1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( db->mallocFailed ) return; 146 if( pParse->nested ) return; 147 if( pParse->nErr ) return; 148 149 /* Begin by generating some termination code at the end of the 150 ** vdbe program 151 */ 152 v = sqlite3GetVdbe(pParse); 153 assert( !pParse->isMultiWrite 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 155 if( v ){ 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 157 sqlite3VdbeAddOp0(v, OP_Halt); 158 159 /* The cookie mask contains one bit for each database file open. 160 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 161 ** set for each database that is used. Generate code to start a 162 ** transaction on each used database and to verify the schema cookie 163 ** on each used database. 164 */ 165 if( db->mallocFailed==0 166 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 167 ){ 168 int iDb, i; 169 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 170 sqlite3VdbeJumpHere(v, 0); 171 for(iDb=0; iDb<db->nDb; iDb++){ 172 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 173 sqlite3VdbeUsesBtree(v, iDb); 174 sqlite3VdbeAddOp4Int(v, 175 OP_Transaction, /* Opcode */ 176 iDb, /* P1 */ 177 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 178 pParse->cookieValue[iDb], /* P3 */ 179 db->aDb[iDb].pSchema->iGeneration /* P4 */ 180 ); 181 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 182 } 183 #ifndef SQLITE_OMIT_VIRTUALTABLE 184 for(i=0; i<pParse->nVtabLock; i++){ 185 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 186 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 187 } 188 pParse->nVtabLock = 0; 189 #endif 190 191 /* Once all the cookies have been verified and transactions opened, 192 ** obtain the required table-locks. This is a no-op unless the 193 ** shared-cache feature is enabled. 194 */ 195 codeTableLocks(pParse); 196 197 /* Initialize any AUTOINCREMENT data structures required. 198 */ 199 sqlite3AutoincrementBegin(pParse); 200 201 /* Code constant expressions that where factored out of inner loops */ 202 if( pParse->pConstExpr ){ 203 ExprList *pEL = pParse->pConstExpr; 204 pParse->okConstFactor = 0; 205 for(i=0; i<pEL->nExpr; i++){ 206 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 207 } 208 } 209 210 /* Finally, jump back to the beginning of the executable code. */ 211 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 212 } 213 } 214 215 216 /* Get the VDBE program ready for execution 217 */ 218 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 219 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 220 /* A minimum of one cursor is required if autoincrement is used 221 * See ticket [a696379c1f08866] */ 222 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 223 sqlite3VdbeMakeReady(v, pParse); 224 pParse->rc = SQLITE_DONE; 225 pParse->colNamesSet = 0; 226 }else{ 227 pParse->rc = SQLITE_ERROR; 228 } 229 pParse->nTab = 0; 230 pParse->nMem = 0; 231 pParse->nSet = 0; 232 pParse->nVar = 0; 233 DbMaskZero(pParse->cookieMask); 234 } 235 236 /* 237 ** Run the parser and code generator recursively in order to generate 238 ** code for the SQL statement given onto the end of the pParse context 239 ** currently under construction. When the parser is run recursively 240 ** this way, the final OP_Halt is not appended and other initialization 241 ** and finalization steps are omitted because those are handling by the 242 ** outermost parser. 243 ** 244 ** Not everything is nestable. This facility is designed to permit 245 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 246 ** care if you decide to try to use this routine for some other purposes. 247 */ 248 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 249 va_list ap; 250 char *zSql; 251 char *zErrMsg = 0; 252 sqlite3 *db = pParse->db; 253 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 254 char saveBuf[SAVE_SZ]; 255 256 if( pParse->nErr ) return; 257 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 258 va_start(ap, zFormat); 259 zSql = sqlite3VMPrintf(db, zFormat, ap); 260 va_end(ap); 261 if( zSql==0 ){ 262 return; /* A malloc must have failed */ 263 } 264 pParse->nested++; 265 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 266 memset(&pParse->nVar, 0, SAVE_SZ); 267 sqlite3RunParser(pParse, zSql, &zErrMsg); 268 sqlite3DbFree(db, zErrMsg); 269 sqlite3DbFree(db, zSql); 270 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 271 pParse->nested--; 272 } 273 274 /* 275 ** Locate the in-memory structure that describes a particular database 276 ** table given the name of that table and (optionally) the name of the 277 ** database containing the table. Return NULL if not found. 278 ** 279 ** If zDatabase is 0, all databases are searched for the table and the 280 ** first matching table is returned. (No checking for duplicate table 281 ** names is done.) The search order is TEMP first, then MAIN, then any 282 ** auxiliary databases added using the ATTACH command. 283 ** 284 ** See also sqlite3LocateTable(). 285 */ 286 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 287 Table *p = 0; 288 int i; 289 int nName; 290 assert( zName!=0 ); 291 nName = sqlite3Strlen30(zName); 292 /* All mutexes are required for schema access. Make sure we hold them. */ 293 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 294 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 295 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 296 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 297 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 298 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 299 if( p ) break; 300 } 301 return p; 302 } 303 304 /* 305 ** Locate the in-memory structure that describes a particular database 306 ** table given the name of that table and (optionally) the name of the 307 ** database containing the table. Return NULL if not found. Also leave an 308 ** error message in pParse->zErrMsg. 309 ** 310 ** The difference between this routine and sqlite3FindTable() is that this 311 ** routine leaves an error message in pParse->zErrMsg where 312 ** sqlite3FindTable() does not. 313 */ 314 Table *sqlite3LocateTable( 315 Parse *pParse, /* context in which to report errors */ 316 int isView, /* True if looking for a VIEW rather than a TABLE */ 317 const char *zName, /* Name of the table we are looking for */ 318 const char *zDbase /* Name of the database. Might be NULL */ 319 ){ 320 Table *p; 321 322 /* Read the database schema. If an error occurs, leave an error message 323 ** and code in pParse and return NULL. */ 324 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 325 return 0; 326 } 327 328 p = sqlite3FindTable(pParse->db, zName, zDbase); 329 if( p==0 ){ 330 const char *zMsg = isView ? "no such view" : "no such table"; 331 if( zDbase ){ 332 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 333 }else{ 334 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 335 } 336 pParse->checkSchema = 1; 337 } 338 return p; 339 } 340 341 /* 342 ** Locate the table identified by *p. 343 ** 344 ** This is a wrapper around sqlite3LocateTable(). The difference between 345 ** sqlite3LocateTable() and this function is that this function restricts 346 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 347 ** non-NULL if it is part of a view or trigger program definition. See 348 ** sqlite3FixSrcList() for details. 349 */ 350 Table *sqlite3LocateTableItem( 351 Parse *pParse, 352 int isView, 353 struct SrcList_item *p 354 ){ 355 const char *zDb; 356 assert( p->pSchema==0 || p->zDatabase==0 ); 357 if( p->pSchema ){ 358 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 359 zDb = pParse->db->aDb[iDb].zName; 360 }else{ 361 zDb = p->zDatabase; 362 } 363 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 364 } 365 366 /* 367 ** Locate the in-memory structure that describes 368 ** a particular index given the name of that index 369 ** and the name of the database that contains the index. 370 ** Return NULL if not found. 371 ** 372 ** If zDatabase is 0, all databases are searched for the 373 ** table and the first matching index is returned. (No checking 374 ** for duplicate index names is done.) The search order is 375 ** TEMP first, then MAIN, then any auxiliary databases added 376 ** using the ATTACH command. 377 */ 378 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 379 Index *p = 0; 380 int i; 381 int nName = sqlite3Strlen30(zName); 382 /* All mutexes are required for schema access. Make sure we hold them. */ 383 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 384 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 385 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 386 Schema *pSchema = db->aDb[j].pSchema; 387 assert( pSchema ); 388 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 389 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 390 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 391 if( p ) break; 392 } 393 return p; 394 } 395 396 /* 397 ** Reclaim the memory used by an index 398 */ 399 static void freeIndex(sqlite3 *db, Index *p){ 400 #ifndef SQLITE_OMIT_ANALYZE 401 sqlite3DeleteIndexSamples(db, p); 402 #endif 403 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); 404 sqlite3ExprDelete(db, p->pPartIdxWhere); 405 sqlite3DbFree(db, p->zColAff); 406 if( p->isResized ) sqlite3DbFree(db, p->azColl); 407 sqlite3DbFree(db, p); 408 } 409 410 /* 411 ** For the index called zIdxName which is found in the database iDb, 412 ** unlike that index from its Table then remove the index from 413 ** the index hash table and free all memory structures associated 414 ** with the index. 415 */ 416 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 417 Index *pIndex; 418 int len; 419 Hash *pHash; 420 421 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 422 pHash = &db->aDb[iDb].pSchema->idxHash; 423 len = sqlite3Strlen30(zIdxName); 424 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 425 if( ALWAYS(pIndex) ){ 426 if( pIndex->pTable->pIndex==pIndex ){ 427 pIndex->pTable->pIndex = pIndex->pNext; 428 }else{ 429 Index *p; 430 /* Justification of ALWAYS(); The index must be on the list of 431 ** indices. */ 432 p = pIndex->pTable->pIndex; 433 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 434 if( ALWAYS(p && p->pNext==pIndex) ){ 435 p->pNext = pIndex->pNext; 436 } 437 } 438 freeIndex(db, pIndex); 439 } 440 db->flags |= SQLITE_InternChanges; 441 } 442 443 /* 444 ** Look through the list of open database files in db->aDb[] and if 445 ** any have been closed, remove them from the list. Reallocate the 446 ** db->aDb[] structure to a smaller size, if possible. 447 ** 448 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 449 ** are never candidates for being collapsed. 450 */ 451 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 452 int i, j; 453 for(i=j=2; i<db->nDb; i++){ 454 struct Db *pDb = &db->aDb[i]; 455 if( pDb->pBt==0 ){ 456 sqlite3DbFree(db, pDb->zName); 457 pDb->zName = 0; 458 continue; 459 } 460 if( j<i ){ 461 db->aDb[j] = db->aDb[i]; 462 } 463 j++; 464 } 465 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 466 db->nDb = j; 467 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 468 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 469 sqlite3DbFree(db, db->aDb); 470 db->aDb = db->aDbStatic; 471 } 472 } 473 474 /* 475 ** Reset the schema for the database at index iDb. Also reset the 476 ** TEMP schema. 477 */ 478 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 479 Db *pDb; 480 assert( iDb<db->nDb ); 481 482 /* Case 1: Reset the single schema identified by iDb */ 483 pDb = &db->aDb[iDb]; 484 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 485 assert( pDb->pSchema!=0 ); 486 sqlite3SchemaClear(pDb->pSchema); 487 488 /* If any database other than TEMP is reset, then also reset TEMP 489 ** since TEMP might be holding triggers that reference tables in the 490 ** other database. 491 */ 492 if( iDb!=1 ){ 493 pDb = &db->aDb[1]; 494 assert( pDb->pSchema!=0 ); 495 sqlite3SchemaClear(pDb->pSchema); 496 } 497 return; 498 } 499 500 /* 501 ** Erase all schema information from all attached databases (including 502 ** "main" and "temp") for a single database connection. 503 */ 504 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 505 int i; 506 sqlite3BtreeEnterAll(db); 507 for(i=0; i<db->nDb; i++){ 508 Db *pDb = &db->aDb[i]; 509 if( pDb->pSchema ){ 510 sqlite3SchemaClear(pDb->pSchema); 511 } 512 } 513 db->flags &= ~SQLITE_InternChanges; 514 sqlite3VtabUnlockList(db); 515 sqlite3BtreeLeaveAll(db); 516 sqlite3CollapseDatabaseArray(db); 517 } 518 519 /* 520 ** This routine is called when a commit occurs. 521 */ 522 void sqlite3CommitInternalChanges(sqlite3 *db){ 523 db->flags &= ~SQLITE_InternChanges; 524 } 525 526 /* 527 ** Delete memory allocated for the column names of a table or view (the 528 ** Table.aCol[] array). 529 */ 530 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 531 int i; 532 Column *pCol; 533 assert( pTable!=0 ); 534 if( (pCol = pTable->aCol)!=0 ){ 535 for(i=0; i<pTable->nCol; i++, pCol++){ 536 sqlite3DbFree(db, pCol->zName); 537 sqlite3ExprDelete(db, pCol->pDflt); 538 sqlite3DbFree(db, pCol->zDflt); 539 sqlite3DbFree(db, pCol->zType); 540 sqlite3DbFree(db, pCol->zColl); 541 } 542 sqlite3DbFree(db, pTable->aCol); 543 } 544 } 545 546 /* 547 ** Remove the memory data structures associated with the given 548 ** Table. No changes are made to disk by this routine. 549 ** 550 ** This routine just deletes the data structure. It does not unlink 551 ** the table data structure from the hash table. But it does destroy 552 ** memory structures of the indices and foreign keys associated with 553 ** the table. 554 ** 555 ** The db parameter is optional. It is needed if the Table object 556 ** contains lookaside memory. (Table objects in the schema do not use 557 ** lookaside memory, but some ephemeral Table objects do.) Or the 558 ** db parameter can be used with db->pnBytesFreed to measure the memory 559 ** used by the Table object. 560 */ 561 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 562 Index *pIndex, *pNext; 563 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 564 565 assert( !pTable || pTable->nRef>0 ); 566 567 /* Do not delete the table until the reference count reaches zero. */ 568 if( !pTable ) return; 569 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 570 571 /* Record the number of outstanding lookaside allocations in schema Tables 572 ** prior to doing any free() operations. Since schema Tables do not use 573 ** lookaside, this number should not change. */ 574 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 575 db->lookaside.nOut : 0 ); 576 577 /* Delete all indices associated with this table. */ 578 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 579 pNext = pIndex->pNext; 580 assert( pIndex->pSchema==pTable->pSchema ); 581 if( !db || db->pnBytesFreed==0 ){ 582 char *zName = pIndex->zName; 583 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 584 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 585 ); 586 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 587 assert( pOld==pIndex || pOld==0 ); 588 } 589 freeIndex(db, pIndex); 590 } 591 592 /* Delete any foreign keys attached to this table. */ 593 sqlite3FkDelete(db, pTable); 594 595 /* Delete the Table structure itself. 596 */ 597 sqliteDeleteColumnNames(db, pTable); 598 sqlite3DbFree(db, pTable->zName); 599 sqlite3DbFree(db, pTable->zColAff); 600 sqlite3SelectDelete(db, pTable->pSelect); 601 #ifndef SQLITE_OMIT_CHECK 602 sqlite3ExprListDelete(db, pTable->pCheck); 603 #endif 604 #ifndef SQLITE_OMIT_VIRTUALTABLE 605 sqlite3VtabClear(db, pTable); 606 #endif 607 sqlite3DbFree(db, pTable); 608 609 /* Verify that no lookaside memory was used by schema tables */ 610 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 611 } 612 613 /* 614 ** Unlink the given table from the hash tables and the delete the 615 ** table structure with all its indices and foreign keys. 616 */ 617 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 618 Table *p; 619 Db *pDb; 620 621 assert( db!=0 ); 622 assert( iDb>=0 && iDb<db->nDb ); 623 assert( zTabName ); 624 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 625 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 626 pDb = &db->aDb[iDb]; 627 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 628 sqlite3Strlen30(zTabName),0); 629 sqlite3DeleteTable(db, p); 630 db->flags |= SQLITE_InternChanges; 631 } 632 633 /* 634 ** Given a token, return a string that consists of the text of that 635 ** token. Space to hold the returned string 636 ** is obtained from sqliteMalloc() and must be freed by the calling 637 ** function. 638 ** 639 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 640 ** surround the body of the token are removed. 641 ** 642 ** Tokens are often just pointers into the original SQL text and so 643 ** are not \000 terminated and are not persistent. The returned string 644 ** is \000 terminated and is persistent. 645 */ 646 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 647 char *zName; 648 if( pName ){ 649 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 650 sqlite3Dequote(zName); 651 }else{ 652 zName = 0; 653 } 654 return zName; 655 } 656 657 /* 658 ** Open the sqlite_master table stored in database number iDb for 659 ** writing. The table is opened using cursor 0. 660 */ 661 void sqlite3OpenMasterTable(Parse *p, int iDb){ 662 Vdbe *v = sqlite3GetVdbe(p); 663 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 664 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 665 if( p->nTab==0 ){ 666 p->nTab = 1; 667 } 668 } 669 670 /* 671 ** Parameter zName points to a nul-terminated buffer containing the name 672 ** of a database ("main", "temp" or the name of an attached db). This 673 ** function returns the index of the named database in db->aDb[], or 674 ** -1 if the named db cannot be found. 675 */ 676 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 677 int i = -1; /* Database number */ 678 if( zName ){ 679 Db *pDb; 680 int n = sqlite3Strlen30(zName); 681 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 682 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 683 0==sqlite3StrICmp(pDb->zName, zName) ){ 684 break; 685 } 686 } 687 } 688 return i; 689 } 690 691 /* 692 ** The token *pName contains the name of a database (either "main" or 693 ** "temp" or the name of an attached db). This routine returns the 694 ** index of the named database in db->aDb[], or -1 if the named db 695 ** does not exist. 696 */ 697 int sqlite3FindDb(sqlite3 *db, Token *pName){ 698 int i; /* Database number */ 699 char *zName; /* Name we are searching for */ 700 zName = sqlite3NameFromToken(db, pName); 701 i = sqlite3FindDbName(db, zName); 702 sqlite3DbFree(db, zName); 703 return i; 704 } 705 706 /* The table or view or trigger name is passed to this routine via tokens 707 ** pName1 and pName2. If the table name was fully qualified, for example: 708 ** 709 ** CREATE TABLE xxx.yyy (...); 710 ** 711 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 712 ** the table name is not fully qualified, i.e.: 713 ** 714 ** CREATE TABLE yyy(...); 715 ** 716 ** Then pName1 is set to "yyy" and pName2 is "". 717 ** 718 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 719 ** pName2) that stores the unqualified table name. The index of the 720 ** database "xxx" is returned. 721 */ 722 int sqlite3TwoPartName( 723 Parse *pParse, /* Parsing and code generating context */ 724 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 725 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 726 Token **pUnqual /* Write the unqualified object name here */ 727 ){ 728 int iDb; /* Database holding the object */ 729 sqlite3 *db = pParse->db; 730 731 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 732 if( db->init.busy ) { 733 sqlite3ErrorMsg(pParse, "corrupt database"); 734 pParse->nErr++; 735 return -1; 736 } 737 *pUnqual = pName2; 738 iDb = sqlite3FindDb(db, pName1); 739 if( iDb<0 ){ 740 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 741 pParse->nErr++; 742 return -1; 743 } 744 }else{ 745 assert( db->init.iDb==0 || db->init.busy ); 746 iDb = db->init.iDb; 747 *pUnqual = pName1; 748 } 749 return iDb; 750 } 751 752 /* 753 ** This routine is used to check if the UTF-8 string zName is a legal 754 ** unqualified name for a new schema object (table, index, view or 755 ** trigger). All names are legal except those that begin with the string 756 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 757 ** is reserved for internal use. 758 */ 759 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 760 if( !pParse->db->init.busy && pParse->nested==0 761 && (pParse->db->flags & SQLITE_WriteSchema)==0 762 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 763 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 764 return SQLITE_ERROR; 765 } 766 return SQLITE_OK; 767 } 768 769 /* 770 ** Return the PRIMARY KEY index of a table 771 */ 772 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 773 Index *p; 774 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 775 return p; 776 } 777 778 /* 779 ** Return the column of index pIdx that corresponds to table 780 ** column iCol. Return -1 if not found. 781 */ 782 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 783 int i; 784 for(i=0; i<pIdx->nColumn; i++){ 785 if( iCol==pIdx->aiColumn[i] ) return i; 786 } 787 return -1; 788 } 789 790 /* 791 ** Begin constructing a new table representation in memory. This is 792 ** the first of several action routines that get called in response 793 ** to a CREATE TABLE statement. In particular, this routine is called 794 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 795 ** flag is true if the table should be stored in the auxiliary database 796 ** file instead of in the main database file. This is normally the case 797 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 798 ** CREATE and TABLE. 799 ** 800 ** The new table record is initialized and put in pParse->pNewTable. 801 ** As more of the CREATE TABLE statement is parsed, additional action 802 ** routines will be called to add more information to this record. 803 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 804 ** is called to complete the construction of the new table record. 805 */ 806 void sqlite3StartTable( 807 Parse *pParse, /* Parser context */ 808 Token *pName1, /* First part of the name of the table or view */ 809 Token *pName2, /* Second part of the name of the table or view */ 810 int isTemp, /* True if this is a TEMP table */ 811 int isView, /* True if this is a VIEW */ 812 int isVirtual, /* True if this is a VIRTUAL table */ 813 int noErr /* Do nothing if table already exists */ 814 ){ 815 Table *pTable; 816 char *zName = 0; /* The name of the new table */ 817 sqlite3 *db = pParse->db; 818 Vdbe *v; 819 int iDb; /* Database number to create the table in */ 820 Token *pName; /* Unqualified name of the table to create */ 821 822 /* The table or view name to create is passed to this routine via tokens 823 ** pName1 and pName2. If the table name was fully qualified, for example: 824 ** 825 ** CREATE TABLE xxx.yyy (...); 826 ** 827 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 828 ** the table name is not fully qualified, i.e.: 829 ** 830 ** CREATE TABLE yyy(...); 831 ** 832 ** Then pName1 is set to "yyy" and pName2 is "". 833 ** 834 ** The call below sets the pName pointer to point at the token (pName1 or 835 ** pName2) that stores the unqualified table name. The variable iDb is 836 ** set to the index of the database that the table or view is to be 837 ** created in. 838 */ 839 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 840 if( iDb<0 ) return; 841 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 842 /* If creating a temp table, the name may not be qualified. Unless 843 ** the database name is "temp" anyway. */ 844 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 845 return; 846 } 847 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 848 849 pParse->sNameToken = *pName; 850 zName = sqlite3NameFromToken(db, pName); 851 if( zName==0 ) return; 852 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 853 goto begin_table_error; 854 } 855 if( db->init.iDb==1 ) isTemp = 1; 856 #ifndef SQLITE_OMIT_AUTHORIZATION 857 assert( (isTemp & 1)==isTemp ); 858 { 859 int code; 860 char *zDb = db->aDb[iDb].zName; 861 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 862 goto begin_table_error; 863 } 864 if( isView ){ 865 if( !OMIT_TEMPDB && isTemp ){ 866 code = SQLITE_CREATE_TEMP_VIEW; 867 }else{ 868 code = SQLITE_CREATE_VIEW; 869 } 870 }else{ 871 if( !OMIT_TEMPDB && isTemp ){ 872 code = SQLITE_CREATE_TEMP_TABLE; 873 }else{ 874 code = SQLITE_CREATE_TABLE; 875 } 876 } 877 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 878 goto begin_table_error; 879 } 880 } 881 #endif 882 883 /* Make sure the new table name does not collide with an existing 884 ** index or table name in the same database. Issue an error message if 885 ** it does. The exception is if the statement being parsed was passed 886 ** to an sqlite3_declare_vtab() call. In that case only the column names 887 ** and types will be used, so there is no need to test for namespace 888 ** collisions. 889 */ 890 if( !IN_DECLARE_VTAB ){ 891 char *zDb = db->aDb[iDb].zName; 892 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 893 goto begin_table_error; 894 } 895 pTable = sqlite3FindTable(db, zName, zDb); 896 if( pTable ){ 897 if( !noErr ){ 898 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 899 }else{ 900 assert( !db->init.busy ); 901 sqlite3CodeVerifySchema(pParse, iDb); 902 } 903 goto begin_table_error; 904 } 905 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 906 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 907 goto begin_table_error; 908 } 909 } 910 911 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 912 if( pTable==0 ){ 913 db->mallocFailed = 1; 914 pParse->rc = SQLITE_NOMEM; 915 pParse->nErr++; 916 goto begin_table_error; 917 } 918 pTable->zName = zName; 919 pTable->iPKey = -1; 920 pTable->pSchema = db->aDb[iDb].pSchema; 921 pTable->nRef = 1; 922 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 923 assert( pParse->pNewTable==0 ); 924 pParse->pNewTable = pTable; 925 926 /* If this is the magic sqlite_sequence table used by autoincrement, 927 ** then record a pointer to this table in the main database structure 928 ** so that INSERT can find the table easily. 929 */ 930 #ifndef SQLITE_OMIT_AUTOINCREMENT 931 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 932 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 933 pTable->pSchema->pSeqTab = pTable; 934 } 935 #endif 936 937 /* Begin generating the code that will insert the table record into 938 ** the SQLITE_MASTER table. Note in particular that we must go ahead 939 ** and allocate the record number for the table entry now. Before any 940 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 941 ** indices to be created and the table record must come before the 942 ** indices. Hence, the record number for the table must be allocated 943 ** now. 944 */ 945 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 946 int j1; 947 int fileFormat; 948 int reg1, reg2, reg3; 949 sqlite3BeginWriteOperation(pParse, 0, iDb); 950 951 #ifndef SQLITE_OMIT_VIRTUALTABLE 952 if( isVirtual ){ 953 sqlite3VdbeAddOp0(v, OP_VBegin); 954 } 955 #endif 956 957 /* If the file format and encoding in the database have not been set, 958 ** set them now. 959 */ 960 reg1 = pParse->regRowid = ++pParse->nMem; 961 reg2 = pParse->regRoot = ++pParse->nMem; 962 reg3 = ++pParse->nMem; 963 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 964 sqlite3VdbeUsesBtree(v, iDb); 965 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 966 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 967 1 : SQLITE_MAX_FILE_FORMAT; 968 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 969 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 970 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 971 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 972 sqlite3VdbeJumpHere(v, j1); 973 974 /* This just creates a place-holder record in the sqlite_master table. 975 ** The record created does not contain anything yet. It will be replaced 976 ** by the real entry in code generated at sqlite3EndTable(). 977 ** 978 ** The rowid for the new entry is left in register pParse->regRowid. 979 ** The root page number of the new table is left in reg pParse->regRoot. 980 ** The rowid and root page number values are needed by the code that 981 ** sqlite3EndTable will generate. 982 */ 983 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 984 if( isView || isVirtual ){ 985 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 986 }else 987 #endif 988 { 989 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 990 } 991 sqlite3OpenMasterTable(pParse, iDb); 992 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 993 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 994 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 995 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 996 sqlite3VdbeAddOp0(v, OP_Close); 997 } 998 999 /* Normal (non-error) return. */ 1000 return; 1001 1002 /* If an error occurs, we jump here */ 1003 begin_table_error: 1004 sqlite3DbFree(db, zName); 1005 return; 1006 } 1007 1008 /* 1009 ** This macro is used to compare two strings in a case-insensitive manner. 1010 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1011 ** produces larger code. 1012 ** 1013 ** WARNING: This macro is not compatible with the strcmp() family. It 1014 ** returns true if the two strings are equal, otherwise false. 1015 */ 1016 #define STRICMP(x, y) (\ 1017 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1018 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1019 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1020 1021 /* 1022 ** Add a new column to the table currently being constructed. 1023 ** 1024 ** The parser calls this routine once for each column declaration 1025 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1026 ** first to get things going. Then this routine is called for each 1027 ** column. 1028 */ 1029 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1030 Table *p; 1031 int i; 1032 char *z; 1033 Column *pCol; 1034 sqlite3 *db = pParse->db; 1035 if( (p = pParse->pNewTable)==0 ) return; 1036 #if SQLITE_MAX_COLUMN 1037 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1038 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1039 return; 1040 } 1041 #endif 1042 z = sqlite3NameFromToken(db, pName); 1043 if( z==0 ) return; 1044 for(i=0; i<p->nCol; i++){ 1045 if( STRICMP(z, p->aCol[i].zName) ){ 1046 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1047 sqlite3DbFree(db, z); 1048 return; 1049 } 1050 } 1051 if( (p->nCol & 0x7)==0 ){ 1052 Column *aNew; 1053 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1054 if( aNew==0 ){ 1055 sqlite3DbFree(db, z); 1056 return; 1057 } 1058 p->aCol = aNew; 1059 } 1060 pCol = &p->aCol[p->nCol]; 1061 memset(pCol, 0, sizeof(p->aCol[0])); 1062 pCol->zName = z; 1063 1064 /* If there is no type specified, columns have the default affinity 1065 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1066 ** be called next to set pCol->affinity correctly. 1067 */ 1068 pCol->affinity = SQLITE_AFF_NONE; 1069 pCol->szEst = 1; 1070 p->nCol++; 1071 } 1072 1073 /* 1074 ** This routine is called by the parser while in the middle of 1075 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1076 ** been seen on a column. This routine sets the notNull flag on 1077 ** the column currently under construction. 1078 */ 1079 void sqlite3AddNotNull(Parse *pParse, int onError){ 1080 Table *p; 1081 p = pParse->pNewTable; 1082 if( p==0 || NEVER(p->nCol<1) ) return; 1083 p->aCol[p->nCol-1].notNull = (u8)onError; 1084 } 1085 1086 /* 1087 ** Scan the column type name zType (length nType) and return the 1088 ** associated affinity type. 1089 ** 1090 ** This routine does a case-independent search of zType for the 1091 ** substrings in the following table. If one of the substrings is 1092 ** found, the corresponding affinity is returned. If zType contains 1093 ** more than one of the substrings, entries toward the top of 1094 ** the table take priority. For example, if zType is 'BLOBINT', 1095 ** SQLITE_AFF_INTEGER is returned. 1096 ** 1097 ** Substring | Affinity 1098 ** -------------------------------- 1099 ** 'INT' | SQLITE_AFF_INTEGER 1100 ** 'CHAR' | SQLITE_AFF_TEXT 1101 ** 'CLOB' | SQLITE_AFF_TEXT 1102 ** 'TEXT' | SQLITE_AFF_TEXT 1103 ** 'BLOB' | SQLITE_AFF_NONE 1104 ** 'REAL' | SQLITE_AFF_REAL 1105 ** 'FLOA' | SQLITE_AFF_REAL 1106 ** 'DOUB' | SQLITE_AFF_REAL 1107 ** 1108 ** If none of the substrings in the above table are found, 1109 ** SQLITE_AFF_NUMERIC is returned. 1110 */ 1111 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1112 u32 h = 0; 1113 char aff = SQLITE_AFF_NUMERIC; 1114 const char *zChar = 0; 1115 1116 if( zIn==0 ) return aff; 1117 while( zIn[0] ){ 1118 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1119 zIn++; 1120 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1121 aff = SQLITE_AFF_TEXT; 1122 zChar = zIn; 1123 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1124 aff = SQLITE_AFF_TEXT; 1125 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1126 aff = SQLITE_AFF_TEXT; 1127 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1128 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1129 aff = SQLITE_AFF_NONE; 1130 if( zIn[0]=='(' ) zChar = zIn; 1131 #ifndef SQLITE_OMIT_FLOATING_POINT 1132 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1133 && aff==SQLITE_AFF_NUMERIC ){ 1134 aff = SQLITE_AFF_REAL; 1135 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1136 && aff==SQLITE_AFF_NUMERIC ){ 1137 aff = SQLITE_AFF_REAL; 1138 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1139 && aff==SQLITE_AFF_NUMERIC ){ 1140 aff = SQLITE_AFF_REAL; 1141 #endif 1142 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1143 aff = SQLITE_AFF_INTEGER; 1144 break; 1145 } 1146 } 1147 1148 /* If pszEst is not NULL, store an estimate of the field size. The 1149 ** estimate is scaled so that the size of an integer is 1. */ 1150 if( pszEst ){ 1151 *pszEst = 1; /* default size is approx 4 bytes */ 1152 if( aff<=SQLITE_AFF_NONE ){ 1153 if( zChar ){ 1154 while( zChar[0] ){ 1155 if( sqlite3Isdigit(zChar[0]) ){ 1156 int v = 0; 1157 sqlite3GetInt32(zChar, &v); 1158 v = v/4 + 1; 1159 if( v>255 ) v = 255; 1160 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1161 break; 1162 } 1163 zChar++; 1164 } 1165 }else{ 1166 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1167 } 1168 } 1169 } 1170 return aff; 1171 } 1172 1173 /* 1174 ** This routine is called by the parser while in the middle of 1175 ** parsing a CREATE TABLE statement. The pFirst token is the first 1176 ** token in the sequence of tokens that describe the type of the 1177 ** column currently under construction. pLast is the last token 1178 ** in the sequence. Use this information to construct a string 1179 ** that contains the typename of the column and store that string 1180 ** in zType. 1181 */ 1182 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1183 Table *p; 1184 Column *pCol; 1185 1186 p = pParse->pNewTable; 1187 if( p==0 || NEVER(p->nCol<1) ) return; 1188 pCol = &p->aCol[p->nCol-1]; 1189 assert( pCol->zType==0 ); 1190 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1191 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1192 } 1193 1194 /* 1195 ** The expression is the default value for the most recently added column 1196 ** of the table currently under construction. 1197 ** 1198 ** Default value expressions must be constant. Raise an exception if this 1199 ** is not the case. 1200 ** 1201 ** This routine is called by the parser while in the middle of 1202 ** parsing a CREATE TABLE statement. 1203 */ 1204 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1205 Table *p; 1206 Column *pCol; 1207 sqlite3 *db = pParse->db; 1208 p = pParse->pNewTable; 1209 if( p!=0 ){ 1210 pCol = &(p->aCol[p->nCol-1]); 1211 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1212 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1213 pCol->zName); 1214 }else{ 1215 /* A copy of pExpr is used instead of the original, as pExpr contains 1216 ** tokens that point to volatile memory. The 'span' of the expression 1217 ** is required by pragma table_info. 1218 */ 1219 sqlite3ExprDelete(db, pCol->pDflt); 1220 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1221 sqlite3DbFree(db, pCol->zDflt); 1222 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1223 (int)(pSpan->zEnd - pSpan->zStart)); 1224 } 1225 } 1226 sqlite3ExprDelete(db, pSpan->pExpr); 1227 } 1228 1229 /* 1230 ** Designate the PRIMARY KEY for the table. pList is a list of names 1231 ** of columns that form the primary key. If pList is NULL, then the 1232 ** most recently added column of the table is the primary key. 1233 ** 1234 ** A table can have at most one primary key. If the table already has 1235 ** a primary key (and this is the second primary key) then create an 1236 ** error. 1237 ** 1238 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1239 ** then we will try to use that column as the rowid. Set the Table.iPKey 1240 ** field of the table under construction to be the index of the 1241 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1242 ** no INTEGER PRIMARY KEY. 1243 ** 1244 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1245 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1246 */ 1247 void sqlite3AddPrimaryKey( 1248 Parse *pParse, /* Parsing context */ 1249 ExprList *pList, /* List of field names to be indexed */ 1250 int onError, /* What to do with a uniqueness conflict */ 1251 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1252 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1253 ){ 1254 Table *pTab = pParse->pNewTable; 1255 char *zType = 0; 1256 int iCol = -1, i; 1257 int nTerm; 1258 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1259 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1260 sqlite3ErrorMsg(pParse, 1261 "table \"%s\" has more than one primary key", pTab->zName); 1262 goto primary_key_exit; 1263 } 1264 pTab->tabFlags |= TF_HasPrimaryKey; 1265 if( pList==0 ){ 1266 iCol = pTab->nCol - 1; 1267 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1268 zType = pTab->aCol[iCol].zType; 1269 nTerm = 1; 1270 }else{ 1271 nTerm = pList->nExpr; 1272 for(i=0; i<nTerm; i++){ 1273 for(iCol=0; iCol<pTab->nCol; iCol++){ 1274 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1275 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1276 zType = pTab->aCol[iCol].zType; 1277 break; 1278 } 1279 } 1280 } 1281 } 1282 if( nTerm==1 1283 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1284 && sortOrder==SQLITE_SO_ASC 1285 ){ 1286 pTab->iPKey = iCol; 1287 pTab->keyConf = (u8)onError; 1288 assert( autoInc==0 || autoInc==1 ); 1289 pTab->tabFlags |= autoInc*TF_Autoincrement; 1290 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1291 }else if( autoInc ){ 1292 #ifndef SQLITE_OMIT_AUTOINCREMENT 1293 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1294 "INTEGER PRIMARY KEY"); 1295 #endif 1296 }else{ 1297 Vdbe *v = pParse->pVdbe; 1298 Index *p; 1299 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1300 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1301 0, sortOrder, 0); 1302 if( p ){ 1303 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1304 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1305 } 1306 pList = 0; 1307 } 1308 1309 primary_key_exit: 1310 sqlite3ExprListDelete(pParse->db, pList); 1311 return; 1312 } 1313 1314 /* 1315 ** Add a new CHECK constraint to the table currently under construction. 1316 */ 1317 void sqlite3AddCheckConstraint( 1318 Parse *pParse, /* Parsing context */ 1319 Expr *pCheckExpr /* The check expression */ 1320 ){ 1321 #ifndef SQLITE_OMIT_CHECK 1322 Table *pTab = pParse->pNewTable; 1323 sqlite3 *db = pParse->db; 1324 if( pTab && !IN_DECLARE_VTAB 1325 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1326 ){ 1327 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1328 if( pParse->constraintName.n ){ 1329 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1330 } 1331 }else 1332 #endif 1333 { 1334 sqlite3ExprDelete(pParse->db, pCheckExpr); 1335 } 1336 } 1337 1338 /* 1339 ** Set the collation function of the most recently parsed table column 1340 ** to the CollSeq given. 1341 */ 1342 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1343 Table *p; 1344 int i; 1345 char *zColl; /* Dequoted name of collation sequence */ 1346 sqlite3 *db; 1347 1348 if( (p = pParse->pNewTable)==0 ) return; 1349 i = p->nCol-1; 1350 db = pParse->db; 1351 zColl = sqlite3NameFromToken(db, pToken); 1352 if( !zColl ) return; 1353 1354 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1355 Index *pIdx; 1356 sqlite3DbFree(db, p->aCol[i].zColl); 1357 p->aCol[i].zColl = zColl; 1358 1359 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1360 ** then an index may have been created on this column before the 1361 ** collation type was added. Correct this if it is the case. 1362 */ 1363 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1364 assert( pIdx->nKeyCol==1 ); 1365 if( pIdx->aiColumn[0]==i ){ 1366 pIdx->azColl[0] = p->aCol[i].zColl; 1367 } 1368 } 1369 }else{ 1370 sqlite3DbFree(db, zColl); 1371 } 1372 } 1373 1374 /* 1375 ** This function returns the collation sequence for database native text 1376 ** encoding identified by the string zName, length nName. 1377 ** 1378 ** If the requested collation sequence is not available, or not available 1379 ** in the database native encoding, the collation factory is invoked to 1380 ** request it. If the collation factory does not supply such a sequence, 1381 ** and the sequence is available in another text encoding, then that is 1382 ** returned instead. 1383 ** 1384 ** If no versions of the requested collations sequence are available, or 1385 ** another error occurs, NULL is returned and an error message written into 1386 ** pParse. 1387 ** 1388 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1389 ** invokes the collation factory if the named collation cannot be found 1390 ** and generates an error message. 1391 ** 1392 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1393 */ 1394 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1395 sqlite3 *db = pParse->db; 1396 u8 enc = ENC(db); 1397 u8 initbusy = db->init.busy; 1398 CollSeq *pColl; 1399 1400 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1401 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1402 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1403 } 1404 1405 return pColl; 1406 } 1407 1408 1409 /* 1410 ** Generate code that will increment the schema cookie. 1411 ** 1412 ** The schema cookie is used to determine when the schema for the 1413 ** database changes. After each schema change, the cookie value 1414 ** changes. When a process first reads the schema it records the 1415 ** cookie. Thereafter, whenever it goes to access the database, 1416 ** it checks the cookie to make sure the schema has not changed 1417 ** since it was last read. 1418 ** 1419 ** This plan is not completely bullet-proof. It is possible for 1420 ** the schema to change multiple times and for the cookie to be 1421 ** set back to prior value. But schema changes are infrequent 1422 ** and the probability of hitting the same cookie value is only 1423 ** 1 chance in 2^32. So we're safe enough. 1424 */ 1425 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1426 int r1 = sqlite3GetTempReg(pParse); 1427 sqlite3 *db = pParse->db; 1428 Vdbe *v = pParse->pVdbe; 1429 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1430 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1431 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1432 sqlite3ReleaseTempReg(pParse, r1); 1433 } 1434 1435 /* 1436 ** Measure the number of characters needed to output the given 1437 ** identifier. The number returned includes any quotes used 1438 ** but does not include the null terminator. 1439 ** 1440 ** The estimate is conservative. It might be larger that what is 1441 ** really needed. 1442 */ 1443 static int identLength(const char *z){ 1444 int n; 1445 for(n=0; *z; n++, z++){ 1446 if( *z=='"' ){ n++; } 1447 } 1448 return n + 2; 1449 } 1450 1451 /* 1452 ** The first parameter is a pointer to an output buffer. The second 1453 ** parameter is a pointer to an integer that contains the offset at 1454 ** which to write into the output buffer. This function copies the 1455 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1456 ** to the specified offset in the buffer and updates *pIdx to refer 1457 ** to the first byte after the last byte written before returning. 1458 ** 1459 ** If the string zSignedIdent consists entirely of alpha-numeric 1460 ** characters, does not begin with a digit and is not an SQL keyword, 1461 ** then it is copied to the output buffer exactly as it is. Otherwise, 1462 ** it is quoted using double-quotes. 1463 */ 1464 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1465 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1466 int i, j, needQuote; 1467 i = *pIdx; 1468 1469 for(j=0; zIdent[j]; j++){ 1470 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1471 } 1472 needQuote = sqlite3Isdigit(zIdent[0]) 1473 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1474 || zIdent[j]!=0 1475 || j==0; 1476 1477 if( needQuote ) z[i++] = '"'; 1478 for(j=0; zIdent[j]; j++){ 1479 z[i++] = zIdent[j]; 1480 if( zIdent[j]=='"' ) z[i++] = '"'; 1481 } 1482 if( needQuote ) z[i++] = '"'; 1483 z[i] = 0; 1484 *pIdx = i; 1485 } 1486 1487 /* 1488 ** Generate a CREATE TABLE statement appropriate for the given 1489 ** table. Memory to hold the text of the statement is obtained 1490 ** from sqliteMalloc() and must be freed by the calling function. 1491 */ 1492 static char *createTableStmt(sqlite3 *db, Table *p){ 1493 int i, k, n; 1494 char *zStmt; 1495 char *zSep, *zSep2, *zEnd; 1496 Column *pCol; 1497 n = 0; 1498 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1499 n += identLength(pCol->zName) + 5; 1500 } 1501 n += identLength(p->zName); 1502 if( n<50 ){ 1503 zSep = ""; 1504 zSep2 = ","; 1505 zEnd = ")"; 1506 }else{ 1507 zSep = "\n "; 1508 zSep2 = ",\n "; 1509 zEnd = "\n)"; 1510 } 1511 n += 35 + 6*p->nCol; 1512 zStmt = sqlite3DbMallocRaw(0, n); 1513 if( zStmt==0 ){ 1514 db->mallocFailed = 1; 1515 return 0; 1516 } 1517 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1518 k = sqlite3Strlen30(zStmt); 1519 identPut(zStmt, &k, p->zName); 1520 zStmt[k++] = '('; 1521 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1522 static const char * const azType[] = { 1523 /* SQLITE_AFF_TEXT */ " TEXT", 1524 /* SQLITE_AFF_NONE */ "", 1525 /* SQLITE_AFF_NUMERIC */ " NUM", 1526 /* SQLITE_AFF_INTEGER */ " INT", 1527 /* SQLITE_AFF_REAL */ " REAL" 1528 }; 1529 int len; 1530 const char *zType; 1531 1532 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1533 k += sqlite3Strlen30(&zStmt[k]); 1534 zSep = zSep2; 1535 identPut(zStmt, &k, pCol->zName); 1536 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1537 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1538 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1539 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1540 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1541 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1542 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1543 1544 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1545 len = sqlite3Strlen30(zType); 1546 assert( pCol->affinity==SQLITE_AFF_NONE 1547 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1548 memcpy(&zStmt[k], zType, len); 1549 k += len; 1550 assert( k<=n ); 1551 } 1552 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1553 return zStmt; 1554 } 1555 1556 /* 1557 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1558 ** on success and SQLITE_NOMEM on an OOM error. 1559 */ 1560 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1561 char *zExtra; 1562 int nByte; 1563 if( pIdx->nColumn>=N ) return SQLITE_OK; 1564 assert( pIdx->isResized==0 ); 1565 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1566 zExtra = sqlite3DbMallocZero(db, nByte); 1567 if( zExtra==0 ) return SQLITE_NOMEM; 1568 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1569 pIdx->azColl = (char**)zExtra; 1570 zExtra += sizeof(char*)*N; 1571 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1572 pIdx->aiColumn = (i16*)zExtra; 1573 zExtra += sizeof(i16)*N; 1574 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1575 pIdx->aSortOrder = (u8*)zExtra; 1576 pIdx->nColumn = N; 1577 pIdx->isResized = 1; 1578 return SQLITE_OK; 1579 } 1580 1581 /* 1582 ** Estimate the total row width for a table. 1583 */ 1584 static void estimateTableWidth(Table *pTab){ 1585 unsigned wTable = 0; 1586 const Column *pTabCol; 1587 int i; 1588 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1589 wTable += pTabCol->szEst; 1590 } 1591 if( pTab->iPKey<0 ) wTable++; 1592 pTab->szTabRow = sqlite3LogEst(wTable*4); 1593 } 1594 1595 /* 1596 ** Estimate the average size of a row for an index. 1597 */ 1598 static void estimateIndexWidth(Index *pIdx){ 1599 unsigned wIndex = 0; 1600 int i; 1601 const Column *aCol = pIdx->pTable->aCol; 1602 for(i=0; i<pIdx->nColumn; i++){ 1603 i16 x = pIdx->aiColumn[i]; 1604 assert( x<pIdx->pTable->nCol ); 1605 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1606 } 1607 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1608 } 1609 1610 /* Return true if value x is found any of the first nCol entries of aiCol[] 1611 */ 1612 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1613 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1614 return 0; 1615 } 1616 1617 /* 1618 ** This routine runs at the end of parsing a CREATE TABLE statement that 1619 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1620 ** internal schema data structures and the generated VDBE code so that they 1621 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1622 ** Changes include: 1623 ** 1624 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1625 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1626 ** data storage is a covering index btree. 1627 ** (2) Bypass the creation of the sqlite_master table entry 1628 ** for the PRIMARY KEY as the the primary key index is now 1629 ** identified by the sqlite_master table entry of the table itself. 1630 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1631 ** schema to the rootpage from the main table. 1632 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1633 ** (5) Add all table columns to the PRIMARY KEY Index object 1634 ** so that the PRIMARY KEY is a covering index. The surplus 1635 ** columns are part of KeyInfo.nXField and are not used for 1636 ** sorting or lookup or uniqueness checks. 1637 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1638 ** indices with the PRIMARY KEY columns. 1639 */ 1640 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1641 Index *pIdx; 1642 Index *pPk; 1643 int nPk; 1644 int i, j; 1645 sqlite3 *db = pParse->db; 1646 Vdbe *v = pParse->pVdbe; 1647 1648 /* Convert the OP_CreateTable opcode that would normally create the 1649 ** root-page for the table into a OP_CreateIndex opcode. The index 1650 ** created will become the PRIMARY KEY index. 1651 */ 1652 if( pParse->addrCrTab ){ 1653 assert( v ); 1654 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1655 } 1656 1657 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1658 ** table entry. 1659 */ 1660 if( pParse->addrSkipPK ){ 1661 assert( v ); 1662 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1663 } 1664 1665 /* Locate the PRIMARY KEY index. Or, if this table was originally 1666 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1667 */ 1668 if( pTab->iPKey>=0 ){ 1669 ExprList *pList; 1670 pList = sqlite3ExprListAppend(pParse, 0, 0); 1671 if( pList==0 ) return; 1672 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1673 pTab->aCol[pTab->iPKey].zName); 1674 pList->a[0].sortOrder = pParse->iPkSortOrder; 1675 assert( pParse->pNewTable==pTab ); 1676 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1677 if( pPk==0 ) return; 1678 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1679 pTab->iPKey = -1; 1680 }else{ 1681 pPk = sqlite3PrimaryKeyIndex(pTab); 1682 } 1683 pPk->isCovering = 1; 1684 assert( pPk!=0 ); 1685 nPk = pPk->nKeyCol; 1686 1687 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1688 for(i=0; i<nPk; i++){ 1689 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1690 } 1691 pPk->uniqNotNull = 1; 1692 1693 /* The root page of the PRIMARY KEY is the table root page */ 1694 pPk->tnum = pTab->tnum; 1695 1696 /* Update the in-memory representation of all UNIQUE indices by converting 1697 ** the final rowid column into one or more columns of the PRIMARY KEY. 1698 */ 1699 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1700 int n; 1701 if( IsPrimaryKeyIndex(pIdx) ) continue; 1702 for(i=n=0; i<nPk; i++){ 1703 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1704 } 1705 if( n==0 ){ 1706 /* This index is a superset of the primary key */ 1707 pIdx->nColumn = pIdx->nKeyCol; 1708 continue; 1709 } 1710 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1711 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1712 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1713 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1714 pIdx->azColl[j] = pPk->azColl[i]; 1715 j++; 1716 } 1717 } 1718 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1719 assert( pIdx->nColumn>=j ); 1720 } 1721 1722 /* Add all table columns to the PRIMARY KEY index 1723 */ 1724 if( nPk<pTab->nCol ){ 1725 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1726 for(i=0, j=nPk; i<pTab->nCol; i++){ 1727 if( !hasColumn(pPk->aiColumn, j, i) ){ 1728 assert( j<pPk->nColumn ); 1729 pPk->aiColumn[j] = i; 1730 pPk->azColl[j] = "BINARY"; 1731 j++; 1732 } 1733 } 1734 assert( pPk->nColumn==j ); 1735 assert( pTab->nCol==j ); 1736 }else{ 1737 pPk->nColumn = pTab->nCol; 1738 } 1739 } 1740 1741 /* 1742 ** This routine is called to report the final ")" that terminates 1743 ** a CREATE TABLE statement. 1744 ** 1745 ** The table structure that other action routines have been building 1746 ** is added to the internal hash tables, assuming no errors have 1747 ** occurred. 1748 ** 1749 ** An entry for the table is made in the master table on disk, unless 1750 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1751 ** it means we are reading the sqlite_master table because we just 1752 ** connected to the database or because the sqlite_master table has 1753 ** recently changed, so the entry for this table already exists in 1754 ** the sqlite_master table. We do not want to create it again. 1755 ** 1756 ** If the pSelect argument is not NULL, it means that this routine 1757 ** was called to create a table generated from a 1758 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1759 ** the new table will match the result set of the SELECT. 1760 */ 1761 void sqlite3EndTable( 1762 Parse *pParse, /* Parse context */ 1763 Token *pCons, /* The ',' token after the last column defn. */ 1764 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1765 u8 tabOpts, /* Extra table options. Usually 0. */ 1766 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1767 ){ 1768 Table *p; /* The new table */ 1769 sqlite3 *db = pParse->db; /* The database connection */ 1770 int iDb; /* Database in which the table lives */ 1771 Index *pIdx; /* An implied index of the table */ 1772 1773 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1774 return; 1775 } 1776 p = pParse->pNewTable; 1777 if( p==0 ) return; 1778 1779 assert( !db->init.busy || !pSelect ); 1780 1781 /* If the db->init.busy is 1 it means we are reading the SQL off the 1782 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1783 ** So do not write to the disk again. Extract the root page number 1784 ** for the table from the db->init.newTnum field. (The page number 1785 ** should have been put there by the sqliteOpenCb routine.) 1786 */ 1787 if( db->init.busy ){ 1788 p->tnum = db->init.newTnum; 1789 } 1790 1791 /* Special processing for WITHOUT ROWID Tables */ 1792 if( tabOpts & TF_WithoutRowid ){ 1793 if( (p->tabFlags & TF_Autoincrement) ){ 1794 sqlite3ErrorMsg(pParse, 1795 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1796 return; 1797 } 1798 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1799 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1800 }else{ 1801 p->tabFlags |= TF_WithoutRowid; 1802 convertToWithoutRowidTable(pParse, p); 1803 } 1804 } 1805 1806 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1807 1808 #ifndef SQLITE_OMIT_CHECK 1809 /* Resolve names in all CHECK constraint expressions. 1810 */ 1811 if( p->pCheck ){ 1812 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1813 } 1814 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1815 1816 /* Estimate the average row size for the table and for all implied indices */ 1817 estimateTableWidth(p); 1818 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1819 estimateIndexWidth(pIdx); 1820 } 1821 1822 /* If not initializing, then create a record for the new table 1823 ** in the SQLITE_MASTER table of the database. 1824 ** 1825 ** If this is a TEMPORARY table, write the entry into the auxiliary 1826 ** file instead of into the main database file. 1827 */ 1828 if( !db->init.busy ){ 1829 int n; 1830 Vdbe *v; 1831 char *zType; /* "view" or "table" */ 1832 char *zType2; /* "VIEW" or "TABLE" */ 1833 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1834 1835 v = sqlite3GetVdbe(pParse); 1836 if( NEVER(v==0) ) return; 1837 1838 sqlite3VdbeAddOp1(v, OP_Close, 0); 1839 1840 /* 1841 ** Initialize zType for the new view or table. 1842 */ 1843 if( p->pSelect==0 ){ 1844 /* A regular table */ 1845 zType = "table"; 1846 zType2 = "TABLE"; 1847 #ifndef SQLITE_OMIT_VIEW 1848 }else{ 1849 /* A view */ 1850 zType = "view"; 1851 zType2 = "VIEW"; 1852 #endif 1853 } 1854 1855 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1856 ** statement to populate the new table. The root-page number for the 1857 ** new table is in register pParse->regRoot. 1858 ** 1859 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1860 ** suitable state to query for the column names and types to be used 1861 ** by the new table. 1862 ** 1863 ** A shared-cache write-lock is not required to write to the new table, 1864 ** as a schema-lock must have already been obtained to create it. Since 1865 ** a schema-lock excludes all other database users, the write-lock would 1866 ** be redundant. 1867 */ 1868 if( pSelect ){ 1869 SelectDest dest; 1870 Table *pSelTab; 1871 1872 assert(pParse->nTab==1); 1873 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1874 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1875 pParse->nTab = 2; 1876 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1877 sqlite3Select(pParse, pSelect, &dest); 1878 sqlite3VdbeAddOp1(v, OP_Close, 1); 1879 if( pParse->nErr==0 ){ 1880 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1881 if( pSelTab==0 ) return; 1882 assert( p->aCol==0 ); 1883 p->nCol = pSelTab->nCol; 1884 p->aCol = pSelTab->aCol; 1885 pSelTab->nCol = 0; 1886 pSelTab->aCol = 0; 1887 sqlite3DeleteTable(db, pSelTab); 1888 } 1889 } 1890 1891 /* Compute the complete text of the CREATE statement */ 1892 if( pSelect ){ 1893 zStmt = createTableStmt(db, p); 1894 }else{ 1895 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1896 n = (int)(pEnd2->z - pParse->sNameToken.z); 1897 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1898 zStmt = sqlite3MPrintf(db, 1899 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1900 ); 1901 } 1902 1903 /* A slot for the record has already been allocated in the 1904 ** SQLITE_MASTER table. We just need to update that slot with all 1905 ** the information we've collected. 1906 */ 1907 sqlite3NestedParse(pParse, 1908 "UPDATE %Q.%s " 1909 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1910 "WHERE rowid=#%d", 1911 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1912 zType, 1913 p->zName, 1914 p->zName, 1915 pParse->regRoot, 1916 zStmt, 1917 pParse->regRowid 1918 ); 1919 sqlite3DbFree(db, zStmt); 1920 sqlite3ChangeCookie(pParse, iDb); 1921 1922 #ifndef SQLITE_OMIT_AUTOINCREMENT 1923 /* Check to see if we need to create an sqlite_sequence table for 1924 ** keeping track of autoincrement keys. 1925 */ 1926 if( p->tabFlags & TF_Autoincrement ){ 1927 Db *pDb = &db->aDb[iDb]; 1928 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1929 if( pDb->pSchema->pSeqTab==0 ){ 1930 sqlite3NestedParse(pParse, 1931 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1932 pDb->zName 1933 ); 1934 } 1935 } 1936 #endif 1937 1938 /* Reparse everything to update our internal data structures */ 1939 sqlite3VdbeAddParseSchemaOp(v, iDb, 1940 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1941 } 1942 1943 1944 /* Add the table to the in-memory representation of the database. 1945 */ 1946 if( db->init.busy ){ 1947 Table *pOld; 1948 Schema *pSchema = p->pSchema; 1949 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1950 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1951 sqlite3Strlen30(p->zName),p); 1952 if( pOld ){ 1953 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1954 db->mallocFailed = 1; 1955 return; 1956 } 1957 pParse->pNewTable = 0; 1958 db->flags |= SQLITE_InternChanges; 1959 1960 #ifndef SQLITE_OMIT_ALTERTABLE 1961 if( !p->pSelect ){ 1962 const char *zName = (const char *)pParse->sNameToken.z; 1963 int nName; 1964 assert( !pSelect && pCons && pEnd ); 1965 if( pCons->z==0 ){ 1966 pCons = pEnd; 1967 } 1968 nName = (int)((const char *)pCons->z - zName); 1969 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1970 } 1971 #endif 1972 } 1973 } 1974 1975 #ifndef SQLITE_OMIT_VIEW 1976 /* 1977 ** The parser calls this routine in order to create a new VIEW 1978 */ 1979 void sqlite3CreateView( 1980 Parse *pParse, /* The parsing context */ 1981 Token *pBegin, /* The CREATE token that begins the statement */ 1982 Token *pName1, /* The token that holds the name of the view */ 1983 Token *pName2, /* The token that holds the name of the view */ 1984 Select *pSelect, /* A SELECT statement that will become the new view */ 1985 int isTemp, /* TRUE for a TEMPORARY view */ 1986 int noErr /* Suppress error messages if VIEW already exists */ 1987 ){ 1988 Table *p; 1989 int n; 1990 const char *z; 1991 Token sEnd; 1992 DbFixer sFix; 1993 Token *pName = 0; 1994 int iDb; 1995 sqlite3 *db = pParse->db; 1996 1997 if( pParse->nVar>0 ){ 1998 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1999 sqlite3SelectDelete(db, pSelect); 2000 return; 2001 } 2002 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2003 p = pParse->pNewTable; 2004 if( p==0 || pParse->nErr ){ 2005 sqlite3SelectDelete(db, pSelect); 2006 return; 2007 } 2008 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2009 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2010 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2011 if( sqlite3FixSelect(&sFix, pSelect) ){ 2012 sqlite3SelectDelete(db, pSelect); 2013 return; 2014 } 2015 2016 /* Make a copy of the entire SELECT statement that defines the view. 2017 ** This will force all the Expr.token.z values to be dynamically 2018 ** allocated rather than point to the input string - which means that 2019 ** they will persist after the current sqlite3_exec() call returns. 2020 */ 2021 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2022 sqlite3SelectDelete(db, pSelect); 2023 if( db->mallocFailed ){ 2024 return; 2025 } 2026 if( !db->init.busy ){ 2027 sqlite3ViewGetColumnNames(pParse, p); 2028 } 2029 2030 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2031 ** the end. 2032 */ 2033 sEnd = pParse->sLastToken; 2034 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2035 sEnd.z += sEnd.n; 2036 } 2037 sEnd.n = 0; 2038 n = (int)(sEnd.z - pBegin->z); 2039 z = pBegin->z; 2040 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2041 sEnd.z = &z[n-1]; 2042 sEnd.n = 1; 2043 2044 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2045 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2046 return; 2047 } 2048 #endif /* SQLITE_OMIT_VIEW */ 2049 2050 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2051 /* 2052 ** The Table structure pTable is really a VIEW. Fill in the names of 2053 ** the columns of the view in the pTable structure. Return the number 2054 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2055 */ 2056 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2057 Table *pSelTab; /* A fake table from which we get the result set */ 2058 Select *pSel; /* Copy of the SELECT that implements the view */ 2059 int nErr = 0; /* Number of errors encountered */ 2060 int n; /* Temporarily holds the number of cursors assigned */ 2061 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2062 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 2063 2064 assert( pTable ); 2065 2066 #ifndef SQLITE_OMIT_VIRTUALTABLE 2067 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2068 return SQLITE_ERROR; 2069 } 2070 if( IsVirtual(pTable) ) return 0; 2071 #endif 2072 2073 #ifndef SQLITE_OMIT_VIEW 2074 /* A positive nCol means the columns names for this view are 2075 ** already known. 2076 */ 2077 if( pTable->nCol>0 ) return 0; 2078 2079 /* A negative nCol is a special marker meaning that we are currently 2080 ** trying to compute the column names. If we enter this routine with 2081 ** a negative nCol, it means two or more views form a loop, like this: 2082 ** 2083 ** CREATE VIEW one AS SELECT * FROM two; 2084 ** CREATE VIEW two AS SELECT * FROM one; 2085 ** 2086 ** Actually, the error above is now caught prior to reaching this point. 2087 ** But the following test is still important as it does come up 2088 ** in the following: 2089 ** 2090 ** CREATE TABLE main.ex1(a); 2091 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2092 ** SELECT * FROM temp.ex1; 2093 */ 2094 if( pTable->nCol<0 ){ 2095 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2096 return 1; 2097 } 2098 assert( pTable->nCol>=0 ); 2099 2100 /* If we get this far, it means we need to compute the table names. 2101 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2102 ** "*" elements in the results set of the view and will assign cursors 2103 ** to the elements of the FROM clause. But we do not want these changes 2104 ** to be permanent. So the computation is done on a copy of the SELECT 2105 ** statement that defines the view. 2106 */ 2107 assert( pTable->pSelect ); 2108 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2109 if( pSel ){ 2110 u8 enableLookaside = db->lookaside.bEnabled; 2111 n = pParse->nTab; 2112 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2113 pTable->nCol = -1; 2114 db->lookaside.bEnabled = 0; 2115 #ifndef SQLITE_OMIT_AUTHORIZATION 2116 xAuth = db->xAuth; 2117 db->xAuth = 0; 2118 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2119 db->xAuth = xAuth; 2120 #else 2121 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2122 #endif 2123 db->lookaside.bEnabled = enableLookaside; 2124 pParse->nTab = n; 2125 if( pSelTab ){ 2126 assert( pTable->aCol==0 ); 2127 pTable->nCol = pSelTab->nCol; 2128 pTable->aCol = pSelTab->aCol; 2129 pSelTab->nCol = 0; 2130 pSelTab->aCol = 0; 2131 sqlite3DeleteTable(db, pSelTab); 2132 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2133 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2134 }else{ 2135 pTable->nCol = 0; 2136 nErr++; 2137 } 2138 sqlite3SelectDelete(db, pSel); 2139 } else { 2140 nErr++; 2141 } 2142 #endif /* SQLITE_OMIT_VIEW */ 2143 return nErr; 2144 } 2145 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2146 2147 #ifndef SQLITE_OMIT_VIEW 2148 /* 2149 ** Clear the column names from every VIEW in database idx. 2150 */ 2151 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2152 HashElem *i; 2153 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2154 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2155 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2156 Table *pTab = sqliteHashData(i); 2157 if( pTab->pSelect ){ 2158 sqliteDeleteColumnNames(db, pTab); 2159 pTab->aCol = 0; 2160 pTab->nCol = 0; 2161 } 2162 } 2163 DbClearProperty(db, idx, DB_UnresetViews); 2164 } 2165 #else 2166 # define sqliteViewResetAll(A,B) 2167 #endif /* SQLITE_OMIT_VIEW */ 2168 2169 /* 2170 ** This function is called by the VDBE to adjust the internal schema 2171 ** used by SQLite when the btree layer moves a table root page. The 2172 ** root-page of a table or index in database iDb has changed from iFrom 2173 ** to iTo. 2174 ** 2175 ** Ticket #1728: The symbol table might still contain information 2176 ** on tables and/or indices that are the process of being deleted. 2177 ** If you are unlucky, one of those deleted indices or tables might 2178 ** have the same rootpage number as the real table or index that is 2179 ** being moved. So we cannot stop searching after the first match 2180 ** because the first match might be for one of the deleted indices 2181 ** or tables and not the table/index that is actually being moved. 2182 ** We must continue looping until all tables and indices with 2183 ** rootpage==iFrom have been converted to have a rootpage of iTo 2184 ** in order to be certain that we got the right one. 2185 */ 2186 #ifndef SQLITE_OMIT_AUTOVACUUM 2187 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2188 HashElem *pElem; 2189 Hash *pHash; 2190 Db *pDb; 2191 2192 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2193 pDb = &db->aDb[iDb]; 2194 pHash = &pDb->pSchema->tblHash; 2195 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2196 Table *pTab = sqliteHashData(pElem); 2197 if( pTab->tnum==iFrom ){ 2198 pTab->tnum = iTo; 2199 } 2200 } 2201 pHash = &pDb->pSchema->idxHash; 2202 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2203 Index *pIdx = sqliteHashData(pElem); 2204 if( pIdx->tnum==iFrom ){ 2205 pIdx->tnum = iTo; 2206 } 2207 } 2208 } 2209 #endif 2210 2211 /* 2212 ** Write code to erase the table with root-page iTable from database iDb. 2213 ** Also write code to modify the sqlite_master table and internal schema 2214 ** if a root-page of another table is moved by the btree-layer whilst 2215 ** erasing iTable (this can happen with an auto-vacuum database). 2216 */ 2217 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2218 Vdbe *v = sqlite3GetVdbe(pParse); 2219 int r1 = sqlite3GetTempReg(pParse); 2220 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2221 sqlite3MayAbort(pParse); 2222 #ifndef SQLITE_OMIT_AUTOVACUUM 2223 /* OP_Destroy stores an in integer r1. If this integer 2224 ** is non-zero, then it is the root page number of a table moved to 2225 ** location iTable. The following code modifies the sqlite_master table to 2226 ** reflect this. 2227 ** 2228 ** The "#NNN" in the SQL is a special constant that means whatever value 2229 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2230 ** token for additional information. 2231 */ 2232 sqlite3NestedParse(pParse, 2233 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2234 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2235 #endif 2236 sqlite3ReleaseTempReg(pParse, r1); 2237 } 2238 2239 /* 2240 ** Write VDBE code to erase table pTab and all associated indices on disk. 2241 ** Code to update the sqlite_master tables and internal schema definitions 2242 ** in case a root-page belonging to another table is moved by the btree layer 2243 ** is also added (this can happen with an auto-vacuum database). 2244 */ 2245 static void destroyTable(Parse *pParse, Table *pTab){ 2246 #ifdef SQLITE_OMIT_AUTOVACUUM 2247 Index *pIdx; 2248 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2249 destroyRootPage(pParse, pTab->tnum, iDb); 2250 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2251 destroyRootPage(pParse, pIdx->tnum, iDb); 2252 } 2253 #else 2254 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2255 ** is not defined), then it is important to call OP_Destroy on the 2256 ** table and index root-pages in order, starting with the numerically 2257 ** largest root-page number. This guarantees that none of the root-pages 2258 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2259 ** following were coded: 2260 ** 2261 ** OP_Destroy 4 0 2262 ** ... 2263 ** OP_Destroy 5 0 2264 ** 2265 ** and root page 5 happened to be the largest root-page number in the 2266 ** database, then root page 5 would be moved to page 4 by the 2267 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2268 ** a free-list page. 2269 */ 2270 int iTab = pTab->tnum; 2271 int iDestroyed = 0; 2272 2273 while( 1 ){ 2274 Index *pIdx; 2275 int iLargest = 0; 2276 2277 if( iDestroyed==0 || iTab<iDestroyed ){ 2278 iLargest = iTab; 2279 } 2280 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2281 int iIdx = pIdx->tnum; 2282 assert( pIdx->pSchema==pTab->pSchema ); 2283 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2284 iLargest = iIdx; 2285 } 2286 } 2287 if( iLargest==0 ){ 2288 return; 2289 }else{ 2290 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2291 assert( iDb>=0 && iDb<pParse->db->nDb ); 2292 destroyRootPage(pParse, iLargest, iDb); 2293 iDestroyed = iLargest; 2294 } 2295 } 2296 #endif 2297 } 2298 2299 /* 2300 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2301 ** after a DROP INDEX or DROP TABLE command. 2302 */ 2303 static void sqlite3ClearStatTables( 2304 Parse *pParse, /* The parsing context */ 2305 int iDb, /* The database number */ 2306 const char *zType, /* "idx" or "tbl" */ 2307 const char *zName /* Name of index or table */ 2308 ){ 2309 int i; 2310 const char *zDbName = pParse->db->aDb[iDb].zName; 2311 for(i=1; i<=4; i++){ 2312 char zTab[24]; 2313 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2314 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2315 sqlite3NestedParse(pParse, 2316 "DELETE FROM %Q.%s WHERE %s=%Q", 2317 zDbName, zTab, zType, zName 2318 ); 2319 } 2320 } 2321 } 2322 2323 /* 2324 ** Generate code to drop a table. 2325 */ 2326 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2327 Vdbe *v; 2328 sqlite3 *db = pParse->db; 2329 Trigger *pTrigger; 2330 Db *pDb = &db->aDb[iDb]; 2331 2332 v = sqlite3GetVdbe(pParse); 2333 assert( v!=0 ); 2334 sqlite3BeginWriteOperation(pParse, 1, iDb); 2335 2336 #ifndef SQLITE_OMIT_VIRTUALTABLE 2337 if( IsVirtual(pTab) ){ 2338 sqlite3VdbeAddOp0(v, OP_VBegin); 2339 } 2340 #endif 2341 2342 /* Drop all triggers associated with the table being dropped. Code 2343 ** is generated to remove entries from sqlite_master and/or 2344 ** sqlite_temp_master if required. 2345 */ 2346 pTrigger = sqlite3TriggerList(pParse, pTab); 2347 while( pTrigger ){ 2348 assert( pTrigger->pSchema==pTab->pSchema || 2349 pTrigger->pSchema==db->aDb[1].pSchema ); 2350 sqlite3DropTriggerPtr(pParse, pTrigger); 2351 pTrigger = pTrigger->pNext; 2352 } 2353 2354 #ifndef SQLITE_OMIT_AUTOINCREMENT 2355 /* Remove any entries of the sqlite_sequence table associated with 2356 ** the table being dropped. This is done before the table is dropped 2357 ** at the btree level, in case the sqlite_sequence table needs to 2358 ** move as a result of the drop (can happen in auto-vacuum mode). 2359 */ 2360 if( pTab->tabFlags & TF_Autoincrement ){ 2361 sqlite3NestedParse(pParse, 2362 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2363 pDb->zName, pTab->zName 2364 ); 2365 } 2366 #endif 2367 2368 /* Drop all SQLITE_MASTER table and index entries that refer to the 2369 ** table. The program name loops through the master table and deletes 2370 ** every row that refers to a table of the same name as the one being 2371 ** dropped. Triggers are handled separately because a trigger can be 2372 ** created in the temp database that refers to a table in another 2373 ** database. 2374 */ 2375 sqlite3NestedParse(pParse, 2376 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2377 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2378 if( !isView && !IsVirtual(pTab) ){ 2379 destroyTable(pParse, pTab); 2380 } 2381 2382 /* Remove the table entry from SQLite's internal schema and modify 2383 ** the schema cookie. 2384 */ 2385 if( IsVirtual(pTab) ){ 2386 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2387 } 2388 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2389 sqlite3ChangeCookie(pParse, iDb); 2390 sqliteViewResetAll(db, iDb); 2391 } 2392 2393 /* 2394 ** This routine is called to do the work of a DROP TABLE statement. 2395 ** pName is the name of the table to be dropped. 2396 */ 2397 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2398 Table *pTab; 2399 Vdbe *v; 2400 sqlite3 *db = pParse->db; 2401 int iDb; 2402 2403 if( db->mallocFailed ){ 2404 goto exit_drop_table; 2405 } 2406 assert( pParse->nErr==0 ); 2407 assert( pName->nSrc==1 ); 2408 if( noErr ) db->suppressErr++; 2409 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2410 if( noErr ) db->suppressErr--; 2411 2412 if( pTab==0 ){ 2413 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2414 goto exit_drop_table; 2415 } 2416 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2417 assert( iDb>=0 && iDb<db->nDb ); 2418 2419 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2420 ** it is initialized. 2421 */ 2422 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2423 goto exit_drop_table; 2424 } 2425 #ifndef SQLITE_OMIT_AUTHORIZATION 2426 { 2427 int code; 2428 const char *zTab = SCHEMA_TABLE(iDb); 2429 const char *zDb = db->aDb[iDb].zName; 2430 const char *zArg2 = 0; 2431 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2432 goto exit_drop_table; 2433 } 2434 if( isView ){ 2435 if( !OMIT_TEMPDB && iDb==1 ){ 2436 code = SQLITE_DROP_TEMP_VIEW; 2437 }else{ 2438 code = SQLITE_DROP_VIEW; 2439 } 2440 #ifndef SQLITE_OMIT_VIRTUALTABLE 2441 }else if( IsVirtual(pTab) ){ 2442 code = SQLITE_DROP_VTABLE; 2443 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2444 #endif 2445 }else{ 2446 if( !OMIT_TEMPDB && iDb==1 ){ 2447 code = SQLITE_DROP_TEMP_TABLE; 2448 }else{ 2449 code = SQLITE_DROP_TABLE; 2450 } 2451 } 2452 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2453 goto exit_drop_table; 2454 } 2455 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2456 goto exit_drop_table; 2457 } 2458 } 2459 #endif 2460 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2461 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2462 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2463 goto exit_drop_table; 2464 } 2465 2466 #ifndef SQLITE_OMIT_VIEW 2467 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2468 ** on a table. 2469 */ 2470 if( isView && pTab->pSelect==0 ){ 2471 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2472 goto exit_drop_table; 2473 } 2474 if( !isView && pTab->pSelect ){ 2475 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2476 goto exit_drop_table; 2477 } 2478 #endif 2479 2480 /* Generate code to remove the table from the master table 2481 ** on disk. 2482 */ 2483 v = sqlite3GetVdbe(pParse); 2484 if( v ){ 2485 sqlite3BeginWriteOperation(pParse, 1, iDb); 2486 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2487 sqlite3FkDropTable(pParse, pName, pTab); 2488 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2489 } 2490 2491 exit_drop_table: 2492 sqlite3SrcListDelete(db, pName); 2493 } 2494 2495 /* 2496 ** This routine is called to create a new foreign key on the table 2497 ** currently under construction. pFromCol determines which columns 2498 ** in the current table point to the foreign key. If pFromCol==0 then 2499 ** connect the key to the last column inserted. pTo is the name of 2500 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2501 ** of tables in the parent pTo table. flags contains all 2502 ** information about the conflict resolution algorithms specified 2503 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2504 ** 2505 ** An FKey structure is created and added to the table currently 2506 ** under construction in the pParse->pNewTable field. 2507 ** 2508 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2509 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2510 */ 2511 void sqlite3CreateForeignKey( 2512 Parse *pParse, /* Parsing context */ 2513 ExprList *pFromCol, /* Columns in this table that point to other table */ 2514 Token *pTo, /* Name of the other table */ 2515 ExprList *pToCol, /* Columns in the other table */ 2516 int flags /* Conflict resolution algorithms. */ 2517 ){ 2518 sqlite3 *db = pParse->db; 2519 #ifndef SQLITE_OMIT_FOREIGN_KEY 2520 FKey *pFKey = 0; 2521 FKey *pNextTo; 2522 Table *p = pParse->pNewTable; 2523 int nByte; 2524 int i; 2525 int nCol; 2526 char *z; 2527 2528 assert( pTo!=0 ); 2529 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2530 if( pFromCol==0 ){ 2531 int iCol = p->nCol-1; 2532 if( NEVER(iCol<0) ) goto fk_end; 2533 if( pToCol && pToCol->nExpr!=1 ){ 2534 sqlite3ErrorMsg(pParse, "foreign key on %s" 2535 " should reference only one column of table %T", 2536 p->aCol[iCol].zName, pTo); 2537 goto fk_end; 2538 } 2539 nCol = 1; 2540 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2541 sqlite3ErrorMsg(pParse, 2542 "number of columns in foreign key does not match the number of " 2543 "columns in the referenced table"); 2544 goto fk_end; 2545 }else{ 2546 nCol = pFromCol->nExpr; 2547 } 2548 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2549 if( pToCol ){ 2550 for(i=0; i<pToCol->nExpr; i++){ 2551 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2552 } 2553 } 2554 pFKey = sqlite3DbMallocZero(db, nByte ); 2555 if( pFKey==0 ){ 2556 goto fk_end; 2557 } 2558 pFKey->pFrom = p; 2559 pFKey->pNextFrom = p->pFKey; 2560 z = (char*)&pFKey->aCol[nCol]; 2561 pFKey->zTo = z; 2562 memcpy(z, pTo->z, pTo->n); 2563 z[pTo->n] = 0; 2564 sqlite3Dequote(z); 2565 z += pTo->n+1; 2566 pFKey->nCol = nCol; 2567 if( pFromCol==0 ){ 2568 pFKey->aCol[0].iFrom = p->nCol-1; 2569 }else{ 2570 for(i=0; i<nCol; i++){ 2571 int j; 2572 for(j=0; j<p->nCol; j++){ 2573 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2574 pFKey->aCol[i].iFrom = j; 2575 break; 2576 } 2577 } 2578 if( j>=p->nCol ){ 2579 sqlite3ErrorMsg(pParse, 2580 "unknown column \"%s\" in foreign key definition", 2581 pFromCol->a[i].zName); 2582 goto fk_end; 2583 } 2584 } 2585 } 2586 if( pToCol ){ 2587 for(i=0; i<nCol; i++){ 2588 int n = sqlite3Strlen30(pToCol->a[i].zName); 2589 pFKey->aCol[i].zCol = z; 2590 memcpy(z, pToCol->a[i].zName, n); 2591 z[n] = 0; 2592 z += n+1; 2593 } 2594 } 2595 pFKey->isDeferred = 0; 2596 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2597 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2598 2599 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2600 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2601 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2602 ); 2603 if( pNextTo==pFKey ){ 2604 db->mallocFailed = 1; 2605 goto fk_end; 2606 } 2607 if( pNextTo ){ 2608 assert( pNextTo->pPrevTo==0 ); 2609 pFKey->pNextTo = pNextTo; 2610 pNextTo->pPrevTo = pFKey; 2611 } 2612 2613 /* Link the foreign key to the table as the last step. 2614 */ 2615 p->pFKey = pFKey; 2616 pFKey = 0; 2617 2618 fk_end: 2619 sqlite3DbFree(db, pFKey); 2620 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2621 sqlite3ExprListDelete(db, pFromCol); 2622 sqlite3ExprListDelete(db, pToCol); 2623 } 2624 2625 /* 2626 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2627 ** clause is seen as part of a foreign key definition. The isDeferred 2628 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2629 ** The behavior of the most recently created foreign key is adjusted 2630 ** accordingly. 2631 */ 2632 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2633 #ifndef SQLITE_OMIT_FOREIGN_KEY 2634 Table *pTab; 2635 FKey *pFKey; 2636 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2637 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2638 pFKey->isDeferred = (u8)isDeferred; 2639 #endif 2640 } 2641 2642 /* 2643 ** Generate code that will erase and refill index *pIdx. This is 2644 ** used to initialize a newly created index or to recompute the 2645 ** content of an index in response to a REINDEX command. 2646 ** 2647 ** if memRootPage is not negative, it means that the index is newly 2648 ** created. The register specified by memRootPage contains the 2649 ** root page number of the index. If memRootPage is negative, then 2650 ** the index already exists and must be cleared before being refilled and 2651 ** the root page number of the index is taken from pIndex->tnum. 2652 */ 2653 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2654 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2655 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2656 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2657 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2658 int addr1; /* Address of top of loop */ 2659 int addr2; /* Address to jump to for next iteration */ 2660 int tnum; /* Root page of index */ 2661 int iPartIdxLabel; /* Jump to this label to skip a row */ 2662 Vdbe *v; /* Generate code into this virtual machine */ 2663 KeyInfo *pKey; /* KeyInfo for index */ 2664 int regRecord; /* Register holding assemblied index record */ 2665 sqlite3 *db = pParse->db; /* The database connection */ 2666 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2667 2668 #ifndef SQLITE_OMIT_AUTHORIZATION 2669 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2670 db->aDb[iDb].zName ) ){ 2671 return; 2672 } 2673 #endif 2674 2675 /* Require a write-lock on the table to perform this operation */ 2676 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2677 2678 v = sqlite3GetVdbe(pParse); 2679 if( v==0 ) return; 2680 if( memRootPage>=0 ){ 2681 tnum = memRootPage; 2682 }else{ 2683 tnum = pIndex->tnum; 2684 } 2685 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2686 2687 /* Open the sorter cursor if we are to use one. */ 2688 iSorter = pParse->nTab++; 2689 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) 2690 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2691 2692 /* Open the table. Loop through all rows of the table, inserting index 2693 ** records into the sorter. */ 2694 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2695 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2696 regRecord = sqlite3GetTempReg(pParse); 2697 2698 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2699 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2700 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2701 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2702 sqlite3VdbeJumpHere(v, addr1); 2703 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2704 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2705 (char *)pKey, P4_KEYINFO); 2706 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2707 2708 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2709 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2710 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2711 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2712 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2713 addr2 = sqlite3VdbeCurrentAddr(v); 2714 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2715 pIndex->nKeyCol); VdbeCoverage(v); 2716 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2717 }else{ 2718 addr2 = sqlite3VdbeCurrentAddr(v); 2719 } 2720 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2721 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2722 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2723 sqlite3ReleaseTempReg(pParse, regRecord); 2724 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2725 sqlite3VdbeJumpHere(v, addr1); 2726 2727 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2728 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2729 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2730 } 2731 2732 /* 2733 ** Allocate heap space to hold an Index object with nCol columns. 2734 ** 2735 ** Increase the allocation size to provide an extra nExtra bytes 2736 ** of 8-byte aligned space after the Index object and return a 2737 ** pointer to this extra space in *ppExtra. 2738 */ 2739 Index *sqlite3AllocateIndexObject( 2740 sqlite3 *db, /* Database connection */ 2741 i16 nCol, /* Total number of columns in the index */ 2742 int nExtra, /* Number of bytes of extra space to alloc */ 2743 char **ppExtra /* Pointer to the "extra" space */ 2744 ){ 2745 Index *p; /* Allocated index object */ 2746 int nByte; /* Bytes of space for Index object + arrays */ 2747 2748 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2749 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2750 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2751 sizeof(i16)*nCol + /* Index.aiColumn */ 2752 sizeof(u8)*nCol); /* Index.aSortOrder */ 2753 p = sqlite3DbMallocZero(db, nByte + nExtra); 2754 if( p ){ 2755 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2756 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2757 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2758 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2759 p->aSortOrder = (u8*)pExtra; 2760 p->nColumn = nCol; 2761 p->nKeyCol = nCol - 1; 2762 *ppExtra = ((char*)p) + nByte; 2763 } 2764 return p; 2765 } 2766 2767 /* 2768 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2769 ** and pTblList is the name of the table that is to be indexed. Both will 2770 ** be NULL for a primary key or an index that is created to satisfy a 2771 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2772 ** as the table to be indexed. pParse->pNewTable is a table that is 2773 ** currently being constructed by a CREATE TABLE statement. 2774 ** 2775 ** pList is a list of columns to be indexed. pList will be NULL if this 2776 ** is a primary key or unique-constraint on the most recent column added 2777 ** to the table currently under construction. 2778 ** 2779 ** If the index is created successfully, return a pointer to the new Index 2780 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2781 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2782 */ 2783 Index *sqlite3CreateIndex( 2784 Parse *pParse, /* All information about this parse */ 2785 Token *pName1, /* First part of index name. May be NULL */ 2786 Token *pName2, /* Second part of index name. May be NULL */ 2787 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2788 ExprList *pList, /* A list of columns to be indexed */ 2789 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2790 Token *pStart, /* The CREATE token that begins this statement */ 2791 Expr *pPIWhere, /* WHERE clause for partial indices */ 2792 int sortOrder, /* Sort order of primary key when pList==NULL */ 2793 int ifNotExist /* Omit error if index already exists */ 2794 ){ 2795 Index *pRet = 0; /* Pointer to return */ 2796 Table *pTab = 0; /* Table to be indexed */ 2797 Index *pIndex = 0; /* The index to be created */ 2798 char *zName = 0; /* Name of the index */ 2799 int nName; /* Number of characters in zName */ 2800 int i, j; 2801 DbFixer sFix; /* For assigning database names to pTable */ 2802 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2803 sqlite3 *db = pParse->db; 2804 Db *pDb; /* The specific table containing the indexed database */ 2805 int iDb; /* Index of the database that is being written */ 2806 Token *pName = 0; /* Unqualified name of the index to create */ 2807 struct ExprList_item *pListItem; /* For looping over pList */ 2808 const Column *pTabCol; /* A column in the table */ 2809 int nExtra = 0; /* Space allocated for zExtra[] */ 2810 int nExtraCol; /* Number of extra columns needed */ 2811 char *zExtra = 0; /* Extra space after the Index object */ 2812 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2813 2814 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2815 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2816 goto exit_create_index; 2817 } 2818 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2819 goto exit_create_index; 2820 } 2821 2822 /* 2823 ** Find the table that is to be indexed. Return early if not found. 2824 */ 2825 if( pTblName!=0 ){ 2826 2827 /* Use the two-part index name to determine the database 2828 ** to search for the table. 'Fix' the table name to this db 2829 ** before looking up the table. 2830 */ 2831 assert( pName1 && pName2 ); 2832 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2833 if( iDb<0 ) goto exit_create_index; 2834 assert( pName && pName->z ); 2835 2836 #ifndef SQLITE_OMIT_TEMPDB 2837 /* If the index name was unqualified, check if the table 2838 ** is a temp table. If so, set the database to 1. Do not do this 2839 ** if initialising a database schema. 2840 */ 2841 if( !db->init.busy ){ 2842 pTab = sqlite3SrcListLookup(pParse, pTblName); 2843 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2844 iDb = 1; 2845 } 2846 } 2847 #endif 2848 2849 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2850 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2851 /* Because the parser constructs pTblName from a single identifier, 2852 ** sqlite3FixSrcList can never fail. */ 2853 assert(0); 2854 } 2855 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2856 assert( db->mallocFailed==0 || pTab==0 ); 2857 if( pTab==0 ) goto exit_create_index; 2858 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2859 sqlite3ErrorMsg(pParse, 2860 "cannot create a TEMP index on non-TEMP table \"%s\"", 2861 pTab->zName); 2862 goto exit_create_index; 2863 } 2864 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2865 }else{ 2866 assert( pName==0 ); 2867 assert( pStart==0 ); 2868 pTab = pParse->pNewTable; 2869 if( !pTab ) goto exit_create_index; 2870 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2871 } 2872 pDb = &db->aDb[iDb]; 2873 2874 assert( pTab!=0 ); 2875 assert( pParse->nErr==0 ); 2876 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2877 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2878 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2879 goto exit_create_index; 2880 } 2881 #ifndef SQLITE_OMIT_VIEW 2882 if( pTab->pSelect ){ 2883 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2884 goto exit_create_index; 2885 } 2886 #endif 2887 #ifndef SQLITE_OMIT_VIRTUALTABLE 2888 if( IsVirtual(pTab) ){ 2889 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2890 goto exit_create_index; 2891 } 2892 #endif 2893 2894 /* 2895 ** Find the name of the index. Make sure there is not already another 2896 ** index or table with the same name. 2897 ** 2898 ** Exception: If we are reading the names of permanent indices from the 2899 ** sqlite_master table (because some other process changed the schema) and 2900 ** one of the index names collides with the name of a temporary table or 2901 ** index, then we will continue to process this index. 2902 ** 2903 ** If pName==0 it means that we are 2904 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2905 ** own name. 2906 */ 2907 if( pName ){ 2908 zName = sqlite3NameFromToken(db, pName); 2909 if( zName==0 ) goto exit_create_index; 2910 assert( pName->z!=0 ); 2911 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2912 goto exit_create_index; 2913 } 2914 if( !db->init.busy ){ 2915 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2916 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2917 goto exit_create_index; 2918 } 2919 } 2920 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2921 if( !ifNotExist ){ 2922 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2923 }else{ 2924 assert( !db->init.busy ); 2925 sqlite3CodeVerifySchema(pParse, iDb); 2926 } 2927 goto exit_create_index; 2928 } 2929 }else{ 2930 int n; 2931 Index *pLoop; 2932 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2933 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2934 if( zName==0 ){ 2935 goto exit_create_index; 2936 } 2937 } 2938 2939 /* Check for authorization to create an index. 2940 */ 2941 #ifndef SQLITE_OMIT_AUTHORIZATION 2942 { 2943 const char *zDb = pDb->zName; 2944 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2945 goto exit_create_index; 2946 } 2947 i = SQLITE_CREATE_INDEX; 2948 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2949 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2950 goto exit_create_index; 2951 } 2952 } 2953 #endif 2954 2955 /* If pList==0, it means this routine was called to make a primary 2956 ** key out of the last column added to the table under construction. 2957 ** So create a fake list to simulate this. 2958 */ 2959 if( pList==0 ){ 2960 pList = sqlite3ExprListAppend(pParse, 0, 0); 2961 if( pList==0 ) goto exit_create_index; 2962 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 2963 pTab->aCol[pTab->nCol-1].zName); 2964 pList->a[0].sortOrder = (u8)sortOrder; 2965 } 2966 2967 /* Figure out how many bytes of space are required to store explicitly 2968 ** specified collation sequence names. 2969 */ 2970 for(i=0; i<pList->nExpr; i++){ 2971 Expr *pExpr = pList->a[i].pExpr; 2972 if( pExpr ){ 2973 assert( pExpr->op==TK_COLLATE ); 2974 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 2975 } 2976 } 2977 2978 /* 2979 ** Allocate the index structure. 2980 */ 2981 nName = sqlite3Strlen30(zName); 2982 nExtraCol = pPk ? pPk->nKeyCol : 1; 2983 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 2984 nName + nExtra + 1, &zExtra); 2985 if( db->mallocFailed ){ 2986 goto exit_create_index; 2987 } 2988 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 2989 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 2990 pIndex->zName = zExtra; 2991 zExtra += nName + 1; 2992 memcpy(pIndex->zName, zName, nName+1); 2993 pIndex->pTable = pTab; 2994 pIndex->onError = (u8)onError; 2995 pIndex->uniqNotNull = onError!=OE_None; 2996 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 2997 pIndex->pSchema = db->aDb[iDb].pSchema; 2998 pIndex->nKeyCol = pList->nExpr; 2999 if( pPIWhere ){ 3000 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3001 pIndex->pPartIdxWhere = pPIWhere; 3002 pPIWhere = 0; 3003 } 3004 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3005 3006 /* Check to see if we should honor DESC requests on index columns 3007 */ 3008 if( pDb->pSchema->file_format>=4 ){ 3009 sortOrderMask = -1; /* Honor DESC */ 3010 }else{ 3011 sortOrderMask = 0; /* Ignore DESC */ 3012 } 3013 3014 /* Scan the names of the columns of the table to be indexed and 3015 ** load the column indices into the Index structure. Report an error 3016 ** if any column is not found. 3017 ** 3018 ** TODO: Add a test to make sure that the same column is not named 3019 ** more than once within the same index. Only the first instance of 3020 ** the column will ever be used by the optimizer. Note that using the 3021 ** same column more than once cannot be an error because that would 3022 ** break backwards compatibility - it needs to be a warning. 3023 */ 3024 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3025 const char *zColName = pListItem->zName; 3026 int requestedSortOrder; 3027 char *zColl; /* Collation sequence name */ 3028 3029 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3030 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3031 } 3032 if( j>=pTab->nCol ){ 3033 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3034 pTab->zName, zColName); 3035 pParse->checkSchema = 1; 3036 goto exit_create_index; 3037 } 3038 assert( pTab->nCol<=0x7fff && j<=0x7fff ); 3039 pIndex->aiColumn[i] = (i16)j; 3040 if( pListItem->pExpr ){ 3041 int nColl; 3042 assert( pListItem->pExpr->op==TK_COLLATE ); 3043 zColl = pListItem->pExpr->u.zToken; 3044 nColl = sqlite3Strlen30(zColl) + 1; 3045 assert( nExtra>=nColl ); 3046 memcpy(zExtra, zColl, nColl); 3047 zColl = zExtra; 3048 zExtra += nColl; 3049 nExtra -= nColl; 3050 }else{ 3051 zColl = pTab->aCol[j].zColl; 3052 if( !zColl ) zColl = "BINARY"; 3053 } 3054 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3055 goto exit_create_index; 3056 } 3057 pIndex->azColl[i] = zColl; 3058 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3059 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3060 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3061 } 3062 if( pPk ){ 3063 for(j=0; j<pPk->nKeyCol; j++){ 3064 int x = pPk->aiColumn[j]; 3065 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3066 pIndex->nColumn--; 3067 }else{ 3068 pIndex->aiColumn[i] = x; 3069 pIndex->azColl[i] = pPk->azColl[j]; 3070 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3071 i++; 3072 } 3073 } 3074 assert( i==pIndex->nColumn ); 3075 }else{ 3076 pIndex->aiColumn[i] = -1; 3077 pIndex->azColl[i] = "BINARY"; 3078 } 3079 sqlite3DefaultRowEst(pIndex); 3080 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3081 3082 if( pTab==pParse->pNewTable ){ 3083 /* This routine has been called to create an automatic index as a 3084 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3085 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3086 ** i.e. one of: 3087 ** 3088 ** CREATE TABLE t(x PRIMARY KEY, y); 3089 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3090 ** 3091 ** Either way, check to see if the table already has such an index. If 3092 ** so, don't bother creating this one. This only applies to 3093 ** automatically created indices. Users can do as they wish with 3094 ** explicit indices. 3095 ** 3096 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3097 ** (and thus suppressing the second one) even if they have different 3098 ** sort orders. 3099 ** 3100 ** If there are different collating sequences or if the columns of 3101 ** the constraint occur in different orders, then the constraints are 3102 ** considered distinct and both result in separate indices. 3103 */ 3104 Index *pIdx; 3105 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3106 int k; 3107 assert( IsUniqueIndex(pIdx) ); 3108 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3109 assert( IsUniqueIndex(pIndex) ); 3110 3111 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3112 for(k=0; k<pIdx->nKeyCol; k++){ 3113 const char *z1; 3114 const char *z2; 3115 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3116 z1 = pIdx->azColl[k]; 3117 z2 = pIndex->azColl[k]; 3118 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3119 } 3120 if( k==pIdx->nKeyCol ){ 3121 if( pIdx->onError!=pIndex->onError ){ 3122 /* This constraint creates the same index as a previous 3123 ** constraint specified somewhere in the CREATE TABLE statement. 3124 ** However the ON CONFLICT clauses are different. If both this 3125 ** constraint and the previous equivalent constraint have explicit 3126 ** ON CONFLICT clauses this is an error. Otherwise, use the 3127 ** explicitly specified behavior for the index. 3128 */ 3129 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3130 sqlite3ErrorMsg(pParse, 3131 "conflicting ON CONFLICT clauses specified", 0); 3132 } 3133 if( pIdx->onError==OE_Default ){ 3134 pIdx->onError = pIndex->onError; 3135 } 3136 } 3137 goto exit_create_index; 3138 } 3139 } 3140 } 3141 3142 /* Link the new Index structure to its table and to the other 3143 ** in-memory database structures. 3144 */ 3145 if( db->init.busy ){ 3146 Index *p; 3147 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3148 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3149 pIndex->zName, sqlite3Strlen30(pIndex->zName), 3150 pIndex); 3151 if( p ){ 3152 assert( p==pIndex ); /* Malloc must have failed */ 3153 db->mallocFailed = 1; 3154 goto exit_create_index; 3155 } 3156 db->flags |= SQLITE_InternChanges; 3157 if( pTblName!=0 ){ 3158 pIndex->tnum = db->init.newTnum; 3159 } 3160 } 3161 3162 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3163 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3164 ** emit code to allocate the index rootpage on disk and make an entry for 3165 ** the index in the sqlite_master table and populate the index with 3166 ** content. But, do not do this if we are simply reading the sqlite_master 3167 ** table to parse the schema, or if this index is the PRIMARY KEY index 3168 ** of a WITHOUT ROWID table. 3169 ** 3170 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3171 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3172 ** has just been created, it contains no data and the index initialization 3173 ** step can be skipped. 3174 */ 3175 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3176 Vdbe *v; 3177 char *zStmt; 3178 int iMem = ++pParse->nMem; 3179 3180 v = sqlite3GetVdbe(pParse); 3181 if( v==0 ) goto exit_create_index; 3182 3183 3184 /* Create the rootpage for the index 3185 */ 3186 sqlite3BeginWriteOperation(pParse, 1, iDb); 3187 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3188 3189 /* Gather the complete text of the CREATE INDEX statement into 3190 ** the zStmt variable 3191 */ 3192 if( pStart ){ 3193 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3194 if( pName->z[n-1]==';' ) n--; 3195 /* A named index with an explicit CREATE INDEX statement */ 3196 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3197 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3198 }else{ 3199 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3200 /* zStmt = sqlite3MPrintf(""); */ 3201 zStmt = 0; 3202 } 3203 3204 /* Add an entry in sqlite_master for this index 3205 */ 3206 sqlite3NestedParse(pParse, 3207 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3208 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3209 pIndex->zName, 3210 pTab->zName, 3211 iMem, 3212 zStmt 3213 ); 3214 sqlite3DbFree(db, zStmt); 3215 3216 /* Fill the index with data and reparse the schema. Code an OP_Expire 3217 ** to invalidate all pre-compiled statements. 3218 */ 3219 if( pTblName ){ 3220 sqlite3RefillIndex(pParse, pIndex, iMem); 3221 sqlite3ChangeCookie(pParse, iDb); 3222 sqlite3VdbeAddParseSchemaOp(v, iDb, 3223 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3224 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3225 } 3226 } 3227 3228 /* When adding an index to the list of indices for a table, make 3229 ** sure all indices labeled OE_Replace come after all those labeled 3230 ** OE_Ignore. This is necessary for the correct constraint check 3231 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3232 ** UPDATE and INSERT statements. 3233 */ 3234 if( db->init.busy || pTblName==0 ){ 3235 if( onError!=OE_Replace || pTab->pIndex==0 3236 || pTab->pIndex->onError==OE_Replace){ 3237 pIndex->pNext = pTab->pIndex; 3238 pTab->pIndex = pIndex; 3239 }else{ 3240 Index *pOther = pTab->pIndex; 3241 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3242 pOther = pOther->pNext; 3243 } 3244 pIndex->pNext = pOther->pNext; 3245 pOther->pNext = pIndex; 3246 } 3247 pRet = pIndex; 3248 pIndex = 0; 3249 } 3250 3251 /* Clean up before exiting */ 3252 exit_create_index: 3253 if( pIndex ) freeIndex(db, pIndex); 3254 sqlite3ExprDelete(db, pPIWhere); 3255 sqlite3ExprListDelete(db, pList); 3256 sqlite3SrcListDelete(db, pTblName); 3257 sqlite3DbFree(db, zName); 3258 return pRet; 3259 } 3260 3261 /* 3262 ** Fill the Index.aiRowEst[] array with default information - information 3263 ** to be used when we have not run the ANALYZE command. 3264 ** 3265 ** aiRowEst[0] is suppose to contain the number of elements in the index. 3266 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3267 ** number of rows in the table that match any particular value of the 3268 ** first column of the index. aiRowEst[2] is an estimate of the number 3269 ** of rows that match any particular combination of the first 2 columns 3270 ** of the index. And so forth. It must always be the case that 3271 * 3272 ** aiRowEst[N]<=aiRowEst[N-1] 3273 ** aiRowEst[N]>=1 3274 ** 3275 ** Apart from that, we have little to go on besides intuition as to 3276 ** how aiRowEst[] should be initialized. The numbers generated here 3277 ** are based on typical values found in actual indices. 3278 */ 3279 void sqlite3DefaultRowEst(Index *pIdx){ 3280 /* 10, 9, 8, 7, 6 */ 3281 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3282 LogEst *a = pIdx->aiRowLogEst; 3283 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3284 int i; 3285 3286 /* Set the first entry (number of rows in the index) to the estimated 3287 ** number of rows in the table. Or 10, if the estimated number of rows 3288 ** in the table is less than that. */ 3289 a[0] = pIdx->pTable->nRowLogEst; 3290 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3291 3292 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3293 ** 6 and each subsequent value (if any) is 5. */ 3294 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3295 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3296 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3297 } 3298 3299 assert( 0==sqlite3LogEst(1) ); 3300 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3301 } 3302 3303 /* 3304 ** This routine will drop an existing named index. This routine 3305 ** implements the DROP INDEX statement. 3306 */ 3307 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3308 Index *pIndex; 3309 Vdbe *v; 3310 sqlite3 *db = pParse->db; 3311 int iDb; 3312 3313 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3314 if( db->mallocFailed ){ 3315 goto exit_drop_index; 3316 } 3317 assert( pName->nSrc==1 ); 3318 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3319 goto exit_drop_index; 3320 } 3321 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3322 if( pIndex==0 ){ 3323 if( !ifExists ){ 3324 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3325 }else{ 3326 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3327 } 3328 pParse->checkSchema = 1; 3329 goto exit_drop_index; 3330 } 3331 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3332 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3333 "or PRIMARY KEY constraint cannot be dropped", 0); 3334 goto exit_drop_index; 3335 } 3336 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3337 #ifndef SQLITE_OMIT_AUTHORIZATION 3338 { 3339 int code = SQLITE_DROP_INDEX; 3340 Table *pTab = pIndex->pTable; 3341 const char *zDb = db->aDb[iDb].zName; 3342 const char *zTab = SCHEMA_TABLE(iDb); 3343 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3344 goto exit_drop_index; 3345 } 3346 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3347 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3348 goto exit_drop_index; 3349 } 3350 } 3351 #endif 3352 3353 /* Generate code to remove the index and from the master table */ 3354 v = sqlite3GetVdbe(pParse); 3355 if( v ){ 3356 sqlite3BeginWriteOperation(pParse, 1, iDb); 3357 sqlite3NestedParse(pParse, 3358 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3359 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3360 ); 3361 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3362 sqlite3ChangeCookie(pParse, iDb); 3363 destroyRootPage(pParse, pIndex->tnum, iDb); 3364 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3365 } 3366 3367 exit_drop_index: 3368 sqlite3SrcListDelete(db, pName); 3369 } 3370 3371 /* 3372 ** pArray is a pointer to an array of objects. Each object in the 3373 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3374 ** to extend the array so that there is space for a new object at the end. 3375 ** 3376 ** When this function is called, *pnEntry contains the current size of 3377 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3378 ** in total). 3379 ** 3380 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3381 ** space allocated for the new object is zeroed, *pnEntry updated to 3382 ** reflect the new size of the array and a pointer to the new allocation 3383 ** returned. *pIdx is set to the index of the new array entry in this case. 3384 ** 3385 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3386 ** unchanged and a copy of pArray returned. 3387 */ 3388 void *sqlite3ArrayAllocate( 3389 sqlite3 *db, /* Connection to notify of malloc failures */ 3390 void *pArray, /* Array of objects. Might be reallocated */ 3391 int szEntry, /* Size of each object in the array */ 3392 int *pnEntry, /* Number of objects currently in use */ 3393 int *pIdx /* Write the index of a new slot here */ 3394 ){ 3395 char *z; 3396 int n = *pnEntry; 3397 if( (n & (n-1))==0 ){ 3398 int sz = (n==0) ? 1 : 2*n; 3399 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3400 if( pNew==0 ){ 3401 *pIdx = -1; 3402 return pArray; 3403 } 3404 pArray = pNew; 3405 } 3406 z = (char*)pArray; 3407 memset(&z[n * szEntry], 0, szEntry); 3408 *pIdx = n; 3409 ++*pnEntry; 3410 return pArray; 3411 } 3412 3413 /* 3414 ** Append a new element to the given IdList. Create a new IdList if 3415 ** need be. 3416 ** 3417 ** A new IdList is returned, or NULL if malloc() fails. 3418 */ 3419 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3420 int i; 3421 if( pList==0 ){ 3422 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3423 if( pList==0 ) return 0; 3424 } 3425 pList->a = sqlite3ArrayAllocate( 3426 db, 3427 pList->a, 3428 sizeof(pList->a[0]), 3429 &pList->nId, 3430 &i 3431 ); 3432 if( i<0 ){ 3433 sqlite3IdListDelete(db, pList); 3434 return 0; 3435 } 3436 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3437 return pList; 3438 } 3439 3440 /* 3441 ** Delete an IdList. 3442 */ 3443 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3444 int i; 3445 if( pList==0 ) return; 3446 for(i=0; i<pList->nId; i++){ 3447 sqlite3DbFree(db, pList->a[i].zName); 3448 } 3449 sqlite3DbFree(db, pList->a); 3450 sqlite3DbFree(db, pList); 3451 } 3452 3453 /* 3454 ** Return the index in pList of the identifier named zId. Return -1 3455 ** if not found. 3456 */ 3457 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3458 int i; 3459 if( pList==0 ) return -1; 3460 for(i=0; i<pList->nId; i++){ 3461 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3462 } 3463 return -1; 3464 } 3465 3466 /* 3467 ** Expand the space allocated for the given SrcList object by 3468 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3469 ** New slots are zeroed. 3470 ** 3471 ** For example, suppose a SrcList initially contains two entries: A,B. 3472 ** To append 3 new entries onto the end, do this: 3473 ** 3474 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3475 ** 3476 ** After the call above it would contain: A, B, nil, nil, nil. 3477 ** If the iStart argument had been 1 instead of 2, then the result 3478 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3479 ** the iStart value would be 0. The result then would 3480 ** be: nil, nil, nil, A, B. 3481 ** 3482 ** If a memory allocation fails the SrcList is unchanged. The 3483 ** db->mallocFailed flag will be set to true. 3484 */ 3485 SrcList *sqlite3SrcListEnlarge( 3486 sqlite3 *db, /* Database connection to notify of OOM errors */ 3487 SrcList *pSrc, /* The SrcList to be enlarged */ 3488 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3489 int iStart /* Index in pSrc->a[] of first new slot */ 3490 ){ 3491 int i; 3492 3493 /* Sanity checking on calling parameters */ 3494 assert( iStart>=0 ); 3495 assert( nExtra>=1 ); 3496 assert( pSrc!=0 ); 3497 assert( iStart<=pSrc->nSrc ); 3498 3499 /* Allocate additional space if needed */ 3500 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3501 SrcList *pNew; 3502 int nAlloc = pSrc->nSrc+nExtra; 3503 int nGot; 3504 pNew = sqlite3DbRealloc(db, pSrc, 3505 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3506 if( pNew==0 ){ 3507 assert( db->mallocFailed ); 3508 return pSrc; 3509 } 3510 pSrc = pNew; 3511 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3512 pSrc->nAlloc = nGot; 3513 } 3514 3515 /* Move existing slots that come after the newly inserted slots 3516 ** out of the way */ 3517 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3518 pSrc->a[i+nExtra] = pSrc->a[i]; 3519 } 3520 pSrc->nSrc += nExtra; 3521 3522 /* Zero the newly allocated slots */ 3523 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3524 for(i=iStart; i<iStart+nExtra; i++){ 3525 pSrc->a[i].iCursor = -1; 3526 } 3527 3528 /* Return a pointer to the enlarged SrcList */ 3529 return pSrc; 3530 } 3531 3532 3533 /* 3534 ** Append a new table name to the given SrcList. Create a new SrcList if 3535 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3536 ** 3537 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3538 ** SrcList might be the same as the SrcList that was input or it might be 3539 ** a new one. If an OOM error does occurs, then the prior value of pList 3540 ** that is input to this routine is automatically freed. 3541 ** 3542 ** If pDatabase is not null, it means that the table has an optional 3543 ** database name prefix. Like this: "database.table". The pDatabase 3544 ** points to the table name and the pTable points to the database name. 3545 ** The SrcList.a[].zName field is filled with the table name which might 3546 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3547 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3548 ** or with NULL if no database is specified. 3549 ** 3550 ** In other words, if call like this: 3551 ** 3552 ** sqlite3SrcListAppend(D,A,B,0); 3553 ** 3554 ** Then B is a table name and the database name is unspecified. If called 3555 ** like this: 3556 ** 3557 ** sqlite3SrcListAppend(D,A,B,C); 3558 ** 3559 ** Then C is the table name and B is the database name. If C is defined 3560 ** then so is B. In other words, we never have a case where: 3561 ** 3562 ** sqlite3SrcListAppend(D,A,0,C); 3563 ** 3564 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3565 ** before being added to the SrcList. 3566 */ 3567 SrcList *sqlite3SrcListAppend( 3568 sqlite3 *db, /* Connection to notify of malloc failures */ 3569 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3570 Token *pTable, /* Table to append */ 3571 Token *pDatabase /* Database of the table */ 3572 ){ 3573 struct SrcList_item *pItem; 3574 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3575 if( pList==0 ){ 3576 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3577 if( pList==0 ) return 0; 3578 pList->nAlloc = 1; 3579 } 3580 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3581 if( db->mallocFailed ){ 3582 sqlite3SrcListDelete(db, pList); 3583 return 0; 3584 } 3585 pItem = &pList->a[pList->nSrc-1]; 3586 if( pDatabase && pDatabase->z==0 ){ 3587 pDatabase = 0; 3588 } 3589 if( pDatabase ){ 3590 Token *pTemp = pDatabase; 3591 pDatabase = pTable; 3592 pTable = pTemp; 3593 } 3594 pItem->zName = sqlite3NameFromToken(db, pTable); 3595 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3596 return pList; 3597 } 3598 3599 /* 3600 ** Assign VdbeCursor index numbers to all tables in a SrcList 3601 */ 3602 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3603 int i; 3604 struct SrcList_item *pItem; 3605 assert(pList || pParse->db->mallocFailed ); 3606 if( pList ){ 3607 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3608 if( pItem->iCursor>=0 ) break; 3609 pItem->iCursor = pParse->nTab++; 3610 if( pItem->pSelect ){ 3611 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3612 } 3613 } 3614 } 3615 } 3616 3617 /* 3618 ** Delete an entire SrcList including all its substructure. 3619 */ 3620 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3621 int i; 3622 struct SrcList_item *pItem; 3623 if( pList==0 ) return; 3624 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3625 sqlite3DbFree(db, pItem->zDatabase); 3626 sqlite3DbFree(db, pItem->zName); 3627 sqlite3DbFree(db, pItem->zAlias); 3628 sqlite3DbFree(db, pItem->zIndex); 3629 sqlite3DeleteTable(db, pItem->pTab); 3630 sqlite3SelectDelete(db, pItem->pSelect); 3631 sqlite3ExprDelete(db, pItem->pOn); 3632 sqlite3IdListDelete(db, pItem->pUsing); 3633 } 3634 sqlite3DbFree(db, pList); 3635 } 3636 3637 /* 3638 ** This routine is called by the parser to add a new term to the 3639 ** end of a growing FROM clause. The "p" parameter is the part of 3640 ** the FROM clause that has already been constructed. "p" is NULL 3641 ** if this is the first term of the FROM clause. pTable and pDatabase 3642 ** are the name of the table and database named in the FROM clause term. 3643 ** pDatabase is NULL if the database name qualifier is missing - the 3644 ** usual case. If the term has a alias, then pAlias points to the 3645 ** alias token. If the term is a subquery, then pSubquery is the 3646 ** SELECT statement that the subquery encodes. The pTable and 3647 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3648 ** parameters are the content of the ON and USING clauses. 3649 ** 3650 ** Return a new SrcList which encodes is the FROM with the new 3651 ** term added. 3652 */ 3653 SrcList *sqlite3SrcListAppendFromTerm( 3654 Parse *pParse, /* Parsing context */ 3655 SrcList *p, /* The left part of the FROM clause already seen */ 3656 Token *pTable, /* Name of the table to add to the FROM clause */ 3657 Token *pDatabase, /* Name of the database containing pTable */ 3658 Token *pAlias, /* The right-hand side of the AS subexpression */ 3659 Select *pSubquery, /* A subquery used in place of a table name */ 3660 Expr *pOn, /* The ON clause of a join */ 3661 IdList *pUsing /* The USING clause of a join */ 3662 ){ 3663 struct SrcList_item *pItem; 3664 sqlite3 *db = pParse->db; 3665 if( !p && (pOn || pUsing) ){ 3666 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3667 (pOn ? "ON" : "USING") 3668 ); 3669 goto append_from_error; 3670 } 3671 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3672 if( p==0 || NEVER(p->nSrc==0) ){ 3673 goto append_from_error; 3674 } 3675 pItem = &p->a[p->nSrc-1]; 3676 assert( pAlias!=0 ); 3677 if( pAlias->n ){ 3678 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3679 } 3680 pItem->pSelect = pSubquery; 3681 pItem->pOn = pOn; 3682 pItem->pUsing = pUsing; 3683 return p; 3684 3685 append_from_error: 3686 assert( p==0 ); 3687 sqlite3ExprDelete(db, pOn); 3688 sqlite3IdListDelete(db, pUsing); 3689 sqlite3SelectDelete(db, pSubquery); 3690 return 0; 3691 } 3692 3693 /* 3694 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3695 ** element of the source-list passed as the second argument. 3696 */ 3697 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3698 assert( pIndexedBy!=0 ); 3699 if( p && ALWAYS(p->nSrc>0) ){ 3700 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3701 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3702 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3703 /* A "NOT INDEXED" clause was supplied. See parse.y 3704 ** construct "indexed_opt" for details. */ 3705 pItem->notIndexed = 1; 3706 }else{ 3707 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3708 } 3709 } 3710 } 3711 3712 /* 3713 ** When building up a FROM clause in the parser, the join operator 3714 ** is initially attached to the left operand. But the code generator 3715 ** expects the join operator to be on the right operand. This routine 3716 ** Shifts all join operators from left to right for an entire FROM 3717 ** clause. 3718 ** 3719 ** Example: Suppose the join is like this: 3720 ** 3721 ** A natural cross join B 3722 ** 3723 ** The operator is "natural cross join". The A and B operands are stored 3724 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3725 ** operator with A. This routine shifts that operator over to B. 3726 */ 3727 void sqlite3SrcListShiftJoinType(SrcList *p){ 3728 if( p ){ 3729 int i; 3730 assert( p->a || p->nSrc==0 ); 3731 for(i=p->nSrc-1; i>0; i--){ 3732 p->a[i].jointype = p->a[i-1].jointype; 3733 } 3734 p->a[0].jointype = 0; 3735 } 3736 } 3737 3738 /* 3739 ** Begin a transaction 3740 */ 3741 void sqlite3BeginTransaction(Parse *pParse, int type){ 3742 sqlite3 *db; 3743 Vdbe *v; 3744 int i; 3745 3746 assert( pParse!=0 ); 3747 db = pParse->db; 3748 assert( db!=0 ); 3749 /* if( db->aDb[0].pBt==0 ) return; */ 3750 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3751 return; 3752 } 3753 v = sqlite3GetVdbe(pParse); 3754 if( !v ) return; 3755 if( type!=TK_DEFERRED ){ 3756 for(i=0; i<db->nDb; i++){ 3757 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3758 sqlite3VdbeUsesBtree(v, i); 3759 } 3760 } 3761 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3762 } 3763 3764 /* 3765 ** Commit a transaction 3766 */ 3767 void sqlite3CommitTransaction(Parse *pParse){ 3768 Vdbe *v; 3769 3770 assert( pParse!=0 ); 3771 assert( pParse->db!=0 ); 3772 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3773 return; 3774 } 3775 v = sqlite3GetVdbe(pParse); 3776 if( v ){ 3777 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3778 } 3779 } 3780 3781 /* 3782 ** Rollback a transaction 3783 */ 3784 void sqlite3RollbackTransaction(Parse *pParse){ 3785 Vdbe *v; 3786 3787 assert( pParse!=0 ); 3788 assert( pParse->db!=0 ); 3789 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3790 return; 3791 } 3792 v = sqlite3GetVdbe(pParse); 3793 if( v ){ 3794 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3795 } 3796 } 3797 3798 /* 3799 ** This function is called by the parser when it parses a command to create, 3800 ** release or rollback an SQL savepoint. 3801 */ 3802 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3803 char *zName = sqlite3NameFromToken(pParse->db, pName); 3804 if( zName ){ 3805 Vdbe *v = sqlite3GetVdbe(pParse); 3806 #ifndef SQLITE_OMIT_AUTHORIZATION 3807 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3808 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3809 #endif 3810 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3811 sqlite3DbFree(pParse->db, zName); 3812 return; 3813 } 3814 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3815 } 3816 } 3817 3818 /* 3819 ** Make sure the TEMP database is open and available for use. Return 3820 ** the number of errors. Leave any error messages in the pParse structure. 3821 */ 3822 int sqlite3OpenTempDatabase(Parse *pParse){ 3823 sqlite3 *db = pParse->db; 3824 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3825 int rc; 3826 Btree *pBt; 3827 static const int flags = 3828 SQLITE_OPEN_READWRITE | 3829 SQLITE_OPEN_CREATE | 3830 SQLITE_OPEN_EXCLUSIVE | 3831 SQLITE_OPEN_DELETEONCLOSE | 3832 SQLITE_OPEN_TEMP_DB; 3833 3834 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3835 if( rc!=SQLITE_OK ){ 3836 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3837 "file for storing temporary tables"); 3838 pParse->rc = rc; 3839 return 1; 3840 } 3841 db->aDb[1].pBt = pBt; 3842 assert( db->aDb[1].pSchema ); 3843 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3844 db->mallocFailed = 1; 3845 return 1; 3846 } 3847 } 3848 return 0; 3849 } 3850 3851 /* 3852 ** Record the fact that the schema cookie will need to be verified 3853 ** for database iDb. The code to actually verify the schema cookie 3854 ** will occur at the end of the top-level VDBE and will be generated 3855 ** later, by sqlite3FinishCoding(). 3856 */ 3857 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3858 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3859 sqlite3 *db = pToplevel->db; 3860 3861 assert( iDb>=0 && iDb<db->nDb ); 3862 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3863 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3864 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3865 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3866 DbMaskSet(pToplevel->cookieMask, iDb); 3867 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3868 if( !OMIT_TEMPDB && iDb==1 ){ 3869 sqlite3OpenTempDatabase(pToplevel); 3870 } 3871 } 3872 } 3873 3874 /* 3875 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3876 ** attached database. Otherwise, invoke it for the database named zDb only. 3877 */ 3878 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3879 sqlite3 *db = pParse->db; 3880 int i; 3881 for(i=0; i<db->nDb; i++){ 3882 Db *pDb = &db->aDb[i]; 3883 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3884 sqlite3CodeVerifySchema(pParse, i); 3885 } 3886 } 3887 } 3888 3889 /* 3890 ** Generate VDBE code that prepares for doing an operation that 3891 ** might change the database. 3892 ** 3893 ** This routine starts a new transaction if we are not already within 3894 ** a transaction. If we are already within a transaction, then a checkpoint 3895 ** is set if the setStatement parameter is true. A checkpoint should 3896 ** be set for operations that might fail (due to a constraint) part of 3897 ** the way through and which will need to undo some writes without having to 3898 ** rollback the whole transaction. For operations where all constraints 3899 ** can be checked before any changes are made to the database, it is never 3900 ** necessary to undo a write and the checkpoint should not be set. 3901 */ 3902 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3903 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3904 sqlite3CodeVerifySchema(pParse, iDb); 3905 DbMaskSet(pToplevel->writeMask, iDb); 3906 pToplevel->isMultiWrite |= setStatement; 3907 } 3908 3909 /* 3910 ** Indicate that the statement currently under construction might write 3911 ** more than one entry (example: deleting one row then inserting another, 3912 ** inserting multiple rows in a table, or inserting a row and index entries.) 3913 ** If an abort occurs after some of these writes have completed, then it will 3914 ** be necessary to undo the completed writes. 3915 */ 3916 void sqlite3MultiWrite(Parse *pParse){ 3917 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3918 pToplevel->isMultiWrite = 1; 3919 } 3920 3921 /* 3922 ** The code generator calls this routine if is discovers that it is 3923 ** possible to abort a statement prior to completion. In order to 3924 ** perform this abort without corrupting the database, we need to make 3925 ** sure that the statement is protected by a statement transaction. 3926 ** 3927 ** Technically, we only need to set the mayAbort flag if the 3928 ** isMultiWrite flag was previously set. There is a time dependency 3929 ** such that the abort must occur after the multiwrite. This makes 3930 ** some statements involving the REPLACE conflict resolution algorithm 3931 ** go a little faster. But taking advantage of this time dependency 3932 ** makes it more difficult to prove that the code is correct (in 3933 ** particular, it prevents us from writing an effective 3934 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3935 ** to take the safe route and skip the optimization. 3936 */ 3937 void sqlite3MayAbort(Parse *pParse){ 3938 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3939 pToplevel->mayAbort = 1; 3940 } 3941 3942 /* 3943 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3944 ** error. The onError parameter determines which (if any) of the statement 3945 ** and/or current transaction is rolled back. 3946 */ 3947 void sqlite3HaltConstraint( 3948 Parse *pParse, /* Parsing context */ 3949 int errCode, /* extended error code */ 3950 int onError, /* Constraint type */ 3951 char *p4, /* Error message */ 3952 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 3953 u8 p5Errmsg /* P5_ErrMsg type */ 3954 ){ 3955 Vdbe *v = sqlite3GetVdbe(pParse); 3956 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3957 if( onError==OE_Abort ){ 3958 sqlite3MayAbort(pParse); 3959 } 3960 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3961 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 3962 } 3963 3964 /* 3965 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 3966 */ 3967 void sqlite3UniqueConstraint( 3968 Parse *pParse, /* Parsing context */ 3969 int onError, /* Constraint type */ 3970 Index *pIdx /* The index that triggers the constraint */ 3971 ){ 3972 char *zErr; 3973 int j; 3974 StrAccum errMsg; 3975 Table *pTab = pIdx->pTable; 3976 3977 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 3978 errMsg.db = pParse->db; 3979 for(j=0; j<pIdx->nKeyCol; j++){ 3980 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 3981 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 3982 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 3983 sqlite3StrAccumAppend(&errMsg, ".", 1); 3984 sqlite3StrAccumAppendAll(&errMsg, zCol); 3985 } 3986 zErr = sqlite3StrAccumFinish(&errMsg); 3987 sqlite3HaltConstraint(pParse, 3988 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 3989 : SQLITE_CONSTRAINT_UNIQUE, 3990 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 3991 } 3992 3993 3994 /* 3995 ** Code an OP_Halt due to non-unique rowid. 3996 */ 3997 void sqlite3RowidConstraint( 3998 Parse *pParse, /* Parsing context */ 3999 int onError, /* Conflict resolution algorithm */ 4000 Table *pTab /* The table with the non-unique rowid */ 4001 ){ 4002 char *zMsg; 4003 int rc; 4004 if( pTab->iPKey>=0 ){ 4005 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4006 pTab->aCol[pTab->iPKey].zName); 4007 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4008 }else{ 4009 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4010 rc = SQLITE_CONSTRAINT_ROWID; 4011 } 4012 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4013 P5_ConstraintUnique); 4014 } 4015 4016 /* 4017 ** Check to see if pIndex uses the collating sequence pColl. Return 4018 ** true if it does and false if it does not. 4019 */ 4020 #ifndef SQLITE_OMIT_REINDEX 4021 static int collationMatch(const char *zColl, Index *pIndex){ 4022 int i; 4023 assert( zColl!=0 ); 4024 for(i=0; i<pIndex->nColumn; i++){ 4025 const char *z = pIndex->azColl[i]; 4026 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4027 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4028 return 1; 4029 } 4030 } 4031 return 0; 4032 } 4033 #endif 4034 4035 /* 4036 ** Recompute all indices of pTab that use the collating sequence pColl. 4037 ** If pColl==0 then recompute all indices of pTab. 4038 */ 4039 #ifndef SQLITE_OMIT_REINDEX 4040 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4041 Index *pIndex; /* An index associated with pTab */ 4042 4043 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4044 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4045 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4046 sqlite3BeginWriteOperation(pParse, 0, iDb); 4047 sqlite3RefillIndex(pParse, pIndex, -1); 4048 } 4049 } 4050 } 4051 #endif 4052 4053 /* 4054 ** Recompute all indices of all tables in all databases where the 4055 ** indices use the collating sequence pColl. If pColl==0 then recompute 4056 ** all indices everywhere. 4057 */ 4058 #ifndef SQLITE_OMIT_REINDEX 4059 static void reindexDatabases(Parse *pParse, char const *zColl){ 4060 Db *pDb; /* A single database */ 4061 int iDb; /* The database index number */ 4062 sqlite3 *db = pParse->db; /* The database connection */ 4063 HashElem *k; /* For looping over tables in pDb */ 4064 Table *pTab; /* A table in the database */ 4065 4066 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4067 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4068 assert( pDb!=0 ); 4069 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4070 pTab = (Table*)sqliteHashData(k); 4071 reindexTable(pParse, pTab, zColl); 4072 } 4073 } 4074 } 4075 #endif 4076 4077 /* 4078 ** Generate code for the REINDEX command. 4079 ** 4080 ** REINDEX -- 1 4081 ** REINDEX <collation> -- 2 4082 ** REINDEX ?<database>.?<tablename> -- 3 4083 ** REINDEX ?<database>.?<indexname> -- 4 4084 ** 4085 ** Form 1 causes all indices in all attached databases to be rebuilt. 4086 ** Form 2 rebuilds all indices in all databases that use the named 4087 ** collating function. Forms 3 and 4 rebuild the named index or all 4088 ** indices associated with the named table. 4089 */ 4090 #ifndef SQLITE_OMIT_REINDEX 4091 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4092 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4093 char *z; /* Name of a table or index */ 4094 const char *zDb; /* Name of the database */ 4095 Table *pTab; /* A table in the database */ 4096 Index *pIndex; /* An index associated with pTab */ 4097 int iDb; /* The database index number */ 4098 sqlite3 *db = pParse->db; /* The database connection */ 4099 Token *pObjName; /* Name of the table or index to be reindexed */ 4100 4101 /* Read the database schema. If an error occurs, leave an error message 4102 ** and code in pParse and return NULL. */ 4103 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4104 return; 4105 } 4106 4107 if( pName1==0 ){ 4108 reindexDatabases(pParse, 0); 4109 return; 4110 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4111 char *zColl; 4112 assert( pName1->z ); 4113 zColl = sqlite3NameFromToken(pParse->db, pName1); 4114 if( !zColl ) return; 4115 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4116 if( pColl ){ 4117 reindexDatabases(pParse, zColl); 4118 sqlite3DbFree(db, zColl); 4119 return; 4120 } 4121 sqlite3DbFree(db, zColl); 4122 } 4123 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4124 if( iDb<0 ) return; 4125 z = sqlite3NameFromToken(db, pObjName); 4126 if( z==0 ) return; 4127 zDb = db->aDb[iDb].zName; 4128 pTab = sqlite3FindTable(db, z, zDb); 4129 if( pTab ){ 4130 reindexTable(pParse, pTab, 0); 4131 sqlite3DbFree(db, z); 4132 return; 4133 } 4134 pIndex = sqlite3FindIndex(db, z, zDb); 4135 sqlite3DbFree(db, z); 4136 if( pIndex ){ 4137 sqlite3BeginWriteOperation(pParse, 0, iDb); 4138 sqlite3RefillIndex(pParse, pIndex, -1); 4139 return; 4140 } 4141 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4142 } 4143 #endif 4144 4145 /* 4146 ** Return a KeyInfo structure that is appropriate for the given Index. 4147 ** 4148 ** The KeyInfo structure for an index is cached in the Index object. 4149 ** So there might be multiple references to the returned pointer. The 4150 ** caller should not try to modify the KeyInfo object. 4151 ** 4152 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4153 ** when it has finished using it. 4154 */ 4155 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4156 if( pParse->nErr ) return 0; 4157 #ifndef SQLITE_OMIT_SHARED_CACHE 4158 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ 4159 sqlite3KeyInfoUnref(pIdx->pKeyInfo); 4160 pIdx->pKeyInfo = 0; 4161 } 4162 #endif 4163 if( pIdx->pKeyInfo==0 ){ 4164 int i; 4165 int nCol = pIdx->nColumn; 4166 int nKey = pIdx->nKeyCol; 4167 KeyInfo *pKey; 4168 if( pIdx->uniqNotNull ){ 4169 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4170 }else{ 4171 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4172 } 4173 if( pKey ){ 4174 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4175 for(i=0; i<nCol; i++){ 4176 char *zColl = pIdx->azColl[i]; 4177 assert( zColl!=0 ); 4178 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4179 sqlite3LocateCollSeq(pParse, zColl); 4180 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4181 } 4182 if( pParse->nErr ){ 4183 sqlite3KeyInfoUnref(pKey); 4184 }else{ 4185 pIdx->pKeyInfo = pKey; 4186 } 4187 } 4188 } 4189 return sqlite3KeyInfoRef(pIdx->pKeyInfo); 4190 } 4191 4192 #ifndef SQLITE_OMIT_CTE 4193 /* 4194 ** This routine is invoked once per CTE by the parser while parsing a 4195 ** WITH clause. 4196 */ 4197 With *sqlite3WithAdd( 4198 Parse *pParse, /* Parsing context */ 4199 With *pWith, /* Existing WITH clause, or NULL */ 4200 Token *pName, /* Name of the common-table */ 4201 ExprList *pArglist, /* Optional column name list for the table */ 4202 Select *pQuery /* Query used to initialize the table */ 4203 ){ 4204 sqlite3 *db = pParse->db; 4205 With *pNew; 4206 char *zName; 4207 4208 /* Check that the CTE name is unique within this WITH clause. If 4209 ** not, store an error in the Parse structure. */ 4210 zName = sqlite3NameFromToken(pParse->db, pName); 4211 if( zName && pWith ){ 4212 int i; 4213 for(i=0; i<pWith->nCte; i++){ 4214 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4215 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4216 } 4217 } 4218 } 4219 4220 if( pWith ){ 4221 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4222 pNew = sqlite3DbRealloc(db, pWith, nByte); 4223 }else{ 4224 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4225 } 4226 assert( zName!=0 || pNew==0 ); 4227 assert( db->mallocFailed==0 || pNew==0 ); 4228 4229 if( pNew==0 ){ 4230 sqlite3ExprListDelete(db, pArglist); 4231 sqlite3SelectDelete(db, pQuery); 4232 sqlite3DbFree(db, zName); 4233 pNew = pWith; 4234 }else{ 4235 pNew->a[pNew->nCte].pSelect = pQuery; 4236 pNew->a[pNew->nCte].pCols = pArglist; 4237 pNew->a[pNew->nCte].zName = zName; 4238 pNew->a[pNew->nCte].zErr = 0; 4239 pNew->nCte++; 4240 } 4241 4242 return pNew; 4243 } 4244 4245 /* 4246 ** Free the contents of the With object passed as the second argument. 4247 */ 4248 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4249 if( pWith ){ 4250 int i; 4251 for(i=0; i<pWith->nCte; i++){ 4252 struct Cte *pCte = &pWith->a[i]; 4253 sqlite3ExprListDelete(db, pCte->pCols); 4254 sqlite3SelectDelete(db, pCte->pSelect); 4255 sqlite3DbFree(db, pCte->zName); 4256 } 4257 sqlite3DbFree(db, pWith); 4258 } 4259 } 4260 #endif /* !defined(SQLITE_OMIT_CTE) */ 4261