; 3977 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3978 int rc; 3979 Btree *pBt; 3980 static const int flags = 3981 SQLITE_OPEN_READWRITE | 3982 SQLITE_OPEN_CREATE | 3983 SQLITE_OPEN_EXCLUSIVE | 3984 SQLITE_OPEN_DELETEONCLOSE | 3985 SQLITE_OPEN_TEMP_DB; 3986 3987 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3988 if( rc!=SQLITE_OK ){ 3989 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3990 "file for storing temporary tables"); 3991 pParse->rc = rc; 3992 return 1; 3993 } 3994 db->aDb[1].pBt = pBt; 3995 assert( db->aDb[1].pSchema ); 3996 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3997 sqlite3OomFault(db); 3998 return 1; 3999 } 4000 } 4001 return 0; 4002 } 4003 4004 /* 4005 ** Record the fact that the schema cookie will need to be verified 4006 ** for database iDb. The code to actually verify the schema cookie 4007 ** will occur at the end of the top-level VDBE and will be generated 4008 ** later, by sqlite3FinishCoding(). 4009 */ 4010 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4011 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4012 sqlite3 *db = pToplevel->db; 4013 4014 assert( iDb>=0 && iDb<db->nDb ); 4015 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4016 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4017 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4018 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4019 DbMaskSet(pToplevel->cookieMask, iDb); 4020 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4021 if( !OMIT_TEMPDB && iDb==1 ){ 4022 sqlite3OpenTempDatabase(pToplevel); 4023 } 4024 } 4025 } 4026 4027 /* 4028 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4029 ** attached database. Otherwise, invoke it for the database named zDb only. 4030 */ 4031 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4032 sqlite3 *db = pParse->db; 4033 int i; 4034 for(i=0; i<db->nDb; i++){ 4035 Db *pDb = &db->aDb[i]; 4036 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4037 sqlite3CodeVerifySchema(pParse, i); 4038 } 4039 } 4040 } 4041 4042 /* 4043 ** Generate VDBE code that prepares for doing an operation that 4044 ** might change the database. 4045 ** 4046 ** This routine starts a new transaction if we are not already within 4047 ** a transaction. If we are already within a transaction, then a checkpoint 4048 ** is set if the setStatement parameter is true. A checkpoint should 4049 ** be set for operations that might fail (due to a constraint) part of 4050 ** the way through and which will need to undo some writes without having to 4051 ** rollback the whole transaction. For operations where all constraints 4052 ** can be checked before any changes are made to the database, it is never 4053 ** necessary to undo a write and the checkpoint should not be set. 4054 */ 4055 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4056 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4057 sqlite3CodeVerifySchema(pParse, iDb); 4058 DbMaskSet(pToplevel->writeMask, iDb); 4059 pToplevel->isMultiWrite |= setStatement; 4060 } 4061 4062 /* 4063 ** Indicate that the statement currently under construction might write 4064 ** more than one entry (example: deleting one row then inserting another, 4065 ** inserting multiple rows in a table, or inserting a row and index entries.) 4066 ** If an abort occurs after some of these writes have completed, then it will 4067 ** be necessary to undo the completed writes. 4068 */ 4069 void sqlite3MultiWrite(Parse *pParse){ 4070 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4071 pToplevel->isMultiWrite = 1; 4072 } 4073 4074 /* 4075 ** The code generator calls this routine if is discovers that it is 4076 ** possible to abort a statement prior to completion. In order to 4077 ** perform this abort without corrupting the database, we need to make 4078 ** sure that the statement is protected by a statement transaction. 4079 ** 4080 ** Technically, we only need to set the mayAbort flag if the 4081 ** isMultiWrite flag was previously set. There is a time dependency 4082 ** such that the abort must occur after the multiwrite. This makes 4083 ** some statements involving the REPLACE conflict resolution algorithm 4084 ** go a little faster. But taking advantage of this time dependency 4085 ** makes it more difficult to prove that the code is correct (in 4086 ** particular, it prevents us from writing an effective 4087 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4088 ** to take the safe route and skip the optimization. 4089 */ 4090 void sqlite3MayAbort(Parse *pParse){ 4091 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4092 pToplevel->mayAbort = 1; 4093 } 4094 4095 /* 4096 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4097 ** error. The onError parameter determines which (if any) of the statement 4098 ** and/or current transaction is rolled back. 4099 */ 4100 void sqlite3HaltConstraint( 4101 Parse *pParse, /* Parsing context */ 4102 int errCode, /* extended error code */ 4103 int onError, /* Constraint type */ 4104 char *p4, /* Error message */ 4105 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4106 u8 p5Errmsg /* P5_ErrMsg type */ 4107 ){ 4108 Vdbe *v = sqlite3GetVdbe(pParse); 4109 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4110 if( onError==OE_Abort ){ 4111 sqlite3MayAbort(pParse); 4112 } 4113 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4114 sqlite3VdbeChangeP5(v, p5Errmsg); 4115 } 4116 4117 /* 4118 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4119 */ 4120 void sqlite3UniqueConstraint( 4121 Parse *pParse, /* Parsing context */ 4122 int onError, /* Constraint type */ 4123 Index *pIdx /* The index that triggers the constraint */ 4124 ){ 4125 char *zErr; 4126 int j; 4127 StrAccum errMsg; 4128 Table *pTab = pIdx->pTable; 4129 4130 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4131 if( pIdx->aColExpr ){ 4132 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4133 }else{ 4134 for(j=0; j<pIdx->nKeyCol; j++){ 4135 char *zCol; 4136 assert( pIdx->aiColumn[j]>=0 ); 4137 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4138 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4139 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4140 } 4141 } 4142 zErr = sqlite3StrAccumFinish(&errMsg); 4143 sqlite3HaltConstraint(pParse, 4144 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4145 : SQLITE_CONSTRAINT_UNIQUE, 4146 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4147 } 4148 4149 4150 /* 4151 ** Code an OP_Halt due to non-unique rowid. 4152 */ 4153 void sqlite3RowidConstraint( 4154 Parse *pParse, /* Parsing context */ 4155 int onError, /* Conflict resolution algorithm */ 4156 Table *pTab /* The table with the non-unique rowid */ 4157 ){ 4158 char *zMsg; 4159 int rc; 4160 if( pTab->iPKey>=0 ){ 4161 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4162 pTab->aCol[pTab->iPKey].zName); 4163 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4164 }else{ 4165 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4166 rc = SQLITE_CONSTRAINT_ROWID; 4167 } 4168 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4169 P5_ConstraintUnique); 4170 } 4171 4172 /* 4173 ** Check to see if pIndex uses the collating sequence pColl. Return 4174 ** true if it does and false if it does not. 4175 */ 4176 #ifndef SQLITE_OMIT_REINDEX 4177 static int collationMatch(const char *zColl, Index *pIndex){ 4178 int i; 4179 assert( zColl!=0 ); 4180 for(i=0; i<pIndex->nColumn; i++){ 4181 const char *z = pIndex->azColl[i]; 4182 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4183 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4184 return 1; 4185 } 4186 } 4187 return 0; 4188 } 4189 #endif 4190 4191 /* 4192 ** Recompute all indices of pTab that use the collating sequence pColl. 4193 ** If pColl==0 then recompute all indices of pTab. 4194 */ 4195 #ifndef SQLITE_OMIT_REINDEX 4196 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4197 Index *pIndex; /* An index associated with pTab */ 4198 4199 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4200 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4201 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4202 sqlite3BeginWriteOperation(pParse, 0, iDb); 4203 sqlite3RefillIndex(pParse, pIndex, -1); 4204 } 4205 } 4206 } 4207 #endif 4208 4209 /* 4210 ** Recompute all indices of all tables in all databases where the 4211 ** indices use the collating sequence pColl. If pColl==0 then recompute 4212 ** all indices everywhere. 4213 */ 4214 #ifndef SQLITE_OMIT_REINDEX 4215 static void reindexDatabases(Parse *pParse, char const *zColl){ 4216 Db *pDb; /* A single database */ 4217 int iDb; /* The database index number */ 4218 sqlite3 *db = pParse->db; /* The database connection */ 4219 HashElem *k; /* For looping over tables in pDb */ 4220 Table *pTab; /* A table in the database */ 4221 4222 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4223 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4224 assert( pDb!=0 ); 4225 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4226 pTab = (Table*)sqliteHashData(k); 4227 reindexTable(pParse, pTab, zColl); 4228 } 4229 } 4230 } 4231 #endif 4232 4233 /* 4234 ** Generate code for the REINDEX command. 4235 ** 4236 ** REINDEX -- 1 4237 ** REINDEX <collation> -- 2 4238 ** REINDEX ?<database>.?<tablename> -- 3 4239 ** REINDEX ?<database>.?<indexname> -- 4 4240 ** 4241 ** Form 1 causes all indices in all attached databases to be rebuilt. 4242 ** Form 2 rebuilds all indices in all databases that use the named 4243 ** collating function. Forms 3 and 4 rebuild the named index or all 4244 ** indices associated with the named table. 4245 */ 4246 #ifndef SQLITE_OMIT_REINDEX 4247 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4248 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4249 char *z; /* Name of a table or index */ 4250 const char *zDb; /* Name of the database */ 4251 Table *pTab; /* A table in the database */ 4252 Index *pIndex; /* An index associated with pTab */ 4253 int iDb; /* The database index number */ 4254 sqlite3 *db = pParse->db; /* The database connection */ 4255 Token *pObjName; /* Name of the table or index to be reindexed */ 4256 4257 /* Read the database schema. If an error occurs, leave an error message 4258 ** and code in pParse and return NULL. */ 4259 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4260 return; 4261 } 4262 4263 if( pName1==0 ){ 4264 reindexDatabases(pParse, 0); 4265 return; 4266 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4267 char *zColl; 4268 assert( pName1->z ); 4269 zColl = sqlite3NameFromToken(pParse->db, pName1); 4270 if( !zColl ) return; 4271 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4272 if( pColl ){ 4273 reindexDatabases(pParse, zColl); 4274 sqlite3DbFree(db, zColl); 4275 return; 4276 } 4277 sqlite3DbFree(db, zColl); 4278 } 4279 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4280 if( iDb<0 ) return; 4281 z = sqlite3NameFromToken(db, pObjName); 4282 if( z==0 ) return; 4283 zDb = db->aDb[iDb].zName; 4284 pTab = sqlite3FindTable(db, z, zDb); 4285 if( pTab ){ 4286 reindexTable(pParse, pTab, 0); 4287 sqlite3DbFree(db, z); 4288 return; 4289 } 4290 pIndex = sqlite3FindIndex(db, z, zDb); 4291 sqlite3DbFree(db, z); 4292 if( pIndex ){ 4293 sqlite3BeginWriteOperation(pParse, 0, iDb); 4294 sqlite3RefillIndex(pParse, pIndex, -1); 4295 return; 4296 } 4297 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4298 } 4299 #endif 4300 4301 /* 4302 ** Return a KeyInfo structure that is appropriate for the given Index. 4303 ** 4304 ** The KeyInfo structure for an index is cached in the Index object. 4305 ** So there might be multiple references to the returned pointer. The 4306 ** caller should not try to modify the KeyInfo object. 4307 ** 4308 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4309 ** when it has finished using it. 4310 */ 4311 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4312 int i; 4313 int nCol = pIdx->nColumn; 4314 int nKey = pIdx->nKeyCol; 4315 KeyInfo *pKey; 4316 if( pParse->nErr ) return 0; 4317 if( pIdx->uniqNotNull ){ 4318 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4319 }else{ 4320 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4321 } 4322 if( pKey ){ 4323 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4324 for(i=0; i<nCol; i++){ 4325 const char *zColl = pIdx->azColl[i]; 4326 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4327 sqlite3LocateCollSeq(pParse, zColl); 4328 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4329 } 4330 if( pParse->nErr ){ 4331 sqlite3KeyInfoUnref(pKey); 4332 pKey = 0; 4333 } 4334 } 4335 return pKey; 4336 } 4337 4338 #ifndef SQLITE_OMIT_CTE 4339 /* 4340 ** This routine is invoked once per CTE by the parser while parsing a 4341 ** WITH clause. 4342 */ 4343 With *sqlite3WithAdd( 4344 Parse *pParse, /* Parsing context */ 4345 With *pWith, /* Existing WITH clause, or NULL */ 4346 Token *pName, /* Name of the common-table */ 4347 ExprList *pArglist, /* Optional column name list for the table */ 4348 Select *pQuery /* Query used to initialize the table */ 4349 ){ 4350 sqlite3 *db = pParse->db; 4351 With *pNew; 4352 char *zName; 4353 4354 /* Check that the CTE name is unique within this WITH clause. If 4355 ** not, store an error in the Parse structure. */ 4356 zName = sqlite3NameFromToken(pParse->db, pName); 4357 if( zName && pWith ){ 4358 int i; 4359 for(i=0; i<pWith->nCte; i++){ 4360 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4361 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4362 } 4363 } 4364 } 4365 4366 if( pWith ){ 4367 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4368 pNew = sqlite3DbRealloc(db, pWith, nByte); 4369 }else{ 4370 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4371 } 4372 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4373 4374 if( db->mallocFailed ){ 4375 sqlite3ExprListDelete(db, pArglist); 4376 sqlite3SelectDelete(db, pQuery); 4377 sqlite3DbFree(db, zName); 4378 pNew = pWith; 4379 }else{ 4380 pNew->a[pNew->nCte].pSelect = pQuery; 4381 pNew->a[pNew->nCte].pCols = pArglist; 4382 pNew->a[pNew->nCte].zName = zName; 4383 pNew->a[pNew->nCte].zCteErr = 0; 4384 pNew->nCte++; 4385 } 4386 4387 return pNew; 4388 } 4389 4390 /* 4391 ** Free the contents of the With object passed as the second argument. 4392 */ 4393 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4394 if( pWith ){ 4395 int i; 4396 for(i=0; i<pWith->nCte; i++){ 4397 struct Cte *pCte = &pWith->a[i]; 4398 sqlite3ExprListDelete(db, pCte->pCols); 4399 sqlite3SelectDelete(db, pCte->pSelect); 4400 sqlite3DbFree(db, pCte->zName); 4401 } 4402 sqlite3DbFree(db, pWith); 4403 } 4404 } 4405 #endif /* !defined(SQLITE_OMIT_CTE) */ 4406