1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( pParse->nested ) return; 146 if( db->mallocFailed || pParse->nErr ){ 147 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 148 return; 149 } 150 151 /* Begin by generating some termination code at the end of the 152 ** vdbe program 153 */ 154 v = sqlite3GetVdbe(pParse); 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 159 sqlite3VdbeAddOp0(v, OP_Halt); 160 161 #if SQLITE_USER_AUTHENTICATION 162 if( pParse->nTableLock>0 && db->init.busy==0 ){ 163 sqlite3UserAuthInit(db); 164 if( db->auth.authLevel<UAUTH_User ){ 165 pParse->rc = SQLITE_AUTH_USER; 166 sqlite3ErrorMsg(pParse, "user not authenticated"); 167 return; 168 } 169 } 170 #endif 171 172 /* The cookie mask contains one bit for each database file open. 173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 174 ** set for each database that is used. Generate code to start a 175 ** transaction on each used database and to verify the schema cookie 176 ** on each used database. 177 */ 178 if( db->mallocFailed==0 179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 180 ){ 181 int iDb, i; 182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 183 sqlite3VdbeJumpHere(v, 0); 184 for(iDb=0; iDb<db->nDb; iDb++){ 185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 186 sqlite3VdbeUsesBtree(v, iDb); 187 sqlite3VdbeAddOp4Int(v, 188 OP_Transaction, /* Opcode */ 189 iDb, /* P1 */ 190 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 191 pParse->cookieValue[iDb], /* P3 */ 192 db->aDb[iDb].pSchema->iGeneration /* P4 */ 193 ); 194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 195 } 196 #ifndef SQLITE_OMIT_VIRTUALTABLE 197 for(i=0; i<pParse->nVtabLock; i++){ 198 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 199 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 200 } 201 pParse->nVtabLock = 0; 202 #endif 203 204 /* Once all the cookies have been verified and transactions opened, 205 ** obtain the required table-locks. This is a no-op unless the 206 ** shared-cache feature is enabled. 207 */ 208 codeTableLocks(pParse); 209 210 /* Initialize any AUTOINCREMENT data structures required. 211 */ 212 sqlite3AutoincrementBegin(pParse); 213 214 /* Code constant expressions that where factored out of inner loops */ 215 if( pParse->pConstExpr ){ 216 ExprList *pEL = pParse->pConstExpr; 217 pParse->okConstFactor = 0; 218 for(i=0; i<pEL->nExpr; i++){ 219 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 220 } 221 } 222 223 /* Finally, jump back to the beginning of the executable code. */ 224 sqlite3VdbeGoto(v, 1); 225 } 226 } 227 228 229 /* Get the VDBE program ready for execution 230 */ 231 if( v && pParse->nErr==0 && !db->mallocFailed ){ 232 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 233 /* A minimum of one cursor is required if autoincrement is used 234 * See ticket [a696379c1f08866] */ 235 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 236 sqlite3VdbeMakeReady(v, pParse); 237 pParse->rc = SQLITE_DONE; 238 pParse->colNamesSet = 0; 239 }else{ 240 pParse->rc = SQLITE_ERROR; 241 } 242 pParse->nTab = 0; 243 pParse->nMem = 0; 244 pParse->nSet = 0; 245 pParse->nVar = 0; 246 DbMaskZero(pParse->cookieMask); 247 } 248 249 /* 250 ** Run the parser and code generator recursively in order to generate 251 ** code for the SQL statement given onto the end of the pParse context 252 ** currently under construction. When the parser is run recursively 253 ** this way, the final OP_Halt is not appended and other initialization 254 ** and finalization steps are omitted because those are handling by the 255 ** outermost parser. 256 ** 257 ** Not everything is nestable. This facility is designed to permit 258 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 259 ** care if you decide to try to use this routine for some other purposes. 260 */ 261 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 262 va_list ap; 263 char *zSql; 264 char *zErrMsg = 0; 265 sqlite3 *db = pParse->db; 266 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 267 char saveBuf[SAVE_SZ]; 268 269 if( pParse->nErr ) return; 270 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 271 va_start(ap, zFormat); 272 zSql = sqlite3VMPrintf(db, zFormat, ap); 273 va_end(ap); 274 if( zSql==0 ){ 275 return; /* A malloc must have failed */ 276 } 277 pParse->nested++; 278 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 279 memset(&pParse->nVar, 0, SAVE_SZ); 280 sqlite3RunParser(pParse, zSql, &zErrMsg); 281 sqlite3DbFree(db, zErrMsg); 282 sqlite3DbFree(db, zSql); 283 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 284 pParse->nested--; 285 } 286 287 #if SQLITE_USER_AUTHENTICATION 288 /* 289 ** Return TRUE if zTable is the name of the system table that stores the 290 ** list of users and their access credentials. 291 */ 292 int sqlite3UserAuthTable(const char *zTable){ 293 return sqlite3_stricmp(zTable, "sqlite_user")==0; 294 } 295 #endif 296 297 /* 298 ** Locate the in-memory structure that describes a particular database 299 ** table given the name of that table and (optionally) the name of the 300 ** database containing the table. Return NULL if not found. 301 ** 302 ** If zDatabase is 0, all databases are searched for the table and the 303 ** first matching table is returned. (No checking for duplicate table 304 ** names is done.) The search order is TEMP first, then MAIN, then any 305 ** auxiliary databases added using the ATTACH command. 306 ** 307 ** See also sqlite3LocateTable(). 308 */ 309 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 310 Table *p = 0; 311 int i; 312 313 /* All mutexes are required for schema access. Make sure we hold them. */ 314 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 315 #if SQLITE_USER_AUTHENTICATION 316 /* Only the admin user is allowed to know that the sqlite_user table 317 ** exists */ 318 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 319 return 0; 320 } 321 #endif 322 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 323 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 324 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 325 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 326 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 327 if( p ) break; 328 } 329 return p; 330 } 331 332 /* 333 ** Locate the in-memory structure that describes a particular database 334 ** table given the name of that table and (optionally) the name of the 335 ** database containing the table. Return NULL if not found. Also leave an 336 ** error message in pParse->zErrMsg. 337 ** 338 ** The difference between this routine and sqlite3FindTable() is that this 339 ** routine leaves an error message in pParse->zErrMsg where 340 ** sqlite3FindTable() does not. 341 */ 342 Table *sqlite3LocateTable( 343 Parse *pParse, /* context in which to report errors */ 344 int isView, /* True if looking for a VIEW rather than a TABLE */ 345 const char *zName, /* Name of the table we are looking for */ 346 const char *zDbase /* Name of the database. Might be NULL */ 347 ){ 348 Table *p; 349 350 /* Read the database schema. If an error occurs, leave an error message 351 ** and code in pParse and return NULL. */ 352 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 353 return 0; 354 } 355 356 p = sqlite3FindTable(pParse->db, zName, zDbase); 357 if( p==0 ){ 358 const char *zMsg = isView ? "no such view" : "no such table"; 359 #ifndef SQLITE_OMIT_VIRTUALTABLE 360 /* If zName is the not the name of a table in the schema created using 361 ** CREATE, then check to see if it is the name of an virtual table that 362 ** can be an eponymous virtual table. */ 363 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 364 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 365 return pMod->pEpoTab; 366 } 367 #endif 368 if( zDbase ){ 369 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 370 }else{ 371 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 372 } 373 pParse->checkSchema = 1; 374 } 375 #if SQLITE_USER_AUTHENICATION 376 else if( pParse->db->auth.authLevel<UAUTH_User ){ 377 sqlite3ErrorMsg(pParse, "user not authenticated"); 378 p = 0; 379 } 380 #endif 381 return p; 382 } 383 384 /* 385 ** Locate the table identified by *p. 386 ** 387 ** This is a wrapper around sqlite3LocateTable(). The difference between 388 ** sqlite3LocateTable() and this function is that this function restricts 389 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 390 ** non-NULL if it is part of a view or trigger program definition. See 391 ** sqlite3FixSrcList() for details. 392 */ 393 Table *sqlite3LocateTableItem( 394 Parse *pParse, 395 int isView, 396 struct SrcList_item *p 397 ){ 398 const char *zDb; 399 assert( p->pSchema==0 || p->zDatabase==0 ); 400 if( p->pSchema ){ 401 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 402 zDb = pParse->db->aDb[iDb].zName; 403 }else{ 404 zDb = p->zDatabase; 405 } 406 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 407 } 408 409 /* 410 ** Locate the in-memory structure that describes 411 ** a particular index given the name of that index 412 ** and the name of the database that contains the index. 413 ** Return NULL if not found. 414 ** 415 ** If zDatabase is 0, all databases are searched for the 416 ** table and the first matching index is returned. (No checking 417 ** for duplicate index names is done.) The search order is 418 ** TEMP first, then MAIN, then any auxiliary databases added 419 ** using the ATTACH command. 420 */ 421 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 422 Index *p = 0; 423 int i; 424 /* All mutexes are required for schema access. Make sure we hold them. */ 425 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 426 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 427 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 428 Schema *pSchema = db->aDb[j].pSchema; 429 assert( pSchema ); 430 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 431 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 432 p = sqlite3HashFind(&pSchema->idxHash, zName); 433 if( p ) break; 434 } 435 return p; 436 } 437 438 /* 439 ** Reclaim the memory used by an index 440 */ 441 static void freeIndex(sqlite3 *db, Index *p){ 442 #ifndef SQLITE_OMIT_ANALYZE 443 sqlite3DeleteIndexSamples(db, p); 444 #endif 445 sqlite3ExprDelete(db, p->pPartIdxWhere); 446 sqlite3ExprListDelete(db, p->aColExpr); 447 sqlite3DbFree(db, p->zColAff); 448 if( p->isResized ) sqlite3DbFree(db, p->azColl); 449 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 450 sqlite3_free(p->aiRowEst); 451 #endif 452 sqlite3DbFree(db, p); 453 } 454 455 /* 456 ** For the index called zIdxName which is found in the database iDb, 457 ** unlike that index from its Table then remove the index from 458 ** the index hash table and free all memory structures associated 459 ** with the index. 460 */ 461 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 462 Index *pIndex; 463 Hash *pHash; 464 465 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 466 pHash = &db->aDb[iDb].pSchema->idxHash; 467 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 468 if( ALWAYS(pIndex) ){ 469 if( pIndex->pTable->pIndex==pIndex ){ 470 pIndex->pTable->pIndex = pIndex->pNext; 471 }else{ 472 Index *p; 473 /* Justification of ALWAYS(); The index must be on the list of 474 ** indices. */ 475 p = pIndex->pTable->pIndex; 476 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 477 if( ALWAYS(p && p->pNext==pIndex) ){ 478 p->pNext = pIndex->pNext; 479 } 480 } 481 freeIndex(db, pIndex); 482 } 483 db->flags |= SQLITE_InternChanges; 484 } 485 486 /* 487 ** Look through the list of open database files in db->aDb[] and if 488 ** any have been closed, remove them from the list. Reallocate the 489 ** db->aDb[] structure to a smaller size, if possible. 490 ** 491 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 492 ** are never candidates for being collapsed. 493 */ 494 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 495 int i, j; 496 for(i=j=2; i<db->nDb; i++){ 497 struct Db *pDb = &db->aDb[i]; 498 if( pDb->pBt==0 ){ 499 sqlite3DbFree(db, pDb->zName); 500 pDb->zName = 0; 501 continue; 502 } 503 if( j<i ){ 504 db->aDb[j] = db->aDb[i]; 505 } 506 j++; 507 } 508 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 509 db->nDb = j; 510 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 511 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 512 sqlite3DbFree(db, db->aDb); 513 db->aDb = db->aDbStatic; 514 } 515 } 516 517 /* 518 ** Reset the schema for the database at index iDb. Also reset the 519 ** TEMP schema. 520 */ 521 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 522 Db *pDb; 523 assert( iDb<db->nDb ); 524 525 /* Case 1: Reset the single schema identified by iDb */ 526 pDb = &db->aDb[iDb]; 527 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 528 assert( pDb->pSchema!=0 ); 529 sqlite3SchemaClear(pDb->pSchema); 530 531 /* If any database other than TEMP is reset, then also reset TEMP 532 ** since TEMP might be holding triggers that reference tables in the 533 ** other database. 534 */ 535 if( iDb!=1 ){ 536 pDb = &db->aDb[1]; 537 assert( pDb->pSchema!=0 ); 538 sqlite3SchemaClear(pDb->pSchema); 539 } 540 return; 541 } 542 543 /* 544 ** Erase all schema information from all attached databases (including 545 ** "main" and "temp") for a single database connection. 546 */ 547 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 548 int i; 549 sqlite3BtreeEnterAll(db); 550 for(i=0; i<db->nDb; i++){ 551 Db *pDb = &db->aDb[i]; 552 if( pDb->pSchema ){ 553 sqlite3SchemaClear(pDb->pSchema); 554 } 555 } 556 db->flags &= ~SQLITE_InternChanges; 557 sqlite3VtabUnlockList(db); 558 sqlite3BtreeLeaveAll(db); 559 sqlite3CollapseDatabaseArray(db); 560 } 561 562 /* 563 ** This routine is called when a commit occurs. 564 */ 565 void sqlite3CommitInternalChanges(sqlite3 *db){ 566 db->flags &= ~SQLITE_InternChanges; 567 } 568 569 /* 570 ** Delete memory allocated for the column names of a table or view (the 571 ** Table.aCol[] array). 572 */ 573 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 574 int i; 575 Column *pCol; 576 assert( pTable!=0 ); 577 if( (pCol = pTable->aCol)!=0 ){ 578 for(i=0; i<pTable->nCol; i++, pCol++){ 579 sqlite3DbFree(db, pCol->zName); 580 sqlite3ExprDelete(db, pCol->pDflt); 581 sqlite3DbFree(db, pCol->zDflt); 582 sqlite3DbFree(db, pCol->zType); 583 sqlite3DbFree(db, pCol->zColl); 584 } 585 sqlite3DbFree(db, pTable->aCol); 586 } 587 } 588 589 /* 590 ** Remove the memory data structures associated with the given 591 ** Table. No changes are made to disk by this routine. 592 ** 593 ** This routine just deletes the data structure. It does not unlink 594 ** the table data structure from the hash table. But it does destroy 595 ** memory structures of the indices and foreign keys associated with 596 ** the table. 597 ** 598 ** The db parameter is optional. It is needed if the Table object 599 ** contains lookaside memory. (Table objects in the schema do not use 600 ** lookaside memory, but some ephemeral Table objects do.) Or the 601 ** db parameter can be used with db->pnBytesFreed to measure the memory 602 ** used by the Table object. 603 */ 604 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 605 Index *pIndex, *pNext; 606 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 607 608 assert( !pTable || pTable->nRef>0 ); 609 610 /* Do not delete the table until the reference count reaches zero. */ 611 if( !pTable ) return; 612 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 613 614 /* Record the number of outstanding lookaside allocations in schema Tables 615 ** prior to doing any free() operations. Since schema Tables do not use 616 ** lookaside, this number should not change. */ 617 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 618 db->lookaside.nOut : 0 ); 619 620 /* Delete all indices associated with this table. */ 621 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 622 pNext = pIndex->pNext; 623 assert( pIndex->pSchema==pTable->pSchema ); 624 if( !db || db->pnBytesFreed==0 ){ 625 char *zName = pIndex->zName; 626 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 627 &pIndex->pSchema->idxHash, zName, 0 628 ); 629 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 630 assert( pOld==pIndex || pOld==0 ); 631 } 632 freeIndex(db, pIndex); 633 } 634 635 /* Delete any foreign keys attached to this table. */ 636 sqlite3FkDelete(db, pTable); 637 638 /* Delete the Table structure itself. 639 */ 640 sqlite3DeleteColumnNames(db, pTable); 641 sqlite3DbFree(db, pTable->zName); 642 sqlite3DbFree(db, pTable->zColAff); 643 sqlite3SelectDelete(db, pTable->pSelect); 644 sqlite3ExprListDelete(db, pTable->pCheck); 645 #ifndef SQLITE_OMIT_VIRTUALTABLE 646 sqlite3VtabClear(db, pTable); 647 #endif 648 sqlite3DbFree(db, pTable); 649 650 /* Verify that no lookaside memory was used by schema tables */ 651 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 652 } 653 654 /* 655 ** Unlink the given table from the hash tables and the delete the 656 ** table structure with all its indices and foreign keys. 657 */ 658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 659 Table *p; 660 Db *pDb; 661 662 assert( db!=0 ); 663 assert( iDb>=0 && iDb<db->nDb ); 664 assert( zTabName ); 665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 667 pDb = &db->aDb[iDb]; 668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 669 sqlite3DeleteTable(db, p); 670 db->flags |= SQLITE_InternChanges; 671 } 672 673 /* 674 ** Given a token, return a string that consists of the text of that 675 ** token. Space to hold the returned string 676 ** is obtained from sqliteMalloc() and must be freed by the calling 677 ** function. 678 ** 679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 680 ** surround the body of the token are removed. 681 ** 682 ** Tokens are often just pointers into the original SQL text and so 683 ** are not \000 terminated and are not persistent. The returned string 684 ** is \000 terminated and is persistent. 685 */ 686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 687 char *zName; 688 if( pName ){ 689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 690 sqlite3Dequote(zName); 691 }else{ 692 zName = 0; 693 } 694 return zName; 695 } 696 697 /* 698 ** Open the sqlite_master table stored in database number iDb for 699 ** writing. The table is opened using cursor 0. 700 */ 701 void sqlite3OpenMasterTable(Parse *p, int iDb){ 702 Vdbe *v = sqlite3GetVdbe(p); 703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 705 if( p->nTab==0 ){ 706 p->nTab = 1; 707 } 708 } 709 710 /* 711 ** Parameter zName points to a nul-terminated buffer containing the name 712 ** of a database ("main", "temp" or the name of an attached db). This 713 ** function returns the index of the named database in db->aDb[], or 714 ** -1 if the named db cannot be found. 715 */ 716 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 717 int i = -1; /* Database number */ 718 if( zName ){ 719 Db *pDb; 720 int n = sqlite3Strlen30(zName); 721 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 722 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 723 0==sqlite3StrICmp(pDb->zName, zName) ){ 724 break; 725 } 726 } 727 } 728 return i; 729 } 730 731 /* 732 ** The token *pName contains the name of a database (either "main" or 733 ** "temp" or the name of an attached db). This routine returns the 734 ** index of the named database in db->aDb[], or -1 if the named db 735 ** does not exist. 736 */ 737 int sqlite3FindDb(sqlite3 *db, Token *pName){ 738 int i; /* Database number */ 739 char *zName; /* Name we are searching for */ 740 zName = sqlite3NameFromToken(db, pName); 741 i = sqlite3FindDbName(db, zName); 742 sqlite3DbFree(db, zName); 743 return i; 744 } 745 746 /* The table or view or trigger name is passed to this routine via tokens 747 ** pName1 and pName2. If the table name was fully qualified, for example: 748 ** 749 ** CREATE TABLE xxx.yyy (...); 750 ** 751 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 752 ** the table name is not fully qualified, i.e.: 753 ** 754 ** CREATE TABLE yyy(...); 755 ** 756 ** Then pName1 is set to "yyy" and pName2 is "". 757 ** 758 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 759 ** pName2) that stores the unqualified table name. The index of the 760 ** database "xxx" is returned. 761 */ 762 int sqlite3TwoPartName( 763 Parse *pParse, /* Parsing and code generating context */ 764 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 765 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 766 Token **pUnqual /* Write the unqualified object name here */ 767 ){ 768 int iDb; /* Database holding the object */ 769 sqlite3 *db = pParse->db; 770 771 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 772 if( db->init.busy ) { 773 sqlite3ErrorMsg(pParse, "corrupt database"); 774 return -1; 775 } 776 *pUnqual = pName2; 777 iDb = sqlite3FindDb(db, pName1); 778 if( iDb<0 ){ 779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 780 return -1; 781 } 782 }else{ 783 assert( db->init.iDb==0 || db->init.busy ); 784 iDb = db->init.iDb; 785 *pUnqual = pName1; 786 } 787 return iDb; 788 } 789 790 /* 791 ** This routine is used to check if the UTF-8 string zName is a legal 792 ** unqualified name for a new schema object (table, index, view or 793 ** trigger). All names are legal except those that begin with the string 794 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 795 ** is reserved for internal use. 796 */ 797 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 798 if( !pParse->db->init.busy && pParse->nested==0 799 && (pParse->db->flags & SQLITE_WriteSchema)==0 800 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 801 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 802 return SQLITE_ERROR; 803 } 804 return SQLITE_OK; 805 } 806 807 /* 808 ** Return the PRIMARY KEY index of a table 809 */ 810 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 811 Index *p; 812 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 813 return p; 814 } 815 816 /* 817 ** Return the column of index pIdx that corresponds to table 818 ** column iCol. Return -1 if not found. 819 */ 820 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 821 int i; 822 for(i=0; i<pIdx->nColumn; i++){ 823 if( iCol==pIdx->aiColumn[i] ) return i; 824 } 825 return -1; 826 } 827 828 /* 829 ** Begin constructing a new table representation in memory. This is 830 ** the first of several action routines that get called in response 831 ** to a CREATE TABLE statement. In particular, this routine is called 832 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 833 ** flag is true if the table should be stored in the auxiliary database 834 ** file instead of in the main database file. This is normally the case 835 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 836 ** CREATE and TABLE. 837 ** 838 ** The new table record is initialized and put in pParse->pNewTable. 839 ** As more of the CREATE TABLE statement is parsed, additional action 840 ** routines will be called to add more information to this record. 841 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 842 ** is called to complete the construction of the new table record. 843 */ 844 void sqlite3StartTable( 845 Parse *pParse, /* Parser context */ 846 Token *pName1, /* First part of the name of the table or view */ 847 Token *pName2, /* Second part of the name of the table or view */ 848 int isTemp, /* True if this is a TEMP table */ 849 int isView, /* True if this is a VIEW */ 850 int isVirtual, /* True if this is a VIRTUAL table */ 851 int noErr /* Do nothing if table already exists */ 852 ){ 853 Table *pTable; 854 char *zName = 0; /* The name of the new table */ 855 sqlite3 *db = pParse->db; 856 Vdbe *v; 857 int iDb; /* Database number to create the table in */ 858 Token *pName; /* Unqualified name of the table to create */ 859 860 /* The table or view name to create is passed to this routine via tokens 861 ** pName1 and pName2. If the table name was fully qualified, for example: 862 ** 863 ** CREATE TABLE xxx.yyy (...); 864 ** 865 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 866 ** the table name is not fully qualified, i.e.: 867 ** 868 ** CREATE TABLE yyy(...); 869 ** 870 ** Then pName1 is set to "yyy" and pName2 is "". 871 ** 872 ** The call below sets the pName pointer to point at the token (pName1 or 873 ** pName2) that stores the unqualified table name. The variable iDb is 874 ** set to the index of the database that the table or view is to be 875 ** created in. 876 */ 877 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 878 if( iDb<0 ) return; 879 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 880 /* If creating a temp table, the name may not be qualified. Unless 881 ** the database name is "temp" anyway. */ 882 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 883 return; 884 } 885 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 886 887 pParse->sNameToken = *pName; 888 zName = sqlite3NameFromToken(db, pName); 889 if( zName==0 ) return; 890 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 891 goto begin_table_error; 892 } 893 if( db->init.iDb==1 ) isTemp = 1; 894 #ifndef SQLITE_OMIT_AUTHORIZATION 895 assert( (isTemp & 1)==isTemp ); 896 { 897 int code; 898 char *zDb = db->aDb[iDb].zName; 899 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 900 goto begin_table_error; 901 } 902 if( isView ){ 903 if( !OMIT_TEMPDB && isTemp ){ 904 code = SQLITE_CREATE_TEMP_VIEW; 905 }else{ 906 code = SQLITE_CREATE_VIEW; 907 } 908 }else{ 909 if( !OMIT_TEMPDB && isTemp ){ 910 code = SQLITE_CREATE_TEMP_TABLE; 911 }else{ 912 code = SQLITE_CREATE_TABLE; 913 } 914 } 915 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 916 goto begin_table_error; 917 } 918 } 919 #endif 920 921 /* Make sure the new table name does not collide with an existing 922 ** index or table name in the same database. Issue an error message if 923 ** it does. The exception is if the statement being parsed was passed 924 ** to an sqlite3_declare_vtab() call. In that case only the column names 925 ** and types will be used, so there is no need to test for namespace 926 ** collisions. 927 */ 928 if( !IN_DECLARE_VTAB ){ 929 char *zDb = db->aDb[iDb].zName; 930 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 931 goto begin_table_error; 932 } 933 pTable = sqlite3FindTable(db, zName, zDb); 934 if( pTable ){ 935 if( !noErr ){ 936 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 937 }else{ 938 assert( !db->init.busy || CORRUPT_DB ); 939 sqlite3CodeVerifySchema(pParse, iDb); 940 } 941 goto begin_table_error; 942 } 943 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 944 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 945 goto begin_table_error; 946 } 947 } 948 949 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 950 if( pTable==0 ){ 951 db->mallocFailed = 1; 952 pParse->rc = SQLITE_NOMEM; 953 pParse->nErr++; 954 goto begin_table_error; 955 } 956 pTable->zName = zName; 957 pTable->iPKey = -1; 958 pTable->pSchema = db->aDb[iDb].pSchema; 959 pTable->nRef = 1; 960 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 961 assert( pParse->pNewTable==0 ); 962 pParse->pNewTable = pTable; 963 964 /* If this is the magic sqlite_sequence table used by autoincrement, 965 ** then record a pointer to this table in the main database structure 966 ** so that INSERT can find the table easily. 967 */ 968 #ifndef SQLITE_OMIT_AUTOINCREMENT 969 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 970 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 971 pTable->pSchema->pSeqTab = pTable; 972 } 973 #endif 974 975 /* Begin generating the code that will insert the table record into 976 ** the SQLITE_MASTER table. Note in particular that we must go ahead 977 ** and allocate the record number for the table entry now. Before any 978 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 979 ** indices to be created and the table record must come before the 980 ** indices. Hence, the record number for the table must be allocated 981 ** now. 982 */ 983 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 984 int j1; 985 int fileFormat; 986 int reg1, reg2, reg3; 987 sqlite3BeginWriteOperation(pParse, 1, iDb); 988 989 #ifndef SQLITE_OMIT_VIRTUALTABLE 990 if( isVirtual ){ 991 sqlite3VdbeAddOp0(v, OP_VBegin); 992 } 993 #endif 994 995 /* If the file format and encoding in the database have not been set, 996 ** set them now. 997 */ 998 reg1 = pParse->regRowid = ++pParse->nMem; 999 reg2 = pParse->regRoot = ++pParse->nMem; 1000 reg3 = ++pParse->nMem; 1001 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1002 sqlite3VdbeUsesBtree(v, iDb); 1003 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1004 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1005 1 : SQLITE_MAX_FILE_FORMAT; 1006 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 1007 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1008 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1009 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1010 sqlite3VdbeJumpHere(v, j1); 1011 1012 /* This just creates a place-holder record in the sqlite_master table. 1013 ** The record created does not contain anything yet. It will be replaced 1014 ** by the real entry in code generated at sqlite3EndTable(). 1015 ** 1016 ** The rowid for the new entry is left in register pParse->regRowid. 1017 ** The root page number of the new table is left in reg pParse->regRoot. 1018 ** The rowid and root page number values are needed by the code that 1019 ** sqlite3EndTable will generate. 1020 */ 1021 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1022 if( isView || isVirtual ){ 1023 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1024 }else 1025 #endif 1026 { 1027 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1028 } 1029 sqlite3OpenMasterTable(pParse, iDb); 1030 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1031 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1032 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1033 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1034 sqlite3VdbeAddOp0(v, OP_Close); 1035 } 1036 1037 /* Normal (non-error) return. */ 1038 return; 1039 1040 /* If an error occurs, we jump here */ 1041 begin_table_error: 1042 sqlite3DbFree(db, zName); 1043 return; 1044 } 1045 1046 /* 1047 ** This macro is used to compare two strings in a case-insensitive manner. 1048 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1049 ** produces larger code. 1050 ** 1051 ** WARNING: This macro is not compatible with the strcmp() family. It 1052 ** returns true if the two strings are equal, otherwise false. 1053 */ 1054 #define STRICMP(x, y) (\ 1055 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1056 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1057 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1058 1059 /* 1060 ** Add a new column to the table currently being constructed. 1061 ** 1062 ** The parser calls this routine once for each column declaration 1063 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1064 ** first to get things going. Then this routine is called for each 1065 ** column. 1066 */ 1067 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1068 Table *p; 1069 int i; 1070 char *z; 1071 Column *pCol; 1072 sqlite3 *db = pParse->db; 1073 if( (p = pParse->pNewTable)==0 ) return; 1074 #if SQLITE_MAX_COLUMN 1075 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1076 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1077 return; 1078 } 1079 #endif 1080 z = sqlite3NameFromToken(db, pName); 1081 if( z==0 ) return; 1082 for(i=0; i<p->nCol; i++){ 1083 if( STRICMP(z, p->aCol[i].zName) ){ 1084 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1085 sqlite3DbFree(db, z); 1086 return; 1087 } 1088 } 1089 if( (p->nCol & 0x7)==0 ){ 1090 Column *aNew; 1091 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1092 if( aNew==0 ){ 1093 sqlite3DbFree(db, z); 1094 return; 1095 } 1096 p->aCol = aNew; 1097 } 1098 pCol = &p->aCol[p->nCol]; 1099 memset(pCol, 0, sizeof(p->aCol[0])); 1100 pCol->zName = z; 1101 1102 /* If there is no type specified, columns have the default affinity 1103 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1104 ** be called next to set pCol->affinity correctly. 1105 */ 1106 pCol->affinity = SQLITE_AFF_BLOB; 1107 pCol->szEst = 1; 1108 p->nCol++; 1109 } 1110 1111 /* 1112 ** This routine is called by the parser while in the middle of 1113 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1114 ** been seen on a column. This routine sets the notNull flag on 1115 ** the column currently under construction. 1116 */ 1117 void sqlite3AddNotNull(Parse *pParse, int onError){ 1118 Table *p; 1119 p = pParse->pNewTable; 1120 if( p==0 || NEVER(p->nCol<1) ) return; 1121 p->aCol[p->nCol-1].notNull = (u8)onError; 1122 } 1123 1124 /* 1125 ** Scan the column type name zType (length nType) and return the 1126 ** associated affinity type. 1127 ** 1128 ** This routine does a case-independent search of zType for the 1129 ** substrings in the following table. If one of the substrings is 1130 ** found, the corresponding affinity is returned. If zType contains 1131 ** more than one of the substrings, entries toward the top of 1132 ** the table take priority. For example, if zType is 'BLOBINT', 1133 ** SQLITE_AFF_INTEGER is returned. 1134 ** 1135 ** Substring | Affinity 1136 ** -------------------------------- 1137 ** 'INT' | SQLITE_AFF_INTEGER 1138 ** 'CHAR' | SQLITE_AFF_TEXT 1139 ** 'CLOB' | SQLITE_AFF_TEXT 1140 ** 'TEXT' | SQLITE_AFF_TEXT 1141 ** 'BLOB' | SQLITE_AFF_BLOB 1142 ** 'REAL' | SQLITE_AFF_REAL 1143 ** 'FLOA' | SQLITE_AFF_REAL 1144 ** 'DOUB' | SQLITE_AFF_REAL 1145 ** 1146 ** If none of the substrings in the above table are found, 1147 ** SQLITE_AFF_NUMERIC is returned. 1148 */ 1149 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1150 u32 h = 0; 1151 char aff = SQLITE_AFF_NUMERIC; 1152 const char *zChar = 0; 1153 1154 if( zIn==0 ) return aff; 1155 while( zIn[0] ){ 1156 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1157 zIn++; 1158 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1159 aff = SQLITE_AFF_TEXT; 1160 zChar = zIn; 1161 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1162 aff = SQLITE_AFF_TEXT; 1163 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1164 aff = SQLITE_AFF_TEXT; 1165 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1166 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1167 aff = SQLITE_AFF_BLOB; 1168 if( zIn[0]=='(' ) zChar = zIn; 1169 #ifndef SQLITE_OMIT_FLOATING_POINT 1170 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1171 && aff==SQLITE_AFF_NUMERIC ){ 1172 aff = SQLITE_AFF_REAL; 1173 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1174 && aff==SQLITE_AFF_NUMERIC ){ 1175 aff = SQLITE_AFF_REAL; 1176 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1177 && aff==SQLITE_AFF_NUMERIC ){ 1178 aff = SQLITE_AFF_REAL; 1179 #endif 1180 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1181 aff = SQLITE_AFF_INTEGER; 1182 break; 1183 } 1184 } 1185 1186 /* If pszEst is not NULL, store an estimate of the field size. The 1187 ** estimate is scaled so that the size of an integer is 1. */ 1188 if( pszEst ){ 1189 *pszEst = 1; /* default size is approx 4 bytes */ 1190 if( aff<SQLITE_AFF_NUMERIC ){ 1191 if( zChar ){ 1192 while( zChar[0] ){ 1193 if( sqlite3Isdigit(zChar[0]) ){ 1194 int v = 0; 1195 sqlite3GetInt32(zChar, &v); 1196 v = v/4 + 1; 1197 if( v>255 ) v = 255; 1198 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1199 break; 1200 } 1201 zChar++; 1202 } 1203 }else{ 1204 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1205 } 1206 } 1207 } 1208 return aff; 1209 } 1210 1211 /* 1212 ** This routine is called by the parser while in the middle of 1213 ** parsing a CREATE TABLE statement. The pFirst token is the first 1214 ** token in the sequence of tokens that describe the type of the 1215 ** column currently under construction. pLast is the last token 1216 ** in the sequence. Use this information to construct a string 1217 ** that contains the typename of the column and store that string 1218 ** in zType. 1219 */ 1220 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1221 Table *p; 1222 Column *pCol; 1223 1224 p = pParse->pNewTable; 1225 if( p==0 || NEVER(p->nCol<1) ) return; 1226 pCol = &p->aCol[p->nCol-1]; 1227 assert( pCol->zType==0 || CORRUPT_DB ); 1228 sqlite3DbFree(pParse->db, pCol->zType); 1229 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1230 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1231 } 1232 1233 /* 1234 ** The expression is the default value for the most recently added column 1235 ** of the table currently under construction. 1236 ** 1237 ** Default value expressions must be constant. Raise an exception if this 1238 ** is not the case. 1239 ** 1240 ** This routine is called by the parser while in the middle of 1241 ** parsing a CREATE TABLE statement. 1242 */ 1243 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1244 Table *p; 1245 Column *pCol; 1246 sqlite3 *db = pParse->db; 1247 p = pParse->pNewTable; 1248 if( p!=0 ){ 1249 pCol = &(p->aCol[p->nCol-1]); 1250 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1251 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1252 pCol->zName); 1253 }else{ 1254 /* A copy of pExpr is used instead of the original, as pExpr contains 1255 ** tokens that point to volatile memory. The 'span' of the expression 1256 ** is required by pragma table_info. 1257 */ 1258 sqlite3ExprDelete(db, pCol->pDflt); 1259 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1260 sqlite3DbFree(db, pCol->zDflt); 1261 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1262 (int)(pSpan->zEnd - pSpan->zStart)); 1263 } 1264 } 1265 sqlite3ExprDelete(db, pSpan->pExpr); 1266 } 1267 1268 /* 1269 ** Designate the PRIMARY KEY for the table. pList is a list of names 1270 ** of columns that form the primary key. If pList is NULL, then the 1271 ** most recently added column of the table is the primary key. 1272 ** 1273 ** A table can have at most one primary key. If the table already has 1274 ** a primary key (and this is the second primary key) then create an 1275 ** error. 1276 ** 1277 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1278 ** then we will try to use that column as the rowid. Set the Table.iPKey 1279 ** field of the table under construction to be the index of the 1280 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1281 ** no INTEGER PRIMARY KEY. 1282 ** 1283 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1284 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1285 */ 1286 void sqlite3AddPrimaryKey( 1287 Parse *pParse, /* Parsing context */ 1288 ExprList *pList, /* List of field names to be indexed */ 1289 int onError, /* What to do with a uniqueness conflict */ 1290 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1291 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1292 ){ 1293 Table *pTab = pParse->pNewTable; 1294 char *zType = 0; 1295 int iCol = -1, i; 1296 int nTerm; 1297 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1298 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1299 sqlite3ErrorMsg(pParse, 1300 "table \"%s\" has more than one primary key", pTab->zName); 1301 goto primary_key_exit; 1302 } 1303 pTab->tabFlags |= TF_HasPrimaryKey; 1304 if( pList==0 ){ 1305 iCol = pTab->nCol - 1; 1306 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1307 zType = pTab->aCol[iCol].zType; 1308 nTerm = 1; 1309 }else{ 1310 nTerm = pList->nExpr; 1311 for(i=0; i<nTerm; i++){ 1312 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1313 assert( pCExpr!=0 ); 1314 if( pCExpr->op==TK_ID ){ 1315 const char *zCName = pCExpr->u.zToken; 1316 for(iCol=0; iCol<pTab->nCol; iCol++){ 1317 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1318 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1319 zType = pTab->aCol[iCol].zType; 1320 break; 1321 } 1322 } 1323 } 1324 } 1325 } 1326 if( nTerm==1 1327 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1328 && sortOrder!=SQLITE_SO_DESC 1329 ){ 1330 pTab->iPKey = iCol; 1331 pTab->keyConf = (u8)onError; 1332 assert( autoInc==0 || autoInc==1 ); 1333 pTab->tabFlags |= autoInc*TF_Autoincrement; 1334 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1335 }else if( autoInc ){ 1336 #ifndef SQLITE_OMIT_AUTOINCREMENT 1337 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1338 "INTEGER PRIMARY KEY"); 1339 #endif 1340 }else{ 1341 Index *p; 1342 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1343 0, sortOrder, 0); 1344 if( p ){ 1345 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1346 } 1347 pList = 0; 1348 } 1349 1350 primary_key_exit: 1351 sqlite3ExprListDelete(pParse->db, pList); 1352 return; 1353 } 1354 1355 /* 1356 ** Add a new CHECK constraint to the table currently under construction. 1357 */ 1358 void sqlite3AddCheckConstraint( 1359 Parse *pParse, /* Parsing context */ 1360 Expr *pCheckExpr /* The check expression */ 1361 ){ 1362 #ifndef SQLITE_OMIT_CHECK 1363 Table *pTab = pParse->pNewTable; 1364 sqlite3 *db = pParse->db; 1365 if( pTab && !IN_DECLARE_VTAB 1366 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1367 ){ 1368 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1369 if( pParse->constraintName.n ){ 1370 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1371 } 1372 }else 1373 #endif 1374 { 1375 sqlite3ExprDelete(pParse->db, pCheckExpr); 1376 } 1377 } 1378 1379 /* 1380 ** Set the collation function of the most recently parsed table column 1381 ** to the CollSeq given. 1382 */ 1383 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1384 Table *p; 1385 int i; 1386 char *zColl; /* Dequoted name of collation sequence */ 1387 sqlite3 *db; 1388 1389 if( (p = pParse->pNewTable)==0 ) return; 1390 i = p->nCol-1; 1391 db = pParse->db; 1392 zColl = sqlite3NameFromToken(db, pToken); 1393 if( !zColl ) return; 1394 1395 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1396 Index *pIdx; 1397 sqlite3DbFree(db, p->aCol[i].zColl); 1398 p->aCol[i].zColl = zColl; 1399 1400 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1401 ** then an index may have been created on this column before the 1402 ** collation type was added. Correct this if it is the case. 1403 */ 1404 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1405 assert( pIdx->nKeyCol==1 ); 1406 if( pIdx->aiColumn[0]==i ){ 1407 pIdx->azColl[0] = p->aCol[i].zColl; 1408 } 1409 } 1410 }else{ 1411 sqlite3DbFree(db, zColl); 1412 } 1413 } 1414 1415 /* 1416 ** This function returns the collation sequence for database native text 1417 ** encoding identified by the string zName, length nName. 1418 ** 1419 ** If the requested collation sequence is not available, or not available 1420 ** in the database native encoding, the collation factory is invoked to 1421 ** request it. If the collation factory does not supply such a sequence, 1422 ** and the sequence is available in another text encoding, then that is 1423 ** returned instead. 1424 ** 1425 ** If no versions of the requested collations sequence are available, or 1426 ** another error occurs, NULL is returned and an error message written into 1427 ** pParse. 1428 ** 1429 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1430 ** invokes the collation factory if the named collation cannot be found 1431 ** and generates an error message. 1432 ** 1433 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1434 */ 1435 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1436 sqlite3 *db = pParse->db; 1437 u8 enc = ENC(db); 1438 u8 initbusy = db->init.busy; 1439 CollSeq *pColl; 1440 1441 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1442 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1443 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1444 } 1445 1446 return pColl; 1447 } 1448 1449 1450 /* 1451 ** Generate code that will increment the schema cookie. 1452 ** 1453 ** The schema cookie is used to determine when the schema for the 1454 ** database changes. After each schema change, the cookie value 1455 ** changes. When a process first reads the schema it records the 1456 ** cookie. Thereafter, whenever it goes to access the database, 1457 ** it checks the cookie to make sure the schema has not changed 1458 ** since it was last read. 1459 ** 1460 ** This plan is not completely bullet-proof. It is possible for 1461 ** the schema to change multiple times and for the cookie to be 1462 ** set back to prior value. But schema changes are infrequent 1463 ** and the probability of hitting the same cookie value is only 1464 ** 1 chance in 2^32. So we're safe enough. 1465 */ 1466 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1467 int r1 = sqlite3GetTempReg(pParse); 1468 sqlite3 *db = pParse->db; 1469 Vdbe *v = pParse->pVdbe; 1470 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1471 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1472 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1473 sqlite3ReleaseTempReg(pParse, r1); 1474 } 1475 1476 /* 1477 ** Measure the number of characters needed to output the given 1478 ** identifier. The number returned includes any quotes used 1479 ** but does not include the null terminator. 1480 ** 1481 ** The estimate is conservative. It might be larger that what is 1482 ** really needed. 1483 */ 1484 static int identLength(const char *z){ 1485 int n; 1486 for(n=0; *z; n++, z++){ 1487 if( *z=='"' ){ n++; } 1488 } 1489 return n + 2; 1490 } 1491 1492 /* 1493 ** The first parameter is a pointer to an output buffer. The second 1494 ** parameter is a pointer to an integer that contains the offset at 1495 ** which to write into the output buffer. This function copies the 1496 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1497 ** to the specified offset in the buffer and updates *pIdx to refer 1498 ** to the first byte after the last byte written before returning. 1499 ** 1500 ** If the string zSignedIdent consists entirely of alpha-numeric 1501 ** characters, does not begin with a digit and is not an SQL keyword, 1502 ** then it is copied to the output buffer exactly as it is. Otherwise, 1503 ** it is quoted using double-quotes. 1504 */ 1505 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1506 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1507 int i, j, needQuote; 1508 i = *pIdx; 1509 1510 for(j=0; zIdent[j]; j++){ 1511 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1512 } 1513 needQuote = sqlite3Isdigit(zIdent[0]) 1514 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1515 || zIdent[j]!=0 1516 || j==0; 1517 1518 if( needQuote ) z[i++] = '"'; 1519 for(j=0; zIdent[j]; j++){ 1520 z[i++] = zIdent[j]; 1521 if( zIdent[j]=='"' ) z[i++] = '"'; 1522 } 1523 if( needQuote ) z[i++] = '"'; 1524 z[i] = 0; 1525 *pIdx = i; 1526 } 1527 1528 /* 1529 ** Generate a CREATE TABLE statement appropriate for the given 1530 ** table. Memory to hold the text of the statement is obtained 1531 ** from sqliteMalloc() and must be freed by the calling function. 1532 */ 1533 static char *createTableStmt(sqlite3 *db, Table *p){ 1534 int i, k, n; 1535 char *zStmt; 1536 char *zSep, *zSep2, *zEnd; 1537 Column *pCol; 1538 n = 0; 1539 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1540 n += identLength(pCol->zName) + 5; 1541 } 1542 n += identLength(p->zName); 1543 if( n<50 ){ 1544 zSep = ""; 1545 zSep2 = ","; 1546 zEnd = ")"; 1547 }else{ 1548 zSep = "\n "; 1549 zSep2 = ",\n "; 1550 zEnd = "\n)"; 1551 } 1552 n += 35 + 6*p->nCol; 1553 zStmt = sqlite3DbMallocRaw(0, n); 1554 if( zStmt==0 ){ 1555 db->mallocFailed = 1; 1556 return 0; 1557 } 1558 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1559 k = sqlite3Strlen30(zStmt); 1560 identPut(zStmt, &k, p->zName); 1561 zStmt[k++] = '('; 1562 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1563 static const char * const azType[] = { 1564 /* SQLITE_AFF_BLOB */ "", 1565 /* SQLITE_AFF_TEXT */ " TEXT", 1566 /* SQLITE_AFF_NUMERIC */ " NUM", 1567 /* SQLITE_AFF_INTEGER */ " INT", 1568 /* SQLITE_AFF_REAL */ " REAL" 1569 }; 1570 int len; 1571 const char *zType; 1572 1573 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1574 k += sqlite3Strlen30(&zStmt[k]); 1575 zSep = zSep2; 1576 identPut(zStmt, &k, pCol->zName); 1577 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1578 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1579 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1580 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1581 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1582 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1583 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1584 1585 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1586 len = sqlite3Strlen30(zType); 1587 assert( pCol->affinity==SQLITE_AFF_BLOB 1588 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1589 memcpy(&zStmt[k], zType, len); 1590 k += len; 1591 assert( k<=n ); 1592 } 1593 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1594 return zStmt; 1595 } 1596 1597 /* 1598 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1599 ** on success and SQLITE_NOMEM on an OOM error. 1600 */ 1601 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1602 char *zExtra; 1603 int nByte; 1604 if( pIdx->nColumn>=N ) return SQLITE_OK; 1605 assert( pIdx->isResized==0 ); 1606 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1607 zExtra = sqlite3DbMallocZero(db, nByte); 1608 if( zExtra==0 ) return SQLITE_NOMEM; 1609 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1610 pIdx->azColl = (char**)zExtra; 1611 zExtra += sizeof(char*)*N; 1612 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1613 pIdx->aiColumn = (i16*)zExtra; 1614 zExtra += sizeof(i16)*N; 1615 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1616 pIdx->aSortOrder = (u8*)zExtra; 1617 pIdx->nColumn = N; 1618 pIdx->isResized = 1; 1619 return SQLITE_OK; 1620 } 1621 1622 /* 1623 ** Estimate the total row width for a table. 1624 */ 1625 static void estimateTableWidth(Table *pTab){ 1626 unsigned wTable = 0; 1627 const Column *pTabCol; 1628 int i; 1629 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1630 wTable += pTabCol->szEst; 1631 } 1632 if( pTab->iPKey<0 ) wTable++; 1633 pTab->szTabRow = sqlite3LogEst(wTable*4); 1634 } 1635 1636 /* 1637 ** Estimate the average size of a row for an index. 1638 */ 1639 static void estimateIndexWidth(Index *pIdx){ 1640 unsigned wIndex = 0; 1641 int i; 1642 const Column *aCol = pIdx->pTable->aCol; 1643 for(i=0; i<pIdx->nColumn; i++){ 1644 i16 x = pIdx->aiColumn[i]; 1645 assert( x<pIdx->pTable->nCol ); 1646 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1647 } 1648 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1649 } 1650 1651 /* Return true if value x is found any of the first nCol entries of aiCol[] 1652 */ 1653 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1654 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1655 return 0; 1656 } 1657 1658 /* 1659 ** This routine runs at the end of parsing a CREATE TABLE statement that 1660 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1661 ** internal schema data structures and the generated VDBE code so that they 1662 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1663 ** Changes include: 1664 ** 1665 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1666 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1667 ** data storage is a covering index btree. 1668 ** (2) Bypass the creation of the sqlite_master table entry 1669 ** for the PRIMARY KEY as the primary key index is now 1670 ** identified by the sqlite_master table entry of the table itself. 1671 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1672 ** schema to the rootpage from the main table. 1673 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1674 ** (5) Add all table columns to the PRIMARY KEY Index object 1675 ** so that the PRIMARY KEY is a covering index. The surplus 1676 ** columns are part of KeyInfo.nXField and are not used for 1677 ** sorting or lookup or uniqueness checks. 1678 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1679 ** indices with the PRIMARY KEY columns. 1680 */ 1681 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1682 Index *pIdx; 1683 Index *pPk; 1684 int nPk; 1685 int i, j; 1686 sqlite3 *db = pParse->db; 1687 Vdbe *v = pParse->pVdbe; 1688 1689 /* Convert the OP_CreateTable opcode that would normally create the 1690 ** root-page for the table into an OP_CreateIndex opcode. The index 1691 ** created will become the PRIMARY KEY index. 1692 */ 1693 if( pParse->addrCrTab ){ 1694 assert( v ); 1695 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1696 } 1697 1698 /* Locate the PRIMARY KEY index. Or, if this table was originally 1699 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1700 */ 1701 if( pTab->iPKey>=0 ){ 1702 ExprList *pList; 1703 Token ipkToken; 1704 ipkToken.z = pTab->aCol[pTab->iPKey].zName; 1705 ipkToken.n = sqlite3Strlen30(ipkToken.z); 1706 pList = sqlite3ExprListAppend(pParse, 0, 1707 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1708 if( pList==0 ) return; 1709 pList->a[0].sortOrder = pParse->iPkSortOrder; 1710 assert( pParse->pNewTable==pTab ); 1711 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1712 if( pPk==0 ) return; 1713 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1714 pTab->iPKey = -1; 1715 }else{ 1716 pPk = sqlite3PrimaryKeyIndex(pTab); 1717 1718 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1719 ** table entry. This is only required if currently generating VDBE 1720 ** code for a CREATE TABLE (not when parsing one as part of reading 1721 ** a database schema). */ 1722 if( v ){ 1723 assert( db->init.busy==0 ); 1724 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1725 } 1726 1727 /* 1728 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1729 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1730 ** code assumes the PRIMARY KEY contains no repeated columns. 1731 */ 1732 for(i=j=1; i<pPk->nKeyCol; i++){ 1733 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1734 pPk->nColumn--; 1735 }else{ 1736 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1737 } 1738 } 1739 pPk->nKeyCol = j; 1740 } 1741 pPk->isCovering = 1; 1742 assert( pPk!=0 ); 1743 nPk = pPk->nKeyCol; 1744 1745 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1746 ** do not enforce this for imposter tables.) */ 1747 if( !db->init.imposterTable ){ 1748 for(i=0; i<nPk; i++){ 1749 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1750 } 1751 pPk->uniqNotNull = 1; 1752 } 1753 1754 /* The root page of the PRIMARY KEY is the table root page */ 1755 pPk->tnum = pTab->tnum; 1756 1757 /* Update the in-memory representation of all UNIQUE indices by converting 1758 ** the final rowid column into one or more columns of the PRIMARY KEY. 1759 */ 1760 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1761 int n; 1762 if( IsPrimaryKeyIndex(pIdx) ) continue; 1763 for(i=n=0; i<nPk; i++){ 1764 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1765 } 1766 if( n==0 ){ 1767 /* This index is a superset of the primary key */ 1768 pIdx->nColumn = pIdx->nKeyCol; 1769 continue; 1770 } 1771 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1772 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1773 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1774 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1775 pIdx->azColl[j] = pPk->azColl[i]; 1776 j++; 1777 } 1778 } 1779 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1780 assert( pIdx->nColumn>=j ); 1781 } 1782 1783 /* Add all table columns to the PRIMARY KEY index 1784 */ 1785 if( nPk<pTab->nCol ){ 1786 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1787 for(i=0, j=nPk; i<pTab->nCol; i++){ 1788 if( !hasColumn(pPk->aiColumn, j, i) ){ 1789 assert( j<pPk->nColumn ); 1790 pPk->aiColumn[j] = i; 1791 pPk->azColl[j] = "BINARY"; 1792 j++; 1793 } 1794 } 1795 assert( pPk->nColumn==j ); 1796 assert( pTab->nCol==j ); 1797 }else{ 1798 pPk->nColumn = pTab->nCol; 1799 } 1800 } 1801 1802 /* 1803 ** This routine is called to report the final ")" that terminates 1804 ** a CREATE TABLE statement. 1805 ** 1806 ** The table structure that other action routines have been building 1807 ** is added to the internal hash tables, assuming no errors have 1808 ** occurred. 1809 ** 1810 ** An entry for the table is made in the master table on disk, unless 1811 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1812 ** it means we are reading the sqlite_master table because we just 1813 ** connected to the database or because the sqlite_master table has 1814 ** recently changed, so the entry for this table already exists in 1815 ** the sqlite_master table. We do not want to create it again. 1816 ** 1817 ** If the pSelect argument is not NULL, it means that this routine 1818 ** was called to create a table generated from a 1819 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1820 ** the new table will match the result set of the SELECT. 1821 */ 1822 void sqlite3EndTable( 1823 Parse *pParse, /* Parse context */ 1824 Token *pCons, /* The ',' token after the last column defn. */ 1825 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1826 u8 tabOpts, /* Extra table options. Usually 0. */ 1827 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1828 ){ 1829 Table *p; /* The new table */ 1830 sqlite3 *db = pParse->db; /* The database connection */ 1831 int iDb; /* Database in which the table lives */ 1832 Index *pIdx; /* An implied index of the table */ 1833 1834 if( pEnd==0 && pSelect==0 ){ 1835 return; 1836 } 1837 assert( !db->mallocFailed ); 1838 p = pParse->pNewTable; 1839 if( p==0 ) return; 1840 1841 assert( !db->init.busy || !pSelect ); 1842 1843 /* If the db->init.busy is 1 it means we are reading the SQL off the 1844 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1845 ** So do not write to the disk again. Extract the root page number 1846 ** for the table from the db->init.newTnum field. (The page number 1847 ** should have been put there by the sqliteOpenCb routine.) 1848 */ 1849 if( db->init.busy ){ 1850 p->tnum = db->init.newTnum; 1851 } 1852 1853 /* Special processing for WITHOUT ROWID Tables */ 1854 if( tabOpts & TF_WithoutRowid ){ 1855 if( (p->tabFlags & TF_Autoincrement) ){ 1856 sqlite3ErrorMsg(pParse, 1857 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1858 return; 1859 } 1860 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1861 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1862 }else{ 1863 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1864 convertToWithoutRowidTable(pParse, p); 1865 } 1866 } 1867 1868 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1869 1870 #ifndef SQLITE_OMIT_CHECK 1871 /* Resolve names in all CHECK constraint expressions. 1872 */ 1873 if( p->pCheck ){ 1874 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1875 } 1876 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1877 1878 /* Estimate the average row size for the table and for all implied indices */ 1879 estimateTableWidth(p); 1880 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1881 estimateIndexWidth(pIdx); 1882 } 1883 1884 /* If not initializing, then create a record for the new table 1885 ** in the SQLITE_MASTER table of the database. 1886 ** 1887 ** If this is a TEMPORARY table, write the entry into the auxiliary 1888 ** file instead of into the main database file. 1889 */ 1890 if( !db->init.busy ){ 1891 int n; 1892 Vdbe *v; 1893 char *zType; /* "view" or "table" */ 1894 char *zType2; /* "VIEW" or "TABLE" */ 1895 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1896 1897 v = sqlite3GetVdbe(pParse); 1898 if( NEVER(v==0) ) return; 1899 1900 sqlite3VdbeAddOp1(v, OP_Close, 0); 1901 1902 /* 1903 ** Initialize zType for the new view or table. 1904 */ 1905 if( p->pSelect==0 ){ 1906 /* A regular table */ 1907 zType = "table"; 1908 zType2 = "TABLE"; 1909 #ifndef SQLITE_OMIT_VIEW 1910 }else{ 1911 /* A view */ 1912 zType = "view"; 1913 zType2 = "VIEW"; 1914 #endif 1915 } 1916 1917 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1918 ** statement to populate the new table. The root-page number for the 1919 ** new table is in register pParse->regRoot. 1920 ** 1921 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1922 ** suitable state to query for the column names and types to be used 1923 ** by the new table. 1924 ** 1925 ** A shared-cache write-lock is not required to write to the new table, 1926 ** as a schema-lock must have already been obtained to create it. Since 1927 ** a schema-lock excludes all other database users, the write-lock would 1928 ** be redundant. 1929 */ 1930 if( pSelect ){ 1931 SelectDest dest; /* Where the SELECT should store results */ 1932 int regYield; /* Register holding co-routine entry-point */ 1933 int addrTop; /* Top of the co-routine */ 1934 int regRec; /* A record to be insert into the new table */ 1935 int regRowid; /* Rowid of the next row to insert */ 1936 int addrInsLoop; /* Top of the loop for inserting rows */ 1937 Table *pSelTab; /* A table that describes the SELECT results */ 1938 1939 regYield = ++pParse->nMem; 1940 regRec = ++pParse->nMem; 1941 regRowid = ++pParse->nMem; 1942 assert(pParse->nTab==1); 1943 sqlite3MayAbort(pParse); 1944 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1945 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1946 pParse->nTab = 2; 1947 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1948 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1949 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1950 sqlite3Select(pParse, pSelect, &dest); 1951 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1952 sqlite3VdbeJumpHere(v, addrTop - 1); 1953 if( pParse->nErr ) return; 1954 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1955 if( pSelTab==0 ) return; 1956 assert( p->aCol==0 ); 1957 p->nCol = pSelTab->nCol; 1958 p->aCol = pSelTab->aCol; 1959 pSelTab->nCol = 0; 1960 pSelTab->aCol = 0; 1961 sqlite3DeleteTable(db, pSelTab); 1962 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1963 VdbeCoverage(v); 1964 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1965 sqlite3TableAffinity(v, p, 0); 1966 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1967 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1968 sqlite3VdbeGoto(v, addrInsLoop); 1969 sqlite3VdbeJumpHere(v, addrInsLoop); 1970 sqlite3VdbeAddOp1(v, OP_Close, 1); 1971 } 1972 1973 /* Compute the complete text of the CREATE statement */ 1974 if( pSelect ){ 1975 zStmt = createTableStmt(db, p); 1976 }else{ 1977 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1978 n = (int)(pEnd2->z - pParse->sNameToken.z); 1979 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1980 zStmt = sqlite3MPrintf(db, 1981 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1982 ); 1983 } 1984 1985 /* A slot for the record has already been allocated in the 1986 ** SQLITE_MASTER table. We just need to update that slot with all 1987 ** the information we've collected. 1988 */ 1989 sqlite3NestedParse(pParse, 1990 "UPDATE %Q.%s " 1991 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1992 "WHERE rowid=#%d", 1993 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1994 zType, 1995 p->zName, 1996 p->zName, 1997 pParse->regRoot, 1998 zStmt, 1999 pParse->regRowid 2000 ); 2001 sqlite3DbFree(db, zStmt); 2002 sqlite3ChangeCookie(pParse, iDb); 2003 2004 #ifndef SQLITE_OMIT_AUTOINCREMENT 2005 /* Check to see if we need to create an sqlite_sequence table for 2006 ** keeping track of autoincrement keys. 2007 */ 2008 if( p->tabFlags & TF_Autoincrement ){ 2009 Db *pDb = &db->aDb[iDb]; 2010 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2011 if( pDb->pSchema->pSeqTab==0 ){ 2012 sqlite3NestedParse(pParse, 2013 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2014 pDb->zName 2015 ); 2016 } 2017 } 2018 #endif 2019 2020 /* Reparse everything to update our internal data structures */ 2021 sqlite3VdbeAddParseSchemaOp(v, iDb, 2022 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2023 } 2024 2025 2026 /* Add the table to the in-memory representation of the database. 2027 */ 2028 if( db->init.busy ){ 2029 Table *pOld; 2030 Schema *pSchema = p->pSchema; 2031 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2032 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2033 if( pOld ){ 2034 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2035 db->mallocFailed = 1; 2036 return; 2037 } 2038 pParse->pNewTable = 0; 2039 db->flags |= SQLITE_InternChanges; 2040 2041 #ifndef SQLITE_OMIT_ALTERTABLE 2042 if( !p->pSelect ){ 2043 const char *zName = (const char *)pParse->sNameToken.z; 2044 int nName; 2045 assert( !pSelect && pCons && pEnd ); 2046 if( pCons->z==0 ){ 2047 pCons = pEnd; 2048 } 2049 nName = (int)((const char *)pCons->z - zName); 2050 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2051 } 2052 #endif 2053 } 2054 } 2055 2056 #ifndef SQLITE_OMIT_VIEW 2057 /* 2058 ** The parser calls this routine in order to create a new VIEW 2059 */ 2060 void sqlite3CreateView( 2061 Parse *pParse, /* The parsing context */ 2062 Token *pBegin, /* The CREATE token that begins the statement */ 2063 Token *pName1, /* The token that holds the name of the view */ 2064 Token *pName2, /* The token that holds the name of the view */ 2065 ExprList *pCNames, /* Optional list of view column names */ 2066 Select *pSelect, /* A SELECT statement that will become the new view */ 2067 int isTemp, /* TRUE for a TEMPORARY view */ 2068 int noErr /* Suppress error messages if VIEW already exists */ 2069 ){ 2070 Table *p; 2071 int n; 2072 const char *z; 2073 Token sEnd; 2074 DbFixer sFix; 2075 Token *pName = 0; 2076 int iDb; 2077 sqlite3 *db = pParse->db; 2078 2079 if( pParse->nVar>0 ){ 2080 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2081 sqlite3SelectDelete(db, pSelect); 2082 return; 2083 } 2084 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2085 p = pParse->pNewTable; 2086 if( p==0 || pParse->nErr ) goto create_view_fail; 2087 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2088 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2089 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2090 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2091 2092 /* Make a copy of the entire SELECT statement that defines the view. 2093 ** This will force all the Expr.token.z values to be dynamically 2094 ** allocated rather than point to the input string - which means that 2095 ** they will persist after the current sqlite3_exec() call returns. 2096 */ 2097 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2098 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2099 if( db->mallocFailed ) goto create_view_fail; 2100 2101 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2102 ** the end. 2103 */ 2104 sEnd = pParse->sLastToken; 2105 assert( sEnd.z[0]!=0 ); 2106 if( sEnd.z[0]!=';' ){ 2107 sEnd.z += sEnd.n; 2108 } 2109 sEnd.n = 0; 2110 n = (int)(sEnd.z - pBegin->z); 2111 assert( n>0 ); 2112 z = pBegin->z; 2113 while( sqlite3Isspace(z[n-1]) ){ n--; } 2114 sEnd.z = &z[n-1]; 2115 sEnd.n = 1; 2116 2117 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2118 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2119 2120 create_view_fail: 2121 sqlite3SelectDelete(db, pSelect); 2122 sqlite3ExprListDelete(db, pCNames); 2123 return; 2124 } 2125 #endif /* SQLITE_OMIT_VIEW */ 2126 2127 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2128 /* 2129 ** The Table structure pTable is really a VIEW. Fill in the names of 2130 ** the columns of the view in the pTable structure. Return the number 2131 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2132 */ 2133 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2134 Table *pSelTab; /* A fake table from which we get the result set */ 2135 Select *pSel; /* Copy of the SELECT that implements the view */ 2136 int nErr = 0; /* Number of errors encountered */ 2137 int n; /* Temporarily holds the number of cursors assigned */ 2138 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2139 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2140 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2141 2142 assert( pTable ); 2143 2144 #ifndef SQLITE_OMIT_VIRTUALTABLE 2145 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2146 return SQLITE_ERROR; 2147 } 2148 if( IsVirtual(pTable) ) return 0; 2149 #endif 2150 2151 #ifndef SQLITE_OMIT_VIEW 2152 /* A positive nCol means the columns names for this view are 2153 ** already known. 2154 */ 2155 if( pTable->nCol>0 ) return 0; 2156 2157 /* A negative nCol is a special marker meaning that we are currently 2158 ** trying to compute the column names. If we enter this routine with 2159 ** a negative nCol, it means two or more views form a loop, like this: 2160 ** 2161 ** CREATE VIEW one AS SELECT * FROM two; 2162 ** CREATE VIEW two AS SELECT * FROM one; 2163 ** 2164 ** Actually, the error above is now caught prior to reaching this point. 2165 ** But the following test is still important as it does come up 2166 ** in the following: 2167 ** 2168 ** CREATE TABLE main.ex1(a); 2169 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2170 ** SELECT * FROM temp.ex1; 2171 */ 2172 if( pTable->nCol<0 ){ 2173 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2174 return 1; 2175 } 2176 assert( pTable->nCol>=0 ); 2177 2178 /* If we get this far, it means we need to compute the table names. 2179 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2180 ** "*" elements in the results set of the view and will assign cursors 2181 ** to the elements of the FROM clause. But we do not want these changes 2182 ** to be permanent. So the computation is done on a copy of the SELECT 2183 ** statement that defines the view. 2184 */ 2185 assert( pTable->pSelect ); 2186 bEnabledLA = db->lookaside.bEnabled; 2187 if( pTable->pCheck ){ 2188 db->lookaside.bEnabled = 0; 2189 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2190 &pTable->nCol, &pTable->aCol); 2191 }else{ 2192 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2193 if( pSel ){ 2194 n = pParse->nTab; 2195 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2196 pTable->nCol = -1; 2197 db->lookaside.bEnabled = 0; 2198 #ifndef SQLITE_OMIT_AUTHORIZATION 2199 xAuth = db->xAuth; 2200 db->xAuth = 0; 2201 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2202 db->xAuth = xAuth; 2203 #else 2204 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2205 #endif 2206 pParse->nTab = n; 2207 if( pSelTab ){ 2208 assert( pTable->aCol==0 ); 2209 pTable->nCol = pSelTab->nCol; 2210 pTable->aCol = pSelTab->aCol; 2211 pSelTab->nCol = 0; 2212 pSelTab->aCol = 0; 2213 sqlite3DeleteTable(db, pSelTab); 2214 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2215 }else{ 2216 pTable->nCol = 0; 2217 nErr++; 2218 } 2219 sqlite3SelectDelete(db, pSel); 2220 } else { 2221 nErr++; 2222 } 2223 } 2224 db->lookaside.bEnabled = bEnabledLA; 2225 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2226 #endif /* SQLITE_OMIT_VIEW */ 2227 return nErr; 2228 } 2229 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2230 2231 #ifndef SQLITE_OMIT_VIEW 2232 /* 2233 ** Clear the column names from every VIEW in database idx. 2234 */ 2235 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2236 HashElem *i; 2237 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2238 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2239 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2240 Table *pTab = sqliteHashData(i); 2241 if( pTab->pSelect ){ 2242 sqlite3DeleteColumnNames(db, pTab); 2243 pTab->aCol = 0; 2244 pTab->nCol = 0; 2245 } 2246 } 2247 DbClearProperty(db, idx, DB_UnresetViews); 2248 } 2249 #else 2250 # define sqliteViewResetAll(A,B) 2251 #endif /* SQLITE_OMIT_VIEW */ 2252 2253 /* 2254 ** This function is called by the VDBE to adjust the internal schema 2255 ** used by SQLite when the btree layer moves a table root page. The 2256 ** root-page of a table or index in database iDb has changed from iFrom 2257 ** to iTo. 2258 ** 2259 ** Ticket #1728: The symbol table might still contain information 2260 ** on tables and/or indices that are the process of being deleted. 2261 ** If you are unlucky, one of those deleted indices or tables might 2262 ** have the same rootpage number as the real table or index that is 2263 ** being moved. So we cannot stop searching after the first match 2264 ** because the first match might be for one of the deleted indices 2265 ** or tables and not the table/index that is actually being moved. 2266 ** We must continue looping until all tables and indices with 2267 ** rootpage==iFrom have been converted to have a rootpage of iTo 2268 ** in order to be certain that we got the right one. 2269 */ 2270 #ifndef SQLITE_OMIT_AUTOVACUUM 2271 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2272 HashElem *pElem; 2273 Hash *pHash; 2274 Db *pDb; 2275 2276 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2277 pDb = &db->aDb[iDb]; 2278 pHash = &pDb->pSchema->tblHash; 2279 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2280 Table *pTab = sqliteHashData(pElem); 2281 if( pTab->tnum==iFrom ){ 2282 pTab->tnum = iTo; 2283 } 2284 } 2285 pHash = &pDb->pSchema->idxHash; 2286 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2287 Index *pIdx = sqliteHashData(pElem); 2288 if( pIdx->tnum==iFrom ){ 2289 pIdx->tnum = iTo; 2290 } 2291 } 2292 } 2293 #endif 2294 2295 /* 2296 ** Write code to erase the table with root-page iTable from database iDb. 2297 ** Also write code to modify the sqlite_master table and internal schema 2298 ** if a root-page of another table is moved by the btree-layer whilst 2299 ** erasing iTable (this can happen with an auto-vacuum database). 2300 */ 2301 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2302 Vdbe *v = sqlite3GetVdbe(pParse); 2303 int r1 = sqlite3GetTempReg(pParse); 2304 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2305 sqlite3MayAbort(pParse); 2306 #ifndef SQLITE_OMIT_AUTOVACUUM 2307 /* OP_Destroy stores an in integer r1. If this integer 2308 ** is non-zero, then it is the root page number of a table moved to 2309 ** location iTable. The following code modifies the sqlite_master table to 2310 ** reflect this. 2311 ** 2312 ** The "#NNN" in the SQL is a special constant that means whatever value 2313 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2314 ** token for additional information. 2315 */ 2316 sqlite3NestedParse(pParse, 2317 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2318 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2319 #endif 2320 sqlite3ReleaseTempReg(pParse, r1); 2321 } 2322 2323 /* 2324 ** Write VDBE code to erase table pTab and all associated indices on disk. 2325 ** Code to update the sqlite_master tables and internal schema definitions 2326 ** in case a root-page belonging to another table is moved by the btree layer 2327 ** is also added (this can happen with an auto-vacuum database). 2328 */ 2329 static void destroyTable(Parse *pParse, Table *pTab){ 2330 #ifdef SQLITE_OMIT_AUTOVACUUM 2331 Index *pIdx; 2332 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2333 destroyRootPage(pParse, pTab->tnum, iDb); 2334 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2335 destroyRootPage(pParse, pIdx->tnum, iDb); 2336 } 2337 #else 2338 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2339 ** is not defined), then it is important to call OP_Destroy on the 2340 ** table and index root-pages in order, starting with the numerically 2341 ** largest root-page number. This guarantees that none of the root-pages 2342 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2343 ** following were coded: 2344 ** 2345 ** OP_Destroy 4 0 2346 ** ... 2347 ** OP_Destroy 5 0 2348 ** 2349 ** and root page 5 happened to be the largest root-page number in the 2350 ** database, then root page 5 would be moved to page 4 by the 2351 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2352 ** a free-list page. 2353 */ 2354 int iTab = pTab->tnum; 2355 int iDestroyed = 0; 2356 2357 while( 1 ){ 2358 Index *pIdx; 2359 int iLargest = 0; 2360 2361 if( iDestroyed==0 || iTab<iDestroyed ){ 2362 iLargest = iTab; 2363 } 2364 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2365 int iIdx = pIdx->tnum; 2366 assert( pIdx->pSchema==pTab->pSchema ); 2367 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2368 iLargest = iIdx; 2369 } 2370 } 2371 if( iLargest==0 ){ 2372 return; 2373 }else{ 2374 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2375 assert( iDb>=0 && iDb<pParse->db->nDb ); 2376 destroyRootPage(pParse, iLargest, iDb); 2377 iDestroyed = iLargest; 2378 } 2379 } 2380 #endif 2381 } 2382 2383 /* 2384 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2385 ** after a DROP INDEX or DROP TABLE command. 2386 */ 2387 static void sqlite3ClearStatTables( 2388 Parse *pParse, /* The parsing context */ 2389 int iDb, /* The database number */ 2390 const char *zType, /* "idx" or "tbl" */ 2391 const char *zName /* Name of index or table */ 2392 ){ 2393 int i; 2394 const char *zDbName = pParse->db->aDb[iDb].zName; 2395 for(i=1; i<=4; i++){ 2396 char zTab[24]; 2397 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2398 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2399 sqlite3NestedParse(pParse, 2400 "DELETE FROM %Q.%s WHERE %s=%Q", 2401 zDbName, zTab, zType, zName 2402 ); 2403 } 2404 } 2405 } 2406 2407 /* 2408 ** Generate code to drop a table. 2409 */ 2410 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2411 Vdbe *v; 2412 sqlite3 *db = pParse->db; 2413 Trigger *pTrigger; 2414 Db *pDb = &db->aDb[iDb]; 2415 2416 v = sqlite3GetVdbe(pParse); 2417 assert( v!=0 ); 2418 sqlite3BeginWriteOperation(pParse, 1, iDb); 2419 2420 #ifndef SQLITE_OMIT_VIRTUALTABLE 2421 if( IsVirtual(pTab) ){ 2422 sqlite3VdbeAddOp0(v, OP_VBegin); 2423 } 2424 #endif 2425 2426 /* Drop all triggers associated with the table being dropped. Code 2427 ** is generated to remove entries from sqlite_master and/or 2428 ** sqlite_temp_master if required. 2429 */ 2430 pTrigger = sqlite3TriggerList(pParse, pTab); 2431 while( pTrigger ){ 2432 assert( pTrigger->pSchema==pTab->pSchema || 2433 pTrigger->pSchema==db->aDb[1].pSchema ); 2434 sqlite3DropTriggerPtr(pParse, pTrigger); 2435 pTrigger = pTrigger->pNext; 2436 } 2437 2438 #ifndef SQLITE_OMIT_AUTOINCREMENT 2439 /* Remove any entries of the sqlite_sequence table associated with 2440 ** the table being dropped. This is done before the table is dropped 2441 ** at the btree level, in case the sqlite_sequence table needs to 2442 ** move as a result of the drop (can happen in auto-vacuum mode). 2443 */ 2444 if( pTab->tabFlags & TF_Autoincrement ){ 2445 sqlite3NestedParse(pParse, 2446 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2447 pDb->zName, pTab->zName 2448 ); 2449 } 2450 #endif 2451 2452 /* Drop all SQLITE_MASTER table and index entries that refer to the 2453 ** table. The program name loops through the master table and deletes 2454 ** every row that refers to a table of the same name as the one being 2455 ** dropped. Triggers are handled separately because a trigger can be 2456 ** created in the temp database that refers to a table in another 2457 ** database. 2458 */ 2459 sqlite3NestedParse(pParse, 2460 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2461 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2462 if( !isView && !IsVirtual(pTab) ){ 2463 destroyTable(pParse, pTab); 2464 } 2465 2466 /* Remove the table entry from SQLite's internal schema and modify 2467 ** the schema cookie. 2468 */ 2469 if( IsVirtual(pTab) ){ 2470 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2471 } 2472 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2473 sqlite3ChangeCookie(pParse, iDb); 2474 sqliteViewResetAll(db, iDb); 2475 } 2476 2477 /* 2478 ** This routine is called to do the work of a DROP TABLE statement. 2479 ** pName is the name of the table to be dropped. 2480 */ 2481 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2482 Table *pTab; 2483 Vdbe *v; 2484 sqlite3 *db = pParse->db; 2485 int iDb; 2486 2487 if( db->mallocFailed ){ 2488 goto exit_drop_table; 2489 } 2490 assert( pParse->nErr==0 ); 2491 assert( pName->nSrc==1 ); 2492 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2493 if( noErr ) db->suppressErr++; 2494 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2495 if( noErr ) db->suppressErr--; 2496 2497 if( pTab==0 ){ 2498 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2499 goto exit_drop_table; 2500 } 2501 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2502 assert( iDb>=0 && iDb<db->nDb ); 2503 2504 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2505 ** it is initialized. 2506 */ 2507 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2508 goto exit_drop_table; 2509 } 2510 #ifndef SQLITE_OMIT_AUTHORIZATION 2511 { 2512 int code; 2513 const char *zTab = SCHEMA_TABLE(iDb); 2514 const char *zDb = db->aDb[iDb].zName; 2515 const char *zArg2 = 0; 2516 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2517 goto exit_drop_table; 2518 } 2519 if( isView ){ 2520 if( !OMIT_TEMPDB && iDb==1 ){ 2521 code = SQLITE_DROP_TEMP_VIEW; 2522 }else{ 2523 code = SQLITE_DROP_VIEW; 2524 } 2525 #ifndef SQLITE_OMIT_VIRTUALTABLE 2526 }else if( IsVirtual(pTab) ){ 2527 code = SQLITE_DROP_VTABLE; 2528 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2529 #endif 2530 }else{ 2531 if( !OMIT_TEMPDB && iDb==1 ){ 2532 code = SQLITE_DROP_TEMP_TABLE; 2533 }else{ 2534 code = SQLITE_DROP_TABLE; 2535 } 2536 } 2537 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2538 goto exit_drop_table; 2539 } 2540 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2541 goto exit_drop_table; 2542 } 2543 } 2544 #endif 2545 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2546 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2547 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2548 goto exit_drop_table; 2549 } 2550 2551 #ifndef SQLITE_OMIT_VIEW 2552 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2553 ** on a table. 2554 */ 2555 if( isView && pTab->pSelect==0 ){ 2556 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2557 goto exit_drop_table; 2558 } 2559 if( !isView && pTab->pSelect ){ 2560 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2561 goto exit_drop_table; 2562 } 2563 #endif 2564 2565 /* Generate code to remove the table from the master table 2566 ** on disk. 2567 */ 2568 v = sqlite3GetVdbe(pParse); 2569 if( v ){ 2570 sqlite3BeginWriteOperation(pParse, 1, iDb); 2571 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2572 sqlite3FkDropTable(pParse, pName, pTab); 2573 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2574 } 2575 2576 exit_drop_table: 2577 sqlite3SrcListDelete(db, pName); 2578 } 2579 2580 /* 2581 ** This routine is called to create a new foreign key on the table 2582 ** currently under construction. pFromCol determines which columns 2583 ** in the current table point to the foreign key. If pFromCol==0 then 2584 ** connect the key to the last column inserted. pTo is the name of 2585 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2586 ** of tables in the parent pTo table. flags contains all 2587 ** information about the conflict resolution algorithms specified 2588 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2589 ** 2590 ** An FKey structure is created and added to the table currently 2591 ** under construction in the pParse->pNewTable field. 2592 ** 2593 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2594 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2595 */ 2596 void sqlite3CreateForeignKey( 2597 Parse *pParse, /* Parsing context */ 2598 ExprList *pFromCol, /* Columns in this table that point to other table */ 2599 Token *pTo, /* Name of the other table */ 2600 ExprList *pToCol, /* Columns in the other table */ 2601 int flags /* Conflict resolution algorithms. */ 2602 ){ 2603 sqlite3 *db = pParse->db; 2604 #ifndef SQLITE_OMIT_FOREIGN_KEY 2605 FKey *pFKey = 0; 2606 FKey *pNextTo; 2607 Table *p = pParse->pNewTable; 2608 int nByte; 2609 int i; 2610 int nCol; 2611 char *z; 2612 2613 assert( pTo!=0 ); 2614 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2615 if( pFromCol==0 ){ 2616 int iCol = p->nCol-1; 2617 if( NEVER(iCol<0) ) goto fk_end; 2618 if( pToCol && pToCol->nExpr!=1 ){ 2619 sqlite3ErrorMsg(pParse, "foreign key on %s" 2620 " should reference only one column of table %T", 2621 p->aCol[iCol].zName, pTo); 2622 goto fk_end; 2623 } 2624 nCol = 1; 2625 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2626 sqlite3ErrorMsg(pParse, 2627 "number of columns in foreign key does not match the number of " 2628 "columns in the referenced table"); 2629 goto fk_end; 2630 }else{ 2631 nCol = pFromCol->nExpr; 2632 } 2633 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2634 if( pToCol ){ 2635 for(i=0; i<pToCol->nExpr; i++){ 2636 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2637 } 2638 } 2639 pFKey = sqlite3DbMallocZero(db, nByte ); 2640 if( pFKey==0 ){ 2641 goto fk_end; 2642 } 2643 pFKey->pFrom = p; 2644 pFKey->pNextFrom = p->pFKey; 2645 z = (char*)&pFKey->aCol[nCol]; 2646 pFKey->zTo = z; 2647 memcpy(z, pTo->z, pTo->n); 2648 z[pTo->n] = 0; 2649 sqlite3Dequote(z); 2650 z += pTo->n+1; 2651 pFKey->nCol = nCol; 2652 if( pFromCol==0 ){ 2653 pFKey->aCol[0].iFrom = p->nCol-1; 2654 }else{ 2655 for(i=0; i<nCol; i++){ 2656 int j; 2657 for(j=0; j<p->nCol; j++){ 2658 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2659 pFKey->aCol[i].iFrom = j; 2660 break; 2661 } 2662 } 2663 if( j>=p->nCol ){ 2664 sqlite3ErrorMsg(pParse, 2665 "unknown column \"%s\" in foreign key definition", 2666 pFromCol->a[i].zName); 2667 goto fk_end; 2668 } 2669 } 2670 } 2671 if( pToCol ){ 2672 for(i=0; i<nCol; i++){ 2673 int n = sqlite3Strlen30(pToCol->a[i].zName); 2674 pFKey->aCol[i].zCol = z; 2675 memcpy(z, pToCol->a[i].zName, n); 2676 z[n] = 0; 2677 z += n+1; 2678 } 2679 } 2680 pFKey->isDeferred = 0; 2681 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2682 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2683 2684 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2685 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2686 pFKey->zTo, (void *)pFKey 2687 ); 2688 if( pNextTo==pFKey ){ 2689 db->mallocFailed = 1; 2690 goto fk_end; 2691 } 2692 if( pNextTo ){ 2693 assert( pNextTo->pPrevTo==0 ); 2694 pFKey->pNextTo = pNextTo; 2695 pNextTo->pPrevTo = pFKey; 2696 } 2697 2698 /* Link the foreign key to the table as the last step. 2699 */ 2700 p->pFKey = pFKey; 2701 pFKey = 0; 2702 2703 fk_end: 2704 sqlite3DbFree(db, pFKey); 2705 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2706 sqlite3ExprListDelete(db, pFromCol); 2707 sqlite3ExprListDelete(db, pToCol); 2708 } 2709 2710 /* 2711 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2712 ** clause is seen as part of a foreign key definition. The isDeferred 2713 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2714 ** The behavior of the most recently created foreign key is adjusted 2715 ** accordingly. 2716 */ 2717 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2718 #ifndef SQLITE_OMIT_FOREIGN_KEY 2719 Table *pTab; 2720 FKey *pFKey; 2721 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2722 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2723 pFKey->isDeferred = (u8)isDeferred; 2724 #endif 2725 } 2726 2727 /* 2728 ** Generate code that will erase and refill index *pIdx. This is 2729 ** used to initialize a newly created index or to recompute the 2730 ** content of an index in response to a REINDEX command. 2731 ** 2732 ** if memRootPage is not negative, it means that the index is newly 2733 ** created. The register specified by memRootPage contains the 2734 ** root page number of the index. If memRootPage is negative, then 2735 ** the index already exists and must be cleared before being refilled and 2736 ** the root page number of the index is taken from pIndex->tnum. 2737 */ 2738 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2739 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2740 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2741 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2742 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2743 int addr1; /* Address of top of loop */ 2744 int addr2; /* Address to jump to for next iteration */ 2745 int tnum; /* Root page of index */ 2746 int iPartIdxLabel; /* Jump to this label to skip a row */ 2747 Vdbe *v; /* Generate code into this virtual machine */ 2748 KeyInfo *pKey; /* KeyInfo for index */ 2749 int regRecord; /* Register holding assembled index record */ 2750 sqlite3 *db = pParse->db; /* The database connection */ 2751 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2752 2753 #ifndef SQLITE_OMIT_AUTHORIZATION 2754 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2755 db->aDb[iDb].zName ) ){ 2756 return; 2757 } 2758 #endif 2759 2760 /* Require a write-lock on the table to perform this operation */ 2761 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2762 2763 v = sqlite3GetVdbe(pParse); 2764 if( v==0 ) return; 2765 if( memRootPage>=0 ){ 2766 tnum = memRootPage; 2767 }else{ 2768 tnum = pIndex->tnum; 2769 } 2770 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2771 2772 /* Open the sorter cursor if we are to use one. */ 2773 iSorter = pParse->nTab++; 2774 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2775 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2776 2777 /* Open the table. Loop through all rows of the table, inserting index 2778 ** records into the sorter. */ 2779 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2780 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2781 regRecord = sqlite3GetTempReg(pParse); 2782 2783 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2784 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2785 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2786 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2787 sqlite3VdbeJumpHere(v, addr1); 2788 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2789 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2790 (char *)pKey, P4_KEYINFO); 2791 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2792 2793 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2794 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2795 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2796 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2797 sqlite3VdbeGoto(v, j2); 2798 addr2 = sqlite3VdbeCurrentAddr(v); 2799 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2800 pIndex->nKeyCol); VdbeCoverage(v); 2801 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2802 }else{ 2803 addr2 = sqlite3VdbeCurrentAddr(v); 2804 } 2805 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2806 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2807 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2808 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2809 sqlite3ReleaseTempReg(pParse, regRecord); 2810 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2811 sqlite3VdbeJumpHere(v, addr1); 2812 2813 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2814 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2815 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2816 } 2817 2818 /* 2819 ** Allocate heap space to hold an Index object with nCol columns. 2820 ** 2821 ** Increase the allocation size to provide an extra nExtra bytes 2822 ** of 8-byte aligned space after the Index object and return a 2823 ** pointer to this extra space in *ppExtra. 2824 */ 2825 Index *sqlite3AllocateIndexObject( 2826 sqlite3 *db, /* Database connection */ 2827 i16 nCol, /* Total number of columns in the index */ 2828 int nExtra, /* Number of bytes of extra space to alloc */ 2829 char **ppExtra /* Pointer to the "extra" space */ 2830 ){ 2831 Index *p; /* Allocated index object */ 2832 int nByte; /* Bytes of space for Index object + arrays */ 2833 2834 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2835 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2836 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2837 sizeof(i16)*nCol + /* Index.aiColumn */ 2838 sizeof(u8)*nCol); /* Index.aSortOrder */ 2839 p = sqlite3DbMallocZero(db, nByte + nExtra); 2840 if( p ){ 2841 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2842 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2843 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2844 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2845 p->aSortOrder = (u8*)pExtra; 2846 p->nColumn = nCol; 2847 p->nKeyCol = nCol - 1; 2848 *ppExtra = ((char*)p) + nByte; 2849 } 2850 return p; 2851 } 2852 2853 /* 2854 ** Backwards Compatibility Hack: 2855 ** 2856 ** Historical versions of SQLite accepted strings as column names in 2857 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 2858 ** 2859 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 2860 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 2861 ** 2862 ** This is goofy. But to preserve backwards compatibility we continue to 2863 ** accept it. This routine does the necessary conversion. It converts 2864 ** the expression given in its argument from a TK_STRING into a TK_ID 2865 ** if the expression is just a TK_STRING with an optional COLLATE clause. 2866 ** If the epxression is anything other than TK_STRING, the expression is 2867 ** unchanged. 2868 */ 2869 static void sqlite3StringToId(Expr *p){ 2870 if( p->op==TK_STRING ){ 2871 p->op = TK_ID; 2872 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 2873 p->pLeft->op = TK_ID; 2874 } 2875 } 2876 2877 /* 2878 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2879 ** and pTblList is the name of the table that is to be indexed. Both will 2880 ** be NULL for a primary key or an index that is created to satisfy a 2881 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2882 ** as the table to be indexed. pParse->pNewTable is a table that is 2883 ** currently being constructed by a CREATE TABLE statement. 2884 ** 2885 ** pList is a list of columns to be indexed. pList will be NULL if this 2886 ** is a primary key or unique-constraint on the most recent column added 2887 ** to the table currently under construction. 2888 ** 2889 ** If the index is created successfully, return a pointer to the new Index 2890 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2891 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2892 */ 2893 Index *sqlite3CreateIndex( 2894 Parse *pParse, /* All information about this parse */ 2895 Token *pName1, /* First part of index name. May be NULL */ 2896 Token *pName2, /* Second part of index name. May be NULL */ 2897 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2898 ExprList *pList, /* A list of columns to be indexed */ 2899 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2900 Token *pStart, /* The CREATE token that begins this statement */ 2901 Expr *pPIWhere, /* WHERE clause for partial indices */ 2902 int sortOrder, /* Sort order of primary key when pList==NULL */ 2903 int ifNotExist /* Omit error if index already exists */ 2904 ){ 2905 Index *pRet = 0; /* Pointer to return */ 2906 Table *pTab = 0; /* Table to be indexed */ 2907 Index *pIndex = 0; /* The index to be created */ 2908 char *zName = 0; /* Name of the index */ 2909 int nName; /* Number of characters in zName */ 2910 int i, j; 2911 DbFixer sFix; /* For assigning database names to pTable */ 2912 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2913 sqlite3 *db = pParse->db; 2914 Db *pDb; /* The specific table containing the indexed database */ 2915 int iDb; /* Index of the database that is being written */ 2916 Token *pName = 0; /* Unqualified name of the index to create */ 2917 struct ExprList_item *pListItem; /* For looping over pList */ 2918 int nExtra = 0; /* Space allocated for zExtra[] */ 2919 int nExtraCol; /* Number of extra columns needed */ 2920 char *zExtra = 0; /* Extra space after the Index object */ 2921 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2922 2923 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2924 goto exit_create_index; 2925 } 2926 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2927 goto exit_create_index; 2928 } 2929 2930 /* 2931 ** Find the table that is to be indexed. Return early if not found. 2932 */ 2933 if( pTblName!=0 ){ 2934 2935 /* Use the two-part index name to determine the database 2936 ** to search for the table. 'Fix' the table name to this db 2937 ** before looking up the table. 2938 */ 2939 assert( pName1 && pName2 ); 2940 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2941 if( iDb<0 ) goto exit_create_index; 2942 assert( pName && pName->z ); 2943 2944 #ifndef SQLITE_OMIT_TEMPDB 2945 /* If the index name was unqualified, check if the table 2946 ** is a temp table. If so, set the database to 1. Do not do this 2947 ** if initialising a database schema. 2948 */ 2949 if( !db->init.busy ){ 2950 pTab = sqlite3SrcListLookup(pParse, pTblName); 2951 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2952 iDb = 1; 2953 } 2954 } 2955 #endif 2956 2957 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2958 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2959 /* Because the parser constructs pTblName from a single identifier, 2960 ** sqlite3FixSrcList can never fail. */ 2961 assert(0); 2962 } 2963 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2964 assert( db->mallocFailed==0 || pTab==0 ); 2965 if( pTab==0 ) goto exit_create_index; 2966 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2967 sqlite3ErrorMsg(pParse, 2968 "cannot create a TEMP index on non-TEMP table \"%s\"", 2969 pTab->zName); 2970 goto exit_create_index; 2971 } 2972 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2973 }else{ 2974 assert( pName==0 ); 2975 assert( pStart==0 ); 2976 pTab = pParse->pNewTable; 2977 if( !pTab ) goto exit_create_index; 2978 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2979 } 2980 pDb = &db->aDb[iDb]; 2981 2982 assert( pTab!=0 ); 2983 assert( pParse->nErr==0 ); 2984 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2985 && db->init.busy==0 2986 #if SQLITE_USER_AUTHENTICATION 2987 && sqlite3UserAuthTable(pTab->zName)==0 2988 #endif 2989 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2990 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2991 goto exit_create_index; 2992 } 2993 #ifndef SQLITE_OMIT_VIEW 2994 if( pTab->pSelect ){ 2995 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2996 goto exit_create_index; 2997 } 2998 #endif 2999 #ifndef SQLITE_OMIT_VIRTUALTABLE 3000 if( IsVirtual(pTab) ){ 3001 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3002 goto exit_create_index; 3003 } 3004 #endif 3005 3006 /* 3007 ** Find the name of the index. Make sure there is not already another 3008 ** index or table with the same name. 3009 ** 3010 ** Exception: If we are reading the names of permanent indices from the 3011 ** sqlite_master table (because some other process changed the schema) and 3012 ** one of the index names collides with the name of a temporary table or 3013 ** index, then we will continue to process this index. 3014 ** 3015 ** If pName==0 it means that we are 3016 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3017 ** own name. 3018 */ 3019 if( pName ){ 3020 zName = sqlite3NameFromToken(db, pName); 3021 if( zName==0 ) goto exit_create_index; 3022 assert( pName->z!=0 ); 3023 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3024 goto exit_create_index; 3025 } 3026 if( !db->init.busy ){ 3027 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3028 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3029 goto exit_create_index; 3030 } 3031 } 3032 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3033 if( !ifNotExist ){ 3034 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3035 }else{ 3036 assert( !db->init.busy ); 3037 sqlite3CodeVerifySchema(pParse, iDb); 3038 } 3039 goto exit_create_index; 3040 } 3041 }else{ 3042 int n; 3043 Index *pLoop; 3044 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3045 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3046 if( zName==0 ){ 3047 goto exit_create_index; 3048 } 3049 } 3050 3051 /* Check for authorization to create an index. 3052 */ 3053 #ifndef SQLITE_OMIT_AUTHORIZATION 3054 { 3055 const char *zDb = pDb->zName; 3056 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3057 goto exit_create_index; 3058 } 3059 i = SQLITE_CREATE_INDEX; 3060 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3061 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3062 goto exit_create_index; 3063 } 3064 } 3065 #endif 3066 3067 /* If pList==0, it means this routine was called to make a primary 3068 ** key out of the last column added to the table under construction. 3069 ** So create a fake list to simulate this. 3070 */ 3071 if( pList==0 ){ 3072 Token prevCol; 3073 prevCol.z = pTab->aCol[pTab->nCol-1].zName; 3074 prevCol.n = sqlite3Strlen30(prevCol.z); 3075 pList = sqlite3ExprListAppend(pParse, 0, 3076 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3077 if( pList==0 ) goto exit_create_index; 3078 assert( pList->nExpr==1 ); 3079 sqlite3ExprListSetSortOrder(pList, sortOrder); 3080 }else{ 3081 sqlite3ExprListCheckLength(pParse, pList, "index"); 3082 } 3083 3084 /* Figure out how many bytes of space are required to store explicitly 3085 ** specified collation sequence names. 3086 */ 3087 for(i=0; i<pList->nExpr; i++){ 3088 Expr *pExpr = pList->a[i].pExpr; 3089 assert( pExpr!=0 ); 3090 if( pExpr->op==TK_COLLATE ){ 3091 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3092 } 3093 } 3094 3095 /* 3096 ** Allocate the index structure. 3097 */ 3098 nName = sqlite3Strlen30(zName); 3099 nExtraCol = pPk ? pPk->nKeyCol : 1; 3100 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3101 nName + nExtra + 1, &zExtra); 3102 if( db->mallocFailed ){ 3103 goto exit_create_index; 3104 } 3105 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3106 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3107 pIndex->zName = zExtra; 3108 zExtra += nName + 1; 3109 memcpy(pIndex->zName, zName, nName+1); 3110 pIndex->pTable = pTab; 3111 pIndex->onError = (u8)onError; 3112 pIndex->uniqNotNull = onError!=OE_None; 3113 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3114 pIndex->pSchema = db->aDb[iDb].pSchema; 3115 pIndex->nKeyCol = pList->nExpr; 3116 if( pPIWhere ){ 3117 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3118 pIndex->pPartIdxWhere = pPIWhere; 3119 pPIWhere = 0; 3120 } 3121 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3122 3123 /* Check to see if we should honor DESC requests on index columns 3124 */ 3125 if( pDb->pSchema->file_format>=4 ){ 3126 sortOrderMask = -1; /* Honor DESC */ 3127 }else{ 3128 sortOrderMask = 0; /* Ignore DESC */ 3129 } 3130 3131 /* Analyze the list of expressions that form the terms of the index and 3132 ** report any errors. In the common case where the expression is exactly 3133 ** a table column, store that column in aiColumn[]. For general expressions, 3134 ** populate pIndex->aColExpr and store -2 in aiColumn[]. 3135 ** 3136 ** TODO: Issue a warning if two or more columns of the index are identical. 3137 ** TODO: Issue a warning if the table primary key is used as part of the 3138 ** index key. 3139 */ 3140 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3141 Expr *pCExpr; /* The i-th index expression */ 3142 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3143 char *zColl; /* Collation sequence name */ 3144 3145 sqlite3StringToId(pListItem->pExpr); 3146 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3147 if( pParse->nErr ) goto exit_create_index; 3148 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3149 if( pCExpr->op!=TK_COLUMN ){ 3150 if( pTab==pParse->pNewTable ){ 3151 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3152 "UNIQUE constraints"); 3153 goto exit_create_index; 3154 } 3155 if( pIndex->aColExpr==0 ){ 3156 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3157 pIndex->aColExpr = pCopy; 3158 if( !db->mallocFailed ){ 3159 assert( pCopy!=0 ); 3160 pListItem = &pCopy->a[i]; 3161 } 3162 } 3163 j = -2; 3164 pIndex->aiColumn[i] = -2; 3165 pIndex->uniqNotNull = 0; 3166 }else{ 3167 j = pCExpr->iColumn; 3168 assert( j<=0x7fff ); 3169 if( j<0 ){ 3170 j = pTab->iPKey; 3171 }else if( pTab->aCol[j].notNull==0 ){ 3172 pIndex->uniqNotNull = 0; 3173 } 3174 pIndex->aiColumn[i] = (i16)j; 3175 } 3176 zColl = 0; 3177 if( pListItem->pExpr->op==TK_COLLATE ){ 3178 int nColl; 3179 zColl = pListItem->pExpr->u.zToken; 3180 nColl = sqlite3Strlen30(zColl) + 1; 3181 assert( nExtra>=nColl ); 3182 memcpy(zExtra, zColl, nColl); 3183 zColl = zExtra; 3184 zExtra += nColl; 3185 nExtra -= nColl; 3186 }else if( j>=0 ){ 3187 zColl = pTab->aCol[j].zColl; 3188 } 3189 if( !zColl ) zColl = "BINARY"; 3190 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3191 goto exit_create_index; 3192 } 3193 pIndex->azColl[i] = zColl; 3194 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3195 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3196 } 3197 3198 /* Append the table key to the end of the index. For WITHOUT ROWID 3199 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3200 ** normal tables (when pPk==0) this will be the rowid. 3201 */ 3202 if( pPk ){ 3203 for(j=0; j<pPk->nKeyCol; j++){ 3204 int x = pPk->aiColumn[j]; 3205 assert( x>=0 ); 3206 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3207 pIndex->nColumn--; 3208 }else{ 3209 pIndex->aiColumn[i] = x; 3210 pIndex->azColl[i] = pPk->azColl[j]; 3211 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3212 i++; 3213 } 3214 } 3215 assert( i==pIndex->nColumn ); 3216 }else{ 3217 pIndex->aiColumn[i] = -1; 3218 pIndex->azColl[i] = "BINARY"; 3219 } 3220 sqlite3DefaultRowEst(pIndex); 3221 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3222 3223 if( pTab==pParse->pNewTable ){ 3224 /* This routine has been called to create an automatic index as a 3225 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3226 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3227 ** i.e. one of: 3228 ** 3229 ** CREATE TABLE t(x PRIMARY KEY, y); 3230 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3231 ** 3232 ** Either way, check to see if the table already has such an index. If 3233 ** so, don't bother creating this one. This only applies to 3234 ** automatically created indices. Users can do as they wish with 3235 ** explicit indices. 3236 ** 3237 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3238 ** (and thus suppressing the second one) even if they have different 3239 ** sort orders. 3240 ** 3241 ** If there are different collating sequences or if the columns of 3242 ** the constraint occur in different orders, then the constraints are 3243 ** considered distinct and both result in separate indices. 3244 */ 3245 Index *pIdx; 3246 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3247 int k; 3248 assert( IsUniqueIndex(pIdx) ); 3249 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3250 assert( IsUniqueIndex(pIndex) ); 3251 3252 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3253 for(k=0; k<pIdx->nKeyCol; k++){ 3254 const char *z1; 3255 const char *z2; 3256 assert( pIdx->aiColumn[k]>=0 ); 3257 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3258 z1 = pIdx->azColl[k]; 3259 z2 = pIndex->azColl[k]; 3260 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3261 } 3262 if( k==pIdx->nKeyCol ){ 3263 if( pIdx->onError!=pIndex->onError ){ 3264 /* This constraint creates the same index as a previous 3265 ** constraint specified somewhere in the CREATE TABLE statement. 3266 ** However the ON CONFLICT clauses are different. If both this 3267 ** constraint and the previous equivalent constraint have explicit 3268 ** ON CONFLICT clauses this is an error. Otherwise, use the 3269 ** explicitly specified behavior for the index. 3270 */ 3271 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3272 sqlite3ErrorMsg(pParse, 3273 "conflicting ON CONFLICT clauses specified", 0); 3274 } 3275 if( pIdx->onError==OE_Default ){ 3276 pIdx->onError = pIndex->onError; 3277 } 3278 } 3279 pRet = pIdx; 3280 goto exit_create_index; 3281 } 3282 } 3283 } 3284 3285 /* Link the new Index structure to its table and to the other 3286 ** in-memory database structures. 3287 */ 3288 assert( pParse->nErr==0 ); 3289 if( db->init.busy ){ 3290 Index *p; 3291 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3292 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3293 pIndex->zName, pIndex); 3294 if( p ){ 3295 assert( p==pIndex ); /* Malloc must have failed */ 3296 db->mallocFailed = 1; 3297 goto exit_create_index; 3298 } 3299 db->flags |= SQLITE_InternChanges; 3300 if( pTblName!=0 ){ 3301 pIndex->tnum = db->init.newTnum; 3302 } 3303 } 3304 3305 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3306 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3307 ** emit code to allocate the index rootpage on disk and make an entry for 3308 ** the index in the sqlite_master table and populate the index with 3309 ** content. But, do not do this if we are simply reading the sqlite_master 3310 ** table to parse the schema, or if this index is the PRIMARY KEY index 3311 ** of a WITHOUT ROWID table. 3312 ** 3313 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3314 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3315 ** has just been created, it contains no data and the index initialization 3316 ** step can be skipped. 3317 */ 3318 else if( HasRowid(pTab) || pTblName!=0 ){ 3319 Vdbe *v; 3320 char *zStmt; 3321 int iMem = ++pParse->nMem; 3322 3323 v = sqlite3GetVdbe(pParse); 3324 if( v==0 ) goto exit_create_index; 3325 3326 sqlite3BeginWriteOperation(pParse, 1, iDb); 3327 3328 /* Create the rootpage for the index using CreateIndex. But before 3329 ** doing so, code a Noop instruction and store its address in 3330 ** Index.tnum. This is required in case this index is actually a 3331 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3332 ** that case the convertToWithoutRowidTable() routine will replace 3333 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3334 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3335 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3336 3337 /* Gather the complete text of the CREATE INDEX statement into 3338 ** the zStmt variable 3339 */ 3340 if( pStart ){ 3341 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3342 if( pName->z[n-1]==';' ) n--; 3343 /* A named index with an explicit CREATE INDEX statement */ 3344 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3345 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3346 }else{ 3347 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3348 /* zStmt = sqlite3MPrintf(""); */ 3349 zStmt = 0; 3350 } 3351 3352 /* Add an entry in sqlite_master for this index 3353 */ 3354 sqlite3NestedParse(pParse, 3355 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3356 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3357 pIndex->zName, 3358 pTab->zName, 3359 iMem, 3360 zStmt 3361 ); 3362 sqlite3DbFree(db, zStmt); 3363 3364 /* Fill the index with data and reparse the schema. Code an OP_Expire 3365 ** to invalidate all pre-compiled statements. 3366 */ 3367 if( pTblName ){ 3368 sqlite3RefillIndex(pParse, pIndex, iMem); 3369 sqlite3ChangeCookie(pParse, iDb); 3370 sqlite3VdbeAddParseSchemaOp(v, iDb, 3371 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3372 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3373 } 3374 3375 sqlite3VdbeJumpHere(v, pIndex->tnum); 3376 } 3377 3378 /* When adding an index to the list of indices for a table, make 3379 ** sure all indices labeled OE_Replace come after all those labeled 3380 ** OE_Ignore. This is necessary for the correct constraint check 3381 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3382 ** UPDATE and INSERT statements. 3383 */ 3384 if( db->init.busy || pTblName==0 ){ 3385 if( onError!=OE_Replace || pTab->pIndex==0 3386 || pTab->pIndex->onError==OE_Replace){ 3387 pIndex->pNext = pTab->pIndex; 3388 pTab->pIndex = pIndex; 3389 }else{ 3390 Index *pOther = pTab->pIndex; 3391 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3392 pOther = pOther->pNext; 3393 } 3394 pIndex->pNext = pOther->pNext; 3395 pOther->pNext = pIndex; 3396 } 3397 pRet = pIndex; 3398 pIndex = 0; 3399 } 3400 3401 /* Clean up before exiting */ 3402 exit_create_index: 3403 if( pIndex ) freeIndex(db, pIndex); 3404 sqlite3ExprDelete(db, pPIWhere); 3405 sqlite3ExprListDelete(db, pList); 3406 sqlite3SrcListDelete(db, pTblName); 3407 sqlite3DbFree(db, zName); 3408 return pRet; 3409 } 3410 3411 /* 3412 ** Fill the Index.aiRowEst[] array with default information - information 3413 ** to be used when we have not run the ANALYZE command. 3414 ** 3415 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3416 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3417 ** number of rows in the table that match any particular value of the 3418 ** first column of the index. aiRowEst[2] is an estimate of the number 3419 ** of rows that match any particular combination of the first 2 columns 3420 ** of the index. And so forth. It must always be the case that 3421 * 3422 ** aiRowEst[N]<=aiRowEst[N-1] 3423 ** aiRowEst[N]>=1 3424 ** 3425 ** Apart from that, we have little to go on besides intuition as to 3426 ** how aiRowEst[] should be initialized. The numbers generated here 3427 ** are based on typical values found in actual indices. 3428 */ 3429 void sqlite3DefaultRowEst(Index *pIdx){ 3430 /* 10, 9, 8, 7, 6 */ 3431 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3432 LogEst *a = pIdx->aiRowLogEst; 3433 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3434 int i; 3435 3436 /* Set the first entry (number of rows in the index) to the estimated 3437 ** number of rows in the table. Or 10, if the estimated number of rows 3438 ** in the table is less than that. */ 3439 a[0] = pIdx->pTable->nRowLogEst; 3440 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3441 3442 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3443 ** 6 and each subsequent value (if any) is 5. */ 3444 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3445 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3446 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3447 } 3448 3449 assert( 0==sqlite3LogEst(1) ); 3450 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3451 } 3452 3453 /* 3454 ** This routine will drop an existing named index. This routine 3455 ** implements the DROP INDEX statement. 3456 */ 3457 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3458 Index *pIndex; 3459 Vdbe *v; 3460 sqlite3 *db = pParse->db; 3461 int iDb; 3462 3463 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3464 if( db->mallocFailed ){ 3465 goto exit_drop_index; 3466 } 3467 assert( pName->nSrc==1 ); 3468 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3469 goto exit_drop_index; 3470 } 3471 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3472 if( pIndex==0 ){ 3473 if( !ifExists ){ 3474 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3475 }else{ 3476 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3477 } 3478 pParse->checkSchema = 1; 3479 goto exit_drop_index; 3480 } 3481 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3482 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3483 "or PRIMARY KEY constraint cannot be dropped", 0); 3484 goto exit_drop_index; 3485 } 3486 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3487 #ifndef SQLITE_OMIT_AUTHORIZATION 3488 { 3489 int code = SQLITE_DROP_INDEX; 3490 Table *pTab = pIndex->pTable; 3491 const char *zDb = db->aDb[iDb].zName; 3492 const char *zTab = SCHEMA_TABLE(iDb); 3493 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3494 goto exit_drop_index; 3495 } 3496 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3497 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3498 goto exit_drop_index; 3499 } 3500 } 3501 #endif 3502 3503 /* Generate code to remove the index and from the master table */ 3504 v = sqlite3GetVdbe(pParse); 3505 if( v ){ 3506 sqlite3BeginWriteOperation(pParse, 1, iDb); 3507 sqlite3NestedParse(pParse, 3508 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3509 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3510 ); 3511 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3512 sqlite3ChangeCookie(pParse, iDb); 3513 destroyRootPage(pParse, pIndex->tnum, iDb); 3514 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3515 } 3516 3517 exit_drop_index: 3518 sqlite3SrcListDelete(db, pName); 3519 } 3520 3521 /* 3522 ** pArray is a pointer to an array of objects. Each object in the 3523 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3524 ** to extend the array so that there is space for a new object at the end. 3525 ** 3526 ** When this function is called, *pnEntry contains the current size of 3527 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3528 ** in total). 3529 ** 3530 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3531 ** space allocated for the new object is zeroed, *pnEntry updated to 3532 ** reflect the new size of the array and a pointer to the new allocation 3533 ** returned. *pIdx is set to the index of the new array entry in this case. 3534 ** 3535 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3536 ** unchanged and a copy of pArray returned. 3537 */ 3538 void *sqlite3ArrayAllocate( 3539 sqlite3 *db, /* Connection to notify of malloc failures */ 3540 void *pArray, /* Array of objects. Might be reallocated */ 3541 int szEntry, /* Size of each object in the array */ 3542 int *pnEntry, /* Number of objects currently in use */ 3543 int *pIdx /* Write the index of a new slot here */ 3544 ){ 3545 char *z; 3546 int n = *pnEntry; 3547 if( (n & (n-1))==0 ){ 3548 int sz = (n==0) ? 1 : 2*n; 3549 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3550 if( pNew==0 ){ 3551 *pIdx = -1; 3552 return pArray; 3553 } 3554 pArray = pNew; 3555 } 3556 z = (char*)pArray; 3557 memset(&z[n * szEntry], 0, szEntry); 3558 *pIdx = n; 3559 ++*pnEntry; 3560 return pArray; 3561 } 3562 3563 /* 3564 ** Append a new element to the given IdList. Create a new IdList if 3565 ** need be. 3566 ** 3567 ** A new IdList is returned, or NULL if malloc() fails. 3568 */ 3569 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3570 int i; 3571 if( pList==0 ){ 3572 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3573 if( pList==0 ) return 0; 3574 } 3575 pList->a = sqlite3ArrayAllocate( 3576 db, 3577 pList->a, 3578 sizeof(pList->a[0]), 3579 &pList->nId, 3580 &i 3581 ); 3582 if( i<0 ){ 3583 sqlite3IdListDelete(db, pList); 3584 return 0; 3585 } 3586 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3587 return pList; 3588 } 3589 3590 /* 3591 ** Delete an IdList. 3592 */ 3593 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3594 int i; 3595 if( pList==0 ) return; 3596 for(i=0; i<pList->nId; i++){ 3597 sqlite3DbFree(db, pList->a[i].zName); 3598 } 3599 sqlite3DbFree(db, pList->a); 3600 sqlite3DbFree(db, pList); 3601 } 3602 3603 /* 3604 ** Return the index in pList of the identifier named zId. Return -1 3605 ** if not found. 3606 */ 3607 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3608 int i; 3609 if( pList==0 ) return -1; 3610 for(i=0; i<pList->nId; i++){ 3611 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3612 } 3613 return -1; 3614 } 3615 3616 /* 3617 ** Expand the space allocated for the given SrcList object by 3618 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3619 ** New slots are zeroed. 3620 ** 3621 ** For example, suppose a SrcList initially contains two entries: A,B. 3622 ** To append 3 new entries onto the end, do this: 3623 ** 3624 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3625 ** 3626 ** After the call above it would contain: A, B, nil, nil, nil. 3627 ** If the iStart argument had been 1 instead of 2, then the result 3628 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3629 ** the iStart value would be 0. The result then would 3630 ** be: nil, nil, nil, A, B. 3631 ** 3632 ** If a memory allocation fails the SrcList is unchanged. The 3633 ** db->mallocFailed flag will be set to true. 3634 */ 3635 SrcList *sqlite3SrcListEnlarge( 3636 sqlite3 *db, /* Database connection to notify of OOM errors */ 3637 SrcList *pSrc, /* The SrcList to be enlarged */ 3638 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3639 int iStart /* Index in pSrc->a[] of first new slot */ 3640 ){ 3641 int i; 3642 3643 /* Sanity checking on calling parameters */ 3644 assert( iStart>=0 ); 3645 assert( nExtra>=1 ); 3646 assert( pSrc!=0 ); 3647 assert( iStart<=pSrc->nSrc ); 3648 3649 /* Allocate additional space if needed */ 3650 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3651 SrcList *pNew; 3652 int nAlloc = pSrc->nSrc+nExtra; 3653 int nGot; 3654 pNew = sqlite3DbRealloc(db, pSrc, 3655 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3656 if( pNew==0 ){ 3657 assert( db->mallocFailed ); 3658 return pSrc; 3659 } 3660 pSrc = pNew; 3661 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3662 pSrc->nAlloc = nGot; 3663 } 3664 3665 /* Move existing slots that come after the newly inserted slots 3666 ** out of the way */ 3667 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3668 pSrc->a[i+nExtra] = pSrc->a[i]; 3669 } 3670 pSrc->nSrc += nExtra; 3671 3672 /* Zero the newly allocated slots */ 3673 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3674 for(i=iStart; i<iStart+nExtra; i++){ 3675 pSrc->a[i].iCursor = -1; 3676 } 3677 3678 /* Return a pointer to the enlarged SrcList */ 3679 return pSrc; 3680 } 3681 3682 3683 /* 3684 ** Append a new table name to the given SrcList. Create a new SrcList if 3685 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3686 ** 3687 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3688 ** SrcList might be the same as the SrcList that was input or it might be 3689 ** a new one. If an OOM error does occurs, then the prior value of pList 3690 ** that is input to this routine is automatically freed. 3691 ** 3692 ** If pDatabase is not null, it means that the table has an optional 3693 ** database name prefix. Like this: "database.table". The pDatabase 3694 ** points to the table name and the pTable points to the database name. 3695 ** The SrcList.a[].zName field is filled with the table name which might 3696 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3697 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3698 ** or with NULL if no database is specified. 3699 ** 3700 ** In other words, if call like this: 3701 ** 3702 ** sqlite3SrcListAppend(D,A,B,0); 3703 ** 3704 ** Then B is a table name and the database name is unspecified. If called 3705 ** like this: 3706 ** 3707 ** sqlite3SrcListAppend(D,A,B,C); 3708 ** 3709 ** Then C is the table name and B is the database name. If C is defined 3710 ** then so is B. In other words, we never have a case where: 3711 ** 3712 ** sqlite3SrcListAppend(D,A,0,C); 3713 ** 3714 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3715 ** before being added to the SrcList. 3716 */ 3717 SrcList *sqlite3SrcListAppend( 3718 sqlite3 *db, /* Connection to notify of malloc failures */ 3719 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3720 Token *pTable, /* Table to append */ 3721 Token *pDatabase /* Database of the table */ 3722 ){ 3723 struct SrcList_item *pItem; 3724 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3725 if( pList==0 ){ 3726 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3727 if( pList==0 ) return 0; 3728 pList->nAlloc = 1; 3729 } 3730 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3731 if( db->mallocFailed ){ 3732 sqlite3SrcListDelete(db, pList); 3733 return 0; 3734 } 3735 pItem = &pList->a[pList->nSrc-1]; 3736 if( pDatabase && pDatabase->z==0 ){ 3737 pDatabase = 0; 3738 } 3739 if( pDatabase ){ 3740 Token *pTemp = pDatabase; 3741 pDatabase = pTable; 3742 pTable = pTemp; 3743 } 3744 pItem->zName = sqlite3NameFromToken(db, pTable); 3745 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3746 return pList; 3747 } 3748 3749 /* 3750 ** Assign VdbeCursor index numbers to all tables in a SrcList 3751 */ 3752 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3753 int i; 3754 struct SrcList_item *pItem; 3755 assert(pList || pParse->db->mallocFailed ); 3756 if( pList ){ 3757 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3758 if( pItem->iCursor>=0 ) break; 3759 pItem->iCursor = pParse->nTab++; 3760 if( pItem->pSelect ){ 3761 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3762 } 3763 } 3764 } 3765 } 3766 3767 /* 3768 ** Delete an entire SrcList including all its substructure. 3769 */ 3770 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3771 int i; 3772 struct SrcList_item *pItem; 3773 if( pList==0 ) return; 3774 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3775 sqlite3DbFree(db, pItem->zDatabase); 3776 sqlite3DbFree(db, pItem->zName); 3777 sqlite3DbFree(db, pItem->zAlias); 3778 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3779 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3780 sqlite3DeleteTable(db, pItem->pTab); 3781 sqlite3SelectDelete(db, pItem->pSelect); 3782 sqlite3ExprDelete(db, pItem->pOn); 3783 sqlite3IdListDelete(db, pItem->pUsing); 3784 } 3785 sqlite3DbFree(db, pList); 3786 } 3787 3788 /* 3789 ** This routine is called by the parser to add a new term to the 3790 ** end of a growing FROM clause. The "p" parameter is the part of 3791 ** the FROM clause that has already been constructed. "p" is NULL 3792 ** if this is the first term of the FROM clause. pTable and pDatabase 3793 ** are the name of the table and database named in the FROM clause term. 3794 ** pDatabase is NULL if the database name qualifier is missing - the 3795 ** usual case. If the term has an alias, then pAlias points to the 3796 ** alias token. If the term is a subquery, then pSubquery is the 3797 ** SELECT statement that the subquery encodes. The pTable and 3798 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3799 ** parameters are the content of the ON and USING clauses. 3800 ** 3801 ** Return a new SrcList which encodes is the FROM with the new 3802 ** term added. 3803 */ 3804 SrcList *sqlite3SrcListAppendFromTerm( 3805 Parse *pParse, /* Parsing context */ 3806 SrcList *p, /* The left part of the FROM clause already seen */ 3807 Token *pTable, /* Name of the table to add to the FROM clause */ 3808 Token *pDatabase, /* Name of the database containing pTable */ 3809 Token *pAlias, /* The right-hand side of the AS subexpression */ 3810 Select *pSubquery, /* A subquery used in place of a table name */ 3811 Expr *pOn, /* The ON clause of a join */ 3812 IdList *pUsing /* The USING clause of a join */ 3813 ){ 3814 struct SrcList_item *pItem; 3815 sqlite3 *db = pParse->db; 3816 if( !p && (pOn || pUsing) ){ 3817 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3818 (pOn ? "ON" : "USING") 3819 ); 3820 goto append_from_error; 3821 } 3822 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3823 if( p==0 || NEVER(p->nSrc==0) ){ 3824 goto append_from_error; 3825 } 3826 pItem = &p->a[p->nSrc-1]; 3827 assert( pAlias!=0 ); 3828 if( pAlias->n ){ 3829 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3830 } 3831 pItem->pSelect = pSubquery; 3832 pItem->pOn = pOn; 3833 pItem->pUsing = pUsing; 3834 return p; 3835 3836 append_from_error: 3837 assert( p==0 ); 3838 sqlite3ExprDelete(db, pOn); 3839 sqlite3IdListDelete(db, pUsing); 3840 sqlite3SelectDelete(db, pSubquery); 3841 return 0; 3842 } 3843 3844 /* 3845 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3846 ** element of the source-list passed as the second argument. 3847 */ 3848 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3849 assert( pIndexedBy!=0 ); 3850 if( p && ALWAYS(p->nSrc>0) ){ 3851 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3852 assert( pItem->fg.notIndexed==0 ); 3853 assert( pItem->fg.isIndexedBy==0 ); 3854 assert( pItem->fg.isTabFunc==0 ); 3855 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3856 /* A "NOT INDEXED" clause was supplied. See parse.y 3857 ** construct "indexed_opt" for details. */ 3858 pItem->fg.notIndexed = 1; 3859 }else{ 3860 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3861 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3862 } 3863 } 3864 } 3865 3866 /* 3867 ** Add the list of function arguments to the SrcList entry for a 3868 ** table-valued-function. 3869 */ 3870 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3871 if( p && pList ){ 3872 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3873 assert( pItem->fg.notIndexed==0 ); 3874 assert( pItem->fg.isIndexedBy==0 ); 3875 assert( pItem->fg.isTabFunc==0 ); 3876 pItem->u1.pFuncArg = pList; 3877 pItem->fg.isTabFunc = 1; 3878 }else{ 3879 sqlite3ExprListDelete(pParse->db, pList); 3880 } 3881 } 3882 3883 /* 3884 ** When building up a FROM clause in the parser, the join operator 3885 ** is initially attached to the left operand. But the code generator 3886 ** expects the join operator to be on the right operand. This routine 3887 ** Shifts all join operators from left to right for an entire FROM 3888 ** clause. 3889 ** 3890 ** Example: Suppose the join is like this: 3891 ** 3892 ** A natural cross join B 3893 ** 3894 ** The operator is "natural cross join". The A and B operands are stored 3895 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3896 ** operator with A. This routine shifts that operator over to B. 3897 */ 3898 void sqlite3SrcListShiftJoinType(SrcList *p){ 3899 if( p ){ 3900 int i; 3901 for(i=p->nSrc-1; i>0; i--){ 3902 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3903 } 3904 p->a[0].fg.jointype = 0; 3905 } 3906 } 3907 3908 /* 3909 ** Begin a transaction 3910 */ 3911 void sqlite3BeginTransaction(Parse *pParse, int type){ 3912 sqlite3 *db; 3913 Vdbe *v; 3914 int i; 3915 3916 assert( pParse!=0 ); 3917 db = pParse->db; 3918 assert( db!=0 ); 3919 /* if( db->aDb[0].pBt==0 ) return; */ 3920 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3921 return; 3922 } 3923 v = sqlite3GetVdbe(pParse); 3924 if( !v ) return; 3925 if( type!=TK_DEFERRED ){ 3926 for(i=0; i<db->nDb; i++){ 3927 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3928 sqlite3VdbeUsesBtree(v, i); 3929 } 3930 } 3931 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3932 } 3933 3934 /* 3935 ** Commit a transaction 3936 */ 3937 void sqlite3CommitTransaction(Parse *pParse){ 3938 Vdbe *v; 3939 3940 assert( pParse!=0 ); 3941 assert( pParse->db!=0 ); 3942 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3943 return; 3944 } 3945 v = sqlite3GetVdbe(pParse); 3946 if( v ){ 3947 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3948 } 3949 } 3950 3951 /* 3952 ** Rollback a transaction 3953 */ 3954 void sqlite3RollbackTransaction(Parse *pParse){ 3955 Vdbe *v; 3956 3957 assert( pParse!=0 ); 3958 assert( pParse->db!=0 ); 3959 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3960 return; 3961 } 3962 v = sqlite3GetVdbe(pParse); 3963 if( v ){ 3964 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3965 } 3966 } 3967 3968 /* 3969 ** This function is called by the parser when it parses a command to create, 3970 ** release or rollback an SQL savepoint. 3971 */ 3972 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3973 char *zName = sqlite3NameFromToken(pParse->db, pName); 3974 if( zName ){ 3975 Vdbe *v = sqlite3GetVdbe(pParse); 3976 #ifndef SQLITE_OMIT_AUTHORIZATION 3977 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3978 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3979 #endif 3980 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3981 sqlite3DbFree(pParse->db, zName); 3982 return; 3983 } 3984 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3985 } 3986 } 3987 3988 /* 3989 ** Make sure the TEMP database is open and available for use. Return 3990 ** the number of errors. Leave any error messages in the pParse structure. 3991 */ 3992 int sqlite3OpenTempDatabase(Parse *pParse){ 3993 sqlite3 *db = pParse->db; 3994 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3995 int rc; 3996 Btree *pBt; 3997 static const int flags = 3998 SQLITE_OPEN_READWRITE | 3999 SQLITE_OPEN_CREATE | 4000 SQLITE_OPEN_EXCLUSIVE | 4001 SQLITE_OPEN_DELETEONCLOSE | 4002 SQLITE_OPEN_TEMP_DB; 4003 4004 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4005 if( rc!=SQLITE_OK ){ 4006 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4007 "file for storing temporary tables"); 4008 pParse->rc = rc; 4009 return 1; 4010 } 4011 db->aDb[1].pBt = pBt; 4012 assert( db->aDb[1].pSchema ); 4013 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4014 db->mallocFailed = 1; 4015 return 1; 4016 } 4017 } 4018 return 0; 4019 } 4020 4021 /* 4022 ** Record the fact that the schema cookie will need to be verified 4023 ** for database iDb. The code to actually verify the schema cookie 4024 ** will occur at the end of the top-level VDBE and will be generated 4025 ** later, by sqlite3FinishCoding(). 4026 */ 4027 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4028 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4029 sqlite3 *db = pToplevel->db; 4030 4031 assert( iDb>=0 && iDb<db->nDb ); 4032 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4033 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4034 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4035 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4036 DbMaskSet(pToplevel->cookieMask, iDb); 4037 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4038 if( !OMIT_TEMPDB && iDb==1 ){ 4039 sqlite3OpenTempDatabase(pToplevel); 4040 } 4041 } 4042 } 4043 4044 /* 4045 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4046 ** attached database. Otherwise, invoke it for the database named zDb only. 4047 */ 4048 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4049 sqlite3 *db = pParse->db; 4050 int i; 4051 for(i=0; i<db->nDb; i++){ 4052 Db *pDb = &db->aDb[i]; 4053 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4054 sqlite3CodeVerifySchema(pParse, i); 4055 } 4056 } 4057 } 4058 4059 /* 4060 ** Generate VDBE code that prepares for doing an operation that 4061 ** might change the database. 4062 ** 4063 ** This routine starts a new transaction if we are not already within 4064 ** a transaction. If we are already within a transaction, then a checkpoint 4065 ** is set if the setStatement parameter is true. A checkpoint should 4066 ** be set for operations that might fail (due to a constraint) part of 4067 ** the way through and which will need to undo some writes without having to 4068 ** rollback the whole transaction. For operations where all constraints 4069 ** can be checked before any changes are made to the database, it is never 4070 ** necessary to undo a write and the checkpoint should not be set. 4071 */ 4072 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4073 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4074 sqlite3CodeVerifySchema(pParse, iDb); 4075 DbMaskSet(pToplevel->writeMask, iDb); 4076 pToplevel->isMultiWrite |= setStatement; 4077 } 4078 4079 /* 4080 ** Indicate that the statement currently under construction might write 4081 ** more than one entry (example: deleting one row then inserting another, 4082 ** inserting multiple rows in a table, or inserting a row and index entries.) 4083 ** If an abort occurs after some of these writes have completed, then it will 4084 ** be necessary to undo the completed writes. 4085 */ 4086 void sqlite3MultiWrite(Parse *pParse){ 4087 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4088 pToplevel->isMultiWrite = 1; 4089 } 4090 4091 /* 4092 ** The code generator calls this routine if is discovers that it is 4093 ** possible to abort a statement prior to completion. In order to 4094 ** perform this abort without corrupting the database, we need to make 4095 ** sure that the statement is protected by a statement transaction. 4096 ** 4097 ** Technically, we only need to set the mayAbort flag if the 4098 ** isMultiWrite flag was previously set. There is a time dependency 4099 ** such that the abort must occur after the multiwrite. This makes 4100 ** some statements involving the REPLACE conflict resolution algorithm 4101 ** go a little faster. But taking advantage of this time dependency 4102 ** makes it more difficult to prove that the code is correct (in 4103 ** particular, it prevents us from writing an effective 4104 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4105 ** to take the safe route and skip the optimization. 4106 */ 4107 void sqlite3MayAbort(Parse *pParse){ 4108 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4109 pToplevel->mayAbort = 1; 4110 } 4111 4112 /* 4113 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4114 ** error. The onError parameter determines which (if any) of the statement 4115 ** and/or current transaction is rolled back. 4116 */ 4117 void sqlite3HaltConstraint( 4118 Parse *pParse, /* Parsing context */ 4119 int errCode, /* extended error code */ 4120 int onError, /* Constraint type */ 4121 char *p4, /* Error message */ 4122 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4123 u8 p5Errmsg /* P5_ErrMsg type */ 4124 ){ 4125 Vdbe *v = sqlite3GetVdbe(pParse); 4126 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4127 if( onError==OE_Abort ){ 4128 sqlite3MayAbort(pParse); 4129 } 4130 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4131 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4132 } 4133 4134 /* 4135 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4136 */ 4137 void sqlite3UniqueConstraint( 4138 Parse *pParse, /* Parsing context */ 4139 int onError, /* Constraint type */ 4140 Index *pIdx /* The index that triggers the constraint */ 4141 ){ 4142 char *zErr; 4143 int j; 4144 StrAccum errMsg; 4145 Table *pTab = pIdx->pTable; 4146 4147 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4148 if( pIdx->aColExpr ){ 4149 sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName); 4150 }else{ 4151 for(j=0; j<pIdx->nKeyCol; j++){ 4152 char *zCol; 4153 assert( pIdx->aiColumn[j]>=0 ); 4154 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4155 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4156 sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol); 4157 } 4158 } 4159 zErr = sqlite3StrAccumFinish(&errMsg); 4160 sqlite3HaltConstraint(pParse, 4161 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4162 : SQLITE_CONSTRAINT_UNIQUE, 4163 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4164 } 4165 4166 4167 /* 4168 ** Code an OP_Halt due to non-unique rowid. 4169 */ 4170 void sqlite3RowidConstraint( 4171 Parse *pParse, /* Parsing context */ 4172 int onError, /* Conflict resolution algorithm */ 4173 Table *pTab /* The table with the non-unique rowid */ 4174 ){ 4175 char *zMsg; 4176 int rc; 4177 if( pTab->iPKey>=0 ){ 4178 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4179 pTab->aCol[pTab->iPKey].zName); 4180 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4181 }else{ 4182 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4183 rc = SQLITE_CONSTRAINT_ROWID; 4184 } 4185 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4186 P5_ConstraintUnique); 4187 } 4188 4189 /* 4190 ** Check to see if pIndex uses the collating sequence pColl. Return 4191 ** true if it does and false if it does not. 4192 */ 4193 #ifndef SQLITE_OMIT_REINDEX 4194 static int collationMatch(const char *zColl, Index *pIndex){ 4195 int i; 4196 assert( zColl!=0 ); 4197 for(i=0; i<pIndex->nColumn; i++){ 4198 const char *z = pIndex->azColl[i]; 4199 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4200 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4201 return 1; 4202 } 4203 } 4204 return 0; 4205 } 4206 #endif 4207 4208 /* 4209 ** Recompute all indices of pTab that use the collating sequence pColl. 4210 ** If pColl==0 then recompute all indices of pTab. 4211 */ 4212 #ifndef SQLITE_OMIT_REINDEX 4213 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4214 Index *pIndex; /* An index associated with pTab */ 4215 4216 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4217 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4218 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4219 sqlite3BeginWriteOperation(pParse, 0, iDb); 4220 sqlite3RefillIndex(pParse, pIndex, -1); 4221 } 4222 } 4223 } 4224 #endif 4225 4226 /* 4227 ** Recompute all indices of all tables in all databases where the 4228 ** indices use the collating sequence pColl. If pColl==0 then recompute 4229 ** all indices everywhere. 4230 */ 4231 #ifndef SQLITE_OMIT_REINDEX 4232 static void reindexDatabases(Parse *pParse, char const *zColl){ 4233 Db *pDb; /* A single database */ 4234 int iDb; /* The database index number */ 4235 sqlite3 *db = pParse->db; /* The database connection */ 4236 HashElem *k; /* For looping over tables in pDb */ 4237 Table *pTab; /* A table in the database */ 4238 4239 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4240 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4241 assert( pDb!=0 ); 4242 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4243 pTab = (Table*)sqliteHashData(k); 4244 reindexTable(pParse, pTab, zColl); 4245 } 4246 } 4247 } 4248 #endif 4249 4250 /* 4251 ** Generate code for the REINDEX command. 4252 ** 4253 ** REINDEX -- 1 4254 ** REINDEX <collation> -- 2 4255 ** REINDEX ?<database>.?<tablename> -- 3 4256 ** REINDEX ?<database>.?<indexname> -- 4 4257 ** 4258 ** Form 1 causes all indices in all attached databases to be rebuilt. 4259 ** Form 2 rebuilds all indices in all databases that use the named 4260 ** collating function. Forms 3 and 4 rebuild the named index or all 4261 ** indices associated with the named table. 4262 */ 4263 #ifndef SQLITE_OMIT_REINDEX 4264 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4265 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4266 char *z; /* Name of a table or index */ 4267 const char *zDb; /* Name of the database */ 4268 Table *pTab; /* A table in the database */ 4269 Index *pIndex; /* An index associated with pTab */ 4270 int iDb; /* The database index number */ 4271 sqlite3 *db = pParse->db; /* The database connection */ 4272 Token *pObjName; /* Name of the table or index to be reindexed */ 4273 4274 /* Read the database schema. If an error occurs, leave an error message 4275 ** and code in pParse and return NULL. */ 4276 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4277 return; 4278 } 4279 4280 if( pName1==0 ){ 4281 reindexDatabases(pParse, 0); 4282 return; 4283 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4284 char *zColl; 4285 assert( pName1->z ); 4286 zColl = sqlite3NameFromToken(pParse->db, pName1); 4287 if( !zColl ) return; 4288 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4289 if( pColl ){ 4290 reindexDatabases(pParse, zColl); 4291 sqlite3DbFree(db, zColl); 4292 return; 4293 } 4294 sqlite3DbFree(db, zColl); 4295 } 4296 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4297 if( iDb<0 ) return; 4298 z = sqlite3NameFromToken(db, pObjName); 4299 if( z==0 ) return; 4300 zDb = db->aDb[iDb].zName; 4301 pTab = sqlite3FindTable(db, z, zDb); 4302 if( pTab ){ 4303 reindexTable(pParse, pTab, 0); 4304 sqlite3DbFree(db, z); 4305 return; 4306 } 4307 pIndex = sqlite3FindIndex(db, z, zDb); 4308 sqlite3DbFree(db, z); 4309 if( pIndex ){ 4310 sqlite3BeginWriteOperation(pParse, 0, iDb); 4311 sqlite3RefillIndex(pParse, pIndex, -1); 4312 return; 4313 } 4314 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4315 } 4316 #endif 4317 4318 /* 4319 ** Return a KeyInfo structure that is appropriate for the given Index. 4320 ** 4321 ** The KeyInfo structure for an index is cached in the Index object. 4322 ** So there might be multiple references to the returned pointer. The 4323 ** caller should not try to modify the KeyInfo object. 4324 ** 4325 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4326 ** when it has finished using it. 4327 */ 4328 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4329 int i; 4330 int nCol = pIdx->nColumn; 4331 int nKey = pIdx->nKeyCol; 4332 KeyInfo *pKey; 4333 if( pParse->nErr ) return 0; 4334 if( pIdx->uniqNotNull ){ 4335 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4336 }else{ 4337 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4338 } 4339 if( pKey ){ 4340 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4341 for(i=0; i<nCol; i++){ 4342 char *zColl = pIdx->azColl[i]; 4343 assert( zColl!=0 ); 4344 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4345 sqlite3LocateCollSeq(pParse, zColl); 4346 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4347 } 4348 if( pParse->nErr ){ 4349 sqlite3KeyInfoUnref(pKey); 4350 pKey = 0; 4351 } 4352 } 4353 return pKey; 4354 } 4355 4356 #ifndef SQLITE_OMIT_CTE 4357 /* 4358 ** This routine is invoked once per CTE by the parser while parsing a 4359 ** WITH clause. 4360 */ 4361 With *sqlite3WithAdd( 4362 Parse *pParse, /* Parsing context */ 4363 With *pWith, /* Existing WITH clause, or NULL */ 4364 Token *pName, /* Name of the common-table */ 4365 ExprList *pArglist, /* Optional column name list for the table */ 4366 Select *pQuery /* Query used to initialize the table */ 4367 ){ 4368 sqlite3 *db = pParse->db; 4369 With *pNew; 4370 char *zName; 4371 4372 /* Check that the CTE name is unique within this WITH clause. If 4373 ** not, store an error in the Parse structure. */ 4374 zName = sqlite3NameFromToken(pParse->db, pName); 4375 if( zName && pWith ){ 4376 int i; 4377 for(i=0; i<pWith->nCte; i++){ 4378 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4379 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4380 } 4381 } 4382 } 4383 4384 if( pWith ){ 4385 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4386 pNew = sqlite3DbRealloc(db, pWith, nByte); 4387 }else{ 4388 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4389 } 4390 assert( zName!=0 || pNew==0 ); 4391 assert( db->mallocFailed==0 || pNew==0 ); 4392 4393 if( pNew==0 ){ 4394 sqlite3ExprListDelete(db, pArglist); 4395 sqlite3SelectDelete(db, pQuery); 4396 sqlite3DbFree(db, zName); 4397 pNew = pWith; 4398 }else{ 4399 pNew->a[pNew->nCte].pSelect = pQuery; 4400 pNew->a[pNew->nCte].pCols = pArglist; 4401 pNew->a[pNew->nCte].zName = zName; 4402 pNew->a[pNew->nCte].zCteErr = 0; 4403 pNew->nCte++; 4404 } 4405 4406 return pNew; 4407 } 4408 4409 /* 4410 ** Free the contents of the With object passed as the second argument. 4411 */ 4412 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4413 if( pWith ){ 4414 int i; 4415 for(i=0; i<pWith->nCte; i++){ 4416 struct Cte *pCte = &pWith->a[i]; 4417 sqlite3ExprListDelete(db, pCte->pCols); 4418 sqlite3SelectDelete(db, pCte->pSelect); 4419 sqlite3DbFree(db, pCte->zName); 4420 } 4421 sqlite3DbFree(db, pWith); 4422 } 4423 } 4424 #endif /* !defined(SQLITE_OMIT_CTE) */ 4425