1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( db->mallocFailed ) return; 146 if( pParse->nested ) return; 147 if( pParse->nErr ) return; 148 149 /* Begin by generating some termination code at the end of the 150 ** vdbe program 151 */ 152 v = sqlite3GetVdbe(pParse); 153 assert( !pParse->isMultiWrite 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 155 if( v ){ 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 157 sqlite3VdbeAddOp0(v, OP_Halt); 158 159 /* The cookie mask contains one bit for each database file open. 160 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 161 ** set for each database that is used. Generate code to start a 162 ** transaction on each used database and to verify the schema cookie 163 ** on each used database. 164 */ 165 if( db->mallocFailed==0 166 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 167 ){ 168 int iDb, i; 169 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 170 sqlite3VdbeJumpHere(v, 0); 171 for(iDb=0; iDb<db->nDb; iDb++){ 172 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 173 sqlite3VdbeUsesBtree(v, iDb); 174 sqlite3VdbeAddOp4Int(v, 175 OP_Transaction, /* Opcode */ 176 iDb, /* P1 */ 177 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 178 pParse->cookieValue[iDb], /* P3 */ 179 db->aDb[iDb].pSchema->iGeneration /* P4 */ 180 ); 181 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 182 } 183 #ifndef SQLITE_OMIT_VIRTUALTABLE 184 for(i=0; i<pParse->nVtabLock; i++){ 185 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 186 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 187 } 188 pParse->nVtabLock = 0; 189 #endif 190 191 /* Once all the cookies have been verified and transactions opened, 192 ** obtain the required table-locks. This is a no-op unless the 193 ** shared-cache feature is enabled. 194 */ 195 codeTableLocks(pParse); 196 197 /* Initialize any AUTOINCREMENT data structures required. 198 */ 199 sqlite3AutoincrementBegin(pParse); 200 201 /* Code constant expressions that where factored out of inner loops */ 202 if( pParse->pConstExpr ){ 203 ExprList *pEL = pParse->pConstExpr; 204 pParse->okConstFactor = 0; 205 for(i=0; i<pEL->nExpr; i++){ 206 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 207 } 208 } 209 210 /* Finally, jump back to the beginning of the executable code. */ 211 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 212 } 213 } 214 215 216 /* Get the VDBE program ready for execution 217 */ 218 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 219 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 220 /* A minimum of one cursor is required if autoincrement is used 221 * See ticket [a696379c1f08866] */ 222 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 223 sqlite3VdbeMakeReady(v, pParse); 224 pParse->rc = SQLITE_DONE; 225 pParse->colNamesSet = 0; 226 }else{ 227 pParse->rc = SQLITE_ERROR; 228 } 229 pParse->nTab = 0; 230 pParse->nMem = 0; 231 pParse->nSet = 0; 232 pParse->nVar = 0; 233 DbMaskZero(pParse->cookieMask); 234 } 235 236 /* 237 ** Run the parser and code generator recursively in order to generate 238 ** code for the SQL statement given onto the end of the pParse context 239 ** currently under construction. When the parser is run recursively 240 ** this way, the final OP_Halt is not appended and other initialization 241 ** and finalization steps are omitted because those are handling by the 242 ** outermost parser. 243 ** 244 ** Not everything is nestable. This facility is designed to permit 245 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 246 ** care if you decide to try to use this routine for some other purposes. 247 */ 248 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 249 va_list ap; 250 char *zSql; 251 char *zErrMsg = 0; 252 sqlite3 *db = pParse->db; 253 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 254 char saveBuf[SAVE_SZ]; 255 256 if( pParse->nErr ) return; 257 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 258 va_start(ap, zFormat); 259 zSql = sqlite3VMPrintf(db, zFormat, ap); 260 va_end(ap); 261 if( zSql==0 ){ 262 return; /* A malloc must have failed */ 263 } 264 pParse->nested++; 265 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 266 memset(&pParse->nVar, 0, SAVE_SZ); 267 sqlite3RunParser(pParse, zSql, &zErrMsg); 268 sqlite3DbFree(db, zErrMsg); 269 sqlite3DbFree(db, zSql); 270 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 271 pParse->nested--; 272 } 273 274 #if SQLITE_USER_AUTHENTICATION 275 /* 276 ** Return TRUE if zTable is the name of the system table that stores the 277 ** list of users and their access credentials. 278 */ 279 int sqlite3UserAuthTable(const char *zTable){ 280 return sqlite3_stricmp(zTable, "sqlite_user")==0; 281 } 282 #endif 283 284 /* 285 ** Locate the in-memory structure that describes a particular database 286 ** table given the name of that table and (optionally) the name of the 287 ** database containing the table. Return NULL if not found. 288 ** 289 ** If zDatabase is 0, all databases are searched for the table and the 290 ** first matching table is returned. (No checking for duplicate table 291 ** names is done.) The search order is TEMP first, then MAIN, then any 292 ** auxiliary databases added using the ATTACH command. 293 ** 294 ** See also sqlite3LocateTable(). 295 */ 296 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 297 Table *p = 0; 298 int i; 299 assert( zName!=0 ); 300 /* All mutexes are required for schema access. Make sure we hold them. */ 301 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 302 #if SQLITE_USER_AUTHENTICATION 303 /* Only the admin user is allowed to know that the sqlite_user table 304 ** exists */ 305 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 306 return 0; 307 } 308 #endif 309 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 310 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 311 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 312 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 313 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 314 if( p ) break; 315 } 316 return p; 317 } 318 319 /* 320 ** Locate the in-memory structure that describes a particular database 321 ** table given the name of that table and (optionally) the name of the 322 ** database containing the table. Return NULL if not found. Also leave an 323 ** error message in pParse->zErrMsg. 324 ** 325 ** The difference between this routine and sqlite3FindTable() is that this 326 ** routine leaves an error message in pParse->zErrMsg where 327 ** sqlite3FindTable() does not. 328 */ 329 Table *sqlite3LocateTable( 330 Parse *pParse, /* context in which to report errors */ 331 int isView, /* True if looking for a VIEW rather than a TABLE */ 332 const char *zName, /* Name of the table we are looking for */ 333 const char *zDbase /* Name of the database. Might be NULL */ 334 ){ 335 Table *p; 336 337 /* Read the database schema. If an error occurs, leave an error message 338 ** and code in pParse and return NULL. */ 339 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 340 return 0; 341 } 342 343 p = sqlite3FindTable(pParse->db, zName, zDbase); 344 if( p==0 ){ 345 const char *zMsg = isView ? "no such view" : "no such table"; 346 if( zDbase ){ 347 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 348 }else{ 349 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 350 } 351 pParse->checkSchema = 1; 352 } 353 #if SQLITE_USER_AUTHENICATION 354 else if( pParse->db->auth.authLevel<UAUTH_User ){ 355 sqlite3ErrorMsg(pParse, "user not authenticated"); 356 p = 0; 357 } 358 #endif 359 return p; 360 } 361 362 /* 363 ** Locate the table identified by *p. 364 ** 365 ** This is a wrapper around sqlite3LocateTable(). The difference between 366 ** sqlite3LocateTable() and this function is that this function restricts 367 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 368 ** non-NULL if it is part of a view or trigger program definition. See 369 ** sqlite3FixSrcList() for details. 370 */ 371 Table *sqlite3LocateTableItem( 372 Parse *pParse, 373 int isView, 374 struct SrcList_item *p 375 ){ 376 const char *zDb; 377 assert( p->pSchema==0 || p->zDatabase==0 ); 378 if( p->pSchema ){ 379 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 380 zDb = pParse->db->aDb[iDb].zName; 381 }else{ 382 zDb = p->zDatabase; 383 } 384 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 385 } 386 387 /* 388 ** Locate the in-memory structure that describes 389 ** a particular index given the name of that index 390 ** and the name of the database that contains the index. 391 ** Return NULL if not found. 392 ** 393 ** If zDatabase is 0, all databases are searched for the 394 ** table and the first matching index is returned. (No checking 395 ** for duplicate index names is done.) The search order is 396 ** TEMP first, then MAIN, then any auxiliary databases added 397 ** using the ATTACH command. 398 */ 399 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 400 Index *p = 0; 401 int i; 402 /* All mutexes are required for schema access. Make sure we hold them. */ 403 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 404 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 405 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 406 Schema *pSchema = db->aDb[j].pSchema; 407 assert( pSchema ); 408 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 409 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 410 p = sqlite3HashFind(&pSchema->idxHash, zName); 411 if( p ) break; 412 } 413 return p; 414 } 415 416 /* 417 ** Reclaim the memory used by an index 418 */ 419 static void freeIndex(sqlite3 *db, Index *p){ 420 #ifndef SQLITE_OMIT_ANALYZE 421 sqlite3DeleteIndexSamples(db, p); 422 #endif 423 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); 424 sqlite3ExprDelete(db, p->pPartIdxWhere); 425 sqlite3DbFree(db, p->zColAff); 426 if( p->isResized ) sqlite3DbFree(db, p->azColl); 427 sqlite3DbFree(db, p); 428 } 429 430 /* 431 ** For the index called zIdxName which is found in the database iDb, 432 ** unlike that index from its Table then remove the index from 433 ** the index hash table and free all memory structures associated 434 ** with the index. 435 */ 436 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 437 Index *pIndex; 438 Hash *pHash; 439 440 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 441 pHash = &db->aDb[iDb].pSchema->idxHash; 442 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 443 if( ALWAYS(pIndex) ){ 444 if( pIndex->pTable->pIndex==pIndex ){ 445 pIndex->pTable->pIndex = pIndex->pNext; 446 }else{ 447 Index *p; 448 /* Justification of ALWAYS(); The index must be on the list of 449 ** indices. */ 450 p = pIndex->pTable->pIndex; 451 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 452 if( ALWAYS(p && p->pNext==pIndex) ){ 453 p->pNext = pIndex->pNext; 454 } 455 } 456 freeIndex(db, pIndex); 457 } 458 db->flags |= SQLITE_InternChanges; 459 } 460 461 /* 462 ** Look through the list of open database files in db->aDb[] and if 463 ** any have been closed, remove them from the list. Reallocate the 464 ** db->aDb[] structure to a smaller size, if possible. 465 ** 466 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 467 ** are never candidates for being collapsed. 468 */ 469 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 470 int i, j; 471 for(i=j=2; i<db->nDb; i++){ 472 struct Db *pDb = &db->aDb[i]; 473 if( pDb->pBt==0 ){ 474 sqlite3DbFree(db, pDb->zName); 475 pDb->zName = 0; 476 continue; 477 } 478 if( j<i ){ 479 db->aDb[j] = db->aDb[i]; 480 } 481 j++; 482 } 483 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 484 db->nDb = j; 485 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 486 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 487 sqlite3DbFree(db, db->aDb); 488 db->aDb = db->aDbStatic; 489 } 490 } 491 492 /* 493 ** Reset the schema for the database at index iDb. Also reset the 494 ** TEMP schema. 495 */ 496 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 497 Db *pDb; 498 assert( iDb<db->nDb ); 499 500 /* Case 1: Reset the single schema identified by iDb */ 501 pDb = &db->aDb[iDb]; 502 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 503 assert( pDb->pSchema!=0 ); 504 sqlite3SchemaClear(pDb->pSchema); 505 506 /* If any database other than TEMP is reset, then also reset TEMP 507 ** since TEMP might be holding triggers that reference tables in the 508 ** other database. 509 */ 510 if( iDb!=1 ){ 511 pDb = &db->aDb[1]; 512 assert( pDb->pSchema!=0 ); 513 sqlite3SchemaClear(pDb->pSchema); 514 } 515 return; 516 } 517 518 /* 519 ** Erase all schema information from all attached databases (including 520 ** "main" and "temp") for a single database connection. 521 */ 522 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 523 int i; 524 sqlite3BtreeEnterAll(db); 525 for(i=0; i<db->nDb; i++){ 526 Db *pDb = &db->aDb[i]; 527 if( pDb->pSchema ){ 528 sqlite3SchemaClear(pDb->pSchema); 529 } 530 } 531 db->flags &= ~SQLITE_InternChanges; 532 sqlite3VtabUnlockList(db); 533 sqlite3BtreeLeaveAll(db); 534 sqlite3CollapseDatabaseArray(db); 535 } 536 537 /* 538 ** This routine is called when a commit occurs. 539 */ 540 void sqlite3CommitInternalChanges(sqlite3 *db){ 541 db->flags &= ~SQLITE_InternChanges; 542 } 543 544 /* 545 ** Delete memory allocated for the column names of a table or view (the 546 ** Table.aCol[] array). 547 */ 548 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 549 int i; 550 Column *pCol; 551 assert( pTable!=0 ); 552 if( (pCol = pTable->aCol)!=0 ){ 553 for(i=0; i<pTable->nCol; i++, pCol++){ 554 sqlite3DbFree(db, pCol->zName); 555 sqlite3ExprDelete(db, pCol->pDflt); 556 sqlite3DbFree(db, pCol->zDflt); 557 sqlite3DbFree(db, pCol->zType); 558 sqlite3DbFree(db, pCol->zColl); 559 } 560 sqlite3DbFree(db, pTable->aCol); 561 } 562 } 563 564 /* 565 ** Remove the memory data structures associated with the given 566 ** Table. No changes are made to disk by this routine. 567 ** 568 ** This routine just deletes the data structure. It does not unlink 569 ** the table data structure from the hash table. But it does destroy 570 ** memory structures of the indices and foreign keys associated with 571 ** the table. 572 ** 573 ** The db parameter is optional. It is needed if the Table object 574 ** contains lookaside memory. (Table objects in the schema do not use 575 ** lookaside memory, but some ephemeral Table objects do.) Or the 576 ** db parameter can be used with db->pnBytesFreed to measure the memory 577 ** used by the Table object. 578 */ 579 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 580 Index *pIndex, *pNext; 581 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 582 583 assert( !pTable || pTable->nRef>0 ); 584 585 /* Do not delete the table until the reference count reaches zero. */ 586 if( !pTable ) return; 587 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 588 589 /* Record the number of outstanding lookaside allocations in schema Tables 590 ** prior to doing any free() operations. Since schema Tables do not use 591 ** lookaside, this number should not change. */ 592 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 593 db->lookaside.nOut : 0 ); 594 595 /* Delete all indices associated with this table. */ 596 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 597 pNext = pIndex->pNext; 598 assert( pIndex->pSchema==pTable->pSchema ); 599 if( !db || db->pnBytesFreed==0 ){ 600 char *zName = pIndex->zName; 601 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 602 &pIndex->pSchema->idxHash, zName, 0 603 ); 604 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 605 assert( pOld==pIndex || pOld==0 ); 606 } 607 freeIndex(db, pIndex); 608 } 609 610 /* Delete any foreign keys attached to this table. */ 611 sqlite3FkDelete(db, pTable); 612 613 /* Delete the Table structure itself. 614 */ 615 sqliteDeleteColumnNames(db, pTable); 616 sqlite3DbFree(db, pTable->zName); 617 sqlite3DbFree(db, pTable->zColAff); 618 sqlite3SelectDelete(db, pTable->pSelect); 619 #ifndef SQLITE_OMIT_CHECK 620 sqlite3ExprListDelete(db, pTable->pCheck); 621 #endif 622 #ifndef SQLITE_OMIT_VIRTUALTABLE 623 sqlite3VtabClear(db, pTable); 624 #endif 625 sqlite3DbFree(db, pTable); 626 627 /* Verify that no lookaside memory was used by schema tables */ 628 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 629 } 630 631 /* 632 ** Unlink the given table from the hash tables and the delete the 633 ** table structure with all its indices and foreign keys. 634 */ 635 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 636 Table *p; 637 Db *pDb; 638 639 assert( db!=0 ); 640 assert( iDb>=0 && iDb<db->nDb ); 641 assert( zTabName ); 642 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 643 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 644 pDb = &db->aDb[iDb]; 645 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 646 sqlite3DeleteTable(db, p); 647 db->flags |= SQLITE_InternChanges; 648 } 649 650 /* 651 ** Given a token, return a string that consists of the text of that 652 ** token. Space to hold the returned string 653 ** is obtained from sqliteMalloc() and must be freed by the calling 654 ** function. 655 ** 656 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 657 ** surround the body of the token are removed. 658 ** 659 ** Tokens are often just pointers into the original SQL text and so 660 ** are not \000 terminated and are not persistent. The returned string 661 ** is \000 terminated and is persistent. 662 */ 663 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 664 char *zName; 665 if( pName ){ 666 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 667 sqlite3Dequote(zName); 668 }else{ 669 zName = 0; 670 } 671 return zName; 672 } 673 674 /* 675 ** Open the sqlite_master table stored in database number iDb for 676 ** writing. The table is opened using cursor 0. 677 */ 678 void sqlite3OpenMasterTable(Parse *p, int iDb){ 679 Vdbe *v = sqlite3GetVdbe(p); 680 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 681 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 682 if( p->nTab==0 ){ 683 p->nTab = 1; 684 } 685 } 686 687 /* 688 ** Parameter zName points to a nul-terminated buffer containing the name 689 ** of a database ("main", "temp" or the name of an attached db). This 690 ** function returns the index of the named database in db->aDb[], or 691 ** -1 if the named db cannot be found. 692 */ 693 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 694 int i = -1; /* Database number */ 695 if( zName ){ 696 Db *pDb; 697 int n = sqlite3Strlen30(zName); 698 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 699 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 700 0==sqlite3StrICmp(pDb->zName, zName) ){ 701 break; 702 } 703 } 704 } 705 return i; 706 } 707 708 /* 709 ** The token *pName contains the name of a database (either "main" or 710 ** "temp" or the name of an attached db). This routine returns the 711 ** index of the named database in db->aDb[], or -1 if the named db 712 ** does not exist. 713 */ 714 int sqlite3FindDb(sqlite3 *db, Token *pName){ 715 int i; /* Database number */ 716 char *zName; /* Name we are searching for */ 717 zName = sqlite3NameFromToken(db, pName); 718 i = sqlite3FindDbName(db, zName); 719 sqlite3DbFree(db, zName); 720 return i; 721 } 722 723 /* The table or view or trigger name is passed to this routine via tokens 724 ** pName1 and pName2. If the table name was fully qualified, for example: 725 ** 726 ** CREATE TABLE xxx.yyy (...); 727 ** 728 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 729 ** the table name is not fully qualified, i.e.: 730 ** 731 ** CREATE TABLE yyy(...); 732 ** 733 ** Then pName1 is set to "yyy" and pName2 is "". 734 ** 735 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 736 ** pName2) that stores the unqualified table name. The index of the 737 ** database "xxx" is returned. 738 */ 739 int sqlite3TwoPartName( 740 Parse *pParse, /* Parsing and code generating context */ 741 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 742 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 743 Token **pUnqual /* Write the unqualified object name here */ 744 ){ 745 int iDb; /* Database holding the object */ 746 sqlite3 *db = pParse->db; 747 748 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 749 if( db->init.busy ) { 750 sqlite3ErrorMsg(pParse, "corrupt database"); 751 pParse->nErr++; 752 return -1; 753 } 754 *pUnqual = pName2; 755 iDb = sqlite3FindDb(db, pName1); 756 if( iDb<0 ){ 757 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 758 pParse->nErr++; 759 return -1; 760 } 761 }else{ 762 assert( db->init.iDb==0 || db->init.busy ); 763 iDb = db->init.iDb; 764 *pUnqual = pName1; 765 } 766 return iDb; 767 } 768 769 /* 770 ** This routine is used to check if the UTF-8 string zName is a legal 771 ** unqualified name for a new schema object (table, index, view or 772 ** trigger). All names are legal except those that begin with the string 773 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 774 ** is reserved for internal use. 775 */ 776 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 777 if( !pParse->db->init.busy && pParse->nested==0 778 && (pParse->db->flags & SQLITE_WriteSchema)==0 779 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 780 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 781 return SQLITE_ERROR; 782 } 783 return SQLITE_OK; 784 } 785 786 /* 787 ** Return the PRIMARY KEY index of a table 788 */ 789 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 790 Index *p; 791 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 792 return p; 793 } 794 795 /* 796 ** Return the column of index pIdx that corresponds to table 797 ** column iCol. Return -1 if not found. 798 */ 799 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 800 int i; 801 for(i=0; i<pIdx->nColumn; i++){ 802 if( iCol==pIdx->aiColumn[i] ) return i; 803 } 804 return -1; 805 } 806 807 /* 808 ** Begin constructing a new table representation in memory. This is 809 ** the first of several action routines that get called in response 810 ** to a CREATE TABLE statement. In particular, this routine is called 811 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 812 ** flag is true if the table should be stored in the auxiliary database 813 ** file instead of in the main database file. This is normally the case 814 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 815 ** CREATE and TABLE. 816 ** 817 ** The new table record is initialized and put in pParse->pNewTable. 818 ** As more of the CREATE TABLE statement is parsed, additional action 819 ** routines will be called to add more information to this record. 820 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 821 ** is called to complete the construction of the new table record. 822 */ 823 void sqlite3StartTable( 824 Parse *pParse, /* Parser context */ 825 Token *pName1, /* First part of the name of the table or view */ 826 Token *pName2, /* Second part of the name of the table or view */ 827 int isTemp, /* True if this is a TEMP table */ 828 int isView, /* True if this is a VIEW */ 829 int isVirtual, /* True if this is a VIRTUAL table */ 830 int noErr /* Do nothing if table already exists */ 831 ){ 832 Table *pTable; 833 char *zName = 0; /* The name of the new table */ 834 sqlite3 *db = pParse->db; 835 Vdbe *v; 836 int iDb; /* Database number to create the table in */ 837 Token *pName; /* Unqualified name of the table to create */ 838 839 /* The table or view name to create is passed to this routine via tokens 840 ** pName1 and pName2. If the table name was fully qualified, for example: 841 ** 842 ** CREATE TABLE xxx.yyy (...); 843 ** 844 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 845 ** the table name is not fully qualified, i.e.: 846 ** 847 ** CREATE TABLE yyy(...); 848 ** 849 ** Then pName1 is set to "yyy" and pName2 is "". 850 ** 851 ** The call below sets the pName pointer to point at the token (pName1 or 852 ** pName2) that stores the unqualified table name. The variable iDb is 853 ** set to the index of the database that the table or view is to be 854 ** created in. 855 */ 856 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 857 if( iDb<0 ) return; 858 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 859 /* If creating a temp table, the name may not be qualified. Unless 860 ** the database name is "temp" anyway. */ 861 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 862 return; 863 } 864 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 865 866 pParse->sNameToken = *pName; 867 zName = sqlite3NameFromToken(db, pName); 868 if( zName==0 ) return; 869 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 870 goto begin_table_error; 871 } 872 if( db->init.iDb==1 ) isTemp = 1; 873 #ifndef SQLITE_OMIT_AUTHORIZATION 874 assert( (isTemp & 1)==isTemp ); 875 { 876 int code; 877 char *zDb = db->aDb[iDb].zName; 878 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 879 goto begin_table_error; 880 } 881 if( isView ){ 882 if( !OMIT_TEMPDB && isTemp ){ 883 code = SQLITE_CREATE_TEMP_VIEW; 884 }else{ 885 code = SQLITE_CREATE_VIEW; 886 } 887 }else{ 888 if( !OMIT_TEMPDB && isTemp ){ 889 code = SQLITE_CREATE_TEMP_TABLE; 890 }else{ 891 code = SQLITE_CREATE_TABLE; 892 } 893 } 894 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 895 goto begin_table_error; 896 } 897 } 898 #endif 899 900 /* Make sure the new table name does not collide with an existing 901 ** index or table name in the same database. Issue an error message if 902 ** it does. The exception is if the statement being parsed was passed 903 ** to an sqlite3_declare_vtab() call. In that case only the column names 904 ** and types will be used, so there is no need to test for namespace 905 ** collisions. 906 */ 907 if( !IN_DECLARE_VTAB ){ 908 char *zDb = db->aDb[iDb].zName; 909 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 910 goto begin_table_error; 911 } 912 pTable = sqlite3FindTable(db, zName, zDb); 913 if( pTable ){ 914 if( !noErr ){ 915 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 916 }else{ 917 assert( !db->init.busy ); 918 sqlite3CodeVerifySchema(pParse, iDb); 919 } 920 goto begin_table_error; 921 } 922 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 923 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 924 goto begin_table_error; 925 } 926 } 927 928 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 929 if( pTable==0 ){ 930 db->mallocFailed = 1; 931 pParse->rc = SQLITE_NOMEM; 932 pParse->nErr++; 933 goto begin_table_error; 934 } 935 pTable->zName = zName; 936 pTable->iPKey = -1; 937 pTable->pSchema = db->aDb[iDb].pSchema; 938 pTable->nRef = 1; 939 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 940 assert( pParse->pNewTable==0 ); 941 pParse->pNewTable = pTable; 942 943 /* If this is the magic sqlite_sequence table used by autoincrement, 944 ** then record a pointer to this table in the main database structure 945 ** so that INSERT can find the table easily. 946 */ 947 #ifndef SQLITE_OMIT_AUTOINCREMENT 948 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 949 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 950 pTable->pSchema->pSeqTab = pTable; 951 } 952 #endif 953 954 /* Begin generating the code that will insert the table record into 955 ** the SQLITE_MASTER table. Note in particular that we must go ahead 956 ** and allocate the record number for the table entry now. Before any 957 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 958 ** indices to be created and the table record must come before the 959 ** indices. Hence, the record number for the table must be allocated 960 ** now. 961 */ 962 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 963 int j1; 964 int fileFormat; 965 int reg1, reg2, reg3; 966 sqlite3BeginWriteOperation(pParse, 0, iDb); 967 968 #ifndef SQLITE_OMIT_VIRTUALTABLE 969 if( isVirtual ){ 970 sqlite3VdbeAddOp0(v, OP_VBegin); 971 } 972 #endif 973 974 /* If the file format and encoding in the database have not been set, 975 ** set them now. 976 */ 977 reg1 = pParse->regRowid = ++pParse->nMem; 978 reg2 = pParse->regRoot = ++pParse->nMem; 979 reg3 = ++pParse->nMem; 980 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 981 sqlite3VdbeUsesBtree(v, iDb); 982 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 983 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 984 1 : SQLITE_MAX_FILE_FORMAT; 985 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 986 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 987 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 988 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 989 sqlite3VdbeJumpHere(v, j1); 990 991 /* This just creates a place-holder record in the sqlite_master table. 992 ** The record created does not contain anything yet. It will be replaced 993 ** by the real entry in code generated at sqlite3EndTable(). 994 ** 995 ** The rowid for the new entry is left in register pParse->regRowid. 996 ** The root page number of the new table is left in reg pParse->regRoot. 997 ** The rowid and root page number values are needed by the code that 998 ** sqlite3EndTable will generate. 999 */ 1000 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1001 if( isView || isVirtual ){ 1002 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1003 }else 1004 #endif 1005 { 1006 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1007 } 1008 sqlite3OpenMasterTable(pParse, iDb); 1009 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1010 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1011 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1012 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1013 sqlite3VdbeAddOp0(v, OP_Close); 1014 } 1015 1016 /* Normal (non-error) return. */ 1017 return; 1018 1019 /* If an error occurs, we jump here */ 1020 begin_table_error: 1021 sqlite3DbFree(db, zName); 1022 return; 1023 } 1024 1025 /* 1026 ** This macro is used to compare two strings in a case-insensitive manner. 1027 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1028 ** produces larger code. 1029 ** 1030 ** WARNING: This macro is not compatible with the strcmp() family. It 1031 ** returns true if the two strings are equal, otherwise false. 1032 */ 1033 #define STRICMP(x, y) (\ 1034 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1035 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1036 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1037 1038 /* 1039 ** Add a new column to the table currently being constructed. 1040 ** 1041 ** The parser calls this routine once for each column declaration 1042 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1043 ** first to get things going. Then this routine is called for each 1044 ** column. 1045 */ 1046 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1047 Table *p; 1048 int i; 1049 char *z; 1050 Column *pCol; 1051 sqlite3 *db = pParse->db; 1052 if( (p = pParse->pNewTable)==0 ) return; 1053 #if SQLITE_MAX_COLUMN 1054 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1055 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1056 return; 1057 } 1058 #endif 1059 z = sqlite3NameFromToken(db, pName); 1060 if( z==0 ) return; 1061 for(i=0; i<p->nCol; i++){ 1062 if( STRICMP(z, p->aCol[i].zName) ){ 1063 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1064 sqlite3DbFree(db, z); 1065 return; 1066 } 1067 } 1068 if( (p->nCol & 0x7)==0 ){ 1069 Column *aNew; 1070 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1071 if( aNew==0 ){ 1072 sqlite3DbFree(db, z); 1073 return; 1074 } 1075 p->aCol = aNew; 1076 } 1077 pCol = &p->aCol[p->nCol]; 1078 memset(pCol, 0, sizeof(p->aCol[0])); 1079 pCol->zName = z; 1080 1081 /* If there is no type specified, columns have the default affinity 1082 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1083 ** be called next to set pCol->affinity correctly. 1084 */ 1085 pCol->affinity = SQLITE_AFF_NONE; 1086 pCol->szEst = 1; 1087 p->nCol++; 1088 } 1089 1090 /* 1091 ** This routine is called by the parser while in the middle of 1092 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1093 ** been seen on a column. This routine sets the notNull flag on 1094 ** the column currently under construction. 1095 */ 1096 void sqlite3AddNotNull(Parse *pParse, int onError){ 1097 Table *p; 1098 p = pParse->pNewTable; 1099 if( p==0 || NEVER(p->nCol<1) ) return; 1100 p->aCol[p->nCol-1].notNull = (u8)onError; 1101 } 1102 1103 /* 1104 ** Scan the column type name zType (length nType) and return the 1105 ** associated affinity type. 1106 ** 1107 ** This routine does a case-independent search of zType for the 1108 ** substrings in the following table. If one of the substrings is 1109 ** found, the corresponding affinity is returned. If zType contains 1110 ** more than one of the substrings, entries toward the top of 1111 ** the table take priority. For example, if zType is 'BLOBINT', 1112 ** SQLITE_AFF_INTEGER is returned. 1113 ** 1114 ** Substring | Affinity 1115 ** -------------------------------- 1116 ** 'INT' | SQLITE_AFF_INTEGER 1117 ** 'CHAR' | SQLITE_AFF_TEXT 1118 ** 'CLOB' | SQLITE_AFF_TEXT 1119 ** 'TEXT' | SQLITE_AFF_TEXT 1120 ** 'BLOB' | SQLITE_AFF_NONE 1121 ** 'REAL' | SQLITE_AFF_REAL 1122 ** 'FLOA' | SQLITE_AFF_REAL 1123 ** 'DOUB' | SQLITE_AFF_REAL 1124 ** 1125 ** If none of the substrings in the above table are found, 1126 ** SQLITE_AFF_NUMERIC is returned. 1127 */ 1128 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1129 u32 h = 0; 1130 char aff = SQLITE_AFF_NUMERIC; 1131 const char *zChar = 0; 1132 1133 if( zIn==0 ) return aff; 1134 while( zIn[0] ){ 1135 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1136 zIn++; 1137 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1138 aff = SQLITE_AFF_TEXT; 1139 zChar = zIn; 1140 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1141 aff = SQLITE_AFF_TEXT; 1142 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1143 aff = SQLITE_AFF_TEXT; 1144 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1145 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1146 aff = SQLITE_AFF_NONE; 1147 if( zIn[0]=='(' ) zChar = zIn; 1148 #ifndef SQLITE_OMIT_FLOATING_POINT 1149 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1150 && aff==SQLITE_AFF_NUMERIC ){ 1151 aff = SQLITE_AFF_REAL; 1152 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1153 && aff==SQLITE_AFF_NUMERIC ){ 1154 aff = SQLITE_AFF_REAL; 1155 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1156 && aff==SQLITE_AFF_NUMERIC ){ 1157 aff = SQLITE_AFF_REAL; 1158 #endif 1159 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1160 aff = SQLITE_AFF_INTEGER; 1161 break; 1162 } 1163 } 1164 1165 /* If pszEst is not NULL, store an estimate of the field size. The 1166 ** estimate is scaled so that the size of an integer is 1. */ 1167 if( pszEst ){ 1168 *pszEst = 1; /* default size is approx 4 bytes */ 1169 if( aff<=SQLITE_AFF_NONE ){ 1170 if( zChar ){ 1171 while( zChar[0] ){ 1172 if( sqlite3Isdigit(zChar[0]) ){ 1173 int v = 0; 1174 sqlite3GetInt32(zChar, &v); 1175 v = v/4 + 1; 1176 if( v>255 ) v = 255; 1177 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1178 break; 1179 } 1180 zChar++; 1181 } 1182 }else{ 1183 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1184 } 1185 } 1186 } 1187 return aff; 1188 } 1189 1190 /* 1191 ** This routine is called by the parser while in the middle of 1192 ** parsing a CREATE TABLE statement. The pFirst token is the first 1193 ** token in the sequence of tokens that describe the type of the 1194 ** column currently under construction. pLast is the last token 1195 ** in the sequence. Use this information to construct a string 1196 ** that contains the typename of the column and store that string 1197 ** in zType. 1198 */ 1199 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1200 Table *p; 1201 Column *pCol; 1202 1203 p = pParse->pNewTable; 1204 if( p==0 || NEVER(p->nCol<1) ) return; 1205 pCol = &p->aCol[p->nCol-1]; 1206 assert( pCol->zType==0 ); 1207 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1208 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1209 } 1210 1211 /* 1212 ** The expression is the default value for the most recently added column 1213 ** of the table currently under construction. 1214 ** 1215 ** Default value expressions must be constant. Raise an exception if this 1216 ** is not the case. 1217 ** 1218 ** This routine is called by the parser while in the middle of 1219 ** parsing a CREATE TABLE statement. 1220 */ 1221 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1222 Table *p; 1223 Column *pCol; 1224 sqlite3 *db = pParse->db; 1225 p = pParse->pNewTable; 1226 if( p!=0 ){ 1227 pCol = &(p->aCol[p->nCol-1]); 1228 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1229 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1230 pCol->zName); 1231 }else{ 1232 /* A copy of pExpr is used instead of the original, as pExpr contains 1233 ** tokens that point to volatile memory. The 'span' of the expression 1234 ** is required by pragma table_info. 1235 */ 1236 sqlite3ExprDelete(db, pCol->pDflt); 1237 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1238 sqlite3DbFree(db, pCol->zDflt); 1239 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1240 (int)(pSpan->zEnd - pSpan->zStart)); 1241 } 1242 } 1243 sqlite3ExprDelete(db, pSpan->pExpr); 1244 } 1245 1246 /* 1247 ** Designate the PRIMARY KEY for the table. pList is a list of names 1248 ** of columns that form the primary key. If pList is NULL, then the 1249 ** most recently added column of the table is the primary key. 1250 ** 1251 ** A table can have at most one primary key. If the table already has 1252 ** a primary key (and this is the second primary key) then create an 1253 ** error. 1254 ** 1255 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1256 ** then we will try to use that column as the rowid. Set the Table.iPKey 1257 ** field of the table under construction to be the index of the 1258 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1259 ** no INTEGER PRIMARY KEY. 1260 ** 1261 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1262 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1263 */ 1264 void sqlite3AddPrimaryKey( 1265 Parse *pParse, /* Parsing context */ 1266 ExprList *pList, /* List of field names to be indexed */ 1267 int onError, /* What to do with a uniqueness conflict */ 1268 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1269 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1270 ){ 1271 Table *pTab = pParse->pNewTable; 1272 char *zType = 0; 1273 int iCol = -1, i; 1274 int nTerm; 1275 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1276 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1277 sqlite3ErrorMsg(pParse, 1278 "table \"%s\" has more than one primary key", pTab->zName); 1279 goto primary_key_exit; 1280 } 1281 pTab->tabFlags |= TF_HasPrimaryKey; 1282 if( pList==0 ){ 1283 iCol = pTab->nCol - 1; 1284 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1285 zType = pTab->aCol[iCol].zType; 1286 nTerm = 1; 1287 }else{ 1288 nTerm = pList->nExpr; 1289 for(i=0; i<nTerm; i++){ 1290 for(iCol=0; iCol<pTab->nCol; iCol++){ 1291 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1292 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1293 zType = pTab->aCol[iCol].zType; 1294 break; 1295 } 1296 } 1297 } 1298 } 1299 if( nTerm==1 1300 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1301 && sortOrder==SQLITE_SO_ASC 1302 ){ 1303 pTab->iPKey = iCol; 1304 pTab->keyConf = (u8)onError; 1305 assert( autoInc==0 || autoInc==1 ); 1306 pTab->tabFlags |= autoInc*TF_Autoincrement; 1307 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1308 }else if( autoInc ){ 1309 #ifndef SQLITE_OMIT_AUTOINCREMENT 1310 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1311 "INTEGER PRIMARY KEY"); 1312 #endif 1313 }else{ 1314 Vdbe *v = pParse->pVdbe; 1315 Index *p; 1316 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1317 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1318 0, sortOrder, 0); 1319 if( p ){ 1320 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1321 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1322 } 1323 pList = 0; 1324 } 1325 1326 primary_key_exit: 1327 sqlite3ExprListDelete(pParse->db, pList); 1328 return; 1329 } 1330 1331 /* 1332 ** Add a new CHECK constraint to the table currently under construction. 1333 */ 1334 void sqlite3AddCheckConstraint( 1335 Parse *pParse, /* Parsing context */ 1336 Expr *pCheckExpr /* The check expression */ 1337 ){ 1338 #ifndef SQLITE_OMIT_CHECK 1339 Table *pTab = pParse->pNewTable; 1340 sqlite3 *db = pParse->db; 1341 if( pTab && !IN_DECLARE_VTAB 1342 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1343 ){ 1344 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1345 if( pParse->constraintName.n ){ 1346 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1347 } 1348 }else 1349 #endif 1350 { 1351 sqlite3ExprDelete(pParse->db, pCheckExpr); 1352 } 1353 } 1354 1355 /* 1356 ** Set the collation function of the most recently parsed table column 1357 ** to the CollSeq given. 1358 */ 1359 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1360 Table *p; 1361 int i; 1362 char *zColl; /* Dequoted name of collation sequence */ 1363 sqlite3 *db; 1364 1365 if( (p = pParse->pNewTable)==0 ) return; 1366 i = p->nCol-1; 1367 db = pParse->db; 1368 zColl = sqlite3NameFromToken(db, pToken); 1369 if( !zColl ) return; 1370 1371 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1372 Index *pIdx; 1373 sqlite3DbFree(db, p->aCol[i].zColl); 1374 p->aCol[i].zColl = zColl; 1375 1376 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1377 ** then an index may have been created on this column before the 1378 ** collation type was added. Correct this if it is the case. 1379 */ 1380 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1381 assert( pIdx->nKeyCol==1 ); 1382 if( pIdx->aiColumn[0]==i ){ 1383 pIdx->azColl[0] = p->aCol[i].zColl; 1384 } 1385 } 1386 }else{ 1387 sqlite3DbFree(db, zColl); 1388 } 1389 } 1390 1391 /* 1392 ** This function returns the collation sequence for database native text 1393 ** encoding identified by the string zName, length nName. 1394 ** 1395 ** If the requested collation sequence is not available, or not available 1396 ** in the database native encoding, the collation factory is invoked to 1397 ** request it. If the collation factory does not supply such a sequence, 1398 ** and the sequence is available in another text encoding, then that is 1399 ** returned instead. 1400 ** 1401 ** If no versions of the requested collations sequence are available, or 1402 ** another error occurs, NULL is returned and an error message written into 1403 ** pParse. 1404 ** 1405 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1406 ** invokes the collation factory if the named collation cannot be found 1407 ** and generates an error message. 1408 ** 1409 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1410 */ 1411 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1412 sqlite3 *db = pParse->db; 1413 u8 enc = ENC(db); 1414 u8 initbusy = db->init.busy; 1415 CollSeq *pColl; 1416 1417 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1418 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1419 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1420 } 1421 1422 return pColl; 1423 } 1424 1425 1426 /* 1427 ** Generate code that will increment the schema cookie. 1428 ** 1429 ** The schema cookie is used to determine when the schema for the 1430 ** database changes. After each schema change, the cookie value 1431 ** changes. When a process first reads the schema it records the 1432 ** cookie. Thereafter, whenever it goes to access the database, 1433 ** it checks the cookie to make sure the schema has not changed 1434 ** since it was last read. 1435 ** 1436 ** This plan is not completely bullet-proof. It is possible for 1437 ** the schema to change multiple times and for the cookie to be 1438 ** set back to prior value. But schema changes are infrequent 1439 ** and the probability of hitting the same cookie value is only 1440 ** 1 chance in 2^32. So we're safe enough. 1441 */ 1442 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1443 int r1 = sqlite3GetTempReg(pParse); 1444 sqlite3 *db = pParse->db; 1445 Vdbe *v = pParse->pVdbe; 1446 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1447 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1448 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1449 sqlite3ReleaseTempReg(pParse, r1); 1450 } 1451 1452 /* 1453 ** Measure the number of characters needed to output the given 1454 ** identifier. The number returned includes any quotes used 1455 ** but does not include the null terminator. 1456 ** 1457 ** The estimate is conservative. It might be larger that what is 1458 ** really needed. 1459 */ 1460 static int identLength(const char *z){ 1461 int n; 1462 for(n=0; *z; n++, z++){ 1463 if( *z=='"' ){ n++; } 1464 } 1465 return n + 2; 1466 } 1467 1468 /* 1469 ** The first parameter is a pointer to an output buffer. The second 1470 ** parameter is a pointer to an integer that contains the offset at 1471 ** which to write into the output buffer. This function copies the 1472 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1473 ** to the specified offset in the buffer and updates *pIdx to refer 1474 ** to the first byte after the last byte written before returning. 1475 ** 1476 ** If the string zSignedIdent consists entirely of alpha-numeric 1477 ** characters, does not begin with a digit and is not an SQL keyword, 1478 ** then it is copied to the output buffer exactly as it is. Otherwise, 1479 ** it is quoted using double-quotes. 1480 */ 1481 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1482 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1483 int i, j, needQuote; 1484 i = *pIdx; 1485 1486 for(j=0; zIdent[j]; j++){ 1487 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1488 } 1489 needQuote = sqlite3Isdigit(zIdent[0]) 1490 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1491 || zIdent[j]!=0 1492 || j==0; 1493 1494 if( needQuote ) z[i++] = '"'; 1495 for(j=0; zIdent[j]; j++){ 1496 z[i++] = zIdent[j]; 1497 if( zIdent[j]=='"' ) z[i++] = '"'; 1498 } 1499 if( needQuote ) z[i++] = '"'; 1500 z[i] = 0; 1501 *pIdx = i; 1502 } 1503 1504 /* 1505 ** Generate a CREATE TABLE statement appropriate for the given 1506 ** table. Memory to hold the text of the statement is obtained 1507 ** from sqliteMalloc() and must be freed by the calling function. 1508 */ 1509 static char *createTableStmt(sqlite3 *db, Table *p){ 1510 int i, k, n; 1511 char *zStmt; 1512 char *zSep, *zSep2, *zEnd; 1513 Column *pCol; 1514 n = 0; 1515 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1516 n += identLength(pCol->zName) + 5; 1517 } 1518 n += identLength(p->zName); 1519 if( n<50 ){ 1520 zSep = ""; 1521 zSep2 = ","; 1522 zEnd = ")"; 1523 }else{ 1524 zSep = "\n "; 1525 zSep2 = ",\n "; 1526 zEnd = "\n)"; 1527 } 1528 n += 35 + 6*p->nCol; 1529 zStmt = sqlite3DbMallocRaw(0, n); 1530 if( zStmt==0 ){ 1531 db->mallocFailed = 1; 1532 return 0; 1533 } 1534 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1535 k = sqlite3Strlen30(zStmt); 1536 identPut(zStmt, &k, p->zName); 1537 zStmt[k++] = '('; 1538 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1539 static const char * const azType[] = { 1540 /* SQLITE_AFF_TEXT */ " TEXT", 1541 /* SQLITE_AFF_NONE */ "", 1542 /* SQLITE_AFF_NUMERIC */ " NUM", 1543 /* SQLITE_AFF_INTEGER */ " INT", 1544 /* SQLITE_AFF_REAL */ " REAL" 1545 }; 1546 int len; 1547 const char *zType; 1548 1549 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1550 k += sqlite3Strlen30(&zStmt[k]); 1551 zSep = zSep2; 1552 identPut(zStmt, &k, pCol->zName); 1553 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1554 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1555 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1556 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1557 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1558 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1559 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1560 1561 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1562 len = sqlite3Strlen30(zType); 1563 assert( pCol->affinity==SQLITE_AFF_NONE 1564 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1565 memcpy(&zStmt[k], zType, len); 1566 k += len; 1567 assert( k<=n ); 1568 } 1569 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1570 return zStmt; 1571 } 1572 1573 /* 1574 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1575 ** on success and SQLITE_NOMEM on an OOM error. 1576 */ 1577 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1578 char *zExtra; 1579 int nByte; 1580 if( pIdx->nColumn>=N ) return SQLITE_OK; 1581 assert( pIdx->isResized==0 ); 1582 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1583 zExtra = sqlite3DbMallocZero(db, nByte); 1584 if( zExtra==0 ) return SQLITE_NOMEM; 1585 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1586 pIdx->azColl = (char**)zExtra; 1587 zExtra += sizeof(char*)*N; 1588 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1589 pIdx->aiColumn = (i16*)zExtra; 1590 zExtra += sizeof(i16)*N; 1591 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1592 pIdx->aSortOrder = (u8*)zExtra; 1593 pIdx->nColumn = N; 1594 pIdx->isResized = 1; 1595 return SQLITE_OK; 1596 } 1597 1598 /* 1599 ** Estimate the total row width for a table. 1600 */ 1601 static void estimateTableWidth(Table *pTab){ 1602 unsigned wTable = 0; 1603 const Column *pTabCol; 1604 int i; 1605 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1606 wTable += pTabCol->szEst; 1607 } 1608 if( pTab->iPKey<0 ) wTable++; 1609 pTab->szTabRow = sqlite3LogEst(wTable*4); 1610 } 1611 1612 /* 1613 ** Estimate the average size of a row for an index. 1614 */ 1615 static void estimateIndexWidth(Index *pIdx){ 1616 unsigned wIndex = 0; 1617 int i; 1618 const Column *aCol = pIdx->pTable->aCol; 1619 for(i=0; i<pIdx->nColumn; i++){ 1620 i16 x = pIdx->aiColumn[i]; 1621 assert( x<pIdx->pTable->nCol ); 1622 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1623 } 1624 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1625 } 1626 1627 /* Return true if value x is found any of the first nCol entries of aiCol[] 1628 */ 1629 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1630 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1631 return 0; 1632 } 1633 1634 /* 1635 ** This routine runs at the end of parsing a CREATE TABLE statement that 1636 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1637 ** internal schema data structures and the generated VDBE code so that they 1638 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1639 ** Changes include: 1640 ** 1641 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1642 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1643 ** data storage is a covering index btree. 1644 ** (2) Bypass the creation of the sqlite_master table entry 1645 ** for the PRIMARY KEY as the primary key index is now 1646 ** identified by the sqlite_master table entry of the table itself. 1647 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1648 ** schema to the rootpage from the main table. 1649 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1650 ** (5) Add all table columns to the PRIMARY KEY Index object 1651 ** so that the PRIMARY KEY is a covering index. The surplus 1652 ** columns are part of KeyInfo.nXField and are not used for 1653 ** sorting or lookup or uniqueness checks. 1654 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1655 ** indices with the PRIMARY KEY columns. 1656 */ 1657 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1658 Index *pIdx; 1659 Index *pPk; 1660 int nPk; 1661 int i, j; 1662 sqlite3 *db = pParse->db; 1663 Vdbe *v = pParse->pVdbe; 1664 1665 /* Convert the OP_CreateTable opcode that would normally create the 1666 ** root-page for the table into an OP_CreateIndex opcode. The index 1667 ** created will become the PRIMARY KEY index. 1668 */ 1669 if( pParse->addrCrTab ){ 1670 assert( v ); 1671 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1672 } 1673 1674 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1675 ** table entry. 1676 */ 1677 if( pParse->addrSkipPK ){ 1678 assert( v ); 1679 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1680 } 1681 1682 /* Locate the PRIMARY KEY index. Or, if this table was originally 1683 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1684 */ 1685 if( pTab->iPKey>=0 ){ 1686 ExprList *pList; 1687 pList = sqlite3ExprListAppend(pParse, 0, 0); 1688 if( pList==0 ) return; 1689 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1690 pTab->aCol[pTab->iPKey].zName); 1691 pList->a[0].sortOrder = pParse->iPkSortOrder; 1692 assert( pParse->pNewTable==pTab ); 1693 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1694 if( pPk==0 ) return; 1695 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1696 pTab->iPKey = -1; 1697 }else{ 1698 pPk = sqlite3PrimaryKeyIndex(pTab); 1699 } 1700 pPk->isCovering = 1; 1701 assert( pPk!=0 ); 1702 nPk = pPk->nKeyCol; 1703 1704 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1705 for(i=0; i<nPk; i++){ 1706 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1707 } 1708 pPk->uniqNotNull = 1; 1709 1710 /* The root page of the PRIMARY KEY is the table root page */ 1711 pPk->tnum = pTab->tnum; 1712 1713 /* Update the in-memory representation of all UNIQUE indices by converting 1714 ** the final rowid column into one or more columns of the PRIMARY KEY. 1715 */ 1716 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1717 int n; 1718 if( IsPrimaryKeyIndex(pIdx) ) continue; 1719 for(i=n=0; i<nPk; i++){ 1720 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1721 } 1722 if( n==0 ){ 1723 /* This index is a superset of the primary key */ 1724 pIdx->nColumn = pIdx->nKeyCol; 1725 continue; 1726 } 1727 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1728 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1729 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1730 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1731 pIdx->azColl[j] = pPk->azColl[i]; 1732 j++; 1733 } 1734 } 1735 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1736 assert( pIdx->nColumn>=j ); 1737 } 1738 1739 /* Add all table columns to the PRIMARY KEY index 1740 */ 1741 if( nPk<pTab->nCol ){ 1742 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1743 for(i=0, j=nPk; i<pTab->nCol; i++){ 1744 if( !hasColumn(pPk->aiColumn, j, i) ){ 1745 assert( j<pPk->nColumn ); 1746 pPk->aiColumn[j] = i; 1747 pPk->azColl[j] = "BINARY"; 1748 j++; 1749 } 1750 } 1751 assert( pPk->nColumn==j ); 1752 assert( pTab->nCol==j ); 1753 }else{ 1754 pPk->nColumn = pTab->nCol; 1755 } 1756 } 1757 1758 /* 1759 ** This routine is called to report the final ")" that terminates 1760 ** a CREATE TABLE statement. 1761 ** 1762 ** The table structure that other action routines have been building 1763 ** is added to the internal hash tables, assuming no errors have 1764 ** occurred. 1765 ** 1766 ** An entry for the table is made in the master table on disk, unless 1767 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1768 ** it means we are reading the sqlite_master table because we just 1769 ** connected to the database or because the sqlite_master table has 1770 ** recently changed, so the entry for this table already exists in 1771 ** the sqlite_master table. We do not want to create it again. 1772 ** 1773 ** If the pSelect argument is not NULL, it means that this routine 1774 ** was called to create a table generated from a 1775 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1776 ** the new table will match the result set of the SELECT. 1777 */ 1778 void sqlite3EndTable( 1779 Parse *pParse, /* Parse context */ 1780 Token *pCons, /* The ',' token after the last column defn. */ 1781 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1782 u8 tabOpts, /* Extra table options. Usually 0. */ 1783 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1784 ){ 1785 Table *p; /* The new table */ 1786 sqlite3 *db = pParse->db; /* The database connection */ 1787 int iDb; /* Database in which the table lives */ 1788 Index *pIdx; /* An implied index of the table */ 1789 1790 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1791 return; 1792 } 1793 p = pParse->pNewTable; 1794 if( p==0 ) return; 1795 1796 assert( !db->init.busy || !pSelect ); 1797 1798 /* If the db->init.busy is 1 it means we are reading the SQL off the 1799 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1800 ** So do not write to the disk again. Extract the root page number 1801 ** for the table from the db->init.newTnum field. (The page number 1802 ** should have been put there by the sqliteOpenCb routine.) 1803 */ 1804 if( db->init.busy ){ 1805 p->tnum = db->init.newTnum; 1806 } 1807 1808 /* Special processing for WITHOUT ROWID Tables */ 1809 if( tabOpts & TF_WithoutRowid ){ 1810 if( (p->tabFlags & TF_Autoincrement) ){ 1811 sqlite3ErrorMsg(pParse, 1812 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1813 return; 1814 } 1815 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1816 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1817 }else{ 1818 p->tabFlags |= TF_WithoutRowid; 1819 convertToWithoutRowidTable(pParse, p); 1820 } 1821 } 1822 1823 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1824 1825 #ifndef SQLITE_OMIT_CHECK 1826 /* Resolve names in all CHECK constraint expressions. 1827 */ 1828 if( p->pCheck ){ 1829 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1830 } 1831 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1832 1833 /* Estimate the average row size for the table and for all implied indices */ 1834 estimateTableWidth(p); 1835 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1836 estimateIndexWidth(pIdx); 1837 } 1838 1839 /* If not initializing, then create a record for the new table 1840 ** in the SQLITE_MASTER table of the database. 1841 ** 1842 ** If this is a TEMPORARY table, write the entry into the auxiliary 1843 ** file instead of into the main database file. 1844 */ 1845 if( !db->init.busy ){ 1846 int n; 1847 Vdbe *v; 1848 char *zType; /* "view" or "table" */ 1849 char *zType2; /* "VIEW" or "TABLE" */ 1850 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1851 1852 v = sqlite3GetVdbe(pParse); 1853 if( NEVER(v==0) ) return; 1854 1855 sqlite3VdbeAddOp1(v, OP_Close, 0); 1856 1857 /* 1858 ** Initialize zType for the new view or table. 1859 */ 1860 if( p->pSelect==0 ){ 1861 /* A regular table */ 1862 zType = "table"; 1863 zType2 = "TABLE"; 1864 #ifndef SQLITE_OMIT_VIEW 1865 }else{ 1866 /* A view */ 1867 zType = "view"; 1868 zType2 = "VIEW"; 1869 #endif 1870 } 1871 1872 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1873 ** statement to populate the new table. The root-page number for the 1874 ** new table is in register pParse->regRoot. 1875 ** 1876 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1877 ** suitable state to query for the column names and types to be used 1878 ** by the new table. 1879 ** 1880 ** A shared-cache write-lock is not required to write to the new table, 1881 ** as a schema-lock must have already been obtained to create it. Since 1882 ** a schema-lock excludes all other database users, the write-lock would 1883 ** be redundant. 1884 */ 1885 if( pSelect ){ 1886 SelectDest dest; 1887 Table *pSelTab; 1888 1889 assert(pParse->nTab==1); 1890 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1891 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1892 pParse->nTab = 2; 1893 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1894 sqlite3Select(pParse, pSelect, &dest); 1895 sqlite3VdbeAddOp1(v, OP_Close, 1); 1896 if( pParse->nErr==0 ){ 1897 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1898 if( pSelTab==0 ) return; 1899 assert( p->aCol==0 ); 1900 p->nCol = pSelTab->nCol; 1901 p->aCol = pSelTab->aCol; 1902 pSelTab->nCol = 0; 1903 pSelTab->aCol = 0; 1904 sqlite3DeleteTable(db, pSelTab); 1905 } 1906 } 1907 1908 /* Compute the complete text of the CREATE statement */ 1909 if( pSelect ){ 1910 zStmt = createTableStmt(db, p); 1911 }else{ 1912 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1913 n = (int)(pEnd2->z - pParse->sNameToken.z); 1914 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1915 zStmt = sqlite3MPrintf(db, 1916 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1917 ); 1918 } 1919 1920 /* A slot for the record has already been allocated in the 1921 ** SQLITE_MASTER table. We just need to update that slot with all 1922 ** the information we've collected. 1923 */ 1924 sqlite3NestedParse(pParse, 1925 "UPDATE %Q.%s " 1926 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1927 "WHERE rowid=#%d", 1928 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1929 zType, 1930 p->zName, 1931 p->zName, 1932 pParse->regRoot, 1933 zStmt, 1934 pParse->regRowid 1935 ); 1936 sqlite3DbFree(db, zStmt); 1937 sqlite3ChangeCookie(pParse, iDb); 1938 1939 #ifndef SQLITE_OMIT_AUTOINCREMENT 1940 /* Check to see if we need to create an sqlite_sequence table for 1941 ** keeping track of autoincrement keys. 1942 */ 1943 if( p->tabFlags & TF_Autoincrement ){ 1944 Db *pDb = &db->aDb[iDb]; 1945 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1946 if( pDb->pSchema->pSeqTab==0 ){ 1947 sqlite3NestedParse(pParse, 1948 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1949 pDb->zName 1950 ); 1951 } 1952 } 1953 #endif 1954 1955 /* Reparse everything to update our internal data structures */ 1956 sqlite3VdbeAddParseSchemaOp(v, iDb, 1957 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1958 } 1959 1960 1961 /* Add the table to the in-memory representation of the database. 1962 */ 1963 if( db->init.busy ){ 1964 Table *pOld; 1965 Schema *pSchema = p->pSchema; 1966 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1967 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 1968 if( pOld ){ 1969 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1970 db->mallocFailed = 1; 1971 return; 1972 } 1973 pParse->pNewTable = 0; 1974 db->flags |= SQLITE_InternChanges; 1975 1976 #ifndef SQLITE_OMIT_ALTERTABLE 1977 if( !p->pSelect ){ 1978 const char *zName = (const char *)pParse->sNameToken.z; 1979 int nName; 1980 assert( !pSelect && pCons && pEnd ); 1981 if( pCons->z==0 ){ 1982 pCons = pEnd; 1983 } 1984 nName = (int)((const char *)pCons->z - zName); 1985 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1986 } 1987 #endif 1988 } 1989 } 1990 1991 #ifndef SQLITE_OMIT_VIEW 1992 /* 1993 ** The parser calls this routine in order to create a new VIEW 1994 */ 1995 void sqlite3CreateView( 1996 Parse *pParse, /* The parsing context */ 1997 Token *pBegin, /* The CREATE token that begins the statement */ 1998 Token *pName1, /* The token that holds the name of the view */ 1999 Token *pName2, /* The token that holds the name of the view */ 2000 Select *pSelect, /* A SELECT statement that will become the new view */ 2001 int isTemp, /* TRUE for a TEMPORARY view */ 2002 int noErr /* Suppress error messages if VIEW already exists */ 2003 ){ 2004 Table *p; 2005 int n; 2006 const char *z; 2007 Token sEnd; 2008 DbFixer sFix; 2009 Token *pName = 0; 2010 int iDb; 2011 sqlite3 *db = pParse->db; 2012 2013 if( pParse->nVar>0 ){ 2014 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2015 sqlite3SelectDelete(db, pSelect); 2016 return; 2017 } 2018 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2019 p = pParse->pNewTable; 2020 if( p==0 || pParse->nErr ){ 2021 sqlite3SelectDelete(db, pSelect); 2022 return; 2023 } 2024 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2025 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2026 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2027 if( sqlite3FixSelect(&sFix, pSelect) ){ 2028 sqlite3SelectDelete(db, pSelect); 2029 return; 2030 } 2031 2032 /* Make a copy of the entire SELECT statement that defines the view. 2033 ** This will force all the Expr.token.z values to be dynamically 2034 ** allocated rather than point to the input string - which means that 2035 ** they will persist after the current sqlite3_exec() call returns. 2036 */ 2037 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2038 sqlite3SelectDelete(db, pSelect); 2039 if( db->mallocFailed ){ 2040 return; 2041 } 2042 if( !db->init.busy ){ 2043 sqlite3ViewGetColumnNames(pParse, p); 2044 } 2045 2046 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2047 ** the end. 2048 */ 2049 sEnd = pParse->sLastToken; 2050 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2051 sEnd.z += sEnd.n; 2052 } 2053 sEnd.n = 0; 2054 n = (int)(sEnd.z - pBegin->z); 2055 z = pBegin->z; 2056 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2057 sEnd.z = &z[n-1]; 2058 sEnd.n = 1; 2059 2060 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2061 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2062 return; 2063 } 2064 #endif /* SQLITE_OMIT_VIEW */ 2065 2066 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2067 /* 2068 ** The Table structure pTable is really a VIEW. Fill in the names of 2069 ** the columns of the view in the pTable structure. Return the number 2070 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2071 */ 2072 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2073 Table *pSelTab; /* A fake table from which we get the result set */ 2074 Select *pSel; /* Copy of the SELECT that implements the view */ 2075 int nErr = 0; /* Number of errors encountered */ 2076 int n; /* Temporarily holds the number of cursors assigned */ 2077 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2078 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 2079 2080 assert( pTable ); 2081 2082 #ifndef SQLITE_OMIT_VIRTUALTABLE 2083 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2084 return SQLITE_ERROR; 2085 } 2086 if( IsVirtual(pTable) ) return 0; 2087 #endif 2088 2089 #ifndef SQLITE_OMIT_VIEW 2090 /* A positive nCol means the columns names for this view are 2091 ** already known. 2092 */ 2093 if( pTable->nCol>0 ) return 0; 2094 2095 /* A negative nCol is a special marker meaning that we are currently 2096 ** trying to compute the column names. If we enter this routine with 2097 ** a negative nCol, it means two or more views form a loop, like this: 2098 ** 2099 ** CREATE VIEW one AS SELECT * FROM two; 2100 ** CREATE VIEW two AS SELECT * FROM one; 2101 ** 2102 ** Actually, the error above is now caught prior to reaching this point. 2103 ** But the following test is still important as it does come up 2104 ** in the following: 2105 ** 2106 ** CREATE TABLE main.ex1(a); 2107 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2108 ** SELECT * FROM temp.ex1; 2109 */ 2110 if( pTable->nCol<0 ){ 2111 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2112 return 1; 2113 } 2114 assert( pTable->nCol>=0 ); 2115 2116 /* If we get this far, it means we need to compute the table names. 2117 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2118 ** "*" elements in the results set of the view and will assign cursors 2119 ** to the elements of the FROM clause. But we do not want these changes 2120 ** to be permanent. So the computation is done on a copy of the SELECT 2121 ** statement that defines the view. 2122 */ 2123 assert( pTable->pSelect ); 2124 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2125 if( pSel ){ 2126 u8 enableLookaside = db->lookaside.bEnabled; 2127 n = pParse->nTab; 2128 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2129 pTable->nCol = -1; 2130 db->lookaside.bEnabled = 0; 2131 #ifndef SQLITE_OMIT_AUTHORIZATION 2132 xAuth = db->xAuth; 2133 db->xAuth = 0; 2134 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2135 db->xAuth = xAuth; 2136 #else 2137 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2138 #endif 2139 db->lookaside.bEnabled = enableLookaside; 2140 pParse->nTab = n; 2141 if( pSelTab ){ 2142 assert( pTable->aCol==0 ); 2143 pTable->nCol = pSelTab->nCol; 2144 pTable->aCol = pSelTab->aCol; 2145 pSelTab->nCol = 0; 2146 pSelTab->aCol = 0; 2147 sqlite3DeleteTable(db, pSelTab); 2148 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2149 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2150 }else{ 2151 pTable->nCol = 0; 2152 nErr++; 2153 } 2154 sqlite3SelectDelete(db, pSel); 2155 } else { 2156 nErr++; 2157 } 2158 #endif /* SQLITE_OMIT_VIEW */ 2159 return nErr; 2160 } 2161 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2162 2163 #ifndef SQLITE_OMIT_VIEW 2164 /* 2165 ** Clear the column names from every VIEW in database idx. 2166 */ 2167 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2168 HashElem *i; 2169 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2170 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2171 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2172 Table *pTab = sqliteHashData(i); 2173 if( pTab->pSelect ){ 2174 sqliteDeleteColumnNames(db, pTab); 2175 pTab->aCol = 0; 2176 pTab->nCol = 0; 2177 } 2178 } 2179 DbClearProperty(db, idx, DB_UnresetViews); 2180 } 2181 #else 2182 # define sqliteViewResetAll(A,B) 2183 #endif /* SQLITE_OMIT_VIEW */ 2184 2185 /* 2186 ** This function is called by the VDBE to adjust the internal schema 2187 ** used by SQLite when the btree layer moves a table root page. The 2188 ** root-page of a table or index in database iDb has changed from iFrom 2189 ** to iTo. 2190 ** 2191 ** Ticket #1728: The symbol table might still contain information 2192 ** on tables and/or indices that are the process of being deleted. 2193 ** If you are unlucky, one of those deleted indices or tables might 2194 ** have the same rootpage number as the real table or index that is 2195 ** being moved. So we cannot stop searching after the first match 2196 ** because the first match might be for one of the deleted indices 2197 ** or tables and not the table/index that is actually being moved. 2198 ** We must continue looping until all tables and indices with 2199 ** rootpage==iFrom have been converted to have a rootpage of iTo 2200 ** in order to be certain that we got the right one. 2201 */ 2202 #ifndef SQLITE_OMIT_AUTOVACUUM 2203 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2204 HashElem *pElem; 2205 Hash *pHash; 2206 Db *pDb; 2207 2208 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2209 pDb = &db->aDb[iDb]; 2210 pHash = &pDb->pSchema->tblHash; 2211 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2212 Table *pTab = sqliteHashData(pElem); 2213 if( pTab->tnum==iFrom ){ 2214 pTab->tnum = iTo; 2215 } 2216 } 2217 pHash = &pDb->pSchema->idxHash; 2218 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2219 Index *pIdx = sqliteHashData(pElem); 2220 if( pIdx->tnum==iFrom ){ 2221 pIdx->tnum = iTo; 2222 } 2223 } 2224 } 2225 #endif 2226 2227 /* 2228 ** Write code to erase the table with root-page iTable from database iDb. 2229 ** Also write code to modify the sqlite_master table and internal schema 2230 ** if a root-page of another table is moved by the btree-layer whilst 2231 ** erasing iTable (this can happen with an auto-vacuum database). 2232 */ 2233 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2234 Vdbe *v = sqlite3GetVdbe(pParse); 2235 int r1 = sqlite3GetTempReg(pParse); 2236 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2237 sqlite3MayAbort(pParse); 2238 #ifndef SQLITE_OMIT_AUTOVACUUM 2239 /* OP_Destroy stores an in integer r1. If this integer 2240 ** is non-zero, then it is the root page number of a table moved to 2241 ** location iTable. The following code modifies the sqlite_master table to 2242 ** reflect this. 2243 ** 2244 ** The "#NNN" in the SQL is a special constant that means whatever value 2245 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2246 ** token for additional information. 2247 */ 2248 sqlite3NestedParse(pParse, 2249 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2250 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2251 #endif 2252 sqlite3ReleaseTempReg(pParse, r1); 2253 } 2254 2255 /* 2256 ** Write VDBE code to erase table pTab and all associated indices on disk. 2257 ** Code to update the sqlite_master tables and internal schema definitions 2258 ** in case a root-page belonging to another table is moved by the btree layer 2259 ** is also added (this can happen with an auto-vacuum database). 2260 */ 2261 static void destroyTable(Parse *pParse, Table *pTab){ 2262 #ifdef SQLITE_OMIT_AUTOVACUUM 2263 Index *pIdx; 2264 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2265 destroyRootPage(pParse, pTab->tnum, iDb); 2266 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2267 destroyRootPage(pParse, pIdx->tnum, iDb); 2268 } 2269 #else 2270 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2271 ** is not defined), then it is important to call OP_Destroy on the 2272 ** table and index root-pages in order, starting with the numerically 2273 ** largest root-page number. This guarantees that none of the root-pages 2274 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2275 ** following were coded: 2276 ** 2277 ** OP_Destroy 4 0 2278 ** ... 2279 ** OP_Destroy 5 0 2280 ** 2281 ** and root page 5 happened to be the largest root-page number in the 2282 ** database, then root page 5 would be moved to page 4 by the 2283 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2284 ** a free-list page. 2285 */ 2286 int iTab = pTab->tnum; 2287 int iDestroyed = 0; 2288 2289 while( 1 ){ 2290 Index *pIdx; 2291 int iLargest = 0; 2292 2293 if( iDestroyed==0 || iTab<iDestroyed ){ 2294 iLargest = iTab; 2295 } 2296 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2297 int iIdx = pIdx->tnum; 2298 assert( pIdx->pSchema==pTab->pSchema ); 2299 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2300 iLargest = iIdx; 2301 } 2302 } 2303 if( iLargest==0 ){ 2304 return; 2305 }else{ 2306 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2307 assert( iDb>=0 && iDb<pParse->db->nDb ); 2308 destroyRootPage(pParse, iLargest, iDb); 2309 iDestroyed = iLargest; 2310 } 2311 } 2312 #endif 2313 } 2314 2315 /* 2316 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2317 ** after a DROP INDEX or DROP TABLE command. 2318 */ 2319 static void sqlite3ClearStatTables( 2320 Parse *pParse, /* The parsing context */ 2321 int iDb, /* The database number */ 2322 const char *zType, /* "idx" or "tbl" */ 2323 const char *zName /* Name of index or table */ 2324 ){ 2325 int i; 2326 const char *zDbName = pParse->db->aDb[iDb].zName; 2327 for(i=1; i<=4; i++){ 2328 char zTab[24]; 2329 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2330 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2331 sqlite3NestedParse(pParse, 2332 "DELETE FROM %Q.%s WHERE %s=%Q", 2333 zDbName, zTab, zType, zName 2334 ); 2335 } 2336 } 2337 } 2338 2339 /* 2340 ** Generate code to drop a table. 2341 */ 2342 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2343 Vdbe *v; 2344 sqlite3 *db = pParse->db; 2345 Trigger *pTrigger; 2346 Db *pDb = &db->aDb[iDb]; 2347 2348 v = sqlite3GetVdbe(pParse); 2349 assert( v!=0 ); 2350 sqlite3BeginWriteOperation(pParse, 1, iDb); 2351 2352 #ifndef SQLITE_OMIT_VIRTUALTABLE 2353 if( IsVirtual(pTab) ){ 2354 sqlite3VdbeAddOp0(v, OP_VBegin); 2355 } 2356 #endif 2357 2358 /* Drop all triggers associated with the table being dropped. Code 2359 ** is generated to remove entries from sqlite_master and/or 2360 ** sqlite_temp_master if required. 2361 */ 2362 pTrigger = sqlite3TriggerList(pParse, pTab); 2363 while( pTrigger ){ 2364 assert( pTrigger->pSchema==pTab->pSchema || 2365 pTrigger->pSchema==db->aDb[1].pSchema ); 2366 sqlite3DropTriggerPtr(pParse, pTrigger); 2367 pTrigger = pTrigger->pNext; 2368 } 2369 2370 #ifndef SQLITE_OMIT_AUTOINCREMENT 2371 /* Remove any entries of the sqlite_sequence table associated with 2372 ** the table being dropped. This is done before the table is dropped 2373 ** at the btree level, in case the sqlite_sequence table needs to 2374 ** move as a result of the drop (can happen in auto-vacuum mode). 2375 */ 2376 if( pTab->tabFlags & TF_Autoincrement ){ 2377 sqlite3NestedParse(pParse, 2378 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2379 pDb->zName, pTab->zName 2380 ); 2381 } 2382 #endif 2383 2384 /* Drop all SQLITE_MASTER table and index entries that refer to the 2385 ** table. The program name loops through the master table and deletes 2386 ** every row that refers to a table of the same name as the one being 2387 ** dropped. Triggers are handled separately because a trigger can be 2388 ** created in the temp database that refers to a table in another 2389 ** database. 2390 */ 2391 sqlite3NestedParse(pParse, 2392 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2393 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2394 if( !isView && !IsVirtual(pTab) ){ 2395 destroyTable(pParse, pTab); 2396 } 2397 2398 /* Remove the table entry from SQLite's internal schema and modify 2399 ** the schema cookie. 2400 */ 2401 if( IsVirtual(pTab) ){ 2402 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2403 } 2404 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2405 sqlite3ChangeCookie(pParse, iDb); 2406 sqliteViewResetAll(db, iDb); 2407 } 2408 2409 /* 2410 ** This routine is called to do the work of a DROP TABLE statement. 2411 ** pName is the name of the table to be dropped. 2412 */ 2413 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2414 Table *pTab; 2415 Vdbe *v; 2416 sqlite3 *db = pParse->db; 2417 int iDb; 2418 2419 if( db->mallocFailed ){ 2420 goto exit_drop_table; 2421 } 2422 assert( pParse->nErr==0 ); 2423 assert( pName->nSrc==1 ); 2424 if( noErr ) db->suppressErr++; 2425 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2426 if( noErr ) db->suppressErr--; 2427 2428 if( pTab==0 ){ 2429 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2430 goto exit_drop_table; 2431 } 2432 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2433 assert( iDb>=0 && iDb<db->nDb ); 2434 2435 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2436 ** it is initialized. 2437 */ 2438 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2439 goto exit_drop_table; 2440 } 2441 #ifndef SQLITE_OMIT_AUTHORIZATION 2442 { 2443 int code; 2444 const char *zTab = SCHEMA_TABLE(iDb); 2445 const char *zDb = db->aDb[iDb].zName; 2446 const char *zArg2 = 0; 2447 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2448 goto exit_drop_table; 2449 } 2450 if( isView ){ 2451 if( !OMIT_TEMPDB && iDb==1 ){ 2452 code = SQLITE_DROP_TEMP_VIEW; 2453 }else{ 2454 code = SQLITE_DROP_VIEW; 2455 } 2456 #ifndef SQLITE_OMIT_VIRTUALTABLE 2457 }else if( IsVirtual(pTab) ){ 2458 code = SQLITE_DROP_VTABLE; 2459 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2460 #endif 2461 }else{ 2462 if( !OMIT_TEMPDB && iDb==1 ){ 2463 code = SQLITE_DROP_TEMP_TABLE; 2464 }else{ 2465 code = SQLITE_DROP_TABLE; 2466 } 2467 } 2468 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2469 goto exit_drop_table; 2470 } 2471 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2472 goto exit_drop_table; 2473 } 2474 } 2475 #endif 2476 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2477 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2478 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2479 goto exit_drop_table; 2480 } 2481 2482 #ifndef SQLITE_OMIT_VIEW 2483 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2484 ** on a table. 2485 */ 2486 if( isView && pTab->pSelect==0 ){ 2487 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2488 goto exit_drop_table; 2489 } 2490 if( !isView && pTab->pSelect ){ 2491 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2492 goto exit_drop_table; 2493 } 2494 #endif 2495 2496 /* Generate code to remove the table from the master table 2497 ** on disk. 2498 */ 2499 v = sqlite3GetVdbe(pParse); 2500 if( v ){ 2501 sqlite3BeginWriteOperation(pParse, 1, iDb); 2502 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2503 sqlite3FkDropTable(pParse, pName, pTab); 2504 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2505 } 2506 2507 exit_drop_table: 2508 sqlite3SrcListDelete(db, pName); 2509 } 2510 2511 /* 2512 ** This routine is called to create a new foreign key on the table 2513 ** currently under construction. pFromCol determines which columns 2514 ** in the current table point to the foreign key. If pFromCol==0 then 2515 ** connect the key to the last column inserted. pTo is the name of 2516 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2517 ** of tables in the parent pTo table. flags contains all 2518 ** information about the conflict resolution algorithms specified 2519 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2520 ** 2521 ** An FKey structure is created and added to the table currently 2522 ** under construction in the pParse->pNewTable field. 2523 ** 2524 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2525 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2526 */ 2527 void sqlite3CreateForeignKey( 2528 Parse *pParse, /* Parsing context */ 2529 ExprList *pFromCol, /* Columns in this table that point to other table */ 2530 Token *pTo, /* Name of the other table */ 2531 ExprList *pToCol, /* Columns in the other table */ 2532 int flags /* Conflict resolution algorithms. */ 2533 ){ 2534 sqlite3 *db = pParse->db; 2535 #ifndef SQLITE_OMIT_FOREIGN_KEY 2536 FKey *pFKey = 0; 2537 FKey *pNextTo; 2538 Table *p = pParse->pNewTable; 2539 int nByte; 2540 int i; 2541 int nCol; 2542 char *z; 2543 2544 assert( pTo!=0 ); 2545 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2546 if( pFromCol==0 ){ 2547 int iCol = p->nCol-1; 2548 if( NEVER(iCol<0) ) goto fk_end; 2549 if( pToCol && pToCol->nExpr!=1 ){ 2550 sqlite3ErrorMsg(pParse, "foreign key on %s" 2551 " should reference only one column of table %T", 2552 p->aCol[iCol].zName, pTo); 2553 goto fk_end; 2554 } 2555 nCol = 1; 2556 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2557 sqlite3ErrorMsg(pParse, 2558 "number of columns in foreign key does not match the number of " 2559 "columns in the referenced table"); 2560 goto fk_end; 2561 }else{ 2562 nCol = pFromCol->nExpr; 2563 } 2564 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2565 if( pToCol ){ 2566 for(i=0; i<pToCol->nExpr; i++){ 2567 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2568 } 2569 } 2570 pFKey = sqlite3DbMallocZero(db, nByte ); 2571 if( pFKey==0 ){ 2572 goto fk_end; 2573 } 2574 pFKey->pFrom = p; 2575 pFKey->pNextFrom = p->pFKey; 2576 z = (char*)&pFKey->aCol[nCol]; 2577 pFKey->zTo = z; 2578 memcpy(z, pTo->z, pTo->n); 2579 z[pTo->n] = 0; 2580 sqlite3Dequote(z); 2581 z += pTo->n+1; 2582 pFKey->nCol = nCol; 2583 if( pFromCol==0 ){ 2584 pFKey->aCol[0].iFrom = p->nCol-1; 2585 }else{ 2586 for(i=0; i<nCol; i++){ 2587 int j; 2588 for(j=0; j<p->nCol; j++){ 2589 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2590 pFKey->aCol[i].iFrom = j; 2591 break; 2592 } 2593 } 2594 if( j>=p->nCol ){ 2595 sqlite3ErrorMsg(pParse, 2596 "unknown column \"%s\" in foreign key definition", 2597 pFromCol->a[i].zName); 2598 goto fk_end; 2599 } 2600 } 2601 } 2602 if( pToCol ){ 2603 for(i=0; i<nCol; i++){ 2604 int n = sqlite3Strlen30(pToCol->a[i].zName); 2605 pFKey->aCol[i].zCol = z; 2606 memcpy(z, pToCol->a[i].zName, n); 2607 z[n] = 0; 2608 z += n+1; 2609 } 2610 } 2611 pFKey->isDeferred = 0; 2612 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2613 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2614 2615 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2616 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2617 pFKey->zTo, (void *)pFKey 2618 ); 2619 if( pNextTo==pFKey ){ 2620 db->mallocFailed = 1; 2621 goto fk_end; 2622 } 2623 if( pNextTo ){ 2624 assert( pNextTo->pPrevTo==0 ); 2625 pFKey->pNextTo = pNextTo; 2626 pNextTo->pPrevTo = pFKey; 2627 } 2628 2629 /* Link the foreign key to the table as the last step. 2630 */ 2631 p->pFKey = pFKey; 2632 pFKey = 0; 2633 2634 fk_end: 2635 sqlite3DbFree(db, pFKey); 2636 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2637 sqlite3ExprListDelete(db, pFromCol); 2638 sqlite3ExprListDelete(db, pToCol); 2639 } 2640 2641 /* 2642 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2643 ** clause is seen as part of a foreign key definition. The isDeferred 2644 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2645 ** The behavior of the most recently created foreign key is adjusted 2646 ** accordingly. 2647 */ 2648 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2649 #ifndef SQLITE_OMIT_FOREIGN_KEY 2650 Table *pTab; 2651 FKey *pFKey; 2652 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2653 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2654 pFKey->isDeferred = (u8)isDeferred; 2655 #endif 2656 } 2657 2658 /* 2659 ** Generate code that will erase and refill index *pIdx. This is 2660 ** used to initialize a newly created index or to recompute the 2661 ** content of an index in response to a REINDEX command. 2662 ** 2663 ** if memRootPage is not negative, it means that the index is newly 2664 ** created. The register specified by memRootPage contains the 2665 ** root page number of the index. If memRootPage is negative, then 2666 ** the index already exists and must be cleared before being refilled and 2667 ** the root page number of the index is taken from pIndex->tnum. 2668 */ 2669 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2670 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2671 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2672 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2673 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2674 int addr1; /* Address of top of loop */ 2675 int addr2; /* Address to jump to for next iteration */ 2676 int tnum; /* Root page of index */ 2677 int iPartIdxLabel; /* Jump to this label to skip a row */ 2678 Vdbe *v; /* Generate code into this virtual machine */ 2679 KeyInfo *pKey; /* KeyInfo for index */ 2680 int regRecord; /* Register holding assembled index record */ 2681 sqlite3 *db = pParse->db; /* The database connection */ 2682 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2683 2684 #ifndef SQLITE_OMIT_AUTHORIZATION 2685 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2686 db->aDb[iDb].zName ) ){ 2687 return; 2688 } 2689 #endif 2690 2691 /* Require a write-lock on the table to perform this operation */ 2692 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2693 2694 v = sqlite3GetVdbe(pParse); 2695 if( v==0 ) return; 2696 if( memRootPage>=0 ){ 2697 tnum = memRootPage; 2698 }else{ 2699 tnum = pIndex->tnum; 2700 } 2701 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2702 2703 /* Open the sorter cursor if we are to use one. */ 2704 iSorter = pParse->nTab++; 2705 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2706 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2707 2708 /* Open the table. Loop through all rows of the table, inserting index 2709 ** records into the sorter. */ 2710 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2711 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2712 regRecord = sqlite3GetTempReg(pParse); 2713 2714 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2715 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2716 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2717 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2718 sqlite3VdbeJumpHere(v, addr1); 2719 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2720 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2721 (char *)pKey, P4_KEYINFO); 2722 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2723 2724 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2725 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2726 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2727 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2728 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2729 addr2 = sqlite3VdbeCurrentAddr(v); 2730 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2731 pIndex->nKeyCol); VdbeCoverage(v); 2732 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2733 }else{ 2734 addr2 = sqlite3VdbeCurrentAddr(v); 2735 } 2736 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2737 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2738 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2739 sqlite3ReleaseTempReg(pParse, regRecord); 2740 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2741 sqlite3VdbeJumpHere(v, addr1); 2742 2743 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2744 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2745 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2746 } 2747 2748 /* 2749 ** Allocate heap space to hold an Index object with nCol columns. 2750 ** 2751 ** Increase the allocation size to provide an extra nExtra bytes 2752 ** of 8-byte aligned space after the Index object and return a 2753 ** pointer to this extra space in *ppExtra. 2754 */ 2755 Index *sqlite3AllocateIndexObject( 2756 sqlite3 *db, /* Database connection */ 2757 i16 nCol, /* Total number of columns in the index */ 2758 int nExtra, /* Number of bytes of extra space to alloc */ 2759 char **ppExtra /* Pointer to the "extra" space */ 2760 ){ 2761 Index *p; /* Allocated index object */ 2762 int nByte; /* Bytes of space for Index object + arrays */ 2763 2764 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2765 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2766 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2767 sizeof(i16)*nCol + /* Index.aiColumn */ 2768 sizeof(u8)*nCol); /* Index.aSortOrder */ 2769 p = sqlite3DbMallocZero(db, nByte + nExtra); 2770 if( p ){ 2771 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2772 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2773 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2774 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2775 p->aSortOrder = (u8*)pExtra; 2776 p->nColumn = nCol; 2777 p->nKeyCol = nCol - 1; 2778 *ppExtra = ((char*)p) + nByte; 2779 } 2780 return p; 2781 } 2782 2783 /* 2784 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2785 ** and pTblList is the name of the table that is to be indexed. Both will 2786 ** be NULL for a primary key or an index that is created to satisfy a 2787 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2788 ** as the table to be indexed. pParse->pNewTable is a table that is 2789 ** currently being constructed by a CREATE TABLE statement. 2790 ** 2791 ** pList is a list of columns to be indexed. pList will be NULL if this 2792 ** is a primary key or unique-constraint on the most recent column added 2793 ** to the table currently under construction. 2794 ** 2795 ** If the index is created successfully, return a pointer to the new Index 2796 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2797 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2798 */ 2799 Index *sqlite3CreateIndex( 2800 Parse *pParse, /* All information about this parse */ 2801 Token *pName1, /* First part of index name. May be NULL */ 2802 Token *pName2, /* Second part of index name. May be NULL */ 2803 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2804 ExprList *pList, /* A list of columns to be indexed */ 2805 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2806 Token *pStart, /* The CREATE token that begins this statement */ 2807 Expr *pPIWhere, /* WHERE clause for partial indices */ 2808 int sortOrder, /* Sort order of primary key when pList==NULL */ 2809 int ifNotExist /* Omit error if index already exists */ 2810 ){ 2811 Index *pRet = 0; /* Pointer to return */ 2812 Table *pTab = 0; /* Table to be indexed */ 2813 Index *pIndex = 0; /* The index to be created */ 2814 char *zName = 0; /* Name of the index */ 2815 int nName; /* Number of characters in zName */ 2816 int i, j; 2817 DbFixer sFix; /* For assigning database names to pTable */ 2818 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2819 sqlite3 *db = pParse->db; 2820 Db *pDb; /* The specific table containing the indexed database */ 2821 int iDb; /* Index of the database that is being written */ 2822 Token *pName = 0; /* Unqualified name of the index to create */ 2823 struct ExprList_item *pListItem; /* For looping over pList */ 2824 const Column *pTabCol; /* A column in the table */ 2825 int nExtra = 0; /* Space allocated for zExtra[] */ 2826 int nExtraCol; /* Number of extra columns needed */ 2827 char *zExtra = 0; /* Extra space after the Index object */ 2828 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2829 2830 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2831 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2832 goto exit_create_index; 2833 } 2834 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2835 goto exit_create_index; 2836 } 2837 2838 /* 2839 ** Find the table that is to be indexed. Return early if not found. 2840 */ 2841 if( pTblName!=0 ){ 2842 2843 /* Use the two-part index name to determine the database 2844 ** to search for the table. 'Fix' the table name to this db 2845 ** before looking up the table. 2846 */ 2847 assert( pName1 && pName2 ); 2848 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2849 if( iDb<0 ) goto exit_create_index; 2850 assert( pName && pName->z ); 2851 2852 #ifndef SQLITE_OMIT_TEMPDB 2853 /* If the index name was unqualified, check if the table 2854 ** is a temp table. If so, set the database to 1. Do not do this 2855 ** if initialising a database schema. 2856 */ 2857 if( !db->init.busy ){ 2858 pTab = sqlite3SrcListLookup(pParse, pTblName); 2859 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2860 iDb = 1; 2861 } 2862 } 2863 #endif 2864 2865 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2866 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2867 /* Because the parser constructs pTblName from a single identifier, 2868 ** sqlite3FixSrcList can never fail. */ 2869 assert(0); 2870 } 2871 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2872 assert( db->mallocFailed==0 || pTab==0 ); 2873 if( pTab==0 ) goto exit_create_index; 2874 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2875 sqlite3ErrorMsg(pParse, 2876 "cannot create a TEMP index on non-TEMP table \"%s\"", 2877 pTab->zName); 2878 goto exit_create_index; 2879 } 2880 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2881 }else{ 2882 assert( pName==0 ); 2883 assert( pStart==0 ); 2884 pTab = pParse->pNewTable; 2885 if( !pTab ) goto exit_create_index; 2886 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2887 } 2888 pDb = &db->aDb[iDb]; 2889 2890 assert( pTab!=0 ); 2891 assert( pParse->nErr==0 ); 2892 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2893 #if SQLITE_USER_AUTHENTICATION 2894 && sqlite3UserAuthTable(pTab->zName)==0 2895 #endif 2896 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2897 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2898 goto exit_create_index; 2899 } 2900 #ifndef SQLITE_OMIT_VIEW 2901 if( pTab->pSelect ){ 2902 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2903 goto exit_create_index; 2904 } 2905 #endif 2906 #ifndef SQLITE_OMIT_VIRTUALTABLE 2907 if( IsVirtual(pTab) ){ 2908 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2909 goto exit_create_index; 2910 } 2911 #endif 2912 2913 /* 2914 ** Find the name of the index. Make sure there is not already another 2915 ** index or table with the same name. 2916 ** 2917 ** Exception: If we are reading the names of permanent indices from the 2918 ** sqlite_master table (because some other process changed the schema) and 2919 ** one of the index names collides with the name of a temporary table or 2920 ** index, then we will continue to process this index. 2921 ** 2922 ** If pName==0 it means that we are 2923 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2924 ** own name. 2925 */ 2926 if( pName ){ 2927 zName = sqlite3NameFromToken(db, pName); 2928 if( zName==0 ) goto exit_create_index; 2929 assert( pName->z!=0 ); 2930 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2931 goto exit_create_index; 2932 } 2933 if( !db->init.busy ){ 2934 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2935 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2936 goto exit_create_index; 2937 } 2938 } 2939 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2940 if( !ifNotExist ){ 2941 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2942 }else{ 2943 assert( !db->init.busy ); 2944 sqlite3CodeVerifySchema(pParse, iDb); 2945 } 2946 goto exit_create_index; 2947 } 2948 }else{ 2949 int n; 2950 Index *pLoop; 2951 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2952 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2953 if( zName==0 ){ 2954 goto exit_create_index; 2955 } 2956 } 2957 2958 /* Check for authorization to create an index. 2959 */ 2960 #ifndef SQLITE_OMIT_AUTHORIZATION 2961 { 2962 const char *zDb = pDb->zName; 2963 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2964 goto exit_create_index; 2965 } 2966 i = SQLITE_CREATE_INDEX; 2967 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2968 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2969 goto exit_create_index; 2970 } 2971 } 2972 #endif 2973 2974 /* If pList==0, it means this routine was called to make a primary 2975 ** key out of the last column added to the table under construction. 2976 ** So create a fake list to simulate this. 2977 */ 2978 if( pList==0 ){ 2979 pList = sqlite3ExprListAppend(pParse, 0, 0); 2980 if( pList==0 ) goto exit_create_index; 2981 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 2982 pTab->aCol[pTab->nCol-1].zName); 2983 pList->a[0].sortOrder = (u8)sortOrder; 2984 } 2985 2986 /* Figure out how many bytes of space are required to store explicitly 2987 ** specified collation sequence names. 2988 */ 2989 for(i=0; i<pList->nExpr; i++){ 2990 Expr *pExpr = pList->a[i].pExpr; 2991 if( pExpr ){ 2992 assert( pExpr->op==TK_COLLATE ); 2993 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 2994 } 2995 } 2996 2997 /* 2998 ** Allocate the index structure. 2999 */ 3000 nName = sqlite3Strlen30(zName); 3001 nExtraCol = pPk ? pPk->nKeyCol : 1; 3002 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3003 nName + nExtra + 1, &zExtra); 3004 if( db->mallocFailed ){ 3005 goto exit_create_index; 3006 } 3007 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3008 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3009 pIndex->zName = zExtra; 3010 zExtra += nName + 1; 3011 memcpy(pIndex->zName, zName, nName+1); 3012 pIndex->pTable = pTab; 3013 pIndex->onError = (u8)onError; 3014 pIndex->uniqNotNull = onError!=OE_None; 3015 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3016 pIndex->pSchema = db->aDb[iDb].pSchema; 3017 pIndex->nKeyCol = pList->nExpr; 3018 if( pPIWhere ){ 3019 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3020 pIndex->pPartIdxWhere = pPIWhere; 3021 pPIWhere = 0; 3022 } 3023 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3024 3025 /* Check to see if we should honor DESC requests on index columns 3026 */ 3027 if( pDb->pSchema->file_format>=4 ){ 3028 sortOrderMask = -1; /* Honor DESC */ 3029 }else{ 3030 sortOrderMask = 0; /* Ignore DESC */ 3031 } 3032 3033 /* Scan the names of the columns of the table to be indexed and 3034 ** load the column indices into the Index structure. Report an error 3035 ** if any column is not found. 3036 ** 3037 ** TODO: Add a test to make sure that the same column is not named 3038 ** more than once within the same index. Only the first instance of 3039 ** the column will ever be used by the optimizer. Note that using the 3040 ** same column more than once cannot be an error because that would 3041 ** break backwards compatibility - it needs to be a warning. 3042 */ 3043 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3044 const char *zColName = pListItem->zName; 3045 int requestedSortOrder; 3046 char *zColl; /* Collation sequence name */ 3047 3048 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3049 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3050 } 3051 if( j>=pTab->nCol ){ 3052 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3053 pTab->zName, zColName); 3054 pParse->checkSchema = 1; 3055 goto exit_create_index; 3056 } 3057 assert( j<=0x7fff ); 3058 pIndex->aiColumn[i] = (i16)j; 3059 if( pListItem->pExpr ){ 3060 int nColl; 3061 assert( pListItem->pExpr->op==TK_COLLATE ); 3062 zColl = pListItem->pExpr->u.zToken; 3063 nColl = sqlite3Strlen30(zColl) + 1; 3064 assert( nExtra>=nColl ); 3065 memcpy(zExtra, zColl, nColl); 3066 zColl = zExtra; 3067 zExtra += nColl; 3068 nExtra -= nColl; 3069 }else{ 3070 zColl = pTab->aCol[j].zColl; 3071 if( !zColl ) zColl = "BINARY"; 3072 } 3073 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3074 goto exit_create_index; 3075 } 3076 pIndex->azColl[i] = zColl; 3077 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3078 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3079 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3080 } 3081 if( pPk ){ 3082 for(j=0; j<pPk->nKeyCol; j++){ 3083 int x = pPk->aiColumn[j]; 3084 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3085 pIndex->nColumn--; 3086 }else{ 3087 pIndex->aiColumn[i] = x; 3088 pIndex->azColl[i] = pPk->azColl[j]; 3089 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3090 i++; 3091 } 3092 } 3093 assert( i==pIndex->nColumn ); 3094 }else{ 3095 pIndex->aiColumn[i] = -1; 3096 pIndex->azColl[i] = "BINARY"; 3097 } 3098 sqlite3DefaultRowEst(pIndex); 3099 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3100 3101 if( pTab==pParse->pNewTable ){ 3102 /* This routine has been called to create an automatic index as a 3103 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3104 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3105 ** i.e. one of: 3106 ** 3107 ** CREATE TABLE t(x PRIMARY KEY, y); 3108 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3109 ** 3110 ** Either way, check to see if the table already has such an index. If 3111 ** so, don't bother creating this one. This only applies to 3112 ** automatically created indices. Users can do as they wish with 3113 ** explicit indices. 3114 ** 3115 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3116 ** (and thus suppressing the second one) even if they have different 3117 ** sort orders. 3118 ** 3119 ** If there are different collating sequences or if the columns of 3120 ** the constraint occur in different orders, then the constraints are 3121 ** considered distinct and both result in separate indices. 3122 */ 3123 Index *pIdx; 3124 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3125 int k; 3126 assert( IsUniqueIndex(pIdx) ); 3127 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3128 assert( IsUniqueIndex(pIndex) ); 3129 3130 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3131 for(k=0; k<pIdx->nKeyCol; k++){ 3132 const char *z1; 3133 const char *z2; 3134 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3135 z1 = pIdx->azColl[k]; 3136 z2 = pIndex->azColl[k]; 3137 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3138 } 3139 if( k==pIdx->nKeyCol ){ 3140 if( pIdx->onError!=pIndex->onError ){ 3141 /* This constraint creates the same index as a previous 3142 ** constraint specified somewhere in the CREATE TABLE statement. 3143 ** However the ON CONFLICT clauses are different. If both this 3144 ** constraint and the previous equivalent constraint have explicit 3145 ** ON CONFLICT clauses this is an error. Otherwise, use the 3146 ** explicitly specified behavior for the index. 3147 */ 3148 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3149 sqlite3ErrorMsg(pParse, 3150 "conflicting ON CONFLICT clauses specified", 0); 3151 } 3152 if( pIdx->onError==OE_Default ){ 3153 pIdx->onError = pIndex->onError; 3154 } 3155 } 3156 goto exit_create_index; 3157 } 3158 } 3159 } 3160 3161 /* Link the new Index structure to its table and to the other 3162 ** in-memory database structures. 3163 */ 3164 if( db->init.busy ){ 3165 Index *p; 3166 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3167 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3168 pIndex->zName, pIndex); 3169 if( p ){ 3170 assert( p==pIndex ); /* Malloc must have failed */ 3171 db->mallocFailed = 1; 3172 goto exit_create_index; 3173 } 3174 db->flags |= SQLITE_InternChanges; 3175 if( pTblName!=0 ){ 3176 pIndex->tnum = db->init.newTnum; 3177 } 3178 } 3179 3180 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3181 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3182 ** emit code to allocate the index rootpage on disk and make an entry for 3183 ** the index in the sqlite_master table and populate the index with 3184 ** content. But, do not do this if we are simply reading the sqlite_master 3185 ** table to parse the schema, or if this index is the PRIMARY KEY index 3186 ** of a WITHOUT ROWID table. 3187 ** 3188 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3189 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3190 ** has just been created, it contains no data and the index initialization 3191 ** step can be skipped. 3192 */ 3193 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3194 Vdbe *v; 3195 char *zStmt; 3196 int iMem = ++pParse->nMem; 3197 3198 v = sqlite3GetVdbe(pParse); 3199 if( v==0 ) goto exit_create_index; 3200 3201 3202 /* Create the rootpage for the index 3203 */ 3204 sqlite3BeginWriteOperation(pParse, 1, iDb); 3205 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3206 3207 /* Gather the complete text of the CREATE INDEX statement into 3208 ** the zStmt variable 3209 */ 3210 if( pStart ){ 3211 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3212 if( pName->z[n-1]==';' ) n--; 3213 /* A named index with an explicit CREATE INDEX statement */ 3214 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3215 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3216 }else{ 3217 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3218 /* zStmt = sqlite3MPrintf(""); */ 3219 zStmt = 0; 3220 } 3221 3222 /* Add an entry in sqlite_master for this index 3223 */ 3224 sqlite3NestedParse(pParse, 3225 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3226 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3227 pIndex->zName, 3228 pTab->zName, 3229 iMem, 3230 zStmt 3231 ); 3232 sqlite3DbFree(db, zStmt); 3233 3234 /* Fill the index with data and reparse the schema. Code an OP_Expire 3235 ** to invalidate all pre-compiled statements. 3236 */ 3237 if( pTblName ){ 3238 sqlite3RefillIndex(pParse, pIndex, iMem); 3239 sqlite3ChangeCookie(pParse, iDb); 3240 sqlite3VdbeAddParseSchemaOp(v, iDb, 3241 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3242 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3243 } 3244 } 3245 3246 /* When adding an index to the list of indices for a table, make 3247 ** sure all indices labeled OE_Replace come after all those labeled 3248 ** OE_Ignore. This is necessary for the correct constraint check 3249 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3250 ** UPDATE and INSERT statements. 3251 */ 3252 if( db->init.busy || pTblName==0 ){ 3253 if( onError!=OE_Replace || pTab->pIndex==0 3254 || pTab->pIndex->onError==OE_Replace){ 3255 pIndex->pNext = pTab->pIndex; 3256 pTab->pIndex = pIndex; 3257 }else{ 3258 Index *pOther = pTab->pIndex; 3259 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3260 pOther = pOther->pNext; 3261 } 3262 pIndex->pNext = pOther->pNext; 3263 pOther->pNext = pIndex; 3264 } 3265 pRet = pIndex; 3266 pIndex = 0; 3267 } 3268 3269 /* Clean up before exiting */ 3270 exit_create_index: 3271 if( pIndex ) freeIndex(db, pIndex); 3272 sqlite3ExprDelete(db, pPIWhere); 3273 sqlite3ExprListDelete(db, pList); 3274 sqlite3SrcListDelete(db, pTblName); 3275 sqlite3DbFree(db, zName); 3276 return pRet; 3277 } 3278 3279 /* 3280 ** Fill the Index.aiRowEst[] array with default information - information 3281 ** to be used when we have not run the ANALYZE command. 3282 ** 3283 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3284 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3285 ** number of rows in the table that match any particular value of the 3286 ** first column of the index. aiRowEst[2] is an estimate of the number 3287 ** of rows that match any particular combination of the first 2 columns 3288 ** of the index. And so forth. It must always be the case that 3289 * 3290 ** aiRowEst[N]<=aiRowEst[N-1] 3291 ** aiRowEst[N]>=1 3292 ** 3293 ** Apart from that, we have little to go on besides intuition as to 3294 ** how aiRowEst[] should be initialized. The numbers generated here 3295 ** are based on typical values found in actual indices. 3296 */ 3297 void sqlite3DefaultRowEst(Index *pIdx){ 3298 /* 10, 9, 8, 7, 6 */ 3299 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3300 LogEst *a = pIdx->aiRowLogEst; 3301 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3302 int i; 3303 3304 /* Set the first entry (number of rows in the index) to the estimated 3305 ** number of rows in the table. Or 10, if the estimated number of rows 3306 ** in the table is less than that. */ 3307 a[0] = pIdx->pTable->nRowLogEst; 3308 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3309 3310 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3311 ** 6 and each subsequent value (if any) is 5. */ 3312 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3313 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3314 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3315 } 3316 3317 assert( 0==sqlite3LogEst(1) ); 3318 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3319 } 3320 3321 /* 3322 ** This routine will drop an existing named index. This routine 3323 ** implements the DROP INDEX statement. 3324 */ 3325 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3326 Index *pIndex; 3327 Vdbe *v; 3328 sqlite3 *db = pParse->db; 3329 int iDb; 3330 3331 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3332 if( db->mallocFailed ){ 3333 goto exit_drop_index; 3334 } 3335 assert( pName->nSrc==1 ); 3336 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3337 goto exit_drop_index; 3338 } 3339 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3340 if( pIndex==0 ){ 3341 if( !ifExists ){ 3342 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3343 }else{ 3344 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3345 } 3346 pParse->checkSchema = 1; 3347 goto exit_drop_index; 3348 } 3349 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3350 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3351 "or PRIMARY KEY constraint cannot be dropped", 0); 3352 goto exit_drop_index; 3353 } 3354 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3355 #ifndef SQLITE_OMIT_AUTHORIZATION 3356 { 3357 int code = SQLITE_DROP_INDEX; 3358 Table *pTab = pIndex->pTable; 3359 const char *zDb = db->aDb[iDb].zName; 3360 const char *zTab = SCHEMA_TABLE(iDb); 3361 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3362 goto exit_drop_index; 3363 } 3364 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3365 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3366 goto exit_drop_index; 3367 } 3368 } 3369 #endif 3370 3371 /* Generate code to remove the index and from the master table */ 3372 v = sqlite3GetVdbe(pParse); 3373 if( v ){ 3374 sqlite3BeginWriteOperation(pParse, 1, iDb); 3375 sqlite3NestedParse(pParse, 3376 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3377 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3378 ); 3379 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3380 sqlite3ChangeCookie(pParse, iDb); 3381 destroyRootPage(pParse, pIndex->tnum, iDb); 3382 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3383 } 3384 3385 exit_drop_index: 3386 sqlite3SrcListDelete(db, pName); 3387 } 3388 3389 /* 3390 ** pArray is a pointer to an array of objects. Each object in the 3391 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3392 ** to extend the array so that there is space for a new object at the end. 3393 ** 3394 ** When this function is called, *pnEntry contains the current size of 3395 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3396 ** in total). 3397 ** 3398 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3399 ** space allocated for the new object is zeroed, *pnEntry updated to 3400 ** reflect the new size of the array and a pointer to the new allocation 3401 ** returned. *pIdx is set to the index of the new array entry in this case. 3402 ** 3403 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3404 ** unchanged and a copy of pArray returned. 3405 */ 3406 void *sqlite3ArrayAllocate( 3407 sqlite3 *db, /* Connection to notify of malloc failures */ 3408 void *pArray, /* Array of objects. Might be reallocated */ 3409 int szEntry, /* Size of each object in the array */ 3410 int *pnEntry, /* Number of objects currently in use */ 3411 int *pIdx /* Write the index of a new slot here */ 3412 ){ 3413 char *z; 3414 int n = *pnEntry; 3415 if( (n & (n-1))==0 ){ 3416 int sz = (n==0) ? 1 : 2*n; 3417 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3418 if( pNew==0 ){ 3419 *pIdx = -1; 3420 return pArray; 3421 } 3422 pArray = pNew; 3423 } 3424 z = (char*)pArray; 3425 memset(&z[n * szEntry], 0, szEntry); 3426 *pIdx = n; 3427 ++*pnEntry; 3428 return pArray; 3429 } 3430 3431 /* 3432 ** Append a new element to the given IdList. Create a new IdList if 3433 ** need be. 3434 ** 3435 ** A new IdList is returned, or NULL if malloc() fails. 3436 */ 3437 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3438 int i; 3439 if( pList==0 ){ 3440 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3441 if( pList==0 ) return 0; 3442 } 3443 pList->a = sqlite3ArrayAllocate( 3444 db, 3445 pList->a, 3446 sizeof(pList->a[0]), 3447 &pList->nId, 3448 &i 3449 ); 3450 if( i<0 ){ 3451 sqlite3IdListDelete(db, pList); 3452 return 0; 3453 } 3454 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3455 return pList; 3456 } 3457 3458 /* 3459 ** Delete an IdList. 3460 */ 3461 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3462 int i; 3463 if( pList==0 ) return; 3464 for(i=0; i<pList->nId; i++){ 3465 sqlite3DbFree(db, pList->a[i].zName); 3466 } 3467 sqlite3DbFree(db, pList->a); 3468 sqlite3DbFree(db, pList); 3469 } 3470 3471 /* 3472 ** Return the index in pList of the identifier named zId. Return -1 3473 ** if not found. 3474 */ 3475 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3476 int i; 3477 if( pList==0 ) return -1; 3478 for(i=0; i<pList->nId; i++){ 3479 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3480 } 3481 return -1; 3482 } 3483 3484 /* 3485 ** Expand the space allocated for the given SrcList object by 3486 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3487 ** New slots are zeroed. 3488 ** 3489 ** For example, suppose a SrcList initially contains two entries: A,B. 3490 ** To append 3 new entries onto the end, do this: 3491 ** 3492 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3493 ** 3494 ** After the call above it would contain: A, B, nil, nil, nil. 3495 ** If the iStart argument had been 1 instead of 2, then the result 3496 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3497 ** the iStart value would be 0. The result then would 3498 ** be: nil, nil, nil, A, B. 3499 ** 3500 ** If a memory allocation fails the SrcList is unchanged. The 3501 ** db->mallocFailed flag will be set to true. 3502 */ 3503 SrcList *sqlite3SrcListEnlarge( 3504 sqlite3 *db, /* Database connection to notify of OOM errors */ 3505 SrcList *pSrc, /* The SrcList to be enlarged */ 3506 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3507 int iStart /* Index in pSrc->a[] of first new slot */ 3508 ){ 3509 int i; 3510 3511 /* Sanity checking on calling parameters */ 3512 assert( iStart>=0 ); 3513 assert( nExtra>=1 ); 3514 assert( pSrc!=0 ); 3515 assert( iStart<=pSrc->nSrc ); 3516 3517 /* Allocate additional space if needed */ 3518 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3519 SrcList *pNew; 3520 int nAlloc = pSrc->nSrc+nExtra; 3521 int nGot; 3522 pNew = sqlite3DbRealloc(db, pSrc, 3523 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3524 if( pNew==0 ){ 3525 assert( db->mallocFailed ); 3526 return pSrc; 3527 } 3528 pSrc = pNew; 3529 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3530 pSrc->nAlloc = nGot; 3531 } 3532 3533 /* Move existing slots that come after the newly inserted slots 3534 ** out of the way */ 3535 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3536 pSrc->a[i+nExtra] = pSrc->a[i]; 3537 } 3538 pSrc->nSrc += nExtra; 3539 3540 /* Zero the newly allocated slots */ 3541 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3542 for(i=iStart; i<iStart+nExtra; i++){ 3543 pSrc->a[i].iCursor = -1; 3544 } 3545 3546 /* Return a pointer to the enlarged SrcList */ 3547 return pSrc; 3548 } 3549 3550 3551 /* 3552 ** Append a new table name to the given SrcList. Create a new SrcList if 3553 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3554 ** 3555 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3556 ** SrcList might be the same as the SrcList that was input or it might be 3557 ** a new one. If an OOM error does occurs, then the prior value of pList 3558 ** that is input to this routine is automatically freed. 3559 ** 3560 ** If pDatabase is not null, it means that the table has an optional 3561 ** database name prefix. Like this: "database.table". The pDatabase 3562 ** points to the table name and the pTable points to the database name. 3563 ** The SrcList.a[].zName field is filled with the table name which might 3564 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3565 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3566 ** or with NULL if no database is specified. 3567 ** 3568 ** In other words, if call like this: 3569 ** 3570 ** sqlite3SrcListAppend(D,A,B,0); 3571 ** 3572 ** Then B is a table name and the database name is unspecified. If called 3573 ** like this: 3574 ** 3575 ** sqlite3SrcListAppend(D,A,B,C); 3576 ** 3577 ** Then C is the table name and B is the database name. If C is defined 3578 ** then so is B. In other words, we never have a case where: 3579 ** 3580 ** sqlite3SrcListAppend(D,A,0,C); 3581 ** 3582 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3583 ** before being added to the SrcList. 3584 */ 3585 SrcList *sqlite3SrcListAppend( 3586 sqlite3 *db, /* Connection to notify of malloc failures */ 3587 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3588 Token *pTable, /* Table to append */ 3589 Token *pDatabase /* Database of the table */ 3590 ){ 3591 struct SrcList_item *pItem; 3592 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3593 if( pList==0 ){ 3594 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3595 if( pList==0 ) return 0; 3596 pList->nAlloc = 1; 3597 } 3598 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3599 if( db->mallocFailed ){ 3600 sqlite3SrcListDelete(db, pList); 3601 return 0; 3602 } 3603 pItem = &pList->a[pList->nSrc-1]; 3604 if( pDatabase && pDatabase->z==0 ){ 3605 pDatabase = 0; 3606 } 3607 if( pDatabase ){ 3608 Token *pTemp = pDatabase; 3609 pDatabase = pTable; 3610 pTable = pTemp; 3611 } 3612 pItem->zName = sqlite3NameFromToken(db, pTable); 3613 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3614 return pList; 3615 } 3616 3617 /* 3618 ** Assign VdbeCursor index numbers to all tables in a SrcList 3619 */ 3620 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3621 int i; 3622 struct SrcList_item *pItem; 3623 assert(pList || pParse->db->mallocFailed ); 3624 if( pList ){ 3625 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3626 if( pItem->iCursor>=0 ) break; 3627 pItem->iCursor = pParse->nTab++; 3628 if( pItem->pSelect ){ 3629 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3630 } 3631 } 3632 } 3633 } 3634 3635 /* 3636 ** Delete an entire SrcList including all its substructure. 3637 */ 3638 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3639 int i; 3640 struct SrcList_item *pItem; 3641 if( pList==0 ) return; 3642 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3643 sqlite3DbFree(db, pItem->zDatabase); 3644 sqlite3DbFree(db, pItem->zName); 3645 sqlite3DbFree(db, pItem->zAlias); 3646 sqlite3DbFree(db, pItem->zIndex); 3647 sqlite3DeleteTable(db, pItem->pTab); 3648 sqlite3SelectDelete(db, pItem->pSelect); 3649 sqlite3ExprDelete(db, pItem->pOn); 3650 sqlite3IdListDelete(db, pItem->pUsing); 3651 } 3652 sqlite3DbFree(db, pList); 3653 } 3654 3655 /* 3656 ** This routine is called by the parser to add a new term to the 3657 ** end of a growing FROM clause. The "p" parameter is the part of 3658 ** the FROM clause that has already been constructed. "p" is NULL 3659 ** if this is the first term of the FROM clause. pTable and pDatabase 3660 ** are the name of the table and database named in the FROM clause term. 3661 ** pDatabase is NULL if the database name qualifier is missing - the 3662 ** usual case. If the term has an alias, then pAlias points to the 3663 ** alias token. If the term is a subquery, then pSubquery is the 3664 ** SELECT statement that the subquery encodes. The pTable and 3665 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3666 ** parameters are the content of the ON and USING clauses. 3667 ** 3668 ** Return a new SrcList which encodes is the FROM with the new 3669 ** term added. 3670 */ 3671 SrcList *sqlite3SrcListAppendFromTerm( 3672 Parse *pParse, /* Parsing context */ 3673 SrcList *p, /* The left part of the FROM clause already seen */ 3674 Token *pTable, /* Name of the table to add to the FROM clause */ 3675 Token *pDatabase, /* Name of the database containing pTable */ 3676 Token *pAlias, /* The right-hand side of the AS subexpression */ 3677 Select *pSubquery, /* A subquery used in place of a table name */ 3678 Expr *pOn, /* The ON clause of a join */ 3679 IdList *pUsing /* The USING clause of a join */ 3680 ){ 3681 struct SrcList_item *pItem; 3682 sqlite3 *db = pParse->db; 3683 if( !p && (pOn || pUsing) ){ 3684 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3685 (pOn ? "ON" : "USING") 3686 ); 3687 goto append_from_error; 3688 } 3689 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3690 if( p==0 || NEVER(p->nSrc==0) ){ 3691 goto append_from_error; 3692 } 3693 pItem = &p->a[p->nSrc-1]; 3694 assert( pAlias!=0 ); 3695 if( pAlias->n ){ 3696 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3697 } 3698 pItem->pSelect = pSubquery; 3699 pItem->pOn = pOn; 3700 pItem->pUsing = pUsing; 3701 return p; 3702 3703 append_from_error: 3704 assert( p==0 ); 3705 sqlite3ExprDelete(db, pOn); 3706 sqlite3IdListDelete(db, pUsing); 3707 sqlite3SelectDelete(db, pSubquery); 3708 return 0; 3709 } 3710 3711 /* 3712 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3713 ** element of the source-list passed as the second argument. 3714 */ 3715 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3716 assert( pIndexedBy!=0 ); 3717 if( p && ALWAYS(p->nSrc>0) ){ 3718 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3719 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3720 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3721 /* A "NOT INDEXED" clause was supplied. See parse.y 3722 ** construct "indexed_opt" for details. */ 3723 pItem->notIndexed = 1; 3724 }else{ 3725 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3726 } 3727 } 3728 } 3729 3730 /* 3731 ** When building up a FROM clause in the parser, the join operator 3732 ** is initially attached to the left operand. But the code generator 3733 ** expects the join operator to be on the right operand. This routine 3734 ** Shifts all join operators from left to right for an entire FROM 3735 ** clause. 3736 ** 3737 ** Example: Suppose the join is like this: 3738 ** 3739 ** A natural cross join B 3740 ** 3741 ** The operator is "natural cross join". The A and B operands are stored 3742 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3743 ** operator with A. This routine shifts that operator over to B. 3744 */ 3745 void sqlite3SrcListShiftJoinType(SrcList *p){ 3746 if( p ){ 3747 int i; 3748 assert( p->a || p->nSrc==0 ); 3749 for(i=p->nSrc-1; i>0; i--){ 3750 p->a[i].jointype = p->a[i-1].jointype; 3751 } 3752 p->a[0].jointype = 0; 3753 } 3754 } 3755 3756 /* 3757 ** Begin a transaction 3758 */ 3759 void sqlite3BeginTransaction(Parse *pParse, int type){ 3760 sqlite3 *db; 3761 Vdbe *v; 3762 int i; 3763 3764 assert( pParse!=0 ); 3765 db = pParse->db; 3766 assert( db!=0 ); 3767 /* if( db->aDb[0].pBt==0 ) return; */ 3768 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3769 return; 3770 } 3771 v = sqlite3GetVdbe(pParse); 3772 if( !v ) return; 3773 if( type!=TK_DEFERRED ){ 3774 for(i=0; i<db->nDb; i++){ 3775 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3776 sqlite3VdbeUsesBtree(v, i); 3777 } 3778 } 3779 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3780 } 3781 3782 /* 3783 ** Commit a transaction 3784 */ 3785 void sqlite3CommitTransaction(Parse *pParse){ 3786 Vdbe *v; 3787 3788 assert( pParse!=0 ); 3789 assert( pParse->db!=0 ); 3790 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3791 return; 3792 } 3793 v = sqlite3GetVdbe(pParse); 3794 if( v ){ 3795 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3796 } 3797 } 3798 3799 /* 3800 ** Rollback a transaction 3801 */ 3802 void sqlite3RollbackTransaction(Parse *pParse){ 3803 Vdbe *v; 3804 3805 assert( pParse!=0 ); 3806 assert( pParse->db!=0 ); 3807 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3808 return; 3809 } 3810 v = sqlite3GetVdbe(pParse); 3811 if( v ){ 3812 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3813 } 3814 } 3815 3816 /* 3817 ** This function is called by the parser when it parses a command to create, 3818 ** release or rollback an SQL savepoint. 3819 */ 3820 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3821 char *zName = sqlite3NameFromToken(pParse->db, pName); 3822 if( zName ){ 3823 Vdbe *v = sqlite3GetVdbe(pParse); 3824 #ifndef SQLITE_OMIT_AUTHORIZATION 3825 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3826 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3827 #endif 3828 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3829 sqlite3DbFree(pParse->db, zName); 3830 return; 3831 } 3832 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3833 } 3834 } 3835 3836 /* 3837 ** Make sure the TEMP database is open and available for use. Return 3838 ** the number of errors. Leave any error messages in the pParse structure. 3839 */ 3840 int sqlite3OpenTempDatabase(Parse *pParse){ 3841 sqlite3 *db = pParse->db; 3842 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3843 int rc; 3844 Btree *pBt; 3845 static const int flags = 3846 SQLITE_OPEN_READWRITE | 3847 SQLITE_OPEN_CREATE | 3848 SQLITE_OPEN_EXCLUSIVE | 3849 SQLITE_OPEN_DELETEONCLOSE | 3850 SQLITE_OPEN_TEMP_DB; 3851 3852 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3853 if( rc!=SQLITE_OK ){ 3854 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3855 "file for storing temporary tables"); 3856 pParse->rc = rc; 3857 return 1; 3858 } 3859 db->aDb[1].pBt = pBt; 3860 assert( db->aDb[1].pSchema ); 3861 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3862 db->mallocFailed = 1; 3863 return 1; 3864 } 3865 } 3866 return 0; 3867 } 3868 3869 /* 3870 ** Record the fact that the schema cookie will need to be verified 3871 ** for database iDb. The code to actually verify the schema cookie 3872 ** will occur at the end of the top-level VDBE and will be generated 3873 ** later, by sqlite3FinishCoding(). 3874 */ 3875 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3876 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3877 sqlite3 *db = pToplevel->db; 3878 3879 assert( iDb>=0 && iDb<db->nDb ); 3880 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3881 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3882 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3883 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3884 DbMaskSet(pToplevel->cookieMask, iDb); 3885 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3886 if( !OMIT_TEMPDB && iDb==1 ){ 3887 sqlite3OpenTempDatabase(pToplevel); 3888 } 3889 } 3890 } 3891 3892 /* 3893 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3894 ** attached database. Otherwise, invoke it for the database named zDb only. 3895 */ 3896 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3897 sqlite3 *db = pParse->db; 3898 int i; 3899 for(i=0; i<db->nDb; i++){ 3900 Db *pDb = &db->aDb[i]; 3901 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3902 sqlite3CodeVerifySchema(pParse, i); 3903 } 3904 } 3905 } 3906 3907 /* 3908 ** Generate VDBE code that prepares for doing an operation that 3909 ** might change the database. 3910 ** 3911 ** This routine starts a new transaction if we are not already within 3912 ** a transaction. If we are already within a transaction, then a checkpoint 3913 ** is set if the setStatement parameter is true. A checkpoint should 3914 ** be set for operations that might fail (due to a constraint) part of 3915 ** the way through and which will need to undo some writes without having to 3916 ** rollback the whole transaction. For operations where all constraints 3917 ** can be checked before any changes are made to the database, it is never 3918 ** necessary to undo a write and the checkpoint should not be set. 3919 */ 3920 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3921 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3922 sqlite3CodeVerifySchema(pParse, iDb); 3923 DbMaskSet(pToplevel->writeMask, iDb); 3924 pToplevel->isMultiWrite |= setStatement; 3925 } 3926 3927 /* 3928 ** Indicate that the statement currently under construction might write 3929 ** more than one entry (example: deleting one row then inserting another, 3930 ** inserting multiple rows in a table, or inserting a row and index entries.) 3931 ** If an abort occurs after some of these writes have completed, then it will 3932 ** be necessary to undo the completed writes. 3933 */ 3934 void sqlite3MultiWrite(Parse *pParse){ 3935 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3936 pToplevel->isMultiWrite = 1; 3937 } 3938 3939 /* 3940 ** The code generator calls this routine if is discovers that it is 3941 ** possible to abort a statement prior to completion. In order to 3942 ** perform this abort without corrupting the database, we need to make 3943 ** sure that the statement is protected by a statement transaction. 3944 ** 3945 ** Technically, we only need to set the mayAbort flag if the 3946 ** isMultiWrite flag was previously set. There is a time dependency 3947 ** such that the abort must occur after the multiwrite. This makes 3948 ** some statements involving the REPLACE conflict resolution algorithm 3949 ** go a little faster. But taking advantage of this time dependency 3950 ** makes it more difficult to prove that the code is correct (in 3951 ** particular, it prevents us from writing an effective 3952 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3953 ** to take the safe route and skip the optimization. 3954 */ 3955 void sqlite3MayAbort(Parse *pParse){ 3956 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3957 pToplevel->mayAbort = 1; 3958 } 3959 3960 /* 3961 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3962 ** error. The onError parameter determines which (if any) of the statement 3963 ** and/or current transaction is rolled back. 3964 */ 3965 void sqlite3HaltConstraint( 3966 Parse *pParse, /* Parsing context */ 3967 int errCode, /* extended error code */ 3968 int onError, /* Constraint type */ 3969 char *p4, /* Error message */ 3970 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 3971 u8 p5Errmsg /* P5_ErrMsg type */ 3972 ){ 3973 Vdbe *v = sqlite3GetVdbe(pParse); 3974 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3975 if( onError==OE_Abort ){ 3976 sqlite3MayAbort(pParse); 3977 } 3978 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3979 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 3980 } 3981 3982 /* 3983 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 3984 */ 3985 void sqlite3UniqueConstraint( 3986 Parse *pParse, /* Parsing context */ 3987 int onError, /* Constraint type */ 3988 Index *pIdx /* The index that triggers the constraint */ 3989 ){ 3990 char *zErr; 3991 int j; 3992 StrAccum errMsg; 3993 Table *pTab = pIdx->pTable; 3994 3995 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 3996 errMsg.db = pParse->db; 3997 for(j=0; j<pIdx->nKeyCol; j++){ 3998 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 3999 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4000 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4001 sqlite3StrAccumAppend(&errMsg, ".", 1); 4002 sqlite3StrAccumAppendAll(&errMsg, zCol); 4003 } 4004 zErr = sqlite3StrAccumFinish(&errMsg); 4005 sqlite3HaltConstraint(pParse, 4006 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4007 : SQLITE_CONSTRAINT_UNIQUE, 4008 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4009 } 4010 4011 4012 /* 4013 ** Code an OP_Halt due to non-unique rowid. 4014 */ 4015 void sqlite3RowidConstraint( 4016 Parse *pParse, /* Parsing context */ 4017 int onError, /* Conflict resolution algorithm */ 4018 Table *pTab /* The table with the non-unique rowid */ 4019 ){ 4020 char *zMsg; 4021 int rc; 4022 if( pTab->iPKey>=0 ){ 4023 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4024 pTab->aCol[pTab->iPKey].zName); 4025 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4026 }else{ 4027 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4028 rc = SQLITE_CONSTRAINT_ROWID; 4029 } 4030 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4031 P5_ConstraintUnique); 4032 } 4033 4034 /* 4035 ** Check to see if pIndex uses the collating sequence pColl. Return 4036 ** true if it does and false if it does not. 4037 */ 4038 #ifndef SQLITE_OMIT_REINDEX 4039 static int collationMatch(const char *zColl, Index *pIndex){ 4040 int i; 4041 assert( zColl!=0 ); 4042 for(i=0; i<pIndex->nColumn; i++){ 4043 const char *z = pIndex->azColl[i]; 4044 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4045 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4046 return 1; 4047 } 4048 } 4049 return 0; 4050 } 4051 #endif 4052 4053 /* 4054 ** Recompute all indices of pTab that use the collating sequence pColl. 4055 ** If pColl==0 then recompute all indices of pTab. 4056 */ 4057 #ifndef SQLITE_OMIT_REINDEX 4058 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4059 Index *pIndex; /* An index associated with pTab */ 4060 4061 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4062 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4063 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4064 sqlite3BeginWriteOperation(pParse, 0, iDb); 4065 sqlite3RefillIndex(pParse, pIndex, -1); 4066 } 4067 } 4068 } 4069 #endif 4070 4071 /* 4072 ** Recompute all indices of all tables in all databases where the 4073 ** indices use the collating sequence pColl. If pColl==0 then recompute 4074 ** all indices everywhere. 4075 */ 4076 #ifndef SQLITE_OMIT_REINDEX 4077 static void reindexDatabases(Parse *pParse, char const *zColl){ 4078 Db *pDb; /* A single database */ 4079 int iDb; /* The database index number */ 4080 sqlite3 *db = pParse->db; /* The database connection */ 4081 HashElem *k; /* For looping over tables in pDb */ 4082 Table *pTab; /* A table in the database */ 4083 4084 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4085 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4086 assert( pDb!=0 ); 4087 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4088 pTab = (Table*)sqliteHashData(k); 4089 reindexTable(pParse, pTab, zColl); 4090 } 4091 } 4092 } 4093 #endif 4094 4095 /* 4096 ** Generate code for the REINDEX command. 4097 ** 4098 ** REINDEX -- 1 4099 ** REINDEX <collation> -- 2 4100 ** REINDEX ?<database>.?<tablename> -- 3 4101 ** REINDEX ?<database>.?<indexname> -- 4 4102 ** 4103 ** Form 1 causes all indices in all attached databases to be rebuilt. 4104 ** Form 2 rebuilds all indices in all databases that use the named 4105 ** collating function. Forms 3 and 4 rebuild the named index or all 4106 ** indices associated with the named table. 4107 */ 4108 #ifndef SQLITE_OMIT_REINDEX 4109 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4110 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4111 char *z; /* Name of a table or index */ 4112 const char *zDb; /* Name of the database */ 4113 Table *pTab; /* A table in the database */ 4114 Index *pIndex; /* An index associated with pTab */ 4115 int iDb; /* The database index number */ 4116 sqlite3 *db = pParse->db; /* The database connection */ 4117 Token *pObjName; /* Name of the table or index to be reindexed */ 4118 4119 /* Read the database schema. If an error occurs, leave an error message 4120 ** and code in pParse and return NULL. */ 4121 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4122 return; 4123 } 4124 4125 if( pName1==0 ){ 4126 reindexDatabases(pParse, 0); 4127 return; 4128 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4129 char *zColl; 4130 assert( pName1->z ); 4131 zColl = sqlite3NameFromToken(pParse->db, pName1); 4132 if( !zColl ) return; 4133 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4134 if( pColl ){ 4135 reindexDatabases(pParse, zColl); 4136 sqlite3DbFree(db, zColl); 4137 return; 4138 } 4139 sqlite3DbFree(db, zColl); 4140 } 4141 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4142 if( iDb<0 ) return; 4143 z = sqlite3NameFromToken(db, pObjName); 4144 if( z==0 ) return; 4145 zDb = db->aDb[iDb].zName; 4146 pTab = sqlite3FindTable(db, z, zDb); 4147 if( pTab ){ 4148 reindexTable(pParse, pTab, 0); 4149 sqlite3DbFree(db, z); 4150 return; 4151 } 4152 pIndex = sqlite3FindIndex(db, z, zDb); 4153 sqlite3DbFree(db, z); 4154 if( pIndex ){ 4155 sqlite3BeginWriteOperation(pParse, 0, iDb); 4156 sqlite3RefillIndex(pParse, pIndex, -1); 4157 return; 4158 } 4159 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4160 } 4161 #endif 4162 4163 /* 4164 ** Return a KeyInfo structure that is appropriate for the given Index. 4165 ** 4166 ** The KeyInfo structure for an index is cached in the Index object. 4167 ** So there might be multiple references to the returned pointer. The 4168 ** caller should not try to modify the KeyInfo object. 4169 ** 4170 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4171 ** when it has finished using it. 4172 */ 4173 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4174 if( pParse->nErr ) return 0; 4175 #ifndef SQLITE_OMIT_SHARED_CACHE 4176 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ 4177 sqlite3KeyInfoUnref(pIdx->pKeyInfo); 4178 pIdx->pKeyInfo = 0; 4179 } 4180 #endif 4181 if( pIdx->pKeyInfo==0 ){ 4182 int i; 4183 int nCol = pIdx->nColumn; 4184 int nKey = pIdx->nKeyCol; 4185 KeyInfo *pKey; 4186 if( pIdx->uniqNotNull ){ 4187 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4188 }else{ 4189 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4190 } 4191 if( pKey ){ 4192 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4193 for(i=0; i<nCol; i++){ 4194 char *zColl = pIdx->azColl[i]; 4195 assert( zColl!=0 ); 4196 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4197 sqlite3LocateCollSeq(pParse, zColl); 4198 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4199 } 4200 if( pParse->nErr ){ 4201 sqlite3KeyInfoUnref(pKey); 4202 }else{ 4203 pIdx->pKeyInfo = pKey; 4204 } 4205 } 4206 } 4207 return sqlite3KeyInfoRef(pIdx->pKeyInfo); 4208 } 4209 4210 #ifndef SQLITE_OMIT_CTE 4211 /* 4212 ** This routine is invoked once per CTE by the parser while parsing a 4213 ** WITH clause. 4214 */ 4215 With *sqlite3WithAdd( 4216 Parse *pParse, /* Parsing context */ 4217 With *pWith, /* Existing WITH clause, or NULL */ 4218 Token *pName, /* Name of the common-table */ 4219 ExprList *pArglist, /* Optional column name list for the table */ 4220 Select *pQuery /* Query used to initialize the table */ 4221 ){ 4222 sqlite3 *db = pParse->db; 4223 With *pNew; 4224 char *zName; 4225 4226 /* Check that the CTE name is unique within this WITH clause. If 4227 ** not, store an error in the Parse structure. */ 4228 zName = sqlite3NameFromToken(pParse->db, pName); 4229 if( zName && pWith ){ 4230 int i; 4231 for(i=0; i<pWith->nCte; i++){ 4232 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4233 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4234 } 4235 } 4236 } 4237 4238 if( pWith ){ 4239 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4240 pNew = sqlite3DbRealloc(db, pWith, nByte); 4241 }else{ 4242 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4243 } 4244 assert( zName!=0 || pNew==0 ); 4245 assert( db->mallocFailed==0 || pNew==0 ); 4246 4247 if( pNew==0 ){ 4248 sqlite3ExprListDelete(db, pArglist); 4249 sqlite3SelectDelete(db, pQuery); 4250 sqlite3DbFree(db, zName); 4251 pNew = pWith; 4252 }else{ 4253 pNew->a[pNew->nCte].pSelect = pQuery; 4254 pNew->a[pNew->nCte].pCols = pArglist; 4255 pNew->a[pNew->nCte].zName = zName; 4256 pNew->a[pNew->nCte].zErr = 0; 4257 pNew->nCte++; 4258 } 4259 4260 return pNew; 4261 } 4262 4263 /* 4264 ** Free the contents of the With object passed as the second argument. 4265 */ 4266 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4267 if( pWith ){ 4268 int i; 4269 for(i=0; i<pWith->nCte; i++){ 4270 struct Cte *pCte = &pWith->a[i]; 4271 sqlite3ExprListDelete(db, pCte->pCols); 4272 sqlite3SelectDelete(db, pCte->pSelect); 4273 sqlite3DbFree(db, pCte->zName); 4274 } 4275 sqlite3DbFree(db, pWith); 4276 } 4277 } 4278 #endif /* !defined(SQLITE_OMIT_CTE) */ 4279