xref: /sqlite-3.40.0/src/build.c (revision ef480d37)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;             /* The database containing the table to be locked */
34   int iTab;            /* The root page of the table to be locked */
35   u8 isWriteLock;      /* True for write lock.  False for a read lock */
36   const char *zName;   /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   for(i=0; i<pToplevel->nTableLock; i++){
63     p = &pToplevel->aTableLock[i];
64     if( p->iDb==iDb && p->iTab==iTab ){
65       p->isWriteLock = (p->isWriteLock || isWriteLock);
66       return;
67     }
68   }
69 
70   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71   pToplevel->aTableLock =
72       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73   if( pToplevel->aTableLock ){
74     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75     p->iDb = iDb;
76     p->iTab = iTab;
77     p->isWriteLock = isWriteLock;
78     p->zName = zName;
79   }else{
80     pToplevel->nTableLock = 0;
81     sqlite3OomFault(pToplevel->db);
82   }
83 }
84 
85 /*
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
88 */
89 static void codeTableLocks(Parse *pParse){
90   int i;
91   Vdbe *pVdbe;
92 
93   pVdbe = sqlite3GetVdbe(pParse);
94   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
95 
96   for(i=0; i<pParse->nTableLock; i++){
97     TableLock *p = &pParse->aTableLock[i];
98     int p1 = p->iDb;
99     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100                       p->zName, P4_STATIC);
101   }
102 }
103 #else
104   #define codeTableLocks(x)
105 #endif
106 
107 /*
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
111 */
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114   int i;
115   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116   return 1;
117 }
118 #endif
119 
120 /*
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared.  This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
126 **
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
129 */
130 void sqlite3FinishCoding(Parse *pParse){
131   sqlite3 *db;
132   Vdbe *v;
133 
134   assert( pParse->pToplevel==0 );
135   db = pParse->db;
136   if( pParse->nested ) return;
137   if( db->mallocFailed || pParse->nErr ){
138     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139     return;
140   }
141 
142   /* Begin by generating some termination code at the end of the
143   ** vdbe program
144   */
145   v = sqlite3GetVdbe(pParse);
146   assert( !pParse->isMultiWrite
147        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148   if( v ){
149     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
150     sqlite3VdbeAddOp0(v, OP_Halt);
151 
152 #if SQLITE_USER_AUTHENTICATION
153     if( pParse->nTableLock>0 && db->init.busy==0 ){
154       sqlite3UserAuthInit(db);
155       if( db->auth.authLevel<UAUTH_User ){
156         pParse->rc = SQLITE_AUTH_USER;
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         return;
159       }
160     }
161 #endif
162 
163     /* The cookie mask contains one bit for each database file open.
164     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
165     ** set for each database that is used.  Generate code to start a
166     ** transaction on each used database and to verify the schema cookie
167     ** on each used database.
168     */
169     if( db->mallocFailed==0
170      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
171     ){
172       int iDb, i;
173       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174       sqlite3VdbeJumpHere(v, 0);
175       for(iDb=0; iDb<db->nDb; iDb++){
176         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177         sqlite3VdbeUsesBtree(v, iDb);
178         sqlite3VdbeAddOp4Int(v,
179           OP_Transaction,                    /* Opcode */
180           iDb,                               /* P1 */
181           DbMaskTest(pParse->writeMask,iDb), /* P2 */
182           pParse->cookieValue[iDb],          /* P3 */
183           db->aDb[iDb].pSchema->iGeneration  /* P4 */
184         );
185         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
186         VdbeComment((v,
187               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
188       }
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190       for(i=0; i<pParse->nVtabLock; i++){
191         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
192         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
193       }
194       pParse->nVtabLock = 0;
195 #endif
196 
197       /* Once all the cookies have been verified and transactions opened,
198       ** obtain the required table-locks. This is a no-op unless the
199       ** shared-cache feature is enabled.
200       */
201       codeTableLocks(pParse);
202 
203       /* Initialize any AUTOINCREMENT data structures required.
204       */
205       sqlite3AutoincrementBegin(pParse);
206 
207       /* Code constant expressions that where factored out of inner loops */
208       if( pParse->pConstExpr ){
209         ExprList *pEL = pParse->pConstExpr;
210         pParse->okConstFactor = 0;
211         for(i=0; i<pEL->nExpr; i++){
212           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
213         }
214       }
215 
216       /* Finally, jump back to the beginning of the executable code. */
217       sqlite3VdbeGoto(v, 1);
218     }
219   }
220 
221 
222   /* Get the VDBE program ready for execution
223   */
224   if( v && pParse->nErr==0 && !db->mallocFailed ){
225     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
226     /* A minimum of one cursor is required if autoincrement is used
227     *  See ticket [a696379c1f08866] */
228     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
229     sqlite3VdbeMakeReady(v, pParse);
230     pParse->rc = SQLITE_DONE;
231   }else{
232     pParse->rc = SQLITE_ERROR;
233   }
234 
235   /* We are done with this Parse object. There is no need to de-initialize it */
236 #if 0
237   pParse->colNamesSet = 0;
238   pParse->nTab = 0;
239   pParse->nMem = 0;
240   pParse->nSet = 0;
241   pParse->nVar = 0;
242   DbMaskZero(pParse->cookieMask);
243 #endif
244 }
245 
246 /*
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction.  When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
253 **
254 ** Not everything is nestable.  This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
256 ** care if you decide to try to use this routine for some other purposes.
257 */
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259   va_list ap;
260   char *zSql;
261   char *zErrMsg = 0;
262   sqlite3 *db = pParse->db;
263 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
264   char saveBuf[SAVE_SZ];
265 
266   if( pParse->nErr ) return;
267   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
268   va_start(ap, zFormat);
269   zSql = sqlite3VMPrintf(db, zFormat, ap);
270   va_end(ap);
271   if( zSql==0 ){
272     return;   /* A malloc must have failed */
273   }
274   pParse->nested++;
275   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
276   memset(&pParse->nVar, 0, SAVE_SZ);
277   sqlite3RunParser(pParse, zSql, &zErrMsg);
278   sqlite3DbFree(db, zErrMsg);
279   sqlite3DbFree(db, zSql);
280   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
281   pParse->nested--;
282 }
283 
284 #if SQLITE_USER_AUTHENTICATION
285 /*
286 ** Return TRUE if zTable is the name of the system table that stores the
287 ** list of users and their access credentials.
288 */
289 int sqlite3UserAuthTable(const char *zTable){
290   return sqlite3_stricmp(zTable, "sqlite_user")==0;
291 }
292 #endif
293 
294 /*
295 ** Locate the in-memory structure that describes a particular database
296 ** table given the name of that table and (optionally) the name of the
297 ** database containing the table.  Return NULL if not found.
298 **
299 ** If zDatabase is 0, all databases are searched for the table and the
300 ** first matching table is returned.  (No checking for duplicate table
301 ** names is done.)  The search order is TEMP first, then MAIN, then any
302 ** auxiliary databases added using the ATTACH command.
303 **
304 ** See also sqlite3LocateTable().
305 */
306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
307   Table *p = 0;
308   int i;
309 
310   /* All mutexes are required for schema access.  Make sure we hold them. */
311   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
312 #if SQLITE_USER_AUTHENTICATION
313   /* Only the admin user is allowed to know that the sqlite_user table
314   ** exists */
315   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
316     return 0;
317   }
318 #endif
319   for(i=OMIT_TEMPDB; i<db->nDb; i++){
320     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
321     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
322     assert( sqlite3SchemaMutexHeld(db, j, 0) );
323     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
324     if( p ) break;
325   }
326   return p;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   int isView,            /* True if looking for a VIEW rather than a TABLE */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = isView ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
363         return pMod->pEpoTab;
364       }
365     }
366 #endif
367     if( zDbase ){
368       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
369     }else{
370       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
371     }
372     pParse->checkSchema = 1;
373   }
374 
375   return p;
376 }
377 
378 /*
379 ** Locate the table identified by *p.
380 **
381 ** This is a wrapper around sqlite3LocateTable(). The difference between
382 ** sqlite3LocateTable() and this function is that this function restricts
383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
384 ** non-NULL if it is part of a view or trigger program definition. See
385 ** sqlite3FixSrcList() for details.
386 */
387 Table *sqlite3LocateTableItem(
388   Parse *pParse,
389   int isView,
390   struct SrcList_item *p
391 ){
392   const char *zDb;
393   assert( p->pSchema==0 || p->zDatabase==0 );
394   if( p->pSchema ){
395     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
396     zDb = pParse->db->aDb[iDb].zName;
397   }else{
398     zDb = p->zDatabase;
399   }
400   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
401 }
402 
403 /*
404 ** Locate the in-memory structure that describes
405 ** a particular index given the name of that index
406 ** and the name of the database that contains the index.
407 ** Return NULL if not found.
408 **
409 ** If zDatabase is 0, all databases are searched for the
410 ** table and the first matching index is returned.  (No checking
411 ** for duplicate index names is done.)  The search order is
412 ** TEMP first, then MAIN, then any auxiliary databases added
413 ** using the ATTACH command.
414 */
415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
416   Index *p = 0;
417   int i;
418   /* All mutexes are required for schema access.  Make sure we hold them. */
419   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
420   for(i=OMIT_TEMPDB; i<db->nDb; i++){
421     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
422     Schema *pSchema = db->aDb[j].pSchema;
423     assert( pSchema );
424     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
425     assert( sqlite3SchemaMutexHeld(db, j, 0) );
426     p = sqlite3HashFind(&pSchema->idxHash, zName);
427     if( p ) break;
428   }
429   return p;
430 }
431 
432 /*
433 ** Reclaim the memory used by an index
434 */
435 static void freeIndex(sqlite3 *db, Index *p){
436 #ifndef SQLITE_OMIT_ANALYZE
437   sqlite3DeleteIndexSamples(db, p);
438 #endif
439   sqlite3ExprDelete(db, p->pPartIdxWhere);
440   sqlite3ExprListDelete(db, p->aColExpr);
441   sqlite3DbFree(db, p->zColAff);
442   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
444   sqlite3_free(p->aiRowEst);
445 #endif
446   sqlite3DbFree(db, p);
447 }
448 
449 /*
450 ** For the index called zIdxName which is found in the database iDb,
451 ** unlike that index from its Table then remove the index from
452 ** the index hash table and free all memory structures associated
453 ** with the index.
454 */
455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
456   Index *pIndex;
457   Hash *pHash;
458 
459   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
460   pHash = &db->aDb[iDb].pSchema->idxHash;
461   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
462   if( ALWAYS(pIndex) ){
463     if( pIndex->pTable->pIndex==pIndex ){
464       pIndex->pTable->pIndex = pIndex->pNext;
465     }else{
466       Index *p;
467       /* Justification of ALWAYS();  The index must be on the list of
468       ** indices. */
469       p = pIndex->pTable->pIndex;
470       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
471       if( ALWAYS(p && p->pNext==pIndex) ){
472         p->pNext = pIndex->pNext;
473       }
474     }
475     freeIndex(db, pIndex);
476   }
477   db->flags |= SQLITE_InternChanges;
478 }
479 
480 /*
481 ** Look through the list of open database files in db->aDb[] and if
482 ** any have been closed, remove them from the list.  Reallocate the
483 ** db->aDb[] structure to a smaller size, if possible.
484 **
485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
486 ** are never candidates for being collapsed.
487 */
488 void sqlite3CollapseDatabaseArray(sqlite3 *db){
489   int i, j;
490   for(i=j=2; i<db->nDb; i++){
491     struct Db *pDb = &db->aDb[i];
492     if( pDb->pBt==0 ){
493       sqlite3DbFree(db, pDb->zName);
494       pDb->zName = 0;
495       continue;
496     }
497     if( j<i ){
498       db->aDb[j] = db->aDb[i];
499     }
500     j++;
501   }
502   db->nDb = j;
503   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
504     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
505     sqlite3DbFree(db, db->aDb);
506     db->aDb = db->aDbStatic;
507   }
508 }
509 
510 /*
511 ** Reset the schema for the database at index iDb.  Also reset the
512 ** TEMP schema.
513 */
514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
515   Db *pDb;
516   assert( iDb<db->nDb );
517 
518   /* Case 1:  Reset the single schema identified by iDb */
519   pDb = &db->aDb[iDb];
520   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
521   assert( pDb->pSchema!=0 );
522   sqlite3SchemaClear(pDb->pSchema);
523 
524   /* If any database other than TEMP is reset, then also reset TEMP
525   ** since TEMP might be holding triggers that reference tables in the
526   ** other database.
527   */
528   if( iDb!=1 ){
529     pDb = &db->aDb[1];
530     assert( pDb->pSchema!=0 );
531     sqlite3SchemaClear(pDb->pSchema);
532   }
533   return;
534 }
535 
536 /*
537 ** Erase all schema information from all attached databases (including
538 ** "main" and "temp") for a single database connection.
539 */
540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
541   int i;
542   sqlite3BtreeEnterAll(db);
543   for(i=0; i<db->nDb; i++){
544     Db *pDb = &db->aDb[i];
545     if( pDb->pSchema ){
546       sqlite3SchemaClear(pDb->pSchema);
547     }
548   }
549   db->flags &= ~SQLITE_InternChanges;
550   sqlite3VtabUnlockList(db);
551   sqlite3BtreeLeaveAll(db);
552   sqlite3CollapseDatabaseArray(db);
553 }
554 
555 /*
556 ** This routine is called when a commit occurs.
557 */
558 void sqlite3CommitInternalChanges(sqlite3 *db){
559   db->flags &= ~SQLITE_InternChanges;
560 }
561 
562 /*
563 ** Delete memory allocated for the column names of a table or view (the
564 ** Table.aCol[] array).
565 */
566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
567   int i;
568   Column *pCol;
569   assert( pTable!=0 );
570   if( (pCol = pTable->aCol)!=0 ){
571     for(i=0; i<pTable->nCol; i++, pCol++){
572       sqlite3DbFree(db, pCol->zName);
573       sqlite3ExprDelete(db, pCol->pDflt);
574       sqlite3DbFree(db, pCol->zColl);
575     }
576     sqlite3DbFree(db, pTable->aCol);
577   }
578 }
579 
580 /*
581 ** Remove the memory data structures associated with the given
582 ** Table.  No changes are made to disk by this routine.
583 **
584 ** This routine just deletes the data structure.  It does not unlink
585 ** the table data structure from the hash table.  But it does destroy
586 ** memory structures of the indices and foreign keys associated with
587 ** the table.
588 **
589 ** The db parameter is optional.  It is needed if the Table object
590 ** contains lookaside memory.  (Table objects in the schema do not use
591 ** lookaside memory, but some ephemeral Table objects do.)  Or the
592 ** db parameter can be used with db->pnBytesFreed to measure the memory
593 ** used by the Table object.
594 */
595 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
596   Index *pIndex, *pNext;
597   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
598 
599   assert( !pTable || pTable->nRef>0 );
600 
601   /* Do not delete the table until the reference count reaches zero. */
602   if( !pTable ) return;
603   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
604 
605   /* Record the number of outstanding lookaside allocations in schema Tables
606   ** prior to doing any free() operations.  Since schema Tables do not use
607   ** lookaside, this number should not change. */
608   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
609                          db->lookaside.nOut : 0 );
610 
611   /* Delete all indices associated with this table. */
612   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
613     pNext = pIndex->pNext;
614     assert( pIndex->pSchema==pTable->pSchema );
615     if( !db || db->pnBytesFreed==0 ){
616       char *zName = pIndex->zName;
617       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618          &pIndex->pSchema->idxHash, zName, 0
619       );
620       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621       assert( pOld==pIndex || pOld==0 );
622     }
623     freeIndex(db, pIndex);
624   }
625 
626   /* Delete any foreign keys attached to this table. */
627   sqlite3FkDelete(db, pTable);
628 
629   /* Delete the Table structure itself.
630   */
631   sqlite3DeleteColumnNames(db, pTable);
632   sqlite3DbFree(db, pTable->zName);
633   sqlite3DbFree(db, pTable->zColAff);
634   sqlite3SelectDelete(db, pTable->pSelect);
635   sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637   sqlite3VtabClear(db, pTable);
638 #endif
639   sqlite3DbFree(db, pTable);
640 
641   /* Verify that no lookaside memory was used by schema tables */
642   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
644 
645 /*
646 ** Unlink the given table from the hash tables and the delete the
647 ** table structure with all its indices and foreign keys.
648 */
649 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
650   Table *p;
651   Db *pDb;
652 
653   assert( db!=0 );
654   assert( iDb>=0 && iDb<db->nDb );
655   assert( zTabName );
656   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
657   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
658   pDb = &db->aDb[iDb];
659   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
660   sqlite3DeleteTable(db, p);
661   db->flags |= SQLITE_InternChanges;
662 }
663 
664 /*
665 ** Given a token, return a string that consists of the text of that
666 ** token.  Space to hold the returned string
667 ** is obtained from sqliteMalloc() and must be freed by the calling
668 ** function.
669 **
670 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
671 ** surround the body of the token are removed.
672 **
673 ** Tokens are often just pointers into the original SQL text and so
674 ** are not \000 terminated and are not persistent.  The returned string
675 ** is \000 terminated and is persistent.
676 */
677 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
678   char *zName;
679   if( pName ){
680     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
681     sqlite3Dequote(zName);
682   }else{
683     zName = 0;
684   }
685   return zName;
686 }
687 
688 /*
689 ** Open the sqlite_master table stored in database number iDb for
690 ** writing. The table is opened using cursor 0.
691 */
692 void sqlite3OpenMasterTable(Parse *p, int iDb){
693   Vdbe *v = sqlite3GetVdbe(p);
694   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
695   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
696   if( p->nTab==0 ){
697     p->nTab = 1;
698   }
699 }
700 
701 /*
702 ** Parameter zName points to a nul-terminated buffer containing the name
703 ** of a database ("main", "temp" or the name of an attached db). This
704 ** function returns the index of the named database in db->aDb[], or
705 ** -1 if the named db cannot be found.
706 */
707 int sqlite3FindDbName(sqlite3 *db, const char *zName){
708   int i = -1;         /* Database number */
709   if( zName ){
710     Db *pDb;
711     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
712       if( 0==sqlite3StrICmp(pDb->zName, zName) ) break;
713     }
714   }
715   return i;
716 }
717 
718 /*
719 ** The token *pName contains the name of a database (either "main" or
720 ** "temp" or the name of an attached db). This routine returns the
721 ** index of the named database in db->aDb[], or -1 if the named db
722 ** does not exist.
723 */
724 int sqlite3FindDb(sqlite3 *db, Token *pName){
725   int i;                               /* Database number */
726   char *zName;                         /* Name we are searching for */
727   zName = sqlite3NameFromToken(db, pName);
728   i = sqlite3FindDbName(db, zName);
729   sqlite3DbFree(db, zName);
730   return i;
731 }
732 
733 /* The table or view or trigger name is passed to this routine via tokens
734 ** pName1 and pName2. If the table name was fully qualified, for example:
735 **
736 ** CREATE TABLE xxx.yyy (...);
737 **
738 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
739 ** the table name is not fully qualified, i.e.:
740 **
741 ** CREATE TABLE yyy(...);
742 **
743 ** Then pName1 is set to "yyy" and pName2 is "".
744 **
745 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
746 ** pName2) that stores the unqualified table name.  The index of the
747 ** database "xxx" is returned.
748 */
749 int sqlite3TwoPartName(
750   Parse *pParse,      /* Parsing and code generating context */
751   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
752   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
753   Token **pUnqual     /* Write the unqualified object name here */
754 ){
755   int iDb;                    /* Database holding the object */
756   sqlite3 *db = pParse->db;
757 
758   assert( pName2!=0 );
759   if( pName2->n>0 ){
760     if( db->init.busy ) {
761       sqlite3ErrorMsg(pParse, "corrupt database");
762       return -1;
763     }
764     *pUnqual = pName2;
765     iDb = sqlite3FindDb(db, pName1);
766     if( iDb<0 ){
767       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
768       return -1;
769     }
770   }else{
771     assert( db->init.iDb==0 || db->init.busy );
772     iDb = db->init.iDb;
773     *pUnqual = pName1;
774   }
775   return iDb;
776 }
777 
778 /*
779 ** This routine is used to check if the UTF-8 string zName is a legal
780 ** unqualified name for a new schema object (table, index, view or
781 ** trigger). All names are legal except those that begin with the string
782 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
783 ** is reserved for internal use.
784 */
785 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
786   if( !pParse->db->init.busy && pParse->nested==0
787           && (pParse->db->flags & SQLITE_WriteSchema)==0
788           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
789     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
790     return SQLITE_ERROR;
791   }
792   return SQLITE_OK;
793 }
794 
795 /*
796 ** Return the PRIMARY KEY index of a table
797 */
798 Index *sqlite3PrimaryKeyIndex(Table *pTab){
799   Index *p;
800   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
801   return p;
802 }
803 
804 /*
805 ** Return the column of index pIdx that corresponds to table
806 ** column iCol.  Return -1 if not found.
807 */
808 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
809   int i;
810   for(i=0; i<pIdx->nColumn; i++){
811     if( iCol==pIdx->aiColumn[i] ) return i;
812   }
813   return -1;
814 }
815 
816 /*
817 ** Begin constructing a new table representation in memory.  This is
818 ** the first of several action routines that get called in response
819 ** to a CREATE TABLE statement.  In particular, this routine is called
820 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
821 ** flag is true if the table should be stored in the auxiliary database
822 ** file instead of in the main database file.  This is normally the case
823 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
824 ** CREATE and TABLE.
825 **
826 ** The new table record is initialized and put in pParse->pNewTable.
827 ** As more of the CREATE TABLE statement is parsed, additional action
828 ** routines will be called to add more information to this record.
829 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
830 ** is called to complete the construction of the new table record.
831 */
832 void sqlite3StartTable(
833   Parse *pParse,   /* Parser context */
834   Token *pName1,   /* First part of the name of the table or view */
835   Token *pName2,   /* Second part of the name of the table or view */
836   int isTemp,      /* True if this is a TEMP table */
837   int isView,      /* True if this is a VIEW */
838   int isVirtual,   /* True if this is a VIRTUAL table */
839   int noErr        /* Do nothing if table already exists */
840 ){
841   Table *pTable;
842   char *zName = 0; /* The name of the new table */
843   sqlite3 *db = pParse->db;
844   Vdbe *v;
845   int iDb;         /* Database number to create the table in */
846   Token *pName;    /* Unqualified name of the table to create */
847 
848   if( db->init.busy && db->init.newTnum==1 ){
849     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
850     iDb = db->init.iDb;
851     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
852     pName = pName1;
853   }else{
854     /* The common case */
855     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
856     if( iDb<0 ) return;
857     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
858       /* If creating a temp table, the name may not be qualified. Unless
859       ** the database name is "temp" anyway.  */
860       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
861       return;
862     }
863     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
864     zName = sqlite3NameFromToken(db, pName);
865   }
866   pParse->sNameToken = *pName;
867   if( zName==0 ) return;
868   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
869     goto begin_table_error;
870   }
871   if( db->init.iDb==1 ) isTemp = 1;
872 #ifndef SQLITE_OMIT_AUTHORIZATION
873   assert( isTemp==0 || isTemp==1 );
874   assert( isView==0 || isView==1 );
875   {
876     static const u8 aCode[] = {
877        SQLITE_CREATE_TABLE,
878        SQLITE_CREATE_TEMP_TABLE,
879        SQLITE_CREATE_VIEW,
880        SQLITE_CREATE_TEMP_VIEW
881     };
882     char *zDb = db->aDb[iDb].zName;
883     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
884       goto begin_table_error;
885     }
886     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
887                                        zName, 0, zDb) ){
888       goto begin_table_error;
889     }
890   }
891 #endif
892 
893   /* Make sure the new table name does not collide with an existing
894   ** index or table name in the same database.  Issue an error message if
895   ** it does. The exception is if the statement being parsed was passed
896   ** to an sqlite3_declare_vtab() call. In that case only the column names
897   ** and types will be used, so there is no need to test for namespace
898   ** collisions.
899   */
900   if( !IN_DECLARE_VTAB ){
901     char *zDb = db->aDb[iDb].zName;
902     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
903       goto begin_table_error;
904     }
905     pTable = sqlite3FindTable(db, zName, zDb);
906     if( pTable ){
907       if( !noErr ){
908         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
909       }else{
910         assert( !db->init.busy || CORRUPT_DB );
911         sqlite3CodeVerifySchema(pParse, iDb);
912       }
913       goto begin_table_error;
914     }
915     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
916       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
917       goto begin_table_error;
918     }
919   }
920 
921   pTable = sqlite3DbMallocZero(db, sizeof(Table));
922   if( pTable==0 ){
923     assert( db->mallocFailed );
924     pParse->rc = SQLITE_NOMEM_BKPT;
925     pParse->nErr++;
926     goto begin_table_error;
927   }
928   pTable->zName = zName;
929   pTable->iPKey = -1;
930   pTable->pSchema = db->aDb[iDb].pSchema;
931   pTable->nRef = 1;
932   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
933   assert( pParse->pNewTable==0 );
934   pParse->pNewTable = pTable;
935 
936   /* If this is the magic sqlite_sequence table used by autoincrement,
937   ** then record a pointer to this table in the main database structure
938   ** so that INSERT can find the table easily.
939   */
940 #ifndef SQLITE_OMIT_AUTOINCREMENT
941   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
942     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
943     pTable->pSchema->pSeqTab = pTable;
944   }
945 #endif
946 
947   /* Begin generating the code that will insert the table record into
948   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
949   ** and allocate the record number for the table entry now.  Before any
950   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
951   ** indices to be created and the table record must come before the
952   ** indices.  Hence, the record number for the table must be allocated
953   ** now.
954   */
955   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
956     int addr1;
957     int fileFormat;
958     int reg1, reg2, reg3;
959     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
960     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
961     sqlite3BeginWriteOperation(pParse, 1, iDb);
962 
963 #ifndef SQLITE_OMIT_VIRTUALTABLE
964     if( isVirtual ){
965       sqlite3VdbeAddOp0(v, OP_VBegin);
966     }
967 #endif
968 
969     /* If the file format and encoding in the database have not been set,
970     ** set them now.
971     */
972     reg1 = pParse->regRowid = ++pParse->nMem;
973     reg2 = pParse->regRoot = ++pParse->nMem;
974     reg3 = ++pParse->nMem;
975     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
976     sqlite3VdbeUsesBtree(v, iDb);
977     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
978     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
979                   1 : SQLITE_MAX_FILE_FORMAT;
980     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
981     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
982     sqlite3VdbeJumpHere(v, addr1);
983 
984     /* This just creates a place-holder record in the sqlite_master table.
985     ** The record created does not contain anything yet.  It will be replaced
986     ** by the real entry in code generated at sqlite3EndTable().
987     **
988     ** The rowid for the new entry is left in register pParse->regRowid.
989     ** The root page number of the new table is left in reg pParse->regRoot.
990     ** The rowid and root page number values are needed by the code that
991     ** sqlite3EndTable will generate.
992     */
993 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
994     if( isView || isVirtual ){
995       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
996     }else
997 #endif
998     {
999       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1000     }
1001     sqlite3OpenMasterTable(pParse, iDb);
1002     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1003     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1004     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1005     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1006     sqlite3VdbeAddOp0(v, OP_Close);
1007   }
1008 
1009   /* Normal (non-error) return. */
1010   return;
1011 
1012   /* If an error occurs, we jump here */
1013 begin_table_error:
1014   sqlite3DbFree(db, zName);
1015   return;
1016 }
1017 
1018 /* Set properties of a table column based on the (magical)
1019 ** name of the column.
1020 */
1021 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1022 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1023   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1024     pCol->colFlags |= COLFLAG_HIDDEN;
1025   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1026     pTab->tabFlags |= TF_OOOHidden;
1027   }
1028 }
1029 #endif
1030 
1031 
1032 /*
1033 ** Add a new column to the table currently being constructed.
1034 **
1035 ** The parser calls this routine once for each column declaration
1036 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1037 ** first to get things going.  Then this routine is called for each
1038 ** column.
1039 */
1040 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1041   Table *p;
1042   int i;
1043   char *z;
1044   char *zType;
1045   Column *pCol;
1046   sqlite3 *db = pParse->db;
1047   if( (p = pParse->pNewTable)==0 ) return;
1048 #if SQLITE_MAX_COLUMN
1049   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1050     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1051     return;
1052   }
1053 #endif
1054   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1055   if( z==0 ) return;
1056   memcpy(z, pName->z, pName->n);
1057   z[pName->n] = 0;
1058   sqlite3Dequote(z);
1059   zType = z + sqlite3Strlen30(z) + 1;
1060   memcpy(zType, pType->z, pType->n);
1061   zType[pType->n] = 0;
1062   for(i=0; i<p->nCol; i++){
1063     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1064       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1065       sqlite3DbFree(db, z);
1066       return;
1067     }
1068   }
1069   if( (p->nCol & 0x7)==0 ){
1070     Column *aNew;
1071     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1072     if( aNew==0 ){
1073       sqlite3DbFree(db, z);
1074       return;
1075     }
1076     p->aCol = aNew;
1077   }
1078   pCol = &p->aCol[p->nCol];
1079   memset(pCol, 0, sizeof(p->aCol[0]));
1080   pCol->zName = z;
1081   sqlite3ColumnPropertiesFromName(p, pCol);
1082 
1083   if( pType->n==0 ){
1084     /* If there is no type specified, columns have the default affinity
1085     ** 'BLOB'. */
1086     pCol->affinity = SQLITE_AFF_BLOB;
1087     pCol->szEst = 1;
1088   }else{
1089     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1090   }
1091   p->nCol++;
1092   pParse->constraintName.n = 0;
1093 }
1094 
1095 /*
1096 ** This routine is called by the parser while in the middle of
1097 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1098 ** been seen on a column.  This routine sets the notNull flag on
1099 ** the column currently under construction.
1100 */
1101 void sqlite3AddNotNull(Parse *pParse, int onError){
1102   Table *p;
1103   p = pParse->pNewTable;
1104   if( p==0 || NEVER(p->nCol<1) ) return;
1105   p->aCol[p->nCol-1].notNull = (u8)onError;
1106 }
1107 
1108 /*
1109 ** Scan the column type name zType (length nType) and return the
1110 ** associated affinity type.
1111 **
1112 ** This routine does a case-independent search of zType for the
1113 ** substrings in the following table. If one of the substrings is
1114 ** found, the corresponding affinity is returned. If zType contains
1115 ** more than one of the substrings, entries toward the top of
1116 ** the table take priority. For example, if zType is 'BLOBINT',
1117 ** SQLITE_AFF_INTEGER is returned.
1118 **
1119 ** Substring     | Affinity
1120 ** --------------------------------
1121 ** 'INT'         | SQLITE_AFF_INTEGER
1122 ** 'CHAR'        | SQLITE_AFF_TEXT
1123 ** 'CLOB'        | SQLITE_AFF_TEXT
1124 ** 'TEXT'        | SQLITE_AFF_TEXT
1125 ** 'BLOB'        | SQLITE_AFF_BLOB
1126 ** 'REAL'        | SQLITE_AFF_REAL
1127 ** 'FLOA'        | SQLITE_AFF_REAL
1128 ** 'DOUB'        | SQLITE_AFF_REAL
1129 **
1130 ** If none of the substrings in the above table are found,
1131 ** SQLITE_AFF_NUMERIC is returned.
1132 */
1133 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1134   u32 h = 0;
1135   char aff = SQLITE_AFF_NUMERIC;
1136   const char *zChar = 0;
1137 
1138   assert( zIn!=0 );
1139   while( zIn[0] ){
1140     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1141     zIn++;
1142     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1143       aff = SQLITE_AFF_TEXT;
1144       zChar = zIn;
1145     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1146       aff = SQLITE_AFF_TEXT;
1147     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1148       aff = SQLITE_AFF_TEXT;
1149     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1150         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1151       aff = SQLITE_AFF_BLOB;
1152       if( zIn[0]=='(' ) zChar = zIn;
1153 #ifndef SQLITE_OMIT_FLOATING_POINT
1154     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1155         && aff==SQLITE_AFF_NUMERIC ){
1156       aff = SQLITE_AFF_REAL;
1157     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1158         && aff==SQLITE_AFF_NUMERIC ){
1159       aff = SQLITE_AFF_REAL;
1160     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1161         && aff==SQLITE_AFF_NUMERIC ){
1162       aff = SQLITE_AFF_REAL;
1163 #endif
1164     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1165       aff = SQLITE_AFF_INTEGER;
1166       break;
1167     }
1168   }
1169 
1170   /* If pszEst is not NULL, store an estimate of the field size.  The
1171   ** estimate is scaled so that the size of an integer is 1.  */
1172   if( pszEst ){
1173     *pszEst = 1;   /* default size is approx 4 bytes */
1174     if( aff<SQLITE_AFF_NUMERIC ){
1175       if( zChar ){
1176         while( zChar[0] ){
1177           if( sqlite3Isdigit(zChar[0]) ){
1178             int v = 0;
1179             sqlite3GetInt32(zChar, &v);
1180             v = v/4 + 1;
1181             if( v>255 ) v = 255;
1182             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1183             break;
1184           }
1185           zChar++;
1186         }
1187       }else{
1188         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1189       }
1190     }
1191   }
1192   return aff;
1193 }
1194 
1195 /*
1196 ** The expression is the default value for the most recently added column
1197 ** of the table currently under construction.
1198 **
1199 ** Default value expressions must be constant.  Raise an exception if this
1200 ** is not the case.
1201 **
1202 ** This routine is called by the parser while in the middle of
1203 ** parsing a CREATE TABLE statement.
1204 */
1205 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1206   Table *p;
1207   Column *pCol;
1208   sqlite3 *db = pParse->db;
1209   p = pParse->pNewTable;
1210   if( p!=0 ){
1211     pCol = &(p->aCol[p->nCol-1]);
1212     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1213       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1214           pCol->zName);
1215     }else{
1216       /* A copy of pExpr is used instead of the original, as pExpr contains
1217       ** tokens that point to volatile memory. The 'span' of the expression
1218       ** is required by pragma table_info.
1219       */
1220       Expr x;
1221       sqlite3ExprDelete(db, pCol->pDflt);
1222       memset(&x, 0, sizeof(x));
1223       x.op = TK_SPAN;
1224       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1225                                     (int)(pSpan->zEnd - pSpan->zStart));
1226       x.pLeft = pSpan->pExpr;
1227       x.flags = EP_Skip;
1228       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1229       sqlite3DbFree(db, x.u.zToken);
1230     }
1231   }
1232   sqlite3ExprDelete(db, pSpan->pExpr);
1233 }
1234 
1235 /*
1236 ** Backwards Compatibility Hack:
1237 **
1238 ** Historical versions of SQLite accepted strings as column names in
1239 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1240 **
1241 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1242 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1243 **
1244 ** This is goofy.  But to preserve backwards compatibility we continue to
1245 ** accept it.  This routine does the necessary conversion.  It converts
1246 ** the expression given in its argument from a TK_STRING into a TK_ID
1247 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1248 ** If the epxression is anything other than TK_STRING, the expression is
1249 ** unchanged.
1250 */
1251 static void sqlite3StringToId(Expr *p){
1252   if( p->op==TK_STRING ){
1253     p->op = TK_ID;
1254   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1255     p->pLeft->op = TK_ID;
1256   }
1257 }
1258 
1259 /*
1260 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1261 ** of columns that form the primary key.  If pList is NULL, then the
1262 ** most recently added column of the table is the primary key.
1263 **
1264 ** A table can have at most one primary key.  If the table already has
1265 ** a primary key (and this is the second primary key) then create an
1266 ** error.
1267 **
1268 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1269 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1270 ** field of the table under construction to be the index of the
1271 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1272 ** no INTEGER PRIMARY KEY.
1273 **
1274 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1275 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1276 */
1277 void sqlite3AddPrimaryKey(
1278   Parse *pParse,    /* Parsing context */
1279   ExprList *pList,  /* List of field names to be indexed */
1280   int onError,      /* What to do with a uniqueness conflict */
1281   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1282   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1283 ){
1284   Table *pTab = pParse->pNewTable;
1285   const char *zName = 0;
1286   int iCol = -1, i;
1287   int nTerm;
1288   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1289   if( pTab->tabFlags & TF_HasPrimaryKey ){
1290     sqlite3ErrorMsg(pParse,
1291       "table \"%s\" has more than one primary key", pTab->zName);
1292     goto primary_key_exit;
1293   }
1294   pTab->tabFlags |= TF_HasPrimaryKey;
1295   if( pList==0 ){
1296     iCol = pTab->nCol - 1;
1297     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1298     zName = pTab->aCol[iCol].zName;
1299     nTerm = 1;
1300   }else{
1301     nTerm = pList->nExpr;
1302     for(i=0; i<nTerm; i++){
1303       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1304       assert( pCExpr!=0 );
1305       sqlite3StringToId(pCExpr);
1306       if( pCExpr->op==TK_ID ){
1307         const char *zCName = pCExpr->u.zToken;
1308         for(iCol=0; iCol<pTab->nCol; iCol++){
1309           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1310             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1311             zName = pTab->aCol[iCol].zName;
1312             break;
1313           }
1314         }
1315       }
1316     }
1317   }
1318   if( nTerm==1
1319    && zName
1320    && sqlite3StrICmp(sqlite3StrNext(zName), "INTEGER")==0
1321    && sortOrder!=SQLITE_SO_DESC
1322   ){
1323     pTab->iPKey = iCol;
1324     pTab->keyConf = (u8)onError;
1325     assert( autoInc==0 || autoInc==1 );
1326     pTab->tabFlags |= autoInc*TF_Autoincrement;
1327     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1328   }else if( autoInc ){
1329 #ifndef SQLITE_OMIT_AUTOINCREMENT
1330     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1331        "INTEGER PRIMARY KEY");
1332 #endif
1333   }else{
1334     Index *p;
1335     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1336                            0, sortOrder, 0);
1337     if( p ){
1338       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1339     }
1340     pList = 0;
1341   }
1342 
1343 primary_key_exit:
1344   sqlite3ExprListDelete(pParse->db, pList);
1345   return;
1346 }
1347 
1348 /*
1349 ** Add a new CHECK constraint to the table currently under construction.
1350 */
1351 void sqlite3AddCheckConstraint(
1352   Parse *pParse,    /* Parsing context */
1353   Expr *pCheckExpr  /* The check expression */
1354 ){
1355 #ifndef SQLITE_OMIT_CHECK
1356   Table *pTab = pParse->pNewTable;
1357   sqlite3 *db = pParse->db;
1358   if( pTab && !IN_DECLARE_VTAB
1359    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1360   ){
1361     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1362     if( pParse->constraintName.n ){
1363       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1364     }
1365   }else
1366 #endif
1367   {
1368     sqlite3ExprDelete(pParse->db, pCheckExpr);
1369   }
1370 }
1371 
1372 /*
1373 ** Set the collation function of the most recently parsed table column
1374 ** to the CollSeq given.
1375 */
1376 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1377   Table *p;
1378   int i;
1379   char *zColl;              /* Dequoted name of collation sequence */
1380   sqlite3 *db;
1381 
1382   if( (p = pParse->pNewTable)==0 ) return;
1383   i = p->nCol-1;
1384   db = pParse->db;
1385   zColl = sqlite3NameFromToken(db, pToken);
1386   if( !zColl ) return;
1387 
1388   if( sqlite3LocateCollSeq(pParse, zColl) ){
1389     Index *pIdx;
1390     sqlite3DbFree(db, p->aCol[i].zColl);
1391     p->aCol[i].zColl = zColl;
1392 
1393     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1394     ** then an index may have been created on this column before the
1395     ** collation type was added. Correct this if it is the case.
1396     */
1397     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1398       assert( pIdx->nKeyCol==1 );
1399       if( pIdx->aiColumn[0]==i ){
1400         pIdx->azColl[0] = p->aCol[i].zColl;
1401       }
1402     }
1403   }else{
1404     sqlite3DbFree(db, zColl);
1405   }
1406 }
1407 
1408 /*
1409 ** This function returns the collation sequence for database native text
1410 ** encoding identified by the string zName, length nName.
1411 **
1412 ** If the requested collation sequence is not available, or not available
1413 ** in the database native encoding, the collation factory is invoked to
1414 ** request it. If the collation factory does not supply such a sequence,
1415 ** and the sequence is available in another text encoding, then that is
1416 ** returned instead.
1417 **
1418 ** If no versions of the requested collations sequence are available, or
1419 ** another error occurs, NULL is returned and an error message written into
1420 ** pParse.
1421 **
1422 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1423 ** invokes the collation factory if the named collation cannot be found
1424 ** and generates an error message.
1425 **
1426 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1427 */
1428 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1429   sqlite3 *db = pParse->db;
1430   u8 enc = ENC(db);
1431   u8 initbusy = db->init.busy;
1432   CollSeq *pColl;
1433 
1434   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1435   if( !initbusy && (!pColl || !pColl->xCmp) ){
1436     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1437   }
1438 
1439   return pColl;
1440 }
1441 
1442 
1443 /*
1444 ** Generate code that will increment the schema cookie.
1445 **
1446 ** The schema cookie is used to determine when the schema for the
1447 ** database changes.  After each schema change, the cookie value
1448 ** changes.  When a process first reads the schema it records the
1449 ** cookie.  Thereafter, whenever it goes to access the database,
1450 ** it checks the cookie to make sure the schema has not changed
1451 ** since it was last read.
1452 **
1453 ** This plan is not completely bullet-proof.  It is possible for
1454 ** the schema to change multiple times and for the cookie to be
1455 ** set back to prior value.  But schema changes are infrequent
1456 ** and the probability of hitting the same cookie value is only
1457 ** 1 chance in 2^32.  So we're safe enough.
1458 */
1459 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1460   sqlite3 *db = pParse->db;
1461   Vdbe *v = pParse->pVdbe;
1462   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1463   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1464                     db->aDb[iDb].pSchema->schema_cookie+1);
1465 }
1466 
1467 /*
1468 ** Measure the number of characters needed to output the given
1469 ** identifier.  The number returned includes any quotes used
1470 ** but does not include the null terminator.
1471 **
1472 ** The estimate is conservative.  It might be larger that what is
1473 ** really needed.
1474 */
1475 static int identLength(const char *z){
1476   int n;
1477   for(n=0; *z; n++, z++){
1478     if( *z=='"' ){ n++; }
1479   }
1480   return n + 2;
1481 }
1482 
1483 /*
1484 ** The first parameter is a pointer to an output buffer. The second
1485 ** parameter is a pointer to an integer that contains the offset at
1486 ** which to write into the output buffer. This function copies the
1487 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1488 ** to the specified offset in the buffer and updates *pIdx to refer
1489 ** to the first byte after the last byte written before returning.
1490 **
1491 ** If the string zSignedIdent consists entirely of alpha-numeric
1492 ** characters, does not begin with a digit and is not an SQL keyword,
1493 ** then it is copied to the output buffer exactly as it is. Otherwise,
1494 ** it is quoted using double-quotes.
1495 */
1496 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1497   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1498   int i, j, needQuote;
1499   i = *pIdx;
1500 
1501   for(j=0; zIdent[j]; j++){
1502     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1503   }
1504   needQuote = sqlite3Isdigit(zIdent[0])
1505             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1506             || zIdent[j]!=0
1507             || j==0;
1508 
1509   if( needQuote ) z[i++] = '"';
1510   for(j=0; zIdent[j]; j++){
1511     z[i++] = zIdent[j];
1512     if( zIdent[j]=='"' ) z[i++] = '"';
1513   }
1514   if( needQuote ) z[i++] = '"';
1515   z[i] = 0;
1516   *pIdx = i;
1517 }
1518 
1519 /*
1520 ** Generate a CREATE TABLE statement appropriate for the given
1521 ** table.  Memory to hold the text of the statement is obtained
1522 ** from sqliteMalloc() and must be freed by the calling function.
1523 */
1524 static char *createTableStmt(sqlite3 *db, Table *p){
1525   int i, k, n;
1526   char *zStmt;
1527   char *zSep, *zSep2, *zEnd;
1528   Column *pCol;
1529   n = 0;
1530   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1531     n += identLength(pCol->zName) + 5;
1532   }
1533   n += identLength(p->zName);
1534   if( n<50 ){
1535     zSep = "";
1536     zSep2 = ",";
1537     zEnd = ")";
1538   }else{
1539     zSep = "\n  ";
1540     zSep2 = ",\n  ";
1541     zEnd = "\n)";
1542   }
1543   n += 35 + 6*p->nCol;
1544   zStmt = sqlite3DbMallocRaw(0, n);
1545   if( zStmt==0 ){
1546     sqlite3OomFault(db);
1547     return 0;
1548   }
1549   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1550   k = sqlite3Strlen30(zStmt);
1551   identPut(zStmt, &k, p->zName);
1552   zStmt[k++] = '(';
1553   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1554     static const char * const azType[] = {
1555         /* SQLITE_AFF_BLOB    */ "",
1556         /* SQLITE_AFF_TEXT    */ " TEXT",
1557         /* SQLITE_AFF_NUMERIC */ " NUM",
1558         /* SQLITE_AFF_INTEGER */ " INT",
1559         /* SQLITE_AFF_REAL    */ " REAL"
1560     };
1561     int len;
1562     const char *zType;
1563 
1564     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1565     k += sqlite3Strlen30(&zStmt[k]);
1566     zSep = zSep2;
1567     identPut(zStmt, &k, pCol->zName);
1568     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1569     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1570     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1571     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1572     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1573     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1574     testcase( pCol->affinity==SQLITE_AFF_REAL );
1575 
1576     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1577     len = sqlite3Strlen30(zType);
1578     assert( pCol->affinity==SQLITE_AFF_BLOB
1579             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1580     memcpy(&zStmt[k], zType, len);
1581     k += len;
1582     assert( k<=n );
1583   }
1584   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1585   return zStmt;
1586 }
1587 
1588 /*
1589 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1590 ** on success and SQLITE_NOMEM on an OOM error.
1591 */
1592 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1593   char *zExtra;
1594   int nByte;
1595   if( pIdx->nColumn>=N ) return SQLITE_OK;
1596   assert( pIdx->isResized==0 );
1597   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1598   zExtra = sqlite3DbMallocZero(db, nByte);
1599   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1600   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1601   pIdx->azColl = (const char**)zExtra;
1602   zExtra += sizeof(char*)*N;
1603   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1604   pIdx->aiColumn = (i16*)zExtra;
1605   zExtra += sizeof(i16)*N;
1606   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1607   pIdx->aSortOrder = (u8*)zExtra;
1608   pIdx->nColumn = N;
1609   pIdx->isResized = 1;
1610   return SQLITE_OK;
1611 }
1612 
1613 /*
1614 ** Estimate the total row width for a table.
1615 */
1616 static void estimateTableWidth(Table *pTab){
1617   unsigned wTable = 0;
1618   const Column *pTabCol;
1619   int i;
1620   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1621     wTable += pTabCol->szEst;
1622   }
1623   if( pTab->iPKey<0 ) wTable++;
1624   pTab->szTabRow = sqlite3LogEst(wTable*4);
1625 }
1626 
1627 /*
1628 ** Estimate the average size of a row for an index.
1629 */
1630 static void estimateIndexWidth(Index *pIdx){
1631   unsigned wIndex = 0;
1632   int i;
1633   const Column *aCol = pIdx->pTable->aCol;
1634   for(i=0; i<pIdx->nColumn; i++){
1635     i16 x = pIdx->aiColumn[i];
1636     assert( x<pIdx->pTable->nCol );
1637     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1638   }
1639   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1640 }
1641 
1642 /* Return true if value x is found any of the first nCol entries of aiCol[]
1643 */
1644 static int hasColumn(const i16 *aiCol, int nCol, int x){
1645   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1646   return 0;
1647 }
1648 
1649 /*
1650 ** This routine runs at the end of parsing a CREATE TABLE statement that
1651 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1652 ** internal schema data structures and the generated VDBE code so that they
1653 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1654 ** Changes include:
1655 **
1656 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1657 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1658 **          data storage is a covering index btree.
1659 **     (2)  Bypass the creation of the sqlite_master table entry
1660 **          for the PRIMARY KEY as the primary key index is now
1661 **          identified by the sqlite_master table entry of the table itself.
1662 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1663 **          schema to the rootpage from the main table.
1664 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1665 **     (5)  Add all table columns to the PRIMARY KEY Index object
1666 **          so that the PRIMARY KEY is a covering index.  The surplus
1667 **          columns are part of KeyInfo.nXField and are not used for
1668 **          sorting or lookup or uniqueness checks.
1669 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1670 **          indices with the PRIMARY KEY columns.
1671 */
1672 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1673   Index *pIdx;
1674   Index *pPk;
1675   int nPk;
1676   int i, j;
1677   sqlite3 *db = pParse->db;
1678   Vdbe *v = pParse->pVdbe;
1679 
1680   /* Convert the OP_CreateTable opcode that would normally create the
1681   ** root-page for the table into an OP_CreateIndex opcode.  The index
1682   ** created will become the PRIMARY KEY index.
1683   */
1684   if( pParse->addrCrTab ){
1685     assert( v );
1686     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1687   }
1688 
1689   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1690   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1691   */
1692   if( pTab->iPKey>=0 ){
1693     ExprList *pList;
1694     Token ipkToken;
1695     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1696     pList = sqlite3ExprListAppend(pParse, 0,
1697                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1698     if( pList==0 ) return;
1699     pList->a[0].sortOrder = pParse->iPkSortOrder;
1700     assert( pParse->pNewTable==pTab );
1701     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1702     if( pPk==0 ) return;
1703     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1704     pTab->iPKey = -1;
1705   }else{
1706     pPk = sqlite3PrimaryKeyIndex(pTab);
1707 
1708     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1709     ** table entry. This is only required if currently generating VDBE
1710     ** code for a CREATE TABLE (not when parsing one as part of reading
1711     ** a database schema).  */
1712     if( v ){
1713       assert( db->init.busy==0 );
1714       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1715     }
1716 
1717     /*
1718     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1719     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1720     ** code assumes the PRIMARY KEY contains no repeated columns.
1721     */
1722     for(i=j=1; i<pPk->nKeyCol; i++){
1723       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1724         pPk->nColumn--;
1725       }else{
1726         pPk->aiColumn[j++] = pPk->aiColumn[i];
1727       }
1728     }
1729     pPk->nKeyCol = j;
1730   }
1731   pPk->isCovering = 1;
1732   assert( pPk!=0 );
1733   nPk = pPk->nKeyCol;
1734 
1735   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1736   ** do not enforce this for imposter tables.) */
1737   if( !db->init.imposterTable ){
1738     for(i=0; i<nPk; i++){
1739       pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1740     }
1741     pPk->uniqNotNull = 1;
1742   }
1743 
1744   /* The root page of the PRIMARY KEY is the table root page */
1745   pPk->tnum = pTab->tnum;
1746 
1747   /* Update the in-memory representation of all UNIQUE indices by converting
1748   ** the final rowid column into one or more columns of the PRIMARY KEY.
1749   */
1750   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1751     int n;
1752     if( IsPrimaryKeyIndex(pIdx) ) continue;
1753     for(i=n=0; i<nPk; i++){
1754       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1755     }
1756     if( n==0 ){
1757       /* This index is a superset of the primary key */
1758       pIdx->nColumn = pIdx->nKeyCol;
1759       continue;
1760     }
1761     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1762     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1763       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1764         pIdx->aiColumn[j] = pPk->aiColumn[i];
1765         pIdx->azColl[j] = pPk->azColl[i];
1766         j++;
1767       }
1768     }
1769     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1770     assert( pIdx->nColumn>=j );
1771   }
1772 
1773   /* Add all table columns to the PRIMARY KEY index
1774   */
1775   if( nPk<pTab->nCol ){
1776     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1777     for(i=0, j=nPk; i<pTab->nCol; i++){
1778       if( !hasColumn(pPk->aiColumn, j, i) ){
1779         assert( j<pPk->nColumn );
1780         pPk->aiColumn[j] = i;
1781         pPk->azColl[j] = sqlite3StrBINARY;
1782         j++;
1783       }
1784     }
1785     assert( pPk->nColumn==j );
1786     assert( pTab->nCol==j );
1787   }else{
1788     pPk->nColumn = pTab->nCol;
1789   }
1790 }
1791 
1792 /*
1793 ** This routine is called to report the final ")" that terminates
1794 ** a CREATE TABLE statement.
1795 **
1796 ** The table structure that other action routines have been building
1797 ** is added to the internal hash tables, assuming no errors have
1798 ** occurred.
1799 **
1800 ** An entry for the table is made in the master table on disk, unless
1801 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1802 ** it means we are reading the sqlite_master table because we just
1803 ** connected to the database or because the sqlite_master table has
1804 ** recently changed, so the entry for this table already exists in
1805 ** the sqlite_master table.  We do not want to create it again.
1806 **
1807 ** If the pSelect argument is not NULL, it means that this routine
1808 ** was called to create a table generated from a
1809 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1810 ** the new table will match the result set of the SELECT.
1811 */
1812 void sqlite3EndTable(
1813   Parse *pParse,          /* Parse context */
1814   Token *pCons,           /* The ',' token after the last column defn. */
1815   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1816   u8 tabOpts,             /* Extra table options. Usually 0. */
1817   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1818 ){
1819   Table *p;                 /* The new table */
1820   sqlite3 *db = pParse->db; /* The database connection */
1821   int iDb;                  /* Database in which the table lives */
1822   Index *pIdx;              /* An implied index of the table */
1823 
1824   if( pEnd==0 && pSelect==0 ){
1825     return;
1826   }
1827   assert( !db->mallocFailed );
1828   p = pParse->pNewTable;
1829   if( p==0 ) return;
1830 
1831   assert( !db->init.busy || !pSelect );
1832 
1833   /* If the db->init.busy is 1 it means we are reading the SQL off the
1834   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1835   ** So do not write to the disk again.  Extract the root page number
1836   ** for the table from the db->init.newTnum field.  (The page number
1837   ** should have been put there by the sqliteOpenCb routine.)
1838   **
1839   ** If the root page number is 1, that means this is the sqlite_master
1840   ** table itself.  So mark it read-only.
1841   */
1842   if( db->init.busy ){
1843     p->tnum = db->init.newTnum;
1844     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1845   }
1846 
1847   /* Special processing for WITHOUT ROWID Tables */
1848   if( tabOpts & TF_WithoutRowid ){
1849     if( (p->tabFlags & TF_Autoincrement) ){
1850       sqlite3ErrorMsg(pParse,
1851           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1852       return;
1853     }
1854     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1855       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1856     }else{
1857       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1858       convertToWithoutRowidTable(pParse, p);
1859     }
1860   }
1861 
1862   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1863 
1864 #ifndef SQLITE_OMIT_CHECK
1865   /* Resolve names in all CHECK constraint expressions.
1866   */
1867   if( p->pCheck ){
1868     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1869   }
1870 #endif /* !defined(SQLITE_OMIT_CHECK) */
1871 
1872   /* Estimate the average row size for the table and for all implied indices */
1873   estimateTableWidth(p);
1874   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1875     estimateIndexWidth(pIdx);
1876   }
1877 
1878   /* If not initializing, then create a record for the new table
1879   ** in the SQLITE_MASTER table of the database.
1880   **
1881   ** If this is a TEMPORARY table, write the entry into the auxiliary
1882   ** file instead of into the main database file.
1883   */
1884   if( !db->init.busy ){
1885     int n;
1886     Vdbe *v;
1887     char *zType;    /* "view" or "table" */
1888     char *zType2;   /* "VIEW" or "TABLE" */
1889     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1890 
1891     v = sqlite3GetVdbe(pParse);
1892     if( NEVER(v==0) ) return;
1893 
1894     sqlite3VdbeAddOp1(v, OP_Close, 0);
1895 
1896     /*
1897     ** Initialize zType for the new view or table.
1898     */
1899     if( p->pSelect==0 ){
1900       /* A regular table */
1901       zType = "table";
1902       zType2 = "TABLE";
1903 #ifndef SQLITE_OMIT_VIEW
1904     }else{
1905       /* A view */
1906       zType = "view";
1907       zType2 = "VIEW";
1908 #endif
1909     }
1910 
1911     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1912     ** statement to populate the new table. The root-page number for the
1913     ** new table is in register pParse->regRoot.
1914     **
1915     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1916     ** suitable state to query for the column names and types to be used
1917     ** by the new table.
1918     **
1919     ** A shared-cache write-lock is not required to write to the new table,
1920     ** as a schema-lock must have already been obtained to create it. Since
1921     ** a schema-lock excludes all other database users, the write-lock would
1922     ** be redundant.
1923     */
1924     if( pSelect ){
1925       SelectDest dest;    /* Where the SELECT should store results */
1926       int regYield;       /* Register holding co-routine entry-point */
1927       int addrTop;        /* Top of the co-routine */
1928       int regRec;         /* A record to be insert into the new table */
1929       int regRowid;       /* Rowid of the next row to insert */
1930       int addrInsLoop;    /* Top of the loop for inserting rows */
1931       Table *pSelTab;     /* A table that describes the SELECT results */
1932 
1933       regYield = ++pParse->nMem;
1934       regRec = ++pParse->nMem;
1935       regRowid = ++pParse->nMem;
1936       assert(pParse->nTab==1);
1937       sqlite3MayAbort(pParse);
1938       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1939       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1940       pParse->nTab = 2;
1941       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1942       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1943       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1944       sqlite3Select(pParse, pSelect, &dest);
1945       sqlite3VdbeEndCoroutine(v, regYield);
1946       sqlite3VdbeJumpHere(v, addrTop - 1);
1947       if( pParse->nErr ) return;
1948       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1949       if( pSelTab==0 ) return;
1950       assert( p->aCol==0 );
1951       p->nCol = pSelTab->nCol;
1952       p->aCol = pSelTab->aCol;
1953       pSelTab->nCol = 0;
1954       pSelTab->aCol = 0;
1955       sqlite3DeleteTable(db, pSelTab);
1956       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1957       VdbeCoverage(v);
1958       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1959       sqlite3TableAffinity(v, p, 0);
1960       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1961       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1962       sqlite3VdbeGoto(v, addrInsLoop);
1963       sqlite3VdbeJumpHere(v, addrInsLoop);
1964       sqlite3VdbeAddOp1(v, OP_Close, 1);
1965     }
1966 
1967     /* Compute the complete text of the CREATE statement */
1968     if( pSelect ){
1969       zStmt = createTableStmt(db, p);
1970     }else{
1971       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1972       n = (int)(pEnd2->z - pParse->sNameToken.z);
1973       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1974       zStmt = sqlite3MPrintf(db,
1975           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1976       );
1977     }
1978 
1979     /* A slot for the record has already been allocated in the
1980     ** SQLITE_MASTER table.  We just need to update that slot with all
1981     ** the information we've collected.
1982     */
1983     sqlite3NestedParse(pParse,
1984       "UPDATE %Q.%s "
1985          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1986        "WHERE rowid=#%d",
1987       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1988       zType,
1989       p->zName,
1990       p->zName,
1991       pParse->regRoot,
1992       zStmt,
1993       pParse->regRowid
1994     );
1995     sqlite3DbFree(db, zStmt);
1996     sqlite3ChangeCookie(pParse, iDb);
1997 
1998 #ifndef SQLITE_OMIT_AUTOINCREMENT
1999     /* Check to see if we need to create an sqlite_sequence table for
2000     ** keeping track of autoincrement keys.
2001     */
2002     if( p->tabFlags & TF_Autoincrement ){
2003       Db *pDb = &db->aDb[iDb];
2004       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2005       if( pDb->pSchema->pSeqTab==0 ){
2006         sqlite3NestedParse(pParse,
2007           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2008           pDb->zName
2009         );
2010       }
2011     }
2012 #endif
2013 
2014     /* Reparse everything to update our internal data structures */
2015     sqlite3VdbeAddParseSchemaOp(v, iDb,
2016            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2017   }
2018 
2019 
2020   /* Add the table to the in-memory representation of the database.
2021   */
2022   if( db->init.busy ){
2023     Table *pOld;
2024     Schema *pSchema = p->pSchema;
2025     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2026     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2027     if( pOld ){
2028       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2029       sqlite3OomFault(db);
2030       return;
2031     }
2032     pParse->pNewTable = 0;
2033     db->flags |= SQLITE_InternChanges;
2034 
2035 #ifndef SQLITE_OMIT_ALTERTABLE
2036     if( !p->pSelect ){
2037       const char *zName = (const char *)pParse->sNameToken.z;
2038       int nName;
2039       assert( !pSelect && pCons && pEnd );
2040       if( pCons->z==0 ){
2041         pCons = pEnd;
2042       }
2043       nName = (int)((const char *)pCons->z - zName);
2044       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2045     }
2046 #endif
2047   }
2048 }
2049 
2050 #ifndef SQLITE_OMIT_VIEW
2051 /*
2052 ** The parser calls this routine in order to create a new VIEW
2053 */
2054 void sqlite3CreateView(
2055   Parse *pParse,     /* The parsing context */
2056   Token *pBegin,     /* The CREATE token that begins the statement */
2057   Token *pName1,     /* The token that holds the name of the view */
2058   Token *pName2,     /* The token that holds the name of the view */
2059   ExprList *pCNames, /* Optional list of view column names */
2060   Select *pSelect,   /* A SELECT statement that will become the new view */
2061   int isTemp,        /* TRUE for a TEMPORARY view */
2062   int noErr          /* Suppress error messages if VIEW already exists */
2063 ){
2064   Table *p;
2065   int n;
2066   const char *z;
2067   Token sEnd;
2068   DbFixer sFix;
2069   Token *pName = 0;
2070   int iDb;
2071   sqlite3 *db = pParse->db;
2072 
2073   if( pParse->nVar>0 ){
2074     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2075     goto create_view_fail;
2076   }
2077   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2078   p = pParse->pNewTable;
2079   if( p==0 || pParse->nErr ) goto create_view_fail;
2080   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2081   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2082   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2083   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2084 
2085   /* Make a copy of the entire SELECT statement that defines the view.
2086   ** This will force all the Expr.token.z values to be dynamically
2087   ** allocated rather than point to the input string - which means that
2088   ** they will persist after the current sqlite3_exec() call returns.
2089   */
2090   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2091   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2092   if( db->mallocFailed ) goto create_view_fail;
2093 
2094   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2095   ** the end.
2096   */
2097   sEnd = pParse->sLastToken;
2098   assert( sEnd.z[0]!=0 );
2099   if( sEnd.z[0]!=';' ){
2100     sEnd.z += sEnd.n;
2101   }
2102   sEnd.n = 0;
2103   n = (int)(sEnd.z - pBegin->z);
2104   assert( n>0 );
2105   z = pBegin->z;
2106   while( sqlite3Isspace(z[n-1]) ){ n--; }
2107   sEnd.z = &z[n-1];
2108   sEnd.n = 1;
2109 
2110   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2111   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2112 
2113 create_view_fail:
2114   sqlite3SelectDelete(db, pSelect);
2115   sqlite3ExprListDelete(db, pCNames);
2116   return;
2117 }
2118 #endif /* SQLITE_OMIT_VIEW */
2119 
2120 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2121 /*
2122 ** The Table structure pTable is really a VIEW.  Fill in the names of
2123 ** the columns of the view in the pTable structure.  Return the number
2124 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2125 */
2126 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2127   Table *pSelTab;   /* A fake table from which we get the result set */
2128   Select *pSel;     /* Copy of the SELECT that implements the view */
2129   int nErr = 0;     /* Number of errors encountered */
2130   int n;            /* Temporarily holds the number of cursors assigned */
2131   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2132   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2133 
2134   assert( pTable );
2135 
2136 #ifndef SQLITE_OMIT_VIRTUALTABLE
2137   if( sqlite3VtabCallConnect(pParse, pTable) ){
2138     return SQLITE_ERROR;
2139   }
2140   if( IsVirtual(pTable) ) return 0;
2141 #endif
2142 
2143 #ifndef SQLITE_OMIT_VIEW
2144   /* A positive nCol means the columns names for this view are
2145   ** already known.
2146   */
2147   if( pTable->nCol>0 ) return 0;
2148 
2149   /* A negative nCol is a special marker meaning that we are currently
2150   ** trying to compute the column names.  If we enter this routine with
2151   ** a negative nCol, it means two or more views form a loop, like this:
2152   **
2153   **     CREATE VIEW one AS SELECT * FROM two;
2154   **     CREATE VIEW two AS SELECT * FROM one;
2155   **
2156   ** Actually, the error above is now caught prior to reaching this point.
2157   ** But the following test is still important as it does come up
2158   ** in the following:
2159   **
2160   **     CREATE TABLE main.ex1(a);
2161   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2162   **     SELECT * FROM temp.ex1;
2163   */
2164   if( pTable->nCol<0 ){
2165     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2166     return 1;
2167   }
2168   assert( pTable->nCol>=0 );
2169 
2170   /* If we get this far, it means we need to compute the table names.
2171   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2172   ** "*" elements in the results set of the view and will assign cursors
2173   ** to the elements of the FROM clause.  But we do not want these changes
2174   ** to be permanent.  So the computation is done on a copy of the SELECT
2175   ** statement that defines the view.
2176   */
2177   assert( pTable->pSelect );
2178   if( pTable->pCheck ){
2179     db->lookaside.bDisable++;
2180     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2181                                &pTable->nCol, &pTable->aCol);
2182     db->lookaside.bDisable--;
2183   }else{
2184     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2185     if( pSel ){
2186       n = pParse->nTab;
2187       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2188       pTable->nCol = -1;
2189       db->lookaside.bDisable++;
2190 #ifndef SQLITE_OMIT_AUTHORIZATION
2191       xAuth = db->xAuth;
2192       db->xAuth = 0;
2193       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2194       db->xAuth = xAuth;
2195 #else
2196       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2197 #endif
2198       db->lookaside.bDisable--;
2199       pParse->nTab = n;
2200       if( pSelTab ){
2201         assert( pTable->aCol==0 );
2202         pTable->nCol = pSelTab->nCol;
2203         pTable->aCol = pSelTab->aCol;
2204         pSelTab->nCol = 0;
2205         pSelTab->aCol = 0;
2206         sqlite3DeleteTable(db, pSelTab);
2207         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2208       }else{
2209         pTable->nCol = 0;
2210         nErr++;
2211       }
2212       sqlite3SelectDelete(db, pSel);
2213     } else {
2214       nErr++;
2215     }
2216   }
2217   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2218 #endif /* SQLITE_OMIT_VIEW */
2219   return nErr;
2220 }
2221 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2222 
2223 #ifndef SQLITE_OMIT_VIEW
2224 /*
2225 ** Clear the column names from every VIEW in database idx.
2226 */
2227 static void sqliteViewResetAll(sqlite3 *db, int idx){
2228   HashElem *i;
2229   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2230   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2231   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2232     Table *pTab = sqliteHashData(i);
2233     if( pTab->pSelect ){
2234       sqlite3DeleteColumnNames(db, pTab);
2235       pTab->aCol = 0;
2236       pTab->nCol = 0;
2237     }
2238   }
2239   DbClearProperty(db, idx, DB_UnresetViews);
2240 }
2241 #else
2242 # define sqliteViewResetAll(A,B)
2243 #endif /* SQLITE_OMIT_VIEW */
2244 
2245 /*
2246 ** This function is called by the VDBE to adjust the internal schema
2247 ** used by SQLite when the btree layer moves a table root page. The
2248 ** root-page of a table or index in database iDb has changed from iFrom
2249 ** to iTo.
2250 **
2251 ** Ticket #1728:  The symbol table might still contain information
2252 ** on tables and/or indices that are the process of being deleted.
2253 ** If you are unlucky, one of those deleted indices or tables might
2254 ** have the same rootpage number as the real table or index that is
2255 ** being moved.  So we cannot stop searching after the first match
2256 ** because the first match might be for one of the deleted indices
2257 ** or tables and not the table/index that is actually being moved.
2258 ** We must continue looping until all tables and indices with
2259 ** rootpage==iFrom have been converted to have a rootpage of iTo
2260 ** in order to be certain that we got the right one.
2261 */
2262 #ifndef SQLITE_OMIT_AUTOVACUUM
2263 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2264   HashElem *pElem;
2265   Hash *pHash;
2266   Db *pDb;
2267 
2268   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2269   pDb = &db->aDb[iDb];
2270   pHash = &pDb->pSchema->tblHash;
2271   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2272     Table *pTab = sqliteHashData(pElem);
2273     if( pTab->tnum==iFrom ){
2274       pTab->tnum = iTo;
2275     }
2276   }
2277   pHash = &pDb->pSchema->idxHash;
2278   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2279     Index *pIdx = sqliteHashData(pElem);
2280     if( pIdx->tnum==iFrom ){
2281       pIdx->tnum = iTo;
2282     }
2283   }
2284 }
2285 #endif
2286 
2287 /*
2288 ** Write code to erase the table with root-page iTable from database iDb.
2289 ** Also write code to modify the sqlite_master table and internal schema
2290 ** if a root-page of another table is moved by the btree-layer whilst
2291 ** erasing iTable (this can happen with an auto-vacuum database).
2292 */
2293 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2294   Vdbe *v = sqlite3GetVdbe(pParse);
2295   int r1 = sqlite3GetTempReg(pParse);
2296   assert( iTable>1 );
2297   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2298   sqlite3MayAbort(pParse);
2299 #ifndef SQLITE_OMIT_AUTOVACUUM
2300   /* OP_Destroy stores an in integer r1. If this integer
2301   ** is non-zero, then it is the root page number of a table moved to
2302   ** location iTable. The following code modifies the sqlite_master table to
2303   ** reflect this.
2304   **
2305   ** The "#NNN" in the SQL is a special constant that means whatever value
2306   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2307   ** token for additional information.
2308   */
2309   sqlite3NestedParse(pParse,
2310      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2311      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2312 #endif
2313   sqlite3ReleaseTempReg(pParse, r1);
2314 }
2315 
2316 /*
2317 ** Write VDBE code to erase table pTab and all associated indices on disk.
2318 ** Code to update the sqlite_master tables and internal schema definitions
2319 ** in case a root-page belonging to another table is moved by the btree layer
2320 ** is also added (this can happen with an auto-vacuum database).
2321 */
2322 static void destroyTable(Parse *pParse, Table *pTab){
2323 #ifdef SQLITE_OMIT_AUTOVACUUM
2324   Index *pIdx;
2325   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2326   destroyRootPage(pParse, pTab->tnum, iDb);
2327   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2328     destroyRootPage(pParse, pIdx->tnum, iDb);
2329   }
2330 #else
2331   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2332   ** is not defined), then it is important to call OP_Destroy on the
2333   ** table and index root-pages in order, starting with the numerically
2334   ** largest root-page number. This guarantees that none of the root-pages
2335   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2336   ** following were coded:
2337   **
2338   ** OP_Destroy 4 0
2339   ** ...
2340   ** OP_Destroy 5 0
2341   **
2342   ** and root page 5 happened to be the largest root-page number in the
2343   ** database, then root page 5 would be moved to page 4 by the
2344   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2345   ** a free-list page.
2346   */
2347   int iTab = pTab->tnum;
2348   int iDestroyed = 0;
2349 
2350   while( 1 ){
2351     Index *pIdx;
2352     int iLargest = 0;
2353 
2354     if( iDestroyed==0 || iTab<iDestroyed ){
2355       iLargest = iTab;
2356     }
2357     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2358       int iIdx = pIdx->tnum;
2359       assert( pIdx->pSchema==pTab->pSchema );
2360       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2361         iLargest = iIdx;
2362       }
2363     }
2364     if( iLargest==0 ){
2365       return;
2366     }else{
2367       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2368       assert( iDb>=0 && iDb<pParse->db->nDb );
2369       destroyRootPage(pParse, iLargest, iDb);
2370       iDestroyed = iLargest;
2371     }
2372   }
2373 #endif
2374 }
2375 
2376 /*
2377 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2378 ** after a DROP INDEX or DROP TABLE command.
2379 */
2380 static void sqlite3ClearStatTables(
2381   Parse *pParse,         /* The parsing context */
2382   int iDb,               /* The database number */
2383   const char *zType,     /* "idx" or "tbl" */
2384   const char *zName      /* Name of index or table */
2385 ){
2386   int i;
2387   const char *zDbName = pParse->db->aDb[iDb].zName;
2388   for(i=1; i<=4; i++){
2389     char zTab[24];
2390     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2391     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2392       sqlite3NestedParse(pParse,
2393         "DELETE FROM %Q.%s WHERE %s=%Q",
2394         zDbName, zTab, zType, zName
2395       );
2396     }
2397   }
2398 }
2399 
2400 /*
2401 ** Generate code to drop a table.
2402 */
2403 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2404   Vdbe *v;
2405   sqlite3 *db = pParse->db;
2406   Trigger *pTrigger;
2407   Db *pDb = &db->aDb[iDb];
2408 
2409   v = sqlite3GetVdbe(pParse);
2410   assert( v!=0 );
2411   sqlite3BeginWriteOperation(pParse, 1, iDb);
2412 
2413 #ifndef SQLITE_OMIT_VIRTUALTABLE
2414   if( IsVirtual(pTab) ){
2415     sqlite3VdbeAddOp0(v, OP_VBegin);
2416   }
2417 #endif
2418 
2419   /* Drop all triggers associated with the table being dropped. Code
2420   ** is generated to remove entries from sqlite_master and/or
2421   ** sqlite_temp_master if required.
2422   */
2423   pTrigger = sqlite3TriggerList(pParse, pTab);
2424   while( pTrigger ){
2425     assert( pTrigger->pSchema==pTab->pSchema ||
2426         pTrigger->pSchema==db->aDb[1].pSchema );
2427     sqlite3DropTriggerPtr(pParse, pTrigger);
2428     pTrigger = pTrigger->pNext;
2429   }
2430 
2431 #ifndef SQLITE_OMIT_AUTOINCREMENT
2432   /* Remove any entries of the sqlite_sequence table associated with
2433   ** the table being dropped. This is done before the table is dropped
2434   ** at the btree level, in case the sqlite_sequence table needs to
2435   ** move as a result of the drop (can happen in auto-vacuum mode).
2436   */
2437   if( pTab->tabFlags & TF_Autoincrement ){
2438     sqlite3NestedParse(pParse,
2439       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2440       pDb->zName, pTab->zName
2441     );
2442   }
2443 #endif
2444 
2445   /* Drop all SQLITE_MASTER table and index entries that refer to the
2446   ** table. The program name loops through the master table and deletes
2447   ** every row that refers to a table of the same name as the one being
2448   ** dropped. Triggers are handled separately because a trigger can be
2449   ** created in the temp database that refers to a table in another
2450   ** database.
2451   */
2452   sqlite3NestedParse(pParse,
2453       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2454       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2455   if( !isView && !IsVirtual(pTab) ){
2456     destroyTable(pParse, pTab);
2457   }
2458 
2459   /* Remove the table entry from SQLite's internal schema and modify
2460   ** the schema cookie.
2461   */
2462   if( IsVirtual(pTab) ){
2463     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2464   }
2465   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2466   sqlite3ChangeCookie(pParse, iDb);
2467   sqliteViewResetAll(db, iDb);
2468 }
2469 
2470 /*
2471 ** This routine is called to do the work of a DROP TABLE statement.
2472 ** pName is the name of the table to be dropped.
2473 */
2474 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2475   Table *pTab;
2476   Vdbe *v;
2477   sqlite3 *db = pParse->db;
2478   int iDb;
2479 
2480   if( db->mallocFailed ){
2481     goto exit_drop_table;
2482   }
2483   assert( pParse->nErr==0 );
2484   assert( pName->nSrc==1 );
2485   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2486   if( noErr ) db->suppressErr++;
2487   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2488   if( noErr ) db->suppressErr--;
2489 
2490   if( pTab==0 ){
2491     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2492     goto exit_drop_table;
2493   }
2494   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2495   assert( iDb>=0 && iDb<db->nDb );
2496 
2497   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2498   ** it is initialized.
2499   */
2500   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2501     goto exit_drop_table;
2502   }
2503 #ifndef SQLITE_OMIT_AUTHORIZATION
2504   {
2505     int code;
2506     const char *zTab = SCHEMA_TABLE(iDb);
2507     const char *zDb = db->aDb[iDb].zName;
2508     const char *zArg2 = 0;
2509     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2510       goto exit_drop_table;
2511     }
2512     if( isView ){
2513       if( !OMIT_TEMPDB && iDb==1 ){
2514         code = SQLITE_DROP_TEMP_VIEW;
2515       }else{
2516         code = SQLITE_DROP_VIEW;
2517       }
2518 #ifndef SQLITE_OMIT_VIRTUALTABLE
2519     }else if( IsVirtual(pTab) ){
2520       code = SQLITE_DROP_VTABLE;
2521       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2522 #endif
2523     }else{
2524       if( !OMIT_TEMPDB && iDb==1 ){
2525         code = SQLITE_DROP_TEMP_TABLE;
2526       }else{
2527         code = SQLITE_DROP_TABLE;
2528       }
2529     }
2530     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2531       goto exit_drop_table;
2532     }
2533     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2534       goto exit_drop_table;
2535     }
2536   }
2537 #endif
2538   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2539     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2540     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2541     goto exit_drop_table;
2542   }
2543 
2544 #ifndef SQLITE_OMIT_VIEW
2545   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2546   ** on a table.
2547   */
2548   if( isView && pTab->pSelect==0 ){
2549     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2550     goto exit_drop_table;
2551   }
2552   if( !isView && pTab->pSelect ){
2553     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2554     goto exit_drop_table;
2555   }
2556 #endif
2557 
2558   /* Generate code to remove the table from the master table
2559   ** on disk.
2560   */
2561   v = sqlite3GetVdbe(pParse);
2562   if( v ){
2563     sqlite3BeginWriteOperation(pParse, 1, iDb);
2564     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2565     sqlite3FkDropTable(pParse, pName, pTab);
2566     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2567   }
2568 
2569 exit_drop_table:
2570   sqlite3SrcListDelete(db, pName);
2571 }
2572 
2573 /*
2574 ** This routine is called to create a new foreign key on the table
2575 ** currently under construction.  pFromCol determines which columns
2576 ** in the current table point to the foreign key.  If pFromCol==0 then
2577 ** connect the key to the last column inserted.  pTo is the name of
2578 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2579 ** of tables in the parent pTo table.  flags contains all
2580 ** information about the conflict resolution algorithms specified
2581 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2582 **
2583 ** An FKey structure is created and added to the table currently
2584 ** under construction in the pParse->pNewTable field.
2585 **
2586 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2587 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2588 */
2589 void sqlite3CreateForeignKey(
2590   Parse *pParse,       /* Parsing context */
2591   ExprList *pFromCol,  /* Columns in this table that point to other table */
2592   Token *pTo,          /* Name of the other table */
2593   ExprList *pToCol,    /* Columns in the other table */
2594   int flags            /* Conflict resolution algorithms. */
2595 ){
2596   sqlite3 *db = pParse->db;
2597 #ifndef SQLITE_OMIT_FOREIGN_KEY
2598   FKey *pFKey = 0;
2599   FKey *pNextTo;
2600   Table *p = pParse->pNewTable;
2601   int nByte;
2602   int i;
2603   int nCol;
2604   char *z;
2605 
2606   assert( pTo!=0 );
2607   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2608   if( pFromCol==0 ){
2609     int iCol = p->nCol-1;
2610     if( NEVER(iCol<0) ) goto fk_end;
2611     if( pToCol && pToCol->nExpr!=1 ){
2612       sqlite3ErrorMsg(pParse, "foreign key on %s"
2613          " should reference only one column of table %T",
2614          p->aCol[iCol].zName, pTo);
2615       goto fk_end;
2616     }
2617     nCol = 1;
2618   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2619     sqlite3ErrorMsg(pParse,
2620         "number of columns in foreign key does not match the number of "
2621         "columns in the referenced table");
2622     goto fk_end;
2623   }else{
2624     nCol = pFromCol->nExpr;
2625   }
2626   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2627   if( pToCol ){
2628     for(i=0; i<pToCol->nExpr; i++){
2629       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2630     }
2631   }
2632   pFKey = sqlite3DbMallocZero(db, nByte );
2633   if( pFKey==0 ){
2634     goto fk_end;
2635   }
2636   pFKey->pFrom = p;
2637   pFKey->pNextFrom = p->pFKey;
2638   z = (char*)&pFKey->aCol[nCol];
2639   pFKey->zTo = z;
2640   memcpy(z, pTo->z, pTo->n);
2641   z[pTo->n] = 0;
2642   sqlite3Dequote(z);
2643   z += pTo->n+1;
2644   pFKey->nCol = nCol;
2645   if( pFromCol==0 ){
2646     pFKey->aCol[0].iFrom = p->nCol-1;
2647   }else{
2648     for(i=0; i<nCol; i++){
2649       int j;
2650       for(j=0; j<p->nCol; j++){
2651         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2652           pFKey->aCol[i].iFrom = j;
2653           break;
2654         }
2655       }
2656       if( j>=p->nCol ){
2657         sqlite3ErrorMsg(pParse,
2658           "unknown column \"%s\" in foreign key definition",
2659           pFromCol->a[i].zName);
2660         goto fk_end;
2661       }
2662     }
2663   }
2664   if( pToCol ){
2665     for(i=0; i<nCol; i++){
2666       int n = sqlite3Strlen30(pToCol->a[i].zName);
2667       pFKey->aCol[i].zCol = z;
2668       memcpy(z, pToCol->a[i].zName, n);
2669       z[n] = 0;
2670       z += n+1;
2671     }
2672   }
2673   pFKey->isDeferred = 0;
2674   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2675   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2676 
2677   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2678   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2679       pFKey->zTo, (void *)pFKey
2680   );
2681   if( pNextTo==pFKey ){
2682     sqlite3OomFault(db);
2683     goto fk_end;
2684   }
2685   if( pNextTo ){
2686     assert( pNextTo->pPrevTo==0 );
2687     pFKey->pNextTo = pNextTo;
2688     pNextTo->pPrevTo = pFKey;
2689   }
2690 
2691   /* Link the foreign key to the table as the last step.
2692   */
2693   p->pFKey = pFKey;
2694   pFKey = 0;
2695 
2696 fk_end:
2697   sqlite3DbFree(db, pFKey);
2698 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2699   sqlite3ExprListDelete(db, pFromCol);
2700   sqlite3ExprListDelete(db, pToCol);
2701 }
2702 
2703 /*
2704 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2705 ** clause is seen as part of a foreign key definition.  The isDeferred
2706 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2707 ** The behavior of the most recently created foreign key is adjusted
2708 ** accordingly.
2709 */
2710 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2711 #ifndef SQLITE_OMIT_FOREIGN_KEY
2712   Table *pTab;
2713   FKey *pFKey;
2714   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2715   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2716   pFKey->isDeferred = (u8)isDeferred;
2717 #endif
2718 }
2719 
2720 /*
2721 ** Generate code that will erase and refill index *pIdx.  This is
2722 ** used to initialize a newly created index or to recompute the
2723 ** content of an index in response to a REINDEX command.
2724 **
2725 ** if memRootPage is not negative, it means that the index is newly
2726 ** created.  The register specified by memRootPage contains the
2727 ** root page number of the index.  If memRootPage is negative, then
2728 ** the index already exists and must be cleared before being refilled and
2729 ** the root page number of the index is taken from pIndex->tnum.
2730 */
2731 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2732   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2733   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2734   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2735   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2736   int addr1;                     /* Address of top of loop */
2737   int addr2;                     /* Address to jump to for next iteration */
2738   int tnum;                      /* Root page of index */
2739   int iPartIdxLabel;             /* Jump to this label to skip a row */
2740   Vdbe *v;                       /* Generate code into this virtual machine */
2741   KeyInfo *pKey;                 /* KeyInfo for index */
2742   int regRecord;                 /* Register holding assembled index record */
2743   sqlite3 *db = pParse->db;      /* The database connection */
2744   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2745 
2746 #ifndef SQLITE_OMIT_AUTHORIZATION
2747   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2748       db->aDb[iDb].zName ) ){
2749     return;
2750   }
2751 #endif
2752 
2753   /* Require a write-lock on the table to perform this operation */
2754   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2755 
2756   v = sqlite3GetVdbe(pParse);
2757   if( v==0 ) return;
2758   if( memRootPage>=0 ){
2759     tnum = memRootPage;
2760   }else{
2761     tnum = pIndex->tnum;
2762   }
2763   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2764 
2765   /* Open the sorter cursor if we are to use one. */
2766   iSorter = pParse->nTab++;
2767   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2768                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2769 
2770   /* Open the table. Loop through all rows of the table, inserting index
2771   ** records into the sorter. */
2772   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2773   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2774   regRecord = sqlite3GetTempReg(pParse);
2775 
2776   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2777   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2778   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2779   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2780   sqlite3VdbeJumpHere(v, addr1);
2781   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2782   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2783                     (char *)pKey, P4_KEYINFO);
2784   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2785 
2786   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2787   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2788   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2789     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2790     sqlite3VdbeGoto(v, j2);
2791     addr2 = sqlite3VdbeCurrentAddr(v);
2792     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2793                          pIndex->nKeyCol); VdbeCoverage(v);
2794     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2795   }else{
2796     addr2 = sqlite3VdbeCurrentAddr(v);
2797   }
2798   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2799   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2800   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2801   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2802   sqlite3ReleaseTempReg(pParse, regRecord);
2803   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2804   sqlite3VdbeJumpHere(v, addr1);
2805 
2806   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2807   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2808   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2809 }
2810 
2811 /*
2812 ** Allocate heap space to hold an Index object with nCol columns.
2813 **
2814 ** Increase the allocation size to provide an extra nExtra bytes
2815 ** of 8-byte aligned space after the Index object and return a
2816 ** pointer to this extra space in *ppExtra.
2817 */
2818 Index *sqlite3AllocateIndexObject(
2819   sqlite3 *db,         /* Database connection */
2820   i16 nCol,            /* Total number of columns in the index */
2821   int nExtra,          /* Number of bytes of extra space to alloc */
2822   char **ppExtra       /* Pointer to the "extra" space */
2823 ){
2824   Index *p;            /* Allocated index object */
2825   int nByte;           /* Bytes of space for Index object + arrays */
2826 
2827   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2828           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2829           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2830                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2831                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2832   p = sqlite3DbMallocZero(db, nByte + nExtra);
2833   if( p ){
2834     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2835     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2836     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2837     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2838     p->aSortOrder = (u8*)pExtra;
2839     p->nColumn = nCol;
2840     p->nKeyCol = nCol - 1;
2841     *ppExtra = ((char*)p) + nByte;
2842   }
2843   return p;
2844 }
2845 
2846 /*
2847 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2848 ** and pTblList is the name of the table that is to be indexed.  Both will
2849 ** be NULL for a primary key or an index that is created to satisfy a
2850 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2851 ** as the table to be indexed.  pParse->pNewTable is a table that is
2852 ** currently being constructed by a CREATE TABLE statement.
2853 **
2854 ** pList is a list of columns to be indexed.  pList will be NULL if this
2855 ** is a primary key or unique-constraint on the most recent column added
2856 ** to the table currently under construction.
2857 **
2858 ** If the index is created successfully, return a pointer to the new Index
2859 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2860 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2861 */
2862 Index *sqlite3CreateIndex(
2863   Parse *pParse,     /* All information about this parse */
2864   Token *pName1,     /* First part of index name. May be NULL */
2865   Token *pName2,     /* Second part of index name. May be NULL */
2866   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2867   ExprList *pList,   /* A list of columns to be indexed */
2868   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2869   Token *pStart,     /* The CREATE token that begins this statement */
2870   Expr *pPIWhere,    /* WHERE clause for partial indices */
2871   int sortOrder,     /* Sort order of primary key when pList==NULL */
2872   int ifNotExist     /* Omit error if index already exists */
2873 ){
2874   Index *pRet = 0;     /* Pointer to return */
2875   Table *pTab = 0;     /* Table to be indexed */
2876   Index *pIndex = 0;   /* The index to be created */
2877   char *zName = 0;     /* Name of the index */
2878   int nName;           /* Number of characters in zName */
2879   int i, j;
2880   DbFixer sFix;        /* For assigning database names to pTable */
2881   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2882   sqlite3 *db = pParse->db;
2883   Db *pDb;             /* The specific table containing the indexed database */
2884   int iDb;             /* Index of the database that is being written */
2885   Token *pName = 0;    /* Unqualified name of the index to create */
2886   struct ExprList_item *pListItem; /* For looping over pList */
2887   int nExtra = 0;                  /* Space allocated for zExtra[] */
2888   int nExtraCol;                   /* Number of extra columns needed */
2889   char *zExtra = 0;                /* Extra space after the Index object */
2890   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2891 
2892   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2893     goto exit_create_index;
2894   }
2895   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2896     goto exit_create_index;
2897   }
2898 
2899   /*
2900   ** Find the table that is to be indexed.  Return early if not found.
2901   */
2902   if( pTblName!=0 ){
2903 
2904     /* Use the two-part index name to determine the database
2905     ** to search for the table. 'Fix' the table name to this db
2906     ** before looking up the table.
2907     */
2908     assert( pName1 && pName2 );
2909     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2910     if( iDb<0 ) goto exit_create_index;
2911     assert( pName && pName->z );
2912 
2913 #ifndef SQLITE_OMIT_TEMPDB
2914     /* If the index name was unqualified, check if the table
2915     ** is a temp table. If so, set the database to 1. Do not do this
2916     ** if initialising a database schema.
2917     */
2918     if( !db->init.busy ){
2919       pTab = sqlite3SrcListLookup(pParse, pTblName);
2920       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2921         iDb = 1;
2922       }
2923     }
2924 #endif
2925 
2926     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2927     if( sqlite3FixSrcList(&sFix, pTblName) ){
2928       /* Because the parser constructs pTblName from a single identifier,
2929       ** sqlite3FixSrcList can never fail. */
2930       assert(0);
2931     }
2932     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2933     assert( db->mallocFailed==0 || pTab==0 );
2934     if( pTab==0 ) goto exit_create_index;
2935     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2936       sqlite3ErrorMsg(pParse,
2937            "cannot create a TEMP index on non-TEMP table \"%s\"",
2938            pTab->zName);
2939       goto exit_create_index;
2940     }
2941     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2942   }else{
2943     assert( pName==0 );
2944     assert( pStart==0 );
2945     pTab = pParse->pNewTable;
2946     if( !pTab ) goto exit_create_index;
2947     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2948   }
2949   pDb = &db->aDb[iDb];
2950 
2951   assert( pTab!=0 );
2952   assert( pParse->nErr==0 );
2953   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2954        && db->init.busy==0
2955 #if SQLITE_USER_AUTHENTICATION
2956        && sqlite3UserAuthTable(pTab->zName)==0
2957 #endif
2958        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2959     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2960     goto exit_create_index;
2961   }
2962 #ifndef SQLITE_OMIT_VIEW
2963   if( pTab->pSelect ){
2964     sqlite3ErrorMsg(pParse, "views may not be indexed");
2965     goto exit_create_index;
2966   }
2967 #endif
2968 #ifndef SQLITE_OMIT_VIRTUALTABLE
2969   if( IsVirtual(pTab) ){
2970     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2971     goto exit_create_index;
2972   }
2973 #endif
2974 
2975   /*
2976   ** Find the name of the index.  Make sure there is not already another
2977   ** index or table with the same name.
2978   **
2979   ** Exception:  If we are reading the names of permanent indices from the
2980   ** sqlite_master table (because some other process changed the schema) and
2981   ** one of the index names collides with the name of a temporary table or
2982   ** index, then we will continue to process this index.
2983   **
2984   ** If pName==0 it means that we are
2985   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2986   ** own name.
2987   */
2988   if( pName ){
2989     zName = sqlite3NameFromToken(db, pName);
2990     if( zName==0 ) goto exit_create_index;
2991     assert( pName->z!=0 );
2992     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2993       goto exit_create_index;
2994     }
2995     if( !db->init.busy ){
2996       if( sqlite3FindTable(db, zName, 0)!=0 ){
2997         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2998         goto exit_create_index;
2999       }
3000     }
3001     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3002       if( !ifNotExist ){
3003         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3004       }else{
3005         assert( !db->init.busy );
3006         sqlite3CodeVerifySchema(pParse, iDb);
3007       }
3008       goto exit_create_index;
3009     }
3010   }else{
3011     int n;
3012     Index *pLoop;
3013     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3014     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3015     if( zName==0 ){
3016       goto exit_create_index;
3017     }
3018   }
3019 
3020   /* Check for authorization to create an index.
3021   */
3022 #ifndef SQLITE_OMIT_AUTHORIZATION
3023   {
3024     const char *zDb = pDb->zName;
3025     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3026       goto exit_create_index;
3027     }
3028     i = SQLITE_CREATE_INDEX;
3029     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3030     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3031       goto exit_create_index;
3032     }
3033   }
3034 #endif
3035 
3036   /* If pList==0, it means this routine was called to make a primary
3037   ** key out of the last column added to the table under construction.
3038   ** So create a fake list to simulate this.
3039   */
3040   if( pList==0 ){
3041     Token prevCol;
3042     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3043     pList = sqlite3ExprListAppend(pParse, 0,
3044               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3045     if( pList==0 ) goto exit_create_index;
3046     assert( pList->nExpr==1 );
3047     sqlite3ExprListSetSortOrder(pList, sortOrder);
3048   }else{
3049     sqlite3ExprListCheckLength(pParse, pList, "index");
3050   }
3051 
3052   /* Figure out how many bytes of space are required to store explicitly
3053   ** specified collation sequence names.
3054   */
3055   for(i=0; i<pList->nExpr; i++){
3056     Expr *pExpr = pList->a[i].pExpr;
3057     assert( pExpr!=0 );
3058     if( pExpr->op==TK_COLLATE ){
3059       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3060     }
3061   }
3062 
3063   /*
3064   ** Allocate the index structure.
3065   */
3066   nName = sqlite3Strlen30(zName);
3067   nExtraCol = pPk ? pPk->nKeyCol : 1;
3068   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3069                                       nName + nExtra + 1, &zExtra);
3070   if( db->mallocFailed ){
3071     goto exit_create_index;
3072   }
3073   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3074   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3075   pIndex->zName = zExtra;
3076   zExtra += nName + 1;
3077   memcpy(pIndex->zName, zName, nName+1);
3078   pIndex->pTable = pTab;
3079   pIndex->onError = (u8)onError;
3080   pIndex->uniqNotNull = onError!=OE_None;
3081   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3082   pIndex->pSchema = db->aDb[iDb].pSchema;
3083   pIndex->nKeyCol = pList->nExpr;
3084   if( pPIWhere ){
3085     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3086     pIndex->pPartIdxWhere = pPIWhere;
3087     pPIWhere = 0;
3088   }
3089   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3090 
3091   /* Check to see if we should honor DESC requests on index columns
3092   */
3093   if( pDb->pSchema->file_format>=4 ){
3094     sortOrderMask = -1;   /* Honor DESC */
3095   }else{
3096     sortOrderMask = 0;    /* Ignore DESC */
3097   }
3098 
3099   /* Analyze the list of expressions that form the terms of the index and
3100   ** report any errors.  In the common case where the expression is exactly
3101   ** a table column, store that column in aiColumn[].  For general expressions,
3102   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3103   **
3104   ** TODO: Issue a warning if two or more columns of the index are identical.
3105   ** TODO: Issue a warning if the table primary key is used as part of the
3106   ** index key.
3107   */
3108   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3109     Expr *pCExpr;                  /* The i-th index expression */
3110     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3111     const char *zColl;             /* Collation sequence name */
3112 
3113     sqlite3StringToId(pListItem->pExpr);
3114     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3115     if( pParse->nErr ) goto exit_create_index;
3116     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3117     if( pCExpr->op!=TK_COLUMN ){
3118       if( pTab==pParse->pNewTable ){
3119         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3120                                 "UNIQUE constraints");
3121         goto exit_create_index;
3122       }
3123       if( pIndex->aColExpr==0 ){
3124         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3125         pIndex->aColExpr = pCopy;
3126         if( !db->mallocFailed ){
3127           assert( pCopy!=0 );
3128           pListItem = &pCopy->a[i];
3129         }
3130       }
3131       j = XN_EXPR;
3132       pIndex->aiColumn[i] = XN_EXPR;
3133       pIndex->uniqNotNull = 0;
3134     }else{
3135       j = pCExpr->iColumn;
3136       assert( j<=0x7fff );
3137       if( j<0 ){
3138         j = pTab->iPKey;
3139       }else if( pTab->aCol[j].notNull==0 ){
3140         pIndex->uniqNotNull = 0;
3141       }
3142       pIndex->aiColumn[i] = (i16)j;
3143     }
3144     zColl = 0;
3145     if( pListItem->pExpr->op==TK_COLLATE ){
3146       int nColl;
3147       zColl = pListItem->pExpr->u.zToken;
3148       nColl = sqlite3Strlen30(zColl) + 1;
3149       assert( nExtra>=nColl );
3150       memcpy(zExtra, zColl, nColl);
3151       zColl = zExtra;
3152       zExtra += nColl;
3153       nExtra -= nColl;
3154     }else if( j>=0 ){
3155       zColl = pTab->aCol[j].zColl;
3156     }
3157     if( !zColl ) zColl = sqlite3StrBINARY;
3158     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3159       goto exit_create_index;
3160     }
3161     pIndex->azColl[i] = zColl;
3162     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3163     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3164   }
3165 
3166   /* Append the table key to the end of the index.  For WITHOUT ROWID
3167   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3168   ** normal tables (when pPk==0) this will be the rowid.
3169   */
3170   if( pPk ){
3171     for(j=0; j<pPk->nKeyCol; j++){
3172       int x = pPk->aiColumn[j];
3173       assert( x>=0 );
3174       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3175         pIndex->nColumn--;
3176       }else{
3177         pIndex->aiColumn[i] = x;
3178         pIndex->azColl[i] = pPk->azColl[j];
3179         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3180         i++;
3181       }
3182     }
3183     assert( i==pIndex->nColumn );
3184   }else{
3185     pIndex->aiColumn[i] = XN_ROWID;
3186     pIndex->azColl[i] = sqlite3StrBINARY;
3187   }
3188   sqlite3DefaultRowEst(pIndex);
3189   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3190 
3191   /* If this index contains every column of its table, then mark
3192   ** it as a covering index */
3193   assert( HasRowid(pTab)
3194       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3195   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3196     pIndex->isCovering = 1;
3197     for(j=0; j<pTab->nCol; j++){
3198       if( j==pTab->iPKey ) continue;
3199       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3200       pIndex->isCovering = 0;
3201       break;
3202     }
3203   }
3204 
3205   if( pTab==pParse->pNewTable ){
3206     /* This routine has been called to create an automatic index as a
3207     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3208     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3209     ** i.e. one of:
3210     **
3211     ** CREATE TABLE t(x PRIMARY KEY, y);
3212     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3213     **
3214     ** Either way, check to see if the table already has such an index. If
3215     ** so, don't bother creating this one. This only applies to
3216     ** automatically created indices. Users can do as they wish with
3217     ** explicit indices.
3218     **
3219     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3220     ** (and thus suppressing the second one) even if they have different
3221     ** sort orders.
3222     **
3223     ** If there are different collating sequences or if the columns of
3224     ** the constraint occur in different orders, then the constraints are
3225     ** considered distinct and both result in separate indices.
3226     */
3227     Index *pIdx;
3228     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3229       int k;
3230       assert( IsUniqueIndex(pIdx) );
3231       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3232       assert( IsUniqueIndex(pIndex) );
3233 
3234       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3235       for(k=0; k<pIdx->nKeyCol; k++){
3236         const char *z1;
3237         const char *z2;
3238         assert( pIdx->aiColumn[k]>=0 );
3239         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3240         z1 = pIdx->azColl[k];
3241         z2 = pIndex->azColl[k];
3242         if( sqlite3StrICmp(z1, z2) ) break;
3243       }
3244       if( k==pIdx->nKeyCol ){
3245         if( pIdx->onError!=pIndex->onError ){
3246           /* This constraint creates the same index as a previous
3247           ** constraint specified somewhere in the CREATE TABLE statement.
3248           ** However the ON CONFLICT clauses are different. If both this
3249           ** constraint and the previous equivalent constraint have explicit
3250           ** ON CONFLICT clauses this is an error. Otherwise, use the
3251           ** explicitly specified behavior for the index.
3252           */
3253           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3254             sqlite3ErrorMsg(pParse,
3255                 "conflicting ON CONFLICT clauses specified", 0);
3256           }
3257           if( pIdx->onError==OE_Default ){
3258             pIdx->onError = pIndex->onError;
3259           }
3260         }
3261         pRet = pIdx;
3262         goto exit_create_index;
3263       }
3264     }
3265   }
3266 
3267   /* Link the new Index structure to its table and to the other
3268   ** in-memory database structures.
3269   */
3270   assert( pParse->nErr==0 );
3271   if( db->init.busy ){
3272     Index *p;
3273     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3274     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3275                           pIndex->zName, pIndex);
3276     if( p ){
3277       assert( p==pIndex );  /* Malloc must have failed */
3278       sqlite3OomFault(db);
3279       goto exit_create_index;
3280     }
3281     db->flags |= SQLITE_InternChanges;
3282     if( pTblName!=0 ){
3283       pIndex->tnum = db->init.newTnum;
3284     }
3285   }
3286 
3287   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3288   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3289   ** emit code to allocate the index rootpage on disk and make an entry for
3290   ** the index in the sqlite_master table and populate the index with
3291   ** content.  But, do not do this if we are simply reading the sqlite_master
3292   ** table to parse the schema, or if this index is the PRIMARY KEY index
3293   ** of a WITHOUT ROWID table.
3294   **
3295   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3296   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3297   ** has just been created, it contains no data and the index initialization
3298   ** step can be skipped.
3299   */
3300   else if( HasRowid(pTab) || pTblName!=0 ){
3301     Vdbe *v;
3302     char *zStmt;
3303     int iMem = ++pParse->nMem;
3304 
3305     v = sqlite3GetVdbe(pParse);
3306     if( v==0 ) goto exit_create_index;
3307 
3308     sqlite3BeginWriteOperation(pParse, 1, iDb);
3309 
3310     /* Create the rootpage for the index using CreateIndex. But before
3311     ** doing so, code a Noop instruction and store its address in
3312     ** Index.tnum. This is required in case this index is actually a
3313     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3314     ** that case the convertToWithoutRowidTable() routine will replace
3315     ** the Noop with a Goto to jump over the VDBE code generated below. */
3316     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3317     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3318 
3319     /* Gather the complete text of the CREATE INDEX statement into
3320     ** the zStmt variable
3321     */
3322     if( pStart ){
3323       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3324       if( pName->z[n-1]==';' ) n--;
3325       /* A named index with an explicit CREATE INDEX statement */
3326       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3327         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3328     }else{
3329       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3330       /* zStmt = sqlite3MPrintf(""); */
3331       zStmt = 0;
3332     }
3333 
3334     /* Add an entry in sqlite_master for this index
3335     */
3336     sqlite3NestedParse(pParse,
3337         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3338         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3339         pIndex->zName,
3340         pTab->zName,
3341         iMem,
3342         zStmt
3343     );
3344     sqlite3DbFree(db, zStmt);
3345 
3346     /* Fill the index with data and reparse the schema. Code an OP_Expire
3347     ** to invalidate all pre-compiled statements.
3348     */
3349     if( pTblName ){
3350       sqlite3RefillIndex(pParse, pIndex, iMem);
3351       sqlite3ChangeCookie(pParse, iDb);
3352       sqlite3VdbeAddParseSchemaOp(v, iDb,
3353          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3354       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3355     }
3356 
3357     sqlite3VdbeJumpHere(v, pIndex->tnum);
3358   }
3359 
3360   /* When adding an index to the list of indices for a table, make
3361   ** sure all indices labeled OE_Replace come after all those labeled
3362   ** OE_Ignore.  This is necessary for the correct constraint check
3363   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3364   ** UPDATE and INSERT statements.
3365   */
3366   if( db->init.busy || pTblName==0 ){
3367     if( onError!=OE_Replace || pTab->pIndex==0
3368          || pTab->pIndex->onError==OE_Replace){
3369       pIndex->pNext = pTab->pIndex;
3370       pTab->pIndex = pIndex;
3371     }else{
3372       Index *pOther = pTab->pIndex;
3373       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3374         pOther = pOther->pNext;
3375       }
3376       pIndex->pNext = pOther->pNext;
3377       pOther->pNext = pIndex;
3378     }
3379     pRet = pIndex;
3380     pIndex = 0;
3381   }
3382 
3383   /* Clean up before exiting */
3384 exit_create_index:
3385   if( pIndex ) freeIndex(db, pIndex);
3386   sqlite3ExprDelete(db, pPIWhere);
3387   sqlite3ExprListDelete(db, pList);
3388   sqlite3SrcListDelete(db, pTblName);
3389   sqlite3DbFree(db, zName);
3390   return pRet;
3391 }
3392 
3393 /*
3394 ** Fill the Index.aiRowEst[] array with default information - information
3395 ** to be used when we have not run the ANALYZE command.
3396 **
3397 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3398 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3399 ** number of rows in the table that match any particular value of the
3400 ** first column of the index.  aiRowEst[2] is an estimate of the number
3401 ** of rows that match any particular combination of the first 2 columns
3402 ** of the index.  And so forth.  It must always be the case that
3403 *
3404 **           aiRowEst[N]<=aiRowEst[N-1]
3405 **           aiRowEst[N]>=1
3406 **
3407 ** Apart from that, we have little to go on besides intuition as to
3408 ** how aiRowEst[] should be initialized.  The numbers generated here
3409 ** are based on typical values found in actual indices.
3410 */
3411 void sqlite3DefaultRowEst(Index *pIdx){
3412   /*                10,  9,  8,  7,  6 */
3413   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3414   LogEst *a = pIdx->aiRowLogEst;
3415   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3416   int i;
3417 
3418   /* Set the first entry (number of rows in the index) to the estimated
3419   ** number of rows in the table. Or 10, if the estimated number of rows
3420   ** in the table is less than that.  */
3421   a[0] = pIdx->pTable->nRowLogEst;
3422   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3423 
3424   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3425   ** 6 and each subsequent value (if any) is 5.  */
3426   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3427   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3428     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3429   }
3430 
3431   assert( 0==sqlite3LogEst(1) );
3432   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3433 }
3434 
3435 /*
3436 ** This routine will drop an existing named index.  This routine
3437 ** implements the DROP INDEX statement.
3438 */
3439 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3440   Index *pIndex;
3441   Vdbe *v;
3442   sqlite3 *db = pParse->db;
3443   int iDb;
3444 
3445   assert( pParse->nErr==0 );   /* Never called with prior errors */
3446   if( db->mallocFailed ){
3447     goto exit_drop_index;
3448   }
3449   assert( pName->nSrc==1 );
3450   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3451     goto exit_drop_index;
3452   }
3453   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3454   if( pIndex==0 ){
3455     if( !ifExists ){
3456       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3457     }else{
3458       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3459     }
3460     pParse->checkSchema = 1;
3461     goto exit_drop_index;
3462   }
3463   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3464     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3465       "or PRIMARY KEY constraint cannot be dropped", 0);
3466     goto exit_drop_index;
3467   }
3468   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3469 #ifndef SQLITE_OMIT_AUTHORIZATION
3470   {
3471     int code = SQLITE_DROP_INDEX;
3472     Table *pTab = pIndex->pTable;
3473     const char *zDb = db->aDb[iDb].zName;
3474     const char *zTab = SCHEMA_TABLE(iDb);
3475     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3476       goto exit_drop_index;
3477     }
3478     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3479     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3480       goto exit_drop_index;
3481     }
3482   }
3483 #endif
3484 
3485   /* Generate code to remove the index and from the master table */
3486   v = sqlite3GetVdbe(pParse);
3487   if( v ){
3488     sqlite3BeginWriteOperation(pParse, 1, iDb);
3489     sqlite3NestedParse(pParse,
3490        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3491        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3492     );
3493     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3494     sqlite3ChangeCookie(pParse, iDb);
3495     destroyRootPage(pParse, pIndex->tnum, iDb);
3496     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3497   }
3498 
3499 exit_drop_index:
3500   sqlite3SrcListDelete(db, pName);
3501 }
3502 
3503 /*
3504 ** pArray is a pointer to an array of objects. Each object in the
3505 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3506 ** to extend the array so that there is space for a new object at the end.
3507 **
3508 ** When this function is called, *pnEntry contains the current size of
3509 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3510 ** in total).
3511 **
3512 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3513 ** space allocated for the new object is zeroed, *pnEntry updated to
3514 ** reflect the new size of the array and a pointer to the new allocation
3515 ** returned. *pIdx is set to the index of the new array entry in this case.
3516 **
3517 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3518 ** unchanged and a copy of pArray returned.
3519 */
3520 void *sqlite3ArrayAllocate(
3521   sqlite3 *db,      /* Connection to notify of malloc failures */
3522   void *pArray,     /* Array of objects.  Might be reallocated */
3523   int szEntry,      /* Size of each object in the array */
3524   int *pnEntry,     /* Number of objects currently in use */
3525   int *pIdx         /* Write the index of a new slot here */
3526 ){
3527   char *z;
3528   int n = *pnEntry;
3529   if( (n & (n-1))==0 ){
3530     int sz = (n==0) ? 1 : 2*n;
3531     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3532     if( pNew==0 ){
3533       *pIdx = -1;
3534       return pArray;
3535     }
3536     pArray = pNew;
3537   }
3538   z = (char*)pArray;
3539   memset(&z[n * szEntry], 0, szEntry);
3540   *pIdx = n;
3541   ++*pnEntry;
3542   return pArray;
3543 }
3544 
3545 /*
3546 ** Append a new element to the given IdList.  Create a new IdList if
3547 ** need be.
3548 **
3549 ** A new IdList is returned, or NULL if malloc() fails.
3550 */
3551 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3552   int i;
3553   if( pList==0 ){
3554     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3555     if( pList==0 ) return 0;
3556   }
3557   pList->a = sqlite3ArrayAllocate(
3558       db,
3559       pList->a,
3560       sizeof(pList->a[0]),
3561       &pList->nId,
3562       &i
3563   );
3564   if( i<0 ){
3565     sqlite3IdListDelete(db, pList);
3566     return 0;
3567   }
3568   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3569   return pList;
3570 }
3571 
3572 /*
3573 ** Delete an IdList.
3574 */
3575 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3576   int i;
3577   if( pList==0 ) return;
3578   for(i=0; i<pList->nId; i++){
3579     sqlite3DbFree(db, pList->a[i].zName);
3580   }
3581   sqlite3DbFree(db, pList->a);
3582   sqlite3DbFree(db, pList);
3583 }
3584 
3585 /*
3586 ** Return the index in pList of the identifier named zId.  Return -1
3587 ** if not found.
3588 */
3589 int sqlite3IdListIndex(IdList *pList, const char *zName){
3590   int i;
3591   if( pList==0 ) return -1;
3592   for(i=0; i<pList->nId; i++){
3593     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3594   }
3595   return -1;
3596 }
3597 
3598 /*
3599 ** Expand the space allocated for the given SrcList object by
3600 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3601 ** New slots are zeroed.
3602 **
3603 ** For example, suppose a SrcList initially contains two entries: A,B.
3604 ** To append 3 new entries onto the end, do this:
3605 **
3606 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3607 **
3608 ** After the call above it would contain:  A, B, nil, nil, nil.
3609 ** If the iStart argument had been 1 instead of 2, then the result
3610 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3611 ** the iStart value would be 0.  The result then would
3612 ** be: nil, nil, nil, A, B.
3613 **
3614 ** If a memory allocation fails the SrcList is unchanged.  The
3615 ** db->mallocFailed flag will be set to true.
3616 */
3617 SrcList *sqlite3SrcListEnlarge(
3618   sqlite3 *db,       /* Database connection to notify of OOM errors */
3619   SrcList *pSrc,     /* The SrcList to be enlarged */
3620   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3621   int iStart         /* Index in pSrc->a[] of first new slot */
3622 ){
3623   int i;
3624 
3625   /* Sanity checking on calling parameters */
3626   assert( iStart>=0 );
3627   assert( nExtra>=1 );
3628   assert( pSrc!=0 );
3629   assert( iStart<=pSrc->nSrc );
3630 
3631   /* Allocate additional space if needed */
3632   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3633     SrcList *pNew;
3634     int nAlloc = pSrc->nSrc+nExtra;
3635     int nGot;
3636     pNew = sqlite3DbRealloc(db, pSrc,
3637                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3638     if( pNew==0 ){
3639       assert( db->mallocFailed );
3640       return pSrc;
3641     }
3642     pSrc = pNew;
3643     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3644     pSrc->nAlloc = nGot;
3645   }
3646 
3647   /* Move existing slots that come after the newly inserted slots
3648   ** out of the way */
3649   for(i=pSrc->nSrc-1; i>=iStart; i--){
3650     pSrc->a[i+nExtra] = pSrc->a[i];
3651   }
3652   pSrc->nSrc += nExtra;
3653 
3654   /* Zero the newly allocated slots */
3655   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3656   for(i=iStart; i<iStart+nExtra; i++){
3657     pSrc->a[i].iCursor = -1;
3658   }
3659 
3660   /* Return a pointer to the enlarged SrcList */
3661   return pSrc;
3662 }
3663 
3664 
3665 /*
3666 ** Append a new table name to the given SrcList.  Create a new SrcList if
3667 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3668 **
3669 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3670 ** SrcList might be the same as the SrcList that was input or it might be
3671 ** a new one.  If an OOM error does occurs, then the prior value of pList
3672 ** that is input to this routine is automatically freed.
3673 **
3674 ** If pDatabase is not null, it means that the table has an optional
3675 ** database name prefix.  Like this:  "database.table".  The pDatabase
3676 ** points to the table name and the pTable points to the database name.
3677 ** The SrcList.a[].zName field is filled with the table name which might
3678 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3679 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3680 ** or with NULL if no database is specified.
3681 **
3682 ** In other words, if call like this:
3683 **
3684 **         sqlite3SrcListAppend(D,A,B,0);
3685 **
3686 ** Then B is a table name and the database name is unspecified.  If called
3687 ** like this:
3688 **
3689 **         sqlite3SrcListAppend(D,A,B,C);
3690 **
3691 ** Then C is the table name and B is the database name.  If C is defined
3692 ** then so is B.  In other words, we never have a case where:
3693 **
3694 **         sqlite3SrcListAppend(D,A,0,C);
3695 **
3696 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3697 ** before being added to the SrcList.
3698 */
3699 SrcList *sqlite3SrcListAppend(
3700   sqlite3 *db,        /* Connection to notify of malloc failures */
3701   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3702   Token *pTable,      /* Table to append */
3703   Token *pDatabase    /* Database of the table */
3704 ){
3705   struct SrcList_item *pItem;
3706   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3707   assert( db!=0 );
3708   if( pList==0 ){
3709     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3710     if( pList==0 ) return 0;
3711     pList->nAlloc = 1;
3712     pList->nSrc = 0;
3713   }
3714   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3715   if( db->mallocFailed ){
3716     sqlite3SrcListDelete(db, pList);
3717     return 0;
3718   }
3719   pItem = &pList->a[pList->nSrc-1];
3720   if( pDatabase && pDatabase->z==0 ){
3721     pDatabase = 0;
3722   }
3723   if( pDatabase ){
3724     Token *pTemp = pDatabase;
3725     pDatabase = pTable;
3726     pTable = pTemp;
3727   }
3728   pItem->zName = sqlite3NameFromToken(db, pTable);
3729   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3730   return pList;
3731 }
3732 
3733 /*
3734 ** Assign VdbeCursor index numbers to all tables in a SrcList
3735 */
3736 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3737   int i;
3738   struct SrcList_item *pItem;
3739   assert(pList || pParse->db->mallocFailed );
3740   if( pList ){
3741     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3742       if( pItem->iCursor>=0 ) break;
3743       pItem->iCursor = pParse->nTab++;
3744       if( pItem->pSelect ){
3745         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3746       }
3747     }
3748   }
3749 }
3750 
3751 /*
3752 ** Delete an entire SrcList including all its substructure.
3753 */
3754 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3755   int i;
3756   struct SrcList_item *pItem;
3757   if( pList==0 ) return;
3758   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3759     sqlite3DbFree(db, pItem->zDatabase);
3760     sqlite3DbFree(db, pItem->zName);
3761     sqlite3DbFree(db, pItem->zAlias);
3762     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3763     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3764     sqlite3DeleteTable(db, pItem->pTab);
3765     sqlite3SelectDelete(db, pItem->pSelect);
3766     sqlite3ExprDelete(db, pItem->pOn);
3767     sqlite3IdListDelete(db, pItem->pUsing);
3768   }
3769   sqlite3DbFree(db, pList);
3770 }
3771 
3772 /*
3773 ** This routine is called by the parser to add a new term to the
3774 ** end of a growing FROM clause.  The "p" parameter is the part of
3775 ** the FROM clause that has already been constructed.  "p" is NULL
3776 ** if this is the first term of the FROM clause.  pTable and pDatabase
3777 ** are the name of the table and database named in the FROM clause term.
3778 ** pDatabase is NULL if the database name qualifier is missing - the
3779 ** usual case.  If the term has an alias, then pAlias points to the
3780 ** alias token.  If the term is a subquery, then pSubquery is the
3781 ** SELECT statement that the subquery encodes.  The pTable and
3782 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3783 ** parameters are the content of the ON and USING clauses.
3784 **
3785 ** Return a new SrcList which encodes is the FROM with the new
3786 ** term added.
3787 */
3788 SrcList *sqlite3SrcListAppendFromTerm(
3789   Parse *pParse,          /* Parsing context */
3790   SrcList *p,             /* The left part of the FROM clause already seen */
3791   Token *pTable,          /* Name of the table to add to the FROM clause */
3792   Token *pDatabase,       /* Name of the database containing pTable */
3793   Token *pAlias,          /* The right-hand side of the AS subexpression */
3794   Select *pSubquery,      /* A subquery used in place of a table name */
3795   Expr *pOn,              /* The ON clause of a join */
3796   IdList *pUsing          /* The USING clause of a join */
3797 ){
3798   struct SrcList_item *pItem;
3799   sqlite3 *db = pParse->db;
3800   if( !p && (pOn || pUsing) ){
3801     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3802       (pOn ? "ON" : "USING")
3803     );
3804     goto append_from_error;
3805   }
3806   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3807   if( p==0 || NEVER(p->nSrc==0) ){
3808     goto append_from_error;
3809   }
3810   pItem = &p->a[p->nSrc-1];
3811   assert( pAlias!=0 );
3812   if( pAlias->n ){
3813     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3814   }
3815   pItem->pSelect = pSubquery;
3816   pItem->pOn = pOn;
3817   pItem->pUsing = pUsing;
3818   return p;
3819 
3820  append_from_error:
3821   assert( p==0 );
3822   sqlite3ExprDelete(db, pOn);
3823   sqlite3IdListDelete(db, pUsing);
3824   sqlite3SelectDelete(db, pSubquery);
3825   return 0;
3826 }
3827 
3828 /*
3829 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3830 ** element of the source-list passed as the second argument.
3831 */
3832 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3833   assert( pIndexedBy!=0 );
3834   if( p && ALWAYS(p->nSrc>0) ){
3835     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3836     assert( pItem->fg.notIndexed==0 );
3837     assert( pItem->fg.isIndexedBy==0 );
3838     assert( pItem->fg.isTabFunc==0 );
3839     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3840       /* A "NOT INDEXED" clause was supplied. See parse.y
3841       ** construct "indexed_opt" for details. */
3842       pItem->fg.notIndexed = 1;
3843     }else{
3844       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3845       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3846     }
3847   }
3848 }
3849 
3850 /*
3851 ** Add the list of function arguments to the SrcList entry for a
3852 ** table-valued-function.
3853 */
3854 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3855   if( p ){
3856     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3857     assert( pItem->fg.notIndexed==0 );
3858     assert( pItem->fg.isIndexedBy==0 );
3859     assert( pItem->fg.isTabFunc==0 );
3860     pItem->u1.pFuncArg = pList;
3861     pItem->fg.isTabFunc = 1;
3862   }else{
3863     sqlite3ExprListDelete(pParse->db, pList);
3864   }
3865 }
3866 
3867 /*
3868 ** When building up a FROM clause in the parser, the join operator
3869 ** is initially attached to the left operand.  But the code generator
3870 ** expects the join operator to be on the right operand.  This routine
3871 ** Shifts all join operators from left to right for an entire FROM
3872 ** clause.
3873 **
3874 ** Example: Suppose the join is like this:
3875 **
3876 **           A natural cross join B
3877 **
3878 ** The operator is "natural cross join".  The A and B operands are stored
3879 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3880 ** operator with A.  This routine shifts that operator over to B.
3881 */
3882 void sqlite3SrcListShiftJoinType(SrcList *p){
3883   if( p ){
3884     int i;
3885     for(i=p->nSrc-1; i>0; i--){
3886       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3887     }
3888     p->a[0].fg.jointype = 0;
3889   }
3890 }
3891 
3892 /*
3893 ** Generate VDBE code for a BEGIN statement.
3894 */
3895 void sqlite3BeginTransaction(Parse *pParse, int type){
3896   sqlite3 *db;
3897   Vdbe *v;
3898   int i;
3899 
3900   assert( pParse!=0 );
3901   db = pParse->db;
3902   assert( db!=0 );
3903   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3904     return;
3905   }
3906   v = sqlite3GetVdbe(pParse);
3907   if( !v ) return;
3908   if( type!=TK_DEFERRED ){
3909     for(i=0; i<db->nDb; i++){
3910       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3911       sqlite3VdbeUsesBtree(v, i);
3912     }
3913   }
3914   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3915 }
3916 
3917 /*
3918 ** Generate VDBE code for a COMMIT statement.
3919 */
3920 void sqlite3CommitTransaction(Parse *pParse){
3921   Vdbe *v;
3922 
3923   assert( pParse!=0 );
3924   assert( pParse->db!=0 );
3925   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3926     return;
3927   }
3928   v = sqlite3GetVdbe(pParse);
3929   if( v ){
3930     sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3931   }
3932 }
3933 
3934 /*
3935 ** Generate VDBE code for a ROLLBACK statement.
3936 */
3937 void sqlite3RollbackTransaction(Parse *pParse){
3938   Vdbe *v;
3939 
3940   assert( pParse!=0 );
3941   assert( pParse->db!=0 );
3942   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3943     return;
3944   }
3945   v = sqlite3GetVdbe(pParse);
3946   if( v ){
3947     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3948   }
3949 }
3950 
3951 /*
3952 ** This function is called by the parser when it parses a command to create,
3953 ** release or rollback an SQL savepoint.
3954 */
3955 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3956   char *zName = sqlite3NameFromToken(pParse->db, pName);
3957   if( zName ){
3958     Vdbe *v = sqlite3GetVdbe(pParse);
3959 #ifndef SQLITE_OMIT_AUTHORIZATION
3960     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3961     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3962 #endif
3963     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3964       sqlite3DbFree(pParse->db, zName);
3965       return;
3966     }
3967     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3968   }
3969 }
3970 
3971 /*
3972 ** Make sure the TEMP database is open and available for use.  Return
3973 ** the number of errors.  Leave any error messages in the pParse structure.
3974 */
3975 int sqlite3OpenTempDatabase(Parse *pParse){
3976   sqlite3 *db = pParse->db;
3977   if( db->aDb[1].pBt==0 && !pParse->explain ){
3978     int rc;
3979     Btree *pBt;
3980     static const int flags =
3981           SQLITE_OPEN_READWRITE |
3982           SQLITE_OPEN_CREATE |
3983           SQLITE_OPEN_EXCLUSIVE |
3984           SQLITE_OPEN_DELETEONCLOSE |
3985           SQLITE_OPEN_TEMP_DB;
3986 
3987     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3988     if( rc!=SQLITE_OK ){
3989       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3990         "file for storing temporary tables");
3991       pParse->rc = rc;
3992       return 1;
3993     }
3994     db->aDb[1].pBt = pBt;
3995     assert( db->aDb[1].pSchema );
3996     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3997       sqlite3OomFault(db);
3998       return 1;
3999     }
4000   }
4001   return 0;
4002 }
4003 
4004 /*
4005 ** Record the fact that the schema cookie will need to be verified
4006 ** for database iDb.  The code to actually verify the schema cookie
4007 ** will occur at the end of the top-level VDBE and will be generated
4008 ** later, by sqlite3FinishCoding().
4009 */
4010 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4011   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4012   sqlite3 *db = pToplevel->db;
4013 
4014   assert( iDb>=0 && iDb<db->nDb );
4015   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4016   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4017   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4018   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4019     DbMaskSet(pToplevel->cookieMask, iDb);
4020     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4021     if( !OMIT_TEMPDB && iDb==1 ){
4022       sqlite3OpenTempDatabase(pToplevel);
4023     }
4024   }
4025 }
4026 
4027 /*
4028 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4029 ** attached database. Otherwise, invoke it for the database named zDb only.
4030 */
4031 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4032   sqlite3 *db = pParse->db;
4033   int i;
4034   for(i=0; i<db->nDb; i++){
4035     Db *pDb = &db->aDb[i];
4036     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4037       sqlite3CodeVerifySchema(pParse, i);
4038     }
4039   }
4040 }
4041 
4042 /*
4043 ** Generate VDBE code that prepares for doing an operation that
4044 ** might change the database.
4045 **
4046 ** This routine starts a new transaction if we are not already within
4047 ** a transaction.  If we are already within a transaction, then a checkpoint
4048 ** is set if the setStatement parameter is true.  A checkpoint should
4049 ** be set for operations that might fail (due to a constraint) part of
4050 ** the way through and which will need to undo some writes without having to
4051 ** rollback the whole transaction.  For operations where all constraints
4052 ** can be checked before any changes are made to the database, it is never
4053 ** necessary to undo a write and the checkpoint should not be set.
4054 */
4055 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4056   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4057   sqlite3CodeVerifySchema(pParse, iDb);
4058   DbMaskSet(pToplevel->writeMask, iDb);
4059   pToplevel->isMultiWrite |= setStatement;
4060 }
4061 
4062 /*
4063 ** Indicate that the statement currently under construction might write
4064 ** more than one entry (example: deleting one row then inserting another,
4065 ** inserting multiple rows in a table, or inserting a row and index entries.)
4066 ** If an abort occurs after some of these writes have completed, then it will
4067 ** be necessary to undo the completed writes.
4068 */
4069 void sqlite3MultiWrite(Parse *pParse){
4070   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4071   pToplevel->isMultiWrite = 1;
4072 }
4073 
4074 /*
4075 ** The code generator calls this routine if is discovers that it is
4076 ** possible to abort a statement prior to completion.  In order to
4077 ** perform this abort without corrupting the database, we need to make
4078 ** sure that the statement is protected by a statement transaction.
4079 **
4080 ** Technically, we only need to set the mayAbort flag if the
4081 ** isMultiWrite flag was previously set.  There is a time dependency
4082 ** such that the abort must occur after the multiwrite.  This makes
4083 ** some statements involving the REPLACE conflict resolution algorithm
4084 ** go a little faster.  But taking advantage of this time dependency
4085 ** makes it more difficult to prove that the code is correct (in
4086 ** particular, it prevents us from writing an effective
4087 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4088 ** to take the safe route and skip the optimization.
4089 */
4090 void sqlite3MayAbort(Parse *pParse){
4091   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4092   pToplevel->mayAbort = 1;
4093 }
4094 
4095 /*
4096 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4097 ** error. The onError parameter determines which (if any) of the statement
4098 ** and/or current transaction is rolled back.
4099 */
4100 void sqlite3HaltConstraint(
4101   Parse *pParse,    /* Parsing context */
4102   int errCode,      /* extended error code */
4103   int onError,      /* Constraint type */
4104   char *p4,         /* Error message */
4105   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4106   u8 p5Errmsg       /* P5_ErrMsg type */
4107 ){
4108   Vdbe *v = sqlite3GetVdbe(pParse);
4109   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4110   if( onError==OE_Abort ){
4111     sqlite3MayAbort(pParse);
4112   }
4113   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4114   sqlite3VdbeChangeP5(v, p5Errmsg);
4115 }
4116 
4117 /*
4118 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4119 */
4120 void sqlite3UniqueConstraint(
4121   Parse *pParse,    /* Parsing context */
4122   int onError,      /* Constraint type */
4123   Index *pIdx       /* The index that triggers the constraint */
4124 ){
4125   char *zErr;
4126   int j;
4127   StrAccum errMsg;
4128   Table *pTab = pIdx->pTable;
4129 
4130   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4131   if( pIdx->aColExpr ){
4132     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4133   }else{
4134     for(j=0; j<pIdx->nKeyCol; j++){
4135       char *zCol;
4136       assert( pIdx->aiColumn[j]>=0 );
4137       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4138       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4139       sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4140     }
4141   }
4142   zErr = sqlite3StrAccumFinish(&errMsg);
4143   sqlite3HaltConstraint(pParse,
4144     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4145                             : SQLITE_CONSTRAINT_UNIQUE,
4146     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4147 }
4148 
4149 
4150 /*
4151 ** Code an OP_Halt due to non-unique rowid.
4152 */
4153 void sqlite3RowidConstraint(
4154   Parse *pParse,    /* Parsing context */
4155   int onError,      /* Conflict resolution algorithm */
4156   Table *pTab       /* The table with the non-unique rowid */
4157 ){
4158   char *zMsg;
4159   int rc;
4160   if( pTab->iPKey>=0 ){
4161     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4162                           pTab->aCol[pTab->iPKey].zName);
4163     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4164   }else{
4165     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4166     rc = SQLITE_CONSTRAINT_ROWID;
4167   }
4168   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4169                         P5_ConstraintUnique);
4170 }
4171 
4172 /*
4173 ** Check to see if pIndex uses the collating sequence pColl.  Return
4174 ** true if it does and false if it does not.
4175 */
4176 #ifndef SQLITE_OMIT_REINDEX
4177 static int collationMatch(const char *zColl, Index *pIndex){
4178   int i;
4179   assert( zColl!=0 );
4180   for(i=0; i<pIndex->nColumn; i++){
4181     const char *z = pIndex->azColl[i];
4182     assert( z!=0 || pIndex->aiColumn[i]<0 );
4183     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4184       return 1;
4185     }
4186   }
4187   return 0;
4188 }
4189 #endif
4190 
4191 /*
4192 ** Recompute all indices of pTab that use the collating sequence pColl.
4193 ** If pColl==0 then recompute all indices of pTab.
4194 */
4195 #ifndef SQLITE_OMIT_REINDEX
4196 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4197   Index *pIndex;              /* An index associated with pTab */
4198 
4199   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4200     if( zColl==0 || collationMatch(zColl, pIndex) ){
4201       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4202       sqlite3BeginWriteOperation(pParse, 0, iDb);
4203       sqlite3RefillIndex(pParse, pIndex, -1);
4204     }
4205   }
4206 }
4207 #endif
4208 
4209 /*
4210 ** Recompute all indices of all tables in all databases where the
4211 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4212 ** all indices everywhere.
4213 */
4214 #ifndef SQLITE_OMIT_REINDEX
4215 static void reindexDatabases(Parse *pParse, char const *zColl){
4216   Db *pDb;                    /* A single database */
4217   int iDb;                    /* The database index number */
4218   sqlite3 *db = pParse->db;   /* The database connection */
4219   HashElem *k;                /* For looping over tables in pDb */
4220   Table *pTab;                /* A table in the database */
4221 
4222   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4223   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4224     assert( pDb!=0 );
4225     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4226       pTab = (Table*)sqliteHashData(k);
4227       reindexTable(pParse, pTab, zColl);
4228     }
4229   }
4230 }
4231 #endif
4232 
4233 /*
4234 ** Generate code for the REINDEX command.
4235 **
4236 **        REINDEX                            -- 1
4237 **        REINDEX  <collation>               -- 2
4238 **        REINDEX  ?<database>.?<tablename>  -- 3
4239 **        REINDEX  ?<database>.?<indexname>  -- 4
4240 **
4241 ** Form 1 causes all indices in all attached databases to be rebuilt.
4242 ** Form 2 rebuilds all indices in all databases that use the named
4243 ** collating function.  Forms 3 and 4 rebuild the named index or all
4244 ** indices associated with the named table.
4245 */
4246 #ifndef SQLITE_OMIT_REINDEX
4247 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4248   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4249   char *z;                    /* Name of a table or index */
4250   const char *zDb;            /* Name of the database */
4251   Table *pTab;                /* A table in the database */
4252   Index *pIndex;              /* An index associated with pTab */
4253   int iDb;                    /* The database index number */
4254   sqlite3 *db = pParse->db;   /* The database connection */
4255   Token *pObjName;            /* Name of the table or index to be reindexed */
4256 
4257   /* Read the database schema. If an error occurs, leave an error message
4258   ** and code in pParse and return NULL. */
4259   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4260     return;
4261   }
4262 
4263   if( pName1==0 ){
4264     reindexDatabases(pParse, 0);
4265     return;
4266   }else if( NEVER(pName2==0) || pName2->z==0 ){
4267     char *zColl;
4268     assert( pName1->z );
4269     zColl = sqlite3NameFromToken(pParse->db, pName1);
4270     if( !zColl ) return;
4271     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4272     if( pColl ){
4273       reindexDatabases(pParse, zColl);
4274       sqlite3DbFree(db, zColl);
4275       return;
4276     }
4277     sqlite3DbFree(db, zColl);
4278   }
4279   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4280   if( iDb<0 ) return;
4281   z = sqlite3NameFromToken(db, pObjName);
4282   if( z==0 ) return;
4283   zDb = db->aDb[iDb].zName;
4284   pTab = sqlite3FindTable(db, z, zDb);
4285   if( pTab ){
4286     reindexTable(pParse, pTab, 0);
4287     sqlite3DbFree(db, z);
4288     return;
4289   }
4290   pIndex = sqlite3FindIndex(db, z, zDb);
4291   sqlite3DbFree(db, z);
4292   if( pIndex ){
4293     sqlite3BeginWriteOperation(pParse, 0, iDb);
4294     sqlite3RefillIndex(pParse, pIndex, -1);
4295     return;
4296   }
4297   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4298 }
4299 #endif
4300 
4301 /*
4302 ** Return a KeyInfo structure that is appropriate for the given Index.
4303 **
4304 ** The KeyInfo structure for an index is cached in the Index object.
4305 ** So there might be multiple references to the returned pointer.  The
4306 ** caller should not try to modify the KeyInfo object.
4307 **
4308 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4309 ** when it has finished using it.
4310 */
4311 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4312   int i;
4313   int nCol = pIdx->nColumn;
4314   int nKey = pIdx->nKeyCol;
4315   KeyInfo *pKey;
4316   if( pParse->nErr ) return 0;
4317   if( pIdx->uniqNotNull ){
4318     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4319   }else{
4320     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4321   }
4322   if( pKey ){
4323     assert( sqlite3KeyInfoIsWriteable(pKey) );
4324     for(i=0; i<nCol; i++){
4325       const char *zColl = pIdx->azColl[i];
4326       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4327                         sqlite3LocateCollSeq(pParse, zColl);
4328       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4329     }
4330     if( pParse->nErr ){
4331       sqlite3KeyInfoUnref(pKey);
4332       pKey = 0;
4333     }
4334   }
4335   return pKey;
4336 }
4337 
4338 #ifndef SQLITE_OMIT_CTE
4339 /*
4340 ** This routine is invoked once per CTE by the parser while parsing a
4341 ** WITH clause.
4342 */
4343 With *sqlite3WithAdd(
4344   Parse *pParse,          /* Parsing context */
4345   With *pWith,            /* Existing WITH clause, or NULL */
4346   Token *pName,           /* Name of the common-table */
4347   ExprList *pArglist,     /* Optional column name list for the table */
4348   Select *pQuery          /* Query used to initialize the table */
4349 ){
4350   sqlite3 *db = pParse->db;
4351   With *pNew;
4352   char *zName;
4353 
4354   /* Check that the CTE name is unique within this WITH clause. If
4355   ** not, store an error in the Parse structure. */
4356   zName = sqlite3NameFromToken(pParse->db, pName);
4357   if( zName && pWith ){
4358     int i;
4359     for(i=0; i<pWith->nCte; i++){
4360       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4361         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4362       }
4363     }
4364   }
4365 
4366   if( pWith ){
4367     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4368     pNew = sqlite3DbRealloc(db, pWith, nByte);
4369   }else{
4370     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4371   }
4372   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4373 
4374   if( db->mallocFailed ){
4375     sqlite3ExprListDelete(db, pArglist);
4376     sqlite3SelectDelete(db, pQuery);
4377     sqlite3DbFree(db, zName);
4378     pNew = pWith;
4379   }else{
4380     pNew->a[pNew->nCte].pSelect = pQuery;
4381     pNew->a[pNew->nCte].pCols = pArglist;
4382     pNew->a[pNew->nCte].zName = zName;
4383     pNew->a[pNew->nCte].zCteErr = 0;
4384     pNew->nCte++;
4385   }
4386 
4387   return pNew;
4388 }
4389 
4390 /*
4391 ** Free the contents of the With object passed as the second argument.
4392 */
4393 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4394   if( pWith ){
4395     int i;
4396     for(i=0; i<pWith->nCte; i++){
4397       struct Cte *pCte = &pWith->a[i];
4398       sqlite3ExprListDelete(db, pCte->pCols);
4399       sqlite3SelectDelete(db, pCte->pSelect);
4400       sqlite3DbFree(db, pCte->zName);
4401     }
4402     sqlite3DbFree(db, pWith);
4403   }
4404 }
4405 #endif /* !defined(SQLITE_OMIT_CTE) */
4406