1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 assert( db->pParse==pParse ); 147 if( pParse->nested ) return; 148 if( pParse->nErr ){ 149 if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; 150 return; 151 } 152 assert( db->mallocFailed==0 ); 153 154 /* Begin by generating some termination code at the end of the 155 ** vdbe program 156 */ 157 v = pParse->pVdbe; 158 if( v==0 ){ 159 if( db->init.busy ){ 160 pParse->rc = SQLITE_DONE; 161 return; 162 } 163 v = sqlite3GetVdbe(pParse); 164 if( v==0 ) pParse->rc = SQLITE_ERROR; 165 } 166 assert( !pParse->isMultiWrite 167 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 168 if( v ){ 169 if( pParse->bReturning ){ 170 Returning *pReturning = pParse->u1.pReturning; 171 int addrRewind; 172 int i; 173 int reg; 174 175 if( NEVER(pReturning->nRetCol==0) ){ 176 assert( CORRUPT_DB ); 177 }else{ 178 sqlite3VdbeAddOp0(v, OP_FkCheck); 179 addrRewind = 180 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 181 VdbeCoverage(v); 182 reg = pReturning->iRetReg; 183 for(i=0; i<pReturning->nRetCol; i++){ 184 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 185 } 186 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 187 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 188 VdbeCoverage(v); 189 sqlite3VdbeJumpHere(v, addrRewind); 190 } 191 } 192 sqlite3VdbeAddOp0(v, OP_Halt); 193 194 #if SQLITE_USER_AUTHENTICATION 195 if( pParse->nTableLock>0 && db->init.busy==0 ){ 196 sqlite3UserAuthInit(db); 197 if( db->auth.authLevel<UAUTH_User ){ 198 sqlite3ErrorMsg(pParse, "user not authenticated"); 199 pParse->rc = SQLITE_AUTH_USER; 200 return; 201 } 202 } 203 #endif 204 205 /* The cookie mask contains one bit for each database file open. 206 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 207 ** set for each database that is used. Generate code to start a 208 ** transaction on each used database and to verify the schema cookie 209 ** on each used database. 210 */ 211 if( db->mallocFailed==0 212 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 213 ){ 214 int iDb, i; 215 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 216 sqlite3VdbeJumpHere(v, 0); 217 assert( db->nDb>0 ); 218 iDb = 0; 219 do{ 220 Schema *pSchema; 221 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 222 sqlite3VdbeUsesBtree(v, iDb); 223 pSchema = db->aDb[iDb].pSchema; 224 sqlite3VdbeAddOp4Int(v, 225 OP_Transaction, /* Opcode */ 226 iDb, /* P1 */ 227 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 228 pSchema->schema_cookie, /* P3 */ 229 pSchema->iGeneration /* P4 */ 230 ); 231 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 232 VdbeComment((v, 233 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 234 }while( ++iDb<db->nDb ); 235 #ifndef SQLITE_OMIT_VIRTUALTABLE 236 for(i=0; i<pParse->nVtabLock; i++){ 237 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 238 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 239 } 240 pParse->nVtabLock = 0; 241 #endif 242 243 /* Once all the cookies have been verified and transactions opened, 244 ** obtain the required table-locks. This is a no-op unless the 245 ** shared-cache feature is enabled. 246 */ 247 codeTableLocks(pParse); 248 249 /* Initialize any AUTOINCREMENT data structures required. 250 */ 251 sqlite3AutoincrementBegin(pParse); 252 253 /* Code constant expressions that where factored out of inner loops. 254 ** 255 ** The pConstExpr list might also contain expressions that we simply 256 ** want to keep around until the Parse object is deleted. Such 257 ** expressions have iConstExprReg==0. Do not generate code for 258 ** those expressions, of course. 259 */ 260 if( pParse->pConstExpr ){ 261 ExprList *pEL = pParse->pConstExpr; 262 pParse->okConstFactor = 0; 263 for(i=0; i<pEL->nExpr; i++){ 264 int iReg = pEL->a[i].u.iConstExprReg; 265 if( iReg>0 ){ 266 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 267 } 268 } 269 } 270 271 if( pParse->bReturning ){ 272 Returning *pRet = pParse->u1.pReturning; 273 if( NEVER(pRet->nRetCol==0) ){ 274 assert( CORRUPT_DB ); 275 }else{ 276 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 277 } 278 } 279 280 /* Finally, jump back to the beginning of the executable code. */ 281 sqlite3VdbeGoto(v, 1); 282 } 283 } 284 285 /* Get the VDBE program ready for execution 286 */ 287 assert( v!=0 || pParse->nErr ); 288 assert( db->mallocFailed==0 || pParse->nErr ); 289 if( pParse->nErr==0 ){ 290 /* A minimum of one cursor is required if autoincrement is used 291 * See ticket [a696379c1f08866] */ 292 assert( pParse->pAinc==0 || pParse->nTab>0 ); 293 sqlite3VdbeMakeReady(v, pParse); 294 pParse->rc = SQLITE_DONE; 295 }else{ 296 pParse->rc = SQLITE_ERROR; 297 } 298 } 299 300 /* 301 ** Run the parser and code generator recursively in order to generate 302 ** code for the SQL statement given onto the end of the pParse context 303 ** currently under construction. Notes: 304 ** 305 ** * The final OP_Halt is not appended and other initialization 306 ** and finalization steps are omitted because those are handling by the 307 ** outermost parser. 308 ** 309 ** * Built-in SQL functions always take precedence over application-defined 310 ** SQL functions. In other words, it is not possible to override a 311 ** built-in function. 312 */ 313 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 314 va_list ap; 315 char *zSql; 316 sqlite3 *db = pParse->db; 317 u32 savedDbFlags = db->mDbFlags; 318 char saveBuf[PARSE_TAIL_SZ]; 319 320 if( pParse->nErr ) return; 321 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 322 va_start(ap, zFormat); 323 zSql = sqlite3VMPrintf(db, zFormat, ap); 324 va_end(ap); 325 if( zSql==0 ){ 326 /* This can result either from an OOM or because the formatted string 327 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 328 ** an error */ 329 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 330 pParse->nErr++; 331 return; 332 } 333 pParse->nested++; 334 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 335 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 336 db->mDbFlags |= DBFLAG_PreferBuiltin; 337 sqlite3RunParser(pParse, zSql); 338 sqlite3DbFree(db, pParse->zErrMsg); 339 pParse->zErrMsg = 0; 340 db->mDbFlags = savedDbFlags; 341 sqlite3DbFree(db, zSql); 342 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 343 pParse->nested--; 344 } 345 346 #if SQLITE_USER_AUTHENTICATION 347 /* 348 ** Return TRUE if zTable is the name of the system table that stores the 349 ** list of users and their access credentials. 350 */ 351 int sqlite3UserAuthTable(const char *zTable){ 352 return sqlite3_stricmp(zTable, "sqlite_user")==0; 353 } 354 #endif 355 356 /* 357 ** Locate the in-memory structure that describes a particular database 358 ** table given the name of that table and (optionally) the name of the 359 ** database containing the table. Return NULL if not found. 360 ** 361 ** If zDatabase is 0, all databases are searched for the table and the 362 ** first matching table is returned. (No checking for duplicate table 363 ** names is done.) The search order is TEMP first, then MAIN, then any 364 ** auxiliary databases added using the ATTACH command. 365 ** 366 ** See also sqlite3LocateTable(). 367 */ 368 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 369 Table *p = 0; 370 int i; 371 372 /* All mutexes are required for schema access. Make sure we hold them. */ 373 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 374 #if SQLITE_USER_AUTHENTICATION 375 /* Only the admin user is allowed to know that the sqlite_user table 376 ** exists */ 377 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 378 return 0; 379 } 380 #endif 381 if( zDatabase ){ 382 for(i=0; i<db->nDb; i++){ 383 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 384 } 385 if( i>=db->nDb ){ 386 /* No match against the official names. But always match "main" 387 ** to schema 0 as a legacy fallback. */ 388 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 389 i = 0; 390 }else{ 391 return 0; 392 } 393 } 394 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 395 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 396 if( i==1 ){ 397 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 398 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 399 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 400 ){ 401 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 402 LEGACY_TEMP_SCHEMA_TABLE); 403 } 404 }else{ 405 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 406 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 407 LEGACY_SCHEMA_TABLE); 408 } 409 } 410 } 411 }else{ 412 /* Match against TEMP first */ 413 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 414 if( p ) return p; 415 /* The main database is second */ 416 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 417 if( p ) return p; 418 /* Attached databases are in order of attachment */ 419 for(i=2; i<db->nDb; i++){ 420 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 421 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 422 if( p ) break; 423 } 424 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 425 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 426 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); 427 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ 428 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 429 LEGACY_TEMP_SCHEMA_TABLE); 430 } 431 } 432 } 433 return p; 434 } 435 436 /* 437 ** Locate the in-memory structure that describes a particular database 438 ** table given the name of that table and (optionally) the name of the 439 ** database containing the table. Return NULL if not found. Also leave an 440 ** error message in pParse->zErrMsg. 441 ** 442 ** The difference between this routine and sqlite3FindTable() is that this 443 ** routine leaves an error message in pParse->zErrMsg where 444 ** sqlite3FindTable() does not. 445 */ 446 Table *sqlite3LocateTable( 447 Parse *pParse, /* context in which to report errors */ 448 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 449 const char *zName, /* Name of the table we are looking for */ 450 const char *zDbase /* Name of the database. Might be NULL */ 451 ){ 452 Table *p; 453 sqlite3 *db = pParse->db; 454 455 /* Read the database schema. If an error occurs, leave an error message 456 ** and code in pParse and return NULL. */ 457 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 458 && SQLITE_OK!=sqlite3ReadSchema(pParse) 459 ){ 460 return 0; 461 } 462 463 p = sqlite3FindTable(db, zName, zDbase); 464 if( p==0 ){ 465 #ifndef SQLITE_OMIT_VIRTUALTABLE 466 /* If zName is the not the name of a table in the schema created using 467 ** CREATE, then check to see if it is the name of an virtual table that 468 ** can be an eponymous virtual table. */ 469 if( pParse->disableVtab==0 && db->init.busy==0 ){ 470 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 471 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 472 pMod = sqlite3PragmaVtabRegister(db, zName); 473 } 474 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 475 testcase( pMod->pEpoTab==0 ); 476 return pMod->pEpoTab; 477 } 478 } 479 #endif 480 if( flags & LOCATE_NOERR ) return 0; 481 pParse->checkSchema = 1; 482 }else if( IsVirtual(p) && pParse->disableVtab ){ 483 p = 0; 484 } 485 486 if( p==0 ){ 487 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 488 if( zDbase ){ 489 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 490 }else{ 491 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 492 } 493 }else{ 494 assert( HasRowid(p) || p->iPKey<0 ); 495 } 496 497 return p; 498 } 499 500 /* 501 ** Locate the table identified by *p. 502 ** 503 ** This is a wrapper around sqlite3LocateTable(). The difference between 504 ** sqlite3LocateTable() and this function is that this function restricts 505 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 506 ** non-NULL if it is part of a view or trigger program definition. See 507 ** sqlite3FixSrcList() for details. 508 */ 509 Table *sqlite3LocateTableItem( 510 Parse *pParse, 511 u32 flags, 512 SrcItem *p 513 ){ 514 const char *zDb; 515 assert( p->pSchema==0 || p->zDatabase==0 ); 516 if( p->pSchema ){ 517 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 518 zDb = pParse->db->aDb[iDb].zDbSName; 519 }else{ 520 zDb = p->zDatabase; 521 } 522 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 523 } 524 525 /* 526 ** Return the preferred table name for system tables. Translate legacy 527 ** names into the new preferred names, as appropriate. 528 */ 529 const char *sqlite3PreferredTableName(const char *zName){ 530 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 531 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ 532 return PREFERRED_SCHEMA_TABLE; 533 } 534 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ 535 return PREFERRED_TEMP_SCHEMA_TABLE; 536 } 537 } 538 return zName; 539 } 540 541 /* 542 ** Locate the in-memory structure that describes 543 ** a particular index given the name of that index 544 ** and the name of the database that contains the index. 545 ** Return NULL if not found. 546 ** 547 ** If zDatabase is 0, all databases are searched for the 548 ** table and the first matching index is returned. (No checking 549 ** for duplicate index names is done.) The search order is 550 ** TEMP first, then MAIN, then any auxiliary databases added 551 ** using the ATTACH command. 552 */ 553 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 554 Index *p = 0; 555 int i; 556 /* All mutexes are required for schema access. Make sure we hold them. */ 557 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 558 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 559 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 560 Schema *pSchema = db->aDb[j].pSchema; 561 assert( pSchema ); 562 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 563 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 564 p = sqlite3HashFind(&pSchema->idxHash, zName); 565 if( p ) break; 566 } 567 return p; 568 } 569 570 /* 571 ** Reclaim the memory used by an index 572 */ 573 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 574 #ifndef SQLITE_OMIT_ANALYZE 575 sqlite3DeleteIndexSamples(db, p); 576 #endif 577 sqlite3ExprDelete(db, p->pPartIdxWhere); 578 sqlite3ExprListDelete(db, p->aColExpr); 579 sqlite3DbFree(db, p->zColAff); 580 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 581 #ifdef SQLITE_ENABLE_STAT4 582 sqlite3_free(p->aiRowEst); 583 #endif 584 sqlite3DbFree(db, p); 585 } 586 587 /* 588 ** For the index called zIdxName which is found in the database iDb, 589 ** unlike that index from its Table then remove the index from 590 ** the index hash table and free all memory structures associated 591 ** with the index. 592 */ 593 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 594 Index *pIndex; 595 Hash *pHash; 596 597 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 598 pHash = &db->aDb[iDb].pSchema->idxHash; 599 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 600 if( ALWAYS(pIndex) ){ 601 if( pIndex->pTable->pIndex==pIndex ){ 602 pIndex->pTable->pIndex = pIndex->pNext; 603 }else{ 604 Index *p; 605 /* Justification of ALWAYS(); The index must be on the list of 606 ** indices. */ 607 p = pIndex->pTable->pIndex; 608 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 609 if( ALWAYS(p && p->pNext==pIndex) ){ 610 p->pNext = pIndex->pNext; 611 } 612 } 613 sqlite3FreeIndex(db, pIndex); 614 } 615 db->mDbFlags |= DBFLAG_SchemaChange; 616 } 617 618 /* 619 ** Look through the list of open database files in db->aDb[] and if 620 ** any have been closed, remove them from the list. Reallocate the 621 ** db->aDb[] structure to a smaller size, if possible. 622 ** 623 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 624 ** are never candidates for being collapsed. 625 */ 626 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 627 int i, j; 628 for(i=j=2; i<db->nDb; i++){ 629 struct Db *pDb = &db->aDb[i]; 630 if( pDb->pBt==0 ){ 631 sqlite3DbFree(db, pDb->zDbSName); 632 pDb->zDbSName = 0; 633 continue; 634 } 635 if( j<i ){ 636 db->aDb[j] = db->aDb[i]; 637 } 638 j++; 639 } 640 db->nDb = j; 641 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 642 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 643 sqlite3DbFree(db, db->aDb); 644 db->aDb = db->aDbStatic; 645 } 646 } 647 648 /* 649 ** Reset the schema for the database at index iDb. Also reset the 650 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 651 ** Deferred resets may be run by calling with iDb<0. 652 */ 653 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 654 int i; 655 assert( iDb<db->nDb ); 656 657 if( iDb>=0 ){ 658 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 659 DbSetProperty(db, iDb, DB_ResetWanted); 660 DbSetProperty(db, 1, DB_ResetWanted); 661 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 662 } 663 664 if( db->nSchemaLock==0 ){ 665 for(i=0; i<db->nDb; i++){ 666 if( DbHasProperty(db, i, DB_ResetWanted) ){ 667 sqlite3SchemaClear(db->aDb[i].pSchema); 668 } 669 } 670 } 671 } 672 673 /* 674 ** Erase all schema information from all attached databases (including 675 ** "main" and "temp") for a single database connection. 676 */ 677 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 678 int i; 679 sqlite3BtreeEnterAll(db); 680 for(i=0; i<db->nDb; i++){ 681 Db *pDb = &db->aDb[i]; 682 if( pDb->pSchema ){ 683 if( db->nSchemaLock==0 ){ 684 sqlite3SchemaClear(pDb->pSchema); 685 }else{ 686 DbSetProperty(db, i, DB_ResetWanted); 687 } 688 } 689 } 690 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 691 sqlite3VtabUnlockList(db); 692 sqlite3BtreeLeaveAll(db); 693 if( db->nSchemaLock==0 ){ 694 sqlite3CollapseDatabaseArray(db); 695 } 696 } 697 698 /* 699 ** This routine is called when a commit occurs. 700 */ 701 void sqlite3CommitInternalChanges(sqlite3 *db){ 702 db->mDbFlags &= ~DBFLAG_SchemaChange; 703 } 704 705 /* 706 ** Set the expression associated with a column. This is usually 707 ** the DEFAULT value, but might also be the expression that computes 708 ** the value for a generated column. 709 */ 710 void sqlite3ColumnSetExpr( 711 Parse *pParse, /* Parsing context */ 712 Table *pTab, /* The table containing the column */ 713 Column *pCol, /* The column to receive the new DEFAULT expression */ 714 Expr *pExpr /* The new default expression */ 715 ){ 716 ExprList *pList; 717 assert( IsOrdinaryTable(pTab) ); 718 pList = pTab->u.tab.pDfltList; 719 if( pCol->iDflt==0 720 || NEVER(pList==0) 721 || NEVER(pList->nExpr<pCol->iDflt) 722 ){ 723 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; 724 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); 725 }else{ 726 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); 727 pList->a[pCol->iDflt-1].pExpr = pExpr; 728 } 729 } 730 731 /* 732 ** Return the expression associated with a column. The expression might be 733 ** the DEFAULT clause or the AS clause of a generated column. 734 ** Return NULL if the column has no associated expression. 735 */ 736 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ 737 if( pCol->iDflt==0 ) return 0; 738 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0; 739 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; 740 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0; 741 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 742 } 743 744 /* 745 ** Set the collating sequence name for a column. 746 */ 747 void sqlite3ColumnSetColl( 748 sqlite3 *db, 749 Column *pCol, 750 const char *zColl 751 ){ 752 i64 nColl; 753 i64 n; 754 char *zNew; 755 assert( zColl!=0 ); 756 n = sqlite3Strlen30(pCol->zCnName) + 1; 757 if( pCol->colFlags & COLFLAG_HASTYPE ){ 758 n += sqlite3Strlen30(pCol->zCnName+n) + 1; 759 } 760 nColl = sqlite3Strlen30(zColl) + 1; 761 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); 762 if( zNew ){ 763 pCol->zCnName = zNew; 764 memcpy(pCol->zCnName + n, zColl, nColl); 765 pCol->colFlags |= COLFLAG_HASCOLL; 766 } 767 } 768 769 /* 770 ** Return the collating squence name for a column 771 */ 772 const char *sqlite3ColumnColl(Column *pCol){ 773 const char *z; 774 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; 775 z = pCol->zCnName; 776 while( *z ){ z++; } 777 if( pCol->colFlags & COLFLAG_HASTYPE ){ 778 do{ z++; }while( *z ); 779 } 780 return z+1; 781 } 782 783 /* 784 ** Delete memory allocated for the column names of a table or view (the 785 ** Table.aCol[] array). 786 */ 787 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 788 int i; 789 Column *pCol; 790 assert( pTable!=0 ); 791 if( (pCol = pTable->aCol)!=0 ){ 792 for(i=0; i<pTable->nCol; i++, pCol++){ 793 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); 794 sqlite3DbFree(db, pCol->zCnName); 795 } 796 sqlite3DbFree(db, pTable->aCol); 797 if( IsOrdinaryTable(pTable) ){ 798 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); 799 } 800 if( db==0 || db->pnBytesFreed==0 ){ 801 pTable->aCol = 0; 802 pTable->nCol = 0; 803 if( IsOrdinaryTable(pTable) ){ 804 pTable->u.tab.pDfltList = 0; 805 } 806 } 807 } 808 } 809 810 /* 811 ** Remove the memory data structures associated with the given 812 ** Table. No changes are made to disk by this routine. 813 ** 814 ** This routine just deletes the data structure. It does not unlink 815 ** the table data structure from the hash table. But it does destroy 816 ** memory structures of the indices and foreign keys associated with 817 ** the table. 818 ** 819 ** The db parameter is optional. It is needed if the Table object 820 ** contains lookaside memory. (Table objects in the schema do not use 821 ** lookaside memory, but some ephemeral Table objects do.) Or the 822 ** db parameter can be used with db->pnBytesFreed to measure the memory 823 ** used by the Table object. 824 */ 825 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 826 Index *pIndex, *pNext; 827 828 #ifdef SQLITE_DEBUG 829 /* Record the number of outstanding lookaside allocations in schema Tables 830 ** prior to doing any free() operations. Since schema Tables do not use 831 ** lookaside, this number should not change. 832 ** 833 ** If malloc has already failed, it may be that it failed while allocating 834 ** a Table object that was going to be marked ephemeral. So do not check 835 ** that no lookaside memory is used in this case either. */ 836 int nLookaside = 0; 837 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 838 nLookaside = sqlite3LookasideUsed(db, 0); 839 } 840 #endif 841 842 /* Delete all indices associated with this table. */ 843 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 844 pNext = pIndex->pNext; 845 assert( pIndex->pSchema==pTable->pSchema 846 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 847 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 848 char *zName = pIndex->zName; 849 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 850 &pIndex->pSchema->idxHash, zName, 0 851 ); 852 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 853 assert( pOld==pIndex || pOld==0 ); 854 } 855 sqlite3FreeIndex(db, pIndex); 856 } 857 858 if( IsOrdinaryTable(pTable) ){ 859 sqlite3FkDelete(db, pTable); 860 } 861 #ifndef SQLITE_OMIT_VIRTUAL_TABLE 862 else if( IsVirtual(pTable) ){ 863 sqlite3VtabClear(db, pTable); 864 } 865 #endif 866 else{ 867 assert( IsView(pTable) ); 868 sqlite3SelectDelete(db, pTable->u.view.pSelect); 869 } 870 871 /* Delete the Table structure itself. 872 */ 873 sqlite3DeleteColumnNames(db, pTable); 874 sqlite3DbFree(db, pTable->zName); 875 sqlite3DbFree(db, pTable->zColAff); 876 sqlite3ExprListDelete(db, pTable->pCheck); 877 sqlite3DbFree(db, pTable); 878 879 /* Verify that no lookaside memory was used by schema tables */ 880 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 881 } 882 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 883 /* Do not delete the table until the reference count reaches zero. */ 884 if( !pTable ) return; 885 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 886 deleteTable(db, pTable); 887 } 888 889 890 /* 891 ** Unlink the given table from the hash tables and the delete the 892 ** table structure with all its indices and foreign keys. 893 */ 894 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 895 Table *p; 896 Db *pDb; 897 898 assert( db!=0 ); 899 assert( iDb>=0 && iDb<db->nDb ); 900 assert( zTabName ); 901 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 902 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 903 pDb = &db->aDb[iDb]; 904 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 905 sqlite3DeleteTable(db, p); 906 db->mDbFlags |= DBFLAG_SchemaChange; 907 } 908 909 /* 910 ** Given a token, return a string that consists of the text of that 911 ** token. Space to hold the returned string 912 ** is obtained from sqliteMalloc() and must be freed by the calling 913 ** function. 914 ** 915 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 916 ** surround the body of the token are removed. 917 ** 918 ** Tokens are often just pointers into the original SQL text and so 919 ** are not \000 terminated and are not persistent. The returned string 920 ** is \000 terminated and is persistent. 921 */ 922 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ 923 char *zName; 924 if( pName ){ 925 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); 926 sqlite3Dequote(zName); 927 }else{ 928 zName = 0; 929 } 930 return zName; 931 } 932 933 /* 934 ** Open the sqlite_schema table stored in database number iDb for 935 ** writing. The table is opened using cursor 0. 936 */ 937 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 938 Vdbe *v = sqlite3GetVdbe(p); 939 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); 940 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 941 if( p->nTab==0 ){ 942 p->nTab = 1; 943 } 944 } 945 946 /* 947 ** Parameter zName points to a nul-terminated buffer containing the name 948 ** of a database ("main", "temp" or the name of an attached db). This 949 ** function returns the index of the named database in db->aDb[], or 950 ** -1 if the named db cannot be found. 951 */ 952 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 953 int i = -1; /* Database number */ 954 if( zName ){ 955 Db *pDb; 956 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 957 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 958 /* "main" is always an acceptable alias for the primary database 959 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 960 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 961 } 962 } 963 return i; 964 } 965 966 /* 967 ** The token *pName contains the name of a database (either "main" or 968 ** "temp" or the name of an attached db). This routine returns the 969 ** index of the named database in db->aDb[], or -1 if the named db 970 ** does not exist. 971 */ 972 int sqlite3FindDb(sqlite3 *db, Token *pName){ 973 int i; /* Database number */ 974 char *zName; /* Name we are searching for */ 975 zName = sqlite3NameFromToken(db, pName); 976 i = sqlite3FindDbName(db, zName); 977 sqlite3DbFree(db, zName); 978 return i; 979 } 980 981 /* The table or view or trigger name is passed to this routine via tokens 982 ** pName1 and pName2. If the table name was fully qualified, for example: 983 ** 984 ** CREATE TABLE xxx.yyy (...); 985 ** 986 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 987 ** the table name is not fully qualified, i.e.: 988 ** 989 ** CREATE TABLE yyy(...); 990 ** 991 ** Then pName1 is set to "yyy" and pName2 is "". 992 ** 993 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 994 ** pName2) that stores the unqualified table name. The index of the 995 ** database "xxx" is returned. 996 */ 997 int sqlite3TwoPartName( 998 Parse *pParse, /* Parsing and code generating context */ 999 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 1000 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 1001 Token **pUnqual /* Write the unqualified object name here */ 1002 ){ 1003 int iDb; /* Database holding the object */ 1004 sqlite3 *db = pParse->db; 1005 1006 assert( pName2!=0 ); 1007 if( pName2->n>0 ){ 1008 if( db->init.busy ) { 1009 sqlite3ErrorMsg(pParse, "corrupt database"); 1010 return -1; 1011 } 1012 *pUnqual = pName2; 1013 iDb = sqlite3FindDb(db, pName1); 1014 if( iDb<0 ){ 1015 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 1016 return -1; 1017 } 1018 }else{ 1019 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 1020 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 1021 iDb = db->init.iDb; 1022 *pUnqual = pName1; 1023 } 1024 return iDb; 1025 } 1026 1027 /* 1028 ** True if PRAGMA writable_schema is ON 1029 */ 1030 int sqlite3WritableSchema(sqlite3 *db){ 1031 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 1032 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1033 SQLITE_WriteSchema ); 1034 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1035 SQLITE_Defensive ); 1036 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1037 (SQLITE_WriteSchema|SQLITE_Defensive) ); 1038 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 1039 } 1040 1041 /* 1042 ** This routine is used to check if the UTF-8 string zName is a legal 1043 ** unqualified name for a new schema object (table, index, view or 1044 ** trigger). All names are legal except those that begin with the string 1045 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 1046 ** is reserved for internal use. 1047 ** 1048 ** When parsing the sqlite_schema table, this routine also checks to 1049 ** make sure the "type", "name", and "tbl_name" columns are consistent 1050 ** with the SQL. 1051 */ 1052 int sqlite3CheckObjectName( 1053 Parse *pParse, /* Parsing context */ 1054 const char *zName, /* Name of the object to check */ 1055 const char *zType, /* Type of this object */ 1056 const char *zTblName /* Parent table name for triggers and indexes */ 1057 ){ 1058 sqlite3 *db = pParse->db; 1059 if( sqlite3WritableSchema(db) 1060 || db->init.imposterTable 1061 || !sqlite3Config.bExtraSchemaChecks 1062 ){ 1063 /* Skip these error checks for writable_schema=ON */ 1064 return SQLITE_OK; 1065 } 1066 if( db->init.busy ){ 1067 if( sqlite3_stricmp(zType, db->init.azInit[0]) 1068 || sqlite3_stricmp(zName, db->init.azInit[1]) 1069 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 1070 ){ 1071 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 1072 return SQLITE_ERROR; 1073 } 1074 }else{ 1075 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 1076 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 1077 ){ 1078 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 1079 zName); 1080 return SQLITE_ERROR; 1081 } 1082 1083 } 1084 return SQLITE_OK; 1085 } 1086 1087 /* 1088 ** Return the PRIMARY KEY index of a table 1089 */ 1090 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 1091 Index *p; 1092 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 1093 return p; 1094 } 1095 1096 /* 1097 ** Convert an table column number into a index column number. That is, 1098 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 1099 ** find the (first) offset of that column in index pIdx. Or return -1 1100 ** if column iCol is not used in index pIdx. 1101 */ 1102 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 1103 int i; 1104 for(i=0; i<pIdx->nColumn; i++){ 1105 if( iCol==pIdx->aiColumn[i] ) return i; 1106 } 1107 return -1; 1108 } 1109 1110 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1111 /* Convert a storage column number into a table column number. 1112 ** 1113 ** The storage column number (0,1,2,....) is the index of the value 1114 ** as it appears in the record on disk. The true column number 1115 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 1116 ** 1117 ** The storage column number is less than the table column number if 1118 ** and only there are VIRTUAL columns to the left. 1119 ** 1120 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 1121 */ 1122 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 1123 if( pTab->tabFlags & TF_HasVirtual ){ 1124 int i; 1125 for(i=0; i<=iCol; i++){ 1126 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 1127 } 1128 } 1129 return iCol; 1130 } 1131 #endif 1132 1133 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1134 /* Convert a table column number into a storage column number. 1135 ** 1136 ** The storage column number (0,1,2,....) is the index of the value 1137 ** as it appears in the record on disk. Or, if the input column is 1138 ** the N-th virtual column (zero-based) then the storage number is 1139 ** the number of non-virtual columns in the table plus N. 1140 ** 1141 ** The true column number is the index (0,1,2,...) of the column in 1142 ** the CREATE TABLE statement. 1143 ** 1144 ** If the input column is a VIRTUAL column, then it should not appear 1145 ** in storage. But the value sometimes is cached in registers that 1146 ** follow the range of registers used to construct storage. This 1147 ** avoids computing the same VIRTUAL column multiple times, and provides 1148 ** values for use by OP_Param opcodes in triggers. Hence, if the 1149 ** input column is a VIRTUAL table, put it after all the other columns. 1150 ** 1151 ** In the following, N means "normal column", S means STORED, and 1152 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1153 ** 1154 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1155 ** -- 0 1 2 3 4 5 6 7 8 1156 ** 1157 ** Then the mapping from this function is as follows: 1158 ** 1159 ** INPUTS: 0 1 2 3 4 5 6 7 8 1160 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1161 ** 1162 ** So, in other words, this routine shifts all the virtual columns to 1163 ** the end. 1164 ** 1165 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1166 ** this routine is a no-op macro. If the pTab does not have any virtual 1167 ** columns, then this routine is no-op that always return iCol. If iCol 1168 ** is negative (indicating the ROWID column) then this routine return iCol. 1169 */ 1170 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1171 int i; 1172 i16 n; 1173 assert( iCol<pTab->nCol ); 1174 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1175 for(i=0, n=0; i<iCol; i++){ 1176 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1177 } 1178 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1179 /* iCol is a virtual column itself */ 1180 return pTab->nNVCol + i - n; 1181 }else{ 1182 /* iCol is a normal or stored column */ 1183 return n; 1184 } 1185 } 1186 #endif 1187 1188 /* 1189 ** Insert a single OP_JournalMode query opcode in order to force the 1190 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1191 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1192 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1193 ** will return false for sqlite3_stmt_readonly() even if that statement 1194 ** is a read-only no-op. 1195 */ 1196 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1197 int iReg = ++pParse->nMem; 1198 Vdbe *v = sqlite3GetVdbe(pParse); 1199 if( v ){ 1200 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1201 sqlite3VdbeUsesBtree(v, 0); 1202 } 1203 } 1204 1205 /* 1206 ** Begin constructing a new table representation in memory. This is 1207 ** the first of several action routines that get called in response 1208 ** to a CREATE TABLE statement. In particular, this routine is called 1209 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1210 ** flag is true if the table should be stored in the auxiliary database 1211 ** file instead of in the main database file. This is normally the case 1212 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1213 ** CREATE and TABLE. 1214 ** 1215 ** The new table record is initialized and put in pParse->pNewTable. 1216 ** As more of the CREATE TABLE statement is parsed, additional action 1217 ** routines will be called to add more information to this record. 1218 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1219 ** is called to complete the construction of the new table record. 1220 */ 1221 void sqlite3StartTable( 1222 Parse *pParse, /* Parser context */ 1223 Token *pName1, /* First part of the name of the table or view */ 1224 Token *pName2, /* Second part of the name of the table or view */ 1225 int isTemp, /* True if this is a TEMP table */ 1226 int isView, /* True if this is a VIEW */ 1227 int isVirtual, /* True if this is a VIRTUAL table */ 1228 int noErr /* Do nothing if table already exists */ 1229 ){ 1230 Table *pTable; 1231 char *zName = 0; /* The name of the new table */ 1232 sqlite3 *db = pParse->db; 1233 Vdbe *v; 1234 int iDb; /* Database number to create the table in */ 1235 Token *pName; /* Unqualified name of the table to create */ 1236 1237 if( db->init.busy && db->init.newTnum==1 ){ 1238 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1239 iDb = db->init.iDb; 1240 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1241 pName = pName1; 1242 }else{ 1243 /* The common case */ 1244 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1245 if( iDb<0 ) return; 1246 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1247 /* If creating a temp table, the name may not be qualified. Unless 1248 ** the database name is "temp" anyway. */ 1249 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1250 return; 1251 } 1252 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1253 zName = sqlite3NameFromToken(db, pName); 1254 if( IN_RENAME_OBJECT ){ 1255 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1256 } 1257 } 1258 pParse->sNameToken = *pName; 1259 if( zName==0 ) return; 1260 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1261 goto begin_table_error; 1262 } 1263 if( db->init.iDb==1 ) isTemp = 1; 1264 #ifndef SQLITE_OMIT_AUTHORIZATION 1265 assert( isTemp==0 || isTemp==1 ); 1266 assert( isView==0 || isView==1 ); 1267 { 1268 static const u8 aCode[] = { 1269 SQLITE_CREATE_TABLE, 1270 SQLITE_CREATE_TEMP_TABLE, 1271 SQLITE_CREATE_VIEW, 1272 SQLITE_CREATE_TEMP_VIEW 1273 }; 1274 char *zDb = db->aDb[iDb].zDbSName; 1275 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1276 goto begin_table_error; 1277 } 1278 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1279 zName, 0, zDb) ){ 1280 goto begin_table_error; 1281 } 1282 } 1283 #endif 1284 1285 /* Make sure the new table name does not collide with an existing 1286 ** index or table name in the same database. Issue an error message if 1287 ** it does. The exception is if the statement being parsed was passed 1288 ** to an sqlite3_declare_vtab() call. In that case only the column names 1289 ** and types will be used, so there is no need to test for namespace 1290 ** collisions. 1291 */ 1292 if( !IN_SPECIAL_PARSE ){ 1293 char *zDb = db->aDb[iDb].zDbSName; 1294 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1295 goto begin_table_error; 1296 } 1297 pTable = sqlite3FindTable(db, zName, zDb); 1298 if( pTable ){ 1299 if( !noErr ){ 1300 sqlite3ErrorMsg(pParse, "%s %T already exists", 1301 (IsView(pTable)? "view" : "table"), pName); 1302 }else{ 1303 assert( !db->init.busy || CORRUPT_DB ); 1304 sqlite3CodeVerifySchema(pParse, iDb); 1305 sqlite3ForceNotReadOnly(pParse); 1306 } 1307 goto begin_table_error; 1308 } 1309 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1310 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1311 goto begin_table_error; 1312 } 1313 } 1314 1315 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1316 if( pTable==0 ){ 1317 assert( db->mallocFailed ); 1318 pParse->rc = SQLITE_NOMEM_BKPT; 1319 pParse->nErr++; 1320 goto begin_table_error; 1321 } 1322 pTable->zName = zName; 1323 pTable->iPKey = -1; 1324 pTable->pSchema = db->aDb[iDb].pSchema; 1325 pTable->nTabRef = 1; 1326 #ifdef SQLITE_DEFAULT_ROWEST 1327 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1328 #else 1329 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1330 #endif 1331 assert( pParse->pNewTable==0 ); 1332 pParse->pNewTable = pTable; 1333 1334 /* Begin generating the code that will insert the table record into 1335 ** the schema table. Note in particular that we must go ahead 1336 ** and allocate the record number for the table entry now. Before any 1337 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1338 ** indices to be created and the table record must come before the 1339 ** indices. Hence, the record number for the table must be allocated 1340 ** now. 1341 */ 1342 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1343 int addr1; 1344 int fileFormat; 1345 int reg1, reg2, reg3; 1346 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1347 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1348 sqlite3BeginWriteOperation(pParse, 1, iDb); 1349 1350 #ifndef SQLITE_OMIT_VIRTUALTABLE 1351 if( isVirtual ){ 1352 sqlite3VdbeAddOp0(v, OP_VBegin); 1353 } 1354 #endif 1355 1356 /* If the file format and encoding in the database have not been set, 1357 ** set them now. 1358 */ 1359 reg1 = pParse->regRowid = ++pParse->nMem; 1360 reg2 = pParse->regRoot = ++pParse->nMem; 1361 reg3 = ++pParse->nMem; 1362 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1363 sqlite3VdbeUsesBtree(v, iDb); 1364 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1365 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1366 1 : SQLITE_MAX_FILE_FORMAT; 1367 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1368 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1369 sqlite3VdbeJumpHere(v, addr1); 1370 1371 /* This just creates a place-holder record in the sqlite_schema table. 1372 ** The record created does not contain anything yet. It will be replaced 1373 ** by the real entry in code generated at sqlite3EndTable(). 1374 ** 1375 ** The rowid for the new entry is left in register pParse->regRowid. 1376 ** The root page number of the new table is left in reg pParse->regRoot. 1377 ** The rowid and root page number values are needed by the code that 1378 ** sqlite3EndTable will generate. 1379 */ 1380 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1381 if( isView || isVirtual ){ 1382 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1383 }else 1384 #endif 1385 { 1386 assert( !pParse->bReturning ); 1387 pParse->u1.addrCrTab = 1388 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1389 } 1390 sqlite3OpenSchemaTable(pParse, iDb); 1391 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1392 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1393 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1394 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1395 sqlite3VdbeAddOp0(v, OP_Close); 1396 } 1397 1398 /* Normal (non-error) return. */ 1399 return; 1400 1401 /* If an error occurs, we jump here */ 1402 begin_table_error: 1403 pParse->checkSchema = 1; 1404 sqlite3DbFree(db, zName); 1405 return; 1406 } 1407 1408 /* Set properties of a table column based on the (magical) 1409 ** name of the column. 1410 */ 1411 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1412 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1413 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ 1414 pCol->colFlags |= COLFLAG_HIDDEN; 1415 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1416 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1417 pTab->tabFlags |= TF_OOOHidden; 1418 } 1419 } 1420 #endif 1421 1422 /* 1423 ** Name of the special TEMP trigger used to implement RETURNING. The 1424 ** name begins with "sqlite_" so that it is guaranteed not to collide 1425 ** with any application-generated triggers. 1426 */ 1427 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1428 1429 /* 1430 ** Clean up the data structures associated with the RETURNING clause. 1431 */ 1432 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1433 Hash *pHash; 1434 pHash = &(db->aDb[1].pSchema->trigHash); 1435 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1436 sqlite3ExprListDelete(db, pRet->pReturnEL); 1437 sqlite3DbFree(db, pRet); 1438 } 1439 1440 /* 1441 ** Add the RETURNING clause to the parse currently underway. 1442 ** 1443 ** This routine creates a special TEMP trigger that will fire for each row 1444 ** of the DML statement. That TEMP trigger contains a single SELECT 1445 ** statement with a result set that is the argument of the RETURNING clause. 1446 ** The trigger has the Trigger.bReturning flag and an opcode of 1447 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1448 ** knows to handle it specially. The TEMP trigger is automatically 1449 ** removed at the end of the parse. 1450 ** 1451 ** When this routine is called, we do not yet know if the RETURNING clause 1452 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1453 ** RETURNING trigger instead. It will then be converted into the appropriate 1454 ** type on the first call to sqlite3TriggersExist(). 1455 */ 1456 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1457 Returning *pRet; 1458 Hash *pHash; 1459 sqlite3 *db = pParse->db; 1460 if( pParse->pNewTrigger ){ 1461 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1462 }else{ 1463 assert( pParse->bReturning==0 ); 1464 } 1465 pParse->bReturning = 1; 1466 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1467 if( pRet==0 ){ 1468 sqlite3ExprListDelete(db, pList); 1469 return; 1470 } 1471 pParse->u1.pReturning = pRet; 1472 pRet->pParse = pParse; 1473 pRet->pReturnEL = pList; 1474 sqlite3ParserAddCleanup(pParse, 1475 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1476 testcase( pParse->earlyCleanup ); 1477 if( db->mallocFailed ) return; 1478 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1479 pRet->retTrig.op = TK_RETURNING; 1480 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1481 pRet->retTrig.bReturning = 1; 1482 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1483 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1484 pRet->retTrig.step_list = &pRet->retTStep; 1485 pRet->retTStep.op = TK_RETURNING; 1486 pRet->retTStep.pTrig = &pRet->retTrig; 1487 pRet->retTStep.pExprList = pList; 1488 pHash = &(db->aDb[1].pSchema->trigHash); 1489 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1490 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1491 ==&pRet->retTrig ){ 1492 sqlite3OomFault(db); 1493 } 1494 } 1495 1496 /* 1497 ** Add a new column to the table currently being constructed. 1498 ** 1499 ** The parser calls this routine once for each column declaration 1500 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1501 ** first to get things going. Then this routine is called for each 1502 ** column. 1503 */ 1504 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ 1505 Table *p; 1506 int i; 1507 char *z; 1508 char *zType; 1509 Column *pCol; 1510 sqlite3 *db = pParse->db; 1511 u8 hName; 1512 Column *aNew; 1513 u8 eType = COLTYPE_CUSTOM; 1514 u8 szEst = 1; 1515 char affinity = SQLITE_AFF_BLOB; 1516 1517 if( (p = pParse->pNewTable)==0 ) return; 1518 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1519 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1520 return; 1521 } 1522 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); 1523 1524 /* Because keywords GENERATE ALWAYS can be converted into indentifiers 1525 ** by the parser, we can sometimes end up with a typename that ends 1526 ** with "generated always". Check for this case and omit the surplus 1527 ** text. */ 1528 if( sType.n>=16 1529 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 1530 ){ 1531 sType.n -= 6; 1532 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1533 if( sType.n>=9 1534 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 1535 ){ 1536 sType.n -= 9; 1537 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1538 } 1539 } 1540 1541 /* Check for standard typenames. For standard typenames we will 1542 ** set the Column.eType field rather than storing the typename after 1543 ** the column name, in order to save space. */ 1544 if( sType.n>=3 ){ 1545 sqlite3DequoteToken(&sType); 1546 for(i=0; i<SQLITE_N_STDTYPE; i++){ 1547 if( sType.n==sqlite3StdTypeLen[i] 1548 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0 1549 ){ 1550 sType.n = 0; 1551 eType = i+1; 1552 affinity = sqlite3StdTypeAffinity[i]; 1553 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5; 1554 break; 1555 } 1556 } 1557 } 1558 1559 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) ); 1560 if( z==0 ) return; 1561 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); 1562 memcpy(z, sName.z, sName.n); 1563 z[sName.n] = 0; 1564 sqlite3Dequote(z); 1565 hName = sqlite3StrIHash(z); 1566 for(i=0; i<p->nCol; i++){ 1567 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ 1568 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1569 sqlite3DbFree(db, z); 1570 return; 1571 } 1572 } 1573 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); 1574 if( aNew==0 ){ 1575 sqlite3DbFree(db, z); 1576 return; 1577 } 1578 p->aCol = aNew; 1579 pCol = &p->aCol[p->nCol]; 1580 memset(pCol, 0, sizeof(p->aCol[0])); 1581 pCol->zCnName = z; 1582 pCol->hName = hName; 1583 sqlite3ColumnPropertiesFromName(p, pCol); 1584 1585 if( sType.n==0 ){ 1586 /* If there is no type specified, columns have the default affinity 1587 ** 'BLOB' with a default size of 4 bytes. */ 1588 pCol->affinity = affinity; 1589 pCol->eCType = eType; 1590 pCol->szEst = szEst; 1591 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1592 if( affinity==SQLITE_AFF_BLOB ){ 1593 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1594 pCol->colFlags |= COLFLAG_SORTERREF; 1595 } 1596 } 1597 #endif 1598 }else{ 1599 zType = z + sqlite3Strlen30(z) + 1; 1600 memcpy(zType, sType.z, sType.n); 1601 zType[sType.n] = 0; 1602 sqlite3Dequote(zType); 1603 pCol->affinity = sqlite3AffinityType(zType, pCol); 1604 pCol->colFlags |= COLFLAG_HASTYPE; 1605 } 1606 p->nCol++; 1607 p->nNVCol++; 1608 pParse->constraintName.n = 0; 1609 } 1610 1611 /* 1612 ** This routine is called by the parser while in the middle of 1613 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1614 ** been seen on a column. This routine sets the notNull flag on 1615 ** the column currently under construction. 1616 */ 1617 void sqlite3AddNotNull(Parse *pParse, int onError){ 1618 Table *p; 1619 Column *pCol; 1620 p = pParse->pNewTable; 1621 if( p==0 || NEVER(p->nCol<1) ) return; 1622 pCol = &p->aCol[p->nCol-1]; 1623 pCol->notNull = (u8)onError; 1624 p->tabFlags |= TF_HasNotNull; 1625 1626 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1627 ** on this column. */ 1628 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1629 Index *pIdx; 1630 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1631 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1632 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1633 pIdx->uniqNotNull = 1; 1634 } 1635 } 1636 } 1637 } 1638 1639 /* 1640 ** Scan the column type name zType (length nType) and return the 1641 ** associated affinity type. 1642 ** 1643 ** This routine does a case-independent search of zType for the 1644 ** substrings in the following table. If one of the substrings is 1645 ** found, the corresponding affinity is returned. If zType contains 1646 ** more than one of the substrings, entries toward the top of 1647 ** the table take priority. For example, if zType is 'BLOBINT', 1648 ** SQLITE_AFF_INTEGER is returned. 1649 ** 1650 ** Substring | Affinity 1651 ** -------------------------------- 1652 ** 'INT' | SQLITE_AFF_INTEGER 1653 ** 'CHAR' | SQLITE_AFF_TEXT 1654 ** 'CLOB' | SQLITE_AFF_TEXT 1655 ** 'TEXT' | SQLITE_AFF_TEXT 1656 ** 'BLOB' | SQLITE_AFF_BLOB 1657 ** 'REAL' | SQLITE_AFF_REAL 1658 ** 'FLOA' | SQLITE_AFF_REAL 1659 ** 'DOUB' | SQLITE_AFF_REAL 1660 ** 1661 ** If none of the substrings in the above table are found, 1662 ** SQLITE_AFF_NUMERIC is returned. 1663 */ 1664 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1665 u32 h = 0; 1666 char aff = SQLITE_AFF_NUMERIC; 1667 const char *zChar = 0; 1668 1669 assert( zIn!=0 ); 1670 while( zIn[0] ){ 1671 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1672 zIn++; 1673 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1674 aff = SQLITE_AFF_TEXT; 1675 zChar = zIn; 1676 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1677 aff = SQLITE_AFF_TEXT; 1678 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1679 aff = SQLITE_AFF_TEXT; 1680 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1681 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1682 aff = SQLITE_AFF_BLOB; 1683 if( zIn[0]=='(' ) zChar = zIn; 1684 #ifndef SQLITE_OMIT_FLOATING_POINT 1685 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1686 && aff==SQLITE_AFF_NUMERIC ){ 1687 aff = SQLITE_AFF_REAL; 1688 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1689 && aff==SQLITE_AFF_NUMERIC ){ 1690 aff = SQLITE_AFF_REAL; 1691 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1692 && aff==SQLITE_AFF_NUMERIC ){ 1693 aff = SQLITE_AFF_REAL; 1694 #endif 1695 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1696 aff = SQLITE_AFF_INTEGER; 1697 break; 1698 } 1699 } 1700 1701 /* If pCol is not NULL, store an estimate of the field size. The 1702 ** estimate is scaled so that the size of an integer is 1. */ 1703 if( pCol ){ 1704 int v = 0; /* default size is approx 4 bytes */ 1705 if( aff<SQLITE_AFF_NUMERIC ){ 1706 if( zChar ){ 1707 while( zChar[0] ){ 1708 if( sqlite3Isdigit(zChar[0]) ){ 1709 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1710 sqlite3GetInt32(zChar, &v); 1711 break; 1712 } 1713 zChar++; 1714 } 1715 }else{ 1716 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1717 } 1718 } 1719 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1720 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1721 pCol->colFlags |= COLFLAG_SORTERREF; 1722 } 1723 #endif 1724 v = v/4 + 1; 1725 if( v>255 ) v = 255; 1726 pCol->szEst = v; 1727 } 1728 return aff; 1729 } 1730 1731 /* 1732 ** The expression is the default value for the most recently added column 1733 ** of the table currently under construction. 1734 ** 1735 ** Default value expressions must be constant. Raise an exception if this 1736 ** is not the case. 1737 ** 1738 ** This routine is called by the parser while in the middle of 1739 ** parsing a CREATE TABLE statement. 1740 */ 1741 void sqlite3AddDefaultValue( 1742 Parse *pParse, /* Parsing context */ 1743 Expr *pExpr, /* The parsed expression of the default value */ 1744 const char *zStart, /* Start of the default value text */ 1745 const char *zEnd /* First character past end of defaut value text */ 1746 ){ 1747 Table *p; 1748 Column *pCol; 1749 sqlite3 *db = pParse->db; 1750 p = pParse->pNewTable; 1751 if( p!=0 ){ 1752 int isInit = db->init.busy && db->init.iDb!=1; 1753 pCol = &(p->aCol[p->nCol-1]); 1754 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1755 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1756 pCol->zCnName); 1757 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1758 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1759 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1760 testcase( pCol->colFlags & COLFLAG_STORED ); 1761 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1762 #endif 1763 }else{ 1764 /* A copy of pExpr is used instead of the original, as pExpr contains 1765 ** tokens that point to volatile memory. 1766 */ 1767 Expr x, *pDfltExpr; 1768 memset(&x, 0, sizeof(x)); 1769 x.op = TK_SPAN; 1770 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1771 x.pLeft = pExpr; 1772 x.flags = EP_Skip; 1773 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1774 sqlite3DbFree(db, x.u.zToken); 1775 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); 1776 } 1777 } 1778 if( IN_RENAME_OBJECT ){ 1779 sqlite3RenameExprUnmap(pParse, pExpr); 1780 } 1781 sqlite3ExprDelete(db, pExpr); 1782 } 1783 1784 /* 1785 ** Backwards Compatibility Hack: 1786 ** 1787 ** Historical versions of SQLite accepted strings as column names in 1788 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1789 ** 1790 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1791 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1792 ** 1793 ** This is goofy. But to preserve backwards compatibility we continue to 1794 ** accept it. This routine does the necessary conversion. It converts 1795 ** the expression given in its argument from a TK_STRING into a TK_ID 1796 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1797 ** If the expression is anything other than TK_STRING, the expression is 1798 ** unchanged. 1799 */ 1800 static void sqlite3StringToId(Expr *p){ 1801 if( p->op==TK_STRING ){ 1802 p->op = TK_ID; 1803 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1804 p->pLeft->op = TK_ID; 1805 } 1806 } 1807 1808 /* 1809 ** Tag the given column as being part of the PRIMARY KEY 1810 */ 1811 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1812 pCol->colFlags |= COLFLAG_PRIMKEY; 1813 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1814 if( pCol->colFlags & COLFLAG_GENERATED ){ 1815 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1816 testcase( pCol->colFlags & COLFLAG_STORED ); 1817 sqlite3ErrorMsg(pParse, 1818 "generated columns cannot be part of the PRIMARY KEY"); 1819 } 1820 #endif 1821 } 1822 1823 /* 1824 ** Designate the PRIMARY KEY for the table. pList is a list of names 1825 ** of columns that form the primary key. If pList is NULL, then the 1826 ** most recently added column of the table is the primary key. 1827 ** 1828 ** A table can have at most one primary key. If the table already has 1829 ** a primary key (and this is the second primary key) then create an 1830 ** error. 1831 ** 1832 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1833 ** then we will try to use that column as the rowid. Set the Table.iPKey 1834 ** field of the table under construction to be the index of the 1835 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1836 ** no INTEGER PRIMARY KEY. 1837 ** 1838 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1839 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1840 */ 1841 void sqlite3AddPrimaryKey( 1842 Parse *pParse, /* Parsing context */ 1843 ExprList *pList, /* List of field names to be indexed */ 1844 int onError, /* What to do with a uniqueness conflict */ 1845 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1846 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1847 ){ 1848 Table *pTab = pParse->pNewTable; 1849 Column *pCol = 0; 1850 int iCol = -1, i; 1851 int nTerm; 1852 if( pTab==0 ) goto primary_key_exit; 1853 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1854 sqlite3ErrorMsg(pParse, 1855 "table \"%s\" has more than one primary key", pTab->zName); 1856 goto primary_key_exit; 1857 } 1858 pTab->tabFlags |= TF_HasPrimaryKey; 1859 if( pList==0 ){ 1860 iCol = pTab->nCol - 1; 1861 pCol = &pTab->aCol[iCol]; 1862 makeColumnPartOfPrimaryKey(pParse, pCol); 1863 nTerm = 1; 1864 }else{ 1865 nTerm = pList->nExpr; 1866 for(i=0; i<nTerm; i++){ 1867 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1868 assert( pCExpr!=0 ); 1869 sqlite3StringToId(pCExpr); 1870 if( pCExpr->op==TK_ID ){ 1871 const char *zCName; 1872 assert( !ExprHasProperty(pCExpr, EP_IntValue) ); 1873 zCName = pCExpr->u.zToken; 1874 for(iCol=0; iCol<pTab->nCol; iCol++){ 1875 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ 1876 pCol = &pTab->aCol[iCol]; 1877 makeColumnPartOfPrimaryKey(pParse, pCol); 1878 break; 1879 } 1880 } 1881 } 1882 } 1883 } 1884 if( nTerm==1 1885 && pCol 1886 && pCol->eCType==COLTYPE_INTEGER 1887 && sortOrder!=SQLITE_SO_DESC 1888 ){ 1889 if( IN_RENAME_OBJECT && pList ){ 1890 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1891 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1892 } 1893 pTab->iPKey = iCol; 1894 pTab->keyConf = (u8)onError; 1895 assert( autoInc==0 || autoInc==1 ); 1896 pTab->tabFlags |= autoInc*TF_Autoincrement; 1897 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1898 (void)sqlite3HasExplicitNulls(pParse, pList); 1899 }else if( autoInc ){ 1900 #ifndef SQLITE_OMIT_AUTOINCREMENT 1901 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1902 "INTEGER PRIMARY KEY"); 1903 #endif 1904 }else{ 1905 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1906 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1907 pList = 0; 1908 } 1909 1910 primary_key_exit: 1911 sqlite3ExprListDelete(pParse->db, pList); 1912 return; 1913 } 1914 1915 /* 1916 ** Add a new CHECK constraint to the table currently under construction. 1917 */ 1918 void sqlite3AddCheckConstraint( 1919 Parse *pParse, /* Parsing context */ 1920 Expr *pCheckExpr, /* The check expression */ 1921 const char *zStart, /* Opening "(" */ 1922 const char *zEnd /* Closing ")" */ 1923 ){ 1924 #ifndef SQLITE_OMIT_CHECK 1925 Table *pTab = pParse->pNewTable; 1926 sqlite3 *db = pParse->db; 1927 if( pTab && !IN_DECLARE_VTAB 1928 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1929 ){ 1930 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1931 if( pParse->constraintName.n ){ 1932 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1933 }else{ 1934 Token t; 1935 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1936 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1937 t.z = zStart; 1938 t.n = (int)(zEnd - t.z); 1939 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1940 } 1941 }else 1942 #endif 1943 { 1944 sqlite3ExprDelete(pParse->db, pCheckExpr); 1945 } 1946 } 1947 1948 /* 1949 ** Set the collation function of the most recently parsed table column 1950 ** to the CollSeq given. 1951 */ 1952 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1953 Table *p; 1954 int i; 1955 char *zColl; /* Dequoted name of collation sequence */ 1956 sqlite3 *db; 1957 1958 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1959 i = p->nCol-1; 1960 db = pParse->db; 1961 zColl = sqlite3NameFromToken(db, pToken); 1962 if( !zColl ) return; 1963 1964 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1965 Index *pIdx; 1966 sqlite3ColumnSetColl(db, &p->aCol[i], zColl); 1967 1968 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1969 ** then an index may have been created on this column before the 1970 ** collation type was added. Correct this if it is the case. 1971 */ 1972 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1973 assert( pIdx->nKeyCol==1 ); 1974 if( pIdx->aiColumn[0]==i ){ 1975 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); 1976 } 1977 } 1978 } 1979 sqlite3DbFree(db, zColl); 1980 } 1981 1982 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1983 ** column. 1984 */ 1985 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1986 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1987 u8 eType = COLFLAG_VIRTUAL; 1988 Table *pTab = pParse->pNewTable; 1989 Column *pCol; 1990 if( pTab==0 ){ 1991 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1992 goto generated_done; 1993 } 1994 pCol = &(pTab->aCol[pTab->nCol-1]); 1995 if( IN_DECLARE_VTAB ){ 1996 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1997 goto generated_done; 1998 } 1999 if( pCol->iDflt>0 ) goto generated_error; 2000 if( pType ){ 2001 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 2002 /* no-op */ 2003 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 2004 eType = COLFLAG_STORED; 2005 }else{ 2006 goto generated_error; 2007 } 2008 } 2009 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 2010 pCol->colFlags |= eType; 2011 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 2012 assert( TF_HasStored==COLFLAG_STORED ); 2013 pTab->tabFlags |= eType; 2014 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 2015 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 2016 } 2017 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); 2018 pExpr = 0; 2019 goto generated_done; 2020 2021 generated_error: 2022 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 2023 pCol->zCnName); 2024 generated_done: 2025 sqlite3ExprDelete(pParse->db, pExpr); 2026 #else 2027 /* Throw and error for the GENERATED ALWAYS AS clause if the 2028 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 2029 sqlite3ErrorMsg(pParse, "generated columns not supported"); 2030 sqlite3ExprDelete(pParse->db, pExpr); 2031 #endif 2032 } 2033 2034 /* 2035 ** Generate code that will increment the schema cookie. 2036 ** 2037 ** The schema cookie is used to determine when the schema for the 2038 ** database changes. After each schema change, the cookie value 2039 ** changes. When a process first reads the schema it records the 2040 ** cookie. Thereafter, whenever it goes to access the database, 2041 ** it checks the cookie to make sure the schema has not changed 2042 ** since it was last read. 2043 ** 2044 ** This plan is not completely bullet-proof. It is possible for 2045 ** the schema to change multiple times and for the cookie to be 2046 ** set back to prior value. But schema changes are infrequent 2047 ** and the probability of hitting the same cookie value is only 2048 ** 1 chance in 2^32. So we're safe enough. 2049 ** 2050 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 2051 ** the schema-version whenever the schema changes. 2052 */ 2053 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 2054 sqlite3 *db = pParse->db; 2055 Vdbe *v = pParse->pVdbe; 2056 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2057 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 2058 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 2059 } 2060 2061 /* 2062 ** Measure the number of characters needed to output the given 2063 ** identifier. The number returned includes any quotes used 2064 ** but does not include the null terminator. 2065 ** 2066 ** The estimate is conservative. It might be larger that what is 2067 ** really needed. 2068 */ 2069 static int identLength(const char *z){ 2070 int n; 2071 for(n=0; *z; n++, z++){ 2072 if( *z=='"' ){ n++; } 2073 } 2074 return n + 2; 2075 } 2076 2077 /* 2078 ** The first parameter is a pointer to an output buffer. The second 2079 ** parameter is a pointer to an integer that contains the offset at 2080 ** which to write into the output buffer. This function copies the 2081 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 2082 ** to the specified offset in the buffer and updates *pIdx to refer 2083 ** to the first byte after the last byte written before returning. 2084 ** 2085 ** If the string zSignedIdent consists entirely of alpha-numeric 2086 ** characters, does not begin with a digit and is not an SQL keyword, 2087 ** then it is copied to the output buffer exactly as it is. Otherwise, 2088 ** it is quoted using double-quotes. 2089 */ 2090 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 2091 unsigned char *zIdent = (unsigned char*)zSignedIdent; 2092 int i, j, needQuote; 2093 i = *pIdx; 2094 2095 for(j=0; zIdent[j]; j++){ 2096 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 2097 } 2098 needQuote = sqlite3Isdigit(zIdent[0]) 2099 || sqlite3KeywordCode(zIdent, j)!=TK_ID 2100 || zIdent[j]!=0 2101 || j==0; 2102 2103 if( needQuote ) z[i++] = '"'; 2104 for(j=0; zIdent[j]; j++){ 2105 z[i++] = zIdent[j]; 2106 if( zIdent[j]=='"' ) z[i++] = '"'; 2107 } 2108 if( needQuote ) z[i++] = '"'; 2109 z[i] = 0; 2110 *pIdx = i; 2111 } 2112 2113 /* 2114 ** Generate a CREATE TABLE statement appropriate for the given 2115 ** table. Memory to hold the text of the statement is obtained 2116 ** from sqliteMalloc() and must be freed by the calling function. 2117 */ 2118 static char *createTableStmt(sqlite3 *db, Table *p){ 2119 int i, k, n; 2120 char *zStmt; 2121 char *zSep, *zSep2, *zEnd; 2122 Column *pCol; 2123 n = 0; 2124 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 2125 n += identLength(pCol->zCnName) + 5; 2126 } 2127 n += identLength(p->zName); 2128 if( n<50 ){ 2129 zSep = ""; 2130 zSep2 = ","; 2131 zEnd = ")"; 2132 }else{ 2133 zSep = "\n "; 2134 zSep2 = ",\n "; 2135 zEnd = "\n)"; 2136 } 2137 n += 35 + 6*p->nCol; 2138 zStmt = sqlite3DbMallocRaw(0, n); 2139 if( zStmt==0 ){ 2140 sqlite3OomFault(db); 2141 return 0; 2142 } 2143 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 2144 k = sqlite3Strlen30(zStmt); 2145 identPut(zStmt, &k, p->zName); 2146 zStmt[k++] = '('; 2147 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 2148 static const char * const azType[] = { 2149 /* SQLITE_AFF_BLOB */ "", 2150 /* SQLITE_AFF_TEXT */ " TEXT", 2151 /* SQLITE_AFF_NUMERIC */ " NUM", 2152 /* SQLITE_AFF_INTEGER */ " INT", 2153 /* SQLITE_AFF_REAL */ " REAL" 2154 }; 2155 int len; 2156 const char *zType; 2157 2158 sqlite3_snprintf(n-k, &zStmt[k], zSep); 2159 k += sqlite3Strlen30(&zStmt[k]); 2160 zSep = zSep2; 2161 identPut(zStmt, &k, pCol->zCnName); 2162 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 2163 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 2164 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 2165 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 2166 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 2167 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 2168 testcase( pCol->affinity==SQLITE_AFF_REAL ); 2169 2170 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2171 len = sqlite3Strlen30(zType); 2172 assert( pCol->affinity==SQLITE_AFF_BLOB 2173 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2174 memcpy(&zStmt[k], zType, len); 2175 k += len; 2176 assert( k<=n ); 2177 } 2178 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2179 return zStmt; 2180 } 2181 2182 /* 2183 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2184 ** on success and SQLITE_NOMEM on an OOM error. 2185 */ 2186 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2187 char *zExtra; 2188 int nByte; 2189 if( pIdx->nColumn>=N ) return SQLITE_OK; 2190 assert( pIdx->isResized==0 ); 2191 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2192 zExtra = sqlite3DbMallocZero(db, nByte); 2193 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2194 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2195 pIdx->azColl = (const char**)zExtra; 2196 zExtra += sizeof(char*)*N; 2197 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2198 pIdx->aiRowLogEst = (LogEst*)zExtra; 2199 zExtra += sizeof(LogEst)*N; 2200 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2201 pIdx->aiColumn = (i16*)zExtra; 2202 zExtra += sizeof(i16)*N; 2203 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2204 pIdx->aSortOrder = (u8*)zExtra; 2205 pIdx->nColumn = N; 2206 pIdx->isResized = 1; 2207 return SQLITE_OK; 2208 } 2209 2210 /* 2211 ** Estimate the total row width for a table. 2212 */ 2213 static void estimateTableWidth(Table *pTab){ 2214 unsigned wTable = 0; 2215 const Column *pTabCol; 2216 int i; 2217 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2218 wTable += pTabCol->szEst; 2219 } 2220 if( pTab->iPKey<0 ) wTable++; 2221 pTab->szTabRow = sqlite3LogEst(wTable*4); 2222 } 2223 2224 /* 2225 ** Estimate the average size of a row for an index. 2226 */ 2227 static void estimateIndexWidth(Index *pIdx){ 2228 unsigned wIndex = 0; 2229 int i; 2230 const Column *aCol = pIdx->pTable->aCol; 2231 for(i=0; i<pIdx->nColumn; i++){ 2232 i16 x = pIdx->aiColumn[i]; 2233 assert( x<pIdx->pTable->nCol ); 2234 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2235 } 2236 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2237 } 2238 2239 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2240 ** This is used to determine if the column number x appears in any of the 2241 ** first nCol entries of an index. 2242 */ 2243 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2244 while( nCol-- > 0 ){ 2245 if( x==*(aiCol++) ){ 2246 return 1; 2247 } 2248 } 2249 return 0; 2250 } 2251 2252 /* 2253 ** Return true if any of the first nKey entries of index pIdx exactly 2254 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2255 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2256 ** or may not be the same index as pPk. 2257 ** 2258 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2259 ** not a rowid or expression. 2260 ** 2261 ** This routine differs from hasColumn() in that both the column and the 2262 ** collating sequence must match for this routine, but for hasColumn() only 2263 ** the column name must match. 2264 */ 2265 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2266 int i, j; 2267 assert( nKey<=pIdx->nColumn ); 2268 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2269 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2270 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2271 assert( pPk->pTable==pIdx->pTable ); 2272 testcase( pPk==pIdx ); 2273 j = pPk->aiColumn[iCol]; 2274 assert( j!=XN_ROWID && j!=XN_EXPR ); 2275 for(i=0; i<nKey; i++){ 2276 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2277 if( pIdx->aiColumn[i]==j 2278 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2279 ){ 2280 return 1; 2281 } 2282 } 2283 return 0; 2284 } 2285 2286 /* Recompute the colNotIdxed field of the Index. 2287 ** 2288 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2289 ** columns that are within the first 63 columns of the table. The 2290 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2291 ** of the table have a 1. 2292 ** 2293 ** 2019-10-24: For the purpose of this computation, virtual columns are 2294 ** not considered to be covered by the index, even if they are in the 2295 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2296 ** able to find all instances of a reference to the indexed table column 2297 ** and convert them into references to the index. Hence we always want 2298 ** the actual table at hand in order to recompute the virtual column, if 2299 ** necessary. 2300 ** 2301 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2302 ** to determine if the index is covering index. 2303 */ 2304 static void recomputeColumnsNotIndexed(Index *pIdx){ 2305 Bitmask m = 0; 2306 int j; 2307 Table *pTab = pIdx->pTable; 2308 for(j=pIdx->nColumn-1; j>=0; j--){ 2309 int x = pIdx->aiColumn[j]; 2310 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2311 testcase( x==BMS-1 ); 2312 testcase( x==BMS-2 ); 2313 if( x<BMS-1 ) m |= MASKBIT(x); 2314 } 2315 } 2316 pIdx->colNotIdxed = ~m; 2317 assert( (pIdx->colNotIdxed>>63)==1 ); 2318 } 2319 2320 /* 2321 ** This routine runs at the end of parsing a CREATE TABLE statement that 2322 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2323 ** internal schema data structures and the generated VDBE code so that they 2324 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2325 ** Changes include: 2326 ** 2327 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2328 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2329 ** into BTREE_BLOBKEY. 2330 ** (3) Bypass the creation of the sqlite_schema table entry 2331 ** for the PRIMARY KEY as the primary key index is now 2332 ** identified by the sqlite_schema table entry of the table itself. 2333 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2334 ** schema to the rootpage from the main table. 2335 ** (5) Add all table columns to the PRIMARY KEY Index object 2336 ** so that the PRIMARY KEY is a covering index. The surplus 2337 ** columns are part of KeyInfo.nAllField and are not used for 2338 ** sorting or lookup or uniqueness checks. 2339 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2340 ** indices with the PRIMARY KEY columns. 2341 ** 2342 ** For virtual tables, only (1) is performed. 2343 */ 2344 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2345 Index *pIdx; 2346 Index *pPk; 2347 int nPk; 2348 int nExtra; 2349 int i, j; 2350 sqlite3 *db = pParse->db; 2351 Vdbe *v = pParse->pVdbe; 2352 2353 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2354 */ 2355 if( !db->init.imposterTable ){ 2356 for(i=0; i<pTab->nCol; i++){ 2357 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 2358 && (pTab->aCol[i].notNull==OE_None) 2359 ){ 2360 pTab->aCol[i].notNull = OE_Abort; 2361 } 2362 } 2363 pTab->tabFlags |= TF_HasNotNull; 2364 } 2365 2366 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2367 ** into BTREE_BLOBKEY. 2368 */ 2369 assert( !pParse->bReturning ); 2370 if( pParse->u1.addrCrTab ){ 2371 assert( v ); 2372 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2373 } 2374 2375 /* Locate the PRIMARY KEY index. Or, if this table was originally 2376 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2377 */ 2378 if( pTab->iPKey>=0 ){ 2379 ExprList *pList; 2380 Token ipkToken; 2381 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); 2382 pList = sqlite3ExprListAppend(pParse, 0, 2383 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2384 if( pList==0 ){ 2385 pTab->tabFlags &= ~TF_WithoutRowid; 2386 return; 2387 } 2388 if( IN_RENAME_OBJECT ){ 2389 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2390 } 2391 pList->a[0].sortFlags = pParse->iPkSortOrder; 2392 assert( pParse->pNewTable==pTab ); 2393 pTab->iPKey = -1; 2394 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2395 SQLITE_IDXTYPE_PRIMARYKEY); 2396 if( pParse->nErr ){ 2397 pTab->tabFlags &= ~TF_WithoutRowid; 2398 return; 2399 } 2400 assert( db->mallocFailed==0 ); 2401 pPk = sqlite3PrimaryKeyIndex(pTab); 2402 assert( pPk->nKeyCol==1 ); 2403 }else{ 2404 pPk = sqlite3PrimaryKeyIndex(pTab); 2405 assert( pPk!=0 ); 2406 2407 /* 2408 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2409 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2410 ** code assumes the PRIMARY KEY contains no repeated columns. 2411 */ 2412 for(i=j=1; i<pPk->nKeyCol; i++){ 2413 if( isDupColumn(pPk, j, pPk, i) ){ 2414 pPk->nColumn--; 2415 }else{ 2416 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2417 pPk->azColl[j] = pPk->azColl[i]; 2418 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2419 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2420 } 2421 } 2422 pPk->nKeyCol = j; 2423 } 2424 assert( pPk!=0 ); 2425 pPk->isCovering = 1; 2426 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2427 nPk = pPk->nColumn = pPk->nKeyCol; 2428 2429 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2430 ** table entry. This is only required if currently generating VDBE 2431 ** code for a CREATE TABLE (not when parsing one as part of reading 2432 ** a database schema). */ 2433 if( v && pPk->tnum>0 ){ 2434 assert( db->init.busy==0 ); 2435 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2436 } 2437 2438 /* The root page of the PRIMARY KEY is the table root page */ 2439 pPk->tnum = pTab->tnum; 2440 2441 /* Update the in-memory representation of all UNIQUE indices by converting 2442 ** the final rowid column into one or more columns of the PRIMARY KEY. 2443 */ 2444 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2445 int n; 2446 if( IsPrimaryKeyIndex(pIdx) ) continue; 2447 for(i=n=0; i<nPk; i++){ 2448 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2449 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2450 n++; 2451 } 2452 } 2453 if( n==0 ){ 2454 /* This index is a superset of the primary key */ 2455 pIdx->nColumn = pIdx->nKeyCol; 2456 continue; 2457 } 2458 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2459 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2460 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2461 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2462 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2463 pIdx->azColl[j] = pPk->azColl[i]; 2464 if( pPk->aSortOrder[i] ){ 2465 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2466 pIdx->bAscKeyBug = 1; 2467 } 2468 j++; 2469 } 2470 } 2471 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2472 assert( pIdx->nColumn>=j ); 2473 } 2474 2475 /* Add all table columns to the PRIMARY KEY index 2476 */ 2477 nExtra = 0; 2478 for(i=0; i<pTab->nCol; i++){ 2479 if( !hasColumn(pPk->aiColumn, nPk, i) 2480 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2481 } 2482 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2483 for(i=0, j=nPk; i<pTab->nCol; i++){ 2484 if( !hasColumn(pPk->aiColumn, j, i) 2485 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2486 ){ 2487 assert( j<pPk->nColumn ); 2488 pPk->aiColumn[j] = i; 2489 pPk->azColl[j] = sqlite3StrBINARY; 2490 j++; 2491 } 2492 } 2493 assert( pPk->nColumn==j ); 2494 assert( pTab->nNVCol<=j ); 2495 recomputeColumnsNotIndexed(pPk); 2496 } 2497 2498 2499 #ifndef SQLITE_OMIT_VIRTUALTABLE 2500 /* 2501 ** Return true if pTab is a virtual table and zName is a shadow table name 2502 ** for that virtual table. 2503 */ 2504 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2505 int nName; /* Length of zName */ 2506 Module *pMod; /* Module for the virtual table */ 2507 2508 if( !IsVirtual(pTab) ) return 0; 2509 nName = sqlite3Strlen30(pTab->zName); 2510 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2511 if( zName[nName]!='_' ) return 0; 2512 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2513 if( pMod==0 ) return 0; 2514 if( pMod->pModule->iVersion<3 ) return 0; 2515 if( pMod->pModule->xShadowName==0 ) return 0; 2516 return pMod->pModule->xShadowName(zName+nName+1); 2517 } 2518 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2519 2520 #ifndef SQLITE_OMIT_VIRTUALTABLE 2521 /* 2522 ** Table pTab is a virtual table. If it the virtual table implementation 2523 ** exists and has an xShadowName method, then loop over all other ordinary 2524 ** tables within the same schema looking for shadow tables of pTab, and mark 2525 ** any shadow tables seen using the TF_Shadow flag. 2526 */ 2527 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ 2528 int nName; /* Length of pTab->zName */ 2529 Module *pMod; /* Module for the virtual table */ 2530 HashElem *k; /* For looping through the symbol table */ 2531 2532 assert( IsVirtual(pTab) ); 2533 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2534 if( pMod==0 ) return; 2535 if( NEVER(pMod->pModule==0) ) return; 2536 if( pMod->pModule->iVersion<3 ) return; 2537 if( pMod->pModule->xShadowName==0 ) return; 2538 assert( pTab->zName!=0 ); 2539 nName = sqlite3Strlen30(pTab->zName); 2540 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ 2541 Table *pOther = sqliteHashData(k); 2542 assert( pOther->zName!=0 ); 2543 if( !IsOrdinaryTable(pOther) ) continue; 2544 if( pOther->tabFlags & TF_Shadow ) continue; 2545 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 2546 && pOther->zName[nName]=='_' 2547 && pMod->pModule->xShadowName(pOther->zName+nName+1) 2548 ){ 2549 pOther->tabFlags |= TF_Shadow; 2550 } 2551 } 2552 } 2553 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2554 2555 #ifndef SQLITE_OMIT_VIRTUALTABLE 2556 /* 2557 ** Return true if zName is a shadow table name in the current database 2558 ** connection. 2559 ** 2560 ** zName is temporarily modified while this routine is running, but is 2561 ** restored to its original value prior to this routine returning. 2562 */ 2563 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2564 char *zTail; /* Pointer to the last "_" in zName */ 2565 Table *pTab; /* Table that zName is a shadow of */ 2566 zTail = strrchr(zName, '_'); 2567 if( zTail==0 ) return 0; 2568 *zTail = 0; 2569 pTab = sqlite3FindTable(db, zName, 0); 2570 *zTail = '_'; 2571 if( pTab==0 ) return 0; 2572 if( !IsVirtual(pTab) ) return 0; 2573 return sqlite3IsShadowTableOf(db, pTab, zName); 2574 } 2575 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2576 2577 2578 #ifdef SQLITE_DEBUG 2579 /* 2580 ** Mark all nodes of an expression as EP_Immutable, indicating that 2581 ** they should not be changed. Expressions attached to a table or 2582 ** index definition are tagged this way to help ensure that we do 2583 ** not pass them into code generator routines by mistake. 2584 */ 2585 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2586 ExprSetVVAProperty(pExpr, EP_Immutable); 2587 return WRC_Continue; 2588 } 2589 static void markExprListImmutable(ExprList *pList){ 2590 if( pList ){ 2591 Walker w; 2592 memset(&w, 0, sizeof(w)); 2593 w.xExprCallback = markImmutableExprStep; 2594 w.xSelectCallback = sqlite3SelectWalkNoop; 2595 w.xSelectCallback2 = 0; 2596 sqlite3WalkExprList(&w, pList); 2597 } 2598 } 2599 #else 2600 #define markExprListImmutable(X) /* no-op */ 2601 #endif /* SQLITE_DEBUG */ 2602 2603 2604 /* 2605 ** This routine is called to report the final ")" that terminates 2606 ** a CREATE TABLE statement. 2607 ** 2608 ** The table structure that other action routines have been building 2609 ** is added to the internal hash tables, assuming no errors have 2610 ** occurred. 2611 ** 2612 ** An entry for the table is made in the schema table on disk, unless 2613 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2614 ** it means we are reading the sqlite_schema table because we just 2615 ** connected to the database or because the sqlite_schema table has 2616 ** recently changed, so the entry for this table already exists in 2617 ** the sqlite_schema table. We do not want to create it again. 2618 ** 2619 ** If the pSelect argument is not NULL, it means that this routine 2620 ** was called to create a table generated from a 2621 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2622 ** the new table will match the result set of the SELECT. 2623 */ 2624 void sqlite3EndTable( 2625 Parse *pParse, /* Parse context */ 2626 Token *pCons, /* The ',' token after the last column defn. */ 2627 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2628 u32 tabOpts, /* Extra table options. Usually 0. */ 2629 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2630 ){ 2631 Table *p; /* The new table */ 2632 sqlite3 *db = pParse->db; /* The database connection */ 2633 int iDb; /* Database in which the table lives */ 2634 Index *pIdx; /* An implied index of the table */ 2635 2636 if( pEnd==0 && pSelect==0 ){ 2637 return; 2638 } 2639 p = pParse->pNewTable; 2640 if( p==0 ) return; 2641 2642 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2643 p->tabFlags |= TF_Shadow; 2644 } 2645 2646 /* If the db->init.busy is 1 it means we are reading the SQL off the 2647 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2648 ** So do not write to the disk again. Extract the root page number 2649 ** for the table from the db->init.newTnum field. (The page number 2650 ** should have been put there by the sqliteOpenCb routine.) 2651 ** 2652 ** If the root page number is 1, that means this is the sqlite_schema 2653 ** table itself. So mark it read-only. 2654 */ 2655 if( db->init.busy ){ 2656 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ 2657 sqlite3ErrorMsg(pParse, ""); 2658 return; 2659 } 2660 p->tnum = db->init.newTnum; 2661 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2662 } 2663 2664 /* Special processing for tables that include the STRICT keyword: 2665 ** 2666 ** * Do not allow custom column datatypes. Every column must have 2667 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. 2668 ** 2669 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, 2670 ** then all columns of the PRIMARY KEY must have a NOT NULL 2671 ** constraint. 2672 */ 2673 if( tabOpts & TF_Strict ){ 2674 int ii; 2675 p->tabFlags |= TF_Strict; 2676 for(ii=0; ii<p->nCol; ii++){ 2677 Column *pCol = &p->aCol[ii]; 2678 if( pCol->eCType==COLTYPE_CUSTOM ){ 2679 if( pCol->colFlags & COLFLAG_HASTYPE ){ 2680 sqlite3ErrorMsg(pParse, 2681 "unknown datatype for %s.%s: \"%s\"", 2682 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") 2683 ); 2684 }else{ 2685 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", 2686 p->zName, pCol->zCnName); 2687 } 2688 return; 2689 }else if( pCol->eCType==COLTYPE_ANY ){ 2690 pCol->affinity = SQLITE_AFF_BLOB; 2691 } 2692 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 2693 && p->iPKey!=ii 2694 && pCol->notNull == OE_None 2695 ){ 2696 pCol->notNull = OE_Abort; 2697 p->tabFlags |= TF_HasNotNull; 2698 } 2699 } 2700 } 2701 2702 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2703 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2704 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2705 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2706 2707 /* Special processing for WITHOUT ROWID Tables */ 2708 if( tabOpts & TF_WithoutRowid ){ 2709 if( (p->tabFlags & TF_Autoincrement) ){ 2710 sqlite3ErrorMsg(pParse, 2711 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2712 return; 2713 } 2714 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2715 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2716 return; 2717 } 2718 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2719 convertToWithoutRowidTable(pParse, p); 2720 } 2721 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2722 2723 #ifndef SQLITE_OMIT_CHECK 2724 /* Resolve names in all CHECK constraint expressions. 2725 */ 2726 if( p->pCheck ){ 2727 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2728 if( pParse->nErr ){ 2729 /* If errors are seen, delete the CHECK constraints now, else they might 2730 ** actually be used if PRAGMA writable_schema=ON is set. */ 2731 sqlite3ExprListDelete(db, p->pCheck); 2732 p->pCheck = 0; 2733 }else{ 2734 markExprListImmutable(p->pCheck); 2735 } 2736 } 2737 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2738 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2739 if( p->tabFlags & TF_HasGenerated ){ 2740 int ii, nNG = 0; 2741 testcase( p->tabFlags & TF_HasVirtual ); 2742 testcase( p->tabFlags & TF_HasStored ); 2743 for(ii=0; ii<p->nCol; ii++){ 2744 u32 colFlags = p->aCol[ii].colFlags; 2745 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2746 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); 2747 testcase( colFlags & COLFLAG_VIRTUAL ); 2748 testcase( colFlags & COLFLAG_STORED ); 2749 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2750 /* If there are errors in resolving the expression, change the 2751 ** expression to a NULL. This prevents code generators that operate 2752 ** on the expression from inserting extra parts into the expression 2753 ** tree that have been allocated from lookaside memory, which is 2754 ** illegal in a schema and will lead to errors or heap corruption 2755 ** when the database connection closes. */ 2756 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], 2757 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 2758 } 2759 }else{ 2760 nNG++; 2761 } 2762 } 2763 if( nNG==0 ){ 2764 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2765 return; 2766 } 2767 } 2768 #endif 2769 2770 /* Estimate the average row size for the table and for all implied indices */ 2771 estimateTableWidth(p); 2772 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2773 estimateIndexWidth(pIdx); 2774 } 2775 2776 /* If not initializing, then create a record for the new table 2777 ** in the schema table of the database. 2778 ** 2779 ** If this is a TEMPORARY table, write the entry into the auxiliary 2780 ** file instead of into the main database file. 2781 */ 2782 if( !db->init.busy ){ 2783 int n; 2784 Vdbe *v; 2785 char *zType; /* "view" or "table" */ 2786 char *zType2; /* "VIEW" or "TABLE" */ 2787 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2788 2789 v = sqlite3GetVdbe(pParse); 2790 if( NEVER(v==0) ) return; 2791 2792 sqlite3VdbeAddOp1(v, OP_Close, 0); 2793 2794 /* 2795 ** Initialize zType for the new view or table. 2796 */ 2797 if( IsOrdinaryTable(p) ){ 2798 /* A regular table */ 2799 zType = "table"; 2800 zType2 = "TABLE"; 2801 #ifndef SQLITE_OMIT_VIEW 2802 }else{ 2803 /* A view */ 2804 zType = "view"; 2805 zType2 = "VIEW"; 2806 #endif 2807 } 2808 2809 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2810 ** statement to populate the new table. The root-page number for the 2811 ** new table is in register pParse->regRoot. 2812 ** 2813 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2814 ** suitable state to query for the column names and types to be used 2815 ** by the new table. 2816 ** 2817 ** A shared-cache write-lock is not required to write to the new table, 2818 ** as a schema-lock must have already been obtained to create it. Since 2819 ** a schema-lock excludes all other database users, the write-lock would 2820 ** be redundant. 2821 */ 2822 if( pSelect ){ 2823 SelectDest dest; /* Where the SELECT should store results */ 2824 int regYield; /* Register holding co-routine entry-point */ 2825 int addrTop; /* Top of the co-routine */ 2826 int regRec; /* A record to be insert into the new table */ 2827 int regRowid; /* Rowid of the next row to insert */ 2828 int addrInsLoop; /* Top of the loop for inserting rows */ 2829 Table *pSelTab; /* A table that describes the SELECT results */ 2830 2831 if( IN_SPECIAL_PARSE ){ 2832 pParse->rc = SQLITE_ERROR; 2833 pParse->nErr++; 2834 return; 2835 } 2836 regYield = ++pParse->nMem; 2837 regRec = ++pParse->nMem; 2838 regRowid = ++pParse->nMem; 2839 assert(pParse->nTab==1); 2840 sqlite3MayAbort(pParse); 2841 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2842 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2843 pParse->nTab = 2; 2844 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2845 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2846 if( pParse->nErr ) return; 2847 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2848 if( pSelTab==0 ) return; 2849 assert( p->aCol==0 ); 2850 p->nCol = p->nNVCol = pSelTab->nCol; 2851 p->aCol = pSelTab->aCol; 2852 pSelTab->nCol = 0; 2853 pSelTab->aCol = 0; 2854 sqlite3DeleteTable(db, pSelTab); 2855 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2856 sqlite3Select(pParse, pSelect, &dest); 2857 if( pParse->nErr ) return; 2858 sqlite3VdbeEndCoroutine(v, regYield); 2859 sqlite3VdbeJumpHere(v, addrTop - 1); 2860 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2861 VdbeCoverage(v); 2862 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2863 sqlite3TableAffinity(v, p, 0); 2864 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2865 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2866 sqlite3VdbeGoto(v, addrInsLoop); 2867 sqlite3VdbeJumpHere(v, addrInsLoop); 2868 sqlite3VdbeAddOp1(v, OP_Close, 1); 2869 } 2870 2871 /* Compute the complete text of the CREATE statement */ 2872 if( pSelect ){ 2873 zStmt = createTableStmt(db, p); 2874 }else{ 2875 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2876 n = (int)(pEnd2->z - pParse->sNameToken.z); 2877 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2878 zStmt = sqlite3MPrintf(db, 2879 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2880 ); 2881 } 2882 2883 /* A slot for the record has already been allocated in the 2884 ** schema table. We just need to update that slot with all 2885 ** the information we've collected. 2886 */ 2887 sqlite3NestedParse(pParse, 2888 "UPDATE %Q." LEGACY_SCHEMA_TABLE 2889 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2890 " WHERE rowid=#%d", 2891 db->aDb[iDb].zDbSName, 2892 zType, 2893 p->zName, 2894 p->zName, 2895 pParse->regRoot, 2896 zStmt, 2897 pParse->regRowid 2898 ); 2899 sqlite3DbFree(db, zStmt); 2900 sqlite3ChangeCookie(pParse, iDb); 2901 2902 #ifndef SQLITE_OMIT_AUTOINCREMENT 2903 /* Check to see if we need to create an sqlite_sequence table for 2904 ** keeping track of autoincrement keys. 2905 */ 2906 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2907 Db *pDb = &db->aDb[iDb]; 2908 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2909 if( pDb->pSchema->pSeqTab==0 ){ 2910 sqlite3NestedParse(pParse, 2911 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2912 pDb->zDbSName 2913 ); 2914 } 2915 } 2916 #endif 2917 2918 /* Reparse everything to update our internal data structures */ 2919 sqlite3VdbeAddParseSchemaOp(v, iDb, 2920 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2921 } 2922 2923 /* Add the table to the in-memory representation of the database. 2924 */ 2925 if( db->init.busy ){ 2926 Table *pOld; 2927 Schema *pSchema = p->pSchema; 2928 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2929 assert( HasRowid(p) || p->iPKey<0 ); 2930 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2931 if( pOld ){ 2932 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2933 sqlite3OomFault(db); 2934 return; 2935 } 2936 pParse->pNewTable = 0; 2937 db->mDbFlags |= DBFLAG_SchemaChange; 2938 2939 /* If this is the magic sqlite_sequence table used by autoincrement, 2940 ** then record a pointer to this table in the main database structure 2941 ** so that INSERT can find the table easily. */ 2942 assert( !pParse->nested ); 2943 #ifndef SQLITE_OMIT_AUTOINCREMENT 2944 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2945 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2946 p->pSchema->pSeqTab = p; 2947 } 2948 #endif 2949 } 2950 2951 #ifndef SQLITE_OMIT_ALTERTABLE 2952 if( !pSelect && IsOrdinaryTable(p) ){ 2953 assert( pCons && pEnd ); 2954 if( pCons->z==0 ){ 2955 pCons = pEnd; 2956 } 2957 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2958 } 2959 #endif 2960 } 2961 2962 #ifndef SQLITE_OMIT_VIEW 2963 /* 2964 ** The parser calls this routine in order to create a new VIEW 2965 */ 2966 void sqlite3CreateView( 2967 Parse *pParse, /* The parsing context */ 2968 Token *pBegin, /* The CREATE token that begins the statement */ 2969 Token *pName1, /* The token that holds the name of the view */ 2970 Token *pName2, /* The token that holds the name of the view */ 2971 ExprList *pCNames, /* Optional list of view column names */ 2972 Select *pSelect, /* A SELECT statement that will become the new view */ 2973 int isTemp, /* TRUE for a TEMPORARY view */ 2974 int noErr /* Suppress error messages if VIEW already exists */ 2975 ){ 2976 Table *p; 2977 int n; 2978 const char *z; 2979 Token sEnd; 2980 DbFixer sFix; 2981 Token *pName = 0; 2982 int iDb; 2983 sqlite3 *db = pParse->db; 2984 2985 if( pParse->nVar>0 ){ 2986 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2987 goto create_view_fail; 2988 } 2989 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2990 p = pParse->pNewTable; 2991 if( p==0 || pParse->nErr ) goto create_view_fail; 2992 2993 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2994 ** on a view, even though views do not have rowids. The following flag 2995 ** setting fixes this problem. But the fix can be disabled by compiling 2996 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2997 ** depend upon the old buggy behavior. */ 2998 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2999 p->tabFlags |= TF_NoVisibleRowid; 3000 #endif 3001 3002 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3003 iDb = sqlite3SchemaToIndex(db, p->pSchema); 3004 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 3005 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 3006 3007 /* Make a copy of the entire SELECT statement that defines the view. 3008 ** This will force all the Expr.token.z values to be dynamically 3009 ** allocated rather than point to the input string - which means that 3010 ** they will persist after the current sqlite3_exec() call returns. 3011 */ 3012 pSelect->selFlags |= SF_View; 3013 if( IN_RENAME_OBJECT ){ 3014 p->u.view.pSelect = pSelect; 3015 pSelect = 0; 3016 }else{ 3017 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 3018 } 3019 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 3020 p->eTabType = TABTYP_VIEW; 3021 if( db->mallocFailed ) goto create_view_fail; 3022 3023 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 3024 ** the end. 3025 */ 3026 sEnd = pParse->sLastToken; 3027 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 3028 if( sEnd.z[0]!=';' ){ 3029 sEnd.z += sEnd.n; 3030 } 3031 sEnd.n = 0; 3032 n = (int)(sEnd.z - pBegin->z); 3033 assert( n>0 ); 3034 z = pBegin->z; 3035 while( sqlite3Isspace(z[n-1]) ){ n--; } 3036 sEnd.z = &z[n-1]; 3037 sEnd.n = 1; 3038 3039 /* Use sqlite3EndTable() to add the view to the schema table */ 3040 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 3041 3042 create_view_fail: 3043 sqlite3SelectDelete(db, pSelect); 3044 if( IN_RENAME_OBJECT ){ 3045 sqlite3RenameExprlistUnmap(pParse, pCNames); 3046 } 3047 sqlite3ExprListDelete(db, pCNames); 3048 return; 3049 } 3050 #endif /* SQLITE_OMIT_VIEW */ 3051 3052 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3053 /* 3054 ** The Table structure pTable is really a VIEW. Fill in the names of 3055 ** the columns of the view in the pTable structure. Return the number 3056 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 3057 */ 3058 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 3059 Table *pSelTab; /* A fake table from which we get the result set */ 3060 Select *pSel; /* Copy of the SELECT that implements the view */ 3061 int nErr = 0; /* Number of errors encountered */ 3062 int n; /* Temporarily holds the number of cursors assigned */ 3063 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 3064 #ifndef SQLITE_OMIT_VIRTUALTABLE 3065 int rc; 3066 #endif 3067 #ifndef SQLITE_OMIT_AUTHORIZATION 3068 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 3069 #endif 3070 3071 assert( pTable ); 3072 3073 #ifndef SQLITE_OMIT_VIRTUALTABLE 3074 if( IsVirtual(pTable) ){ 3075 db->nSchemaLock++; 3076 rc = sqlite3VtabCallConnect(pParse, pTable); 3077 db->nSchemaLock--; 3078 return rc; 3079 } 3080 #endif 3081 3082 #ifndef SQLITE_OMIT_VIEW 3083 /* A positive nCol means the columns names for this view are 3084 ** already known. 3085 */ 3086 if( pTable->nCol>0 ) return 0; 3087 3088 /* A negative nCol is a special marker meaning that we are currently 3089 ** trying to compute the column names. If we enter this routine with 3090 ** a negative nCol, it means two or more views form a loop, like this: 3091 ** 3092 ** CREATE VIEW one AS SELECT * FROM two; 3093 ** CREATE VIEW two AS SELECT * FROM one; 3094 ** 3095 ** Actually, the error above is now caught prior to reaching this point. 3096 ** But the following test is still important as it does come up 3097 ** in the following: 3098 ** 3099 ** CREATE TABLE main.ex1(a); 3100 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 3101 ** SELECT * FROM temp.ex1; 3102 */ 3103 if( pTable->nCol<0 ){ 3104 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 3105 return 1; 3106 } 3107 assert( pTable->nCol>=0 ); 3108 3109 /* If we get this far, it means we need to compute the table names. 3110 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 3111 ** "*" elements in the results set of the view and will assign cursors 3112 ** to the elements of the FROM clause. But we do not want these changes 3113 ** to be permanent. So the computation is done on a copy of the SELECT 3114 ** statement that defines the view. 3115 */ 3116 assert( IsView(pTable) ); 3117 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); 3118 if( pSel ){ 3119 u8 eParseMode = pParse->eParseMode; 3120 pParse->eParseMode = PARSE_MODE_NORMAL; 3121 n = pParse->nTab; 3122 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 3123 pTable->nCol = -1; 3124 DisableLookaside; 3125 #ifndef SQLITE_OMIT_AUTHORIZATION 3126 xAuth = db->xAuth; 3127 db->xAuth = 0; 3128 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3129 db->xAuth = xAuth; 3130 #else 3131 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3132 #endif 3133 pParse->nTab = n; 3134 if( pSelTab==0 ){ 3135 pTable->nCol = 0; 3136 nErr++; 3137 }else if( pTable->pCheck ){ 3138 /* CREATE VIEW name(arglist) AS ... 3139 ** The names of the columns in the table are taken from 3140 ** arglist which is stored in pTable->pCheck. The pCheck field 3141 ** normally holds CHECK constraints on an ordinary table, but for 3142 ** a VIEW it holds the list of column names. 3143 */ 3144 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 3145 &pTable->nCol, &pTable->aCol); 3146 if( pParse->nErr==0 3147 && pTable->nCol==pSel->pEList->nExpr 3148 ){ 3149 assert( db->mallocFailed==0 ); 3150 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 3151 SQLITE_AFF_NONE); 3152 } 3153 }else{ 3154 /* CREATE VIEW name AS... without an argument list. Construct 3155 ** the column names from the SELECT statement that defines the view. 3156 */ 3157 assert( pTable->aCol==0 ); 3158 pTable->nCol = pSelTab->nCol; 3159 pTable->aCol = pSelTab->aCol; 3160 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 3161 pSelTab->nCol = 0; 3162 pSelTab->aCol = 0; 3163 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 3164 } 3165 pTable->nNVCol = pTable->nCol; 3166 sqlite3DeleteTable(db, pSelTab); 3167 sqlite3SelectDelete(db, pSel); 3168 EnableLookaside; 3169 pParse->eParseMode = eParseMode; 3170 } else { 3171 nErr++; 3172 } 3173 pTable->pSchema->schemaFlags |= DB_UnresetViews; 3174 if( db->mallocFailed ){ 3175 sqlite3DeleteColumnNames(db, pTable); 3176 } 3177 #endif /* SQLITE_OMIT_VIEW */ 3178 return nErr; 3179 } 3180 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 3181 3182 #ifndef SQLITE_OMIT_VIEW 3183 /* 3184 ** Clear the column names from every VIEW in database idx. 3185 */ 3186 static void sqliteViewResetAll(sqlite3 *db, int idx){ 3187 HashElem *i; 3188 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 3189 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 3190 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 3191 Table *pTab = sqliteHashData(i); 3192 if( IsView(pTab) ){ 3193 sqlite3DeleteColumnNames(db, pTab); 3194 } 3195 } 3196 DbClearProperty(db, idx, DB_UnresetViews); 3197 } 3198 #else 3199 # define sqliteViewResetAll(A,B) 3200 #endif /* SQLITE_OMIT_VIEW */ 3201 3202 /* 3203 ** This function is called by the VDBE to adjust the internal schema 3204 ** used by SQLite when the btree layer moves a table root page. The 3205 ** root-page of a table or index in database iDb has changed from iFrom 3206 ** to iTo. 3207 ** 3208 ** Ticket #1728: The symbol table might still contain information 3209 ** on tables and/or indices that are the process of being deleted. 3210 ** If you are unlucky, one of those deleted indices or tables might 3211 ** have the same rootpage number as the real table or index that is 3212 ** being moved. So we cannot stop searching after the first match 3213 ** because the first match might be for one of the deleted indices 3214 ** or tables and not the table/index that is actually being moved. 3215 ** We must continue looping until all tables and indices with 3216 ** rootpage==iFrom have been converted to have a rootpage of iTo 3217 ** in order to be certain that we got the right one. 3218 */ 3219 #ifndef SQLITE_OMIT_AUTOVACUUM 3220 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 3221 HashElem *pElem; 3222 Hash *pHash; 3223 Db *pDb; 3224 3225 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3226 pDb = &db->aDb[iDb]; 3227 pHash = &pDb->pSchema->tblHash; 3228 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3229 Table *pTab = sqliteHashData(pElem); 3230 if( pTab->tnum==iFrom ){ 3231 pTab->tnum = iTo; 3232 } 3233 } 3234 pHash = &pDb->pSchema->idxHash; 3235 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3236 Index *pIdx = sqliteHashData(pElem); 3237 if( pIdx->tnum==iFrom ){ 3238 pIdx->tnum = iTo; 3239 } 3240 } 3241 } 3242 #endif 3243 3244 /* 3245 ** Write code to erase the table with root-page iTable from database iDb. 3246 ** Also write code to modify the sqlite_schema table and internal schema 3247 ** if a root-page of another table is moved by the btree-layer whilst 3248 ** erasing iTable (this can happen with an auto-vacuum database). 3249 */ 3250 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3251 Vdbe *v = sqlite3GetVdbe(pParse); 3252 int r1 = sqlite3GetTempReg(pParse); 3253 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3254 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3255 sqlite3MayAbort(pParse); 3256 #ifndef SQLITE_OMIT_AUTOVACUUM 3257 /* OP_Destroy stores an in integer r1. If this integer 3258 ** is non-zero, then it is the root page number of a table moved to 3259 ** location iTable. The following code modifies the sqlite_schema table to 3260 ** reflect this. 3261 ** 3262 ** The "#NNN" in the SQL is a special constant that means whatever value 3263 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3264 ** token for additional information. 3265 */ 3266 sqlite3NestedParse(pParse, 3267 "UPDATE %Q." LEGACY_SCHEMA_TABLE 3268 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3269 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3270 #endif 3271 sqlite3ReleaseTempReg(pParse, r1); 3272 } 3273 3274 /* 3275 ** Write VDBE code to erase table pTab and all associated indices on disk. 3276 ** Code to update the sqlite_schema tables and internal schema definitions 3277 ** in case a root-page belonging to another table is moved by the btree layer 3278 ** is also added (this can happen with an auto-vacuum database). 3279 */ 3280 static void destroyTable(Parse *pParse, Table *pTab){ 3281 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3282 ** is not defined), then it is important to call OP_Destroy on the 3283 ** table and index root-pages in order, starting with the numerically 3284 ** largest root-page number. This guarantees that none of the root-pages 3285 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3286 ** following were coded: 3287 ** 3288 ** OP_Destroy 4 0 3289 ** ... 3290 ** OP_Destroy 5 0 3291 ** 3292 ** and root page 5 happened to be the largest root-page number in the 3293 ** database, then root page 5 would be moved to page 4 by the 3294 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3295 ** a free-list page. 3296 */ 3297 Pgno iTab = pTab->tnum; 3298 Pgno iDestroyed = 0; 3299 3300 while( 1 ){ 3301 Index *pIdx; 3302 Pgno iLargest = 0; 3303 3304 if( iDestroyed==0 || iTab<iDestroyed ){ 3305 iLargest = iTab; 3306 } 3307 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3308 Pgno iIdx = pIdx->tnum; 3309 assert( pIdx->pSchema==pTab->pSchema ); 3310 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3311 iLargest = iIdx; 3312 } 3313 } 3314 if( iLargest==0 ){ 3315 return; 3316 }else{ 3317 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3318 assert( iDb>=0 && iDb<pParse->db->nDb ); 3319 destroyRootPage(pParse, iLargest, iDb); 3320 iDestroyed = iLargest; 3321 } 3322 } 3323 } 3324 3325 /* 3326 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3327 ** after a DROP INDEX or DROP TABLE command. 3328 */ 3329 static void sqlite3ClearStatTables( 3330 Parse *pParse, /* The parsing context */ 3331 int iDb, /* The database number */ 3332 const char *zType, /* "idx" or "tbl" */ 3333 const char *zName /* Name of index or table */ 3334 ){ 3335 int i; 3336 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3337 for(i=1; i<=4; i++){ 3338 char zTab[24]; 3339 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3340 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3341 sqlite3NestedParse(pParse, 3342 "DELETE FROM %Q.%s WHERE %s=%Q", 3343 zDbName, zTab, zType, zName 3344 ); 3345 } 3346 } 3347 } 3348 3349 /* 3350 ** Generate code to drop a table. 3351 */ 3352 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3353 Vdbe *v; 3354 sqlite3 *db = pParse->db; 3355 Trigger *pTrigger; 3356 Db *pDb = &db->aDb[iDb]; 3357 3358 v = sqlite3GetVdbe(pParse); 3359 assert( v!=0 ); 3360 sqlite3BeginWriteOperation(pParse, 1, iDb); 3361 3362 #ifndef SQLITE_OMIT_VIRTUALTABLE 3363 if( IsVirtual(pTab) ){ 3364 sqlite3VdbeAddOp0(v, OP_VBegin); 3365 } 3366 #endif 3367 3368 /* Drop all triggers associated with the table being dropped. Code 3369 ** is generated to remove entries from sqlite_schema and/or 3370 ** sqlite_temp_schema if required. 3371 */ 3372 pTrigger = sqlite3TriggerList(pParse, pTab); 3373 while( pTrigger ){ 3374 assert( pTrigger->pSchema==pTab->pSchema || 3375 pTrigger->pSchema==db->aDb[1].pSchema ); 3376 sqlite3DropTriggerPtr(pParse, pTrigger); 3377 pTrigger = pTrigger->pNext; 3378 } 3379 3380 #ifndef SQLITE_OMIT_AUTOINCREMENT 3381 /* Remove any entries of the sqlite_sequence table associated with 3382 ** the table being dropped. This is done before the table is dropped 3383 ** at the btree level, in case the sqlite_sequence table needs to 3384 ** move as a result of the drop (can happen in auto-vacuum mode). 3385 */ 3386 if( pTab->tabFlags & TF_Autoincrement ){ 3387 sqlite3NestedParse(pParse, 3388 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3389 pDb->zDbSName, pTab->zName 3390 ); 3391 } 3392 #endif 3393 3394 /* Drop all entries in the schema table that refer to the 3395 ** table. The program name loops through the schema table and deletes 3396 ** every row that refers to a table of the same name as the one being 3397 ** dropped. Triggers are handled separately because a trigger can be 3398 ** created in the temp database that refers to a table in another 3399 ** database. 3400 */ 3401 sqlite3NestedParse(pParse, 3402 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE 3403 " WHERE tbl_name=%Q and type!='trigger'", 3404 pDb->zDbSName, pTab->zName); 3405 if( !isView && !IsVirtual(pTab) ){ 3406 destroyTable(pParse, pTab); 3407 } 3408 3409 /* Remove the table entry from SQLite's internal schema and modify 3410 ** the schema cookie. 3411 */ 3412 if( IsVirtual(pTab) ){ 3413 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3414 sqlite3MayAbort(pParse); 3415 } 3416 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3417 sqlite3ChangeCookie(pParse, iDb); 3418 sqliteViewResetAll(db, iDb); 3419 } 3420 3421 /* 3422 ** Return TRUE if shadow tables should be read-only in the current 3423 ** context. 3424 */ 3425 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3426 #ifndef SQLITE_OMIT_VIRTUALTABLE 3427 if( (db->flags & SQLITE_Defensive)!=0 3428 && db->pVtabCtx==0 3429 && db->nVdbeExec==0 3430 && !sqlite3VtabInSync(db) 3431 ){ 3432 return 1; 3433 } 3434 #endif 3435 return 0; 3436 } 3437 3438 /* 3439 ** Return true if it is not allowed to drop the given table 3440 */ 3441 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3442 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3443 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3444 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3445 return 1; 3446 } 3447 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3448 return 1; 3449 } 3450 if( pTab->tabFlags & TF_Eponymous ){ 3451 return 1; 3452 } 3453 return 0; 3454 } 3455 3456 /* 3457 ** This routine is called to do the work of a DROP TABLE statement. 3458 ** pName is the name of the table to be dropped. 3459 */ 3460 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3461 Table *pTab; 3462 Vdbe *v; 3463 sqlite3 *db = pParse->db; 3464 int iDb; 3465 3466 if( db->mallocFailed ){ 3467 goto exit_drop_table; 3468 } 3469 assert( pParse->nErr==0 ); 3470 assert( pName->nSrc==1 ); 3471 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3472 if( noErr ) db->suppressErr++; 3473 assert( isView==0 || isView==LOCATE_VIEW ); 3474 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3475 if( noErr ) db->suppressErr--; 3476 3477 if( pTab==0 ){ 3478 if( noErr ){ 3479 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3480 sqlite3ForceNotReadOnly(pParse); 3481 } 3482 goto exit_drop_table; 3483 } 3484 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3485 assert( iDb>=0 && iDb<db->nDb ); 3486 3487 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3488 ** it is initialized. 3489 */ 3490 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3491 goto exit_drop_table; 3492 } 3493 #ifndef SQLITE_OMIT_AUTHORIZATION 3494 { 3495 int code; 3496 const char *zTab = SCHEMA_TABLE(iDb); 3497 const char *zDb = db->aDb[iDb].zDbSName; 3498 const char *zArg2 = 0; 3499 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3500 goto exit_drop_table; 3501 } 3502 if( isView ){ 3503 if( !OMIT_TEMPDB && iDb==1 ){ 3504 code = SQLITE_DROP_TEMP_VIEW; 3505 }else{ 3506 code = SQLITE_DROP_VIEW; 3507 } 3508 #ifndef SQLITE_OMIT_VIRTUALTABLE 3509 }else if( IsVirtual(pTab) ){ 3510 code = SQLITE_DROP_VTABLE; 3511 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3512 #endif 3513 }else{ 3514 if( !OMIT_TEMPDB && iDb==1 ){ 3515 code = SQLITE_DROP_TEMP_TABLE; 3516 }else{ 3517 code = SQLITE_DROP_TABLE; 3518 } 3519 } 3520 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3521 goto exit_drop_table; 3522 } 3523 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3524 goto exit_drop_table; 3525 } 3526 } 3527 #endif 3528 if( tableMayNotBeDropped(db, pTab) ){ 3529 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3530 goto exit_drop_table; 3531 } 3532 3533 #ifndef SQLITE_OMIT_VIEW 3534 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3535 ** on a table. 3536 */ 3537 if( isView && !IsView(pTab) ){ 3538 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3539 goto exit_drop_table; 3540 } 3541 if( !isView && IsView(pTab) ){ 3542 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3543 goto exit_drop_table; 3544 } 3545 #endif 3546 3547 /* Generate code to remove the table from the schema table 3548 ** on disk. 3549 */ 3550 v = sqlite3GetVdbe(pParse); 3551 if( v ){ 3552 sqlite3BeginWriteOperation(pParse, 1, iDb); 3553 if( !isView ){ 3554 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3555 sqlite3FkDropTable(pParse, pName, pTab); 3556 } 3557 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3558 } 3559 3560 exit_drop_table: 3561 sqlite3SrcListDelete(db, pName); 3562 } 3563 3564 /* 3565 ** This routine is called to create a new foreign key on the table 3566 ** currently under construction. pFromCol determines which columns 3567 ** in the current table point to the foreign key. If pFromCol==0 then 3568 ** connect the key to the last column inserted. pTo is the name of 3569 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3570 ** of tables in the parent pTo table. flags contains all 3571 ** information about the conflict resolution algorithms specified 3572 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3573 ** 3574 ** An FKey structure is created and added to the table currently 3575 ** under construction in the pParse->pNewTable field. 3576 ** 3577 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3578 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3579 */ 3580 void sqlite3CreateForeignKey( 3581 Parse *pParse, /* Parsing context */ 3582 ExprList *pFromCol, /* Columns in this table that point to other table */ 3583 Token *pTo, /* Name of the other table */ 3584 ExprList *pToCol, /* Columns in the other table */ 3585 int flags /* Conflict resolution algorithms. */ 3586 ){ 3587 sqlite3 *db = pParse->db; 3588 #ifndef SQLITE_OMIT_FOREIGN_KEY 3589 FKey *pFKey = 0; 3590 FKey *pNextTo; 3591 Table *p = pParse->pNewTable; 3592 i64 nByte; 3593 int i; 3594 int nCol; 3595 char *z; 3596 3597 assert( pTo!=0 ); 3598 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3599 if( pFromCol==0 ){ 3600 int iCol = p->nCol-1; 3601 if( NEVER(iCol<0) ) goto fk_end; 3602 if( pToCol && pToCol->nExpr!=1 ){ 3603 sqlite3ErrorMsg(pParse, "foreign key on %s" 3604 " should reference only one column of table %T", 3605 p->aCol[iCol].zCnName, pTo); 3606 goto fk_end; 3607 } 3608 nCol = 1; 3609 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3610 sqlite3ErrorMsg(pParse, 3611 "number of columns in foreign key does not match the number of " 3612 "columns in the referenced table"); 3613 goto fk_end; 3614 }else{ 3615 nCol = pFromCol->nExpr; 3616 } 3617 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3618 if( pToCol ){ 3619 for(i=0; i<pToCol->nExpr; i++){ 3620 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3621 } 3622 } 3623 pFKey = sqlite3DbMallocZero(db, nByte ); 3624 if( pFKey==0 ){ 3625 goto fk_end; 3626 } 3627 pFKey->pFrom = p; 3628 assert( IsOrdinaryTable(p) ); 3629 pFKey->pNextFrom = p->u.tab.pFKey; 3630 z = (char*)&pFKey->aCol[nCol]; 3631 pFKey->zTo = z; 3632 if( IN_RENAME_OBJECT ){ 3633 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3634 } 3635 memcpy(z, pTo->z, pTo->n); 3636 z[pTo->n] = 0; 3637 sqlite3Dequote(z); 3638 z += pTo->n+1; 3639 pFKey->nCol = nCol; 3640 if( pFromCol==0 ){ 3641 pFKey->aCol[0].iFrom = p->nCol-1; 3642 }else{ 3643 for(i=0; i<nCol; i++){ 3644 int j; 3645 for(j=0; j<p->nCol; j++){ 3646 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ 3647 pFKey->aCol[i].iFrom = j; 3648 break; 3649 } 3650 } 3651 if( j>=p->nCol ){ 3652 sqlite3ErrorMsg(pParse, 3653 "unknown column \"%s\" in foreign key definition", 3654 pFromCol->a[i].zEName); 3655 goto fk_end; 3656 } 3657 if( IN_RENAME_OBJECT ){ 3658 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3659 } 3660 } 3661 } 3662 if( pToCol ){ 3663 for(i=0; i<nCol; i++){ 3664 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3665 pFKey->aCol[i].zCol = z; 3666 if( IN_RENAME_OBJECT ){ 3667 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3668 } 3669 memcpy(z, pToCol->a[i].zEName, n); 3670 z[n] = 0; 3671 z += n+1; 3672 } 3673 } 3674 pFKey->isDeferred = 0; 3675 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3676 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3677 3678 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3679 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3680 pFKey->zTo, (void *)pFKey 3681 ); 3682 if( pNextTo==pFKey ){ 3683 sqlite3OomFault(db); 3684 goto fk_end; 3685 } 3686 if( pNextTo ){ 3687 assert( pNextTo->pPrevTo==0 ); 3688 pFKey->pNextTo = pNextTo; 3689 pNextTo->pPrevTo = pFKey; 3690 } 3691 3692 /* Link the foreign key to the table as the last step. 3693 */ 3694 assert( IsOrdinaryTable(p) ); 3695 p->u.tab.pFKey = pFKey; 3696 pFKey = 0; 3697 3698 fk_end: 3699 sqlite3DbFree(db, pFKey); 3700 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3701 sqlite3ExprListDelete(db, pFromCol); 3702 sqlite3ExprListDelete(db, pToCol); 3703 } 3704 3705 /* 3706 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3707 ** clause is seen as part of a foreign key definition. The isDeferred 3708 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3709 ** The behavior of the most recently created foreign key is adjusted 3710 ** accordingly. 3711 */ 3712 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3713 #ifndef SQLITE_OMIT_FOREIGN_KEY 3714 Table *pTab; 3715 FKey *pFKey; 3716 if( (pTab = pParse->pNewTable)==0 ) return; 3717 if( NEVER(!IsOrdinaryTable(pTab)) ) return; 3718 if( (pFKey = pTab->u.tab.pFKey)==0 ) return; 3719 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3720 pFKey->isDeferred = (u8)isDeferred; 3721 #endif 3722 } 3723 3724 /* 3725 ** Generate code that will erase and refill index *pIdx. This is 3726 ** used to initialize a newly created index or to recompute the 3727 ** content of an index in response to a REINDEX command. 3728 ** 3729 ** if memRootPage is not negative, it means that the index is newly 3730 ** created. The register specified by memRootPage contains the 3731 ** root page number of the index. If memRootPage is negative, then 3732 ** the index already exists and must be cleared before being refilled and 3733 ** the root page number of the index is taken from pIndex->tnum. 3734 */ 3735 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3736 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3737 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3738 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3739 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3740 int addr1; /* Address of top of loop */ 3741 int addr2; /* Address to jump to for next iteration */ 3742 Pgno tnum; /* Root page of index */ 3743 int iPartIdxLabel; /* Jump to this label to skip a row */ 3744 Vdbe *v; /* Generate code into this virtual machine */ 3745 KeyInfo *pKey; /* KeyInfo for index */ 3746 int regRecord; /* Register holding assembled index record */ 3747 sqlite3 *db = pParse->db; /* The database connection */ 3748 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3749 3750 #ifndef SQLITE_OMIT_AUTHORIZATION 3751 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3752 db->aDb[iDb].zDbSName ) ){ 3753 return; 3754 } 3755 #endif 3756 3757 /* Require a write-lock on the table to perform this operation */ 3758 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3759 3760 v = sqlite3GetVdbe(pParse); 3761 if( v==0 ) return; 3762 if( memRootPage>=0 ){ 3763 tnum = (Pgno)memRootPage; 3764 }else{ 3765 tnum = pIndex->tnum; 3766 } 3767 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3768 assert( pKey!=0 || pParse->nErr ); 3769 3770 /* Open the sorter cursor if we are to use one. */ 3771 iSorter = pParse->nTab++; 3772 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3773 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3774 3775 /* Open the table. Loop through all rows of the table, inserting index 3776 ** records into the sorter. */ 3777 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3778 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3779 regRecord = sqlite3GetTempReg(pParse); 3780 sqlite3MultiWrite(pParse); 3781 3782 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3783 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3784 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3785 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3786 sqlite3VdbeJumpHere(v, addr1); 3787 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3788 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3789 (char *)pKey, P4_KEYINFO); 3790 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3791 3792 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3793 if( IsUniqueIndex(pIndex) ){ 3794 int j2 = sqlite3VdbeGoto(v, 1); 3795 addr2 = sqlite3VdbeCurrentAddr(v); 3796 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3797 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3798 pIndex->nKeyCol); VdbeCoverage(v); 3799 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3800 sqlite3VdbeJumpHere(v, j2); 3801 }else{ 3802 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3803 ** abort. The exception is if one of the indexed expressions contains a 3804 ** user function that throws an exception when it is evaluated. But the 3805 ** overhead of adding a statement journal to a CREATE INDEX statement is 3806 ** very small (since most of the pages written do not contain content that 3807 ** needs to be restored if the statement aborts), so we call 3808 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3809 sqlite3MayAbort(pParse); 3810 addr2 = sqlite3VdbeCurrentAddr(v); 3811 } 3812 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3813 if( !pIndex->bAscKeyBug ){ 3814 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3815 ** faster by avoiding unnecessary seeks. But the optimization does 3816 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3817 ** with DESC primary keys, since those indexes have there keys in 3818 ** a different order from the main table. 3819 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3820 */ 3821 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3822 } 3823 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3824 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3825 sqlite3ReleaseTempReg(pParse, regRecord); 3826 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3827 sqlite3VdbeJumpHere(v, addr1); 3828 3829 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3830 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3831 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3832 } 3833 3834 /* 3835 ** Allocate heap space to hold an Index object with nCol columns. 3836 ** 3837 ** Increase the allocation size to provide an extra nExtra bytes 3838 ** of 8-byte aligned space after the Index object and return a 3839 ** pointer to this extra space in *ppExtra. 3840 */ 3841 Index *sqlite3AllocateIndexObject( 3842 sqlite3 *db, /* Database connection */ 3843 i16 nCol, /* Total number of columns in the index */ 3844 int nExtra, /* Number of bytes of extra space to alloc */ 3845 char **ppExtra /* Pointer to the "extra" space */ 3846 ){ 3847 Index *p; /* Allocated index object */ 3848 int nByte; /* Bytes of space for Index object + arrays */ 3849 3850 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3851 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3852 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3853 sizeof(i16)*nCol + /* Index.aiColumn */ 3854 sizeof(u8)*nCol); /* Index.aSortOrder */ 3855 p = sqlite3DbMallocZero(db, nByte + nExtra); 3856 if( p ){ 3857 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3858 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3859 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3860 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3861 p->aSortOrder = (u8*)pExtra; 3862 p->nColumn = nCol; 3863 p->nKeyCol = nCol - 1; 3864 *ppExtra = ((char*)p) + nByte; 3865 } 3866 return p; 3867 } 3868 3869 /* 3870 ** If expression list pList contains an expression that was parsed with 3871 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3872 ** pParse and return non-zero. Otherwise, return zero. 3873 */ 3874 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3875 if( pList ){ 3876 int i; 3877 for(i=0; i<pList->nExpr; i++){ 3878 if( pList->a[i].bNulls ){ 3879 u8 sf = pList->a[i].sortFlags; 3880 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3881 (sf==0 || sf==3) ? "FIRST" : "LAST" 3882 ); 3883 return 1; 3884 } 3885 } 3886 } 3887 return 0; 3888 } 3889 3890 /* 3891 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3892 ** and pTblList is the name of the table that is to be indexed. Both will 3893 ** be NULL for a primary key or an index that is created to satisfy a 3894 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3895 ** as the table to be indexed. pParse->pNewTable is a table that is 3896 ** currently being constructed by a CREATE TABLE statement. 3897 ** 3898 ** pList is a list of columns to be indexed. pList will be NULL if this 3899 ** is a primary key or unique-constraint on the most recent column added 3900 ** to the table currently under construction. 3901 */ 3902 void sqlite3CreateIndex( 3903 Parse *pParse, /* All information about this parse */ 3904 Token *pName1, /* First part of index name. May be NULL */ 3905 Token *pName2, /* Second part of index name. May be NULL */ 3906 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3907 ExprList *pList, /* A list of columns to be indexed */ 3908 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3909 Token *pStart, /* The CREATE token that begins this statement */ 3910 Expr *pPIWhere, /* WHERE clause for partial indices */ 3911 int sortOrder, /* Sort order of primary key when pList==NULL */ 3912 int ifNotExist, /* Omit error if index already exists */ 3913 u8 idxType /* The index type */ 3914 ){ 3915 Table *pTab = 0; /* Table to be indexed */ 3916 Index *pIndex = 0; /* The index to be created */ 3917 char *zName = 0; /* Name of the index */ 3918 int nName; /* Number of characters in zName */ 3919 int i, j; 3920 DbFixer sFix; /* For assigning database names to pTable */ 3921 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3922 sqlite3 *db = pParse->db; 3923 Db *pDb; /* The specific table containing the indexed database */ 3924 int iDb; /* Index of the database that is being written */ 3925 Token *pName = 0; /* Unqualified name of the index to create */ 3926 struct ExprList_item *pListItem; /* For looping over pList */ 3927 int nExtra = 0; /* Space allocated for zExtra[] */ 3928 int nExtraCol; /* Number of extra columns needed */ 3929 char *zExtra = 0; /* Extra space after the Index object */ 3930 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3931 3932 assert( db->pParse==pParse ); 3933 if( pParse->nErr ){ 3934 goto exit_create_index; 3935 } 3936 assert( db->mallocFailed==0 ); 3937 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3938 goto exit_create_index; 3939 } 3940 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3941 goto exit_create_index; 3942 } 3943 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3944 goto exit_create_index; 3945 } 3946 3947 /* 3948 ** Find the table that is to be indexed. Return early if not found. 3949 */ 3950 if( pTblName!=0 ){ 3951 3952 /* Use the two-part index name to determine the database 3953 ** to search for the table. 'Fix' the table name to this db 3954 ** before looking up the table. 3955 */ 3956 assert( pName1 && pName2 ); 3957 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3958 if( iDb<0 ) goto exit_create_index; 3959 assert( pName && pName->z ); 3960 3961 #ifndef SQLITE_OMIT_TEMPDB 3962 /* If the index name was unqualified, check if the table 3963 ** is a temp table. If so, set the database to 1. Do not do this 3964 ** if initialising a database schema. 3965 */ 3966 if( !db->init.busy ){ 3967 pTab = sqlite3SrcListLookup(pParse, pTblName); 3968 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3969 iDb = 1; 3970 } 3971 } 3972 #endif 3973 3974 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3975 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3976 /* Because the parser constructs pTblName from a single identifier, 3977 ** sqlite3FixSrcList can never fail. */ 3978 assert(0); 3979 } 3980 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3981 assert( db->mallocFailed==0 || pTab==0 ); 3982 if( pTab==0 ) goto exit_create_index; 3983 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3984 sqlite3ErrorMsg(pParse, 3985 "cannot create a TEMP index on non-TEMP table \"%s\"", 3986 pTab->zName); 3987 goto exit_create_index; 3988 } 3989 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3990 }else{ 3991 assert( pName==0 ); 3992 assert( pStart==0 ); 3993 pTab = pParse->pNewTable; 3994 if( !pTab ) goto exit_create_index; 3995 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3996 } 3997 pDb = &db->aDb[iDb]; 3998 3999 assert( pTab!=0 ); 4000 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 4001 && db->init.busy==0 4002 && pTblName!=0 4003 #if SQLITE_USER_AUTHENTICATION 4004 && sqlite3UserAuthTable(pTab->zName)==0 4005 #endif 4006 ){ 4007 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 4008 goto exit_create_index; 4009 } 4010 #ifndef SQLITE_OMIT_VIEW 4011 if( IsView(pTab) ){ 4012 sqlite3ErrorMsg(pParse, "views may not be indexed"); 4013 goto exit_create_index; 4014 } 4015 #endif 4016 #ifndef SQLITE_OMIT_VIRTUALTABLE 4017 if( IsVirtual(pTab) ){ 4018 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 4019 goto exit_create_index; 4020 } 4021 #endif 4022 4023 /* 4024 ** Find the name of the index. Make sure there is not already another 4025 ** index or table with the same name. 4026 ** 4027 ** Exception: If we are reading the names of permanent indices from the 4028 ** sqlite_schema table (because some other process changed the schema) and 4029 ** one of the index names collides with the name of a temporary table or 4030 ** index, then we will continue to process this index. 4031 ** 4032 ** If pName==0 it means that we are 4033 ** dealing with a primary key or UNIQUE constraint. We have to invent our 4034 ** own name. 4035 */ 4036 if( pName ){ 4037 zName = sqlite3NameFromToken(db, pName); 4038 if( zName==0 ) goto exit_create_index; 4039 assert( pName->z!=0 ); 4040 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 4041 goto exit_create_index; 4042 } 4043 if( !IN_RENAME_OBJECT ){ 4044 if( !db->init.busy ){ 4045 if( sqlite3FindTable(db, zName, 0)!=0 ){ 4046 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 4047 goto exit_create_index; 4048 } 4049 } 4050 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 4051 if( !ifNotExist ){ 4052 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 4053 }else{ 4054 assert( !db->init.busy ); 4055 sqlite3CodeVerifySchema(pParse, iDb); 4056 sqlite3ForceNotReadOnly(pParse); 4057 } 4058 goto exit_create_index; 4059 } 4060 } 4061 }else{ 4062 int n; 4063 Index *pLoop; 4064 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 4065 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 4066 if( zName==0 ){ 4067 goto exit_create_index; 4068 } 4069 4070 /* Automatic index names generated from within sqlite3_declare_vtab() 4071 ** must have names that are distinct from normal automatic index names. 4072 ** The following statement converts "sqlite3_autoindex..." into 4073 ** "sqlite3_butoindex..." in order to make the names distinct. 4074 ** The "vtab_err.test" test demonstrates the need of this statement. */ 4075 if( IN_SPECIAL_PARSE ) zName[7]++; 4076 } 4077 4078 /* Check for authorization to create an index. 4079 */ 4080 #ifndef SQLITE_OMIT_AUTHORIZATION 4081 if( !IN_RENAME_OBJECT ){ 4082 const char *zDb = pDb->zDbSName; 4083 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 4084 goto exit_create_index; 4085 } 4086 i = SQLITE_CREATE_INDEX; 4087 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 4088 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 4089 goto exit_create_index; 4090 } 4091 } 4092 #endif 4093 4094 /* If pList==0, it means this routine was called to make a primary 4095 ** key out of the last column added to the table under construction. 4096 ** So create a fake list to simulate this. 4097 */ 4098 if( pList==0 ){ 4099 Token prevCol; 4100 Column *pCol = &pTab->aCol[pTab->nCol-1]; 4101 pCol->colFlags |= COLFLAG_UNIQUE; 4102 sqlite3TokenInit(&prevCol, pCol->zCnName); 4103 pList = sqlite3ExprListAppend(pParse, 0, 4104 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 4105 if( pList==0 ) goto exit_create_index; 4106 assert( pList->nExpr==1 ); 4107 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 4108 }else{ 4109 sqlite3ExprListCheckLength(pParse, pList, "index"); 4110 if( pParse->nErr ) goto exit_create_index; 4111 } 4112 4113 /* Figure out how many bytes of space are required to store explicitly 4114 ** specified collation sequence names. 4115 */ 4116 for(i=0; i<pList->nExpr; i++){ 4117 Expr *pExpr = pList->a[i].pExpr; 4118 assert( pExpr!=0 ); 4119 if( pExpr->op==TK_COLLATE ){ 4120 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4121 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 4122 } 4123 } 4124 4125 /* 4126 ** Allocate the index structure. 4127 */ 4128 nName = sqlite3Strlen30(zName); 4129 nExtraCol = pPk ? pPk->nKeyCol : 1; 4130 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 4131 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 4132 nName + nExtra + 1, &zExtra); 4133 if( db->mallocFailed ){ 4134 goto exit_create_index; 4135 } 4136 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 4137 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 4138 pIndex->zName = zExtra; 4139 zExtra += nName + 1; 4140 memcpy(pIndex->zName, zName, nName+1); 4141 pIndex->pTable = pTab; 4142 pIndex->onError = (u8)onError; 4143 pIndex->uniqNotNull = onError!=OE_None; 4144 pIndex->idxType = idxType; 4145 pIndex->pSchema = db->aDb[iDb].pSchema; 4146 pIndex->nKeyCol = pList->nExpr; 4147 if( pPIWhere ){ 4148 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 4149 pIndex->pPartIdxWhere = pPIWhere; 4150 pPIWhere = 0; 4151 } 4152 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4153 4154 /* Check to see if we should honor DESC requests on index columns 4155 */ 4156 if( pDb->pSchema->file_format>=4 ){ 4157 sortOrderMask = -1; /* Honor DESC */ 4158 }else{ 4159 sortOrderMask = 0; /* Ignore DESC */ 4160 } 4161 4162 /* Analyze the list of expressions that form the terms of the index and 4163 ** report any errors. In the common case where the expression is exactly 4164 ** a table column, store that column in aiColumn[]. For general expressions, 4165 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 4166 ** 4167 ** TODO: Issue a warning if two or more columns of the index are identical. 4168 ** TODO: Issue a warning if the table primary key is used as part of the 4169 ** index key. 4170 */ 4171 pListItem = pList->a; 4172 if( IN_RENAME_OBJECT ){ 4173 pIndex->aColExpr = pList; 4174 pList = 0; 4175 } 4176 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 4177 Expr *pCExpr; /* The i-th index expression */ 4178 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 4179 const char *zColl; /* Collation sequence name */ 4180 4181 sqlite3StringToId(pListItem->pExpr); 4182 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 4183 if( pParse->nErr ) goto exit_create_index; 4184 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 4185 if( pCExpr->op!=TK_COLUMN ){ 4186 if( pTab==pParse->pNewTable ){ 4187 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 4188 "UNIQUE constraints"); 4189 goto exit_create_index; 4190 } 4191 if( pIndex->aColExpr==0 ){ 4192 pIndex->aColExpr = pList; 4193 pList = 0; 4194 } 4195 j = XN_EXPR; 4196 pIndex->aiColumn[i] = XN_EXPR; 4197 pIndex->uniqNotNull = 0; 4198 }else{ 4199 j = pCExpr->iColumn; 4200 assert( j<=0x7fff ); 4201 if( j<0 ){ 4202 j = pTab->iPKey; 4203 }else{ 4204 if( pTab->aCol[j].notNull==0 ){ 4205 pIndex->uniqNotNull = 0; 4206 } 4207 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 4208 pIndex->bHasVCol = 1; 4209 } 4210 } 4211 pIndex->aiColumn[i] = (i16)j; 4212 } 4213 zColl = 0; 4214 if( pListItem->pExpr->op==TK_COLLATE ){ 4215 int nColl; 4216 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); 4217 zColl = pListItem->pExpr->u.zToken; 4218 nColl = sqlite3Strlen30(zColl) + 1; 4219 assert( nExtra>=nColl ); 4220 memcpy(zExtra, zColl, nColl); 4221 zColl = zExtra; 4222 zExtra += nColl; 4223 nExtra -= nColl; 4224 }else if( j>=0 ){ 4225 zColl = sqlite3ColumnColl(&pTab->aCol[j]); 4226 } 4227 if( !zColl ) zColl = sqlite3StrBINARY; 4228 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 4229 goto exit_create_index; 4230 } 4231 pIndex->azColl[i] = zColl; 4232 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 4233 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 4234 } 4235 4236 /* Append the table key to the end of the index. For WITHOUT ROWID 4237 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 4238 ** normal tables (when pPk==0) this will be the rowid. 4239 */ 4240 if( pPk ){ 4241 for(j=0; j<pPk->nKeyCol; j++){ 4242 int x = pPk->aiColumn[j]; 4243 assert( x>=0 ); 4244 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 4245 pIndex->nColumn--; 4246 }else{ 4247 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 4248 pIndex->aiColumn[i] = x; 4249 pIndex->azColl[i] = pPk->azColl[j]; 4250 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 4251 i++; 4252 } 4253 } 4254 assert( i==pIndex->nColumn ); 4255 }else{ 4256 pIndex->aiColumn[i] = XN_ROWID; 4257 pIndex->azColl[i] = sqlite3StrBINARY; 4258 } 4259 sqlite3DefaultRowEst(pIndex); 4260 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4261 4262 /* If this index contains every column of its table, then mark 4263 ** it as a covering index */ 4264 assert( HasRowid(pTab) 4265 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4266 recomputeColumnsNotIndexed(pIndex); 4267 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4268 pIndex->isCovering = 1; 4269 for(j=0; j<pTab->nCol; j++){ 4270 if( j==pTab->iPKey ) continue; 4271 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4272 pIndex->isCovering = 0; 4273 break; 4274 } 4275 } 4276 4277 if( pTab==pParse->pNewTable ){ 4278 /* This routine has been called to create an automatic index as a 4279 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4280 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4281 ** i.e. one of: 4282 ** 4283 ** CREATE TABLE t(x PRIMARY KEY, y); 4284 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4285 ** 4286 ** Either way, check to see if the table already has such an index. If 4287 ** so, don't bother creating this one. This only applies to 4288 ** automatically created indices. Users can do as they wish with 4289 ** explicit indices. 4290 ** 4291 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4292 ** (and thus suppressing the second one) even if they have different 4293 ** sort orders. 4294 ** 4295 ** If there are different collating sequences or if the columns of 4296 ** the constraint occur in different orders, then the constraints are 4297 ** considered distinct and both result in separate indices. 4298 */ 4299 Index *pIdx; 4300 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4301 int k; 4302 assert( IsUniqueIndex(pIdx) ); 4303 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4304 assert( IsUniqueIndex(pIndex) ); 4305 4306 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4307 for(k=0; k<pIdx->nKeyCol; k++){ 4308 const char *z1; 4309 const char *z2; 4310 assert( pIdx->aiColumn[k]>=0 ); 4311 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4312 z1 = pIdx->azColl[k]; 4313 z2 = pIndex->azColl[k]; 4314 if( sqlite3StrICmp(z1, z2) ) break; 4315 } 4316 if( k==pIdx->nKeyCol ){ 4317 if( pIdx->onError!=pIndex->onError ){ 4318 /* This constraint creates the same index as a previous 4319 ** constraint specified somewhere in the CREATE TABLE statement. 4320 ** However the ON CONFLICT clauses are different. If both this 4321 ** constraint and the previous equivalent constraint have explicit 4322 ** ON CONFLICT clauses this is an error. Otherwise, use the 4323 ** explicitly specified behavior for the index. 4324 */ 4325 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4326 sqlite3ErrorMsg(pParse, 4327 "conflicting ON CONFLICT clauses specified", 0); 4328 } 4329 if( pIdx->onError==OE_Default ){ 4330 pIdx->onError = pIndex->onError; 4331 } 4332 } 4333 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4334 if( IN_RENAME_OBJECT ){ 4335 pIndex->pNext = pParse->pNewIndex; 4336 pParse->pNewIndex = pIndex; 4337 pIndex = 0; 4338 } 4339 goto exit_create_index; 4340 } 4341 } 4342 } 4343 4344 if( !IN_RENAME_OBJECT ){ 4345 4346 /* Link the new Index structure to its table and to the other 4347 ** in-memory database structures. 4348 */ 4349 assert( pParse->nErr==0 ); 4350 if( db->init.busy ){ 4351 Index *p; 4352 assert( !IN_SPECIAL_PARSE ); 4353 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4354 if( pTblName!=0 ){ 4355 pIndex->tnum = db->init.newTnum; 4356 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4357 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4358 pParse->rc = SQLITE_CORRUPT_BKPT; 4359 goto exit_create_index; 4360 } 4361 } 4362 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4363 pIndex->zName, pIndex); 4364 if( p ){ 4365 assert( p==pIndex ); /* Malloc must have failed */ 4366 sqlite3OomFault(db); 4367 goto exit_create_index; 4368 } 4369 db->mDbFlags |= DBFLAG_SchemaChange; 4370 } 4371 4372 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4373 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4374 ** emit code to allocate the index rootpage on disk and make an entry for 4375 ** the index in the sqlite_schema table and populate the index with 4376 ** content. But, do not do this if we are simply reading the sqlite_schema 4377 ** table to parse the schema, or if this index is the PRIMARY KEY index 4378 ** of a WITHOUT ROWID table. 4379 ** 4380 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4381 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4382 ** has just been created, it contains no data and the index initialization 4383 ** step can be skipped. 4384 */ 4385 else if( HasRowid(pTab) || pTblName!=0 ){ 4386 Vdbe *v; 4387 char *zStmt; 4388 int iMem = ++pParse->nMem; 4389 4390 v = sqlite3GetVdbe(pParse); 4391 if( v==0 ) goto exit_create_index; 4392 4393 sqlite3BeginWriteOperation(pParse, 1, iDb); 4394 4395 /* Create the rootpage for the index using CreateIndex. But before 4396 ** doing so, code a Noop instruction and store its address in 4397 ** Index.tnum. This is required in case this index is actually a 4398 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4399 ** that case the convertToWithoutRowidTable() routine will replace 4400 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4401 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4402 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4403 4404 /* Gather the complete text of the CREATE INDEX statement into 4405 ** the zStmt variable 4406 */ 4407 assert( pName!=0 || pStart==0 ); 4408 if( pStart ){ 4409 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4410 if( pName->z[n-1]==';' ) n--; 4411 /* A named index with an explicit CREATE INDEX statement */ 4412 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4413 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4414 }else{ 4415 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4416 /* zStmt = sqlite3MPrintf(""); */ 4417 zStmt = 0; 4418 } 4419 4420 /* Add an entry in sqlite_schema for this index 4421 */ 4422 sqlite3NestedParse(pParse, 4423 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4424 db->aDb[iDb].zDbSName, 4425 pIndex->zName, 4426 pTab->zName, 4427 iMem, 4428 zStmt 4429 ); 4430 sqlite3DbFree(db, zStmt); 4431 4432 /* Fill the index with data and reparse the schema. Code an OP_Expire 4433 ** to invalidate all pre-compiled statements. 4434 */ 4435 if( pTblName ){ 4436 sqlite3RefillIndex(pParse, pIndex, iMem); 4437 sqlite3ChangeCookie(pParse, iDb); 4438 sqlite3VdbeAddParseSchemaOp(v, iDb, 4439 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4440 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4441 } 4442 4443 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4444 } 4445 } 4446 if( db->init.busy || pTblName==0 ){ 4447 pIndex->pNext = pTab->pIndex; 4448 pTab->pIndex = pIndex; 4449 pIndex = 0; 4450 } 4451 else if( IN_RENAME_OBJECT ){ 4452 assert( pParse->pNewIndex==0 ); 4453 pParse->pNewIndex = pIndex; 4454 pIndex = 0; 4455 } 4456 4457 /* Clean up before exiting */ 4458 exit_create_index: 4459 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4460 if( pTab ){ 4461 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4462 ** The list was already ordered when this routine was entered, so at this 4463 ** point at most a single index (the newly added index) will be out of 4464 ** order. So we have to reorder at most one index. */ 4465 Index **ppFrom; 4466 Index *pThis; 4467 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4468 Index *pNext; 4469 if( pThis->onError!=OE_Replace ) continue; 4470 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4471 *ppFrom = pNext; 4472 pThis->pNext = pNext->pNext; 4473 pNext->pNext = pThis; 4474 ppFrom = &pNext->pNext; 4475 } 4476 break; 4477 } 4478 #ifdef SQLITE_DEBUG 4479 /* Verify that all REPLACE indexes really are now at the end 4480 ** of the index list. In other words, no other index type ever 4481 ** comes after a REPLACE index on the list. */ 4482 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4483 assert( pThis->onError!=OE_Replace 4484 || pThis->pNext==0 4485 || pThis->pNext->onError==OE_Replace ); 4486 } 4487 #endif 4488 } 4489 sqlite3ExprDelete(db, pPIWhere); 4490 sqlite3ExprListDelete(db, pList); 4491 sqlite3SrcListDelete(db, pTblName); 4492 sqlite3DbFree(db, zName); 4493 } 4494 4495 /* 4496 ** Fill the Index.aiRowEst[] array with default information - information 4497 ** to be used when we have not run the ANALYZE command. 4498 ** 4499 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4500 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4501 ** number of rows in the table that match any particular value of the 4502 ** first column of the index. aiRowEst[2] is an estimate of the number 4503 ** of rows that match any particular combination of the first 2 columns 4504 ** of the index. And so forth. It must always be the case that 4505 * 4506 ** aiRowEst[N]<=aiRowEst[N-1] 4507 ** aiRowEst[N]>=1 4508 ** 4509 ** Apart from that, we have little to go on besides intuition as to 4510 ** how aiRowEst[] should be initialized. The numbers generated here 4511 ** are based on typical values found in actual indices. 4512 */ 4513 void sqlite3DefaultRowEst(Index *pIdx){ 4514 /* 10, 9, 8, 7, 6 */ 4515 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4516 LogEst *a = pIdx->aiRowLogEst; 4517 LogEst x; 4518 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4519 int i; 4520 4521 /* Indexes with default row estimates should not have stat1 data */ 4522 assert( !pIdx->hasStat1 ); 4523 4524 /* Set the first entry (number of rows in the index) to the estimated 4525 ** number of rows in the table, or half the number of rows in the table 4526 ** for a partial index. 4527 ** 4528 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4529 ** table but other parts we are having to guess at, then do not let the 4530 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4531 ** Failure to do this can cause the indexes for which we do not have 4532 ** stat1 data to be ignored by the query planner. 4533 */ 4534 x = pIdx->pTable->nRowLogEst; 4535 assert( 99==sqlite3LogEst(1000) ); 4536 if( x<99 ){ 4537 pIdx->pTable->nRowLogEst = x = 99; 4538 } 4539 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4540 a[0] = x; 4541 4542 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4543 ** 6 and each subsequent value (if any) is 5. */ 4544 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4545 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4546 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4547 } 4548 4549 assert( 0==sqlite3LogEst(1) ); 4550 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4551 } 4552 4553 /* 4554 ** This routine will drop an existing named index. This routine 4555 ** implements the DROP INDEX statement. 4556 */ 4557 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4558 Index *pIndex; 4559 Vdbe *v; 4560 sqlite3 *db = pParse->db; 4561 int iDb; 4562 4563 if( db->mallocFailed ){ 4564 goto exit_drop_index; 4565 } 4566 assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ 4567 assert( pName->nSrc==1 ); 4568 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4569 goto exit_drop_index; 4570 } 4571 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4572 if( pIndex==0 ){ 4573 if( !ifExists ){ 4574 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4575 }else{ 4576 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4577 sqlite3ForceNotReadOnly(pParse); 4578 } 4579 pParse->checkSchema = 1; 4580 goto exit_drop_index; 4581 } 4582 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4583 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4584 "or PRIMARY KEY constraint cannot be dropped", 0); 4585 goto exit_drop_index; 4586 } 4587 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4588 #ifndef SQLITE_OMIT_AUTHORIZATION 4589 { 4590 int code = SQLITE_DROP_INDEX; 4591 Table *pTab = pIndex->pTable; 4592 const char *zDb = db->aDb[iDb].zDbSName; 4593 const char *zTab = SCHEMA_TABLE(iDb); 4594 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4595 goto exit_drop_index; 4596 } 4597 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 4598 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4599 goto exit_drop_index; 4600 } 4601 } 4602 #endif 4603 4604 /* Generate code to remove the index and from the schema table */ 4605 v = sqlite3GetVdbe(pParse); 4606 if( v ){ 4607 sqlite3BeginWriteOperation(pParse, 1, iDb); 4608 sqlite3NestedParse(pParse, 4609 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4610 db->aDb[iDb].zDbSName, pIndex->zName 4611 ); 4612 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4613 sqlite3ChangeCookie(pParse, iDb); 4614 destroyRootPage(pParse, pIndex->tnum, iDb); 4615 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4616 } 4617 4618 exit_drop_index: 4619 sqlite3SrcListDelete(db, pName); 4620 } 4621 4622 /* 4623 ** pArray is a pointer to an array of objects. Each object in the 4624 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4625 ** to extend the array so that there is space for a new object at the end. 4626 ** 4627 ** When this function is called, *pnEntry contains the current size of 4628 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4629 ** in total). 4630 ** 4631 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4632 ** space allocated for the new object is zeroed, *pnEntry updated to 4633 ** reflect the new size of the array and a pointer to the new allocation 4634 ** returned. *pIdx is set to the index of the new array entry in this case. 4635 ** 4636 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4637 ** unchanged and a copy of pArray returned. 4638 */ 4639 void *sqlite3ArrayAllocate( 4640 sqlite3 *db, /* Connection to notify of malloc failures */ 4641 void *pArray, /* Array of objects. Might be reallocated */ 4642 int szEntry, /* Size of each object in the array */ 4643 int *pnEntry, /* Number of objects currently in use */ 4644 int *pIdx /* Write the index of a new slot here */ 4645 ){ 4646 char *z; 4647 sqlite3_int64 n = *pIdx = *pnEntry; 4648 if( (n & (n-1))==0 ){ 4649 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4650 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4651 if( pNew==0 ){ 4652 *pIdx = -1; 4653 return pArray; 4654 } 4655 pArray = pNew; 4656 } 4657 z = (char*)pArray; 4658 memset(&z[n * szEntry], 0, szEntry); 4659 ++*pnEntry; 4660 return pArray; 4661 } 4662 4663 /* 4664 ** Append a new element to the given IdList. Create a new IdList if 4665 ** need be. 4666 ** 4667 ** A new IdList is returned, or NULL if malloc() fails. 4668 */ 4669 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4670 sqlite3 *db = pParse->db; 4671 int i; 4672 if( pList==0 ){ 4673 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4674 if( pList==0 ) return 0; 4675 } 4676 pList->a = sqlite3ArrayAllocate( 4677 db, 4678 pList->a, 4679 sizeof(pList->a[0]), 4680 &pList->nId, 4681 &i 4682 ); 4683 if( i<0 ){ 4684 sqlite3IdListDelete(db, pList); 4685 return 0; 4686 } 4687 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4688 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4689 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4690 } 4691 return pList; 4692 } 4693 4694 /* 4695 ** Delete an IdList. 4696 */ 4697 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4698 int i; 4699 if( pList==0 ) return; 4700 for(i=0; i<pList->nId; i++){ 4701 sqlite3DbFree(db, pList->a[i].zName); 4702 } 4703 sqlite3DbFree(db, pList->a); 4704 sqlite3DbFreeNN(db, pList); 4705 } 4706 4707 /* 4708 ** Return the index in pList of the identifier named zId. Return -1 4709 ** if not found. 4710 */ 4711 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4712 int i; 4713 assert( pList!=0 ); 4714 for(i=0; i<pList->nId; i++){ 4715 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4716 } 4717 return -1; 4718 } 4719 4720 /* 4721 ** Maximum size of a SrcList object. 4722 ** The SrcList object is used to represent the FROM clause of a 4723 ** SELECT statement, and the query planner cannot deal with more 4724 ** than 64 tables in a join. So any value larger than 64 here 4725 ** is sufficient for most uses. Smaller values, like say 10, are 4726 ** appropriate for small and memory-limited applications. 4727 */ 4728 #ifndef SQLITE_MAX_SRCLIST 4729 # define SQLITE_MAX_SRCLIST 200 4730 #endif 4731 4732 /* 4733 ** Expand the space allocated for the given SrcList object by 4734 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4735 ** New slots are zeroed. 4736 ** 4737 ** For example, suppose a SrcList initially contains two entries: A,B. 4738 ** To append 3 new entries onto the end, do this: 4739 ** 4740 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4741 ** 4742 ** After the call above it would contain: A, B, nil, nil, nil. 4743 ** If the iStart argument had been 1 instead of 2, then the result 4744 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4745 ** the iStart value would be 0. The result then would 4746 ** be: nil, nil, nil, A, B. 4747 ** 4748 ** If a memory allocation fails or the SrcList becomes too large, leave 4749 ** the original SrcList unchanged, return NULL, and leave an error message 4750 ** in pParse. 4751 */ 4752 SrcList *sqlite3SrcListEnlarge( 4753 Parse *pParse, /* Parsing context into which errors are reported */ 4754 SrcList *pSrc, /* The SrcList to be enlarged */ 4755 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4756 int iStart /* Index in pSrc->a[] of first new slot */ 4757 ){ 4758 int i; 4759 4760 /* Sanity checking on calling parameters */ 4761 assert( iStart>=0 ); 4762 assert( nExtra>=1 ); 4763 assert( pSrc!=0 ); 4764 assert( iStart<=pSrc->nSrc ); 4765 4766 /* Allocate additional space if needed */ 4767 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4768 SrcList *pNew; 4769 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4770 sqlite3 *db = pParse->db; 4771 4772 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4773 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4774 SQLITE_MAX_SRCLIST); 4775 return 0; 4776 } 4777 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4778 pNew = sqlite3DbRealloc(db, pSrc, 4779 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4780 if( pNew==0 ){ 4781 assert( db->mallocFailed ); 4782 return 0; 4783 } 4784 pSrc = pNew; 4785 pSrc->nAlloc = nAlloc; 4786 } 4787 4788 /* Move existing slots that come after the newly inserted slots 4789 ** out of the way */ 4790 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4791 pSrc->a[i+nExtra] = pSrc->a[i]; 4792 } 4793 pSrc->nSrc += nExtra; 4794 4795 /* Zero the newly allocated slots */ 4796 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4797 for(i=iStart; i<iStart+nExtra; i++){ 4798 pSrc->a[i].iCursor = -1; 4799 } 4800 4801 /* Return a pointer to the enlarged SrcList */ 4802 return pSrc; 4803 } 4804 4805 4806 /* 4807 ** Append a new table name to the given SrcList. Create a new SrcList if 4808 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4809 ** 4810 ** A SrcList is returned, or NULL if there is an OOM error or if the 4811 ** SrcList grows to large. The returned 4812 ** SrcList might be the same as the SrcList that was input or it might be 4813 ** a new one. If an OOM error does occurs, then the prior value of pList 4814 ** that is input to this routine is automatically freed. 4815 ** 4816 ** If pDatabase is not null, it means that the table has an optional 4817 ** database name prefix. Like this: "database.table". The pDatabase 4818 ** points to the table name and the pTable points to the database name. 4819 ** The SrcList.a[].zName field is filled with the table name which might 4820 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4821 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4822 ** or with NULL if no database is specified. 4823 ** 4824 ** In other words, if call like this: 4825 ** 4826 ** sqlite3SrcListAppend(D,A,B,0); 4827 ** 4828 ** Then B is a table name and the database name is unspecified. If called 4829 ** like this: 4830 ** 4831 ** sqlite3SrcListAppend(D,A,B,C); 4832 ** 4833 ** Then C is the table name and B is the database name. If C is defined 4834 ** then so is B. In other words, we never have a case where: 4835 ** 4836 ** sqlite3SrcListAppend(D,A,0,C); 4837 ** 4838 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4839 ** before being added to the SrcList. 4840 */ 4841 SrcList *sqlite3SrcListAppend( 4842 Parse *pParse, /* Parsing context, in which errors are reported */ 4843 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4844 Token *pTable, /* Table to append */ 4845 Token *pDatabase /* Database of the table */ 4846 ){ 4847 SrcItem *pItem; 4848 sqlite3 *db; 4849 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4850 assert( pParse!=0 ); 4851 assert( pParse->db!=0 ); 4852 db = pParse->db; 4853 if( pList==0 ){ 4854 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4855 if( pList==0 ) return 0; 4856 pList->nAlloc = 1; 4857 pList->nSrc = 1; 4858 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4859 pList->a[0].iCursor = -1; 4860 }else{ 4861 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4862 if( pNew==0 ){ 4863 sqlite3SrcListDelete(db, pList); 4864 return 0; 4865 }else{ 4866 pList = pNew; 4867 } 4868 } 4869 pItem = &pList->a[pList->nSrc-1]; 4870 if( pDatabase && pDatabase->z==0 ){ 4871 pDatabase = 0; 4872 } 4873 if( pDatabase ){ 4874 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4875 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4876 }else{ 4877 pItem->zName = sqlite3NameFromToken(db, pTable); 4878 pItem->zDatabase = 0; 4879 } 4880 return pList; 4881 } 4882 4883 /* 4884 ** Assign VdbeCursor index numbers to all tables in a SrcList 4885 */ 4886 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4887 int i; 4888 SrcItem *pItem; 4889 assert( pList || pParse->db->mallocFailed ); 4890 if( ALWAYS(pList) ){ 4891 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4892 if( pItem->iCursor>=0 ) continue; 4893 pItem->iCursor = pParse->nTab++; 4894 if( pItem->pSelect ){ 4895 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4896 } 4897 } 4898 } 4899 } 4900 4901 /* 4902 ** Delete an entire SrcList including all its substructure. 4903 */ 4904 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4905 int i; 4906 SrcItem *pItem; 4907 if( pList==0 ) return; 4908 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4909 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4910 sqlite3DbFree(db, pItem->zName); 4911 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4912 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4913 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4914 sqlite3DeleteTable(db, pItem->pTab); 4915 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4916 if( pItem->fg.isUsing ){ 4917 sqlite3IdListDelete(db, pItem->u3.pUsing); 4918 }else if( pItem->u3.pOn ){ 4919 sqlite3ExprDelete(db, pItem->u3.pOn); 4920 } 4921 } 4922 sqlite3DbFreeNN(db, pList); 4923 } 4924 4925 /* 4926 ** This routine is called by the parser to add a new term to the 4927 ** end of a growing FROM clause. The "p" parameter is the part of 4928 ** the FROM clause that has already been constructed. "p" is NULL 4929 ** if this is the first term of the FROM clause. pTable and pDatabase 4930 ** are the name of the table and database named in the FROM clause term. 4931 ** pDatabase is NULL if the database name qualifier is missing - the 4932 ** usual case. If the term has an alias, then pAlias points to the 4933 ** alias token. If the term is a subquery, then pSubquery is the 4934 ** SELECT statement that the subquery encodes. The pTable and 4935 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4936 ** parameters are the content of the ON and USING clauses. 4937 ** 4938 ** Return a new SrcList which encodes is the FROM with the new 4939 ** term added. 4940 */ 4941 SrcList *sqlite3SrcListAppendFromTerm( 4942 Parse *pParse, /* Parsing context */ 4943 SrcList *p, /* The left part of the FROM clause already seen */ 4944 Token *pTable, /* Name of the table to add to the FROM clause */ 4945 Token *pDatabase, /* Name of the database containing pTable */ 4946 Token *pAlias, /* The right-hand side of the AS subexpression */ 4947 Select *pSubquery, /* A subquery used in place of a table name */ 4948 OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */ 4949 ){ 4950 SrcItem *pItem; 4951 sqlite3 *db = pParse->db; 4952 if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){ 4953 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4954 (pOnUsing->pOn ? "ON" : "USING") 4955 ); 4956 goto append_from_error; 4957 } 4958 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4959 if( p==0 ){ 4960 goto append_from_error; 4961 } 4962 assert( p->nSrc>0 ); 4963 pItem = &p->a[p->nSrc-1]; 4964 assert( (pTable==0)==(pDatabase==0) ); 4965 assert( pItem->zName==0 || pDatabase!=0 ); 4966 if( IN_RENAME_OBJECT && pItem->zName ){ 4967 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4968 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4969 } 4970 assert( pAlias!=0 ); 4971 if( pAlias->n ){ 4972 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4973 } 4974 pItem->pSelect = pSubquery; 4975 assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 ); 4976 assert( pItem->fg.isUsing==0 ); 4977 if( pOnUsing==0 ){ 4978 pItem->u3.pOn = 0; 4979 }else if( pOnUsing->pUsing ){ 4980 pItem->fg.isUsing = 1; 4981 pItem->u3.pUsing = pOnUsing->pUsing; 4982 }else{ 4983 pItem->u3.pOn = pOnUsing->pOn; 4984 } 4985 return p; 4986 4987 append_from_error: 4988 assert( p==0 ); 4989 sqlite3ClearOnOrUsing(db, pOnUsing); 4990 sqlite3SelectDelete(db, pSubquery); 4991 return 0; 4992 } 4993 4994 /* 4995 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4996 ** element of the source-list passed as the second argument. 4997 */ 4998 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4999 assert( pIndexedBy!=0 ); 5000 if( p && pIndexedBy->n>0 ){ 5001 SrcItem *pItem; 5002 assert( p->nSrc>0 ); 5003 pItem = &p->a[p->nSrc-1]; 5004 assert( pItem->fg.notIndexed==0 ); 5005 assert( pItem->fg.isIndexedBy==0 ); 5006 assert( pItem->fg.isTabFunc==0 ); 5007 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 5008 /* A "NOT INDEXED" clause was supplied. See parse.y 5009 ** construct "indexed_opt" for details. */ 5010 pItem->fg.notIndexed = 1; 5011 }else{ 5012 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 5013 pItem->fg.isIndexedBy = 1; 5014 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ 5015 } 5016 } 5017 } 5018 5019 /* 5020 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 5021 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 5022 ** are deleted by this function. 5023 */ 5024 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 5025 assert( p1 && p1->nSrc==1 ); 5026 if( p2 ){ 5027 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 5028 if( pNew==0 ){ 5029 sqlite3SrcListDelete(pParse->db, p2); 5030 }else{ 5031 p1 = pNew; 5032 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 5033 sqlite3DbFree(pParse->db, p2); 5034 } 5035 } 5036 return p1; 5037 } 5038 5039 /* 5040 ** Add the list of function arguments to the SrcList entry for a 5041 ** table-valued-function. 5042 */ 5043 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 5044 if( p ){ 5045 SrcItem *pItem = &p->a[p->nSrc-1]; 5046 assert( pItem->fg.notIndexed==0 ); 5047 assert( pItem->fg.isIndexedBy==0 ); 5048 assert( pItem->fg.isTabFunc==0 ); 5049 pItem->u1.pFuncArg = pList; 5050 pItem->fg.isTabFunc = 1; 5051 }else{ 5052 sqlite3ExprListDelete(pParse->db, pList); 5053 } 5054 } 5055 5056 /* 5057 ** When building up a FROM clause in the parser, the join operator 5058 ** is initially attached to the left operand. But the code generator 5059 ** expects the join operator to be on the right operand. This routine 5060 ** Shifts all join operators from left to right for an entire FROM 5061 ** clause. 5062 ** 5063 ** Example: Suppose the join is like this: 5064 ** 5065 ** A natural cross join B 5066 ** 5067 ** The operator is "natural cross join". The A and B operands are stored 5068 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 5069 ** operator with A. This routine shifts that operator over to B. 5070 */ 5071 void sqlite3SrcListShiftJoinType(SrcList *p){ 5072 if( p ){ 5073 int i; 5074 for(i=p->nSrc-1; i>0; i--){ 5075 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 5076 } 5077 p->a[0].fg.jointype = 0; 5078 } 5079 } 5080 5081 /* 5082 ** Generate VDBE code for a BEGIN statement. 5083 */ 5084 void sqlite3BeginTransaction(Parse *pParse, int type){ 5085 sqlite3 *db; 5086 Vdbe *v; 5087 int i; 5088 5089 assert( pParse!=0 ); 5090 db = pParse->db; 5091 assert( db!=0 ); 5092 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 5093 return; 5094 } 5095 v = sqlite3GetVdbe(pParse); 5096 if( !v ) return; 5097 if( type!=TK_DEFERRED ){ 5098 for(i=0; i<db->nDb; i++){ 5099 int eTxnType; 5100 Btree *pBt = db->aDb[i].pBt; 5101 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 5102 eTxnType = 0; /* Read txn */ 5103 }else if( type==TK_EXCLUSIVE ){ 5104 eTxnType = 2; /* Exclusive txn */ 5105 }else{ 5106 eTxnType = 1; /* Write txn */ 5107 } 5108 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 5109 sqlite3VdbeUsesBtree(v, i); 5110 } 5111 } 5112 sqlite3VdbeAddOp0(v, OP_AutoCommit); 5113 } 5114 5115 /* 5116 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 5117 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 5118 ** code is generated for a COMMIT. 5119 */ 5120 void sqlite3EndTransaction(Parse *pParse, int eType){ 5121 Vdbe *v; 5122 int isRollback; 5123 5124 assert( pParse!=0 ); 5125 assert( pParse->db!=0 ); 5126 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 5127 isRollback = eType==TK_ROLLBACK; 5128 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 5129 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 5130 return; 5131 } 5132 v = sqlite3GetVdbe(pParse); 5133 if( v ){ 5134 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 5135 } 5136 } 5137 5138 /* 5139 ** This function is called by the parser when it parses a command to create, 5140 ** release or rollback an SQL savepoint. 5141 */ 5142 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 5143 char *zName = sqlite3NameFromToken(pParse->db, pName); 5144 if( zName ){ 5145 Vdbe *v = sqlite3GetVdbe(pParse); 5146 #ifndef SQLITE_OMIT_AUTHORIZATION 5147 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 5148 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 5149 #endif 5150 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 5151 sqlite3DbFree(pParse->db, zName); 5152 return; 5153 } 5154 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 5155 } 5156 } 5157 5158 /* 5159 ** Make sure the TEMP database is open and available for use. Return 5160 ** the number of errors. Leave any error messages in the pParse structure. 5161 */ 5162 int sqlite3OpenTempDatabase(Parse *pParse){ 5163 sqlite3 *db = pParse->db; 5164 if( db->aDb[1].pBt==0 && !pParse->explain ){ 5165 int rc; 5166 Btree *pBt; 5167 static const int flags = 5168 SQLITE_OPEN_READWRITE | 5169 SQLITE_OPEN_CREATE | 5170 SQLITE_OPEN_EXCLUSIVE | 5171 SQLITE_OPEN_DELETEONCLOSE | 5172 SQLITE_OPEN_TEMP_DB; 5173 5174 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 5175 if( rc!=SQLITE_OK ){ 5176 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 5177 "file for storing temporary tables"); 5178 pParse->rc = rc; 5179 return 1; 5180 } 5181 db->aDb[1].pBt = pBt; 5182 assert( db->aDb[1].pSchema ); 5183 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 5184 sqlite3OomFault(db); 5185 return 1; 5186 } 5187 } 5188 return 0; 5189 } 5190 5191 /* 5192 ** Record the fact that the schema cookie will need to be verified 5193 ** for database iDb. The code to actually verify the schema cookie 5194 ** will occur at the end of the top-level VDBE and will be generated 5195 ** later, by sqlite3FinishCoding(). 5196 */ 5197 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 5198 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 5199 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 5200 assert( iDb<SQLITE_MAX_DB ); 5201 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 5202 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 5203 DbMaskSet(pToplevel->cookieMask, iDb); 5204 if( !OMIT_TEMPDB && iDb==1 ){ 5205 sqlite3OpenTempDatabase(pToplevel); 5206 } 5207 } 5208 } 5209 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 5210 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 5211 } 5212 5213 5214 /* 5215 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 5216 ** attached database. Otherwise, invoke it for the database named zDb only. 5217 */ 5218 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 5219 sqlite3 *db = pParse->db; 5220 int i; 5221 for(i=0; i<db->nDb; i++){ 5222 Db *pDb = &db->aDb[i]; 5223 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 5224 sqlite3CodeVerifySchema(pParse, i); 5225 } 5226 } 5227 } 5228 5229 /* 5230 ** Generate VDBE code that prepares for doing an operation that 5231 ** might change the database. 5232 ** 5233 ** This routine starts a new transaction if we are not already within 5234 ** a transaction. If we are already within a transaction, then a checkpoint 5235 ** is set if the setStatement parameter is true. A checkpoint should 5236 ** be set for operations that might fail (due to a constraint) part of 5237 ** the way through and which will need to undo some writes without having to 5238 ** rollback the whole transaction. For operations where all constraints 5239 ** can be checked before any changes are made to the database, it is never 5240 ** necessary to undo a write and the checkpoint should not be set. 5241 */ 5242 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 5243 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5244 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 5245 DbMaskSet(pToplevel->writeMask, iDb); 5246 pToplevel->isMultiWrite |= setStatement; 5247 } 5248 5249 /* 5250 ** Indicate that the statement currently under construction might write 5251 ** more than one entry (example: deleting one row then inserting another, 5252 ** inserting multiple rows in a table, or inserting a row and index entries.) 5253 ** If an abort occurs after some of these writes have completed, then it will 5254 ** be necessary to undo the completed writes. 5255 */ 5256 void sqlite3MultiWrite(Parse *pParse){ 5257 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5258 pToplevel->isMultiWrite = 1; 5259 } 5260 5261 /* 5262 ** The code generator calls this routine if is discovers that it is 5263 ** possible to abort a statement prior to completion. In order to 5264 ** perform this abort without corrupting the database, we need to make 5265 ** sure that the statement is protected by a statement transaction. 5266 ** 5267 ** Technically, we only need to set the mayAbort flag if the 5268 ** isMultiWrite flag was previously set. There is a time dependency 5269 ** such that the abort must occur after the multiwrite. This makes 5270 ** some statements involving the REPLACE conflict resolution algorithm 5271 ** go a little faster. But taking advantage of this time dependency 5272 ** makes it more difficult to prove that the code is correct (in 5273 ** particular, it prevents us from writing an effective 5274 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5275 ** to take the safe route and skip the optimization. 5276 */ 5277 void sqlite3MayAbort(Parse *pParse){ 5278 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5279 pToplevel->mayAbort = 1; 5280 } 5281 5282 /* 5283 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5284 ** error. The onError parameter determines which (if any) of the statement 5285 ** and/or current transaction is rolled back. 5286 */ 5287 void sqlite3HaltConstraint( 5288 Parse *pParse, /* Parsing context */ 5289 int errCode, /* extended error code */ 5290 int onError, /* Constraint type */ 5291 char *p4, /* Error message */ 5292 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5293 u8 p5Errmsg /* P5_ErrMsg type */ 5294 ){ 5295 Vdbe *v; 5296 assert( pParse->pVdbe!=0 ); 5297 v = sqlite3GetVdbe(pParse); 5298 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5299 if( onError==OE_Abort ){ 5300 sqlite3MayAbort(pParse); 5301 } 5302 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5303 sqlite3VdbeChangeP5(v, p5Errmsg); 5304 } 5305 5306 /* 5307 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5308 */ 5309 void sqlite3UniqueConstraint( 5310 Parse *pParse, /* Parsing context */ 5311 int onError, /* Constraint type */ 5312 Index *pIdx /* The index that triggers the constraint */ 5313 ){ 5314 char *zErr; 5315 int j; 5316 StrAccum errMsg; 5317 Table *pTab = pIdx->pTable; 5318 5319 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5320 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5321 if( pIdx->aColExpr ){ 5322 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5323 }else{ 5324 for(j=0; j<pIdx->nKeyCol; j++){ 5325 char *zCol; 5326 assert( pIdx->aiColumn[j]>=0 ); 5327 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; 5328 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5329 sqlite3_str_appendall(&errMsg, pTab->zName); 5330 sqlite3_str_append(&errMsg, ".", 1); 5331 sqlite3_str_appendall(&errMsg, zCol); 5332 } 5333 } 5334 zErr = sqlite3StrAccumFinish(&errMsg); 5335 sqlite3HaltConstraint(pParse, 5336 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5337 : SQLITE_CONSTRAINT_UNIQUE, 5338 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5339 } 5340 5341 5342 /* 5343 ** Code an OP_Halt due to non-unique rowid. 5344 */ 5345 void sqlite3RowidConstraint( 5346 Parse *pParse, /* Parsing context */ 5347 int onError, /* Conflict resolution algorithm */ 5348 Table *pTab /* The table with the non-unique rowid */ 5349 ){ 5350 char *zMsg; 5351 int rc; 5352 if( pTab->iPKey>=0 ){ 5353 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5354 pTab->aCol[pTab->iPKey].zCnName); 5355 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5356 }else{ 5357 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5358 rc = SQLITE_CONSTRAINT_ROWID; 5359 } 5360 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5361 P5_ConstraintUnique); 5362 } 5363 5364 /* 5365 ** Check to see if pIndex uses the collating sequence pColl. Return 5366 ** true if it does and false if it does not. 5367 */ 5368 #ifndef SQLITE_OMIT_REINDEX 5369 static int collationMatch(const char *zColl, Index *pIndex){ 5370 int i; 5371 assert( zColl!=0 ); 5372 for(i=0; i<pIndex->nColumn; i++){ 5373 const char *z = pIndex->azColl[i]; 5374 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5375 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5376 return 1; 5377 } 5378 } 5379 return 0; 5380 } 5381 #endif 5382 5383 /* 5384 ** Recompute all indices of pTab that use the collating sequence pColl. 5385 ** If pColl==0 then recompute all indices of pTab. 5386 */ 5387 #ifndef SQLITE_OMIT_REINDEX 5388 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5389 if( !IsVirtual(pTab) ){ 5390 Index *pIndex; /* An index associated with pTab */ 5391 5392 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5393 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5394 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5395 sqlite3BeginWriteOperation(pParse, 0, iDb); 5396 sqlite3RefillIndex(pParse, pIndex, -1); 5397 } 5398 } 5399 } 5400 } 5401 #endif 5402 5403 /* 5404 ** Recompute all indices of all tables in all databases where the 5405 ** indices use the collating sequence pColl. If pColl==0 then recompute 5406 ** all indices everywhere. 5407 */ 5408 #ifndef SQLITE_OMIT_REINDEX 5409 static void reindexDatabases(Parse *pParse, char const *zColl){ 5410 Db *pDb; /* A single database */ 5411 int iDb; /* The database index number */ 5412 sqlite3 *db = pParse->db; /* The database connection */ 5413 HashElem *k; /* For looping over tables in pDb */ 5414 Table *pTab; /* A table in the database */ 5415 5416 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5417 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5418 assert( pDb!=0 ); 5419 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5420 pTab = (Table*)sqliteHashData(k); 5421 reindexTable(pParse, pTab, zColl); 5422 } 5423 } 5424 } 5425 #endif 5426 5427 /* 5428 ** Generate code for the REINDEX command. 5429 ** 5430 ** REINDEX -- 1 5431 ** REINDEX <collation> -- 2 5432 ** REINDEX ?<database>.?<tablename> -- 3 5433 ** REINDEX ?<database>.?<indexname> -- 4 5434 ** 5435 ** Form 1 causes all indices in all attached databases to be rebuilt. 5436 ** Form 2 rebuilds all indices in all databases that use the named 5437 ** collating function. Forms 3 and 4 rebuild the named index or all 5438 ** indices associated with the named table. 5439 */ 5440 #ifndef SQLITE_OMIT_REINDEX 5441 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5442 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5443 char *z; /* Name of a table or index */ 5444 const char *zDb; /* Name of the database */ 5445 Table *pTab; /* A table in the database */ 5446 Index *pIndex; /* An index associated with pTab */ 5447 int iDb; /* The database index number */ 5448 sqlite3 *db = pParse->db; /* The database connection */ 5449 Token *pObjName; /* Name of the table or index to be reindexed */ 5450 5451 /* Read the database schema. If an error occurs, leave an error message 5452 ** and code in pParse and return NULL. */ 5453 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5454 return; 5455 } 5456 5457 if( pName1==0 ){ 5458 reindexDatabases(pParse, 0); 5459 return; 5460 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5461 char *zColl; 5462 assert( pName1->z ); 5463 zColl = sqlite3NameFromToken(pParse->db, pName1); 5464 if( !zColl ) return; 5465 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5466 if( pColl ){ 5467 reindexDatabases(pParse, zColl); 5468 sqlite3DbFree(db, zColl); 5469 return; 5470 } 5471 sqlite3DbFree(db, zColl); 5472 } 5473 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5474 if( iDb<0 ) return; 5475 z = sqlite3NameFromToken(db, pObjName); 5476 if( z==0 ) return; 5477 zDb = db->aDb[iDb].zDbSName; 5478 pTab = sqlite3FindTable(db, z, zDb); 5479 if( pTab ){ 5480 reindexTable(pParse, pTab, 0); 5481 sqlite3DbFree(db, z); 5482 return; 5483 } 5484 pIndex = sqlite3FindIndex(db, z, zDb); 5485 sqlite3DbFree(db, z); 5486 if( pIndex ){ 5487 sqlite3BeginWriteOperation(pParse, 0, iDb); 5488 sqlite3RefillIndex(pParse, pIndex, -1); 5489 return; 5490 } 5491 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5492 } 5493 #endif 5494 5495 /* 5496 ** Return a KeyInfo structure that is appropriate for the given Index. 5497 ** 5498 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5499 ** when it has finished using it. 5500 */ 5501 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5502 int i; 5503 int nCol = pIdx->nColumn; 5504 int nKey = pIdx->nKeyCol; 5505 KeyInfo *pKey; 5506 if( pParse->nErr ) return 0; 5507 if( pIdx->uniqNotNull ){ 5508 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5509 }else{ 5510 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5511 } 5512 if( pKey ){ 5513 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5514 for(i=0; i<nCol; i++){ 5515 const char *zColl = pIdx->azColl[i]; 5516 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5517 sqlite3LocateCollSeq(pParse, zColl); 5518 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5519 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5520 } 5521 if( pParse->nErr ){ 5522 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5523 if( pIdx->bNoQuery==0 ){ 5524 /* Deactivate the index because it contains an unknown collating 5525 ** sequence. The only way to reactive the index is to reload the 5526 ** schema. Adding the missing collating sequence later does not 5527 ** reactive the index. The application had the chance to register 5528 ** the missing index using the collation-needed callback. For 5529 ** simplicity, SQLite will not give the application a second chance. 5530 */ 5531 pIdx->bNoQuery = 1; 5532 pParse->rc = SQLITE_ERROR_RETRY; 5533 } 5534 sqlite3KeyInfoUnref(pKey); 5535 pKey = 0; 5536 } 5537 } 5538 return pKey; 5539 } 5540 5541 #ifndef SQLITE_OMIT_CTE 5542 /* 5543 ** Create a new CTE object 5544 */ 5545 Cte *sqlite3CteNew( 5546 Parse *pParse, /* Parsing context */ 5547 Token *pName, /* Name of the common-table */ 5548 ExprList *pArglist, /* Optional column name list for the table */ 5549 Select *pQuery, /* Query used to initialize the table */ 5550 u8 eM10d /* The MATERIALIZED flag */ 5551 ){ 5552 Cte *pNew; 5553 sqlite3 *db = pParse->db; 5554 5555 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5556 assert( pNew!=0 || db->mallocFailed ); 5557 5558 if( db->mallocFailed ){ 5559 sqlite3ExprListDelete(db, pArglist); 5560 sqlite3SelectDelete(db, pQuery); 5561 }else{ 5562 pNew->pSelect = pQuery; 5563 pNew->pCols = pArglist; 5564 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5565 pNew->eM10d = eM10d; 5566 } 5567 return pNew; 5568 } 5569 5570 /* 5571 ** Clear information from a Cte object, but do not deallocate storage 5572 ** for the object itself. 5573 */ 5574 static void cteClear(sqlite3 *db, Cte *pCte){ 5575 assert( pCte!=0 ); 5576 sqlite3ExprListDelete(db, pCte->pCols); 5577 sqlite3SelectDelete(db, pCte->pSelect); 5578 sqlite3DbFree(db, pCte->zName); 5579 } 5580 5581 /* 5582 ** Free the contents of the CTE object passed as the second argument. 5583 */ 5584 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5585 assert( pCte!=0 ); 5586 cteClear(db, pCte); 5587 sqlite3DbFree(db, pCte); 5588 } 5589 5590 /* 5591 ** This routine is invoked once per CTE by the parser while parsing a 5592 ** WITH clause. The CTE described by teh third argument is added to 5593 ** the WITH clause of the second argument. If the second argument is 5594 ** NULL, then a new WITH argument is created. 5595 */ 5596 With *sqlite3WithAdd( 5597 Parse *pParse, /* Parsing context */ 5598 With *pWith, /* Existing WITH clause, or NULL */ 5599 Cte *pCte /* CTE to add to the WITH clause */ 5600 ){ 5601 sqlite3 *db = pParse->db; 5602 With *pNew; 5603 char *zName; 5604 5605 if( pCte==0 ){ 5606 return pWith; 5607 } 5608 5609 /* Check that the CTE name is unique within this WITH clause. If 5610 ** not, store an error in the Parse structure. */ 5611 zName = pCte->zName; 5612 if( zName && pWith ){ 5613 int i; 5614 for(i=0; i<pWith->nCte; i++){ 5615 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5616 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5617 } 5618 } 5619 } 5620 5621 if( pWith ){ 5622 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5623 pNew = sqlite3DbRealloc(db, pWith, nByte); 5624 }else{ 5625 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5626 } 5627 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5628 5629 if( db->mallocFailed ){ 5630 sqlite3CteDelete(db, pCte); 5631 pNew = pWith; 5632 }else{ 5633 pNew->a[pNew->nCte++] = *pCte; 5634 sqlite3DbFree(db, pCte); 5635 } 5636 5637 return pNew; 5638 } 5639 5640 /* 5641 ** Free the contents of the With object passed as the second argument. 5642 */ 5643 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5644 if( pWith ){ 5645 int i; 5646 for(i=0; i<pWith->nCte; i++){ 5647 cteClear(db, &pWith->a[i]); 5648 } 5649 sqlite3DbFree(db, pWith); 5650 } 5651 } 5652 #endif /* !defined(SQLITE_OMIT_CTE) */ 5653