1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 sqlite3OomFault(pToplevel->db); 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 sqlite3VdbeAddOp0(v, OP_Halt); 150 151 #if SQLITE_USER_AUTHENTICATION 152 if( pParse->nTableLock>0 && db->init.busy==0 ){ 153 sqlite3UserAuthInit(db); 154 if( db->auth.authLevel<UAUTH_User ){ 155 sqlite3ErrorMsg(pParse, "user not authenticated"); 156 pParse->rc = SQLITE_AUTH_USER; 157 return; 158 } 159 } 160 #endif 161 162 /* The cookie mask contains one bit for each database file open. 163 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 164 ** set for each database that is used. Generate code to start a 165 ** transaction on each used database and to verify the schema cookie 166 ** on each used database. 167 */ 168 if( db->mallocFailed==0 169 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 170 ){ 171 int iDb, i; 172 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 173 sqlite3VdbeJumpHere(v, 0); 174 for(iDb=0; iDb<db->nDb; iDb++){ 175 Schema *pSchema; 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 pSchema = db->aDb[iDb].pSchema; 179 sqlite3VdbeAddOp4Int(v, 180 OP_Transaction, /* Opcode */ 181 iDb, /* P1 */ 182 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 183 pSchema->schema_cookie, /* P3 */ 184 pSchema->iGeneration /* P4 */ 185 ); 186 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 187 VdbeComment((v, 188 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 189 } 190 #ifndef SQLITE_OMIT_VIRTUALTABLE 191 for(i=0; i<pParse->nVtabLock; i++){ 192 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 193 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 194 } 195 pParse->nVtabLock = 0; 196 #endif 197 198 /* Once all the cookies have been verified and transactions opened, 199 ** obtain the required table-locks. This is a no-op unless the 200 ** shared-cache feature is enabled. 201 */ 202 codeTableLocks(pParse); 203 204 /* Initialize any AUTOINCREMENT data structures required. 205 */ 206 sqlite3AutoincrementBegin(pParse); 207 208 /* Code constant expressions that where factored out of inner loops */ 209 if( pParse->pConstExpr ){ 210 ExprList *pEL = pParse->pConstExpr; 211 pParse->okConstFactor = 0; 212 for(i=0; i<pEL->nExpr; i++){ 213 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 214 } 215 } 216 217 /* Finally, jump back to the beginning of the executable code. */ 218 sqlite3VdbeGoto(v, 1); 219 } 220 } 221 222 223 /* Get the VDBE program ready for execution 224 */ 225 if( v && pParse->nErr==0 && !db->mallocFailed ){ 226 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 227 /* A minimum of one cursor is required if autoincrement is used 228 * See ticket [a696379c1f08866] */ 229 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 230 sqlite3VdbeMakeReady(v, pParse); 231 pParse->rc = SQLITE_DONE; 232 }else{ 233 pParse->rc = SQLITE_ERROR; 234 } 235 } 236 237 /* 238 ** Run the parser and code generator recursively in order to generate 239 ** code for the SQL statement given onto the end of the pParse context 240 ** currently under construction. When the parser is run recursively 241 ** this way, the final OP_Halt is not appended and other initialization 242 ** and finalization steps are omitted because those are handling by the 243 ** outermost parser. 244 ** 245 ** Not everything is nestable. This facility is designed to permit 246 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 247 ** care if you decide to try to use this routine for some other purposes. 248 */ 249 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 250 va_list ap; 251 char *zSql; 252 char *zErrMsg = 0; 253 sqlite3 *db = pParse->db; 254 char saveBuf[PARSE_TAIL_SZ]; 255 256 if( pParse->nErr ) return; 257 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 258 va_start(ap, zFormat); 259 zSql = sqlite3VMPrintf(db, zFormat, ap); 260 va_end(ap); 261 if( zSql==0 ){ 262 return; /* A malloc must have failed */ 263 } 264 pParse->nested++; 265 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 266 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 267 sqlite3RunParser(pParse, zSql, &zErrMsg); 268 sqlite3DbFree(db, zErrMsg); 269 sqlite3DbFree(db, zSql); 270 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 271 pParse->nested--; 272 } 273 274 #if SQLITE_USER_AUTHENTICATION 275 /* 276 ** Return TRUE if zTable is the name of the system table that stores the 277 ** list of users and their access credentials. 278 */ 279 int sqlite3UserAuthTable(const char *zTable){ 280 return sqlite3_stricmp(zTable, "sqlite_user")==0; 281 } 282 #endif 283 284 /* 285 ** Locate the in-memory structure that describes a particular database 286 ** table given the name of that table and (optionally) the name of the 287 ** database containing the table. Return NULL if not found. 288 ** 289 ** If zDatabase is 0, all databases are searched for the table and the 290 ** first matching table is returned. (No checking for duplicate table 291 ** names is done.) The search order is TEMP first, then MAIN, then any 292 ** auxiliary databases added using the ATTACH command. 293 ** 294 ** See also sqlite3LocateTable(). 295 */ 296 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 297 Table *p = 0; 298 int i; 299 300 /* All mutexes are required for schema access. Make sure we hold them. */ 301 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 302 #if SQLITE_USER_AUTHENTICATION 303 /* Only the admin user is allowed to know that the sqlite_user table 304 ** exists */ 305 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 306 return 0; 307 } 308 #endif 309 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 310 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 311 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 312 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 313 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 314 if( p ) break; 315 } 316 } 317 return p; 318 } 319 320 /* 321 ** Locate the in-memory structure that describes a particular database 322 ** table given the name of that table and (optionally) the name of the 323 ** database containing the table. Return NULL if not found. Also leave an 324 ** error message in pParse->zErrMsg. 325 ** 326 ** The difference between this routine and sqlite3FindTable() is that this 327 ** routine leaves an error message in pParse->zErrMsg where 328 ** sqlite3FindTable() does not. 329 */ 330 Table *sqlite3LocateTable( 331 Parse *pParse, /* context in which to report errors */ 332 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 333 const char *zName, /* Name of the table we are looking for */ 334 const char *zDbase /* Name of the database. Might be NULL */ 335 ){ 336 Table *p; 337 338 /* Read the database schema. If an error occurs, leave an error message 339 ** and code in pParse and return NULL. */ 340 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 341 return 0; 342 } 343 344 p = sqlite3FindTable(pParse->db, zName, zDbase); 345 if( p==0 ){ 346 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 347 #ifndef SQLITE_OMIT_VIRTUALTABLE 348 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 349 /* If zName is the not the name of a table in the schema created using 350 ** CREATE, then check to see if it is the name of an virtual table that 351 ** can be an eponymous virtual table. */ 352 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 353 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 354 return pMod->pEpoTab; 355 } 356 } 357 #endif 358 if( (flags & LOCATE_NOERR)==0 ){ 359 if( zDbase ){ 360 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 361 }else{ 362 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 363 } 364 pParse->checkSchema = 1; 365 } 366 } 367 368 return p; 369 } 370 371 /* 372 ** Locate the table identified by *p. 373 ** 374 ** This is a wrapper around sqlite3LocateTable(). The difference between 375 ** sqlite3LocateTable() and this function is that this function restricts 376 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 377 ** non-NULL if it is part of a view or trigger program definition. See 378 ** sqlite3FixSrcList() for details. 379 */ 380 Table *sqlite3LocateTableItem( 381 Parse *pParse, 382 u32 flags, 383 struct SrcList_item *p 384 ){ 385 const char *zDb; 386 assert( p->pSchema==0 || p->zDatabase==0 ); 387 if( p->pSchema ){ 388 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 389 zDb = pParse->db->aDb[iDb].zDbSName; 390 }else{ 391 zDb = p->zDatabase; 392 } 393 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 394 } 395 396 /* 397 ** Locate the in-memory structure that describes 398 ** a particular index given the name of that index 399 ** and the name of the database that contains the index. 400 ** Return NULL if not found. 401 ** 402 ** If zDatabase is 0, all databases are searched for the 403 ** table and the first matching index is returned. (No checking 404 ** for duplicate index names is done.) The search order is 405 ** TEMP first, then MAIN, then any auxiliary databases added 406 ** using the ATTACH command. 407 */ 408 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 409 Index *p = 0; 410 int i; 411 /* All mutexes are required for schema access. Make sure we hold them. */ 412 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 413 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 414 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 415 Schema *pSchema = db->aDb[j].pSchema; 416 assert( pSchema ); 417 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 418 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 419 p = sqlite3HashFind(&pSchema->idxHash, zName); 420 if( p ) break; 421 } 422 return p; 423 } 424 425 /* 426 ** Reclaim the memory used by an index 427 */ 428 static void freeIndex(sqlite3 *db, Index *p){ 429 #ifndef SQLITE_OMIT_ANALYZE 430 sqlite3DeleteIndexSamples(db, p); 431 #endif 432 sqlite3ExprDelete(db, p->pPartIdxWhere); 433 sqlite3ExprListDelete(db, p->aColExpr); 434 sqlite3DbFree(db, p->zColAff); 435 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 437 sqlite3_free(p->aiRowEst); 438 #endif 439 sqlite3DbFree(db, p); 440 } 441 442 /* 443 ** For the index called zIdxName which is found in the database iDb, 444 ** unlike that index from its Table then remove the index from 445 ** the index hash table and free all memory structures associated 446 ** with the index. 447 */ 448 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 449 Index *pIndex; 450 Hash *pHash; 451 452 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 453 pHash = &db->aDb[iDb].pSchema->idxHash; 454 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 455 if( ALWAYS(pIndex) ){ 456 if( pIndex->pTable->pIndex==pIndex ){ 457 pIndex->pTable->pIndex = pIndex->pNext; 458 }else{ 459 Index *p; 460 /* Justification of ALWAYS(); The index must be on the list of 461 ** indices. */ 462 p = pIndex->pTable->pIndex; 463 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 464 if( ALWAYS(p && p->pNext==pIndex) ){ 465 p->pNext = pIndex->pNext; 466 } 467 } 468 freeIndex(db, pIndex); 469 } 470 db->flags |= SQLITE_InternChanges; 471 } 472 473 /* 474 ** Look through the list of open database files in db->aDb[] and if 475 ** any have been closed, remove them from the list. Reallocate the 476 ** db->aDb[] structure to a smaller size, if possible. 477 ** 478 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 479 ** are never candidates for being collapsed. 480 */ 481 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 482 int i, j; 483 for(i=j=2; i<db->nDb; i++){ 484 struct Db *pDb = &db->aDb[i]; 485 if( pDb->pBt==0 ){ 486 sqlite3DbFree(db, pDb->zDbSName); 487 pDb->zDbSName = 0; 488 continue; 489 } 490 if( j<i ){ 491 db->aDb[j] = db->aDb[i]; 492 } 493 j++; 494 } 495 db->nDb = j; 496 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 497 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 498 sqlite3DbFree(db, db->aDb); 499 db->aDb = db->aDbStatic; 500 } 501 } 502 503 /* 504 ** Reset the schema for the database at index iDb. Also reset the 505 ** TEMP schema. 506 */ 507 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 508 Db *pDb; 509 assert( iDb<db->nDb ); 510 511 /* Case 1: Reset the single schema identified by iDb */ 512 pDb = &db->aDb[iDb]; 513 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 514 assert( pDb->pSchema!=0 ); 515 sqlite3SchemaClear(pDb->pSchema); 516 517 /* If any database other than TEMP is reset, then also reset TEMP 518 ** since TEMP might be holding triggers that reference tables in the 519 ** other database. 520 */ 521 if( iDb!=1 ){ 522 pDb = &db->aDb[1]; 523 assert( pDb->pSchema!=0 ); 524 sqlite3SchemaClear(pDb->pSchema); 525 } 526 return; 527 } 528 529 /* 530 ** Erase all schema information from all attached databases (including 531 ** "main" and "temp") for a single database connection. 532 */ 533 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 534 int i; 535 sqlite3BtreeEnterAll(db); 536 for(i=0; i<db->nDb; i++){ 537 Db *pDb = &db->aDb[i]; 538 if( pDb->pSchema ){ 539 sqlite3SchemaClear(pDb->pSchema); 540 } 541 } 542 db->flags &= ~SQLITE_InternChanges; 543 sqlite3VtabUnlockList(db); 544 sqlite3BtreeLeaveAll(db); 545 sqlite3CollapseDatabaseArray(db); 546 } 547 548 /* 549 ** This routine is called when a commit occurs. 550 */ 551 void sqlite3CommitInternalChanges(sqlite3 *db){ 552 db->flags &= ~SQLITE_InternChanges; 553 } 554 555 /* 556 ** Delete memory allocated for the column names of a table or view (the 557 ** Table.aCol[] array). 558 */ 559 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 560 int i; 561 Column *pCol; 562 assert( pTable!=0 ); 563 if( (pCol = pTable->aCol)!=0 ){ 564 for(i=0; i<pTable->nCol; i++, pCol++){ 565 sqlite3DbFree(db, pCol->zName); 566 sqlite3ExprDelete(db, pCol->pDflt); 567 sqlite3DbFree(db, pCol->zColl); 568 } 569 sqlite3DbFree(db, pTable->aCol); 570 } 571 } 572 573 /* 574 ** Remove the memory data structures associated with the given 575 ** Table. No changes are made to disk by this routine. 576 ** 577 ** This routine just deletes the data structure. It does not unlink 578 ** the table data structure from the hash table. But it does destroy 579 ** memory structures of the indices and foreign keys associated with 580 ** the table. 581 ** 582 ** The db parameter is optional. It is needed if the Table object 583 ** contains lookaside memory. (Table objects in the schema do not use 584 ** lookaside memory, but some ephemeral Table objects do.) Or the 585 ** db parameter can be used with db->pnBytesFreed to measure the memory 586 ** used by the Table object. 587 */ 588 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 589 Index *pIndex, *pNext; 590 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 591 592 /* Record the number of outstanding lookaside allocations in schema Tables 593 ** prior to doing any free() operations. Since schema Tables do not use 594 ** lookaside, this number should not change. */ 595 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 596 db->lookaside.nOut : 0 ); 597 598 /* Delete all indices associated with this table. */ 599 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 600 pNext = pIndex->pNext; 601 assert( pIndex->pSchema==pTable->pSchema 602 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 603 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 604 char *zName = pIndex->zName; 605 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 606 &pIndex->pSchema->idxHash, zName, 0 607 ); 608 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 609 assert( pOld==pIndex || pOld==0 ); 610 } 611 freeIndex(db, pIndex); 612 } 613 614 /* Delete any foreign keys attached to this table. */ 615 sqlite3FkDelete(db, pTable); 616 617 /* Delete the Table structure itself. 618 */ 619 sqlite3DeleteColumnNames(db, pTable); 620 sqlite3DbFree(db, pTable->zName); 621 sqlite3DbFree(db, pTable->zColAff); 622 sqlite3SelectDelete(db, pTable->pSelect); 623 sqlite3ExprListDelete(db, pTable->pCheck); 624 #ifndef SQLITE_OMIT_VIRTUALTABLE 625 sqlite3VtabClear(db, pTable); 626 #endif 627 sqlite3DbFree(db, pTable); 628 629 /* Verify that no lookaside memory was used by schema tables */ 630 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 631 } 632 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 633 /* Do not delete the table until the reference count reaches zero. */ 634 if( !pTable ) return; 635 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 636 deleteTable(db, pTable); 637 } 638 639 640 /* 641 ** Unlink the given table from the hash tables and the delete the 642 ** table structure with all its indices and foreign keys. 643 */ 644 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 645 Table *p; 646 Db *pDb; 647 648 assert( db!=0 ); 649 assert( iDb>=0 && iDb<db->nDb ); 650 assert( zTabName ); 651 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 652 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 653 pDb = &db->aDb[iDb]; 654 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 655 sqlite3DeleteTable(db, p); 656 db->flags |= SQLITE_InternChanges; 657 } 658 659 /* 660 ** Given a token, return a string that consists of the text of that 661 ** token. Space to hold the returned string 662 ** is obtained from sqliteMalloc() and must be freed by the calling 663 ** function. 664 ** 665 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 666 ** surround the body of the token are removed. 667 ** 668 ** Tokens are often just pointers into the original SQL text and so 669 ** are not \000 terminated and are not persistent. The returned string 670 ** is \000 terminated and is persistent. 671 */ 672 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 673 char *zName; 674 if( pName ){ 675 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 676 sqlite3Dequote(zName); 677 }else{ 678 zName = 0; 679 } 680 return zName; 681 } 682 683 /* 684 ** Open the sqlite_master table stored in database number iDb for 685 ** writing. The table is opened using cursor 0. 686 */ 687 void sqlite3OpenMasterTable(Parse *p, int iDb){ 688 Vdbe *v = sqlite3GetVdbe(p); 689 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 690 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 691 if( p->nTab==0 ){ 692 p->nTab = 1; 693 } 694 } 695 696 /* 697 ** Parameter zName points to a nul-terminated buffer containing the name 698 ** of a database ("main", "temp" or the name of an attached db). This 699 ** function returns the index of the named database in db->aDb[], or 700 ** -1 if the named db cannot be found. 701 */ 702 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 703 int i = -1; /* Database number */ 704 if( zName ){ 705 Db *pDb; 706 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 707 if( 0==sqlite3StrICmp(pDb->zDbSName, zName) ) break; 708 } 709 } 710 return i; 711 } 712 713 /* 714 ** The token *pName contains the name of a database (either "main" or 715 ** "temp" or the name of an attached db). This routine returns the 716 ** index of the named database in db->aDb[], or -1 if the named db 717 ** does not exist. 718 */ 719 int sqlite3FindDb(sqlite3 *db, Token *pName){ 720 int i; /* Database number */ 721 char *zName; /* Name we are searching for */ 722 zName = sqlite3NameFromToken(db, pName); 723 i = sqlite3FindDbName(db, zName); 724 sqlite3DbFree(db, zName); 725 return i; 726 } 727 728 /* The table or view or trigger name is passed to this routine via tokens 729 ** pName1 and pName2. If the table name was fully qualified, for example: 730 ** 731 ** CREATE TABLE xxx.yyy (...); 732 ** 733 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 734 ** the table name is not fully qualified, i.e.: 735 ** 736 ** CREATE TABLE yyy(...); 737 ** 738 ** Then pName1 is set to "yyy" and pName2 is "". 739 ** 740 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 741 ** pName2) that stores the unqualified table name. The index of the 742 ** database "xxx" is returned. 743 */ 744 int sqlite3TwoPartName( 745 Parse *pParse, /* Parsing and code generating context */ 746 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 747 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 748 Token **pUnqual /* Write the unqualified object name here */ 749 ){ 750 int iDb; /* Database holding the object */ 751 sqlite3 *db = pParse->db; 752 753 assert( pName2!=0 ); 754 if( pName2->n>0 ){ 755 if( db->init.busy ) { 756 sqlite3ErrorMsg(pParse, "corrupt database"); 757 return -1; 758 } 759 *pUnqual = pName2; 760 iDb = sqlite3FindDb(db, pName1); 761 if( iDb<0 ){ 762 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 763 return -1; 764 } 765 }else{ 766 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0); 767 iDb = db->init.iDb; 768 *pUnqual = pName1; 769 } 770 return iDb; 771 } 772 773 /* 774 ** This routine is used to check if the UTF-8 string zName is a legal 775 ** unqualified name for a new schema object (table, index, view or 776 ** trigger). All names are legal except those that begin with the string 777 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 778 ** is reserved for internal use. 779 */ 780 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 781 if( !pParse->db->init.busy && pParse->nested==0 782 && (pParse->db->flags & SQLITE_WriteSchema)==0 783 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 784 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 785 return SQLITE_ERROR; 786 } 787 return SQLITE_OK; 788 } 789 790 /* 791 ** Return the PRIMARY KEY index of a table 792 */ 793 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 794 Index *p; 795 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 796 return p; 797 } 798 799 /* 800 ** Return the column of index pIdx that corresponds to table 801 ** column iCol. Return -1 if not found. 802 */ 803 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 804 int i; 805 for(i=0; i<pIdx->nColumn; i++){ 806 if( iCol==pIdx->aiColumn[i] ) return i; 807 } 808 return -1; 809 } 810 811 /* 812 ** Begin constructing a new table representation in memory. This is 813 ** the first of several action routines that get called in response 814 ** to a CREATE TABLE statement. In particular, this routine is called 815 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 816 ** flag is true if the table should be stored in the auxiliary database 817 ** file instead of in the main database file. This is normally the case 818 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 819 ** CREATE and TABLE. 820 ** 821 ** The new table record is initialized and put in pParse->pNewTable. 822 ** As more of the CREATE TABLE statement is parsed, additional action 823 ** routines will be called to add more information to this record. 824 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 825 ** is called to complete the construction of the new table record. 826 */ 827 void sqlite3StartTable( 828 Parse *pParse, /* Parser context */ 829 Token *pName1, /* First part of the name of the table or view */ 830 Token *pName2, /* Second part of the name of the table or view */ 831 int isTemp, /* True if this is a TEMP table */ 832 int isView, /* True if this is a VIEW */ 833 int isVirtual, /* True if this is a VIRTUAL table */ 834 int noErr /* Do nothing if table already exists */ 835 ){ 836 Table *pTable; 837 char *zName = 0; /* The name of the new table */ 838 sqlite3 *db = pParse->db; 839 Vdbe *v; 840 int iDb; /* Database number to create the table in */ 841 Token *pName; /* Unqualified name of the table to create */ 842 843 if( db->init.busy && db->init.newTnum==1 ){ 844 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 845 iDb = db->init.iDb; 846 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 847 pName = pName1; 848 }else{ 849 /* The common case */ 850 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 851 if( iDb<0 ) return; 852 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 853 /* If creating a temp table, the name may not be qualified. Unless 854 ** the database name is "temp" anyway. */ 855 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 856 return; 857 } 858 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 859 zName = sqlite3NameFromToken(db, pName); 860 } 861 pParse->sNameToken = *pName; 862 if( zName==0 ) return; 863 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 864 goto begin_table_error; 865 } 866 if( db->init.iDb==1 ) isTemp = 1; 867 #ifndef SQLITE_OMIT_AUTHORIZATION 868 assert( isTemp==0 || isTemp==1 ); 869 assert( isView==0 || isView==1 ); 870 { 871 static const u8 aCode[] = { 872 SQLITE_CREATE_TABLE, 873 SQLITE_CREATE_TEMP_TABLE, 874 SQLITE_CREATE_VIEW, 875 SQLITE_CREATE_TEMP_VIEW 876 }; 877 char *zDb = db->aDb[iDb].zDbSName; 878 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 879 goto begin_table_error; 880 } 881 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 882 zName, 0, zDb) ){ 883 goto begin_table_error; 884 } 885 } 886 #endif 887 888 /* Make sure the new table name does not collide with an existing 889 ** index or table name in the same database. Issue an error message if 890 ** it does. The exception is if the statement being parsed was passed 891 ** to an sqlite3_declare_vtab() call. In that case only the column names 892 ** and types will be used, so there is no need to test for namespace 893 ** collisions. 894 */ 895 if( !IN_DECLARE_VTAB ){ 896 char *zDb = db->aDb[iDb].zDbSName; 897 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 898 goto begin_table_error; 899 } 900 pTable = sqlite3FindTable(db, zName, zDb); 901 if( pTable ){ 902 if( !noErr ){ 903 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 904 }else{ 905 assert( !db->init.busy || CORRUPT_DB ); 906 sqlite3CodeVerifySchema(pParse, iDb); 907 } 908 goto begin_table_error; 909 } 910 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 911 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 912 goto begin_table_error; 913 } 914 } 915 916 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 917 if( pTable==0 ){ 918 assert( db->mallocFailed ); 919 pParse->rc = SQLITE_NOMEM_BKPT; 920 pParse->nErr++; 921 goto begin_table_error; 922 } 923 pTable->zName = zName; 924 pTable->iPKey = -1; 925 pTable->pSchema = db->aDb[iDb].pSchema; 926 pTable->nRef = 1; 927 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 928 assert( pParse->pNewTable==0 ); 929 pParse->pNewTable = pTable; 930 931 /* If this is the magic sqlite_sequence table used by autoincrement, 932 ** then record a pointer to this table in the main database structure 933 ** so that INSERT can find the table easily. 934 */ 935 #ifndef SQLITE_OMIT_AUTOINCREMENT 936 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 937 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 938 pTable->pSchema->pSeqTab = pTable; 939 } 940 #endif 941 942 /* Begin generating the code that will insert the table record into 943 ** the SQLITE_MASTER table. Note in particular that we must go ahead 944 ** and allocate the record number for the table entry now. Before any 945 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 946 ** indices to be created and the table record must come before the 947 ** indices. Hence, the record number for the table must be allocated 948 ** now. 949 */ 950 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 951 int addr1; 952 int fileFormat; 953 int reg1, reg2, reg3; 954 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 955 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 956 sqlite3BeginWriteOperation(pParse, 1, iDb); 957 958 #ifndef SQLITE_OMIT_VIRTUALTABLE 959 if( isVirtual ){ 960 sqlite3VdbeAddOp0(v, OP_VBegin); 961 } 962 #endif 963 964 /* If the file format and encoding in the database have not been set, 965 ** set them now. 966 */ 967 reg1 = pParse->regRowid = ++pParse->nMem; 968 reg2 = pParse->regRoot = ++pParse->nMem; 969 reg3 = ++pParse->nMem; 970 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 971 sqlite3VdbeUsesBtree(v, iDb); 972 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 973 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 974 1 : SQLITE_MAX_FILE_FORMAT; 975 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 976 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 977 sqlite3VdbeJumpHere(v, addr1); 978 979 /* This just creates a place-holder record in the sqlite_master table. 980 ** The record created does not contain anything yet. It will be replaced 981 ** by the real entry in code generated at sqlite3EndTable(). 982 ** 983 ** The rowid for the new entry is left in register pParse->regRowid. 984 ** The root page number of the new table is left in reg pParse->regRoot. 985 ** The rowid and root page number values are needed by the code that 986 ** sqlite3EndTable will generate. 987 */ 988 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 989 if( isView || isVirtual ){ 990 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 991 }else 992 #endif 993 { 994 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 995 } 996 sqlite3OpenMasterTable(pParse, iDb); 997 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 998 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 999 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1000 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1001 sqlite3VdbeAddOp0(v, OP_Close); 1002 } 1003 1004 /* Normal (non-error) return. */ 1005 return; 1006 1007 /* If an error occurs, we jump here */ 1008 begin_table_error: 1009 sqlite3DbFree(db, zName); 1010 return; 1011 } 1012 1013 /* Set properties of a table column based on the (magical) 1014 ** name of the column. 1015 */ 1016 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1017 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1018 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1019 pCol->colFlags |= COLFLAG_HIDDEN; 1020 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1021 pTab->tabFlags |= TF_OOOHidden; 1022 } 1023 } 1024 #endif 1025 1026 1027 /* 1028 ** Add a new column to the table currently being constructed. 1029 ** 1030 ** The parser calls this routine once for each column declaration 1031 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1032 ** first to get things going. Then this routine is called for each 1033 ** column. 1034 */ 1035 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1036 Table *p; 1037 int i; 1038 char *z; 1039 char *zType; 1040 Column *pCol; 1041 sqlite3 *db = pParse->db; 1042 if( (p = pParse->pNewTable)==0 ) return; 1043 #if SQLITE_MAX_COLUMN 1044 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1045 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1046 return; 1047 } 1048 #endif 1049 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1050 if( z==0 ) return; 1051 memcpy(z, pName->z, pName->n); 1052 z[pName->n] = 0; 1053 sqlite3Dequote(z); 1054 for(i=0; i<p->nCol; i++){ 1055 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1056 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1057 sqlite3DbFree(db, z); 1058 return; 1059 } 1060 } 1061 if( (p->nCol & 0x7)==0 ){ 1062 Column *aNew; 1063 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1064 if( aNew==0 ){ 1065 sqlite3DbFree(db, z); 1066 return; 1067 } 1068 p->aCol = aNew; 1069 } 1070 pCol = &p->aCol[p->nCol]; 1071 memset(pCol, 0, sizeof(p->aCol[0])); 1072 pCol->zName = z; 1073 sqlite3ColumnPropertiesFromName(p, pCol); 1074 1075 if( pType->n==0 ){ 1076 /* If there is no type specified, columns have the default affinity 1077 ** 'BLOB'. */ 1078 pCol->affinity = SQLITE_AFF_BLOB; 1079 pCol->szEst = 1; 1080 }else{ 1081 zType = z + sqlite3Strlen30(z) + 1; 1082 memcpy(zType, pType->z, pType->n); 1083 zType[pType->n] = 0; 1084 sqlite3Dequote(zType); 1085 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1086 pCol->colFlags |= COLFLAG_HASTYPE; 1087 } 1088 p->nCol++; 1089 pParse->constraintName.n = 0; 1090 } 1091 1092 /* 1093 ** This routine is called by the parser while in the middle of 1094 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1095 ** been seen on a column. This routine sets the notNull flag on 1096 ** the column currently under construction. 1097 */ 1098 void sqlite3AddNotNull(Parse *pParse, int onError){ 1099 Table *p; 1100 p = pParse->pNewTable; 1101 if( p==0 || NEVER(p->nCol<1) ) return; 1102 p->aCol[p->nCol-1].notNull = (u8)onError; 1103 } 1104 1105 /* 1106 ** Scan the column type name zType (length nType) and return the 1107 ** associated affinity type. 1108 ** 1109 ** This routine does a case-independent search of zType for the 1110 ** substrings in the following table. If one of the substrings is 1111 ** found, the corresponding affinity is returned. If zType contains 1112 ** more than one of the substrings, entries toward the top of 1113 ** the table take priority. For example, if zType is 'BLOBINT', 1114 ** SQLITE_AFF_INTEGER is returned. 1115 ** 1116 ** Substring | Affinity 1117 ** -------------------------------- 1118 ** 'INT' | SQLITE_AFF_INTEGER 1119 ** 'CHAR' | SQLITE_AFF_TEXT 1120 ** 'CLOB' | SQLITE_AFF_TEXT 1121 ** 'TEXT' | SQLITE_AFF_TEXT 1122 ** 'BLOB' | SQLITE_AFF_BLOB 1123 ** 'REAL' | SQLITE_AFF_REAL 1124 ** 'FLOA' | SQLITE_AFF_REAL 1125 ** 'DOUB' | SQLITE_AFF_REAL 1126 ** 1127 ** If none of the substrings in the above table are found, 1128 ** SQLITE_AFF_NUMERIC is returned. 1129 */ 1130 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1131 u32 h = 0; 1132 char aff = SQLITE_AFF_NUMERIC; 1133 const char *zChar = 0; 1134 1135 assert( zIn!=0 ); 1136 while( zIn[0] ){ 1137 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1138 zIn++; 1139 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1140 aff = SQLITE_AFF_TEXT; 1141 zChar = zIn; 1142 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1143 aff = SQLITE_AFF_TEXT; 1144 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1145 aff = SQLITE_AFF_TEXT; 1146 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1147 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1148 aff = SQLITE_AFF_BLOB; 1149 if( zIn[0]=='(' ) zChar = zIn; 1150 #ifndef SQLITE_OMIT_FLOATING_POINT 1151 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1152 && aff==SQLITE_AFF_NUMERIC ){ 1153 aff = SQLITE_AFF_REAL; 1154 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1155 && aff==SQLITE_AFF_NUMERIC ){ 1156 aff = SQLITE_AFF_REAL; 1157 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1158 && aff==SQLITE_AFF_NUMERIC ){ 1159 aff = SQLITE_AFF_REAL; 1160 #endif 1161 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1162 aff = SQLITE_AFF_INTEGER; 1163 break; 1164 } 1165 } 1166 1167 /* If pszEst is not NULL, store an estimate of the field size. The 1168 ** estimate is scaled so that the size of an integer is 1. */ 1169 if( pszEst ){ 1170 *pszEst = 1; /* default size is approx 4 bytes */ 1171 if( aff<SQLITE_AFF_NUMERIC ){ 1172 if( zChar ){ 1173 while( zChar[0] ){ 1174 if( sqlite3Isdigit(zChar[0]) ){ 1175 int v = 0; 1176 sqlite3GetInt32(zChar, &v); 1177 v = v/4 + 1; 1178 if( v>255 ) v = 255; 1179 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1180 break; 1181 } 1182 zChar++; 1183 } 1184 }else{ 1185 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1186 } 1187 } 1188 } 1189 return aff; 1190 } 1191 1192 /* 1193 ** The expression is the default value for the most recently added column 1194 ** of the table currently under construction. 1195 ** 1196 ** Default value expressions must be constant. Raise an exception if this 1197 ** is not the case. 1198 ** 1199 ** This routine is called by the parser while in the middle of 1200 ** parsing a CREATE TABLE statement. 1201 */ 1202 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1203 Table *p; 1204 Column *pCol; 1205 sqlite3 *db = pParse->db; 1206 p = pParse->pNewTable; 1207 if( p!=0 ){ 1208 pCol = &(p->aCol[p->nCol-1]); 1209 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1210 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1211 pCol->zName); 1212 }else{ 1213 /* A copy of pExpr is used instead of the original, as pExpr contains 1214 ** tokens that point to volatile memory. The 'span' of the expression 1215 ** is required by pragma table_info. 1216 */ 1217 Expr x; 1218 sqlite3ExprDelete(db, pCol->pDflt); 1219 memset(&x, 0, sizeof(x)); 1220 x.op = TK_SPAN; 1221 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1222 (int)(pSpan->zEnd - pSpan->zStart)); 1223 x.pLeft = pSpan->pExpr; 1224 x.flags = EP_Skip; 1225 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1226 sqlite3DbFree(db, x.u.zToken); 1227 } 1228 } 1229 sqlite3ExprDelete(db, pSpan->pExpr); 1230 } 1231 1232 /* 1233 ** Backwards Compatibility Hack: 1234 ** 1235 ** Historical versions of SQLite accepted strings as column names in 1236 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1237 ** 1238 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1239 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1240 ** 1241 ** This is goofy. But to preserve backwards compatibility we continue to 1242 ** accept it. This routine does the necessary conversion. It converts 1243 ** the expression given in its argument from a TK_STRING into a TK_ID 1244 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1245 ** If the epxression is anything other than TK_STRING, the expression is 1246 ** unchanged. 1247 */ 1248 static void sqlite3StringToId(Expr *p){ 1249 if( p->op==TK_STRING ){ 1250 p->op = TK_ID; 1251 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1252 p->pLeft->op = TK_ID; 1253 } 1254 } 1255 1256 /* 1257 ** Designate the PRIMARY KEY for the table. pList is a list of names 1258 ** of columns that form the primary key. If pList is NULL, then the 1259 ** most recently added column of the table is the primary key. 1260 ** 1261 ** A table can have at most one primary key. If the table already has 1262 ** a primary key (and this is the second primary key) then create an 1263 ** error. 1264 ** 1265 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1266 ** then we will try to use that column as the rowid. Set the Table.iPKey 1267 ** field of the table under construction to be the index of the 1268 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1269 ** no INTEGER PRIMARY KEY. 1270 ** 1271 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1272 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1273 */ 1274 void sqlite3AddPrimaryKey( 1275 Parse *pParse, /* Parsing context */ 1276 ExprList *pList, /* List of field names to be indexed */ 1277 int onError, /* What to do with a uniqueness conflict */ 1278 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1279 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1280 ){ 1281 Table *pTab = pParse->pNewTable; 1282 Column *pCol = 0; 1283 int iCol = -1, i; 1284 int nTerm; 1285 if( pTab==0 ) goto primary_key_exit; 1286 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1287 sqlite3ErrorMsg(pParse, 1288 "table \"%s\" has more than one primary key", pTab->zName); 1289 goto primary_key_exit; 1290 } 1291 pTab->tabFlags |= TF_HasPrimaryKey; 1292 if( pList==0 ){ 1293 iCol = pTab->nCol - 1; 1294 pCol = &pTab->aCol[iCol]; 1295 pCol->colFlags |= COLFLAG_PRIMKEY; 1296 nTerm = 1; 1297 }else{ 1298 nTerm = pList->nExpr; 1299 for(i=0; i<nTerm; i++){ 1300 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1301 assert( pCExpr!=0 ); 1302 sqlite3StringToId(pCExpr); 1303 if( pCExpr->op==TK_ID ){ 1304 const char *zCName = pCExpr->u.zToken; 1305 for(iCol=0; iCol<pTab->nCol; iCol++){ 1306 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1307 pCol = &pTab->aCol[iCol]; 1308 pCol->colFlags |= COLFLAG_PRIMKEY; 1309 break; 1310 } 1311 } 1312 } 1313 } 1314 } 1315 if( nTerm==1 1316 && pCol 1317 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1318 && sortOrder!=SQLITE_SO_DESC 1319 ){ 1320 pTab->iPKey = iCol; 1321 pTab->keyConf = (u8)onError; 1322 assert( autoInc==0 || autoInc==1 ); 1323 pTab->tabFlags |= autoInc*TF_Autoincrement; 1324 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1325 }else if( autoInc ){ 1326 #ifndef SQLITE_OMIT_AUTOINCREMENT 1327 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1328 "INTEGER PRIMARY KEY"); 1329 #endif 1330 }else{ 1331 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1332 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1333 pList = 0; 1334 } 1335 1336 primary_key_exit: 1337 sqlite3ExprListDelete(pParse->db, pList); 1338 return; 1339 } 1340 1341 /* 1342 ** Add a new CHECK constraint to the table currently under construction. 1343 */ 1344 void sqlite3AddCheckConstraint( 1345 Parse *pParse, /* Parsing context */ 1346 Expr *pCheckExpr /* The check expression */ 1347 ){ 1348 #ifndef SQLITE_OMIT_CHECK 1349 Table *pTab = pParse->pNewTable; 1350 sqlite3 *db = pParse->db; 1351 if( pTab && !IN_DECLARE_VTAB 1352 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1353 ){ 1354 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1355 if( pParse->constraintName.n ){ 1356 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1357 } 1358 }else 1359 #endif 1360 { 1361 sqlite3ExprDelete(pParse->db, pCheckExpr); 1362 } 1363 } 1364 1365 /* 1366 ** Set the collation function of the most recently parsed table column 1367 ** to the CollSeq given. 1368 */ 1369 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1370 Table *p; 1371 int i; 1372 char *zColl; /* Dequoted name of collation sequence */ 1373 sqlite3 *db; 1374 1375 if( (p = pParse->pNewTable)==0 ) return; 1376 i = p->nCol-1; 1377 db = pParse->db; 1378 zColl = sqlite3NameFromToken(db, pToken); 1379 if( !zColl ) return; 1380 1381 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1382 Index *pIdx; 1383 sqlite3DbFree(db, p->aCol[i].zColl); 1384 p->aCol[i].zColl = zColl; 1385 1386 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1387 ** then an index may have been created on this column before the 1388 ** collation type was added. Correct this if it is the case. 1389 */ 1390 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1391 assert( pIdx->nKeyCol==1 ); 1392 if( pIdx->aiColumn[0]==i ){ 1393 pIdx->azColl[0] = p->aCol[i].zColl; 1394 } 1395 } 1396 }else{ 1397 sqlite3DbFree(db, zColl); 1398 } 1399 } 1400 1401 /* 1402 ** This function returns the collation sequence for database native text 1403 ** encoding identified by the string zName, length nName. 1404 ** 1405 ** If the requested collation sequence is not available, or not available 1406 ** in the database native encoding, the collation factory is invoked to 1407 ** request it. If the collation factory does not supply such a sequence, 1408 ** and the sequence is available in another text encoding, then that is 1409 ** returned instead. 1410 ** 1411 ** If no versions of the requested collations sequence are available, or 1412 ** another error occurs, NULL is returned and an error message written into 1413 ** pParse. 1414 ** 1415 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1416 ** invokes the collation factory if the named collation cannot be found 1417 ** and generates an error message. 1418 ** 1419 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1420 */ 1421 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1422 sqlite3 *db = pParse->db; 1423 u8 enc = ENC(db); 1424 u8 initbusy = db->init.busy; 1425 CollSeq *pColl; 1426 1427 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1428 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1429 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1430 } 1431 1432 return pColl; 1433 } 1434 1435 1436 /* 1437 ** Generate code that will increment the schema cookie. 1438 ** 1439 ** The schema cookie is used to determine when the schema for the 1440 ** database changes. After each schema change, the cookie value 1441 ** changes. When a process first reads the schema it records the 1442 ** cookie. Thereafter, whenever it goes to access the database, 1443 ** it checks the cookie to make sure the schema has not changed 1444 ** since it was last read. 1445 ** 1446 ** This plan is not completely bullet-proof. It is possible for 1447 ** the schema to change multiple times and for the cookie to be 1448 ** set back to prior value. But schema changes are infrequent 1449 ** and the probability of hitting the same cookie value is only 1450 ** 1 chance in 2^32. So we're safe enough. 1451 ** 1452 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1453 ** the schema-version whenever the schema changes. 1454 */ 1455 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1456 sqlite3 *db = pParse->db; 1457 Vdbe *v = pParse->pVdbe; 1458 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1459 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1460 db->aDb[iDb].pSchema->schema_cookie+1); 1461 } 1462 1463 /* 1464 ** Measure the number of characters needed to output the given 1465 ** identifier. The number returned includes any quotes used 1466 ** but does not include the null terminator. 1467 ** 1468 ** The estimate is conservative. It might be larger that what is 1469 ** really needed. 1470 */ 1471 static int identLength(const char *z){ 1472 int n; 1473 for(n=0; *z; n++, z++){ 1474 if( *z=='"' ){ n++; } 1475 } 1476 return n + 2; 1477 } 1478 1479 /* 1480 ** The first parameter is a pointer to an output buffer. The second 1481 ** parameter is a pointer to an integer that contains the offset at 1482 ** which to write into the output buffer. This function copies the 1483 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1484 ** to the specified offset in the buffer and updates *pIdx to refer 1485 ** to the first byte after the last byte written before returning. 1486 ** 1487 ** If the string zSignedIdent consists entirely of alpha-numeric 1488 ** characters, does not begin with a digit and is not an SQL keyword, 1489 ** then it is copied to the output buffer exactly as it is. Otherwise, 1490 ** it is quoted using double-quotes. 1491 */ 1492 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1493 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1494 int i, j, needQuote; 1495 i = *pIdx; 1496 1497 for(j=0; zIdent[j]; j++){ 1498 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1499 } 1500 needQuote = sqlite3Isdigit(zIdent[0]) 1501 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1502 || zIdent[j]!=0 1503 || j==0; 1504 1505 if( needQuote ) z[i++] = '"'; 1506 for(j=0; zIdent[j]; j++){ 1507 z[i++] = zIdent[j]; 1508 if( zIdent[j]=='"' ) z[i++] = '"'; 1509 } 1510 if( needQuote ) z[i++] = '"'; 1511 z[i] = 0; 1512 *pIdx = i; 1513 } 1514 1515 /* 1516 ** Generate a CREATE TABLE statement appropriate for the given 1517 ** table. Memory to hold the text of the statement is obtained 1518 ** from sqliteMalloc() and must be freed by the calling function. 1519 */ 1520 static char *createTableStmt(sqlite3 *db, Table *p){ 1521 int i, k, n; 1522 char *zStmt; 1523 char *zSep, *zSep2, *zEnd; 1524 Column *pCol; 1525 n = 0; 1526 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1527 n += identLength(pCol->zName) + 5; 1528 } 1529 n += identLength(p->zName); 1530 if( n<50 ){ 1531 zSep = ""; 1532 zSep2 = ","; 1533 zEnd = ")"; 1534 }else{ 1535 zSep = "\n "; 1536 zSep2 = ",\n "; 1537 zEnd = "\n)"; 1538 } 1539 n += 35 + 6*p->nCol; 1540 zStmt = sqlite3DbMallocRaw(0, n); 1541 if( zStmt==0 ){ 1542 sqlite3OomFault(db); 1543 return 0; 1544 } 1545 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1546 k = sqlite3Strlen30(zStmt); 1547 identPut(zStmt, &k, p->zName); 1548 zStmt[k++] = '('; 1549 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1550 static const char * const azType[] = { 1551 /* SQLITE_AFF_BLOB */ "", 1552 /* SQLITE_AFF_TEXT */ " TEXT", 1553 /* SQLITE_AFF_NUMERIC */ " NUM", 1554 /* SQLITE_AFF_INTEGER */ " INT", 1555 /* SQLITE_AFF_REAL */ " REAL" 1556 }; 1557 int len; 1558 const char *zType; 1559 1560 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1561 k += sqlite3Strlen30(&zStmt[k]); 1562 zSep = zSep2; 1563 identPut(zStmt, &k, pCol->zName); 1564 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1565 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1566 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1567 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1568 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1569 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1570 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1571 1572 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1573 len = sqlite3Strlen30(zType); 1574 assert( pCol->affinity==SQLITE_AFF_BLOB 1575 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1576 memcpy(&zStmt[k], zType, len); 1577 k += len; 1578 assert( k<=n ); 1579 } 1580 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1581 return zStmt; 1582 } 1583 1584 /* 1585 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1586 ** on success and SQLITE_NOMEM on an OOM error. 1587 */ 1588 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1589 char *zExtra; 1590 int nByte; 1591 if( pIdx->nColumn>=N ) return SQLITE_OK; 1592 assert( pIdx->isResized==0 ); 1593 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1594 zExtra = sqlite3DbMallocZero(db, nByte); 1595 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1596 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1597 pIdx->azColl = (const char**)zExtra; 1598 zExtra += sizeof(char*)*N; 1599 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1600 pIdx->aiColumn = (i16*)zExtra; 1601 zExtra += sizeof(i16)*N; 1602 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1603 pIdx->aSortOrder = (u8*)zExtra; 1604 pIdx->nColumn = N; 1605 pIdx->isResized = 1; 1606 return SQLITE_OK; 1607 } 1608 1609 /* 1610 ** Estimate the total row width for a table. 1611 */ 1612 static void estimateTableWidth(Table *pTab){ 1613 unsigned wTable = 0; 1614 const Column *pTabCol; 1615 int i; 1616 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1617 wTable += pTabCol->szEst; 1618 } 1619 if( pTab->iPKey<0 ) wTable++; 1620 pTab->szTabRow = sqlite3LogEst(wTable*4); 1621 } 1622 1623 /* 1624 ** Estimate the average size of a row for an index. 1625 */ 1626 static void estimateIndexWidth(Index *pIdx){ 1627 unsigned wIndex = 0; 1628 int i; 1629 const Column *aCol = pIdx->pTable->aCol; 1630 for(i=0; i<pIdx->nColumn; i++){ 1631 i16 x = pIdx->aiColumn[i]; 1632 assert( x<pIdx->pTable->nCol ); 1633 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1634 } 1635 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1636 } 1637 1638 /* Return true if value x is found any of the first nCol entries of aiCol[] 1639 */ 1640 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1641 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 ** This routine runs at the end of parsing a CREATE TABLE statement that 1647 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1648 ** internal schema data structures and the generated VDBE code so that they 1649 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1650 ** Changes include: 1651 ** 1652 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1653 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is 1654 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1655 ** data storage is a covering index btree. 1656 ** (3) Bypass the creation of the sqlite_master table entry 1657 ** for the PRIMARY KEY as the primary key index is now 1658 ** identified by the sqlite_master table entry of the table itself. 1659 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1660 ** schema to the rootpage from the main table. 1661 ** (5) Add all table columns to the PRIMARY KEY Index object 1662 ** so that the PRIMARY KEY is a covering index. The surplus 1663 ** columns are part of KeyInfo.nXField and are not used for 1664 ** sorting or lookup or uniqueness checks. 1665 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1666 ** indices with the PRIMARY KEY columns. 1667 ** 1668 ** For virtual tables, only (1) is performed. 1669 */ 1670 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1671 Index *pIdx; 1672 Index *pPk; 1673 int nPk; 1674 int i, j; 1675 sqlite3 *db = pParse->db; 1676 Vdbe *v = pParse->pVdbe; 1677 1678 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1679 */ 1680 if( !db->init.imposterTable ){ 1681 for(i=0; i<pTab->nCol; i++){ 1682 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1683 pTab->aCol[i].notNull = OE_Abort; 1684 } 1685 } 1686 } 1687 1688 /* The remaining transformations only apply to b-tree tables, not to 1689 ** virtual tables */ 1690 if( IN_DECLARE_VTAB ) return; 1691 1692 /* Convert the OP_CreateTable opcode that would normally create the 1693 ** root-page for the table into an OP_CreateIndex opcode. The index 1694 ** created will become the PRIMARY KEY index. 1695 */ 1696 if( pParse->addrCrTab ){ 1697 assert( v ); 1698 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1699 } 1700 1701 /* Locate the PRIMARY KEY index. Or, if this table was originally 1702 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1703 */ 1704 if( pTab->iPKey>=0 ){ 1705 ExprList *pList; 1706 Token ipkToken; 1707 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1708 pList = sqlite3ExprListAppend(pParse, 0, 1709 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1710 if( pList==0 ) return; 1711 pList->a[0].sortOrder = pParse->iPkSortOrder; 1712 assert( pParse->pNewTable==pTab ); 1713 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1714 SQLITE_IDXTYPE_PRIMARYKEY); 1715 if( db->mallocFailed ) return; 1716 pPk = sqlite3PrimaryKeyIndex(pTab); 1717 pTab->iPKey = -1; 1718 }else{ 1719 pPk = sqlite3PrimaryKeyIndex(pTab); 1720 1721 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1722 ** table entry. This is only required if currently generating VDBE 1723 ** code for a CREATE TABLE (not when parsing one as part of reading 1724 ** a database schema). */ 1725 if( v ){ 1726 assert( db->init.busy==0 ); 1727 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1728 } 1729 1730 /* 1731 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1732 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1733 ** code assumes the PRIMARY KEY contains no repeated columns. 1734 */ 1735 for(i=j=1; i<pPk->nKeyCol; i++){ 1736 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1737 pPk->nColumn--; 1738 }else{ 1739 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1740 } 1741 } 1742 pPk->nKeyCol = j; 1743 } 1744 assert( pPk!=0 ); 1745 pPk->isCovering = 1; 1746 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1747 nPk = pPk->nKeyCol; 1748 1749 /* The root page of the PRIMARY KEY is the table root page */ 1750 pPk->tnum = pTab->tnum; 1751 1752 /* Update the in-memory representation of all UNIQUE indices by converting 1753 ** the final rowid column into one or more columns of the PRIMARY KEY. 1754 */ 1755 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1756 int n; 1757 if( IsPrimaryKeyIndex(pIdx) ) continue; 1758 for(i=n=0; i<nPk; i++){ 1759 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1760 } 1761 if( n==0 ){ 1762 /* This index is a superset of the primary key */ 1763 pIdx->nColumn = pIdx->nKeyCol; 1764 continue; 1765 } 1766 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1767 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1768 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1769 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1770 pIdx->azColl[j] = pPk->azColl[i]; 1771 j++; 1772 } 1773 } 1774 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1775 assert( pIdx->nColumn>=j ); 1776 } 1777 1778 /* Add all table columns to the PRIMARY KEY index 1779 */ 1780 if( nPk<pTab->nCol ){ 1781 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1782 for(i=0, j=nPk; i<pTab->nCol; i++){ 1783 if( !hasColumn(pPk->aiColumn, j, i) ){ 1784 assert( j<pPk->nColumn ); 1785 pPk->aiColumn[j] = i; 1786 pPk->azColl[j] = sqlite3StrBINARY; 1787 j++; 1788 } 1789 } 1790 assert( pPk->nColumn==j ); 1791 assert( pTab->nCol==j ); 1792 }else{ 1793 pPk->nColumn = pTab->nCol; 1794 } 1795 } 1796 1797 /* 1798 ** This routine is called to report the final ")" that terminates 1799 ** a CREATE TABLE statement. 1800 ** 1801 ** The table structure that other action routines have been building 1802 ** is added to the internal hash tables, assuming no errors have 1803 ** occurred. 1804 ** 1805 ** An entry for the table is made in the master table on disk, unless 1806 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1807 ** it means we are reading the sqlite_master table because we just 1808 ** connected to the database or because the sqlite_master table has 1809 ** recently changed, so the entry for this table already exists in 1810 ** the sqlite_master table. We do not want to create it again. 1811 ** 1812 ** If the pSelect argument is not NULL, it means that this routine 1813 ** was called to create a table generated from a 1814 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1815 ** the new table will match the result set of the SELECT. 1816 */ 1817 void sqlite3EndTable( 1818 Parse *pParse, /* Parse context */ 1819 Token *pCons, /* The ',' token after the last column defn. */ 1820 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1821 u8 tabOpts, /* Extra table options. Usually 0. */ 1822 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1823 ){ 1824 Table *p; /* The new table */ 1825 sqlite3 *db = pParse->db; /* The database connection */ 1826 int iDb; /* Database in which the table lives */ 1827 Index *pIdx; /* An implied index of the table */ 1828 1829 if( pEnd==0 && pSelect==0 ){ 1830 return; 1831 } 1832 assert( !db->mallocFailed ); 1833 p = pParse->pNewTable; 1834 if( p==0 ) return; 1835 1836 assert( !db->init.busy || !pSelect ); 1837 1838 /* If the db->init.busy is 1 it means we are reading the SQL off the 1839 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1840 ** So do not write to the disk again. Extract the root page number 1841 ** for the table from the db->init.newTnum field. (The page number 1842 ** should have been put there by the sqliteOpenCb routine.) 1843 ** 1844 ** If the root page number is 1, that means this is the sqlite_master 1845 ** table itself. So mark it read-only. 1846 */ 1847 if( db->init.busy ){ 1848 p->tnum = db->init.newTnum; 1849 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1850 } 1851 1852 /* Special processing for WITHOUT ROWID Tables */ 1853 if( tabOpts & TF_WithoutRowid ){ 1854 if( (p->tabFlags & TF_Autoincrement) ){ 1855 sqlite3ErrorMsg(pParse, 1856 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1857 return; 1858 } 1859 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1860 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1861 }else{ 1862 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1863 convertToWithoutRowidTable(pParse, p); 1864 } 1865 } 1866 1867 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1868 1869 #ifndef SQLITE_OMIT_CHECK 1870 /* Resolve names in all CHECK constraint expressions. 1871 */ 1872 if( p->pCheck ){ 1873 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1874 } 1875 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1876 1877 /* Estimate the average row size for the table and for all implied indices */ 1878 estimateTableWidth(p); 1879 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1880 estimateIndexWidth(pIdx); 1881 } 1882 1883 /* If not initializing, then create a record for the new table 1884 ** in the SQLITE_MASTER table of the database. 1885 ** 1886 ** If this is a TEMPORARY table, write the entry into the auxiliary 1887 ** file instead of into the main database file. 1888 */ 1889 if( !db->init.busy ){ 1890 int n; 1891 Vdbe *v; 1892 char *zType; /* "view" or "table" */ 1893 char *zType2; /* "VIEW" or "TABLE" */ 1894 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1895 1896 v = sqlite3GetVdbe(pParse); 1897 if( NEVER(v==0) ) return; 1898 1899 sqlite3VdbeAddOp1(v, OP_Close, 0); 1900 1901 /* 1902 ** Initialize zType for the new view or table. 1903 */ 1904 if( p->pSelect==0 ){ 1905 /* A regular table */ 1906 zType = "table"; 1907 zType2 = "TABLE"; 1908 #ifndef SQLITE_OMIT_VIEW 1909 }else{ 1910 /* A view */ 1911 zType = "view"; 1912 zType2 = "VIEW"; 1913 #endif 1914 } 1915 1916 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1917 ** statement to populate the new table. The root-page number for the 1918 ** new table is in register pParse->regRoot. 1919 ** 1920 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1921 ** suitable state to query for the column names and types to be used 1922 ** by the new table. 1923 ** 1924 ** A shared-cache write-lock is not required to write to the new table, 1925 ** as a schema-lock must have already been obtained to create it. Since 1926 ** a schema-lock excludes all other database users, the write-lock would 1927 ** be redundant. 1928 */ 1929 if( pSelect ){ 1930 SelectDest dest; /* Where the SELECT should store results */ 1931 int regYield; /* Register holding co-routine entry-point */ 1932 int addrTop; /* Top of the co-routine */ 1933 int regRec; /* A record to be insert into the new table */ 1934 int regRowid; /* Rowid of the next row to insert */ 1935 int addrInsLoop; /* Top of the loop for inserting rows */ 1936 Table *pSelTab; /* A table that describes the SELECT results */ 1937 1938 regYield = ++pParse->nMem; 1939 regRec = ++pParse->nMem; 1940 regRowid = ++pParse->nMem; 1941 assert(pParse->nTab==1); 1942 sqlite3MayAbort(pParse); 1943 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1944 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1945 pParse->nTab = 2; 1946 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1947 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1948 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1949 sqlite3Select(pParse, pSelect, &dest); 1950 sqlite3VdbeEndCoroutine(v, regYield); 1951 sqlite3VdbeJumpHere(v, addrTop - 1); 1952 if( pParse->nErr ) return; 1953 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1954 if( pSelTab==0 ) return; 1955 assert( p->aCol==0 ); 1956 p->nCol = pSelTab->nCol; 1957 p->aCol = pSelTab->aCol; 1958 pSelTab->nCol = 0; 1959 pSelTab->aCol = 0; 1960 sqlite3DeleteTable(db, pSelTab); 1961 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1962 VdbeCoverage(v); 1963 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1964 sqlite3TableAffinity(v, p, 0); 1965 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1966 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1967 sqlite3VdbeGoto(v, addrInsLoop); 1968 sqlite3VdbeJumpHere(v, addrInsLoop); 1969 sqlite3VdbeAddOp1(v, OP_Close, 1); 1970 } 1971 1972 /* Compute the complete text of the CREATE statement */ 1973 if( pSelect ){ 1974 zStmt = createTableStmt(db, p); 1975 }else{ 1976 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1977 n = (int)(pEnd2->z - pParse->sNameToken.z); 1978 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1979 zStmt = sqlite3MPrintf(db, 1980 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1981 ); 1982 } 1983 1984 /* A slot for the record has already been allocated in the 1985 ** SQLITE_MASTER table. We just need to update that slot with all 1986 ** the information we've collected. 1987 */ 1988 sqlite3NestedParse(pParse, 1989 "UPDATE %Q.%s " 1990 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1991 "WHERE rowid=#%d", 1992 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), 1993 zType, 1994 p->zName, 1995 p->zName, 1996 pParse->regRoot, 1997 zStmt, 1998 pParse->regRowid 1999 ); 2000 sqlite3DbFree(db, zStmt); 2001 sqlite3ChangeCookie(pParse, iDb); 2002 2003 #ifndef SQLITE_OMIT_AUTOINCREMENT 2004 /* Check to see if we need to create an sqlite_sequence table for 2005 ** keeping track of autoincrement keys. 2006 */ 2007 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2008 Db *pDb = &db->aDb[iDb]; 2009 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2010 if( pDb->pSchema->pSeqTab==0 ){ 2011 sqlite3NestedParse(pParse, 2012 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2013 pDb->zDbSName 2014 ); 2015 } 2016 } 2017 #endif 2018 2019 /* Reparse everything to update our internal data structures */ 2020 sqlite3VdbeAddParseSchemaOp(v, iDb, 2021 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2022 } 2023 2024 2025 /* Add the table to the in-memory representation of the database. 2026 */ 2027 if( db->init.busy ){ 2028 Table *pOld; 2029 Schema *pSchema = p->pSchema; 2030 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2031 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2032 if( pOld ){ 2033 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2034 sqlite3OomFault(db); 2035 return; 2036 } 2037 pParse->pNewTable = 0; 2038 db->flags |= SQLITE_InternChanges; 2039 2040 #ifndef SQLITE_OMIT_ALTERTABLE 2041 if( !p->pSelect ){ 2042 const char *zName = (const char *)pParse->sNameToken.z; 2043 int nName; 2044 assert( !pSelect && pCons && pEnd ); 2045 if( pCons->z==0 ){ 2046 pCons = pEnd; 2047 } 2048 nName = (int)((const char *)pCons->z - zName); 2049 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2050 } 2051 #endif 2052 } 2053 } 2054 2055 #ifndef SQLITE_OMIT_VIEW 2056 /* 2057 ** The parser calls this routine in order to create a new VIEW 2058 */ 2059 void sqlite3CreateView( 2060 Parse *pParse, /* The parsing context */ 2061 Token *pBegin, /* The CREATE token that begins the statement */ 2062 Token *pName1, /* The token that holds the name of the view */ 2063 Token *pName2, /* The token that holds the name of the view */ 2064 ExprList *pCNames, /* Optional list of view column names */ 2065 Select *pSelect, /* A SELECT statement that will become the new view */ 2066 int isTemp, /* TRUE for a TEMPORARY view */ 2067 int noErr /* Suppress error messages if VIEW already exists */ 2068 ){ 2069 Table *p; 2070 int n; 2071 const char *z; 2072 Token sEnd; 2073 DbFixer sFix; 2074 Token *pName = 0; 2075 int iDb; 2076 sqlite3 *db = pParse->db; 2077 2078 if( pParse->nVar>0 ){ 2079 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2080 goto create_view_fail; 2081 } 2082 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2083 p = pParse->pNewTable; 2084 if( p==0 || pParse->nErr ) goto create_view_fail; 2085 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2086 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2087 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2088 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2089 2090 /* Make a copy of the entire SELECT statement that defines the view. 2091 ** This will force all the Expr.token.z values to be dynamically 2092 ** allocated rather than point to the input string - which means that 2093 ** they will persist after the current sqlite3_exec() call returns. 2094 */ 2095 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2096 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2097 if( db->mallocFailed ) goto create_view_fail; 2098 2099 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2100 ** the end. 2101 */ 2102 sEnd = pParse->sLastToken; 2103 assert( sEnd.z[0]!=0 ); 2104 if( sEnd.z[0]!=';' ){ 2105 sEnd.z += sEnd.n; 2106 } 2107 sEnd.n = 0; 2108 n = (int)(sEnd.z - pBegin->z); 2109 assert( n>0 ); 2110 z = pBegin->z; 2111 while( sqlite3Isspace(z[n-1]) ){ n--; } 2112 sEnd.z = &z[n-1]; 2113 sEnd.n = 1; 2114 2115 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2116 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2117 2118 create_view_fail: 2119 sqlite3SelectDelete(db, pSelect); 2120 sqlite3ExprListDelete(db, pCNames); 2121 return; 2122 } 2123 #endif /* SQLITE_OMIT_VIEW */ 2124 2125 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2126 /* 2127 ** The Table structure pTable is really a VIEW. Fill in the names of 2128 ** the columns of the view in the pTable structure. Return the number 2129 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2130 */ 2131 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2132 Table *pSelTab; /* A fake table from which we get the result set */ 2133 Select *pSel; /* Copy of the SELECT that implements the view */ 2134 int nErr = 0; /* Number of errors encountered */ 2135 int n; /* Temporarily holds the number of cursors assigned */ 2136 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2137 #ifndef SQLITE_OMIT_AUTHORIZATION 2138 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2139 #endif 2140 2141 assert( pTable ); 2142 2143 #ifndef SQLITE_OMIT_VIRTUALTABLE 2144 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2145 return SQLITE_ERROR; 2146 } 2147 if( IsVirtual(pTable) ) return 0; 2148 #endif 2149 2150 #ifndef SQLITE_OMIT_VIEW 2151 /* A positive nCol means the columns names for this view are 2152 ** already known. 2153 */ 2154 if( pTable->nCol>0 ) return 0; 2155 2156 /* A negative nCol is a special marker meaning that we are currently 2157 ** trying to compute the column names. If we enter this routine with 2158 ** a negative nCol, it means two or more views form a loop, like this: 2159 ** 2160 ** CREATE VIEW one AS SELECT * FROM two; 2161 ** CREATE VIEW two AS SELECT * FROM one; 2162 ** 2163 ** Actually, the error above is now caught prior to reaching this point. 2164 ** But the following test is still important as it does come up 2165 ** in the following: 2166 ** 2167 ** CREATE TABLE main.ex1(a); 2168 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2169 ** SELECT * FROM temp.ex1; 2170 */ 2171 if( pTable->nCol<0 ){ 2172 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2173 return 1; 2174 } 2175 assert( pTable->nCol>=0 ); 2176 2177 /* If we get this far, it means we need to compute the table names. 2178 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2179 ** "*" elements in the results set of the view and will assign cursors 2180 ** to the elements of the FROM clause. But we do not want these changes 2181 ** to be permanent. So the computation is done on a copy of the SELECT 2182 ** statement that defines the view. 2183 */ 2184 assert( pTable->pSelect ); 2185 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2186 if( pSel ){ 2187 n = pParse->nTab; 2188 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2189 pTable->nCol = -1; 2190 db->lookaside.bDisable++; 2191 #ifndef SQLITE_OMIT_AUTHORIZATION 2192 xAuth = db->xAuth; 2193 db->xAuth = 0; 2194 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2195 db->xAuth = xAuth; 2196 #else 2197 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2198 #endif 2199 pParse->nTab = n; 2200 if( pTable->pCheck ){ 2201 /* CREATE VIEW name(arglist) AS ... 2202 ** The names of the columns in the table are taken from 2203 ** arglist which is stored in pTable->pCheck. The pCheck field 2204 ** normally holds CHECK constraints on an ordinary table, but for 2205 ** a VIEW it holds the list of column names. 2206 */ 2207 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2208 &pTable->nCol, &pTable->aCol); 2209 if( db->mallocFailed==0 2210 && pParse->nErr==0 2211 && pTable->nCol==pSel->pEList->nExpr 2212 ){ 2213 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2214 } 2215 }else if( pSelTab ){ 2216 /* CREATE VIEW name AS... without an argument list. Construct 2217 ** the column names from the SELECT statement that defines the view. 2218 */ 2219 assert( pTable->aCol==0 ); 2220 pTable->nCol = pSelTab->nCol; 2221 pTable->aCol = pSelTab->aCol; 2222 pSelTab->nCol = 0; 2223 pSelTab->aCol = 0; 2224 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2225 }else{ 2226 pTable->nCol = 0; 2227 nErr++; 2228 } 2229 sqlite3DeleteTable(db, pSelTab); 2230 sqlite3SelectDelete(db, pSel); 2231 db->lookaside.bDisable--; 2232 } else { 2233 nErr++; 2234 } 2235 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2236 #endif /* SQLITE_OMIT_VIEW */ 2237 return nErr; 2238 } 2239 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2240 2241 #ifndef SQLITE_OMIT_VIEW 2242 /* 2243 ** Clear the column names from every VIEW in database idx. 2244 */ 2245 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2246 HashElem *i; 2247 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2248 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2249 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2250 Table *pTab = sqliteHashData(i); 2251 if( pTab->pSelect ){ 2252 sqlite3DeleteColumnNames(db, pTab); 2253 pTab->aCol = 0; 2254 pTab->nCol = 0; 2255 } 2256 } 2257 DbClearProperty(db, idx, DB_UnresetViews); 2258 } 2259 #else 2260 # define sqliteViewResetAll(A,B) 2261 #endif /* SQLITE_OMIT_VIEW */ 2262 2263 /* 2264 ** This function is called by the VDBE to adjust the internal schema 2265 ** used by SQLite when the btree layer moves a table root page. The 2266 ** root-page of a table or index in database iDb has changed from iFrom 2267 ** to iTo. 2268 ** 2269 ** Ticket #1728: The symbol table might still contain information 2270 ** on tables and/or indices that are the process of being deleted. 2271 ** If you are unlucky, one of those deleted indices or tables might 2272 ** have the same rootpage number as the real table or index that is 2273 ** being moved. So we cannot stop searching after the first match 2274 ** because the first match might be for one of the deleted indices 2275 ** or tables and not the table/index that is actually being moved. 2276 ** We must continue looping until all tables and indices with 2277 ** rootpage==iFrom have been converted to have a rootpage of iTo 2278 ** in order to be certain that we got the right one. 2279 */ 2280 #ifndef SQLITE_OMIT_AUTOVACUUM 2281 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2282 HashElem *pElem; 2283 Hash *pHash; 2284 Db *pDb; 2285 2286 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2287 pDb = &db->aDb[iDb]; 2288 pHash = &pDb->pSchema->tblHash; 2289 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2290 Table *pTab = sqliteHashData(pElem); 2291 if( pTab->tnum==iFrom ){ 2292 pTab->tnum = iTo; 2293 } 2294 } 2295 pHash = &pDb->pSchema->idxHash; 2296 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2297 Index *pIdx = sqliteHashData(pElem); 2298 if( pIdx->tnum==iFrom ){ 2299 pIdx->tnum = iTo; 2300 } 2301 } 2302 } 2303 #endif 2304 2305 /* 2306 ** Write code to erase the table with root-page iTable from database iDb. 2307 ** Also write code to modify the sqlite_master table and internal schema 2308 ** if a root-page of another table is moved by the btree-layer whilst 2309 ** erasing iTable (this can happen with an auto-vacuum database). 2310 */ 2311 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2312 Vdbe *v = sqlite3GetVdbe(pParse); 2313 int r1 = sqlite3GetTempReg(pParse); 2314 assert( iTable>1 ); 2315 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2316 sqlite3MayAbort(pParse); 2317 #ifndef SQLITE_OMIT_AUTOVACUUM 2318 /* OP_Destroy stores an in integer r1. If this integer 2319 ** is non-zero, then it is the root page number of a table moved to 2320 ** location iTable. The following code modifies the sqlite_master table to 2321 ** reflect this. 2322 ** 2323 ** The "#NNN" in the SQL is a special constant that means whatever value 2324 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2325 ** token for additional information. 2326 */ 2327 sqlite3NestedParse(pParse, 2328 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2329 pParse->db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2330 #endif 2331 sqlite3ReleaseTempReg(pParse, r1); 2332 } 2333 2334 /* 2335 ** Write VDBE code to erase table pTab and all associated indices on disk. 2336 ** Code to update the sqlite_master tables and internal schema definitions 2337 ** in case a root-page belonging to another table is moved by the btree layer 2338 ** is also added (this can happen with an auto-vacuum database). 2339 */ 2340 static void destroyTable(Parse *pParse, Table *pTab){ 2341 #ifdef SQLITE_OMIT_AUTOVACUUM 2342 Index *pIdx; 2343 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2344 destroyRootPage(pParse, pTab->tnum, iDb); 2345 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2346 destroyRootPage(pParse, pIdx->tnum, iDb); 2347 } 2348 #else 2349 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2350 ** is not defined), then it is important to call OP_Destroy on the 2351 ** table and index root-pages in order, starting with the numerically 2352 ** largest root-page number. This guarantees that none of the root-pages 2353 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2354 ** following were coded: 2355 ** 2356 ** OP_Destroy 4 0 2357 ** ... 2358 ** OP_Destroy 5 0 2359 ** 2360 ** and root page 5 happened to be the largest root-page number in the 2361 ** database, then root page 5 would be moved to page 4 by the 2362 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2363 ** a free-list page. 2364 */ 2365 int iTab = pTab->tnum; 2366 int iDestroyed = 0; 2367 2368 while( 1 ){ 2369 Index *pIdx; 2370 int iLargest = 0; 2371 2372 if( iDestroyed==0 || iTab<iDestroyed ){ 2373 iLargest = iTab; 2374 } 2375 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2376 int iIdx = pIdx->tnum; 2377 assert( pIdx->pSchema==pTab->pSchema ); 2378 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2379 iLargest = iIdx; 2380 } 2381 } 2382 if( iLargest==0 ){ 2383 return; 2384 }else{ 2385 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2386 assert( iDb>=0 && iDb<pParse->db->nDb ); 2387 destroyRootPage(pParse, iLargest, iDb); 2388 iDestroyed = iLargest; 2389 } 2390 } 2391 #endif 2392 } 2393 2394 /* 2395 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2396 ** after a DROP INDEX or DROP TABLE command. 2397 */ 2398 static void sqlite3ClearStatTables( 2399 Parse *pParse, /* The parsing context */ 2400 int iDb, /* The database number */ 2401 const char *zType, /* "idx" or "tbl" */ 2402 const char *zName /* Name of index or table */ 2403 ){ 2404 int i; 2405 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2406 for(i=1; i<=4; i++){ 2407 char zTab[24]; 2408 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2409 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2410 sqlite3NestedParse(pParse, 2411 "DELETE FROM %Q.%s WHERE %s=%Q", 2412 zDbName, zTab, zType, zName 2413 ); 2414 } 2415 } 2416 } 2417 2418 /* 2419 ** Generate code to drop a table. 2420 */ 2421 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2422 Vdbe *v; 2423 sqlite3 *db = pParse->db; 2424 Trigger *pTrigger; 2425 Db *pDb = &db->aDb[iDb]; 2426 2427 v = sqlite3GetVdbe(pParse); 2428 assert( v!=0 ); 2429 sqlite3BeginWriteOperation(pParse, 1, iDb); 2430 2431 #ifndef SQLITE_OMIT_VIRTUALTABLE 2432 if( IsVirtual(pTab) ){ 2433 sqlite3VdbeAddOp0(v, OP_VBegin); 2434 } 2435 #endif 2436 2437 /* Drop all triggers associated with the table being dropped. Code 2438 ** is generated to remove entries from sqlite_master and/or 2439 ** sqlite_temp_master if required. 2440 */ 2441 pTrigger = sqlite3TriggerList(pParse, pTab); 2442 while( pTrigger ){ 2443 assert( pTrigger->pSchema==pTab->pSchema || 2444 pTrigger->pSchema==db->aDb[1].pSchema ); 2445 sqlite3DropTriggerPtr(pParse, pTrigger); 2446 pTrigger = pTrigger->pNext; 2447 } 2448 2449 #ifndef SQLITE_OMIT_AUTOINCREMENT 2450 /* Remove any entries of the sqlite_sequence table associated with 2451 ** the table being dropped. This is done before the table is dropped 2452 ** at the btree level, in case the sqlite_sequence table needs to 2453 ** move as a result of the drop (can happen in auto-vacuum mode). 2454 */ 2455 if( pTab->tabFlags & TF_Autoincrement ){ 2456 sqlite3NestedParse(pParse, 2457 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2458 pDb->zDbSName, pTab->zName 2459 ); 2460 } 2461 #endif 2462 2463 /* Drop all SQLITE_MASTER table and index entries that refer to the 2464 ** table. The program name loops through the master table and deletes 2465 ** every row that refers to a table of the same name as the one being 2466 ** dropped. Triggers are handled separately because a trigger can be 2467 ** created in the temp database that refers to a table in another 2468 ** database. 2469 */ 2470 sqlite3NestedParse(pParse, 2471 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2472 pDb->zDbSName, SCHEMA_TABLE(iDb), pTab->zName); 2473 if( !isView && !IsVirtual(pTab) ){ 2474 destroyTable(pParse, pTab); 2475 } 2476 2477 /* Remove the table entry from SQLite's internal schema and modify 2478 ** the schema cookie. 2479 */ 2480 if( IsVirtual(pTab) ){ 2481 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2482 } 2483 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2484 sqlite3ChangeCookie(pParse, iDb); 2485 sqliteViewResetAll(db, iDb); 2486 } 2487 2488 /* 2489 ** This routine is called to do the work of a DROP TABLE statement. 2490 ** pName is the name of the table to be dropped. 2491 */ 2492 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2493 Table *pTab; 2494 Vdbe *v; 2495 sqlite3 *db = pParse->db; 2496 int iDb; 2497 2498 if( db->mallocFailed ){ 2499 goto exit_drop_table; 2500 } 2501 assert( pParse->nErr==0 ); 2502 assert( pName->nSrc==1 ); 2503 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2504 if( noErr ) db->suppressErr++; 2505 assert( isView==0 || isView==LOCATE_VIEW ); 2506 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2507 if( noErr ) db->suppressErr--; 2508 2509 if( pTab==0 ){ 2510 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2511 goto exit_drop_table; 2512 } 2513 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2514 assert( iDb>=0 && iDb<db->nDb ); 2515 2516 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2517 ** it is initialized. 2518 */ 2519 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2520 goto exit_drop_table; 2521 } 2522 #ifndef SQLITE_OMIT_AUTHORIZATION 2523 { 2524 int code; 2525 const char *zTab = SCHEMA_TABLE(iDb); 2526 const char *zDb = db->aDb[iDb].zDbSName; 2527 const char *zArg2 = 0; 2528 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2529 goto exit_drop_table; 2530 } 2531 if( isView ){ 2532 if( !OMIT_TEMPDB && iDb==1 ){ 2533 code = SQLITE_DROP_TEMP_VIEW; 2534 }else{ 2535 code = SQLITE_DROP_VIEW; 2536 } 2537 #ifndef SQLITE_OMIT_VIRTUALTABLE 2538 }else if( IsVirtual(pTab) ){ 2539 code = SQLITE_DROP_VTABLE; 2540 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2541 #endif 2542 }else{ 2543 if( !OMIT_TEMPDB && iDb==1 ){ 2544 code = SQLITE_DROP_TEMP_TABLE; 2545 }else{ 2546 code = SQLITE_DROP_TABLE; 2547 } 2548 } 2549 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2550 goto exit_drop_table; 2551 } 2552 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2553 goto exit_drop_table; 2554 } 2555 } 2556 #endif 2557 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2558 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2559 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2560 goto exit_drop_table; 2561 } 2562 2563 #ifndef SQLITE_OMIT_VIEW 2564 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2565 ** on a table. 2566 */ 2567 if( isView && pTab->pSelect==0 ){ 2568 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2569 goto exit_drop_table; 2570 } 2571 if( !isView && pTab->pSelect ){ 2572 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2573 goto exit_drop_table; 2574 } 2575 #endif 2576 2577 /* Generate code to remove the table from the master table 2578 ** on disk. 2579 */ 2580 v = sqlite3GetVdbe(pParse); 2581 if( v ){ 2582 sqlite3BeginWriteOperation(pParse, 1, iDb); 2583 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2584 sqlite3FkDropTable(pParse, pName, pTab); 2585 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2586 } 2587 2588 exit_drop_table: 2589 sqlite3SrcListDelete(db, pName); 2590 } 2591 2592 /* 2593 ** This routine is called to create a new foreign key on the table 2594 ** currently under construction. pFromCol determines which columns 2595 ** in the current table point to the foreign key. If pFromCol==0 then 2596 ** connect the key to the last column inserted. pTo is the name of 2597 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2598 ** of tables in the parent pTo table. flags contains all 2599 ** information about the conflict resolution algorithms specified 2600 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2601 ** 2602 ** An FKey structure is created and added to the table currently 2603 ** under construction in the pParse->pNewTable field. 2604 ** 2605 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2606 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2607 */ 2608 void sqlite3CreateForeignKey( 2609 Parse *pParse, /* Parsing context */ 2610 ExprList *pFromCol, /* Columns in this table that point to other table */ 2611 Token *pTo, /* Name of the other table */ 2612 ExprList *pToCol, /* Columns in the other table */ 2613 int flags /* Conflict resolution algorithms. */ 2614 ){ 2615 sqlite3 *db = pParse->db; 2616 #ifndef SQLITE_OMIT_FOREIGN_KEY 2617 FKey *pFKey = 0; 2618 FKey *pNextTo; 2619 Table *p = pParse->pNewTable; 2620 int nByte; 2621 int i; 2622 int nCol; 2623 char *z; 2624 2625 assert( pTo!=0 ); 2626 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2627 if( pFromCol==0 ){ 2628 int iCol = p->nCol-1; 2629 if( NEVER(iCol<0) ) goto fk_end; 2630 if( pToCol && pToCol->nExpr!=1 ){ 2631 sqlite3ErrorMsg(pParse, "foreign key on %s" 2632 " should reference only one column of table %T", 2633 p->aCol[iCol].zName, pTo); 2634 goto fk_end; 2635 } 2636 nCol = 1; 2637 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2638 sqlite3ErrorMsg(pParse, 2639 "number of columns in foreign key does not match the number of " 2640 "columns in the referenced table"); 2641 goto fk_end; 2642 }else{ 2643 nCol = pFromCol->nExpr; 2644 } 2645 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2646 if( pToCol ){ 2647 for(i=0; i<pToCol->nExpr; i++){ 2648 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2649 } 2650 } 2651 pFKey = sqlite3DbMallocZero(db, nByte ); 2652 if( pFKey==0 ){ 2653 goto fk_end; 2654 } 2655 pFKey->pFrom = p; 2656 pFKey->pNextFrom = p->pFKey; 2657 z = (char*)&pFKey->aCol[nCol]; 2658 pFKey->zTo = z; 2659 memcpy(z, pTo->z, pTo->n); 2660 z[pTo->n] = 0; 2661 sqlite3Dequote(z); 2662 z += pTo->n+1; 2663 pFKey->nCol = nCol; 2664 if( pFromCol==0 ){ 2665 pFKey->aCol[0].iFrom = p->nCol-1; 2666 }else{ 2667 for(i=0; i<nCol; i++){ 2668 int j; 2669 for(j=0; j<p->nCol; j++){ 2670 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2671 pFKey->aCol[i].iFrom = j; 2672 break; 2673 } 2674 } 2675 if( j>=p->nCol ){ 2676 sqlite3ErrorMsg(pParse, 2677 "unknown column \"%s\" in foreign key definition", 2678 pFromCol->a[i].zName); 2679 goto fk_end; 2680 } 2681 } 2682 } 2683 if( pToCol ){ 2684 for(i=0; i<nCol; i++){ 2685 int n = sqlite3Strlen30(pToCol->a[i].zName); 2686 pFKey->aCol[i].zCol = z; 2687 memcpy(z, pToCol->a[i].zName, n); 2688 z[n] = 0; 2689 z += n+1; 2690 } 2691 } 2692 pFKey->isDeferred = 0; 2693 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2694 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2695 2696 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2697 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2698 pFKey->zTo, (void *)pFKey 2699 ); 2700 if( pNextTo==pFKey ){ 2701 sqlite3OomFault(db); 2702 goto fk_end; 2703 } 2704 if( pNextTo ){ 2705 assert( pNextTo->pPrevTo==0 ); 2706 pFKey->pNextTo = pNextTo; 2707 pNextTo->pPrevTo = pFKey; 2708 } 2709 2710 /* Link the foreign key to the table as the last step. 2711 */ 2712 p->pFKey = pFKey; 2713 pFKey = 0; 2714 2715 fk_end: 2716 sqlite3DbFree(db, pFKey); 2717 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2718 sqlite3ExprListDelete(db, pFromCol); 2719 sqlite3ExprListDelete(db, pToCol); 2720 } 2721 2722 /* 2723 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2724 ** clause is seen as part of a foreign key definition. The isDeferred 2725 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2726 ** The behavior of the most recently created foreign key is adjusted 2727 ** accordingly. 2728 */ 2729 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2730 #ifndef SQLITE_OMIT_FOREIGN_KEY 2731 Table *pTab; 2732 FKey *pFKey; 2733 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2734 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2735 pFKey->isDeferred = (u8)isDeferred; 2736 #endif 2737 } 2738 2739 /* 2740 ** Generate code that will erase and refill index *pIdx. This is 2741 ** used to initialize a newly created index or to recompute the 2742 ** content of an index in response to a REINDEX command. 2743 ** 2744 ** if memRootPage is not negative, it means that the index is newly 2745 ** created. The register specified by memRootPage contains the 2746 ** root page number of the index. If memRootPage is negative, then 2747 ** the index already exists and must be cleared before being refilled and 2748 ** the root page number of the index is taken from pIndex->tnum. 2749 */ 2750 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2751 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2752 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2753 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2754 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2755 int addr1; /* Address of top of loop */ 2756 int addr2; /* Address to jump to for next iteration */ 2757 int tnum; /* Root page of index */ 2758 int iPartIdxLabel; /* Jump to this label to skip a row */ 2759 Vdbe *v; /* Generate code into this virtual machine */ 2760 KeyInfo *pKey; /* KeyInfo for index */ 2761 int regRecord; /* Register holding assembled index record */ 2762 sqlite3 *db = pParse->db; /* The database connection */ 2763 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2764 2765 #ifndef SQLITE_OMIT_AUTHORIZATION 2766 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2767 db->aDb[iDb].zDbSName ) ){ 2768 return; 2769 } 2770 #endif 2771 2772 /* Require a write-lock on the table to perform this operation */ 2773 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2774 2775 v = sqlite3GetVdbe(pParse); 2776 if( v==0 ) return; 2777 if( memRootPage>=0 ){ 2778 tnum = memRootPage; 2779 }else{ 2780 tnum = pIndex->tnum; 2781 } 2782 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2783 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2784 2785 /* Open the sorter cursor if we are to use one. */ 2786 iSorter = pParse->nTab++; 2787 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2788 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2789 2790 /* Open the table. Loop through all rows of the table, inserting index 2791 ** records into the sorter. */ 2792 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2793 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2794 regRecord = sqlite3GetTempReg(pParse); 2795 2796 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2797 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2798 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2799 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2800 sqlite3VdbeJumpHere(v, addr1); 2801 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2802 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2803 (char *)pKey, P4_KEYINFO); 2804 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2805 2806 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2807 if( IsUniqueIndex(pIndex) ){ 2808 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2809 sqlite3VdbeGoto(v, j2); 2810 addr2 = sqlite3VdbeCurrentAddr(v); 2811 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2812 pIndex->nKeyCol); VdbeCoverage(v); 2813 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2814 }else{ 2815 addr2 = sqlite3VdbeCurrentAddr(v); 2816 } 2817 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2818 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2819 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2820 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2821 sqlite3ReleaseTempReg(pParse, regRecord); 2822 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2823 sqlite3VdbeJumpHere(v, addr1); 2824 2825 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2826 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2827 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2828 } 2829 2830 /* 2831 ** Allocate heap space to hold an Index object with nCol columns. 2832 ** 2833 ** Increase the allocation size to provide an extra nExtra bytes 2834 ** of 8-byte aligned space after the Index object and return a 2835 ** pointer to this extra space in *ppExtra. 2836 */ 2837 Index *sqlite3AllocateIndexObject( 2838 sqlite3 *db, /* Database connection */ 2839 i16 nCol, /* Total number of columns in the index */ 2840 int nExtra, /* Number of bytes of extra space to alloc */ 2841 char **ppExtra /* Pointer to the "extra" space */ 2842 ){ 2843 Index *p; /* Allocated index object */ 2844 int nByte; /* Bytes of space for Index object + arrays */ 2845 2846 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2847 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2848 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2849 sizeof(i16)*nCol + /* Index.aiColumn */ 2850 sizeof(u8)*nCol); /* Index.aSortOrder */ 2851 p = sqlite3DbMallocZero(db, nByte + nExtra); 2852 if( p ){ 2853 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2854 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2855 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2856 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2857 p->aSortOrder = (u8*)pExtra; 2858 p->nColumn = nCol; 2859 p->nKeyCol = nCol - 1; 2860 *ppExtra = ((char*)p) + nByte; 2861 } 2862 return p; 2863 } 2864 2865 /* 2866 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2867 ** and pTblList is the name of the table that is to be indexed. Both will 2868 ** be NULL for a primary key or an index that is created to satisfy a 2869 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2870 ** as the table to be indexed. pParse->pNewTable is a table that is 2871 ** currently being constructed by a CREATE TABLE statement. 2872 ** 2873 ** pList is a list of columns to be indexed. pList will be NULL if this 2874 ** is a primary key or unique-constraint on the most recent column added 2875 ** to the table currently under construction. 2876 */ 2877 void sqlite3CreateIndex( 2878 Parse *pParse, /* All information about this parse */ 2879 Token *pName1, /* First part of index name. May be NULL */ 2880 Token *pName2, /* Second part of index name. May be NULL */ 2881 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2882 ExprList *pList, /* A list of columns to be indexed */ 2883 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2884 Token *pStart, /* The CREATE token that begins this statement */ 2885 Expr *pPIWhere, /* WHERE clause for partial indices */ 2886 int sortOrder, /* Sort order of primary key when pList==NULL */ 2887 int ifNotExist, /* Omit error if index already exists */ 2888 u8 idxType /* The index type */ 2889 ){ 2890 Table *pTab = 0; /* Table to be indexed */ 2891 Index *pIndex = 0; /* The index to be created */ 2892 char *zName = 0; /* Name of the index */ 2893 int nName; /* Number of characters in zName */ 2894 int i, j; 2895 DbFixer sFix; /* For assigning database names to pTable */ 2896 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2897 sqlite3 *db = pParse->db; 2898 Db *pDb; /* The specific table containing the indexed database */ 2899 int iDb; /* Index of the database that is being written */ 2900 Token *pName = 0; /* Unqualified name of the index to create */ 2901 struct ExprList_item *pListItem; /* For looping over pList */ 2902 int nExtra = 0; /* Space allocated for zExtra[] */ 2903 int nExtraCol; /* Number of extra columns needed */ 2904 char *zExtra = 0; /* Extra space after the Index object */ 2905 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2906 2907 if( db->mallocFailed || pParse->nErr>0 ){ 2908 goto exit_create_index; 2909 } 2910 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2911 goto exit_create_index; 2912 } 2913 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2914 goto exit_create_index; 2915 } 2916 2917 /* 2918 ** Find the table that is to be indexed. Return early if not found. 2919 */ 2920 if( pTblName!=0 ){ 2921 2922 /* Use the two-part index name to determine the database 2923 ** to search for the table. 'Fix' the table name to this db 2924 ** before looking up the table. 2925 */ 2926 assert( pName1 && pName2 ); 2927 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2928 if( iDb<0 ) goto exit_create_index; 2929 assert( pName && pName->z ); 2930 2931 #ifndef SQLITE_OMIT_TEMPDB 2932 /* If the index name was unqualified, check if the table 2933 ** is a temp table. If so, set the database to 1. Do not do this 2934 ** if initialising a database schema. 2935 */ 2936 if( !db->init.busy ){ 2937 pTab = sqlite3SrcListLookup(pParse, pTblName); 2938 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2939 iDb = 1; 2940 } 2941 } 2942 #endif 2943 2944 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2945 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2946 /* Because the parser constructs pTblName from a single identifier, 2947 ** sqlite3FixSrcList can never fail. */ 2948 assert(0); 2949 } 2950 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2951 assert( db->mallocFailed==0 || pTab==0 ); 2952 if( pTab==0 ) goto exit_create_index; 2953 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2954 sqlite3ErrorMsg(pParse, 2955 "cannot create a TEMP index on non-TEMP table \"%s\"", 2956 pTab->zName); 2957 goto exit_create_index; 2958 } 2959 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2960 }else{ 2961 assert( pName==0 ); 2962 assert( pStart==0 ); 2963 pTab = pParse->pNewTable; 2964 if( !pTab ) goto exit_create_index; 2965 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2966 } 2967 pDb = &db->aDb[iDb]; 2968 2969 assert( pTab!=0 ); 2970 assert( pParse->nErr==0 ); 2971 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2972 && db->init.busy==0 2973 #if SQLITE_USER_AUTHENTICATION 2974 && sqlite3UserAuthTable(pTab->zName)==0 2975 #endif 2976 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2977 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2978 goto exit_create_index; 2979 } 2980 #ifndef SQLITE_OMIT_VIEW 2981 if( pTab->pSelect ){ 2982 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2983 goto exit_create_index; 2984 } 2985 #endif 2986 #ifndef SQLITE_OMIT_VIRTUALTABLE 2987 if( IsVirtual(pTab) ){ 2988 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2989 goto exit_create_index; 2990 } 2991 #endif 2992 2993 /* 2994 ** Find the name of the index. Make sure there is not already another 2995 ** index or table with the same name. 2996 ** 2997 ** Exception: If we are reading the names of permanent indices from the 2998 ** sqlite_master table (because some other process changed the schema) and 2999 ** one of the index names collides with the name of a temporary table or 3000 ** index, then we will continue to process this index. 3001 ** 3002 ** If pName==0 it means that we are 3003 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3004 ** own name. 3005 */ 3006 if( pName ){ 3007 zName = sqlite3NameFromToken(db, pName); 3008 if( zName==0 ) goto exit_create_index; 3009 assert( pName->z!=0 ); 3010 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3011 goto exit_create_index; 3012 } 3013 if( !db->init.busy ){ 3014 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3015 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3016 goto exit_create_index; 3017 } 3018 } 3019 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3020 if( !ifNotExist ){ 3021 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3022 }else{ 3023 assert( !db->init.busy ); 3024 sqlite3CodeVerifySchema(pParse, iDb); 3025 } 3026 goto exit_create_index; 3027 } 3028 }else{ 3029 int n; 3030 Index *pLoop; 3031 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3032 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3033 if( zName==0 ){ 3034 goto exit_create_index; 3035 } 3036 3037 /* Automatic index names generated from within sqlite3_declare_vtab() 3038 ** must have names that are distinct from normal automatic index names. 3039 ** The following statement converts "sqlite3_autoindex..." into 3040 ** "sqlite3_butoindex..." in order to make the names distinct. 3041 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3042 if( IN_DECLARE_VTAB ) zName[7]++; 3043 } 3044 3045 /* Check for authorization to create an index. 3046 */ 3047 #ifndef SQLITE_OMIT_AUTHORIZATION 3048 { 3049 const char *zDb = pDb->zDbSName; 3050 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3051 goto exit_create_index; 3052 } 3053 i = SQLITE_CREATE_INDEX; 3054 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3055 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3056 goto exit_create_index; 3057 } 3058 } 3059 #endif 3060 3061 /* If pList==0, it means this routine was called to make a primary 3062 ** key out of the last column added to the table under construction. 3063 ** So create a fake list to simulate this. 3064 */ 3065 if( pList==0 ){ 3066 Token prevCol; 3067 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3068 pList = sqlite3ExprListAppend(pParse, 0, 3069 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3070 if( pList==0 ) goto exit_create_index; 3071 assert( pList->nExpr==1 ); 3072 sqlite3ExprListSetSortOrder(pList, sortOrder); 3073 }else{ 3074 sqlite3ExprListCheckLength(pParse, pList, "index"); 3075 } 3076 3077 /* Figure out how many bytes of space are required to store explicitly 3078 ** specified collation sequence names. 3079 */ 3080 for(i=0; i<pList->nExpr; i++){ 3081 Expr *pExpr = pList->a[i].pExpr; 3082 assert( pExpr!=0 ); 3083 if( pExpr->op==TK_COLLATE ){ 3084 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3085 } 3086 } 3087 3088 /* 3089 ** Allocate the index structure. 3090 */ 3091 nName = sqlite3Strlen30(zName); 3092 nExtraCol = pPk ? pPk->nKeyCol : 1; 3093 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3094 nName + nExtra + 1, &zExtra); 3095 if( db->mallocFailed ){ 3096 goto exit_create_index; 3097 } 3098 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3099 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3100 pIndex->zName = zExtra; 3101 zExtra += nName + 1; 3102 memcpy(pIndex->zName, zName, nName+1); 3103 pIndex->pTable = pTab; 3104 pIndex->onError = (u8)onError; 3105 pIndex->uniqNotNull = onError!=OE_None; 3106 pIndex->idxType = idxType; 3107 pIndex->pSchema = db->aDb[iDb].pSchema; 3108 pIndex->nKeyCol = pList->nExpr; 3109 if( pPIWhere ){ 3110 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3111 pIndex->pPartIdxWhere = pPIWhere; 3112 pPIWhere = 0; 3113 } 3114 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3115 3116 /* Check to see if we should honor DESC requests on index columns 3117 */ 3118 if( pDb->pSchema->file_format>=4 ){ 3119 sortOrderMask = -1; /* Honor DESC */ 3120 }else{ 3121 sortOrderMask = 0; /* Ignore DESC */ 3122 } 3123 3124 /* Analyze the list of expressions that form the terms of the index and 3125 ** report any errors. In the common case where the expression is exactly 3126 ** a table column, store that column in aiColumn[]. For general expressions, 3127 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3128 ** 3129 ** TODO: Issue a warning if two or more columns of the index are identical. 3130 ** TODO: Issue a warning if the table primary key is used as part of the 3131 ** index key. 3132 */ 3133 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3134 Expr *pCExpr; /* The i-th index expression */ 3135 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3136 const char *zColl; /* Collation sequence name */ 3137 3138 sqlite3StringToId(pListItem->pExpr); 3139 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3140 if( pParse->nErr ) goto exit_create_index; 3141 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3142 if( pCExpr->op!=TK_COLUMN ){ 3143 if( pTab==pParse->pNewTable ){ 3144 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3145 "UNIQUE constraints"); 3146 goto exit_create_index; 3147 } 3148 if( pIndex->aColExpr==0 ){ 3149 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3150 pIndex->aColExpr = pCopy; 3151 if( !db->mallocFailed ){ 3152 assert( pCopy!=0 ); 3153 pListItem = &pCopy->a[i]; 3154 } 3155 } 3156 j = XN_EXPR; 3157 pIndex->aiColumn[i] = XN_EXPR; 3158 pIndex->uniqNotNull = 0; 3159 }else{ 3160 j = pCExpr->iColumn; 3161 assert( j<=0x7fff ); 3162 if( j<0 ){ 3163 j = pTab->iPKey; 3164 }else if( pTab->aCol[j].notNull==0 ){ 3165 pIndex->uniqNotNull = 0; 3166 } 3167 pIndex->aiColumn[i] = (i16)j; 3168 } 3169 zColl = 0; 3170 if( pListItem->pExpr->op==TK_COLLATE ){ 3171 int nColl; 3172 zColl = pListItem->pExpr->u.zToken; 3173 nColl = sqlite3Strlen30(zColl) + 1; 3174 assert( nExtra>=nColl ); 3175 memcpy(zExtra, zColl, nColl); 3176 zColl = zExtra; 3177 zExtra += nColl; 3178 nExtra -= nColl; 3179 }else if( j>=0 ){ 3180 zColl = pTab->aCol[j].zColl; 3181 } 3182 if( !zColl ) zColl = sqlite3StrBINARY; 3183 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3184 goto exit_create_index; 3185 } 3186 pIndex->azColl[i] = zColl; 3187 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3188 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3189 } 3190 3191 /* Append the table key to the end of the index. For WITHOUT ROWID 3192 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3193 ** normal tables (when pPk==0) this will be the rowid. 3194 */ 3195 if( pPk ){ 3196 for(j=0; j<pPk->nKeyCol; j++){ 3197 int x = pPk->aiColumn[j]; 3198 assert( x>=0 ); 3199 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3200 pIndex->nColumn--; 3201 }else{ 3202 pIndex->aiColumn[i] = x; 3203 pIndex->azColl[i] = pPk->azColl[j]; 3204 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3205 i++; 3206 } 3207 } 3208 assert( i==pIndex->nColumn ); 3209 }else{ 3210 pIndex->aiColumn[i] = XN_ROWID; 3211 pIndex->azColl[i] = sqlite3StrBINARY; 3212 } 3213 sqlite3DefaultRowEst(pIndex); 3214 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3215 3216 /* If this index contains every column of its table, then mark 3217 ** it as a covering index */ 3218 assert( HasRowid(pTab) 3219 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3220 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3221 pIndex->isCovering = 1; 3222 for(j=0; j<pTab->nCol; j++){ 3223 if( j==pTab->iPKey ) continue; 3224 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3225 pIndex->isCovering = 0; 3226 break; 3227 } 3228 } 3229 3230 if( pTab==pParse->pNewTable ){ 3231 /* This routine has been called to create an automatic index as a 3232 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3233 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3234 ** i.e. one of: 3235 ** 3236 ** CREATE TABLE t(x PRIMARY KEY, y); 3237 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3238 ** 3239 ** Either way, check to see if the table already has such an index. If 3240 ** so, don't bother creating this one. This only applies to 3241 ** automatically created indices. Users can do as they wish with 3242 ** explicit indices. 3243 ** 3244 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3245 ** (and thus suppressing the second one) even if they have different 3246 ** sort orders. 3247 ** 3248 ** If there are different collating sequences or if the columns of 3249 ** the constraint occur in different orders, then the constraints are 3250 ** considered distinct and both result in separate indices. 3251 */ 3252 Index *pIdx; 3253 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3254 int k; 3255 assert( IsUniqueIndex(pIdx) ); 3256 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3257 assert( IsUniqueIndex(pIndex) ); 3258 3259 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3260 for(k=0; k<pIdx->nKeyCol; k++){ 3261 const char *z1; 3262 const char *z2; 3263 assert( pIdx->aiColumn[k]>=0 ); 3264 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3265 z1 = pIdx->azColl[k]; 3266 z2 = pIndex->azColl[k]; 3267 if( sqlite3StrICmp(z1, z2) ) break; 3268 } 3269 if( k==pIdx->nKeyCol ){ 3270 if( pIdx->onError!=pIndex->onError ){ 3271 /* This constraint creates the same index as a previous 3272 ** constraint specified somewhere in the CREATE TABLE statement. 3273 ** However the ON CONFLICT clauses are different. If both this 3274 ** constraint and the previous equivalent constraint have explicit 3275 ** ON CONFLICT clauses this is an error. Otherwise, use the 3276 ** explicitly specified behavior for the index. 3277 */ 3278 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3279 sqlite3ErrorMsg(pParse, 3280 "conflicting ON CONFLICT clauses specified", 0); 3281 } 3282 if( pIdx->onError==OE_Default ){ 3283 pIdx->onError = pIndex->onError; 3284 } 3285 } 3286 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3287 goto exit_create_index; 3288 } 3289 } 3290 } 3291 3292 /* Link the new Index structure to its table and to the other 3293 ** in-memory database structures. 3294 */ 3295 assert( pParse->nErr==0 ); 3296 if( db->init.busy ){ 3297 Index *p; 3298 assert( !IN_DECLARE_VTAB ); 3299 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3300 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3301 pIndex->zName, pIndex); 3302 if( p ){ 3303 assert( p==pIndex ); /* Malloc must have failed */ 3304 sqlite3OomFault(db); 3305 goto exit_create_index; 3306 } 3307 db->flags |= SQLITE_InternChanges; 3308 if( pTblName!=0 ){ 3309 pIndex->tnum = db->init.newTnum; 3310 } 3311 } 3312 3313 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3314 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3315 ** emit code to allocate the index rootpage on disk and make an entry for 3316 ** the index in the sqlite_master table and populate the index with 3317 ** content. But, do not do this if we are simply reading the sqlite_master 3318 ** table to parse the schema, or if this index is the PRIMARY KEY index 3319 ** of a WITHOUT ROWID table. 3320 ** 3321 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3322 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3323 ** has just been created, it contains no data and the index initialization 3324 ** step can be skipped. 3325 */ 3326 else if( HasRowid(pTab) || pTblName!=0 ){ 3327 Vdbe *v; 3328 char *zStmt; 3329 int iMem = ++pParse->nMem; 3330 3331 v = sqlite3GetVdbe(pParse); 3332 if( v==0 ) goto exit_create_index; 3333 3334 sqlite3BeginWriteOperation(pParse, 1, iDb); 3335 3336 /* Create the rootpage for the index using CreateIndex. But before 3337 ** doing so, code a Noop instruction and store its address in 3338 ** Index.tnum. This is required in case this index is actually a 3339 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3340 ** that case the convertToWithoutRowidTable() routine will replace 3341 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3342 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3343 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3344 3345 /* Gather the complete text of the CREATE INDEX statement into 3346 ** the zStmt variable 3347 */ 3348 if( pStart ){ 3349 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3350 if( pName->z[n-1]==';' ) n--; 3351 /* A named index with an explicit CREATE INDEX statement */ 3352 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3353 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3354 }else{ 3355 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3356 /* zStmt = sqlite3MPrintf(""); */ 3357 zStmt = 0; 3358 } 3359 3360 /* Add an entry in sqlite_master for this index 3361 */ 3362 sqlite3NestedParse(pParse, 3363 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3364 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), 3365 pIndex->zName, 3366 pTab->zName, 3367 iMem, 3368 zStmt 3369 ); 3370 sqlite3DbFree(db, zStmt); 3371 3372 /* Fill the index with data and reparse the schema. Code an OP_Expire 3373 ** to invalidate all pre-compiled statements. 3374 */ 3375 if( pTblName ){ 3376 sqlite3RefillIndex(pParse, pIndex, iMem); 3377 sqlite3ChangeCookie(pParse, iDb); 3378 sqlite3VdbeAddParseSchemaOp(v, iDb, 3379 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3380 sqlite3VdbeAddOp0(v, OP_Expire); 3381 } 3382 3383 sqlite3VdbeJumpHere(v, pIndex->tnum); 3384 } 3385 3386 /* When adding an index to the list of indices for a table, make 3387 ** sure all indices labeled OE_Replace come after all those labeled 3388 ** OE_Ignore. This is necessary for the correct constraint check 3389 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3390 ** UPDATE and INSERT statements. 3391 */ 3392 if( db->init.busy || pTblName==0 ){ 3393 if( onError!=OE_Replace || pTab->pIndex==0 3394 || pTab->pIndex->onError==OE_Replace){ 3395 pIndex->pNext = pTab->pIndex; 3396 pTab->pIndex = pIndex; 3397 }else{ 3398 Index *pOther = pTab->pIndex; 3399 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3400 pOther = pOther->pNext; 3401 } 3402 pIndex->pNext = pOther->pNext; 3403 pOther->pNext = pIndex; 3404 } 3405 pIndex = 0; 3406 } 3407 3408 /* Clean up before exiting */ 3409 exit_create_index: 3410 if( pIndex ) freeIndex(db, pIndex); 3411 sqlite3ExprDelete(db, pPIWhere); 3412 sqlite3ExprListDelete(db, pList); 3413 sqlite3SrcListDelete(db, pTblName); 3414 sqlite3DbFree(db, zName); 3415 } 3416 3417 /* 3418 ** Fill the Index.aiRowEst[] array with default information - information 3419 ** to be used when we have not run the ANALYZE command. 3420 ** 3421 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3422 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3423 ** number of rows in the table that match any particular value of the 3424 ** first column of the index. aiRowEst[2] is an estimate of the number 3425 ** of rows that match any particular combination of the first 2 columns 3426 ** of the index. And so forth. It must always be the case that 3427 * 3428 ** aiRowEst[N]<=aiRowEst[N-1] 3429 ** aiRowEst[N]>=1 3430 ** 3431 ** Apart from that, we have little to go on besides intuition as to 3432 ** how aiRowEst[] should be initialized. The numbers generated here 3433 ** are based on typical values found in actual indices. 3434 */ 3435 void sqlite3DefaultRowEst(Index *pIdx){ 3436 /* 10, 9, 8, 7, 6 */ 3437 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3438 LogEst *a = pIdx->aiRowLogEst; 3439 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3440 int i; 3441 3442 /* Set the first entry (number of rows in the index) to the estimated 3443 ** number of rows in the table, or half the number of rows in the table 3444 ** for a partial index. But do not let the estimate drop below 10. */ 3445 a[0] = pIdx->pTable->nRowLogEst; 3446 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3447 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3448 3449 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3450 ** 6 and each subsequent value (if any) is 5. */ 3451 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3452 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3453 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3454 } 3455 3456 assert( 0==sqlite3LogEst(1) ); 3457 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3458 } 3459 3460 /* 3461 ** This routine will drop an existing named index. This routine 3462 ** implements the DROP INDEX statement. 3463 */ 3464 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3465 Index *pIndex; 3466 Vdbe *v; 3467 sqlite3 *db = pParse->db; 3468 int iDb; 3469 3470 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3471 if( db->mallocFailed ){ 3472 goto exit_drop_index; 3473 } 3474 assert( pName->nSrc==1 ); 3475 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3476 goto exit_drop_index; 3477 } 3478 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3479 if( pIndex==0 ){ 3480 if( !ifExists ){ 3481 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3482 }else{ 3483 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3484 } 3485 pParse->checkSchema = 1; 3486 goto exit_drop_index; 3487 } 3488 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3489 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3490 "or PRIMARY KEY constraint cannot be dropped", 0); 3491 goto exit_drop_index; 3492 } 3493 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3494 #ifndef SQLITE_OMIT_AUTHORIZATION 3495 { 3496 int code = SQLITE_DROP_INDEX; 3497 Table *pTab = pIndex->pTable; 3498 const char *zDb = db->aDb[iDb].zDbSName; 3499 const char *zTab = SCHEMA_TABLE(iDb); 3500 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3501 goto exit_drop_index; 3502 } 3503 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3504 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3505 goto exit_drop_index; 3506 } 3507 } 3508 #endif 3509 3510 /* Generate code to remove the index and from the master table */ 3511 v = sqlite3GetVdbe(pParse); 3512 if( v ){ 3513 sqlite3BeginWriteOperation(pParse, 1, iDb); 3514 sqlite3NestedParse(pParse, 3515 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3516 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), pIndex->zName 3517 ); 3518 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3519 sqlite3ChangeCookie(pParse, iDb); 3520 destroyRootPage(pParse, pIndex->tnum, iDb); 3521 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3522 } 3523 3524 exit_drop_index: 3525 sqlite3SrcListDelete(db, pName); 3526 } 3527 3528 /* 3529 ** pArray is a pointer to an array of objects. Each object in the 3530 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3531 ** to extend the array so that there is space for a new object at the end. 3532 ** 3533 ** When this function is called, *pnEntry contains the current size of 3534 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3535 ** in total). 3536 ** 3537 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3538 ** space allocated for the new object is zeroed, *pnEntry updated to 3539 ** reflect the new size of the array and a pointer to the new allocation 3540 ** returned. *pIdx is set to the index of the new array entry in this case. 3541 ** 3542 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3543 ** unchanged and a copy of pArray returned. 3544 */ 3545 void *sqlite3ArrayAllocate( 3546 sqlite3 *db, /* Connection to notify of malloc failures */ 3547 void *pArray, /* Array of objects. Might be reallocated */ 3548 int szEntry, /* Size of each object in the array */ 3549 int *pnEntry, /* Number of objects currently in use */ 3550 int *pIdx /* Write the index of a new slot here */ 3551 ){ 3552 char *z; 3553 int n = *pnEntry; 3554 if( (n & (n-1))==0 ){ 3555 int sz = (n==0) ? 1 : 2*n; 3556 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3557 if( pNew==0 ){ 3558 *pIdx = -1; 3559 return pArray; 3560 } 3561 pArray = pNew; 3562 } 3563 z = (char*)pArray; 3564 memset(&z[n * szEntry], 0, szEntry); 3565 *pIdx = n; 3566 ++*pnEntry; 3567 return pArray; 3568 } 3569 3570 /* 3571 ** Append a new element to the given IdList. Create a new IdList if 3572 ** need be. 3573 ** 3574 ** A new IdList is returned, or NULL if malloc() fails. 3575 */ 3576 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3577 int i; 3578 if( pList==0 ){ 3579 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3580 if( pList==0 ) return 0; 3581 } 3582 pList->a = sqlite3ArrayAllocate( 3583 db, 3584 pList->a, 3585 sizeof(pList->a[0]), 3586 &pList->nId, 3587 &i 3588 ); 3589 if( i<0 ){ 3590 sqlite3IdListDelete(db, pList); 3591 return 0; 3592 } 3593 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3594 return pList; 3595 } 3596 3597 /* 3598 ** Delete an IdList. 3599 */ 3600 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3601 int i; 3602 if( pList==0 ) return; 3603 for(i=0; i<pList->nId; i++){ 3604 sqlite3DbFree(db, pList->a[i].zName); 3605 } 3606 sqlite3DbFree(db, pList->a); 3607 sqlite3DbFree(db, pList); 3608 } 3609 3610 /* 3611 ** Return the index in pList of the identifier named zId. Return -1 3612 ** if not found. 3613 */ 3614 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3615 int i; 3616 if( pList==0 ) return -1; 3617 for(i=0; i<pList->nId; i++){ 3618 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3619 } 3620 return -1; 3621 } 3622 3623 /* 3624 ** Expand the space allocated for the given SrcList object by 3625 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3626 ** New slots are zeroed. 3627 ** 3628 ** For example, suppose a SrcList initially contains two entries: A,B. 3629 ** To append 3 new entries onto the end, do this: 3630 ** 3631 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3632 ** 3633 ** After the call above it would contain: A, B, nil, nil, nil. 3634 ** If the iStart argument had been 1 instead of 2, then the result 3635 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3636 ** the iStart value would be 0. The result then would 3637 ** be: nil, nil, nil, A, B. 3638 ** 3639 ** If a memory allocation fails the SrcList is unchanged. The 3640 ** db->mallocFailed flag will be set to true. 3641 */ 3642 SrcList *sqlite3SrcListEnlarge( 3643 sqlite3 *db, /* Database connection to notify of OOM errors */ 3644 SrcList *pSrc, /* The SrcList to be enlarged */ 3645 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3646 int iStart /* Index in pSrc->a[] of first new slot */ 3647 ){ 3648 int i; 3649 3650 /* Sanity checking on calling parameters */ 3651 assert( iStart>=0 ); 3652 assert( nExtra>=1 ); 3653 assert( pSrc!=0 ); 3654 assert( iStart<=pSrc->nSrc ); 3655 3656 /* Allocate additional space if needed */ 3657 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3658 SrcList *pNew; 3659 int nAlloc = pSrc->nSrc+nExtra; 3660 int nGot; 3661 pNew = sqlite3DbRealloc(db, pSrc, 3662 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3663 if( pNew==0 ){ 3664 assert( db->mallocFailed ); 3665 return pSrc; 3666 } 3667 pSrc = pNew; 3668 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3669 pSrc->nAlloc = nGot; 3670 } 3671 3672 /* Move existing slots that come after the newly inserted slots 3673 ** out of the way */ 3674 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3675 pSrc->a[i+nExtra] = pSrc->a[i]; 3676 } 3677 pSrc->nSrc += nExtra; 3678 3679 /* Zero the newly allocated slots */ 3680 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3681 for(i=iStart; i<iStart+nExtra; i++){ 3682 pSrc->a[i].iCursor = -1; 3683 } 3684 3685 /* Return a pointer to the enlarged SrcList */ 3686 return pSrc; 3687 } 3688 3689 3690 /* 3691 ** Append a new table name to the given SrcList. Create a new SrcList if 3692 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3693 ** 3694 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3695 ** SrcList might be the same as the SrcList that was input or it might be 3696 ** a new one. If an OOM error does occurs, then the prior value of pList 3697 ** that is input to this routine is automatically freed. 3698 ** 3699 ** If pDatabase is not null, it means that the table has an optional 3700 ** database name prefix. Like this: "database.table". The pDatabase 3701 ** points to the table name and the pTable points to the database name. 3702 ** The SrcList.a[].zName field is filled with the table name which might 3703 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3704 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3705 ** or with NULL if no database is specified. 3706 ** 3707 ** In other words, if call like this: 3708 ** 3709 ** sqlite3SrcListAppend(D,A,B,0); 3710 ** 3711 ** Then B is a table name and the database name is unspecified. If called 3712 ** like this: 3713 ** 3714 ** sqlite3SrcListAppend(D,A,B,C); 3715 ** 3716 ** Then C is the table name and B is the database name. If C is defined 3717 ** then so is B. In other words, we never have a case where: 3718 ** 3719 ** sqlite3SrcListAppend(D,A,0,C); 3720 ** 3721 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3722 ** before being added to the SrcList. 3723 */ 3724 SrcList *sqlite3SrcListAppend( 3725 sqlite3 *db, /* Connection to notify of malloc failures */ 3726 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3727 Token *pTable, /* Table to append */ 3728 Token *pDatabase /* Database of the table */ 3729 ){ 3730 struct SrcList_item *pItem; 3731 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3732 assert( db!=0 ); 3733 if( pList==0 ){ 3734 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3735 if( pList==0 ) return 0; 3736 pList->nAlloc = 1; 3737 pList->nSrc = 0; 3738 } 3739 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3740 if( db->mallocFailed ){ 3741 sqlite3SrcListDelete(db, pList); 3742 return 0; 3743 } 3744 pItem = &pList->a[pList->nSrc-1]; 3745 if( pDatabase && pDatabase->z==0 ){ 3746 pDatabase = 0; 3747 } 3748 if( pDatabase ){ 3749 Token *pTemp = pDatabase; 3750 pDatabase = pTable; 3751 pTable = pTemp; 3752 } 3753 pItem->zName = sqlite3NameFromToken(db, pTable); 3754 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3755 return pList; 3756 } 3757 3758 /* 3759 ** Assign VdbeCursor index numbers to all tables in a SrcList 3760 */ 3761 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3762 int i; 3763 struct SrcList_item *pItem; 3764 assert(pList || pParse->db->mallocFailed ); 3765 if( pList ){ 3766 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3767 if( pItem->iCursor>=0 ) break; 3768 pItem->iCursor = pParse->nTab++; 3769 if( pItem->pSelect ){ 3770 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3771 } 3772 } 3773 } 3774 } 3775 3776 /* 3777 ** Delete an entire SrcList including all its substructure. 3778 */ 3779 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3780 int i; 3781 struct SrcList_item *pItem; 3782 if( pList==0 ) return; 3783 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3784 sqlite3DbFree(db, pItem->zDatabase); 3785 sqlite3DbFree(db, pItem->zName); 3786 sqlite3DbFree(db, pItem->zAlias); 3787 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3788 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3789 sqlite3DeleteTable(db, pItem->pTab); 3790 sqlite3SelectDelete(db, pItem->pSelect); 3791 sqlite3ExprDelete(db, pItem->pOn); 3792 sqlite3IdListDelete(db, pItem->pUsing); 3793 } 3794 sqlite3DbFree(db, pList); 3795 } 3796 3797 /* 3798 ** This routine is called by the parser to add a new term to the 3799 ** end of a growing FROM clause. The "p" parameter is the part of 3800 ** the FROM clause that has already been constructed. "p" is NULL 3801 ** if this is the first term of the FROM clause. pTable and pDatabase 3802 ** are the name of the table and database named in the FROM clause term. 3803 ** pDatabase is NULL if the database name qualifier is missing - the 3804 ** usual case. If the term has an alias, then pAlias points to the 3805 ** alias token. If the term is a subquery, then pSubquery is the 3806 ** SELECT statement that the subquery encodes. The pTable and 3807 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3808 ** parameters are the content of the ON and USING clauses. 3809 ** 3810 ** Return a new SrcList which encodes is the FROM with the new 3811 ** term added. 3812 */ 3813 SrcList *sqlite3SrcListAppendFromTerm( 3814 Parse *pParse, /* Parsing context */ 3815 SrcList *p, /* The left part of the FROM clause already seen */ 3816 Token *pTable, /* Name of the table to add to the FROM clause */ 3817 Token *pDatabase, /* Name of the database containing pTable */ 3818 Token *pAlias, /* The right-hand side of the AS subexpression */ 3819 Select *pSubquery, /* A subquery used in place of a table name */ 3820 Expr *pOn, /* The ON clause of a join */ 3821 IdList *pUsing /* The USING clause of a join */ 3822 ){ 3823 struct SrcList_item *pItem; 3824 sqlite3 *db = pParse->db; 3825 if( !p && (pOn || pUsing) ){ 3826 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3827 (pOn ? "ON" : "USING") 3828 ); 3829 goto append_from_error; 3830 } 3831 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3832 if( p==0 || NEVER(p->nSrc==0) ){ 3833 goto append_from_error; 3834 } 3835 pItem = &p->a[p->nSrc-1]; 3836 assert( pAlias!=0 ); 3837 if( pAlias->n ){ 3838 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3839 } 3840 pItem->pSelect = pSubquery; 3841 pItem->pOn = pOn; 3842 pItem->pUsing = pUsing; 3843 return p; 3844 3845 append_from_error: 3846 assert( p==0 ); 3847 sqlite3ExprDelete(db, pOn); 3848 sqlite3IdListDelete(db, pUsing); 3849 sqlite3SelectDelete(db, pSubquery); 3850 return 0; 3851 } 3852 3853 /* 3854 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3855 ** element of the source-list passed as the second argument. 3856 */ 3857 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3858 assert( pIndexedBy!=0 ); 3859 if( p && ALWAYS(p->nSrc>0) ){ 3860 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3861 assert( pItem->fg.notIndexed==0 ); 3862 assert( pItem->fg.isIndexedBy==0 ); 3863 assert( pItem->fg.isTabFunc==0 ); 3864 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3865 /* A "NOT INDEXED" clause was supplied. See parse.y 3866 ** construct "indexed_opt" for details. */ 3867 pItem->fg.notIndexed = 1; 3868 }else{ 3869 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3870 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3871 } 3872 } 3873 } 3874 3875 /* 3876 ** Add the list of function arguments to the SrcList entry for a 3877 ** table-valued-function. 3878 */ 3879 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3880 if( p ){ 3881 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3882 assert( pItem->fg.notIndexed==0 ); 3883 assert( pItem->fg.isIndexedBy==0 ); 3884 assert( pItem->fg.isTabFunc==0 ); 3885 pItem->u1.pFuncArg = pList; 3886 pItem->fg.isTabFunc = 1; 3887 }else{ 3888 sqlite3ExprListDelete(pParse->db, pList); 3889 } 3890 } 3891 3892 /* 3893 ** When building up a FROM clause in the parser, the join operator 3894 ** is initially attached to the left operand. But the code generator 3895 ** expects the join operator to be on the right operand. This routine 3896 ** Shifts all join operators from left to right for an entire FROM 3897 ** clause. 3898 ** 3899 ** Example: Suppose the join is like this: 3900 ** 3901 ** A natural cross join B 3902 ** 3903 ** The operator is "natural cross join". The A and B operands are stored 3904 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3905 ** operator with A. This routine shifts that operator over to B. 3906 */ 3907 void sqlite3SrcListShiftJoinType(SrcList *p){ 3908 if( p ){ 3909 int i; 3910 for(i=p->nSrc-1; i>0; i--){ 3911 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3912 } 3913 p->a[0].fg.jointype = 0; 3914 } 3915 } 3916 3917 /* 3918 ** Generate VDBE code for a BEGIN statement. 3919 */ 3920 void sqlite3BeginTransaction(Parse *pParse, int type){ 3921 sqlite3 *db; 3922 Vdbe *v; 3923 int i; 3924 3925 assert( pParse!=0 ); 3926 db = pParse->db; 3927 assert( db!=0 ); 3928 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3929 return; 3930 } 3931 v = sqlite3GetVdbe(pParse); 3932 if( !v ) return; 3933 if( type!=TK_DEFERRED ){ 3934 for(i=0; i<db->nDb; i++){ 3935 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3936 sqlite3VdbeUsesBtree(v, i); 3937 } 3938 } 3939 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3940 } 3941 3942 /* 3943 ** Generate VDBE code for a COMMIT statement. 3944 */ 3945 void sqlite3CommitTransaction(Parse *pParse){ 3946 Vdbe *v; 3947 3948 assert( pParse!=0 ); 3949 assert( pParse->db!=0 ); 3950 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3951 return; 3952 } 3953 v = sqlite3GetVdbe(pParse); 3954 if( v ){ 3955 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3956 } 3957 } 3958 3959 /* 3960 ** Generate VDBE code for a ROLLBACK statement. 3961 */ 3962 void sqlite3RollbackTransaction(Parse *pParse){ 3963 Vdbe *v; 3964 3965 assert( pParse!=0 ); 3966 assert( pParse->db!=0 ); 3967 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3968 return; 3969 } 3970 v = sqlite3GetVdbe(pParse); 3971 if( v ){ 3972 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3973 } 3974 } 3975 3976 /* 3977 ** This function is called by the parser when it parses a command to create, 3978 ** release or rollback an SQL savepoint. 3979 */ 3980 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3981 char *zName = sqlite3NameFromToken(pParse->db, pName); 3982 if( zName ){ 3983 Vdbe *v = sqlite3GetVdbe(pParse); 3984 #ifndef SQLITE_OMIT_AUTHORIZATION 3985 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3986 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3987 #endif 3988 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3989 sqlite3DbFree(pParse->db, zName); 3990 return; 3991 } 3992 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3993 } 3994 } 3995 3996 /* 3997 ** Make sure the TEMP database is open and available for use. Return 3998 ** the number of errors. Leave any error messages in the pParse structure. 3999 */ 4000 int sqlite3OpenTempDatabase(Parse *pParse){ 4001 sqlite3 *db = pParse->db; 4002 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4003 int rc; 4004 Btree *pBt; 4005 static const int flags = 4006 SQLITE_OPEN_READWRITE | 4007 SQLITE_OPEN_CREATE | 4008 SQLITE_OPEN_EXCLUSIVE | 4009 SQLITE_OPEN_DELETEONCLOSE | 4010 SQLITE_OPEN_TEMP_DB; 4011 4012 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4013 if( rc!=SQLITE_OK ){ 4014 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4015 "file for storing temporary tables"); 4016 pParse->rc = rc; 4017 return 1; 4018 } 4019 db->aDb[1].pBt = pBt; 4020 assert( db->aDb[1].pSchema ); 4021 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4022 sqlite3OomFault(db); 4023 return 1; 4024 } 4025 } 4026 return 0; 4027 } 4028 4029 /* 4030 ** Record the fact that the schema cookie will need to be verified 4031 ** for database iDb. The code to actually verify the schema cookie 4032 ** will occur at the end of the top-level VDBE and will be generated 4033 ** later, by sqlite3FinishCoding(). 4034 */ 4035 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4036 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4037 4038 assert( iDb>=0 && iDb<pParse->db->nDb ); 4039 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4040 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4041 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4042 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4043 DbMaskSet(pToplevel->cookieMask, iDb); 4044 if( !OMIT_TEMPDB && iDb==1 ){ 4045 sqlite3OpenTempDatabase(pToplevel); 4046 } 4047 } 4048 } 4049 4050 /* 4051 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4052 ** attached database. Otherwise, invoke it for the database named zDb only. 4053 */ 4054 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4055 sqlite3 *db = pParse->db; 4056 int i; 4057 for(i=0; i<db->nDb; i++){ 4058 Db *pDb = &db->aDb[i]; 4059 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4060 sqlite3CodeVerifySchema(pParse, i); 4061 } 4062 } 4063 } 4064 4065 /* 4066 ** Generate VDBE code that prepares for doing an operation that 4067 ** might change the database. 4068 ** 4069 ** This routine starts a new transaction if we are not already within 4070 ** a transaction. If we are already within a transaction, then a checkpoint 4071 ** is set if the setStatement parameter is true. A checkpoint should 4072 ** be set for operations that might fail (due to a constraint) part of 4073 ** the way through and which will need to undo some writes without having to 4074 ** rollback the whole transaction. For operations where all constraints 4075 ** can be checked before any changes are made to the database, it is never 4076 ** necessary to undo a write and the checkpoint should not be set. 4077 */ 4078 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4079 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4080 sqlite3CodeVerifySchema(pParse, iDb); 4081 DbMaskSet(pToplevel->writeMask, iDb); 4082 pToplevel->isMultiWrite |= setStatement; 4083 } 4084 4085 /* 4086 ** Indicate that the statement currently under construction might write 4087 ** more than one entry (example: deleting one row then inserting another, 4088 ** inserting multiple rows in a table, or inserting a row and index entries.) 4089 ** If an abort occurs after some of these writes have completed, then it will 4090 ** be necessary to undo the completed writes. 4091 */ 4092 void sqlite3MultiWrite(Parse *pParse){ 4093 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4094 pToplevel->isMultiWrite = 1; 4095 } 4096 4097 /* 4098 ** The code generator calls this routine if is discovers that it is 4099 ** possible to abort a statement prior to completion. In order to 4100 ** perform this abort without corrupting the database, we need to make 4101 ** sure that the statement is protected by a statement transaction. 4102 ** 4103 ** Technically, we only need to set the mayAbort flag if the 4104 ** isMultiWrite flag was previously set. There is a time dependency 4105 ** such that the abort must occur after the multiwrite. This makes 4106 ** some statements involving the REPLACE conflict resolution algorithm 4107 ** go a little faster. But taking advantage of this time dependency 4108 ** makes it more difficult to prove that the code is correct (in 4109 ** particular, it prevents us from writing an effective 4110 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4111 ** to take the safe route and skip the optimization. 4112 */ 4113 void sqlite3MayAbort(Parse *pParse){ 4114 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4115 pToplevel->mayAbort = 1; 4116 } 4117 4118 /* 4119 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4120 ** error. The onError parameter determines which (if any) of the statement 4121 ** and/or current transaction is rolled back. 4122 */ 4123 void sqlite3HaltConstraint( 4124 Parse *pParse, /* Parsing context */ 4125 int errCode, /* extended error code */ 4126 int onError, /* Constraint type */ 4127 char *p4, /* Error message */ 4128 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4129 u8 p5Errmsg /* P5_ErrMsg type */ 4130 ){ 4131 Vdbe *v = sqlite3GetVdbe(pParse); 4132 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4133 if( onError==OE_Abort ){ 4134 sqlite3MayAbort(pParse); 4135 } 4136 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4137 sqlite3VdbeChangeP5(v, p5Errmsg); 4138 } 4139 4140 /* 4141 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4142 */ 4143 void sqlite3UniqueConstraint( 4144 Parse *pParse, /* Parsing context */ 4145 int onError, /* Constraint type */ 4146 Index *pIdx /* The index that triggers the constraint */ 4147 ){ 4148 char *zErr; 4149 int j; 4150 StrAccum errMsg; 4151 Table *pTab = pIdx->pTable; 4152 4153 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4154 if( pIdx->aColExpr ){ 4155 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4156 }else{ 4157 for(j=0; j<pIdx->nKeyCol; j++){ 4158 char *zCol; 4159 assert( pIdx->aiColumn[j]>=0 ); 4160 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4161 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4162 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4163 } 4164 } 4165 zErr = sqlite3StrAccumFinish(&errMsg); 4166 sqlite3HaltConstraint(pParse, 4167 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4168 : SQLITE_CONSTRAINT_UNIQUE, 4169 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4170 } 4171 4172 4173 /* 4174 ** Code an OP_Halt due to non-unique rowid. 4175 */ 4176 void sqlite3RowidConstraint( 4177 Parse *pParse, /* Parsing context */ 4178 int onError, /* Conflict resolution algorithm */ 4179 Table *pTab /* The table with the non-unique rowid */ 4180 ){ 4181 char *zMsg; 4182 int rc; 4183 if( pTab->iPKey>=0 ){ 4184 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4185 pTab->aCol[pTab->iPKey].zName); 4186 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4187 }else{ 4188 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4189 rc = SQLITE_CONSTRAINT_ROWID; 4190 } 4191 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4192 P5_ConstraintUnique); 4193 } 4194 4195 /* 4196 ** Check to see if pIndex uses the collating sequence pColl. Return 4197 ** true if it does and false if it does not. 4198 */ 4199 #ifndef SQLITE_OMIT_REINDEX 4200 static int collationMatch(const char *zColl, Index *pIndex){ 4201 int i; 4202 assert( zColl!=0 ); 4203 for(i=0; i<pIndex->nColumn; i++){ 4204 const char *z = pIndex->azColl[i]; 4205 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4206 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4207 return 1; 4208 } 4209 } 4210 return 0; 4211 } 4212 #endif 4213 4214 /* 4215 ** Recompute all indices of pTab that use the collating sequence pColl. 4216 ** If pColl==0 then recompute all indices of pTab. 4217 */ 4218 #ifndef SQLITE_OMIT_REINDEX 4219 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4220 Index *pIndex; /* An index associated with pTab */ 4221 4222 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4223 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4224 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4225 sqlite3BeginWriteOperation(pParse, 0, iDb); 4226 sqlite3RefillIndex(pParse, pIndex, -1); 4227 } 4228 } 4229 } 4230 #endif 4231 4232 /* 4233 ** Recompute all indices of all tables in all databases where the 4234 ** indices use the collating sequence pColl. If pColl==0 then recompute 4235 ** all indices everywhere. 4236 */ 4237 #ifndef SQLITE_OMIT_REINDEX 4238 static void reindexDatabases(Parse *pParse, char const *zColl){ 4239 Db *pDb; /* A single database */ 4240 int iDb; /* The database index number */ 4241 sqlite3 *db = pParse->db; /* The database connection */ 4242 HashElem *k; /* For looping over tables in pDb */ 4243 Table *pTab; /* A table in the database */ 4244 4245 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4246 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4247 assert( pDb!=0 ); 4248 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4249 pTab = (Table*)sqliteHashData(k); 4250 reindexTable(pParse, pTab, zColl); 4251 } 4252 } 4253 } 4254 #endif 4255 4256 /* 4257 ** Generate code for the REINDEX command. 4258 ** 4259 ** REINDEX -- 1 4260 ** REINDEX <collation> -- 2 4261 ** REINDEX ?<database>.?<tablename> -- 3 4262 ** REINDEX ?<database>.?<indexname> -- 4 4263 ** 4264 ** Form 1 causes all indices in all attached databases to be rebuilt. 4265 ** Form 2 rebuilds all indices in all databases that use the named 4266 ** collating function. Forms 3 and 4 rebuild the named index or all 4267 ** indices associated with the named table. 4268 */ 4269 #ifndef SQLITE_OMIT_REINDEX 4270 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4271 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4272 char *z; /* Name of a table or index */ 4273 const char *zDb; /* Name of the database */ 4274 Table *pTab; /* A table in the database */ 4275 Index *pIndex; /* An index associated with pTab */ 4276 int iDb; /* The database index number */ 4277 sqlite3 *db = pParse->db; /* The database connection */ 4278 Token *pObjName; /* Name of the table or index to be reindexed */ 4279 4280 /* Read the database schema. If an error occurs, leave an error message 4281 ** and code in pParse and return NULL. */ 4282 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4283 return; 4284 } 4285 4286 if( pName1==0 ){ 4287 reindexDatabases(pParse, 0); 4288 return; 4289 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4290 char *zColl; 4291 assert( pName1->z ); 4292 zColl = sqlite3NameFromToken(pParse->db, pName1); 4293 if( !zColl ) return; 4294 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4295 if( pColl ){ 4296 reindexDatabases(pParse, zColl); 4297 sqlite3DbFree(db, zColl); 4298 return; 4299 } 4300 sqlite3DbFree(db, zColl); 4301 } 4302 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4303 if( iDb<0 ) return; 4304 z = sqlite3NameFromToken(db, pObjName); 4305 if( z==0 ) return; 4306 zDb = db->aDb[iDb].zDbSName; 4307 pTab = sqlite3FindTable(db, z, zDb); 4308 if( pTab ){ 4309 reindexTable(pParse, pTab, 0); 4310 sqlite3DbFree(db, z); 4311 return; 4312 } 4313 pIndex = sqlite3FindIndex(db, z, zDb); 4314 sqlite3DbFree(db, z); 4315 if( pIndex ){ 4316 sqlite3BeginWriteOperation(pParse, 0, iDb); 4317 sqlite3RefillIndex(pParse, pIndex, -1); 4318 return; 4319 } 4320 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4321 } 4322 #endif 4323 4324 /* 4325 ** Return a KeyInfo structure that is appropriate for the given Index. 4326 ** 4327 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4328 ** when it has finished using it. 4329 */ 4330 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4331 int i; 4332 int nCol = pIdx->nColumn; 4333 int nKey = pIdx->nKeyCol; 4334 KeyInfo *pKey; 4335 if( pParse->nErr ) return 0; 4336 if( pIdx->uniqNotNull ){ 4337 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4338 }else{ 4339 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4340 } 4341 if( pKey ){ 4342 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4343 for(i=0; i<nCol; i++){ 4344 const char *zColl = pIdx->azColl[i]; 4345 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4346 sqlite3LocateCollSeq(pParse, zColl); 4347 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4348 } 4349 if( pParse->nErr ){ 4350 sqlite3KeyInfoUnref(pKey); 4351 pKey = 0; 4352 } 4353 } 4354 return pKey; 4355 } 4356 4357 #ifndef SQLITE_OMIT_CTE 4358 /* 4359 ** This routine is invoked once per CTE by the parser while parsing a 4360 ** WITH clause. 4361 */ 4362 With *sqlite3WithAdd( 4363 Parse *pParse, /* Parsing context */ 4364 With *pWith, /* Existing WITH clause, or NULL */ 4365 Token *pName, /* Name of the common-table */ 4366 ExprList *pArglist, /* Optional column name list for the table */ 4367 Select *pQuery /* Query used to initialize the table */ 4368 ){ 4369 sqlite3 *db = pParse->db; 4370 With *pNew; 4371 char *zName; 4372 4373 /* Check that the CTE name is unique within this WITH clause. If 4374 ** not, store an error in the Parse structure. */ 4375 zName = sqlite3NameFromToken(pParse->db, pName); 4376 if( zName && pWith ){ 4377 int i; 4378 for(i=0; i<pWith->nCte; i++){ 4379 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4380 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4381 } 4382 } 4383 } 4384 4385 if( pWith ){ 4386 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4387 pNew = sqlite3DbRealloc(db, pWith, nByte); 4388 }else{ 4389 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4390 } 4391 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4392 4393 if( db->mallocFailed ){ 4394 sqlite3ExprListDelete(db, pArglist); 4395 sqlite3SelectDelete(db, pQuery); 4396 sqlite3DbFree(db, zName); 4397 pNew = pWith; 4398 }else{ 4399 pNew->a[pNew->nCte].pSelect = pQuery; 4400 pNew->a[pNew->nCte].pCols = pArglist; 4401 pNew->a[pNew->nCte].zName = zName; 4402 pNew->a[pNew->nCte].zCteErr = 0; 4403 pNew->nCte++; 4404 } 4405 4406 return pNew; 4407 } 4408 4409 /* 4410 ** Free the contents of the With object passed as the second argument. 4411 */ 4412 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4413 if( pWith ){ 4414 int i; 4415 for(i=0; i<pWith->nCte; i++){ 4416 struct Cte *pCte = &pWith->a[i]; 4417 sqlite3ExprListDelete(db, pCte->pCols); 4418 sqlite3SelectDelete(db, pCte->pSelect); 4419 sqlite3DbFree(db, pCte->zName); 4420 } 4421 sqlite3DbFree(db, pWith); 4422 } 4423 } 4424 #endif /* !defined(SQLITE_OMIT_CTE) */ 4425