1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( pParse->nested ) return; 146 if( db->mallocFailed || pParse->nErr ){ 147 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 148 return; 149 } 150 151 /* Begin by generating some termination code at the end of the 152 ** vdbe program 153 */ 154 v = sqlite3GetVdbe(pParse); 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 159 sqlite3VdbeAddOp0(v, OP_Halt); 160 161 #if SQLITE_USER_AUTHENTICATION 162 if( pParse->nTableLock>0 && db->init.busy==0 ){ 163 sqlite3UserAuthInit(db); 164 if( db->auth.authLevel<UAUTH_User ){ 165 pParse->rc = SQLITE_AUTH_USER; 166 sqlite3ErrorMsg(pParse, "user not authenticated"); 167 return; 168 } 169 } 170 #endif 171 172 /* The cookie mask contains one bit for each database file open. 173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 174 ** set for each database that is used. Generate code to start a 175 ** transaction on each used database and to verify the schema cookie 176 ** on each used database. 177 */ 178 if( db->mallocFailed==0 179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 180 ){ 181 int iDb, i; 182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 183 sqlite3VdbeJumpHere(v, 0); 184 for(iDb=0; iDb<db->nDb; iDb++){ 185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 186 sqlite3VdbeUsesBtree(v, iDb); 187 sqlite3VdbeAddOp4Int(v, 188 OP_Transaction, /* Opcode */ 189 iDb, /* P1 */ 190 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 191 pParse->cookieValue[iDb], /* P3 */ 192 db->aDb[iDb].pSchema->iGeneration /* P4 */ 193 ); 194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 195 } 196 #ifndef SQLITE_OMIT_VIRTUALTABLE 197 for(i=0; i<pParse->nVtabLock; i++){ 198 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 199 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 200 } 201 pParse->nVtabLock = 0; 202 #endif 203 204 /* Once all the cookies have been verified and transactions opened, 205 ** obtain the required table-locks. This is a no-op unless the 206 ** shared-cache feature is enabled. 207 */ 208 codeTableLocks(pParse); 209 210 /* Initialize any AUTOINCREMENT data structures required. 211 */ 212 sqlite3AutoincrementBegin(pParse); 213 214 /* Code constant expressions that where factored out of inner loops */ 215 if( pParse->pConstExpr ){ 216 ExprList *pEL = pParse->pConstExpr; 217 pParse->okConstFactor = 0; 218 for(i=0; i<pEL->nExpr; i++){ 219 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 220 } 221 } 222 223 /* Finally, jump back to the beginning of the executable code. */ 224 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 225 } 226 } 227 228 229 /* Get the VDBE program ready for execution 230 */ 231 if( v && pParse->nErr==0 && !db->mallocFailed ){ 232 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 233 /* A minimum of one cursor is required if autoincrement is used 234 * See ticket [a696379c1f08866] */ 235 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 236 sqlite3VdbeMakeReady(v, pParse); 237 pParse->rc = SQLITE_DONE; 238 pParse->colNamesSet = 0; 239 }else{ 240 pParse->rc = SQLITE_ERROR; 241 } 242 pParse->nTab = 0; 243 pParse->nMem = 0; 244 pParse->nSet = 0; 245 pParse->nVar = 0; 246 DbMaskZero(pParse->cookieMask); 247 } 248 249 /* 250 ** Run the parser and code generator recursively in order to generate 251 ** code for the SQL statement given onto the end of the pParse context 252 ** currently under construction. When the parser is run recursively 253 ** this way, the final OP_Halt is not appended and other initialization 254 ** and finalization steps are omitted because those are handling by the 255 ** outermost parser. 256 ** 257 ** Not everything is nestable. This facility is designed to permit 258 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 259 ** care if you decide to try to use this routine for some other purposes. 260 */ 261 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 262 va_list ap; 263 char *zSql; 264 char *zErrMsg = 0; 265 sqlite3 *db = pParse->db; 266 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 267 char saveBuf[SAVE_SZ]; 268 269 if( pParse->nErr ) return; 270 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 271 va_start(ap, zFormat); 272 zSql = sqlite3VMPrintf(db, zFormat, ap); 273 va_end(ap); 274 if( zSql==0 ){ 275 return; /* A malloc must have failed */ 276 } 277 pParse->nested++; 278 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 279 memset(&pParse->nVar, 0, SAVE_SZ); 280 sqlite3RunParser(pParse, zSql, &zErrMsg); 281 sqlite3DbFree(db, zErrMsg); 282 sqlite3DbFree(db, zSql); 283 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 284 pParse->nested--; 285 } 286 287 #if SQLITE_USER_AUTHENTICATION 288 /* 289 ** Return TRUE if zTable is the name of the system table that stores the 290 ** list of users and their access credentials. 291 */ 292 int sqlite3UserAuthTable(const char *zTable){ 293 return sqlite3_stricmp(zTable, "sqlite_user")==0; 294 } 295 #endif 296 297 /* 298 ** Locate the in-memory structure that describes a particular database 299 ** table given the name of that table and (optionally) the name of the 300 ** database containing the table. Return NULL if not found. 301 ** 302 ** If zDatabase is 0, all databases are searched for the table and the 303 ** first matching table is returned. (No checking for duplicate table 304 ** names is done.) The search order is TEMP first, then MAIN, then any 305 ** auxiliary databases added using the ATTACH command. 306 ** 307 ** See also sqlite3LocateTable(). 308 */ 309 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 310 Table *p = 0; 311 int i; 312 313 /* All mutexes are required for schema access. Make sure we hold them. */ 314 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 315 #if SQLITE_USER_AUTHENTICATION 316 /* Only the admin user is allowed to know that the sqlite_user table 317 ** exists */ 318 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 319 return 0; 320 } 321 #endif 322 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 323 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 324 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 325 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 326 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 327 if( p ) break; 328 } 329 return p; 330 } 331 332 /* 333 ** Locate the in-memory structure that describes a particular database 334 ** table given the name of that table and (optionally) the name of the 335 ** database containing the table. Return NULL if not found. Also leave an 336 ** error message in pParse->zErrMsg. 337 ** 338 ** The difference between this routine and sqlite3FindTable() is that this 339 ** routine leaves an error message in pParse->zErrMsg where 340 ** sqlite3FindTable() does not. 341 */ 342 Table *sqlite3LocateTable( 343 Parse *pParse, /* context in which to report errors */ 344 int isView, /* True if looking for a VIEW rather than a TABLE */ 345 const char *zName, /* Name of the table we are looking for */ 346 const char *zDbase /* Name of the database. Might be NULL */ 347 ){ 348 Table *p; 349 350 /* Read the database schema. If an error occurs, leave an error message 351 ** and code in pParse and return NULL. */ 352 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 353 return 0; 354 } 355 356 p = sqlite3FindTable(pParse->db, zName, zDbase); 357 if( p==0 ){ 358 const char *zMsg = isView ? "no such view" : "no such table"; 359 if( zDbase ){ 360 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 361 }else{ 362 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 363 } 364 pParse->checkSchema = 1; 365 } 366 #if SQLITE_USER_AUTHENICATION 367 else if( pParse->db->auth.authLevel<UAUTH_User ){ 368 sqlite3ErrorMsg(pParse, "user not authenticated"); 369 p = 0; 370 } 371 #endif 372 return p; 373 } 374 375 /* 376 ** Locate the table identified by *p. 377 ** 378 ** This is a wrapper around sqlite3LocateTable(). The difference between 379 ** sqlite3LocateTable() and this function is that this function restricts 380 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 381 ** non-NULL if it is part of a view or trigger program definition. See 382 ** sqlite3FixSrcList() for details. 383 */ 384 Table *sqlite3LocateTableItem( 385 Parse *pParse, 386 int isView, 387 struct SrcList_item *p 388 ){ 389 const char *zDb; 390 assert( p->pSchema==0 || p->zDatabase==0 ); 391 if( p->pSchema ){ 392 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 393 zDb = pParse->db->aDb[iDb].zName; 394 }else{ 395 zDb = p->zDatabase; 396 } 397 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 398 } 399 400 /* 401 ** Locate the in-memory structure that describes 402 ** a particular index given the name of that index 403 ** and the name of the database that contains the index. 404 ** Return NULL if not found. 405 ** 406 ** If zDatabase is 0, all databases are searched for the 407 ** table and the first matching index is returned. (No checking 408 ** for duplicate index names is done.) The search order is 409 ** TEMP first, then MAIN, then any auxiliary databases added 410 ** using the ATTACH command. 411 */ 412 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 413 Index *p = 0; 414 int i; 415 /* All mutexes are required for schema access. Make sure we hold them. */ 416 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 417 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 418 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 419 Schema *pSchema = db->aDb[j].pSchema; 420 assert( pSchema ); 421 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 422 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 423 p = sqlite3HashFind(&pSchema->idxHash, zName); 424 if( p ) break; 425 } 426 return p; 427 } 428 429 /* 430 ** Reclaim the memory used by an index 431 */ 432 static void freeIndex(sqlite3 *db, Index *p){ 433 #ifndef SQLITE_OMIT_ANALYZE 434 sqlite3DeleteIndexSamples(db, p); 435 #endif 436 sqlite3ExprDelete(db, p->pPartIdxWhere); 437 sqlite3DbFree(db, p->zColAff); 438 if( p->isResized ) sqlite3DbFree(db, p->azColl); 439 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 440 sqlite3_free(p->aiRowEst); 441 #endif 442 sqlite3DbFree(db, p); 443 } 444 445 /* 446 ** For the index called zIdxName which is found in the database iDb, 447 ** unlike that index from its Table then remove the index from 448 ** the index hash table and free all memory structures associated 449 ** with the index. 450 */ 451 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 452 Index *pIndex; 453 Hash *pHash; 454 455 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 456 pHash = &db->aDb[iDb].pSchema->idxHash; 457 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 458 if( ALWAYS(pIndex) ){ 459 if( pIndex->pTable->pIndex==pIndex ){ 460 pIndex->pTable->pIndex = pIndex->pNext; 461 }else{ 462 Index *p; 463 /* Justification of ALWAYS(); The index must be on the list of 464 ** indices. */ 465 p = pIndex->pTable->pIndex; 466 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 467 if( ALWAYS(p && p->pNext==pIndex) ){ 468 p->pNext = pIndex->pNext; 469 } 470 } 471 freeIndex(db, pIndex); 472 } 473 db->flags |= SQLITE_InternChanges; 474 } 475 476 /* 477 ** Look through the list of open database files in db->aDb[] and if 478 ** any have been closed, remove them from the list. Reallocate the 479 ** db->aDb[] structure to a smaller size, if possible. 480 ** 481 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 482 ** are never candidates for being collapsed. 483 */ 484 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 485 int i, j; 486 for(i=j=2; i<db->nDb; i++){ 487 struct Db *pDb = &db->aDb[i]; 488 if( pDb->pBt==0 ){ 489 sqlite3DbFree(db, pDb->zName); 490 pDb->zName = 0; 491 continue; 492 } 493 if( j<i ){ 494 db->aDb[j] = db->aDb[i]; 495 } 496 j++; 497 } 498 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 499 db->nDb = j; 500 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 501 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 502 sqlite3DbFree(db, db->aDb); 503 db->aDb = db->aDbStatic; 504 } 505 } 506 507 /* 508 ** Reset the schema for the database at index iDb. Also reset the 509 ** TEMP schema. 510 */ 511 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 512 Db *pDb; 513 assert( iDb<db->nDb ); 514 515 /* Case 1: Reset the single schema identified by iDb */ 516 pDb = &db->aDb[iDb]; 517 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 518 assert( pDb->pSchema!=0 ); 519 sqlite3SchemaClear(pDb->pSchema); 520 521 /* If any database other than TEMP is reset, then also reset TEMP 522 ** since TEMP might be holding triggers that reference tables in the 523 ** other database. 524 */ 525 if( iDb!=1 ){ 526 pDb = &db->aDb[1]; 527 assert( pDb->pSchema!=0 ); 528 sqlite3SchemaClear(pDb->pSchema); 529 } 530 return; 531 } 532 533 /* 534 ** Erase all schema information from all attached databases (including 535 ** "main" and "temp") for a single database connection. 536 */ 537 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 538 int i; 539 sqlite3BtreeEnterAll(db); 540 for(i=0; i<db->nDb; i++){ 541 Db *pDb = &db->aDb[i]; 542 if( pDb->pSchema ){ 543 sqlite3SchemaClear(pDb->pSchema); 544 } 545 } 546 db->flags &= ~SQLITE_InternChanges; 547 sqlite3VtabUnlockList(db); 548 sqlite3BtreeLeaveAll(db); 549 sqlite3CollapseDatabaseArray(db); 550 } 551 552 /* 553 ** This routine is called when a commit occurs. 554 */ 555 void sqlite3CommitInternalChanges(sqlite3 *db){ 556 db->flags &= ~SQLITE_InternChanges; 557 } 558 559 /* 560 ** Delete memory allocated for the column names of a table or view (the 561 ** Table.aCol[] array). 562 */ 563 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 564 int i; 565 Column *pCol; 566 assert( pTable!=0 ); 567 if( (pCol = pTable->aCol)!=0 ){ 568 for(i=0; i<pTable->nCol; i++, pCol++){ 569 sqlite3DbFree(db, pCol->zName); 570 sqlite3ExprDelete(db, pCol->pDflt); 571 sqlite3DbFree(db, pCol->zDflt); 572 sqlite3DbFree(db, pCol->zType); 573 sqlite3DbFree(db, pCol->zColl); 574 } 575 sqlite3DbFree(db, pTable->aCol); 576 } 577 } 578 579 /* 580 ** Remove the memory data structures associated with the given 581 ** Table. No changes are made to disk by this routine. 582 ** 583 ** This routine just deletes the data structure. It does not unlink 584 ** the table data structure from the hash table. But it does destroy 585 ** memory structures of the indices and foreign keys associated with 586 ** the table. 587 ** 588 ** The db parameter is optional. It is needed if the Table object 589 ** contains lookaside memory. (Table objects in the schema do not use 590 ** lookaside memory, but some ephemeral Table objects do.) Or the 591 ** db parameter can be used with db->pnBytesFreed to measure the memory 592 ** used by the Table object. 593 */ 594 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 595 Index *pIndex, *pNext; 596 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 597 598 assert( !pTable || pTable->nRef>0 ); 599 600 /* Do not delete the table until the reference count reaches zero. */ 601 if( !pTable ) return; 602 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 603 604 /* Record the number of outstanding lookaside allocations in schema Tables 605 ** prior to doing any free() operations. Since schema Tables do not use 606 ** lookaside, this number should not change. */ 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 608 db->lookaside.nOut : 0 ); 609 610 /* Delete all indices associated with this table. */ 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 612 pNext = pIndex->pNext; 613 assert( pIndex->pSchema==pTable->pSchema ); 614 if( !db || db->pnBytesFreed==0 ){ 615 char *zName = pIndex->zName; 616 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 617 &pIndex->pSchema->idxHash, zName, 0 618 ); 619 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 620 assert( pOld==pIndex || pOld==0 ); 621 } 622 freeIndex(db, pIndex); 623 } 624 625 /* Delete any foreign keys attached to this table. */ 626 sqlite3FkDelete(db, pTable); 627 628 /* Delete the Table structure itself. 629 */ 630 sqliteDeleteColumnNames(db, pTable); 631 sqlite3DbFree(db, pTable->zName); 632 sqlite3DbFree(db, pTable->zColAff); 633 sqlite3SelectDelete(db, pTable->pSelect); 634 #ifndef SQLITE_OMIT_CHECK 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #endif 637 #ifndef SQLITE_OMIT_VIRTUALTABLE 638 sqlite3VtabClear(db, pTable); 639 #endif 640 sqlite3DbFree(db, pTable); 641 642 /* Verify that no lookaside memory was used by schema tables */ 643 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 644 } 645 646 /* 647 ** Unlink the given table from the hash tables and the delete the 648 ** table structure with all its indices and foreign keys. 649 */ 650 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 651 Table *p; 652 Db *pDb; 653 654 assert( db!=0 ); 655 assert( iDb>=0 && iDb<db->nDb ); 656 assert( zTabName ); 657 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 658 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 659 pDb = &db->aDb[iDb]; 660 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 661 sqlite3DeleteTable(db, p); 662 db->flags |= SQLITE_InternChanges; 663 } 664 665 /* 666 ** Given a token, return a string that consists of the text of that 667 ** token. Space to hold the returned string 668 ** is obtained from sqliteMalloc() and must be freed by the calling 669 ** function. 670 ** 671 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 672 ** surround the body of the token are removed. 673 ** 674 ** Tokens are often just pointers into the original SQL text and so 675 ** are not \000 terminated and are not persistent. The returned string 676 ** is \000 terminated and is persistent. 677 */ 678 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 679 char *zName; 680 if( pName ){ 681 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 682 sqlite3Dequote(zName); 683 }else{ 684 zName = 0; 685 } 686 return zName; 687 } 688 689 /* 690 ** Open the sqlite_master table stored in database number iDb for 691 ** writing. The table is opened using cursor 0. 692 */ 693 void sqlite3OpenMasterTable(Parse *p, int iDb){ 694 Vdbe *v = sqlite3GetVdbe(p); 695 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 696 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 697 if( p->nTab==0 ){ 698 p->nTab = 1; 699 } 700 } 701 702 /* 703 ** Parameter zName points to a nul-terminated buffer containing the name 704 ** of a database ("main", "temp" or the name of an attached db). This 705 ** function returns the index of the named database in db->aDb[], or 706 ** -1 if the named db cannot be found. 707 */ 708 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 709 int i = -1; /* Database number */ 710 if( zName ){ 711 Db *pDb; 712 int n = sqlite3Strlen30(zName); 713 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 714 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 715 0==sqlite3StrICmp(pDb->zName, zName) ){ 716 break; 717 } 718 } 719 } 720 return i; 721 } 722 723 /* 724 ** The token *pName contains the name of a database (either "main" or 725 ** "temp" or the name of an attached db). This routine returns the 726 ** index of the named database in db->aDb[], or -1 if the named db 727 ** does not exist. 728 */ 729 int sqlite3FindDb(sqlite3 *db, Token *pName){ 730 int i; /* Database number */ 731 char *zName; /* Name we are searching for */ 732 zName = sqlite3NameFromToken(db, pName); 733 i = sqlite3FindDbName(db, zName); 734 sqlite3DbFree(db, zName); 735 return i; 736 } 737 738 /* The table or view or trigger name is passed to this routine via tokens 739 ** pName1 and pName2. If the table name was fully qualified, for example: 740 ** 741 ** CREATE TABLE xxx.yyy (...); 742 ** 743 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 744 ** the table name is not fully qualified, i.e.: 745 ** 746 ** CREATE TABLE yyy(...); 747 ** 748 ** Then pName1 is set to "yyy" and pName2 is "". 749 ** 750 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 751 ** pName2) that stores the unqualified table name. The index of the 752 ** database "xxx" is returned. 753 */ 754 int sqlite3TwoPartName( 755 Parse *pParse, /* Parsing and code generating context */ 756 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 757 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 758 Token **pUnqual /* Write the unqualified object name here */ 759 ){ 760 int iDb; /* Database holding the object */ 761 sqlite3 *db = pParse->db; 762 763 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 764 if( db->init.busy ) { 765 sqlite3ErrorMsg(pParse, "corrupt database"); 766 return -1; 767 } 768 *pUnqual = pName2; 769 iDb = sqlite3FindDb(db, pName1); 770 if( iDb<0 ){ 771 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 772 return -1; 773 } 774 }else{ 775 assert( db->init.iDb==0 || db->init.busy ); 776 iDb = db->init.iDb; 777 *pUnqual = pName1; 778 } 779 return iDb; 780 } 781 782 /* 783 ** This routine is used to check if the UTF-8 string zName is a legal 784 ** unqualified name for a new schema object (table, index, view or 785 ** trigger). All names are legal except those that begin with the string 786 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 787 ** is reserved for internal use. 788 */ 789 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 790 if( !pParse->db->init.busy && pParse->nested==0 791 && (pParse->db->flags & SQLITE_WriteSchema)==0 792 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 793 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 794 return SQLITE_ERROR; 795 } 796 return SQLITE_OK; 797 } 798 799 /* 800 ** Return the PRIMARY KEY index of a table 801 */ 802 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 803 Index *p; 804 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 805 return p; 806 } 807 808 /* 809 ** Return the column of index pIdx that corresponds to table 810 ** column iCol. Return -1 if not found. 811 */ 812 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 813 int i; 814 for(i=0; i<pIdx->nColumn; i++){ 815 if( iCol==pIdx->aiColumn[i] ) return i; 816 } 817 return -1; 818 } 819 820 /* 821 ** Begin constructing a new table representation in memory. This is 822 ** the first of several action routines that get called in response 823 ** to a CREATE TABLE statement. In particular, this routine is called 824 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 825 ** flag is true if the table should be stored in the auxiliary database 826 ** file instead of in the main database file. This is normally the case 827 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 828 ** CREATE and TABLE. 829 ** 830 ** The new table record is initialized and put in pParse->pNewTable. 831 ** As more of the CREATE TABLE statement is parsed, additional action 832 ** routines will be called to add more information to this record. 833 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 834 ** is called to complete the construction of the new table record. 835 */ 836 void sqlite3StartTable( 837 Parse *pParse, /* Parser context */ 838 Token *pName1, /* First part of the name of the table or view */ 839 Token *pName2, /* Second part of the name of the table or view */ 840 int isTemp, /* True if this is a TEMP table */ 841 int isView, /* True if this is a VIEW */ 842 int isVirtual, /* True if this is a VIRTUAL table */ 843 int noErr /* Do nothing if table already exists */ 844 ){ 845 Table *pTable; 846 char *zName = 0; /* The name of the new table */ 847 sqlite3 *db = pParse->db; 848 Vdbe *v; 849 int iDb; /* Database number to create the table in */ 850 Token *pName; /* Unqualified name of the table to create */ 851 852 /* The table or view name to create is passed to this routine via tokens 853 ** pName1 and pName2. If the table name was fully qualified, for example: 854 ** 855 ** CREATE TABLE xxx.yyy (...); 856 ** 857 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 858 ** the table name is not fully qualified, i.e.: 859 ** 860 ** CREATE TABLE yyy(...); 861 ** 862 ** Then pName1 is set to "yyy" and pName2 is "". 863 ** 864 ** The call below sets the pName pointer to point at the token (pName1 or 865 ** pName2) that stores the unqualified table name. The variable iDb is 866 ** set to the index of the database that the table or view is to be 867 ** created in. 868 */ 869 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 870 if( iDb<0 ) return; 871 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 872 /* If creating a temp table, the name may not be qualified. Unless 873 ** the database name is "temp" anyway. */ 874 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 875 return; 876 } 877 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 878 879 pParse->sNameToken = *pName; 880 zName = sqlite3NameFromToken(db, pName); 881 if( zName==0 ) return; 882 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 883 goto begin_table_error; 884 } 885 if( db->init.iDb==1 ) isTemp = 1; 886 #ifndef SQLITE_OMIT_AUTHORIZATION 887 assert( (isTemp & 1)==isTemp ); 888 { 889 int code; 890 char *zDb = db->aDb[iDb].zName; 891 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 892 goto begin_table_error; 893 } 894 if( isView ){ 895 if( !OMIT_TEMPDB && isTemp ){ 896 code = SQLITE_CREATE_TEMP_VIEW; 897 }else{ 898 code = SQLITE_CREATE_VIEW; 899 } 900 }else{ 901 if( !OMIT_TEMPDB && isTemp ){ 902 code = SQLITE_CREATE_TEMP_TABLE; 903 }else{ 904 code = SQLITE_CREATE_TABLE; 905 } 906 } 907 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 908 goto begin_table_error; 909 } 910 } 911 #endif 912 913 /* Make sure the new table name does not collide with an existing 914 ** index or table name in the same database. Issue an error message if 915 ** it does. The exception is if the statement being parsed was passed 916 ** to an sqlite3_declare_vtab() call. In that case only the column names 917 ** and types will be used, so there is no need to test for namespace 918 ** collisions. 919 */ 920 if( !IN_DECLARE_VTAB ){ 921 char *zDb = db->aDb[iDb].zName; 922 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 923 goto begin_table_error; 924 } 925 pTable = sqlite3FindTable(db, zName, zDb); 926 if( pTable ){ 927 if( !noErr ){ 928 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 929 }else{ 930 assert( !db->init.busy || CORRUPT_DB ); 931 sqlite3CodeVerifySchema(pParse, iDb); 932 } 933 goto begin_table_error; 934 } 935 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 936 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 937 goto begin_table_error; 938 } 939 } 940 941 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 942 if( pTable==0 ){ 943 db->mallocFailed = 1; 944 pParse->rc = SQLITE_NOMEM; 945 pParse->nErr++; 946 goto begin_table_error; 947 } 948 pTable->zName = zName; 949 pTable->iPKey = -1; 950 pTable->pSchema = db->aDb[iDb].pSchema; 951 pTable->nRef = 1; 952 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 953 assert( pParse->pNewTable==0 ); 954 pParse->pNewTable = pTable; 955 956 /* If this is the magic sqlite_sequence table used by autoincrement, 957 ** then record a pointer to this table in the main database structure 958 ** so that INSERT can find the table easily. 959 */ 960 #ifndef SQLITE_OMIT_AUTOINCREMENT 961 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 962 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 963 pTable->pSchema->pSeqTab = pTable; 964 } 965 #endif 966 967 /* Begin generating the code that will insert the table record into 968 ** the SQLITE_MASTER table. Note in particular that we must go ahead 969 ** and allocate the record number for the table entry now. Before any 970 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 971 ** indices to be created and the table record must come before the 972 ** indices. Hence, the record number for the table must be allocated 973 ** now. 974 */ 975 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 976 int j1; 977 int fileFormat; 978 int reg1, reg2, reg3; 979 sqlite3BeginWriteOperation(pParse, 1, iDb); 980 981 #ifndef SQLITE_OMIT_VIRTUALTABLE 982 if( isVirtual ){ 983 sqlite3VdbeAddOp0(v, OP_VBegin); 984 } 985 #endif 986 987 /* If the file format and encoding in the database have not been set, 988 ** set them now. 989 */ 990 reg1 = pParse->regRowid = ++pParse->nMem; 991 reg2 = pParse->regRoot = ++pParse->nMem; 992 reg3 = ++pParse->nMem; 993 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 994 sqlite3VdbeUsesBtree(v, iDb); 995 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 996 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 997 1 : SQLITE_MAX_FILE_FORMAT; 998 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 999 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1000 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1001 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1002 sqlite3VdbeJumpHere(v, j1); 1003 1004 /* This just creates a place-holder record in the sqlite_master table. 1005 ** The record created does not contain anything yet. It will be replaced 1006 ** by the real entry in code generated at sqlite3EndTable(). 1007 ** 1008 ** The rowid for the new entry is left in register pParse->regRowid. 1009 ** The root page number of the new table is left in reg pParse->regRoot. 1010 ** The rowid and root page number values are needed by the code that 1011 ** sqlite3EndTable will generate. 1012 */ 1013 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1014 if( isView || isVirtual ){ 1015 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1016 }else 1017 #endif 1018 { 1019 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1020 } 1021 sqlite3OpenMasterTable(pParse, iDb); 1022 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1023 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1024 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1025 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1026 sqlite3VdbeAddOp0(v, OP_Close); 1027 } 1028 1029 /* Normal (non-error) return. */ 1030 return; 1031 1032 /* If an error occurs, we jump here */ 1033 begin_table_error: 1034 sqlite3DbFree(db, zName); 1035 return; 1036 } 1037 1038 /* 1039 ** This macro is used to compare two strings in a case-insensitive manner. 1040 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1041 ** produces larger code. 1042 ** 1043 ** WARNING: This macro is not compatible with the strcmp() family. It 1044 ** returns true if the two strings are equal, otherwise false. 1045 */ 1046 #define STRICMP(x, y) (\ 1047 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1048 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1049 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1050 1051 /* 1052 ** Add a new column to the table currently being constructed. 1053 ** 1054 ** The parser calls this routine once for each column declaration 1055 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1056 ** first to get things going. Then this routine is called for each 1057 ** column. 1058 */ 1059 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1060 Table *p; 1061 int i; 1062 char *z; 1063 Column *pCol; 1064 sqlite3 *db = pParse->db; 1065 if( (p = pParse->pNewTable)==0 ) return; 1066 #if SQLITE_MAX_COLUMN 1067 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1068 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1069 return; 1070 } 1071 #endif 1072 z = sqlite3NameFromToken(db, pName); 1073 if( z==0 ) return; 1074 for(i=0; i<p->nCol; i++){ 1075 if( STRICMP(z, p->aCol[i].zName) ){ 1076 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1077 sqlite3DbFree(db, z); 1078 return; 1079 } 1080 } 1081 if( (p->nCol & 0x7)==0 ){ 1082 Column *aNew; 1083 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1084 if( aNew==0 ){ 1085 sqlite3DbFree(db, z); 1086 return; 1087 } 1088 p->aCol = aNew; 1089 } 1090 pCol = &p->aCol[p->nCol]; 1091 memset(pCol, 0, sizeof(p->aCol[0])); 1092 pCol->zName = z; 1093 1094 /* If there is no type specified, columns have the default affinity 1095 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1096 ** be called next to set pCol->affinity correctly. 1097 */ 1098 pCol->affinity = SQLITE_AFF_BLOB; 1099 pCol->szEst = 1; 1100 p->nCol++; 1101 } 1102 1103 /* 1104 ** This routine is called by the parser while in the middle of 1105 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1106 ** been seen on a column. This routine sets the notNull flag on 1107 ** the column currently under construction. 1108 */ 1109 void sqlite3AddNotNull(Parse *pParse, int onError){ 1110 Table *p; 1111 p = pParse->pNewTable; 1112 if( p==0 || NEVER(p->nCol<1) ) return; 1113 p->aCol[p->nCol-1].notNull = (u8)onError; 1114 } 1115 1116 /* 1117 ** Scan the column type name zType (length nType) and return the 1118 ** associated affinity type. 1119 ** 1120 ** This routine does a case-independent search of zType for the 1121 ** substrings in the following table. If one of the substrings is 1122 ** found, the corresponding affinity is returned. If zType contains 1123 ** more than one of the substrings, entries toward the top of 1124 ** the table take priority. For example, if zType is 'BLOBINT', 1125 ** SQLITE_AFF_INTEGER is returned. 1126 ** 1127 ** Substring | Affinity 1128 ** -------------------------------- 1129 ** 'INT' | SQLITE_AFF_INTEGER 1130 ** 'CHAR' | SQLITE_AFF_TEXT 1131 ** 'CLOB' | SQLITE_AFF_TEXT 1132 ** 'TEXT' | SQLITE_AFF_TEXT 1133 ** 'BLOB' | SQLITE_AFF_BLOB 1134 ** 'REAL' | SQLITE_AFF_REAL 1135 ** 'FLOA' | SQLITE_AFF_REAL 1136 ** 'DOUB' | SQLITE_AFF_REAL 1137 ** 1138 ** If none of the substrings in the above table are found, 1139 ** SQLITE_AFF_NUMERIC is returned. 1140 */ 1141 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1142 u32 h = 0; 1143 char aff = SQLITE_AFF_NUMERIC; 1144 const char *zChar = 0; 1145 1146 if( zIn==0 ) return aff; 1147 while( zIn[0] ){ 1148 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1149 zIn++; 1150 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1151 aff = SQLITE_AFF_TEXT; 1152 zChar = zIn; 1153 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1154 aff = SQLITE_AFF_TEXT; 1155 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1156 aff = SQLITE_AFF_TEXT; 1157 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1158 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1159 aff = SQLITE_AFF_BLOB; 1160 if( zIn[0]=='(' ) zChar = zIn; 1161 #ifndef SQLITE_OMIT_FLOATING_POINT 1162 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1163 && aff==SQLITE_AFF_NUMERIC ){ 1164 aff = SQLITE_AFF_REAL; 1165 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1166 && aff==SQLITE_AFF_NUMERIC ){ 1167 aff = SQLITE_AFF_REAL; 1168 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1169 && aff==SQLITE_AFF_NUMERIC ){ 1170 aff = SQLITE_AFF_REAL; 1171 #endif 1172 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1173 aff = SQLITE_AFF_INTEGER; 1174 break; 1175 } 1176 } 1177 1178 /* If pszEst is not NULL, store an estimate of the field size. The 1179 ** estimate is scaled so that the size of an integer is 1. */ 1180 if( pszEst ){ 1181 *pszEst = 1; /* default size is approx 4 bytes */ 1182 if( aff<SQLITE_AFF_NUMERIC ){ 1183 if( zChar ){ 1184 while( zChar[0] ){ 1185 if( sqlite3Isdigit(zChar[0]) ){ 1186 int v = 0; 1187 sqlite3GetInt32(zChar, &v); 1188 v = v/4 + 1; 1189 if( v>255 ) v = 255; 1190 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1191 break; 1192 } 1193 zChar++; 1194 } 1195 }else{ 1196 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1197 } 1198 } 1199 } 1200 return aff; 1201 } 1202 1203 /* 1204 ** This routine is called by the parser while in the middle of 1205 ** parsing a CREATE TABLE statement. The pFirst token is the first 1206 ** token in the sequence of tokens that describe the type of the 1207 ** column currently under construction. pLast is the last token 1208 ** in the sequence. Use this information to construct a string 1209 ** that contains the typename of the column and store that string 1210 ** in zType. 1211 */ 1212 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1213 Table *p; 1214 Column *pCol; 1215 1216 p = pParse->pNewTable; 1217 if( p==0 || NEVER(p->nCol<1) ) return; 1218 pCol = &p->aCol[p->nCol-1]; 1219 assert( pCol->zType==0 || CORRUPT_DB ); 1220 sqlite3DbFree(pParse->db, pCol->zType); 1221 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1222 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1223 } 1224 1225 /* 1226 ** The expression is the default value for the most recently added column 1227 ** of the table currently under construction. 1228 ** 1229 ** Default value expressions must be constant. Raise an exception if this 1230 ** is not the case. 1231 ** 1232 ** This routine is called by the parser while in the middle of 1233 ** parsing a CREATE TABLE statement. 1234 */ 1235 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1236 Table *p; 1237 Column *pCol; 1238 sqlite3 *db = pParse->db; 1239 p = pParse->pNewTable; 1240 if( p!=0 ){ 1241 pCol = &(p->aCol[p->nCol-1]); 1242 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1243 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1244 pCol->zName); 1245 }else{ 1246 /* A copy of pExpr is used instead of the original, as pExpr contains 1247 ** tokens that point to volatile memory. The 'span' of the expression 1248 ** is required by pragma table_info. 1249 */ 1250 sqlite3ExprDelete(db, pCol->pDflt); 1251 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1252 sqlite3DbFree(db, pCol->zDflt); 1253 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1254 (int)(pSpan->zEnd - pSpan->zStart)); 1255 } 1256 } 1257 sqlite3ExprDelete(db, pSpan->pExpr); 1258 } 1259 1260 /* 1261 ** Designate the PRIMARY KEY for the table. pList is a list of names 1262 ** of columns that form the primary key. If pList is NULL, then the 1263 ** most recently added column of the table is the primary key. 1264 ** 1265 ** A table can have at most one primary key. If the table already has 1266 ** a primary key (and this is the second primary key) then create an 1267 ** error. 1268 ** 1269 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1270 ** then we will try to use that column as the rowid. Set the Table.iPKey 1271 ** field of the table under construction to be the index of the 1272 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1273 ** no INTEGER PRIMARY KEY. 1274 ** 1275 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1276 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1277 */ 1278 void sqlite3AddPrimaryKey( 1279 Parse *pParse, /* Parsing context */ 1280 ExprList *pList, /* List of field names to be indexed */ 1281 int onError, /* What to do with a uniqueness conflict */ 1282 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1283 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1284 ){ 1285 Table *pTab = pParse->pNewTable; 1286 char *zType = 0; 1287 int iCol = -1, i; 1288 int nTerm; 1289 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1290 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1291 sqlite3ErrorMsg(pParse, 1292 "table \"%s\" has more than one primary key", pTab->zName); 1293 goto primary_key_exit; 1294 } 1295 pTab->tabFlags |= TF_HasPrimaryKey; 1296 if( pList==0 ){ 1297 iCol = pTab->nCol - 1; 1298 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1299 zType = pTab->aCol[iCol].zType; 1300 nTerm = 1; 1301 }else{ 1302 nTerm = pList->nExpr; 1303 for(i=0; i<nTerm; i++){ 1304 for(iCol=0; iCol<pTab->nCol; iCol++){ 1305 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1306 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1307 zType = pTab->aCol[iCol].zType; 1308 break; 1309 } 1310 } 1311 } 1312 } 1313 if( nTerm==1 1314 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1315 && sortOrder==SQLITE_SO_ASC 1316 ){ 1317 pTab->iPKey = iCol; 1318 pTab->keyConf = (u8)onError; 1319 assert( autoInc==0 || autoInc==1 ); 1320 pTab->tabFlags |= autoInc*TF_Autoincrement; 1321 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1322 }else if( autoInc ){ 1323 #ifndef SQLITE_OMIT_AUTOINCREMENT 1324 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1325 "INTEGER PRIMARY KEY"); 1326 #endif 1327 }else{ 1328 Index *p; 1329 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1330 0, sortOrder, 0); 1331 if( p ){ 1332 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1333 } 1334 pList = 0; 1335 } 1336 1337 primary_key_exit: 1338 sqlite3ExprListDelete(pParse->db, pList); 1339 return; 1340 } 1341 1342 /* 1343 ** Add a new CHECK constraint to the table currently under construction. 1344 */ 1345 void sqlite3AddCheckConstraint( 1346 Parse *pParse, /* Parsing context */ 1347 Expr *pCheckExpr /* The check expression */ 1348 ){ 1349 #ifndef SQLITE_OMIT_CHECK 1350 Table *pTab = pParse->pNewTable; 1351 sqlite3 *db = pParse->db; 1352 if( pTab && !IN_DECLARE_VTAB 1353 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1354 ){ 1355 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1356 if( pParse->constraintName.n ){ 1357 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1358 } 1359 }else 1360 #endif 1361 { 1362 sqlite3ExprDelete(pParse->db, pCheckExpr); 1363 } 1364 } 1365 1366 /* 1367 ** Set the collation function of the most recently parsed table column 1368 ** to the CollSeq given. 1369 */ 1370 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1371 Table *p; 1372 int i; 1373 char *zColl; /* Dequoted name of collation sequence */ 1374 sqlite3 *db; 1375 1376 if( (p = pParse->pNewTable)==0 ) return; 1377 i = p->nCol-1; 1378 db = pParse->db; 1379 zColl = sqlite3NameFromToken(db, pToken); 1380 if( !zColl ) return; 1381 1382 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1383 Index *pIdx; 1384 sqlite3DbFree(db, p->aCol[i].zColl); 1385 p->aCol[i].zColl = zColl; 1386 1387 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1388 ** then an index may have been created on this column before the 1389 ** collation type was added. Correct this if it is the case. 1390 */ 1391 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1392 assert( pIdx->nKeyCol==1 ); 1393 if( pIdx->aiColumn[0]==i ){ 1394 pIdx->azColl[0] = p->aCol[i].zColl; 1395 } 1396 } 1397 }else{ 1398 sqlite3DbFree(db, zColl); 1399 } 1400 } 1401 1402 /* 1403 ** This function returns the collation sequence for database native text 1404 ** encoding identified by the string zName, length nName. 1405 ** 1406 ** If the requested collation sequence is not available, or not available 1407 ** in the database native encoding, the collation factory is invoked to 1408 ** request it. If the collation factory does not supply such a sequence, 1409 ** and the sequence is available in another text encoding, then that is 1410 ** returned instead. 1411 ** 1412 ** If no versions of the requested collations sequence are available, or 1413 ** another error occurs, NULL is returned and an error message written into 1414 ** pParse. 1415 ** 1416 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1417 ** invokes the collation factory if the named collation cannot be found 1418 ** and generates an error message. 1419 ** 1420 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1421 */ 1422 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1423 sqlite3 *db = pParse->db; 1424 u8 enc = ENC(db); 1425 u8 initbusy = db->init.busy; 1426 CollSeq *pColl; 1427 1428 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1429 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1430 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1431 } 1432 1433 return pColl; 1434 } 1435 1436 1437 /* 1438 ** Generate code that will increment the schema cookie. 1439 ** 1440 ** The schema cookie is used to determine when the schema for the 1441 ** database changes. After each schema change, the cookie value 1442 ** changes. When a process first reads the schema it records the 1443 ** cookie. Thereafter, whenever it goes to access the database, 1444 ** it checks the cookie to make sure the schema has not changed 1445 ** since it was last read. 1446 ** 1447 ** This plan is not completely bullet-proof. It is possible for 1448 ** the schema to change multiple times and for the cookie to be 1449 ** set back to prior value. But schema changes are infrequent 1450 ** and the probability of hitting the same cookie value is only 1451 ** 1 chance in 2^32. So we're safe enough. 1452 */ 1453 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1454 int r1 = sqlite3GetTempReg(pParse); 1455 sqlite3 *db = pParse->db; 1456 Vdbe *v = pParse->pVdbe; 1457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1458 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1459 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1460 sqlite3ReleaseTempReg(pParse, r1); 1461 } 1462 1463 /* 1464 ** Measure the number of characters needed to output the given 1465 ** identifier. The number returned includes any quotes used 1466 ** but does not include the null terminator. 1467 ** 1468 ** The estimate is conservative. It might be larger that what is 1469 ** really needed. 1470 */ 1471 static int identLength(const char *z){ 1472 int n; 1473 for(n=0; *z; n++, z++){ 1474 if( *z=='"' ){ n++; } 1475 } 1476 return n + 2; 1477 } 1478 1479 /* 1480 ** The first parameter is a pointer to an output buffer. The second 1481 ** parameter is a pointer to an integer that contains the offset at 1482 ** which to write into the output buffer. This function copies the 1483 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1484 ** to the specified offset in the buffer and updates *pIdx to refer 1485 ** to the first byte after the last byte written before returning. 1486 ** 1487 ** If the string zSignedIdent consists entirely of alpha-numeric 1488 ** characters, does not begin with a digit and is not an SQL keyword, 1489 ** then it is copied to the output buffer exactly as it is. Otherwise, 1490 ** it is quoted using double-quotes. 1491 */ 1492 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1493 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1494 int i, j, needQuote; 1495 i = *pIdx; 1496 1497 for(j=0; zIdent[j]; j++){ 1498 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1499 } 1500 needQuote = sqlite3Isdigit(zIdent[0]) 1501 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1502 || zIdent[j]!=0 1503 || j==0; 1504 1505 if( needQuote ) z[i++] = '"'; 1506 for(j=0; zIdent[j]; j++){ 1507 z[i++] = zIdent[j]; 1508 if( zIdent[j]=='"' ) z[i++] = '"'; 1509 } 1510 if( needQuote ) z[i++] = '"'; 1511 z[i] = 0; 1512 *pIdx = i; 1513 } 1514 1515 /* 1516 ** Generate a CREATE TABLE statement appropriate for the given 1517 ** table. Memory to hold the text of the statement is obtained 1518 ** from sqliteMalloc() and must be freed by the calling function. 1519 */ 1520 static char *createTableStmt(sqlite3 *db, Table *p){ 1521 int i, k, n; 1522 char *zStmt; 1523 char *zSep, *zSep2, *zEnd; 1524 Column *pCol; 1525 n = 0; 1526 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1527 n += identLength(pCol->zName) + 5; 1528 } 1529 n += identLength(p->zName); 1530 if( n<50 ){ 1531 zSep = ""; 1532 zSep2 = ","; 1533 zEnd = ")"; 1534 }else{ 1535 zSep = "\n "; 1536 zSep2 = ",\n "; 1537 zEnd = "\n)"; 1538 } 1539 n += 35 + 6*p->nCol; 1540 zStmt = sqlite3DbMallocRaw(0, n); 1541 if( zStmt==0 ){ 1542 db->mallocFailed = 1; 1543 return 0; 1544 } 1545 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1546 k = sqlite3Strlen30(zStmt); 1547 identPut(zStmt, &k, p->zName); 1548 zStmt[k++] = '('; 1549 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1550 static const char * const azType[] = { 1551 /* SQLITE_AFF_BLOB */ "", 1552 /* SQLITE_AFF_TEXT */ " TEXT", 1553 /* SQLITE_AFF_NUMERIC */ " NUM", 1554 /* SQLITE_AFF_INTEGER */ " INT", 1555 /* SQLITE_AFF_REAL */ " REAL" 1556 }; 1557 int len; 1558 const char *zType; 1559 1560 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1561 k += sqlite3Strlen30(&zStmt[k]); 1562 zSep = zSep2; 1563 identPut(zStmt, &k, pCol->zName); 1564 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1565 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1566 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1567 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1568 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1569 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1570 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1571 1572 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1573 len = sqlite3Strlen30(zType); 1574 assert( pCol->affinity==SQLITE_AFF_BLOB 1575 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1576 memcpy(&zStmt[k], zType, len); 1577 k += len; 1578 assert( k<=n ); 1579 } 1580 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1581 return zStmt; 1582 } 1583 1584 /* 1585 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1586 ** on success and SQLITE_NOMEM on an OOM error. 1587 */ 1588 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1589 char *zExtra; 1590 int nByte; 1591 if( pIdx->nColumn>=N ) return SQLITE_OK; 1592 assert( pIdx->isResized==0 ); 1593 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1594 zExtra = sqlite3DbMallocZero(db, nByte); 1595 if( zExtra==0 ) return SQLITE_NOMEM; 1596 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1597 pIdx->azColl = (char**)zExtra; 1598 zExtra += sizeof(char*)*N; 1599 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1600 pIdx->aiColumn = (i16*)zExtra; 1601 zExtra += sizeof(i16)*N; 1602 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1603 pIdx->aSortOrder = (u8*)zExtra; 1604 pIdx->nColumn = N; 1605 pIdx->isResized = 1; 1606 return SQLITE_OK; 1607 } 1608 1609 /* 1610 ** Estimate the total row width for a table. 1611 */ 1612 static void estimateTableWidth(Table *pTab){ 1613 unsigned wTable = 0; 1614 const Column *pTabCol; 1615 int i; 1616 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1617 wTable += pTabCol->szEst; 1618 } 1619 if( pTab->iPKey<0 ) wTable++; 1620 pTab->szTabRow = sqlite3LogEst(wTable*4); 1621 } 1622 1623 /* 1624 ** Estimate the average size of a row for an index. 1625 */ 1626 static void estimateIndexWidth(Index *pIdx){ 1627 unsigned wIndex = 0; 1628 int i; 1629 const Column *aCol = pIdx->pTable->aCol; 1630 for(i=0; i<pIdx->nColumn; i++){ 1631 i16 x = pIdx->aiColumn[i]; 1632 assert( x<pIdx->pTable->nCol ); 1633 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1634 } 1635 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1636 } 1637 1638 /* Return true if value x is found any of the first nCol entries of aiCol[] 1639 */ 1640 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1641 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 ** This routine runs at the end of parsing a CREATE TABLE statement that 1647 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1648 ** internal schema data structures and the generated VDBE code so that they 1649 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1650 ** Changes include: 1651 ** 1652 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1653 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1654 ** data storage is a covering index btree. 1655 ** (2) Bypass the creation of the sqlite_master table entry 1656 ** for the PRIMARY KEY as the primary key index is now 1657 ** identified by the sqlite_master table entry of the table itself. 1658 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1659 ** schema to the rootpage from the main table. 1660 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1661 ** (5) Add all table columns to the PRIMARY KEY Index object 1662 ** so that the PRIMARY KEY is a covering index. The surplus 1663 ** columns are part of KeyInfo.nXField and are not used for 1664 ** sorting or lookup or uniqueness checks. 1665 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1666 ** indices with the PRIMARY KEY columns. 1667 */ 1668 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1669 Index *pIdx; 1670 Index *pPk; 1671 int nPk; 1672 int i, j; 1673 sqlite3 *db = pParse->db; 1674 Vdbe *v = pParse->pVdbe; 1675 1676 /* Convert the OP_CreateTable opcode that would normally create the 1677 ** root-page for the table into an OP_CreateIndex opcode. The index 1678 ** created will become the PRIMARY KEY index. 1679 */ 1680 if( pParse->addrCrTab ){ 1681 assert( v ); 1682 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1683 } 1684 1685 /* Locate the PRIMARY KEY index. Or, if this table was originally 1686 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1687 */ 1688 if( pTab->iPKey>=0 ){ 1689 ExprList *pList; 1690 pList = sqlite3ExprListAppend(pParse, 0, 0); 1691 if( pList==0 ) return; 1692 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1693 pTab->aCol[pTab->iPKey].zName); 1694 pList->a[0].sortOrder = pParse->iPkSortOrder; 1695 assert( pParse->pNewTable==pTab ); 1696 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1697 if( pPk==0 ) return; 1698 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1699 pTab->iPKey = -1; 1700 }else{ 1701 pPk = sqlite3PrimaryKeyIndex(pTab); 1702 1703 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1704 ** table entry. This is only required if currently generating VDBE 1705 ** code for a CREATE TABLE (not when parsing one as part of reading 1706 ** a database schema). */ 1707 if( v ){ 1708 assert( db->init.busy==0 ); 1709 sqlite3VdbeGetOp(v, pPk->tnum)->opcode = OP_Goto; 1710 } 1711 1712 /* 1713 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1714 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1715 ** code assumes the PRIMARY KEY contains no repeated columns. 1716 */ 1717 for(i=j=1; i<pPk->nKeyCol; i++){ 1718 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1719 pPk->nColumn--; 1720 }else{ 1721 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1722 } 1723 } 1724 pPk->nKeyCol = j; 1725 } 1726 pPk->isCovering = 1; 1727 assert( pPk!=0 ); 1728 nPk = pPk->nKeyCol; 1729 1730 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1731 ** do not enforce this for imposter tables.) */ 1732 if( !db->init.imposterTable ){ 1733 for(i=0; i<nPk; i++){ 1734 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1735 } 1736 pPk->uniqNotNull = 1; 1737 } 1738 1739 /* The root page of the PRIMARY KEY is the table root page */ 1740 pPk->tnum = pTab->tnum; 1741 1742 /* Update the in-memory representation of all UNIQUE indices by converting 1743 ** the final rowid column into one or more columns of the PRIMARY KEY. 1744 */ 1745 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1746 int n; 1747 if( IsPrimaryKeyIndex(pIdx) ) continue; 1748 for(i=n=0; i<nPk; i++){ 1749 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1750 } 1751 if( n==0 ){ 1752 /* This index is a superset of the primary key */ 1753 pIdx->nColumn = pIdx->nKeyCol; 1754 continue; 1755 } 1756 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1757 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1758 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1759 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1760 pIdx->azColl[j] = pPk->azColl[i]; 1761 j++; 1762 } 1763 } 1764 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1765 assert( pIdx->nColumn>=j ); 1766 } 1767 1768 /* Add all table columns to the PRIMARY KEY index 1769 */ 1770 if( nPk<pTab->nCol ){ 1771 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1772 for(i=0, j=nPk; i<pTab->nCol; i++){ 1773 if( !hasColumn(pPk->aiColumn, j, i) ){ 1774 assert( j<pPk->nColumn ); 1775 pPk->aiColumn[j] = i; 1776 pPk->azColl[j] = "BINARY"; 1777 j++; 1778 } 1779 } 1780 assert( pPk->nColumn==j ); 1781 assert( pTab->nCol==j ); 1782 }else{ 1783 pPk->nColumn = pTab->nCol; 1784 } 1785 } 1786 1787 /* 1788 ** This routine is called to report the final ")" that terminates 1789 ** a CREATE TABLE statement. 1790 ** 1791 ** The table structure that other action routines have been building 1792 ** is added to the internal hash tables, assuming no errors have 1793 ** occurred. 1794 ** 1795 ** An entry for the table is made in the master table on disk, unless 1796 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1797 ** it means we are reading the sqlite_master table because we just 1798 ** connected to the database or because the sqlite_master table has 1799 ** recently changed, so the entry for this table already exists in 1800 ** the sqlite_master table. We do not want to create it again. 1801 ** 1802 ** If the pSelect argument is not NULL, it means that this routine 1803 ** was called to create a table generated from a 1804 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1805 ** the new table will match the result set of the SELECT. 1806 */ 1807 void sqlite3EndTable( 1808 Parse *pParse, /* Parse context */ 1809 Token *pCons, /* The ',' token after the last column defn. */ 1810 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1811 u8 tabOpts, /* Extra table options. Usually 0. */ 1812 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1813 ){ 1814 Table *p; /* The new table */ 1815 sqlite3 *db = pParse->db; /* The database connection */ 1816 int iDb; /* Database in which the table lives */ 1817 Index *pIdx; /* An implied index of the table */ 1818 1819 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1820 return; 1821 } 1822 p = pParse->pNewTable; 1823 if( p==0 ) return; 1824 1825 assert( !db->init.busy || !pSelect ); 1826 1827 /* If the db->init.busy is 1 it means we are reading the SQL off the 1828 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1829 ** So do not write to the disk again. Extract the root page number 1830 ** for the table from the db->init.newTnum field. (The page number 1831 ** should have been put there by the sqliteOpenCb routine.) 1832 */ 1833 if( db->init.busy ){ 1834 p->tnum = db->init.newTnum; 1835 } 1836 1837 /* Special processing for WITHOUT ROWID Tables */ 1838 if( tabOpts & TF_WithoutRowid ){ 1839 if( (p->tabFlags & TF_Autoincrement) ){ 1840 sqlite3ErrorMsg(pParse, 1841 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1842 return; 1843 } 1844 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1845 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1846 }else{ 1847 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1848 convertToWithoutRowidTable(pParse, p); 1849 } 1850 } 1851 1852 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1853 1854 #ifndef SQLITE_OMIT_CHECK 1855 /* Resolve names in all CHECK constraint expressions. 1856 */ 1857 if( p->pCheck ){ 1858 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1859 } 1860 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1861 1862 /* Estimate the average row size for the table and for all implied indices */ 1863 estimateTableWidth(p); 1864 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1865 estimateIndexWidth(pIdx); 1866 } 1867 1868 /* If not initializing, then create a record for the new table 1869 ** in the SQLITE_MASTER table of the database. 1870 ** 1871 ** If this is a TEMPORARY table, write the entry into the auxiliary 1872 ** file instead of into the main database file. 1873 */ 1874 if( !db->init.busy ){ 1875 int n; 1876 Vdbe *v; 1877 char *zType; /* "view" or "table" */ 1878 char *zType2; /* "VIEW" or "TABLE" */ 1879 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1880 1881 v = sqlite3GetVdbe(pParse); 1882 if( NEVER(v==0) ) return; 1883 1884 sqlite3VdbeAddOp1(v, OP_Close, 0); 1885 1886 /* 1887 ** Initialize zType for the new view or table. 1888 */ 1889 if( p->pSelect==0 ){ 1890 /* A regular table */ 1891 zType = "table"; 1892 zType2 = "TABLE"; 1893 #ifndef SQLITE_OMIT_VIEW 1894 }else{ 1895 /* A view */ 1896 zType = "view"; 1897 zType2 = "VIEW"; 1898 #endif 1899 } 1900 1901 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1902 ** statement to populate the new table. The root-page number for the 1903 ** new table is in register pParse->regRoot. 1904 ** 1905 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1906 ** suitable state to query for the column names and types to be used 1907 ** by the new table. 1908 ** 1909 ** A shared-cache write-lock is not required to write to the new table, 1910 ** as a schema-lock must have already been obtained to create it. Since 1911 ** a schema-lock excludes all other database users, the write-lock would 1912 ** be redundant. 1913 */ 1914 if( pSelect ){ 1915 SelectDest dest; /* Where the SELECT should store results */ 1916 int regYield; /* Register holding co-routine entry-point */ 1917 int addrTop; /* Top of the co-routine */ 1918 int regRec; /* A record to be insert into the new table */ 1919 int regRowid; /* Rowid of the next row to insert */ 1920 int addrInsLoop; /* Top of the loop for inserting rows */ 1921 Table *pSelTab; /* A table that describes the SELECT results */ 1922 1923 regYield = ++pParse->nMem; 1924 regRec = ++pParse->nMem; 1925 regRowid = ++pParse->nMem; 1926 assert(pParse->nTab==1); 1927 sqlite3MayAbort(pParse); 1928 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1929 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1930 pParse->nTab = 2; 1931 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1932 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1933 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1934 sqlite3Select(pParse, pSelect, &dest); 1935 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1936 sqlite3VdbeJumpHere(v, addrTop - 1); 1937 if( pParse->nErr ) return; 1938 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1939 if( pSelTab==0 ) return; 1940 assert( p->aCol==0 ); 1941 p->nCol = pSelTab->nCol; 1942 p->aCol = pSelTab->aCol; 1943 pSelTab->nCol = 0; 1944 pSelTab->aCol = 0; 1945 sqlite3DeleteTable(db, pSelTab); 1946 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1947 VdbeCoverage(v); 1948 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1949 sqlite3TableAffinity(v, p, 0); 1950 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1951 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1952 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInsLoop); 1953 sqlite3VdbeJumpHere(v, addrInsLoop); 1954 sqlite3VdbeAddOp1(v, OP_Close, 1); 1955 } 1956 1957 /* Compute the complete text of the CREATE statement */ 1958 if( pSelect ){ 1959 zStmt = createTableStmt(db, p); 1960 }else{ 1961 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1962 n = (int)(pEnd2->z - pParse->sNameToken.z); 1963 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1964 zStmt = sqlite3MPrintf(db, 1965 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1966 ); 1967 } 1968 1969 /* A slot for the record has already been allocated in the 1970 ** SQLITE_MASTER table. We just need to update that slot with all 1971 ** the information we've collected. 1972 */ 1973 sqlite3NestedParse(pParse, 1974 "UPDATE %Q.%s " 1975 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1976 "WHERE rowid=#%d", 1977 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1978 zType, 1979 p->zName, 1980 p->zName, 1981 pParse->regRoot, 1982 zStmt, 1983 pParse->regRowid 1984 ); 1985 sqlite3DbFree(db, zStmt); 1986 sqlite3ChangeCookie(pParse, iDb); 1987 1988 #ifndef SQLITE_OMIT_AUTOINCREMENT 1989 /* Check to see if we need to create an sqlite_sequence table for 1990 ** keeping track of autoincrement keys. 1991 */ 1992 if( p->tabFlags & TF_Autoincrement ){ 1993 Db *pDb = &db->aDb[iDb]; 1994 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1995 if( pDb->pSchema->pSeqTab==0 ){ 1996 sqlite3NestedParse(pParse, 1997 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1998 pDb->zName 1999 ); 2000 } 2001 } 2002 #endif 2003 2004 /* Reparse everything to update our internal data structures */ 2005 sqlite3VdbeAddParseSchemaOp(v, iDb, 2006 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2007 } 2008 2009 2010 /* Add the table to the in-memory representation of the database. 2011 */ 2012 if( db->init.busy ){ 2013 Table *pOld; 2014 Schema *pSchema = p->pSchema; 2015 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2016 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2017 if( pOld ){ 2018 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2019 db->mallocFailed = 1; 2020 return; 2021 } 2022 pParse->pNewTable = 0; 2023 db->flags |= SQLITE_InternChanges; 2024 2025 #ifndef SQLITE_OMIT_ALTERTABLE 2026 if( !p->pSelect ){ 2027 const char *zName = (const char *)pParse->sNameToken.z; 2028 int nName; 2029 assert( !pSelect && pCons && pEnd ); 2030 if( pCons->z==0 ){ 2031 pCons = pEnd; 2032 } 2033 nName = (int)((const char *)pCons->z - zName); 2034 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2035 } 2036 #endif 2037 } 2038 } 2039 2040 #ifndef SQLITE_OMIT_VIEW 2041 /* 2042 ** The parser calls this routine in order to create a new VIEW 2043 */ 2044 void sqlite3CreateView( 2045 Parse *pParse, /* The parsing context */ 2046 Token *pBegin, /* The CREATE token that begins the statement */ 2047 Token *pName1, /* The token that holds the name of the view */ 2048 Token *pName2, /* The token that holds the name of the view */ 2049 Select *pSelect, /* A SELECT statement that will become the new view */ 2050 int isTemp, /* TRUE for a TEMPORARY view */ 2051 int noErr /* Suppress error messages if VIEW already exists */ 2052 ){ 2053 Table *p; 2054 int n; 2055 const char *z; 2056 Token sEnd; 2057 DbFixer sFix; 2058 Token *pName = 0; 2059 int iDb; 2060 sqlite3 *db = pParse->db; 2061 2062 if( pParse->nVar>0 ){ 2063 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2064 sqlite3SelectDelete(db, pSelect); 2065 return; 2066 } 2067 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2068 p = pParse->pNewTable; 2069 if( p==0 || pParse->nErr ){ 2070 sqlite3SelectDelete(db, pSelect); 2071 return; 2072 } 2073 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2074 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2075 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2076 if( sqlite3FixSelect(&sFix, pSelect) ){ 2077 sqlite3SelectDelete(db, pSelect); 2078 return; 2079 } 2080 2081 /* Make a copy of the entire SELECT statement that defines the view. 2082 ** This will force all the Expr.token.z values to be dynamically 2083 ** allocated rather than point to the input string - which means that 2084 ** they will persist after the current sqlite3_exec() call returns. 2085 */ 2086 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2087 sqlite3SelectDelete(db, pSelect); 2088 if( db->mallocFailed ){ 2089 return; 2090 } 2091 2092 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2093 ** the end. 2094 */ 2095 sEnd = pParse->sLastToken; 2096 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2097 sEnd.z += sEnd.n; 2098 } 2099 sEnd.n = 0; 2100 n = (int)(sEnd.z - pBegin->z); 2101 z = pBegin->z; 2102 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2103 sEnd.z = &z[n-1]; 2104 sEnd.n = 1; 2105 2106 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2107 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2108 return; 2109 } 2110 #endif /* SQLITE_OMIT_VIEW */ 2111 2112 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2113 /* 2114 ** The Table structure pTable is really a VIEW. Fill in the names of 2115 ** the columns of the view in the pTable structure. Return the number 2116 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2117 */ 2118 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2119 Table *pSelTab; /* A fake table from which we get the result set */ 2120 Select *pSel; /* Copy of the SELECT that implements the view */ 2121 int nErr = 0; /* Number of errors encountered */ 2122 int n; /* Temporarily holds the number of cursors assigned */ 2123 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2124 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2125 2126 assert( pTable ); 2127 2128 #ifndef SQLITE_OMIT_VIRTUALTABLE 2129 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2130 return SQLITE_ERROR; 2131 } 2132 if( IsVirtual(pTable) ) return 0; 2133 #endif 2134 2135 #ifndef SQLITE_OMIT_VIEW 2136 /* A positive nCol means the columns names for this view are 2137 ** already known. 2138 */ 2139 if( pTable->nCol>0 ) return 0; 2140 2141 /* A negative nCol is a special marker meaning that we are currently 2142 ** trying to compute the column names. If we enter this routine with 2143 ** a negative nCol, it means two or more views form a loop, like this: 2144 ** 2145 ** CREATE VIEW one AS SELECT * FROM two; 2146 ** CREATE VIEW two AS SELECT * FROM one; 2147 ** 2148 ** Actually, the error above is now caught prior to reaching this point. 2149 ** But the following test is still important as it does come up 2150 ** in the following: 2151 ** 2152 ** CREATE TABLE main.ex1(a); 2153 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2154 ** SELECT * FROM temp.ex1; 2155 */ 2156 if( pTable->nCol<0 ){ 2157 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2158 return 1; 2159 } 2160 assert( pTable->nCol>=0 ); 2161 2162 /* If we get this far, it means we need to compute the table names. 2163 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2164 ** "*" elements in the results set of the view and will assign cursors 2165 ** to the elements of the FROM clause. But we do not want these changes 2166 ** to be permanent. So the computation is done on a copy of the SELECT 2167 ** statement that defines the view. 2168 */ 2169 assert( pTable->pSelect ); 2170 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2171 if( pSel ){ 2172 u8 enableLookaside = db->lookaside.bEnabled; 2173 n = pParse->nTab; 2174 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2175 pTable->nCol = -1; 2176 db->lookaside.bEnabled = 0; 2177 #ifndef SQLITE_OMIT_AUTHORIZATION 2178 xAuth = db->xAuth; 2179 db->xAuth = 0; 2180 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2181 db->xAuth = xAuth; 2182 #else 2183 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2184 #endif 2185 db->lookaside.bEnabled = enableLookaside; 2186 pParse->nTab = n; 2187 if( pSelTab ){ 2188 assert( pTable->aCol==0 ); 2189 pTable->nCol = pSelTab->nCol; 2190 pTable->aCol = pSelTab->aCol; 2191 pSelTab->nCol = 0; 2192 pSelTab->aCol = 0; 2193 sqlite3DeleteTable(db, pSelTab); 2194 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2195 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2196 }else{ 2197 pTable->nCol = 0; 2198 nErr++; 2199 } 2200 sqlite3SelectDelete(db, pSel); 2201 } else { 2202 nErr++; 2203 } 2204 #endif /* SQLITE_OMIT_VIEW */ 2205 return nErr; 2206 } 2207 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2208 2209 #ifndef SQLITE_OMIT_VIEW 2210 /* 2211 ** Clear the column names from every VIEW in database idx. 2212 */ 2213 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2214 HashElem *i; 2215 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2216 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2217 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2218 Table *pTab = sqliteHashData(i); 2219 if( pTab->pSelect ){ 2220 sqliteDeleteColumnNames(db, pTab); 2221 pTab->aCol = 0; 2222 pTab->nCol = 0; 2223 } 2224 } 2225 DbClearProperty(db, idx, DB_UnresetViews); 2226 } 2227 #else 2228 # define sqliteViewResetAll(A,B) 2229 #endif /* SQLITE_OMIT_VIEW */ 2230 2231 /* 2232 ** This function is called by the VDBE to adjust the internal schema 2233 ** used by SQLite when the btree layer moves a table root page. The 2234 ** root-page of a table or index in database iDb has changed from iFrom 2235 ** to iTo. 2236 ** 2237 ** Ticket #1728: The symbol table might still contain information 2238 ** on tables and/or indices that are the process of being deleted. 2239 ** If you are unlucky, one of those deleted indices or tables might 2240 ** have the same rootpage number as the real table or index that is 2241 ** being moved. So we cannot stop searching after the first match 2242 ** because the first match might be for one of the deleted indices 2243 ** or tables and not the table/index that is actually being moved. 2244 ** We must continue looping until all tables and indices with 2245 ** rootpage==iFrom have been converted to have a rootpage of iTo 2246 ** in order to be certain that we got the right one. 2247 */ 2248 #ifndef SQLITE_OMIT_AUTOVACUUM 2249 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2250 HashElem *pElem; 2251 Hash *pHash; 2252 Db *pDb; 2253 2254 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2255 pDb = &db->aDb[iDb]; 2256 pHash = &pDb->pSchema->tblHash; 2257 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2258 Table *pTab = sqliteHashData(pElem); 2259 if( pTab->tnum==iFrom ){ 2260 pTab->tnum = iTo; 2261 } 2262 } 2263 pHash = &pDb->pSchema->idxHash; 2264 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2265 Index *pIdx = sqliteHashData(pElem); 2266 if( pIdx->tnum==iFrom ){ 2267 pIdx->tnum = iTo; 2268 } 2269 } 2270 } 2271 #endif 2272 2273 /* 2274 ** Write code to erase the table with root-page iTable from database iDb. 2275 ** Also write code to modify the sqlite_master table and internal schema 2276 ** if a root-page of another table is moved by the btree-layer whilst 2277 ** erasing iTable (this can happen with an auto-vacuum database). 2278 */ 2279 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2280 Vdbe *v = sqlite3GetVdbe(pParse); 2281 int r1 = sqlite3GetTempReg(pParse); 2282 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2283 sqlite3MayAbort(pParse); 2284 #ifndef SQLITE_OMIT_AUTOVACUUM 2285 /* OP_Destroy stores an in integer r1. If this integer 2286 ** is non-zero, then it is the root page number of a table moved to 2287 ** location iTable. The following code modifies the sqlite_master table to 2288 ** reflect this. 2289 ** 2290 ** The "#NNN" in the SQL is a special constant that means whatever value 2291 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2292 ** token for additional information. 2293 */ 2294 sqlite3NestedParse(pParse, 2295 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2296 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2297 #endif 2298 sqlite3ReleaseTempReg(pParse, r1); 2299 } 2300 2301 /* 2302 ** Write VDBE code to erase table pTab and all associated indices on disk. 2303 ** Code to update the sqlite_master tables and internal schema definitions 2304 ** in case a root-page belonging to another table is moved by the btree layer 2305 ** is also added (this can happen with an auto-vacuum database). 2306 */ 2307 static void destroyTable(Parse *pParse, Table *pTab){ 2308 #ifdef SQLITE_OMIT_AUTOVACUUM 2309 Index *pIdx; 2310 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2311 destroyRootPage(pParse, pTab->tnum, iDb); 2312 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2313 destroyRootPage(pParse, pIdx->tnum, iDb); 2314 } 2315 #else 2316 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2317 ** is not defined), then it is important to call OP_Destroy on the 2318 ** table and index root-pages in order, starting with the numerically 2319 ** largest root-page number. This guarantees that none of the root-pages 2320 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2321 ** following were coded: 2322 ** 2323 ** OP_Destroy 4 0 2324 ** ... 2325 ** OP_Destroy 5 0 2326 ** 2327 ** and root page 5 happened to be the largest root-page number in the 2328 ** database, then root page 5 would be moved to page 4 by the 2329 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2330 ** a free-list page. 2331 */ 2332 int iTab = pTab->tnum; 2333 int iDestroyed = 0; 2334 2335 while( 1 ){ 2336 Index *pIdx; 2337 int iLargest = 0; 2338 2339 if( iDestroyed==0 || iTab<iDestroyed ){ 2340 iLargest = iTab; 2341 } 2342 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2343 int iIdx = pIdx->tnum; 2344 assert( pIdx->pSchema==pTab->pSchema ); 2345 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2346 iLargest = iIdx; 2347 } 2348 } 2349 if( iLargest==0 ){ 2350 return; 2351 }else{ 2352 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2353 assert( iDb>=0 && iDb<pParse->db->nDb ); 2354 destroyRootPage(pParse, iLargest, iDb); 2355 iDestroyed = iLargest; 2356 } 2357 } 2358 #endif 2359 } 2360 2361 /* 2362 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2363 ** after a DROP INDEX or DROP TABLE command. 2364 */ 2365 static void sqlite3ClearStatTables( 2366 Parse *pParse, /* The parsing context */ 2367 int iDb, /* The database number */ 2368 const char *zType, /* "idx" or "tbl" */ 2369 const char *zName /* Name of index or table */ 2370 ){ 2371 int i; 2372 const char *zDbName = pParse->db->aDb[iDb].zName; 2373 for(i=1; i<=4; i++){ 2374 char zTab[24]; 2375 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2376 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2377 sqlite3NestedParse(pParse, 2378 "DELETE FROM %Q.%s WHERE %s=%Q", 2379 zDbName, zTab, zType, zName 2380 ); 2381 } 2382 } 2383 } 2384 2385 /* 2386 ** Generate code to drop a table. 2387 */ 2388 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2389 Vdbe *v; 2390 sqlite3 *db = pParse->db; 2391 Trigger *pTrigger; 2392 Db *pDb = &db->aDb[iDb]; 2393 2394 v = sqlite3GetVdbe(pParse); 2395 assert( v!=0 ); 2396 sqlite3BeginWriteOperation(pParse, 1, iDb); 2397 2398 #ifndef SQLITE_OMIT_VIRTUALTABLE 2399 if( IsVirtual(pTab) ){ 2400 sqlite3VdbeAddOp0(v, OP_VBegin); 2401 } 2402 #endif 2403 2404 /* Drop all triggers associated with the table being dropped. Code 2405 ** is generated to remove entries from sqlite_master and/or 2406 ** sqlite_temp_master if required. 2407 */ 2408 pTrigger = sqlite3TriggerList(pParse, pTab); 2409 while( pTrigger ){ 2410 assert( pTrigger->pSchema==pTab->pSchema || 2411 pTrigger->pSchema==db->aDb[1].pSchema ); 2412 sqlite3DropTriggerPtr(pParse, pTrigger); 2413 pTrigger = pTrigger->pNext; 2414 } 2415 2416 #ifndef SQLITE_OMIT_AUTOINCREMENT 2417 /* Remove any entries of the sqlite_sequence table associated with 2418 ** the table being dropped. This is done before the table is dropped 2419 ** at the btree level, in case the sqlite_sequence table needs to 2420 ** move as a result of the drop (can happen in auto-vacuum mode). 2421 */ 2422 if( pTab->tabFlags & TF_Autoincrement ){ 2423 sqlite3NestedParse(pParse, 2424 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2425 pDb->zName, pTab->zName 2426 ); 2427 } 2428 #endif 2429 2430 /* Drop all SQLITE_MASTER table and index entries that refer to the 2431 ** table. The program name loops through the master table and deletes 2432 ** every row that refers to a table of the same name as the one being 2433 ** dropped. Triggers are handled separately because a trigger can be 2434 ** created in the temp database that refers to a table in another 2435 ** database. 2436 */ 2437 sqlite3NestedParse(pParse, 2438 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2439 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2440 if( !isView && !IsVirtual(pTab) ){ 2441 destroyTable(pParse, pTab); 2442 } 2443 2444 /* Remove the table entry from SQLite's internal schema and modify 2445 ** the schema cookie. 2446 */ 2447 if( IsVirtual(pTab) ){ 2448 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2449 } 2450 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2451 sqlite3ChangeCookie(pParse, iDb); 2452 sqliteViewResetAll(db, iDb); 2453 } 2454 2455 /* 2456 ** This routine is called to do the work of a DROP TABLE statement. 2457 ** pName is the name of the table to be dropped. 2458 */ 2459 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2460 Table *pTab; 2461 Vdbe *v; 2462 sqlite3 *db = pParse->db; 2463 int iDb; 2464 2465 if( db->mallocFailed ){ 2466 goto exit_drop_table; 2467 } 2468 assert( pParse->nErr==0 ); 2469 assert( pName->nSrc==1 ); 2470 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2471 if( noErr ) db->suppressErr++; 2472 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2473 if( noErr ) db->suppressErr--; 2474 2475 if( pTab==0 ){ 2476 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2477 goto exit_drop_table; 2478 } 2479 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2480 assert( iDb>=0 && iDb<db->nDb ); 2481 2482 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2483 ** it is initialized. 2484 */ 2485 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2486 goto exit_drop_table; 2487 } 2488 #ifndef SQLITE_OMIT_AUTHORIZATION 2489 { 2490 int code; 2491 const char *zTab = SCHEMA_TABLE(iDb); 2492 const char *zDb = db->aDb[iDb].zName; 2493 const char *zArg2 = 0; 2494 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2495 goto exit_drop_table; 2496 } 2497 if( isView ){ 2498 if( !OMIT_TEMPDB && iDb==1 ){ 2499 code = SQLITE_DROP_TEMP_VIEW; 2500 }else{ 2501 code = SQLITE_DROP_VIEW; 2502 } 2503 #ifndef SQLITE_OMIT_VIRTUALTABLE 2504 }else if( IsVirtual(pTab) ){ 2505 code = SQLITE_DROP_VTABLE; 2506 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2507 #endif 2508 }else{ 2509 if( !OMIT_TEMPDB && iDb==1 ){ 2510 code = SQLITE_DROP_TEMP_TABLE; 2511 }else{ 2512 code = SQLITE_DROP_TABLE; 2513 } 2514 } 2515 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2516 goto exit_drop_table; 2517 } 2518 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2519 goto exit_drop_table; 2520 } 2521 } 2522 #endif 2523 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2524 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2525 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2526 goto exit_drop_table; 2527 } 2528 2529 #ifndef SQLITE_OMIT_VIEW 2530 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2531 ** on a table. 2532 */ 2533 if( isView && pTab->pSelect==0 ){ 2534 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2535 goto exit_drop_table; 2536 } 2537 if( !isView && pTab->pSelect ){ 2538 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2539 goto exit_drop_table; 2540 } 2541 #endif 2542 2543 /* Generate code to remove the table from the master table 2544 ** on disk. 2545 */ 2546 v = sqlite3GetVdbe(pParse); 2547 if( v ){ 2548 sqlite3BeginWriteOperation(pParse, 1, iDb); 2549 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2550 sqlite3FkDropTable(pParse, pName, pTab); 2551 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2552 } 2553 2554 exit_drop_table: 2555 sqlite3SrcListDelete(db, pName); 2556 } 2557 2558 /* 2559 ** This routine is called to create a new foreign key on the table 2560 ** currently under construction. pFromCol determines which columns 2561 ** in the current table point to the foreign key. If pFromCol==0 then 2562 ** connect the key to the last column inserted. pTo is the name of 2563 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2564 ** of tables in the parent pTo table. flags contains all 2565 ** information about the conflict resolution algorithms specified 2566 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2567 ** 2568 ** An FKey structure is created and added to the table currently 2569 ** under construction in the pParse->pNewTable field. 2570 ** 2571 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2572 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2573 */ 2574 void sqlite3CreateForeignKey( 2575 Parse *pParse, /* Parsing context */ 2576 ExprList *pFromCol, /* Columns in this table that point to other table */ 2577 Token *pTo, /* Name of the other table */ 2578 ExprList *pToCol, /* Columns in the other table */ 2579 int flags /* Conflict resolution algorithms. */ 2580 ){ 2581 sqlite3 *db = pParse->db; 2582 #ifndef SQLITE_OMIT_FOREIGN_KEY 2583 FKey *pFKey = 0; 2584 FKey *pNextTo; 2585 Table *p = pParse->pNewTable; 2586 int nByte; 2587 int i; 2588 int nCol; 2589 char *z; 2590 2591 assert( pTo!=0 ); 2592 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2593 if( pFromCol==0 ){ 2594 int iCol = p->nCol-1; 2595 if( NEVER(iCol<0) ) goto fk_end; 2596 if( pToCol && pToCol->nExpr!=1 ){ 2597 sqlite3ErrorMsg(pParse, "foreign key on %s" 2598 " should reference only one column of table %T", 2599 p->aCol[iCol].zName, pTo); 2600 goto fk_end; 2601 } 2602 nCol = 1; 2603 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2604 sqlite3ErrorMsg(pParse, 2605 "number of columns in foreign key does not match the number of " 2606 "columns in the referenced table"); 2607 goto fk_end; 2608 }else{ 2609 nCol = pFromCol->nExpr; 2610 } 2611 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2612 if( pToCol ){ 2613 for(i=0; i<pToCol->nExpr; i++){ 2614 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2615 } 2616 } 2617 pFKey = sqlite3DbMallocZero(db, nByte ); 2618 if( pFKey==0 ){ 2619 goto fk_end; 2620 } 2621 pFKey->pFrom = p; 2622 pFKey->pNextFrom = p->pFKey; 2623 z = (char*)&pFKey->aCol[nCol]; 2624 pFKey->zTo = z; 2625 memcpy(z, pTo->z, pTo->n); 2626 z[pTo->n] = 0; 2627 sqlite3Dequote(z); 2628 z += pTo->n+1; 2629 pFKey->nCol = nCol; 2630 if( pFromCol==0 ){ 2631 pFKey->aCol[0].iFrom = p->nCol-1; 2632 }else{ 2633 for(i=0; i<nCol; i++){ 2634 int j; 2635 for(j=0; j<p->nCol; j++){ 2636 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2637 pFKey->aCol[i].iFrom = j; 2638 break; 2639 } 2640 } 2641 if( j>=p->nCol ){ 2642 sqlite3ErrorMsg(pParse, 2643 "unknown column \"%s\" in foreign key definition", 2644 pFromCol->a[i].zName); 2645 goto fk_end; 2646 } 2647 } 2648 } 2649 if( pToCol ){ 2650 for(i=0; i<nCol; i++){ 2651 int n = sqlite3Strlen30(pToCol->a[i].zName); 2652 pFKey->aCol[i].zCol = z; 2653 memcpy(z, pToCol->a[i].zName, n); 2654 z[n] = 0; 2655 z += n+1; 2656 } 2657 } 2658 pFKey->isDeferred = 0; 2659 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2660 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2661 2662 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2663 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2664 pFKey->zTo, (void *)pFKey 2665 ); 2666 if( pNextTo==pFKey ){ 2667 db->mallocFailed = 1; 2668 goto fk_end; 2669 } 2670 if( pNextTo ){ 2671 assert( pNextTo->pPrevTo==0 ); 2672 pFKey->pNextTo = pNextTo; 2673 pNextTo->pPrevTo = pFKey; 2674 } 2675 2676 /* Link the foreign key to the table as the last step. 2677 */ 2678 p->pFKey = pFKey; 2679 pFKey = 0; 2680 2681 fk_end: 2682 sqlite3DbFree(db, pFKey); 2683 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2684 sqlite3ExprListDelete(db, pFromCol); 2685 sqlite3ExprListDelete(db, pToCol); 2686 } 2687 2688 /* 2689 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2690 ** clause is seen as part of a foreign key definition. The isDeferred 2691 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2692 ** The behavior of the most recently created foreign key is adjusted 2693 ** accordingly. 2694 */ 2695 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2696 #ifndef SQLITE_OMIT_FOREIGN_KEY 2697 Table *pTab; 2698 FKey *pFKey; 2699 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2700 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2701 pFKey->isDeferred = (u8)isDeferred; 2702 #endif 2703 } 2704 2705 /* 2706 ** Generate code that will erase and refill index *pIdx. This is 2707 ** used to initialize a newly created index or to recompute the 2708 ** content of an index in response to a REINDEX command. 2709 ** 2710 ** if memRootPage is not negative, it means that the index is newly 2711 ** created. The register specified by memRootPage contains the 2712 ** root page number of the index. If memRootPage is negative, then 2713 ** the index already exists and must be cleared before being refilled and 2714 ** the root page number of the index is taken from pIndex->tnum. 2715 */ 2716 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2717 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2718 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2719 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2720 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2721 int addr1; /* Address of top of loop */ 2722 int addr2; /* Address to jump to for next iteration */ 2723 int tnum; /* Root page of index */ 2724 int iPartIdxLabel; /* Jump to this label to skip a row */ 2725 Vdbe *v; /* Generate code into this virtual machine */ 2726 KeyInfo *pKey; /* KeyInfo for index */ 2727 int regRecord; /* Register holding assembled index record */ 2728 sqlite3 *db = pParse->db; /* The database connection */ 2729 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2730 2731 #ifndef SQLITE_OMIT_AUTHORIZATION 2732 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2733 db->aDb[iDb].zName ) ){ 2734 return; 2735 } 2736 #endif 2737 2738 /* Require a write-lock on the table to perform this operation */ 2739 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2740 2741 v = sqlite3GetVdbe(pParse); 2742 if( v==0 ) return; 2743 if( memRootPage>=0 ){ 2744 tnum = memRootPage; 2745 }else{ 2746 tnum = pIndex->tnum; 2747 } 2748 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2749 2750 /* Open the sorter cursor if we are to use one. */ 2751 iSorter = pParse->nTab++; 2752 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2753 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2754 2755 /* Open the table. Loop through all rows of the table, inserting index 2756 ** records into the sorter. */ 2757 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2758 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2759 regRecord = sqlite3GetTempReg(pParse); 2760 2761 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2762 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2763 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2764 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2765 sqlite3VdbeJumpHere(v, addr1); 2766 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2767 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2768 (char *)pKey, P4_KEYINFO); 2769 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2770 2771 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2772 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2773 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2774 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2775 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2776 addr2 = sqlite3VdbeCurrentAddr(v); 2777 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2778 pIndex->nKeyCol); VdbeCoverage(v); 2779 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2780 }else{ 2781 addr2 = sqlite3VdbeCurrentAddr(v); 2782 } 2783 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2784 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2785 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2786 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2787 sqlite3ReleaseTempReg(pParse, regRecord); 2788 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2789 sqlite3VdbeJumpHere(v, addr1); 2790 2791 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2792 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2793 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2794 } 2795 2796 /* 2797 ** Allocate heap space to hold an Index object with nCol columns. 2798 ** 2799 ** Increase the allocation size to provide an extra nExtra bytes 2800 ** of 8-byte aligned space after the Index object and return a 2801 ** pointer to this extra space in *ppExtra. 2802 */ 2803 Index *sqlite3AllocateIndexObject( 2804 sqlite3 *db, /* Database connection */ 2805 i16 nCol, /* Total number of columns in the index */ 2806 int nExtra, /* Number of bytes of extra space to alloc */ 2807 char **ppExtra /* Pointer to the "extra" space */ 2808 ){ 2809 Index *p; /* Allocated index object */ 2810 int nByte; /* Bytes of space for Index object + arrays */ 2811 2812 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2813 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2814 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2815 sizeof(i16)*nCol + /* Index.aiColumn */ 2816 sizeof(u8)*nCol); /* Index.aSortOrder */ 2817 p = sqlite3DbMallocZero(db, nByte + nExtra); 2818 if( p ){ 2819 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2820 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2821 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2822 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2823 p->aSortOrder = (u8*)pExtra; 2824 p->nColumn = nCol; 2825 p->nKeyCol = nCol - 1; 2826 *ppExtra = ((char*)p) + nByte; 2827 } 2828 return p; 2829 } 2830 2831 /* 2832 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2833 ** and pTblList is the name of the table that is to be indexed. Both will 2834 ** be NULL for a primary key or an index that is created to satisfy a 2835 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2836 ** as the table to be indexed. pParse->pNewTable is a table that is 2837 ** currently being constructed by a CREATE TABLE statement. 2838 ** 2839 ** pList is a list of columns to be indexed. pList will be NULL if this 2840 ** is a primary key or unique-constraint on the most recent column added 2841 ** to the table currently under construction. 2842 ** 2843 ** If the index is created successfully, return a pointer to the new Index 2844 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2845 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2846 */ 2847 Index *sqlite3CreateIndex( 2848 Parse *pParse, /* All information about this parse */ 2849 Token *pName1, /* First part of index name. May be NULL */ 2850 Token *pName2, /* Second part of index name. May be NULL */ 2851 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2852 ExprList *pList, /* A list of columns to be indexed */ 2853 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2854 Token *pStart, /* The CREATE token that begins this statement */ 2855 Expr *pPIWhere, /* WHERE clause for partial indices */ 2856 int sortOrder, /* Sort order of primary key when pList==NULL */ 2857 int ifNotExist /* Omit error if index already exists */ 2858 ){ 2859 Index *pRet = 0; /* Pointer to return */ 2860 Table *pTab = 0; /* Table to be indexed */ 2861 Index *pIndex = 0; /* The index to be created */ 2862 char *zName = 0; /* Name of the index */ 2863 int nName; /* Number of characters in zName */ 2864 int i, j; 2865 DbFixer sFix; /* For assigning database names to pTable */ 2866 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2867 sqlite3 *db = pParse->db; 2868 Db *pDb; /* The specific table containing the indexed database */ 2869 int iDb; /* Index of the database that is being written */ 2870 Token *pName = 0; /* Unqualified name of the index to create */ 2871 struct ExprList_item *pListItem; /* For looping over pList */ 2872 const Column *pTabCol; /* A column in the table */ 2873 int nExtra = 0; /* Space allocated for zExtra[] */ 2874 int nExtraCol; /* Number of extra columns needed */ 2875 char *zExtra = 0; /* Extra space after the Index object */ 2876 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2877 2878 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2879 goto exit_create_index; 2880 } 2881 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2882 goto exit_create_index; 2883 } 2884 2885 /* 2886 ** Find the table that is to be indexed. Return early if not found. 2887 */ 2888 if( pTblName!=0 ){ 2889 2890 /* Use the two-part index name to determine the database 2891 ** to search for the table. 'Fix' the table name to this db 2892 ** before looking up the table. 2893 */ 2894 assert( pName1 && pName2 ); 2895 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2896 if( iDb<0 ) goto exit_create_index; 2897 assert( pName && pName->z ); 2898 2899 #ifndef SQLITE_OMIT_TEMPDB 2900 /* If the index name was unqualified, check if the table 2901 ** is a temp table. If so, set the database to 1. Do not do this 2902 ** if initialising a database schema. 2903 */ 2904 if( !db->init.busy ){ 2905 pTab = sqlite3SrcListLookup(pParse, pTblName); 2906 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2907 iDb = 1; 2908 } 2909 } 2910 #endif 2911 2912 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2913 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2914 /* Because the parser constructs pTblName from a single identifier, 2915 ** sqlite3FixSrcList can never fail. */ 2916 assert(0); 2917 } 2918 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2919 assert( db->mallocFailed==0 || pTab==0 ); 2920 if( pTab==0 ) goto exit_create_index; 2921 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2922 sqlite3ErrorMsg(pParse, 2923 "cannot create a TEMP index on non-TEMP table \"%s\"", 2924 pTab->zName); 2925 goto exit_create_index; 2926 } 2927 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2928 }else{ 2929 assert( pName==0 ); 2930 assert( pStart==0 ); 2931 pTab = pParse->pNewTable; 2932 if( !pTab ) goto exit_create_index; 2933 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2934 } 2935 pDb = &db->aDb[iDb]; 2936 2937 assert( pTab!=0 ); 2938 assert( pParse->nErr==0 ); 2939 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2940 && db->init.busy==0 2941 #if SQLITE_USER_AUTHENTICATION 2942 && sqlite3UserAuthTable(pTab->zName)==0 2943 #endif 2944 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2945 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2946 goto exit_create_index; 2947 } 2948 #ifndef SQLITE_OMIT_VIEW 2949 if( pTab->pSelect ){ 2950 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2951 goto exit_create_index; 2952 } 2953 #endif 2954 #ifndef SQLITE_OMIT_VIRTUALTABLE 2955 if( IsVirtual(pTab) ){ 2956 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2957 goto exit_create_index; 2958 } 2959 #endif 2960 2961 /* 2962 ** Find the name of the index. Make sure there is not already another 2963 ** index or table with the same name. 2964 ** 2965 ** Exception: If we are reading the names of permanent indices from the 2966 ** sqlite_master table (because some other process changed the schema) and 2967 ** one of the index names collides with the name of a temporary table or 2968 ** index, then we will continue to process this index. 2969 ** 2970 ** If pName==0 it means that we are 2971 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2972 ** own name. 2973 */ 2974 if( pName ){ 2975 zName = sqlite3NameFromToken(db, pName); 2976 if( zName==0 ) goto exit_create_index; 2977 assert( pName->z!=0 ); 2978 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2979 goto exit_create_index; 2980 } 2981 if( !db->init.busy ){ 2982 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2983 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2984 goto exit_create_index; 2985 } 2986 } 2987 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2988 if( !ifNotExist ){ 2989 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2990 }else{ 2991 assert( !db->init.busy ); 2992 sqlite3CodeVerifySchema(pParse, iDb); 2993 } 2994 goto exit_create_index; 2995 } 2996 }else{ 2997 int n; 2998 Index *pLoop; 2999 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3000 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3001 if( zName==0 ){ 3002 goto exit_create_index; 3003 } 3004 } 3005 3006 /* Check for authorization to create an index. 3007 */ 3008 #ifndef SQLITE_OMIT_AUTHORIZATION 3009 { 3010 const char *zDb = pDb->zName; 3011 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3012 goto exit_create_index; 3013 } 3014 i = SQLITE_CREATE_INDEX; 3015 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3016 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3017 goto exit_create_index; 3018 } 3019 } 3020 #endif 3021 3022 /* If pList==0, it means this routine was called to make a primary 3023 ** key out of the last column added to the table under construction. 3024 ** So create a fake list to simulate this. 3025 */ 3026 if( pList==0 ){ 3027 pList = sqlite3ExprListAppend(pParse, 0, 0); 3028 if( pList==0 ) goto exit_create_index; 3029 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 3030 pTab->aCol[pTab->nCol-1].zName); 3031 pList->a[0].sortOrder = (u8)sortOrder; 3032 } 3033 3034 /* Figure out how many bytes of space are required to store explicitly 3035 ** specified collation sequence names. 3036 */ 3037 for(i=0; i<pList->nExpr; i++){ 3038 Expr *pExpr = pList->a[i].pExpr; 3039 if( pExpr ){ 3040 assert( pExpr->op==TK_COLLATE ); 3041 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3042 } 3043 } 3044 3045 /* 3046 ** Allocate the index structure. 3047 */ 3048 nName = sqlite3Strlen30(zName); 3049 nExtraCol = pPk ? pPk->nKeyCol : 1; 3050 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3051 nName + nExtra + 1, &zExtra); 3052 if( db->mallocFailed ){ 3053 goto exit_create_index; 3054 } 3055 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3056 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3057 pIndex->zName = zExtra; 3058 zExtra += nName + 1; 3059 memcpy(pIndex->zName, zName, nName+1); 3060 pIndex->pTable = pTab; 3061 pIndex->onError = (u8)onError; 3062 pIndex->uniqNotNull = onError!=OE_None; 3063 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3064 pIndex->pSchema = db->aDb[iDb].pSchema; 3065 pIndex->nKeyCol = pList->nExpr; 3066 if( pPIWhere ){ 3067 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3068 pIndex->pPartIdxWhere = pPIWhere; 3069 pPIWhere = 0; 3070 } 3071 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3072 3073 /* Check to see if we should honor DESC requests on index columns 3074 */ 3075 if( pDb->pSchema->file_format>=4 ){ 3076 sortOrderMask = -1; /* Honor DESC */ 3077 }else{ 3078 sortOrderMask = 0; /* Ignore DESC */ 3079 } 3080 3081 /* Scan the names of the columns of the table to be indexed and 3082 ** load the column indices into the Index structure. Report an error 3083 ** if any column is not found. 3084 ** 3085 ** TODO: Add a test to make sure that the same column is not named 3086 ** more than once within the same index. Only the first instance of 3087 ** the column will ever be used by the optimizer. Note that using the 3088 ** same column more than once cannot be an error because that would 3089 ** break backwards compatibility - it needs to be a warning. 3090 */ 3091 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3092 const char *zColName = pListItem->zName; 3093 int requestedSortOrder; 3094 char *zColl; /* Collation sequence name */ 3095 3096 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3097 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3098 } 3099 if( j>=pTab->nCol ){ 3100 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3101 pTab->zName, zColName); 3102 pParse->checkSchema = 1; 3103 goto exit_create_index; 3104 } 3105 assert( j<=0x7fff ); 3106 pIndex->aiColumn[i] = (i16)j; 3107 if( pListItem->pExpr ){ 3108 int nColl; 3109 assert( pListItem->pExpr->op==TK_COLLATE ); 3110 zColl = pListItem->pExpr->u.zToken; 3111 nColl = sqlite3Strlen30(zColl) + 1; 3112 assert( nExtra>=nColl ); 3113 memcpy(zExtra, zColl, nColl); 3114 zColl = zExtra; 3115 zExtra += nColl; 3116 nExtra -= nColl; 3117 }else{ 3118 zColl = pTab->aCol[j].zColl; 3119 if( !zColl ) zColl = "BINARY"; 3120 } 3121 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3122 goto exit_create_index; 3123 } 3124 pIndex->azColl[i] = zColl; 3125 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3126 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3127 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3128 } 3129 if( pPk ){ 3130 for(j=0; j<pPk->nKeyCol; j++){ 3131 int x = pPk->aiColumn[j]; 3132 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3133 pIndex->nColumn--; 3134 }else{ 3135 pIndex->aiColumn[i] = x; 3136 pIndex->azColl[i] = pPk->azColl[j]; 3137 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3138 i++; 3139 } 3140 } 3141 assert( i==pIndex->nColumn ); 3142 }else{ 3143 pIndex->aiColumn[i] = -1; 3144 pIndex->azColl[i] = "BINARY"; 3145 } 3146 sqlite3DefaultRowEst(pIndex); 3147 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3148 3149 if( pTab==pParse->pNewTable ){ 3150 /* This routine has been called to create an automatic index as a 3151 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3152 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3153 ** i.e. one of: 3154 ** 3155 ** CREATE TABLE t(x PRIMARY KEY, y); 3156 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3157 ** 3158 ** Either way, check to see if the table already has such an index. If 3159 ** so, don't bother creating this one. This only applies to 3160 ** automatically created indices. Users can do as they wish with 3161 ** explicit indices. 3162 ** 3163 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3164 ** (and thus suppressing the second one) even if they have different 3165 ** sort orders. 3166 ** 3167 ** If there are different collating sequences or if the columns of 3168 ** the constraint occur in different orders, then the constraints are 3169 ** considered distinct and both result in separate indices. 3170 */ 3171 Index *pIdx; 3172 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3173 int k; 3174 assert( IsUniqueIndex(pIdx) ); 3175 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3176 assert( IsUniqueIndex(pIndex) ); 3177 3178 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3179 for(k=0; k<pIdx->nKeyCol; k++){ 3180 const char *z1; 3181 const char *z2; 3182 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3183 z1 = pIdx->azColl[k]; 3184 z2 = pIndex->azColl[k]; 3185 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3186 } 3187 if( k==pIdx->nKeyCol ){ 3188 if( pIdx->onError!=pIndex->onError ){ 3189 /* This constraint creates the same index as a previous 3190 ** constraint specified somewhere in the CREATE TABLE statement. 3191 ** However the ON CONFLICT clauses are different. If both this 3192 ** constraint and the previous equivalent constraint have explicit 3193 ** ON CONFLICT clauses this is an error. Otherwise, use the 3194 ** explicitly specified behavior for the index. 3195 */ 3196 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3197 sqlite3ErrorMsg(pParse, 3198 "conflicting ON CONFLICT clauses specified", 0); 3199 } 3200 if( pIdx->onError==OE_Default ){ 3201 pIdx->onError = pIndex->onError; 3202 } 3203 } 3204 pRet = pIdx; 3205 goto exit_create_index; 3206 } 3207 } 3208 } 3209 3210 /* Link the new Index structure to its table and to the other 3211 ** in-memory database structures. 3212 */ 3213 if( db->init.busy ){ 3214 Index *p; 3215 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3216 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3217 pIndex->zName, pIndex); 3218 if( p ){ 3219 assert( p==pIndex ); /* Malloc must have failed */ 3220 db->mallocFailed = 1; 3221 goto exit_create_index; 3222 } 3223 db->flags |= SQLITE_InternChanges; 3224 if( pTblName!=0 ){ 3225 pIndex->tnum = db->init.newTnum; 3226 } 3227 } 3228 3229 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3230 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3231 ** emit code to allocate the index rootpage on disk and make an entry for 3232 ** the index in the sqlite_master table and populate the index with 3233 ** content. But, do not do this if we are simply reading the sqlite_master 3234 ** table to parse the schema, or if this index is the PRIMARY KEY index 3235 ** of a WITHOUT ROWID table. 3236 ** 3237 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3238 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3239 ** has just been created, it contains no data and the index initialization 3240 ** step can be skipped. 3241 */ 3242 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3243 Vdbe *v; 3244 char *zStmt; 3245 int iMem = ++pParse->nMem; 3246 3247 v = sqlite3GetVdbe(pParse); 3248 if( v==0 ) goto exit_create_index; 3249 3250 sqlite3BeginWriteOperation(pParse, 1, iDb); 3251 3252 /* Create the rootpage for the index using CreateIndex. But before 3253 ** doing so, code a Noop instruction and store its address in 3254 ** Index.tnum. This is required in case this index is actually a 3255 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3256 ** that case the convertToWithoutRowidTable() routine will replace 3257 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3258 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3259 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3260 3261 /* Gather the complete text of the CREATE INDEX statement into 3262 ** the zStmt variable 3263 */ 3264 if( pStart ){ 3265 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3266 if( pName->z[n-1]==';' ) n--; 3267 /* A named index with an explicit CREATE INDEX statement */ 3268 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3269 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3270 }else{ 3271 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3272 /* zStmt = sqlite3MPrintf(""); */ 3273 zStmt = 0; 3274 } 3275 3276 /* Add an entry in sqlite_master for this index 3277 */ 3278 sqlite3NestedParse(pParse, 3279 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3280 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3281 pIndex->zName, 3282 pTab->zName, 3283 iMem, 3284 zStmt 3285 ); 3286 sqlite3DbFree(db, zStmt); 3287 3288 /* Fill the index with data and reparse the schema. Code an OP_Expire 3289 ** to invalidate all pre-compiled statements. 3290 */ 3291 if( pTblName ){ 3292 sqlite3RefillIndex(pParse, pIndex, iMem); 3293 sqlite3ChangeCookie(pParse, iDb); 3294 sqlite3VdbeAddParseSchemaOp(v, iDb, 3295 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3296 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3297 } 3298 3299 sqlite3VdbeJumpHere(v, pIndex->tnum); 3300 } 3301 3302 /* When adding an index to the list of indices for a table, make 3303 ** sure all indices labeled OE_Replace come after all those labeled 3304 ** OE_Ignore. This is necessary for the correct constraint check 3305 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3306 ** UPDATE and INSERT statements. 3307 */ 3308 if( db->init.busy || pTblName==0 ){ 3309 if( onError!=OE_Replace || pTab->pIndex==0 3310 || pTab->pIndex->onError==OE_Replace){ 3311 pIndex->pNext = pTab->pIndex; 3312 pTab->pIndex = pIndex; 3313 }else{ 3314 Index *pOther = pTab->pIndex; 3315 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3316 pOther = pOther->pNext; 3317 } 3318 pIndex->pNext = pOther->pNext; 3319 pOther->pNext = pIndex; 3320 } 3321 pRet = pIndex; 3322 pIndex = 0; 3323 } 3324 3325 /* Clean up before exiting */ 3326 exit_create_index: 3327 if( pIndex ) freeIndex(db, pIndex); 3328 sqlite3ExprDelete(db, pPIWhere); 3329 sqlite3ExprListDelete(db, pList); 3330 sqlite3SrcListDelete(db, pTblName); 3331 sqlite3DbFree(db, zName); 3332 return pRet; 3333 } 3334 3335 /* 3336 ** Fill the Index.aiRowEst[] array with default information - information 3337 ** to be used when we have not run the ANALYZE command. 3338 ** 3339 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3340 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3341 ** number of rows in the table that match any particular value of the 3342 ** first column of the index. aiRowEst[2] is an estimate of the number 3343 ** of rows that match any particular combination of the first 2 columns 3344 ** of the index. And so forth. It must always be the case that 3345 * 3346 ** aiRowEst[N]<=aiRowEst[N-1] 3347 ** aiRowEst[N]>=1 3348 ** 3349 ** Apart from that, we have little to go on besides intuition as to 3350 ** how aiRowEst[] should be initialized. The numbers generated here 3351 ** are based on typical values found in actual indices. 3352 */ 3353 void sqlite3DefaultRowEst(Index *pIdx){ 3354 /* 10, 9, 8, 7, 6 */ 3355 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3356 LogEst *a = pIdx->aiRowLogEst; 3357 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3358 int i; 3359 3360 /* Set the first entry (number of rows in the index) to the estimated 3361 ** number of rows in the table. Or 10, if the estimated number of rows 3362 ** in the table is less than that. */ 3363 a[0] = pIdx->pTable->nRowLogEst; 3364 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3365 3366 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3367 ** 6 and each subsequent value (if any) is 5. */ 3368 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3369 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3370 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3371 } 3372 3373 assert( 0==sqlite3LogEst(1) ); 3374 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3375 } 3376 3377 /* 3378 ** This routine will drop an existing named index. This routine 3379 ** implements the DROP INDEX statement. 3380 */ 3381 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3382 Index *pIndex; 3383 Vdbe *v; 3384 sqlite3 *db = pParse->db; 3385 int iDb; 3386 3387 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3388 if( db->mallocFailed ){ 3389 goto exit_drop_index; 3390 } 3391 assert( pName->nSrc==1 ); 3392 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3393 goto exit_drop_index; 3394 } 3395 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3396 if( pIndex==0 ){ 3397 if( !ifExists ){ 3398 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3399 }else{ 3400 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3401 } 3402 pParse->checkSchema = 1; 3403 goto exit_drop_index; 3404 } 3405 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3406 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3407 "or PRIMARY KEY constraint cannot be dropped", 0); 3408 goto exit_drop_index; 3409 } 3410 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3411 #ifndef SQLITE_OMIT_AUTHORIZATION 3412 { 3413 int code = SQLITE_DROP_INDEX; 3414 Table *pTab = pIndex->pTable; 3415 const char *zDb = db->aDb[iDb].zName; 3416 const char *zTab = SCHEMA_TABLE(iDb); 3417 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3418 goto exit_drop_index; 3419 } 3420 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3421 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3422 goto exit_drop_index; 3423 } 3424 } 3425 #endif 3426 3427 /* Generate code to remove the index and from the master table */ 3428 v = sqlite3GetVdbe(pParse); 3429 if( v ){ 3430 sqlite3BeginWriteOperation(pParse, 1, iDb); 3431 sqlite3NestedParse(pParse, 3432 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3433 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3434 ); 3435 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3436 sqlite3ChangeCookie(pParse, iDb); 3437 destroyRootPage(pParse, pIndex->tnum, iDb); 3438 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3439 } 3440 3441 exit_drop_index: 3442 sqlite3SrcListDelete(db, pName); 3443 } 3444 3445 /* 3446 ** pArray is a pointer to an array of objects. Each object in the 3447 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3448 ** to extend the array so that there is space for a new object at the end. 3449 ** 3450 ** When this function is called, *pnEntry contains the current size of 3451 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3452 ** in total). 3453 ** 3454 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3455 ** space allocated for the new object is zeroed, *pnEntry updated to 3456 ** reflect the new size of the array and a pointer to the new allocation 3457 ** returned. *pIdx is set to the index of the new array entry in this case. 3458 ** 3459 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3460 ** unchanged and a copy of pArray returned. 3461 */ 3462 void *sqlite3ArrayAllocate( 3463 sqlite3 *db, /* Connection to notify of malloc failures */ 3464 void *pArray, /* Array of objects. Might be reallocated */ 3465 int szEntry, /* Size of each object in the array */ 3466 int *pnEntry, /* Number of objects currently in use */ 3467 int *pIdx /* Write the index of a new slot here */ 3468 ){ 3469 char *z; 3470 int n = *pnEntry; 3471 if( (n & (n-1))==0 ){ 3472 int sz = (n==0) ? 1 : 2*n; 3473 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3474 if( pNew==0 ){ 3475 *pIdx = -1; 3476 return pArray; 3477 } 3478 pArray = pNew; 3479 } 3480 z = (char*)pArray; 3481 memset(&z[n * szEntry], 0, szEntry); 3482 *pIdx = n; 3483 ++*pnEntry; 3484 return pArray; 3485 } 3486 3487 /* 3488 ** Append a new element to the given IdList. Create a new IdList if 3489 ** need be. 3490 ** 3491 ** A new IdList is returned, or NULL if malloc() fails. 3492 */ 3493 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3494 int i; 3495 if( pList==0 ){ 3496 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3497 if( pList==0 ) return 0; 3498 } 3499 pList->a = sqlite3ArrayAllocate( 3500 db, 3501 pList->a, 3502 sizeof(pList->a[0]), 3503 &pList->nId, 3504 &i 3505 ); 3506 if( i<0 ){ 3507 sqlite3IdListDelete(db, pList); 3508 return 0; 3509 } 3510 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3511 return pList; 3512 } 3513 3514 /* 3515 ** Delete an IdList. 3516 */ 3517 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3518 int i; 3519 if( pList==0 ) return; 3520 for(i=0; i<pList->nId; i++){ 3521 sqlite3DbFree(db, pList->a[i].zName); 3522 } 3523 sqlite3DbFree(db, pList->a); 3524 sqlite3DbFree(db, pList); 3525 } 3526 3527 /* 3528 ** Return the index in pList of the identifier named zId. Return -1 3529 ** if not found. 3530 */ 3531 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3532 int i; 3533 if( pList==0 ) return -1; 3534 for(i=0; i<pList->nId; i++){ 3535 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3536 } 3537 return -1; 3538 } 3539 3540 /* 3541 ** Expand the space allocated for the given SrcList object by 3542 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3543 ** New slots are zeroed. 3544 ** 3545 ** For example, suppose a SrcList initially contains two entries: A,B. 3546 ** To append 3 new entries onto the end, do this: 3547 ** 3548 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3549 ** 3550 ** After the call above it would contain: A, B, nil, nil, nil. 3551 ** If the iStart argument had been 1 instead of 2, then the result 3552 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3553 ** the iStart value would be 0. The result then would 3554 ** be: nil, nil, nil, A, B. 3555 ** 3556 ** If a memory allocation fails the SrcList is unchanged. The 3557 ** db->mallocFailed flag will be set to true. 3558 */ 3559 SrcList *sqlite3SrcListEnlarge( 3560 sqlite3 *db, /* Database connection to notify of OOM errors */ 3561 SrcList *pSrc, /* The SrcList to be enlarged */ 3562 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3563 int iStart /* Index in pSrc->a[] of first new slot */ 3564 ){ 3565 int i; 3566 3567 /* Sanity checking on calling parameters */ 3568 assert( iStart>=0 ); 3569 assert( nExtra>=1 ); 3570 assert( pSrc!=0 ); 3571 assert( iStart<=pSrc->nSrc ); 3572 3573 /* Allocate additional space if needed */ 3574 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3575 SrcList *pNew; 3576 int nAlloc = pSrc->nSrc+nExtra; 3577 int nGot; 3578 pNew = sqlite3DbRealloc(db, pSrc, 3579 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3580 if( pNew==0 ){ 3581 assert( db->mallocFailed ); 3582 return pSrc; 3583 } 3584 pSrc = pNew; 3585 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3586 pSrc->nAlloc = nGot; 3587 } 3588 3589 /* Move existing slots that come after the newly inserted slots 3590 ** out of the way */ 3591 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3592 pSrc->a[i+nExtra] = pSrc->a[i]; 3593 } 3594 pSrc->nSrc += nExtra; 3595 3596 /* Zero the newly allocated slots */ 3597 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3598 for(i=iStart; i<iStart+nExtra; i++){ 3599 pSrc->a[i].iCursor = -1; 3600 } 3601 3602 /* Return a pointer to the enlarged SrcList */ 3603 return pSrc; 3604 } 3605 3606 3607 /* 3608 ** Append a new table name to the given SrcList. Create a new SrcList if 3609 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3610 ** 3611 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3612 ** SrcList might be the same as the SrcList that was input or it might be 3613 ** a new one. If an OOM error does occurs, then the prior value of pList 3614 ** that is input to this routine is automatically freed. 3615 ** 3616 ** If pDatabase is not null, it means that the table has an optional 3617 ** database name prefix. Like this: "database.table". The pDatabase 3618 ** points to the table name and the pTable points to the database name. 3619 ** The SrcList.a[].zName field is filled with the table name which might 3620 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3621 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3622 ** or with NULL if no database is specified. 3623 ** 3624 ** In other words, if call like this: 3625 ** 3626 ** sqlite3SrcListAppend(D,A,B,0); 3627 ** 3628 ** Then B is a table name and the database name is unspecified. If called 3629 ** like this: 3630 ** 3631 ** sqlite3SrcListAppend(D,A,B,C); 3632 ** 3633 ** Then C is the table name and B is the database name. If C is defined 3634 ** then so is B. In other words, we never have a case where: 3635 ** 3636 ** sqlite3SrcListAppend(D,A,0,C); 3637 ** 3638 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3639 ** before being added to the SrcList. 3640 */ 3641 SrcList *sqlite3SrcListAppend( 3642 sqlite3 *db, /* Connection to notify of malloc failures */ 3643 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3644 Token *pTable, /* Table to append */ 3645 Token *pDatabase /* Database of the table */ 3646 ){ 3647 struct SrcList_item *pItem; 3648 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3649 if( pList==0 ){ 3650 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3651 if( pList==0 ) return 0; 3652 pList->nAlloc = 1; 3653 } 3654 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3655 if( db->mallocFailed ){ 3656 sqlite3SrcListDelete(db, pList); 3657 return 0; 3658 } 3659 pItem = &pList->a[pList->nSrc-1]; 3660 if( pDatabase && pDatabase->z==0 ){ 3661 pDatabase = 0; 3662 } 3663 if( pDatabase ){ 3664 Token *pTemp = pDatabase; 3665 pDatabase = pTable; 3666 pTable = pTemp; 3667 } 3668 pItem->zName = sqlite3NameFromToken(db, pTable); 3669 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3670 return pList; 3671 } 3672 3673 /* 3674 ** Assign VdbeCursor index numbers to all tables in a SrcList 3675 */ 3676 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3677 int i; 3678 struct SrcList_item *pItem; 3679 assert(pList || pParse->db->mallocFailed ); 3680 if( pList ){ 3681 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3682 if( pItem->iCursor>=0 ) break; 3683 pItem->iCursor = pParse->nTab++; 3684 if( pItem->pSelect ){ 3685 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3686 } 3687 } 3688 } 3689 } 3690 3691 /* 3692 ** Delete an entire SrcList including all its substructure. 3693 */ 3694 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3695 int i; 3696 struct SrcList_item *pItem; 3697 if( pList==0 ) return; 3698 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3699 sqlite3DbFree(db, pItem->zDatabase); 3700 sqlite3DbFree(db, pItem->zName); 3701 sqlite3DbFree(db, pItem->zAlias); 3702 sqlite3DbFree(db, pItem->zIndexedBy); 3703 sqlite3DeleteTable(db, pItem->pTab); 3704 sqlite3SelectDelete(db, pItem->pSelect); 3705 sqlite3ExprDelete(db, pItem->pOn); 3706 sqlite3IdListDelete(db, pItem->pUsing); 3707 } 3708 sqlite3DbFree(db, pList); 3709 } 3710 3711 /* 3712 ** This routine is called by the parser to add a new term to the 3713 ** end of a growing FROM clause. The "p" parameter is the part of 3714 ** the FROM clause that has already been constructed. "p" is NULL 3715 ** if this is the first term of the FROM clause. pTable and pDatabase 3716 ** are the name of the table and database named in the FROM clause term. 3717 ** pDatabase is NULL if the database name qualifier is missing - the 3718 ** usual case. If the term has an alias, then pAlias points to the 3719 ** alias token. If the term is a subquery, then pSubquery is the 3720 ** SELECT statement that the subquery encodes. The pTable and 3721 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3722 ** parameters are the content of the ON and USING clauses. 3723 ** 3724 ** Return a new SrcList which encodes is the FROM with the new 3725 ** term added. 3726 */ 3727 SrcList *sqlite3SrcListAppendFromTerm( 3728 Parse *pParse, /* Parsing context */ 3729 SrcList *p, /* The left part of the FROM clause already seen */ 3730 Token *pTable, /* Name of the table to add to the FROM clause */ 3731 Token *pDatabase, /* Name of the database containing pTable */ 3732 Token *pAlias, /* The right-hand side of the AS subexpression */ 3733 Select *pSubquery, /* A subquery used in place of a table name */ 3734 Expr *pOn, /* The ON clause of a join */ 3735 IdList *pUsing /* The USING clause of a join */ 3736 ){ 3737 struct SrcList_item *pItem; 3738 sqlite3 *db = pParse->db; 3739 if( !p && (pOn || pUsing) ){ 3740 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3741 (pOn ? "ON" : "USING") 3742 ); 3743 goto append_from_error; 3744 } 3745 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3746 if( p==0 || NEVER(p->nSrc==0) ){ 3747 goto append_from_error; 3748 } 3749 pItem = &p->a[p->nSrc-1]; 3750 assert( pAlias!=0 ); 3751 if( pAlias->n ){ 3752 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3753 } 3754 pItem->pSelect = pSubquery; 3755 pItem->pOn = pOn; 3756 pItem->pUsing = pUsing; 3757 return p; 3758 3759 append_from_error: 3760 assert( p==0 ); 3761 sqlite3ExprDelete(db, pOn); 3762 sqlite3IdListDelete(db, pUsing); 3763 sqlite3SelectDelete(db, pSubquery); 3764 return 0; 3765 } 3766 3767 /* 3768 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3769 ** element of the source-list passed as the second argument. 3770 */ 3771 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3772 assert( pIndexedBy!=0 ); 3773 if( p && ALWAYS(p->nSrc>0) ){ 3774 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3775 assert( pItem->notIndexed==0 && pItem->zIndexedBy==0 ); 3776 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3777 /* A "NOT INDEXED" clause was supplied. See parse.y 3778 ** construct "indexed_opt" for details. */ 3779 pItem->notIndexed = 1; 3780 }else{ 3781 pItem->zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3782 } 3783 } 3784 } 3785 3786 /* 3787 ** When building up a FROM clause in the parser, the join operator 3788 ** is initially attached to the left operand. But the code generator 3789 ** expects the join operator to be on the right operand. This routine 3790 ** Shifts all join operators from left to right for an entire FROM 3791 ** clause. 3792 ** 3793 ** Example: Suppose the join is like this: 3794 ** 3795 ** A natural cross join B 3796 ** 3797 ** The operator is "natural cross join". The A and B operands are stored 3798 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3799 ** operator with A. This routine shifts that operator over to B. 3800 */ 3801 void sqlite3SrcListShiftJoinType(SrcList *p){ 3802 if( p ){ 3803 int i; 3804 for(i=p->nSrc-1; i>0; i--){ 3805 p->a[i].jointype = p->a[i-1].jointype; 3806 } 3807 p->a[0].jointype = 0; 3808 } 3809 } 3810 3811 /* 3812 ** Begin a transaction 3813 */ 3814 void sqlite3BeginTransaction(Parse *pParse, int type){ 3815 sqlite3 *db; 3816 Vdbe *v; 3817 int i; 3818 3819 assert( pParse!=0 ); 3820 db = pParse->db; 3821 assert( db!=0 ); 3822 /* if( db->aDb[0].pBt==0 ) return; */ 3823 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3824 return; 3825 } 3826 v = sqlite3GetVdbe(pParse); 3827 if( !v ) return; 3828 if( type!=TK_DEFERRED ){ 3829 for(i=0; i<db->nDb; i++){ 3830 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3831 sqlite3VdbeUsesBtree(v, i); 3832 } 3833 } 3834 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3835 } 3836 3837 /* 3838 ** Commit a transaction 3839 */ 3840 void sqlite3CommitTransaction(Parse *pParse){ 3841 Vdbe *v; 3842 3843 assert( pParse!=0 ); 3844 assert( pParse->db!=0 ); 3845 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3846 return; 3847 } 3848 v = sqlite3GetVdbe(pParse); 3849 if( v ){ 3850 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3851 } 3852 } 3853 3854 /* 3855 ** Rollback a transaction 3856 */ 3857 void sqlite3RollbackTransaction(Parse *pParse){ 3858 Vdbe *v; 3859 3860 assert( pParse!=0 ); 3861 assert( pParse->db!=0 ); 3862 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3863 return; 3864 } 3865 v = sqlite3GetVdbe(pParse); 3866 if( v ){ 3867 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3868 } 3869 } 3870 3871 /* 3872 ** This function is called by the parser when it parses a command to create, 3873 ** release or rollback an SQL savepoint. 3874 */ 3875 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3876 char *zName = sqlite3NameFromToken(pParse->db, pName); 3877 if( zName ){ 3878 Vdbe *v = sqlite3GetVdbe(pParse); 3879 #ifndef SQLITE_OMIT_AUTHORIZATION 3880 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3881 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3882 #endif 3883 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3884 sqlite3DbFree(pParse->db, zName); 3885 return; 3886 } 3887 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3888 } 3889 } 3890 3891 /* 3892 ** Make sure the TEMP database is open and available for use. Return 3893 ** the number of errors. Leave any error messages in the pParse structure. 3894 */ 3895 int sqlite3OpenTempDatabase(Parse *pParse){ 3896 sqlite3 *db = pParse->db; 3897 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3898 int rc; 3899 Btree *pBt; 3900 static const int flags = 3901 SQLITE_OPEN_READWRITE | 3902 SQLITE_OPEN_CREATE | 3903 SQLITE_OPEN_EXCLUSIVE | 3904 SQLITE_OPEN_DELETEONCLOSE | 3905 SQLITE_OPEN_TEMP_DB; 3906 3907 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3908 if( rc!=SQLITE_OK ){ 3909 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3910 "file for storing temporary tables"); 3911 pParse->rc = rc; 3912 return 1; 3913 } 3914 db->aDb[1].pBt = pBt; 3915 assert( db->aDb[1].pSchema ); 3916 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3917 db->mallocFailed = 1; 3918 return 1; 3919 } 3920 } 3921 return 0; 3922 } 3923 3924 /* 3925 ** Record the fact that the schema cookie will need to be verified 3926 ** for database iDb. The code to actually verify the schema cookie 3927 ** will occur at the end of the top-level VDBE and will be generated 3928 ** later, by sqlite3FinishCoding(). 3929 */ 3930 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3931 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3932 sqlite3 *db = pToplevel->db; 3933 3934 assert( iDb>=0 && iDb<db->nDb ); 3935 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3936 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3937 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3938 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3939 DbMaskSet(pToplevel->cookieMask, iDb); 3940 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3941 if( !OMIT_TEMPDB && iDb==1 ){ 3942 sqlite3OpenTempDatabase(pToplevel); 3943 } 3944 } 3945 } 3946 3947 /* 3948 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3949 ** attached database. Otherwise, invoke it for the database named zDb only. 3950 */ 3951 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3952 sqlite3 *db = pParse->db; 3953 int i; 3954 for(i=0; i<db->nDb; i++){ 3955 Db *pDb = &db->aDb[i]; 3956 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3957 sqlite3CodeVerifySchema(pParse, i); 3958 } 3959 } 3960 } 3961 3962 /* 3963 ** Generate VDBE code that prepares for doing an operation that 3964 ** might change the database. 3965 ** 3966 ** This routine starts a new transaction if we are not already within 3967 ** a transaction. If we are already within a transaction, then a checkpoint 3968 ** is set if the setStatement parameter is true. A checkpoint should 3969 ** be set for operations that might fail (due to a constraint) part of 3970 ** the way through and which will need to undo some writes without having to 3971 ** rollback the whole transaction. For operations where all constraints 3972 ** can be checked before any changes are made to the database, it is never 3973 ** necessary to undo a write and the checkpoint should not be set. 3974 */ 3975 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3976 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3977 sqlite3CodeVerifySchema(pParse, iDb); 3978 DbMaskSet(pToplevel->writeMask, iDb); 3979 pToplevel->isMultiWrite |= setStatement; 3980 } 3981 3982 /* 3983 ** Indicate that the statement currently under construction might write 3984 ** more than one entry (example: deleting one row then inserting another, 3985 ** inserting multiple rows in a table, or inserting a row and index entries.) 3986 ** If an abort occurs after some of these writes have completed, then it will 3987 ** be necessary to undo the completed writes. 3988 */ 3989 void sqlite3MultiWrite(Parse *pParse){ 3990 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3991 pToplevel->isMultiWrite = 1; 3992 } 3993 3994 /* 3995 ** The code generator calls this routine if is discovers that it is 3996 ** possible to abort a statement prior to completion. In order to 3997 ** perform this abort without corrupting the database, we need to make 3998 ** sure that the statement is protected by a statement transaction. 3999 ** 4000 ** Technically, we only need to set the mayAbort flag if the 4001 ** isMultiWrite flag was previously set. There is a time dependency 4002 ** such that the abort must occur after the multiwrite. This makes 4003 ** some statements involving the REPLACE conflict resolution algorithm 4004 ** go a little faster. But taking advantage of this time dependency 4005 ** makes it more difficult to prove that the code is correct (in 4006 ** particular, it prevents us from writing an effective 4007 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4008 ** to take the safe route and skip the optimization. 4009 */ 4010 void sqlite3MayAbort(Parse *pParse){ 4011 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4012 pToplevel->mayAbort = 1; 4013 } 4014 4015 /* 4016 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4017 ** error. The onError parameter determines which (if any) of the statement 4018 ** and/or current transaction is rolled back. 4019 */ 4020 void sqlite3HaltConstraint( 4021 Parse *pParse, /* Parsing context */ 4022 int errCode, /* extended error code */ 4023 int onError, /* Constraint type */ 4024 char *p4, /* Error message */ 4025 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4026 u8 p5Errmsg /* P5_ErrMsg type */ 4027 ){ 4028 Vdbe *v = sqlite3GetVdbe(pParse); 4029 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4030 if( onError==OE_Abort ){ 4031 sqlite3MayAbort(pParse); 4032 } 4033 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4034 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4035 } 4036 4037 /* 4038 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4039 */ 4040 void sqlite3UniqueConstraint( 4041 Parse *pParse, /* Parsing context */ 4042 int onError, /* Constraint type */ 4043 Index *pIdx /* The index that triggers the constraint */ 4044 ){ 4045 char *zErr; 4046 int j; 4047 StrAccum errMsg; 4048 Table *pTab = pIdx->pTable; 4049 4050 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4051 for(j=0; j<pIdx->nKeyCol; j++){ 4052 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4053 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4054 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4055 sqlite3StrAccumAppend(&errMsg, ".", 1); 4056 sqlite3StrAccumAppendAll(&errMsg, zCol); 4057 } 4058 zErr = sqlite3StrAccumFinish(&errMsg); 4059 sqlite3HaltConstraint(pParse, 4060 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4061 : SQLITE_CONSTRAINT_UNIQUE, 4062 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4063 } 4064 4065 4066 /* 4067 ** Code an OP_Halt due to non-unique rowid. 4068 */ 4069 void sqlite3RowidConstraint( 4070 Parse *pParse, /* Parsing context */ 4071 int onError, /* Conflict resolution algorithm */ 4072 Table *pTab /* The table with the non-unique rowid */ 4073 ){ 4074 char *zMsg; 4075 int rc; 4076 if( pTab->iPKey>=0 ){ 4077 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4078 pTab->aCol[pTab->iPKey].zName); 4079 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4080 }else{ 4081 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4082 rc = SQLITE_CONSTRAINT_ROWID; 4083 } 4084 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4085 P5_ConstraintUnique); 4086 } 4087 4088 /* 4089 ** Check to see if pIndex uses the collating sequence pColl. Return 4090 ** true if it does and false if it does not. 4091 */ 4092 #ifndef SQLITE_OMIT_REINDEX 4093 static int collationMatch(const char *zColl, Index *pIndex){ 4094 int i; 4095 assert( zColl!=0 ); 4096 for(i=0; i<pIndex->nColumn; i++){ 4097 const char *z = pIndex->azColl[i]; 4098 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4099 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4100 return 1; 4101 } 4102 } 4103 return 0; 4104 } 4105 #endif 4106 4107 /* 4108 ** Recompute all indices of pTab that use the collating sequence pColl. 4109 ** If pColl==0 then recompute all indices of pTab. 4110 */ 4111 #ifndef SQLITE_OMIT_REINDEX 4112 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4113 Index *pIndex; /* An index associated with pTab */ 4114 4115 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4116 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4117 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4118 sqlite3BeginWriteOperation(pParse, 0, iDb); 4119 sqlite3RefillIndex(pParse, pIndex, -1); 4120 } 4121 } 4122 } 4123 #endif 4124 4125 /* 4126 ** Recompute all indices of all tables in all databases where the 4127 ** indices use the collating sequence pColl. If pColl==0 then recompute 4128 ** all indices everywhere. 4129 */ 4130 #ifndef SQLITE_OMIT_REINDEX 4131 static void reindexDatabases(Parse *pParse, char const *zColl){ 4132 Db *pDb; /* A single database */ 4133 int iDb; /* The database index number */ 4134 sqlite3 *db = pParse->db; /* The database connection */ 4135 HashElem *k; /* For looping over tables in pDb */ 4136 Table *pTab; /* A table in the database */ 4137 4138 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4139 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4140 assert( pDb!=0 ); 4141 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4142 pTab = (Table*)sqliteHashData(k); 4143 reindexTable(pParse, pTab, zColl); 4144 } 4145 } 4146 } 4147 #endif 4148 4149 /* 4150 ** Generate code for the REINDEX command. 4151 ** 4152 ** REINDEX -- 1 4153 ** REINDEX <collation> -- 2 4154 ** REINDEX ?<database>.?<tablename> -- 3 4155 ** REINDEX ?<database>.?<indexname> -- 4 4156 ** 4157 ** Form 1 causes all indices in all attached databases to be rebuilt. 4158 ** Form 2 rebuilds all indices in all databases that use the named 4159 ** collating function. Forms 3 and 4 rebuild the named index or all 4160 ** indices associated with the named table. 4161 */ 4162 #ifndef SQLITE_OMIT_REINDEX 4163 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4164 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4165 char *z; /* Name of a table or index */ 4166 const char *zDb; /* Name of the database */ 4167 Table *pTab; /* A table in the database */ 4168 Index *pIndex; /* An index associated with pTab */ 4169 int iDb; /* The database index number */ 4170 sqlite3 *db = pParse->db; /* The database connection */ 4171 Token *pObjName; /* Name of the table or index to be reindexed */ 4172 4173 /* Read the database schema. If an error occurs, leave an error message 4174 ** and code in pParse and return NULL. */ 4175 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4176 return; 4177 } 4178 4179 if( pName1==0 ){ 4180 reindexDatabases(pParse, 0); 4181 return; 4182 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4183 char *zColl; 4184 assert( pName1->z ); 4185 zColl = sqlite3NameFromToken(pParse->db, pName1); 4186 if( !zColl ) return; 4187 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4188 if( pColl ){ 4189 reindexDatabases(pParse, zColl); 4190 sqlite3DbFree(db, zColl); 4191 return; 4192 } 4193 sqlite3DbFree(db, zColl); 4194 } 4195 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4196 if( iDb<0 ) return; 4197 z = sqlite3NameFromToken(db, pObjName); 4198 if( z==0 ) return; 4199 zDb = db->aDb[iDb].zName; 4200 pTab = sqlite3FindTable(db, z, zDb); 4201 if( pTab ){ 4202 reindexTable(pParse, pTab, 0); 4203 sqlite3DbFree(db, z); 4204 return; 4205 } 4206 pIndex = sqlite3FindIndex(db, z, zDb); 4207 sqlite3DbFree(db, z); 4208 if( pIndex ){ 4209 sqlite3BeginWriteOperation(pParse, 0, iDb); 4210 sqlite3RefillIndex(pParse, pIndex, -1); 4211 return; 4212 } 4213 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4214 } 4215 #endif 4216 4217 /* 4218 ** Return a KeyInfo structure that is appropriate for the given Index. 4219 ** 4220 ** The KeyInfo structure for an index is cached in the Index object. 4221 ** So there might be multiple references to the returned pointer. The 4222 ** caller should not try to modify the KeyInfo object. 4223 ** 4224 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4225 ** when it has finished using it. 4226 */ 4227 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4228 int i; 4229 int nCol = pIdx->nColumn; 4230 int nKey = pIdx->nKeyCol; 4231 KeyInfo *pKey; 4232 if( pParse->nErr ) return 0; 4233 if( pIdx->uniqNotNull ){ 4234 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4235 }else{ 4236 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4237 } 4238 if( pKey ){ 4239 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4240 for(i=0; i<nCol; i++){ 4241 char *zColl = pIdx->azColl[i]; 4242 assert( zColl!=0 ); 4243 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4244 sqlite3LocateCollSeq(pParse, zColl); 4245 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4246 } 4247 if( pParse->nErr ){ 4248 sqlite3KeyInfoUnref(pKey); 4249 pKey = 0; 4250 } 4251 } 4252 return pKey; 4253 } 4254 4255 #ifndef SQLITE_OMIT_CTE 4256 /* 4257 ** This routine is invoked once per CTE by the parser while parsing a 4258 ** WITH clause. 4259 */ 4260 With *sqlite3WithAdd( 4261 Parse *pParse, /* Parsing context */ 4262 With *pWith, /* Existing WITH clause, or NULL */ 4263 Token *pName, /* Name of the common-table */ 4264 ExprList *pArglist, /* Optional column name list for the table */ 4265 Select *pQuery /* Query used to initialize the table */ 4266 ){ 4267 sqlite3 *db = pParse->db; 4268 With *pNew; 4269 char *zName; 4270 4271 /* Check that the CTE name is unique within this WITH clause. If 4272 ** not, store an error in the Parse structure. */ 4273 zName = sqlite3NameFromToken(pParse->db, pName); 4274 if( zName && pWith ){ 4275 int i; 4276 for(i=0; i<pWith->nCte; i++){ 4277 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4278 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4279 } 4280 } 4281 } 4282 4283 if( pWith ){ 4284 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4285 pNew = sqlite3DbRealloc(db, pWith, nByte); 4286 }else{ 4287 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4288 } 4289 assert( zName!=0 || pNew==0 ); 4290 assert( db->mallocFailed==0 || pNew==0 ); 4291 4292 if( pNew==0 ){ 4293 sqlite3ExprListDelete(db, pArglist); 4294 sqlite3SelectDelete(db, pQuery); 4295 sqlite3DbFree(db, zName); 4296 pNew = pWith; 4297 }else{ 4298 pNew->a[pNew->nCte].pSelect = pQuery; 4299 pNew->a[pNew->nCte].pCols = pArglist; 4300 pNew->a[pNew->nCte].zName = zName; 4301 pNew->a[pNew->nCte].zErr = 0; 4302 pNew->nCte++; 4303 } 4304 4305 return pNew; 4306 } 4307 4308 /* 4309 ** Free the contents of the With object passed as the second argument. 4310 */ 4311 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4312 if( pWith ){ 4313 int i; 4314 for(i=0; i<pWith->nCte; i++){ 4315 struct Cte *pCte = &pWith->a[i]; 4316 sqlite3ExprListDelete(db, pCte->pCols); 4317 sqlite3SelectDelete(db, pCte->pSelect); 4318 sqlite3DbFree(db, pCte->zName); 4319 } 4320 sqlite3DbFree(db, pWith); 4321 } 4322 } 4323 #endif /* !defined(SQLITE_OMIT_CTE) */ 4324