xref: /sqlite-3.40.0/src/build.c (revision d82211db)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
120 */
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m){
123   int i;
124   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
125   return 1;
126 }
127 #endif
128 
129 /*
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared.  This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
134 ** parse.
135 **
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
138 */
139 void sqlite3FinishCoding(Parse *pParse){
140   sqlite3 *db;
141   Vdbe *v;
142 
143   assert( pParse->pToplevel==0 );
144   db = pParse->db;
145   if( pParse->nested ) return;
146   if( db->mallocFailed || pParse->nErr ){
147     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
148     return;
149   }
150 
151   /* Begin by generating some termination code at the end of the
152   ** vdbe program
153   */
154   v = sqlite3GetVdbe(pParse);
155   assert( !pParse->isMultiWrite
156        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
157   if( v ){
158     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
159     sqlite3VdbeAddOp0(v, OP_Halt);
160 
161 #if SQLITE_USER_AUTHENTICATION
162     if( pParse->nTableLock>0 && db->init.busy==0 ){
163       sqlite3UserAuthInit(db);
164       if( db->auth.authLevel<UAUTH_User ){
165         pParse->rc = SQLITE_AUTH_USER;
166         sqlite3ErrorMsg(pParse, "user not authenticated");
167         return;
168       }
169     }
170 #endif
171 
172     /* The cookie mask contains one bit for each database file open.
173     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
174     ** set for each database that is used.  Generate code to start a
175     ** transaction on each used database and to verify the schema cookie
176     ** on each used database.
177     */
178     if( db->mallocFailed==0
179      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
180     ){
181       int iDb, i;
182       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
183       sqlite3VdbeJumpHere(v, 0);
184       for(iDb=0; iDb<db->nDb; iDb++){
185         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
186         sqlite3VdbeUsesBtree(v, iDb);
187         sqlite3VdbeAddOp4Int(v,
188           OP_Transaction,                    /* Opcode */
189           iDb,                               /* P1 */
190           DbMaskTest(pParse->writeMask,iDb), /* P2 */
191           pParse->cookieValue[iDb],          /* P3 */
192           db->aDb[iDb].pSchema->iGeneration  /* P4 */
193         );
194         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
195         VdbeComment((v,
196               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
197       }
198 #ifndef SQLITE_OMIT_VIRTUALTABLE
199       for(i=0; i<pParse->nVtabLock; i++){
200         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
201         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
202       }
203       pParse->nVtabLock = 0;
204 #endif
205 
206       /* Once all the cookies have been verified and transactions opened,
207       ** obtain the required table-locks. This is a no-op unless the
208       ** shared-cache feature is enabled.
209       */
210       codeTableLocks(pParse);
211 
212       /* Initialize any AUTOINCREMENT data structures required.
213       */
214       sqlite3AutoincrementBegin(pParse);
215 
216       /* Code constant expressions that where factored out of inner loops */
217       if( pParse->pConstExpr ){
218         ExprList *pEL = pParse->pConstExpr;
219         pParse->okConstFactor = 0;
220         for(i=0; i<pEL->nExpr; i++){
221           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
222         }
223       }
224 
225       /* Finally, jump back to the beginning of the executable code. */
226       sqlite3VdbeGoto(v, 1);
227     }
228   }
229 
230 
231   /* Get the VDBE program ready for execution
232   */
233   if( v && pParse->nErr==0 && !db->mallocFailed ){
234     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
235     /* A minimum of one cursor is required if autoincrement is used
236     *  See ticket [a696379c1f08866] */
237     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
238     sqlite3VdbeMakeReady(v, pParse);
239     pParse->rc = SQLITE_DONE;
240     pParse->colNamesSet = 0;
241   }else{
242     pParse->rc = SQLITE_ERROR;
243   }
244   pParse->nTab = 0;
245   pParse->nMem = 0;
246   pParse->nSet = 0;
247   pParse->nVar = 0;
248   DbMaskZero(pParse->cookieMask);
249 }
250 
251 /*
252 ** Run the parser and code generator recursively in order to generate
253 ** code for the SQL statement given onto the end of the pParse context
254 ** currently under construction.  When the parser is run recursively
255 ** this way, the final OP_Halt is not appended and other initialization
256 ** and finalization steps are omitted because those are handling by the
257 ** outermost parser.
258 **
259 ** Not everything is nestable.  This facility is designed to permit
260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
261 ** care if you decide to try to use this routine for some other purposes.
262 */
263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
264   va_list ap;
265   char *zSql;
266   char *zErrMsg = 0;
267   sqlite3 *db = pParse->db;
268 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
269   char saveBuf[SAVE_SZ];
270 
271   if( pParse->nErr ) return;
272   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
273   va_start(ap, zFormat);
274   zSql = sqlite3VMPrintf(db, zFormat, ap);
275   va_end(ap);
276   if( zSql==0 ){
277     return;   /* A malloc must have failed */
278   }
279   pParse->nested++;
280   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
281   memset(&pParse->nVar, 0, SAVE_SZ);
282   sqlite3RunParser(pParse, zSql, &zErrMsg);
283   sqlite3DbFree(db, zErrMsg);
284   sqlite3DbFree(db, zSql);
285   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
286   pParse->nested--;
287 }
288 
289 #if SQLITE_USER_AUTHENTICATION
290 /*
291 ** Return TRUE if zTable is the name of the system table that stores the
292 ** list of users and their access credentials.
293 */
294 int sqlite3UserAuthTable(const char *zTable){
295   return sqlite3_stricmp(zTable, "sqlite_user")==0;
296 }
297 #endif
298 
299 /*
300 ** Locate the in-memory structure that describes a particular database
301 ** table given the name of that table and (optionally) the name of the
302 ** database containing the table.  Return NULL if not found.
303 **
304 ** If zDatabase is 0, all databases are searched for the table and the
305 ** first matching table is returned.  (No checking for duplicate table
306 ** names is done.)  The search order is TEMP first, then MAIN, then any
307 ** auxiliary databases added using the ATTACH command.
308 **
309 ** See also sqlite3LocateTable().
310 */
311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
312   Table *p = 0;
313   int i;
314 
315   /* All mutexes are required for schema access.  Make sure we hold them. */
316   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
317 #if SQLITE_USER_AUTHENTICATION
318   /* Only the admin user is allowed to know that the sqlite_user table
319   ** exists */
320   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
321     return 0;
322   }
323 #endif
324   for(i=OMIT_TEMPDB; i<db->nDb; i++){
325     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
326     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
327     assert( sqlite3SchemaMutexHeld(db, j, 0) );
328     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
329     if( p ) break;
330   }
331   return p;
332 }
333 
334 /*
335 ** Locate the in-memory structure that describes a particular database
336 ** table given the name of that table and (optionally) the name of the
337 ** database containing the table.  Return NULL if not found.  Also leave an
338 ** error message in pParse->zErrMsg.
339 **
340 ** The difference between this routine and sqlite3FindTable() is that this
341 ** routine leaves an error message in pParse->zErrMsg where
342 ** sqlite3FindTable() does not.
343 */
344 Table *sqlite3LocateTable(
345   Parse *pParse,         /* context in which to report errors */
346   int isView,            /* True if looking for a VIEW rather than a TABLE */
347   const char *zName,     /* Name of the table we are looking for */
348   const char *zDbase     /* Name of the database.  Might be NULL */
349 ){
350   Table *p;
351 
352   /* Read the database schema. If an error occurs, leave an error message
353   ** and code in pParse and return NULL. */
354   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
355     return 0;
356   }
357 
358   p = sqlite3FindTable(pParse->db, zName, zDbase);
359   if( p==0 ){
360     const char *zMsg = isView ? "no such view" : "no such table";
361 #ifndef SQLITE_OMIT_VIRTUALTABLE
362     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
363       /* If zName is the not the name of a table in the schema created using
364       ** CREATE, then check to see if it is the name of an virtual table that
365       ** can be an eponymous virtual table. */
366       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
367       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
368         return pMod->pEpoTab;
369       }
370     }
371 #endif
372     if( zDbase ){
373       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
374     }else{
375       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376     }
377     pParse->checkSchema = 1;
378   }
379 #if SQLITE_USER_AUTHENTICATION
380   else if( pParse->db->auth.authLevel<UAUTH_User ){
381     sqlite3ErrorMsg(pParse, "user not authenticated");
382     p = 0;
383   }
384 #endif
385   return p;
386 }
387 
388 /*
389 ** Locate the table identified by *p.
390 **
391 ** This is a wrapper around sqlite3LocateTable(). The difference between
392 ** sqlite3LocateTable() and this function is that this function restricts
393 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
394 ** non-NULL if it is part of a view or trigger program definition. See
395 ** sqlite3FixSrcList() for details.
396 */
397 Table *sqlite3LocateTableItem(
398   Parse *pParse,
399   int isView,
400   struct SrcList_item *p
401 ){
402   const char *zDb;
403   assert( p->pSchema==0 || p->zDatabase==0 );
404   if( p->pSchema ){
405     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
406     zDb = pParse->db->aDb[iDb].zName;
407   }else{
408     zDb = p->zDatabase;
409   }
410   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
411 }
412 
413 /*
414 ** Locate the in-memory structure that describes
415 ** a particular index given the name of that index
416 ** and the name of the database that contains the index.
417 ** Return NULL if not found.
418 **
419 ** If zDatabase is 0, all databases are searched for the
420 ** table and the first matching index is returned.  (No checking
421 ** for duplicate index names is done.)  The search order is
422 ** TEMP first, then MAIN, then any auxiliary databases added
423 ** using the ATTACH command.
424 */
425 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
426   Index *p = 0;
427   int i;
428   /* All mutexes are required for schema access.  Make sure we hold them. */
429   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
430   for(i=OMIT_TEMPDB; i<db->nDb; i++){
431     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
432     Schema *pSchema = db->aDb[j].pSchema;
433     assert( pSchema );
434     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
435     assert( sqlite3SchemaMutexHeld(db, j, 0) );
436     p = sqlite3HashFind(&pSchema->idxHash, zName);
437     if( p ) break;
438   }
439   return p;
440 }
441 
442 /*
443 ** Reclaim the memory used by an index
444 */
445 static void freeIndex(sqlite3 *db, Index *p){
446 #ifndef SQLITE_OMIT_ANALYZE
447   sqlite3DeleteIndexSamples(db, p);
448 #endif
449   sqlite3ExprDelete(db, p->pPartIdxWhere);
450   sqlite3ExprListDelete(db, p->aColExpr);
451   sqlite3DbFree(db, p->zColAff);
452   if( p->isResized ) sqlite3DbFree(db, p->azColl);
453 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
454   sqlite3_free(p->aiRowEst);
455 #endif
456   sqlite3DbFree(db, p);
457 }
458 
459 /*
460 ** For the index called zIdxName which is found in the database iDb,
461 ** unlike that index from its Table then remove the index from
462 ** the index hash table and free all memory structures associated
463 ** with the index.
464 */
465 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
466   Index *pIndex;
467   Hash *pHash;
468 
469   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
470   pHash = &db->aDb[iDb].pSchema->idxHash;
471   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
472   if( ALWAYS(pIndex) ){
473     if( pIndex->pTable->pIndex==pIndex ){
474       pIndex->pTable->pIndex = pIndex->pNext;
475     }else{
476       Index *p;
477       /* Justification of ALWAYS();  The index must be on the list of
478       ** indices. */
479       p = pIndex->pTable->pIndex;
480       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
481       if( ALWAYS(p && p->pNext==pIndex) ){
482         p->pNext = pIndex->pNext;
483       }
484     }
485     freeIndex(db, pIndex);
486   }
487   db->flags |= SQLITE_InternChanges;
488 }
489 
490 /*
491 ** Look through the list of open database files in db->aDb[] and if
492 ** any have been closed, remove them from the list.  Reallocate the
493 ** db->aDb[] structure to a smaller size, if possible.
494 **
495 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
496 ** are never candidates for being collapsed.
497 */
498 void sqlite3CollapseDatabaseArray(sqlite3 *db){
499   int i, j;
500   for(i=j=2; i<db->nDb; i++){
501     struct Db *pDb = &db->aDb[i];
502     if( pDb->pBt==0 ){
503       sqlite3DbFree(db, pDb->zName);
504       pDb->zName = 0;
505       continue;
506     }
507     if( j<i ){
508       db->aDb[j] = db->aDb[i];
509     }
510     j++;
511   }
512   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
513   db->nDb = j;
514   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
515     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
516     sqlite3DbFree(db, db->aDb);
517     db->aDb = db->aDbStatic;
518   }
519 }
520 
521 /*
522 ** Reset the schema for the database at index iDb.  Also reset the
523 ** TEMP schema.
524 */
525 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
526   Db *pDb;
527   assert( iDb<db->nDb );
528 
529   /* Case 1:  Reset the single schema identified by iDb */
530   pDb = &db->aDb[iDb];
531   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
532   assert( pDb->pSchema!=0 );
533   sqlite3SchemaClear(pDb->pSchema);
534 
535   /* If any database other than TEMP is reset, then also reset TEMP
536   ** since TEMP might be holding triggers that reference tables in the
537   ** other database.
538   */
539   if( iDb!=1 ){
540     pDb = &db->aDb[1];
541     assert( pDb->pSchema!=0 );
542     sqlite3SchemaClear(pDb->pSchema);
543   }
544   return;
545 }
546 
547 /*
548 ** Erase all schema information from all attached databases (including
549 ** "main" and "temp") for a single database connection.
550 */
551 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
552   int i;
553   sqlite3BtreeEnterAll(db);
554   for(i=0; i<db->nDb; i++){
555     Db *pDb = &db->aDb[i];
556     if( pDb->pSchema ){
557       sqlite3SchemaClear(pDb->pSchema);
558     }
559   }
560   db->flags &= ~SQLITE_InternChanges;
561   sqlite3VtabUnlockList(db);
562   sqlite3BtreeLeaveAll(db);
563   sqlite3CollapseDatabaseArray(db);
564 }
565 
566 /*
567 ** This routine is called when a commit occurs.
568 */
569 void sqlite3CommitInternalChanges(sqlite3 *db){
570   db->flags &= ~SQLITE_InternChanges;
571 }
572 
573 /*
574 ** Delete memory allocated for the column names of a table or view (the
575 ** Table.aCol[] array).
576 */
577 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
578   int i;
579   Column *pCol;
580   assert( pTable!=0 );
581   if( (pCol = pTable->aCol)!=0 ){
582     for(i=0; i<pTable->nCol; i++, pCol++){
583       sqlite3DbFree(db, pCol->zName);
584       sqlite3ExprDelete(db, pCol->pDflt);
585       sqlite3DbFree(db, pCol->zDflt);
586       sqlite3DbFree(db, pCol->zType);
587       sqlite3DbFree(db, pCol->zColl);
588     }
589     sqlite3DbFree(db, pTable->aCol);
590   }
591 }
592 
593 /*
594 ** Remove the memory data structures associated with the given
595 ** Table.  No changes are made to disk by this routine.
596 **
597 ** This routine just deletes the data structure.  It does not unlink
598 ** the table data structure from the hash table.  But it does destroy
599 ** memory structures of the indices and foreign keys associated with
600 ** the table.
601 **
602 ** The db parameter is optional.  It is needed if the Table object
603 ** contains lookaside memory.  (Table objects in the schema do not use
604 ** lookaside memory, but some ephemeral Table objects do.)  Or the
605 ** db parameter can be used with db->pnBytesFreed to measure the memory
606 ** used by the Table object.
607 */
608 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
609   Index *pIndex, *pNext;
610   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
611 
612   assert( !pTable || pTable->nRef>0 );
613 
614   /* Do not delete the table until the reference count reaches zero. */
615   if( !pTable ) return;
616   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
617 
618   /* Record the number of outstanding lookaside allocations in schema Tables
619   ** prior to doing any free() operations.  Since schema Tables do not use
620   ** lookaside, this number should not change. */
621   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
622                          db->lookaside.nOut : 0 );
623 
624   /* Delete all indices associated with this table. */
625   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
626     pNext = pIndex->pNext;
627     assert( pIndex->pSchema==pTable->pSchema );
628     if( !db || db->pnBytesFreed==0 ){
629       char *zName = pIndex->zName;
630       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
631          &pIndex->pSchema->idxHash, zName, 0
632       );
633       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
634       assert( pOld==pIndex || pOld==0 );
635     }
636     freeIndex(db, pIndex);
637   }
638 
639   /* Delete any foreign keys attached to this table. */
640   sqlite3FkDelete(db, pTable);
641 
642   /* Delete the Table structure itself.
643   */
644   sqlite3DeleteColumnNames(db, pTable);
645   sqlite3DbFree(db, pTable->zName);
646   sqlite3DbFree(db, pTable->zColAff);
647   sqlite3SelectDelete(db, pTable->pSelect);
648   sqlite3ExprListDelete(db, pTable->pCheck);
649 #ifndef SQLITE_OMIT_VIRTUALTABLE
650   sqlite3VtabClear(db, pTable);
651 #endif
652   sqlite3DbFree(db, pTable);
653 
654   /* Verify that no lookaside memory was used by schema tables */
655   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
656 }
657 
658 /*
659 ** Unlink the given table from the hash tables and the delete the
660 ** table structure with all its indices and foreign keys.
661 */
662 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
663   Table *p;
664   Db *pDb;
665 
666   assert( db!=0 );
667   assert( iDb>=0 && iDb<db->nDb );
668   assert( zTabName );
669   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
670   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
671   pDb = &db->aDb[iDb];
672   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
673   sqlite3DeleteTable(db, p);
674   db->flags |= SQLITE_InternChanges;
675 }
676 
677 /*
678 ** Given a token, return a string that consists of the text of that
679 ** token.  Space to hold the returned string
680 ** is obtained from sqliteMalloc() and must be freed by the calling
681 ** function.
682 **
683 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
684 ** surround the body of the token are removed.
685 **
686 ** Tokens are often just pointers into the original SQL text and so
687 ** are not \000 terminated and are not persistent.  The returned string
688 ** is \000 terminated and is persistent.
689 */
690 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
691   char *zName;
692   if( pName ){
693     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
694     sqlite3Dequote(zName);
695   }else{
696     zName = 0;
697   }
698   return zName;
699 }
700 
701 /*
702 ** Open the sqlite_master table stored in database number iDb for
703 ** writing. The table is opened using cursor 0.
704 */
705 void sqlite3OpenMasterTable(Parse *p, int iDb){
706   Vdbe *v = sqlite3GetVdbe(p);
707   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
708   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
709   if( p->nTab==0 ){
710     p->nTab = 1;
711   }
712 }
713 
714 /*
715 ** Parameter zName points to a nul-terminated buffer containing the name
716 ** of a database ("main", "temp" or the name of an attached db). This
717 ** function returns the index of the named database in db->aDb[], or
718 ** -1 if the named db cannot be found.
719 */
720 int sqlite3FindDbName(sqlite3 *db, const char *zName){
721   int i = -1;         /* Database number */
722   if( zName ){
723     Db *pDb;
724     int n = sqlite3Strlen30(zName);
725     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
726       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
727           0==sqlite3StrICmp(pDb->zName, zName) ){
728         break;
729       }
730     }
731   }
732   return i;
733 }
734 
735 /*
736 ** The token *pName contains the name of a database (either "main" or
737 ** "temp" or the name of an attached db). This routine returns the
738 ** index of the named database in db->aDb[], or -1 if the named db
739 ** does not exist.
740 */
741 int sqlite3FindDb(sqlite3 *db, Token *pName){
742   int i;                               /* Database number */
743   char *zName;                         /* Name we are searching for */
744   zName = sqlite3NameFromToken(db, pName);
745   i = sqlite3FindDbName(db, zName);
746   sqlite3DbFree(db, zName);
747   return i;
748 }
749 
750 /* The table or view or trigger name is passed to this routine via tokens
751 ** pName1 and pName2. If the table name was fully qualified, for example:
752 **
753 ** CREATE TABLE xxx.yyy (...);
754 **
755 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
756 ** the table name is not fully qualified, i.e.:
757 **
758 ** CREATE TABLE yyy(...);
759 **
760 ** Then pName1 is set to "yyy" and pName2 is "".
761 **
762 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
763 ** pName2) that stores the unqualified table name.  The index of the
764 ** database "xxx" is returned.
765 */
766 int sqlite3TwoPartName(
767   Parse *pParse,      /* Parsing and code generating context */
768   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
769   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
770   Token **pUnqual     /* Write the unqualified object name here */
771 ){
772   int iDb;                    /* Database holding the object */
773   sqlite3 *db = pParse->db;
774 
775   if( ALWAYS(pName2!=0) && pName2->n>0 ){
776     if( db->init.busy ) {
777       sqlite3ErrorMsg(pParse, "corrupt database");
778       return -1;
779     }
780     *pUnqual = pName2;
781     iDb = sqlite3FindDb(db, pName1);
782     if( iDb<0 ){
783       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
784       return -1;
785     }
786   }else{
787     assert( db->init.iDb==0 || db->init.busy );
788     iDb = db->init.iDb;
789     *pUnqual = pName1;
790   }
791   return iDb;
792 }
793 
794 /*
795 ** This routine is used to check if the UTF-8 string zName is a legal
796 ** unqualified name for a new schema object (table, index, view or
797 ** trigger). All names are legal except those that begin with the string
798 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
799 ** is reserved for internal use.
800 */
801 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
802   if( !pParse->db->init.busy && pParse->nested==0
803           && (pParse->db->flags & SQLITE_WriteSchema)==0
804           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
805     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
806     return SQLITE_ERROR;
807   }
808   return SQLITE_OK;
809 }
810 
811 /*
812 ** Return the PRIMARY KEY index of a table
813 */
814 Index *sqlite3PrimaryKeyIndex(Table *pTab){
815   Index *p;
816   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
817   return p;
818 }
819 
820 /*
821 ** Return the column of index pIdx that corresponds to table
822 ** column iCol.  Return -1 if not found.
823 */
824 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
825   int i;
826   for(i=0; i<pIdx->nColumn; i++){
827     if( iCol==pIdx->aiColumn[i] ) return i;
828   }
829   return -1;
830 }
831 
832 /*
833 ** Begin constructing a new table representation in memory.  This is
834 ** the first of several action routines that get called in response
835 ** to a CREATE TABLE statement.  In particular, this routine is called
836 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
837 ** flag is true if the table should be stored in the auxiliary database
838 ** file instead of in the main database file.  This is normally the case
839 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
840 ** CREATE and TABLE.
841 **
842 ** The new table record is initialized and put in pParse->pNewTable.
843 ** As more of the CREATE TABLE statement is parsed, additional action
844 ** routines will be called to add more information to this record.
845 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
846 ** is called to complete the construction of the new table record.
847 */
848 void sqlite3StartTable(
849   Parse *pParse,   /* Parser context */
850   Token *pName1,   /* First part of the name of the table or view */
851   Token *pName2,   /* Second part of the name of the table or view */
852   int isTemp,      /* True if this is a TEMP table */
853   int isView,      /* True if this is a VIEW */
854   int isVirtual,   /* True if this is a VIRTUAL table */
855   int noErr        /* Do nothing if table already exists */
856 ){
857   Table *pTable;
858   char *zName = 0; /* The name of the new table */
859   sqlite3 *db = pParse->db;
860   Vdbe *v;
861   int iDb;         /* Database number to create the table in */
862   Token *pName;    /* Unqualified name of the table to create */
863 
864   /* The table or view name to create is passed to this routine via tokens
865   ** pName1 and pName2. If the table name was fully qualified, for example:
866   **
867   ** CREATE TABLE xxx.yyy (...);
868   **
869   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
870   ** the table name is not fully qualified, i.e.:
871   **
872   ** CREATE TABLE yyy(...);
873   **
874   ** Then pName1 is set to "yyy" and pName2 is "".
875   **
876   ** The call below sets the pName pointer to point at the token (pName1 or
877   ** pName2) that stores the unqualified table name. The variable iDb is
878   ** set to the index of the database that the table or view is to be
879   ** created in.
880   */
881   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
882   if( iDb<0 ) return;
883   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
884     /* If creating a temp table, the name may not be qualified. Unless
885     ** the database name is "temp" anyway.  */
886     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
887     return;
888   }
889   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
890 
891   pParse->sNameToken = *pName;
892   zName = sqlite3NameFromToken(db, pName);
893   if( zName==0 ) return;
894   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
895     goto begin_table_error;
896   }
897   if( db->init.iDb==1 ) isTemp = 1;
898 #ifndef SQLITE_OMIT_AUTHORIZATION
899   assert( (isTemp & 1)==isTemp );
900   {
901     int code;
902     char *zDb = db->aDb[iDb].zName;
903     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
904       goto begin_table_error;
905     }
906     if( isView ){
907       if( !OMIT_TEMPDB && isTemp ){
908         code = SQLITE_CREATE_TEMP_VIEW;
909       }else{
910         code = SQLITE_CREATE_VIEW;
911       }
912     }else{
913       if( !OMIT_TEMPDB && isTemp ){
914         code = SQLITE_CREATE_TEMP_TABLE;
915       }else{
916         code = SQLITE_CREATE_TABLE;
917       }
918     }
919     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
920       goto begin_table_error;
921     }
922   }
923 #endif
924 
925   /* Make sure the new table name does not collide with an existing
926   ** index or table name in the same database.  Issue an error message if
927   ** it does. The exception is if the statement being parsed was passed
928   ** to an sqlite3_declare_vtab() call. In that case only the column names
929   ** and types will be used, so there is no need to test for namespace
930   ** collisions.
931   */
932   if( !IN_DECLARE_VTAB ){
933     char *zDb = db->aDb[iDb].zName;
934     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
935       goto begin_table_error;
936     }
937     pTable = sqlite3FindTable(db, zName, zDb);
938     if( pTable ){
939       if( !noErr ){
940         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
941       }else{
942         assert( !db->init.busy || CORRUPT_DB );
943         sqlite3CodeVerifySchema(pParse, iDb);
944       }
945       goto begin_table_error;
946     }
947     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
948       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
949       goto begin_table_error;
950     }
951   }
952 
953   pTable = sqlite3DbMallocZero(db, sizeof(Table));
954   if( pTable==0 ){
955     db->mallocFailed = 1;
956     pParse->rc = SQLITE_NOMEM;
957     pParse->nErr++;
958     goto begin_table_error;
959   }
960   pTable->zName = zName;
961   pTable->iPKey = -1;
962   pTable->pSchema = db->aDb[iDb].pSchema;
963   pTable->nRef = 1;
964   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
965   assert( pParse->pNewTable==0 );
966   pParse->pNewTable = pTable;
967 
968   /* If this is the magic sqlite_sequence table used by autoincrement,
969   ** then record a pointer to this table in the main database structure
970   ** so that INSERT can find the table easily.
971   */
972 #ifndef SQLITE_OMIT_AUTOINCREMENT
973   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
974     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
975     pTable->pSchema->pSeqTab = pTable;
976   }
977 #endif
978 
979   /* Begin generating the code that will insert the table record into
980   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
981   ** and allocate the record number for the table entry now.  Before any
982   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
983   ** indices to be created and the table record must come before the
984   ** indices.  Hence, the record number for the table must be allocated
985   ** now.
986   */
987   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
988     int addr1;
989     int fileFormat;
990     int reg1, reg2, reg3;
991     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
992     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
993     sqlite3BeginWriteOperation(pParse, 1, iDb);
994 
995 #ifndef SQLITE_OMIT_VIRTUALTABLE
996     if( isVirtual ){
997       sqlite3VdbeAddOp0(v, OP_VBegin);
998     }
999 #endif
1000 
1001     /* If the file format and encoding in the database have not been set,
1002     ** set them now.
1003     */
1004     reg1 = pParse->regRowid = ++pParse->nMem;
1005     reg2 = pParse->regRoot = ++pParse->nMem;
1006     reg3 = ++pParse->nMem;
1007     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1008     sqlite3VdbeUsesBtree(v, iDb);
1009     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1010     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1011                   1 : SQLITE_MAX_FILE_FORMAT;
1012     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
1013     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
1014     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1015     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1016     sqlite3VdbeJumpHere(v, addr1);
1017 
1018     /* This just creates a place-holder record in the sqlite_master table.
1019     ** The record created does not contain anything yet.  It will be replaced
1020     ** by the real entry in code generated at sqlite3EndTable().
1021     **
1022     ** The rowid for the new entry is left in register pParse->regRowid.
1023     ** The root page number of the new table is left in reg pParse->regRoot.
1024     ** The rowid and root page number values are needed by the code that
1025     ** sqlite3EndTable will generate.
1026     */
1027 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1028     if( isView || isVirtual ){
1029       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1030     }else
1031 #endif
1032     {
1033       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1034     }
1035     sqlite3OpenMasterTable(pParse, iDb);
1036     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1037     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1038     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1039     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1040     sqlite3VdbeAddOp0(v, OP_Close);
1041   }
1042 
1043   /* Normal (non-error) return. */
1044   return;
1045 
1046   /* If an error occurs, we jump here */
1047 begin_table_error:
1048   sqlite3DbFree(db, zName);
1049   return;
1050 }
1051 
1052 /*
1053 ** This macro is used to compare two strings in a case-insensitive manner.
1054 ** It is slightly faster than calling sqlite3StrICmp() directly, but
1055 ** produces larger code.
1056 **
1057 ** WARNING: This macro is not compatible with the strcmp() family. It
1058 ** returns true if the two strings are equal, otherwise false.
1059 */
1060 #define STRICMP(x, y) (\
1061 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
1062 sqlite3UpperToLower[*(unsigned char *)(y)]     \
1063 && sqlite3StrICmp((x)+1,(y)+1)==0 )
1064 
1065 /*
1066 ** Add a new column to the table currently being constructed.
1067 **
1068 ** The parser calls this routine once for each column declaration
1069 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1070 ** first to get things going.  Then this routine is called for each
1071 ** column.
1072 */
1073 void sqlite3AddColumn(Parse *pParse, Token *pName){
1074   Table *p;
1075   int i;
1076   char *z;
1077   Column *pCol;
1078   sqlite3 *db = pParse->db;
1079   if( (p = pParse->pNewTable)==0 ) return;
1080 #if SQLITE_MAX_COLUMN
1081   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1082     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1083     return;
1084   }
1085 #endif
1086   z = sqlite3NameFromToken(db, pName);
1087   if( z==0 ) return;
1088   for(i=0; i<p->nCol; i++){
1089     if( STRICMP(z, p->aCol[i].zName) ){
1090       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1091       sqlite3DbFree(db, z);
1092       return;
1093     }
1094   }
1095   if( (p->nCol & 0x7)==0 ){
1096     Column *aNew;
1097     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1098     if( aNew==0 ){
1099       sqlite3DbFree(db, z);
1100       return;
1101     }
1102     p->aCol = aNew;
1103   }
1104   pCol = &p->aCol[p->nCol];
1105   memset(pCol, 0, sizeof(p->aCol[0]));
1106   pCol->zName = z;
1107 
1108   /* If there is no type specified, columns have the default affinity
1109   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1110   ** be called next to set pCol->affinity correctly.
1111   */
1112   pCol->affinity = SQLITE_AFF_BLOB;
1113   pCol->szEst = 1;
1114   p->nCol++;
1115 }
1116 
1117 /*
1118 ** This routine is called by the parser while in the middle of
1119 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1120 ** been seen on a column.  This routine sets the notNull flag on
1121 ** the column currently under construction.
1122 */
1123 void sqlite3AddNotNull(Parse *pParse, int onError){
1124   Table *p;
1125   p = pParse->pNewTable;
1126   if( p==0 || NEVER(p->nCol<1) ) return;
1127   p->aCol[p->nCol-1].notNull = (u8)onError;
1128 }
1129 
1130 /*
1131 ** Scan the column type name zType (length nType) and return the
1132 ** associated affinity type.
1133 **
1134 ** This routine does a case-independent search of zType for the
1135 ** substrings in the following table. If one of the substrings is
1136 ** found, the corresponding affinity is returned. If zType contains
1137 ** more than one of the substrings, entries toward the top of
1138 ** the table take priority. For example, if zType is 'BLOBINT',
1139 ** SQLITE_AFF_INTEGER is returned.
1140 **
1141 ** Substring     | Affinity
1142 ** --------------------------------
1143 ** 'INT'         | SQLITE_AFF_INTEGER
1144 ** 'CHAR'        | SQLITE_AFF_TEXT
1145 ** 'CLOB'        | SQLITE_AFF_TEXT
1146 ** 'TEXT'        | SQLITE_AFF_TEXT
1147 ** 'BLOB'        | SQLITE_AFF_BLOB
1148 ** 'REAL'        | SQLITE_AFF_REAL
1149 ** 'FLOA'        | SQLITE_AFF_REAL
1150 ** 'DOUB'        | SQLITE_AFF_REAL
1151 **
1152 ** If none of the substrings in the above table are found,
1153 ** SQLITE_AFF_NUMERIC is returned.
1154 */
1155 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1156   u32 h = 0;
1157   char aff = SQLITE_AFF_NUMERIC;
1158   const char *zChar = 0;
1159 
1160   if( zIn==0 ) return aff;
1161   while( zIn[0] ){
1162     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1163     zIn++;
1164     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1165       aff = SQLITE_AFF_TEXT;
1166       zChar = zIn;
1167     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1168       aff = SQLITE_AFF_TEXT;
1169     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1170       aff = SQLITE_AFF_TEXT;
1171     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1172         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1173       aff = SQLITE_AFF_BLOB;
1174       if( zIn[0]=='(' ) zChar = zIn;
1175 #ifndef SQLITE_OMIT_FLOATING_POINT
1176     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1177         && aff==SQLITE_AFF_NUMERIC ){
1178       aff = SQLITE_AFF_REAL;
1179     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1180         && aff==SQLITE_AFF_NUMERIC ){
1181       aff = SQLITE_AFF_REAL;
1182     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1183         && aff==SQLITE_AFF_NUMERIC ){
1184       aff = SQLITE_AFF_REAL;
1185 #endif
1186     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1187       aff = SQLITE_AFF_INTEGER;
1188       break;
1189     }
1190   }
1191 
1192   /* If pszEst is not NULL, store an estimate of the field size.  The
1193   ** estimate is scaled so that the size of an integer is 1.  */
1194   if( pszEst ){
1195     *pszEst = 1;   /* default size is approx 4 bytes */
1196     if( aff<SQLITE_AFF_NUMERIC ){
1197       if( zChar ){
1198         while( zChar[0] ){
1199           if( sqlite3Isdigit(zChar[0]) ){
1200             int v = 0;
1201             sqlite3GetInt32(zChar, &v);
1202             v = v/4 + 1;
1203             if( v>255 ) v = 255;
1204             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1205             break;
1206           }
1207           zChar++;
1208         }
1209       }else{
1210         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1211       }
1212     }
1213   }
1214   return aff;
1215 }
1216 
1217 /*
1218 ** This routine is called by the parser while in the middle of
1219 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1220 ** token in the sequence of tokens that describe the type of the
1221 ** column currently under construction.   pLast is the last token
1222 ** in the sequence.  Use this information to construct a string
1223 ** that contains the typename of the column and store that string
1224 ** in zType.
1225 */
1226 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1227   Table *p;
1228   Column *pCol;
1229 
1230   p = pParse->pNewTable;
1231   if( p==0 || NEVER(p->nCol<1) ) return;
1232   pCol = &p->aCol[p->nCol-1];
1233   assert( pCol->zType==0 || CORRUPT_DB );
1234   sqlite3DbFree(pParse->db, pCol->zType);
1235   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1236   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1237 }
1238 
1239 /*
1240 ** The expression is the default value for the most recently added column
1241 ** of the table currently under construction.
1242 **
1243 ** Default value expressions must be constant.  Raise an exception if this
1244 ** is not the case.
1245 **
1246 ** This routine is called by the parser while in the middle of
1247 ** parsing a CREATE TABLE statement.
1248 */
1249 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1250   Table *p;
1251   Column *pCol;
1252   sqlite3 *db = pParse->db;
1253   p = pParse->pNewTable;
1254   if( p!=0 ){
1255     pCol = &(p->aCol[p->nCol-1]);
1256     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1257       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1258           pCol->zName);
1259     }else{
1260       /* A copy of pExpr is used instead of the original, as pExpr contains
1261       ** tokens that point to volatile memory. The 'span' of the expression
1262       ** is required by pragma table_info.
1263       */
1264       sqlite3ExprDelete(db, pCol->pDflt);
1265       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1266       sqlite3DbFree(db, pCol->zDflt);
1267       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1268                                      (int)(pSpan->zEnd - pSpan->zStart));
1269     }
1270   }
1271   sqlite3ExprDelete(db, pSpan->pExpr);
1272 }
1273 
1274 /*
1275 ** Backwards Compatibility Hack:
1276 **
1277 ** Historical versions of SQLite accepted strings as column names in
1278 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1279 **
1280 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1281 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1282 **
1283 ** This is goofy.  But to preserve backwards compatibility we continue to
1284 ** accept it.  This routine does the necessary conversion.  It converts
1285 ** the expression given in its argument from a TK_STRING into a TK_ID
1286 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1287 ** If the epxression is anything other than TK_STRING, the expression is
1288 ** unchanged.
1289 */
1290 static void sqlite3StringToId(Expr *p){
1291   if( p->op==TK_STRING ){
1292     p->op = TK_ID;
1293   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1294     p->pLeft->op = TK_ID;
1295   }
1296 }
1297 
1298 /*
1299 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1300 ** of columns that form the primary key.  If pList is NULL, then the
1301 ** most recently added column of the table is the primary key.
1302 **
1303 ** A table can have at most one primary key.  If the table already has
1304 ** a primary key (and this is the second primary key) then create an
1305 ** error.
1306 **
1307 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1308 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1309 ** field of the table under construction to be the index of the
1310 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1311 ** no INTEGER PRIMARY KEY.
1312 **
1313 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1314 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1315 */
1316 void sqlite3AddPrimaryKey(
1317   Parse *pParse,    /* Parsing context */
1318   ExprList *pList,  /* List of field names to be indexed */
1319   int onError,      /* What to do with a uniqueness conflict */
1320   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1321   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1322 ){
1323   Table *pTab = pParse->pNewTable;
1324   char *zType = 0;
1325   int iCol = -1, i;
1326   int nTerm;
1327   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1328   if( pTab->tabFlags & TF_HasPrimaryKey ){
1329     sqlite3ErrorMsg(pParse,
1330       "table \"%s\" has more than one primary key", pTab->zName);
1331     goto primary_key_exit;
1332   }
1333   pTab->tabFlags |= TF_HasPrimaryKey;
1334   if( pList==0 ){
1335     iCol = pTab->nCol - 1;
1336     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1337     zType = pTab->aCol[iCol].zType;
1338     nTerm = 1;
1339   }else{
1340     nTerm = pList->nExpr;
1341     for(i=0; i<nTerm; i++){
1342       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1343       assert( pCExpr!=0 );
1344       sqlite3StringToId(pCExpr);
1345       if( pCExpr->op==TK_ID ){
1346         const char *zCName = pCExpr->u.zToken;
1347         for(iCol=0; iCol<pTab->nCol; iCol++){
1348           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1349             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1350             zType = pTab->aCol[iCol].zType;
1351             break;
1352           }
1353         }
1354       }
1355     }
1356   }
1357   if( nTerm==1
1358    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1359    && sortOrder!=SQLITE_SO_DESC
1360   ){
1361     pTab->iPKey = iCol;
1362     pTab->keyConf = (u8)onError;
1363     assert( autoInc==0 || autoInc==1 );
1364     pTab->tabFlags |= autoInc*TF_Autoincrement;
1365     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1366   }else if( autoInc ){
1367 #ifndef SQLITE_OMIT_AUTOINCREMENT
1368     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1369        "INTEGER PRIMARY KEY");
1370 #endif
1371   }else{
1372     Index *p;
1373     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1374                            0, sortOrder, 0);
1375     if( p ){
1376       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1377     }
1378     pList = 0;
1379   }
1380 
1381 primary_key_exit:
1382   sqlite3ExprListDelete(pParse->db, pList);
1383   return;
1384 }
1385 
1386 /*
1387 ** Add a new CHECK constraint to the table currently under construction.
1388 */
1389 void sqlite3AddCheckConstraint(
1390   Parse *pParse,    /* Parsing context */
1391   Expr *pCheckExpr  /* The check expression */
1392 ){
1393 #ifndef SQLITE_OMIT_CHECK
1394   Table *pTab = pParse->pNewTable;
1395   sqlite3 *db = pParse->db;
1396   if( pTab && !IN_DECLARE_VTAB
1397    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1398   ){
1399     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1400     if( pParse->constraintName.n ){
1401       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1402     }
1403   }else
1404 #endif
1405   {
1406     sqlite3ExprDelete(pParse->db, pCheckExpr);
1407   }
1408 }
1409 
1410 /*
1411 ** Set the collation function of the most recently parsed table column
1412 ** to the CollSeq given.
1413 */
1414 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1415   Table *p;
1416   int i;
1417   char *zColl;              /* Dequoted name of collation sequence */
1418   sqlite3 *db;
1419 
1420   if( (p = pParse->pNewTable)==0 ) return;
1421   i = p->nCol-1;
1422   db = pParse->db;
1423   zColl = sqlite3NameFromToken(db, pToken);
1424   if( !zColl ) return;
1425 
1426   if( sqlite3LocateCollSeq(pParse, zColl) ){
1427     Index *pIdx;
1428     sqlite3DbFree(db, p->aCol[i].zColl);
1429     p->aCol[i].zColl = zColl;
1430 
1431     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1432     ** then an index may have been created on this column before the
1433     ** collation type was added. Correct this if it is the case.
1434     */
1435     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1436       assert( pIdx->nKeyCol==1 );
1437       if( pIdx->aiColumn[0]==i ){
1438         pIdx->azColl[0] = p->aCol[i].zColl;
1439       }
1440     }
1441   }else{
1442     sqlite3DbFree(db, zColl);
1443   }
1444 }
1445 
1446 /*
1447 ** This function returns the collation sequence for database native text
1448 ** encoding identified by the string zName, length nName.
1449 **
1450 ** If the requested collation sequence is not available, or not available
1451 ** in the database native encoding, the collation factory is invoked to
1452 ** request it. If the collation factory does not supply such a sequence,
1453 ** and the sequence is available in another text encoding, then that is
1454 ** returned instead.
1455 **
1456 ** If no versions of the requested collations sequence are available, or
1457 ** another error occurs, NULL is returned and an error message written into
1458 ** pParse.
1459 **
1460 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1461 ** invokes the collation factory if the named collation cannot be found
1462 ** and generates an error message.
1463 **
1464 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1465 */
1466 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1467   sqlite3 *db = pParse->db;
1468   u8 enc = ENC(db);
1469   u8 initbusy = db->init.busy;
1470   CollSeq *pColl;
1471 
1472   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1473   if( !initbusy && (!pColl || !pColl->xCmp) ){
1474     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1475   }
1476 
1477   return pColl;
1478 }
1479 
1480 
1481 /*
1482 ** Generate code that will increment the schema cookie.
1483 **
1484 ** The schema cookie is used to determine when the schema for the
1485 ** database changes.  After each schema change, the cookie value
1486 ** changes.  When a process first reads the schema it records the
1487 ** cookie.  Thereafter, whenever it goes to access the database,
1488 ** it checks the cookie to make sure the schema has not changed
1489 ** since it was last read.
1490 **
1491 ** This plan is not completely bullet-proof.  It is possible for
1492 ** the schema to change multiple times and for the cookie to be
1493 ** set back to prior value.  But schema changes are infrequent
1494 ** and the probability of hitting the same cookie value is only
1495 ** 1 chance in 2^32.  So we're safe enough.
1496 */
1497 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1498   int r1 = sqlite3GetTempReg(pParse);
1499   sqlite3 *db = pParse->db;
1500   Vdbe *v = pParse->pVdbe;
1501   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1502   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1503   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1504   sqlite3ReleaseTempReg(pParse, r1);
1505 }
1506 
1507 /*
1508 ** Measure the number of characters needed to output the given
1509 ** identifier.  The number returned includes any quotes used
1510 ** but does not include the null terminator.
1511 **
1512 ** The estimate is conservative.  It might be larger that what is
1513 ** really needed.
1514 */
1515 static int identLength(const char *z){
1516   int n;
1517   for(n=0; *z; n++, z++){
1518     if( *z=='"' ){ n++; }
1519   }
1520   return n + 2;
1521 }
1522 
1523 /*
1524 ** The first parameter is a pointer to an output buffer. The second
1525 ** parameter is a pointer to an integer that contains the offset at
1526 ** which to write into the output buffer. This function copies the
1527 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1528 ** to the specified offset in the buffer and updates *pIdx to refer
1529 ** to the first byte after the last byte written before returning.
1530 **
1531 ** If the string zSignedIdent consists entirely of alpha-numeric
1532 ** characters, does not begin with a digit and is not an SQL keyword,
1533 ** then it is copied to the output buffer exactly as it is. Otherwise,
1534 ** it is quoted using double-quotes.
1535 */
1536 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1537   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1538   int i, j, needQuote;
1539   i = *pIdx;
1540 
1541   for(j=0; zIdent[j]; j++){
1542     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1543   }
1544   needQuote = sqlite3Isdigit(zIdent[0])
1545             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1546             || zIdent[j]!=0
1547             || j==0;
1548 
1549   if( needQuote ) z[i++] = '"';
1550   for(j=0; zIdent[j]; j++){
1551     z[i++] = zIdent[j];
1552     if( zIdent[j]=='"' ) z[i++] = '"';
1553   }
1554   if( needQuote ) z[i++] = '"';
1555   z[i] = 0;
1556   *pIdx = i;
1557 }
1558 
1559 /*
1560 ** Generate a CREATE TABLE statement appropriate for the given
1561 ** table.  Memory to hold the text of the statement is obtained
1562 ** from sqliteMalloc() and must be freed by the calling function.
1563 */
1564 static char *createTableStmt(sqlite3 *db, Table *p){
1565   int i, k, n;
1566   char *zStmt;
1567   char *zSep, *zSep2, *zEnd;
1568   Column *pCol;
1569   n = 0;
1570   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1571     n += identLength(pCol->zName) + 5;
1572   }
1573   n += identLength(p->zName);
1574   if( n<50 ){
1575     zSep = "";
1576     zSep2 = ",";
1577     zEnd = ")";
1578   }else{
1579     zSep = "\n  ";
1580     zSep2 = ",\n  ";
1581     zEnd = "\n)";
1582   }
1583   n += 35 + 6*p->nCol;
1584   zStmt = sqlite3DbMallocRaw(0, n);
1585   if( zStmt==0 ){
1586     db->mallocFailed = 1;
1587     return 0;
1588   }
1589   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1590   k = sqlite3Strlen30(zStmt);
1591   identPut(zStmt, &k, p->zName);
1592   zStmt[k++] = '(';
1593   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1594     static const char * const azType[] = {
1595         /* SQLITE_AFF_BLOB    */ "",
1596         /* SQLITE_AFF_TEXT    */ " TEXT",
1597         /* SQLITE_AFF_NUMERIC */ " NUM",
1598         /* SQLITE_AFF_INTEGER */ " INT",
1599         /* SQLITE_AFF_REAL    */ " REAL"
1600     };
1601     int len;
1602     const char *zType;
1603 
1604     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1605     k += sqlite3Strlen30(&zStmt[k]);
1606     zSep = zSep2;
1607     identPut(zStmt, &k, pCol->zName);
1608     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1609     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1610     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1611     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1612     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1613     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1614     testcase( pCol->affinity==SQLITE_AFF_REAL );
1615 
1616     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1617     len = sqlite3Strlen30(zType);
1618     assert( pCol->affinity==SQLITE_AFF_BLOB
1619             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1620     memcpy(&zStmt[k], zType, len);
1621     k += len;
1622     assert( k<=n );
1623   }
1624   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1625   return zStmt;
1626 }
1627 
1628 /*
1629 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1630 ** on success and SQLITE_NOMEM on an OOM error.
1631 */
1632 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1633   char *zExtra;
1634   int nByte;
1635   if( pIdx->nColumn>=N ) return SQLITE_OK;
1636   assert( pIdx->isResized==0 );
1637   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1638   zExtra = sqlite3DbMallocZero(db, nByte);
1639   if( zExtra==0 ) return SQLITE_NOMEM;
1640   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1641   pIdx->azColl = (char**)zExtra;
1642   zExtra += sizeof(char*)*N;
1643   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1644   pIdx->aiColumn = (i16*)zExtra;
1645   zExtra += sizeof(i16)*N;
1646   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1647   pIdx->aSortOrder = (u8*)zExtra;
1648   pIdx->nColumn = N;
1649   pIdx->isResized = 1;
1650   return SQLITE_OK;
1651 }
1652 
1653 /*
1654 ** Estimate the total row width for a table.
1655 */
1656 static void estimateTableWidth(Table *pTab){
1657   unsigned wTable = 0;
1658   const Column *pTabCol;
1659   int i;
1660   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1661     wTable += pTabCol->szEst;
1662   }
1663   if( pTab->iPKey<0 ) wTable++;
1664   pTab->szTabRow = sqlite3LogEst(wTable*4);
1665 }
1666 
1667 /*
1668 ** Estimate the average size of a row for an index.
1669 */
1670 static void estimateIndexWidth(Index *pIdx){
1671   unsigned wIndex = 0;
1672   int i;
1673   const Column *aCol = pIdx->pTable->aCol;
1674   for(i=0; i<pIdx->nColumn; i++){
1675     i16 x = pIdx->aiColumn[i];
1676     assert( x<pIdx->pTable->nCol );
1677     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1678   }
1679   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1680 }
1681 
1682 /* Return true if value x is found any of the first nCol entries of aiCol[]
1683 */
1684 static int hasColumn(const i16 *aiCol, int nCol, int x){
1685   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1686   return 0;
1687 }
1688 
1689 /*
1690 ** This routine runs at the end of parsing a CREATE TABLE statement that
1691 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1692 ** internal schema data structures and the generated VDBE code so that they
1693 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1694 ** Changes include:
1695 **
1696 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1697 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1698 **          data storage is a covering index btree.
1699 **     (2)  Bypass the creation of the sqlite_master table entry
1700 **          for the PRIMARY KEY as the primary key index is now
1701 **          identified by the sqlite_master table entry of the table itself.
1702 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1703 **          schema to the rootpage from the main table.
1704 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1705 **     (5)  Add all table columns to the PRIMARY KEY Index object
1706 **          so that the PRIMARY KEY is a covering index.  The surplus
1707 **          columns are part of KeyInfo.nXField and are not used for
1708 **          sorting or lookup or uniqueness checks.
1709 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1710 **          indices with the PRIMARY KEY columns.
1711 */
1712 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1713   Index *pIdx;
1714   Index *pPk;
1715   int nPk;
1716   int i, j;
1717   sqlite3 *db = pParse->db;
1718   Vdbe *v = pParse->pVdbe;
1719 
1720   /* Convert the OP_CreateTable opcode that would normally create the
1721   ** root-page for the table into an OP_CreateIndex opcode.  The index
1722   ** created will become the PRIMARY KEY index.
1723   */
1724   if( pParse->addrCrTab ){
1725     assert( v );
1726     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1727   }
1728 
1729   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1730   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1731   */
1732   if( pTab->iPKey>=0 ){
1733     ExprList *pList;
1734     Token ipkToken;
1735     ipkToken.z = pTab->aCol[pTab->iPKey].zName;
1736     ipkToken.n = sqlite3Strlen30(ipkToken.z);
1737     pList = sqlite3ExprListAppend(pParse, 0,
1738                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1739     if( pList==0 ) return;
1740     pList->a[0].sortOrder = pParse->iPkSortOrder;
1741     assert( pParse->pNewTable==pTab );
1742     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1743     if( pPk==0 ) return;
1744     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1745     pTab->iPKey = -1;
1746   }else{
1747     pPk = sqlite3PrimaryKeyIndex(pTab);
1748 
1749     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1750     ** table entry. This is only required if currently generating VDBE
1751     ** code for a CREATE TABLE (not when parsing one as part of reading
1752     ** a database schema).  */
1753     if( v ){
1754       assert( db->init.busy==0 );
1755       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1756     }
1757 
1758     /*
1759     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1760     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1761     ** code assumes the PRIMARY KEY contains no repeated columns.
1762     */
1763     for(i=j=1; i<pPk->nKeyCol; i++){
1764       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1765         pPk->nColumn--;
1766       }else{
1767         pPk->aiColumn[j++] = pPk->aiColumn[i];
1768       }
1769     }
1770     pPk->nKeyCol = j;
1771   }
1772   pPk->isCovering = 1;
1773   assert( pPk!=0 );
1774   nPk = pPk->nKeyCol;
1775 
1776   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1777   ** do not enforce this for imposter tables.) */
1778   if( !db->init.imposterTable ){
1779     for(i=0; i<nPk; i++){
1780       pTab->aCol[pPk->aiColumn[i]].notNull = 1;
1781     }
1782     pPk->uniqNotNull = 1;
1783   }
1784 
1785   /* The root page of the PRIMARY KEY is the table root page */
1786   pPk->tnum = pTab->tnum;
1787 
1788   /* Update the in-memory representation of all UNIQUE indices by converting
1789   ** the final rowid column into one or more columns of the PRIMARY KEY.
1790   */
1791   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1792     int n;
1793     if( IsPrimaryKeyIndex(pIdx) ) continue;
1794     for(i=n=0; i<nPk; i++){
1795       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1796     }
1797     if( n==0 ){
1798       /* This index is a superset of the primary key */
1799       pIdx->nColumn = pIdx->nKeyCol;
1800       continue;
1801     }
1802     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1803     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1804       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1805         pIdx->aiColumn[j] = pPk->aiColumn[i];
1806         pIdx->azColl[j] = pPk->azColl[i];
1807         j++;
1808       }
1809     }
1810     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1811     assert( pIdx->nColumn>=j );
1812   }
1813 
1814   /* Add all table columns to the PRIMARY KEY index
1815   */
1816   if( nPk<pTab->nCol ){
1817     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1818     for(i=0, j=nPk; i<pTab->nCol; i++){
1819       if( !hasColumn(pPk->aiColumn, j, i) ){
1820         assert( j<pPk->nColumn );
1821         pPk->aiColumn[j] = i;
1822         pPk->azColl[j] = "BINARY";
1823         j++;
1824       }
1825     }
1826     assert( pPk->nColumn==j );
1827     assert( pTab->nCol==j );
1828   }else{
1829     pPk->nColumn = pTab->nCol;
1830   }
1831 }
1832 
1833 /*
1834 ** This routine is called to report the final ")" that terminates
1835 ** a CREATE TABLE statement.
1836 **
1837 ** The table structure that other action routines have been building
1838 ** is added to the internal hash tables, assuming no errors have
1839 ** occurred.
1840 **
1841 ** An entry for the table is made in the master table on disk, unless
1842 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1843 ** it means we are reading the sqlite_master table because we just
1844 ** connected to the database or because the sqlite_master table has
1845 ** recently changed, so the entry for this table already exists in
1846 ** the sqlite_master table.  We do not want to create it again.
1847 **
1848 ** If the pSelect argument is not NULL, it means that this routine
1849 ** was called to create a table generated from a
1850 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1851 ** the new table will match the result set of the SELECT.
1852 */
1853 void sqlite3EndTable(
1854   Parse *pParse,          /* Parse context */
1855   Token *pCons,           /* The ',' token after the last column defn. */
1856   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1857   u8 tabOpts,             /* Extra table options. Usually 0. */
1858   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1859 ){
1860   Table *p;                 /* The new table */
1861   sqlite3 *db = pParse->db; /* The database connection */
1862   int iDb;                  /* Database in which the table lives */
1863   Index *pIdx;              /* An implied index of the table */
1864 
1865   if( pEnd==0 && pSelect==0 ){
1866     return;
1867   }
1868   assert( !db->mallocFailed );
1869   p = pParse->pNewTable;
1870   if( p==0 ) return;
1871 
1872   assert( !db->init.busy || !pSelect );
1873 
1874   /* If the db->init.busy is 1 it means we are reading the SQL off the
1875   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1876   ** So do not write to the disk again.  Extract the root page number
1877   ** for the table from the db->init.newTnum field.  (The page number
1878   ** should have been put there by the sqliteOpenCb routine.)
1879   */
1880   if( db->init.busy ){
1881     p->tnum = db->init.newTnum;
1882   }
1883 
1884   /* Special processing for WITHOUT ROWID Tables */
1885   if( tabOpts & TF_WithoutRowid ){
1886     if( (p->tabFlags & TF_Autoincrement) ){
1887       sqlite3ErrorMsg(pParse,
1888           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1889       return;
1890     }
1891     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1892       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1893     }else{
1894       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1895       convertToWithoutRowidTable(pParse, p);
1896     }
1897   }
1898 
1899   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1900 
1901 #ifndef SQLITE_OMIT_CHECK
1902   /* Resolve names in all CHECK constraint expressions.
1903   */
1904   if( p->pCheck ){
1905     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1906   }
1907 #endif /* !defined(SQLITE_OMIT_CHECK) */
1908 
1909   /* Estimate the average row size for the table and for all implied indices */
1910   estimateTableWidth(p);
1911   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1912     estimateIndexWidth(pIdx);
1913   }
1914 
1915   /* If not initializing, then create a record for the new table
1916   ** in the SQLITE_MASTER table of the database.
1917   **
1918   ** If this is a TEMPORARY table, write the entry into the auxiliary
1919   ** file instead of into the main database file.
1920   */
1921   if( !db->init.busy ){
1922     int n;
1923     Vdbe *v;
1924     char *zType;    /* "view" or "table" */
1925     char *zType2;   /* "VIEW" or "TABLE" */
1926     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1927 
1928     v = sqlite3GetVdbe(pParse);
1929     if( NEVER(v==0) ) return;
1930 
1931     sqlite3VdbeAddOp1(v, OP_Close, 0);
1932 
1933     /*
1934     ** Initialize zType for the new view or table.
1935     */
1936     if( p->pSelect==0 ){
1937       /* A regular table */
1938       zType = "table";
1939       zType2 = "TABLE";
1940 #ifndef SQLITE_OMIT_VIEW
1941     }else{
1942       /* A view */
1943       zType = "view";
1944       zType2 = "VIEW";
1945 #endif
1946     }
1947 
1948     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1949     ** statement to populate the new table. The root-page number for the
1950     ** new table is in register pParse->regRoot.
1951     **
1952     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1953     ** suitable state to query for the column names and types to be used
1954     ** by the new table.
1955     **
1956     ** A shared-cache write-lock is not required to write to the new table,
1957     ** as a schema-lock must have already been obtained to create it. Since
1958     ** a schema-lock excludes all other database users, the write-lock would
1959     ** be redundant.
1960     */
1961     if( pSelect ){
1962       SelectDest dest;    /* Where the SELECT should store results */
1963       int regYield;       /* Register holding co-routine entry-point */
1964       int addrTop;        /* Top of the co-routine */
1965       int regRec;         /* A record to be insert into the new table */
1966       int regRowid;       /* Rowid of the next row to insert */
1967       int addrInsLoop;    /* Top of the loop for inserting rows */
1968       Table *pSelTab;     /* A table that describes the SELECT results */
1969 
1970       regYield = ++pParse->nMem;
1971       regRec = ++pParse->nMem;
1972       regRowid = ++pParse->nMem;
1973       assert(pParse->nTab==1);
1974       sqlite3MayAbort(pParse);
1975       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1976       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1977       pParse->nTab = 2;
1978       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1979       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1980       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1981       sqlite3Select(pParse, pSelect, &dest);
1982       sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1983       sqlite3VdbeJumpHere(v, addrTop - 1);
1984       if( pParse->nErr ) return;
1985       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1986       if( pSelTab==0 ) return;
1987       assert( p->aCol==0 );
1988       p->nCol = pSelTab->nCol;
1989       p->aCol = pSelTab->aCol;
1990       pSelTab->nCol = 0;
1991       pSelTab->aCol = 0;
1992       sqlite3DeleteTable(db, pSelTab);
1993       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1994       VdbeCoverage(v);
1995       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1996       sqlite3TableAffinity(v, p, 0);
1997       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1998       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1999       sqlite3VdbeGoto(v, addrInsLoop);
2000       sqlite3VdbeJumpHere(v, addrInsLoop);
2001       sqlite3VdbeAddOp1(v, OP_Close, 1);
2002     }
2003 
2004     /* Compute the complete text of the CREATE statement */
2005     if( pSelect ){
2006       zStmt = createTableStmt(db, p);
2007     }else{
2008       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2009       n = (int)(pEnd2->z - pParse->sNameToken.z);
2010       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2011       zStmt = sqlite3MPrintf(db,
2012           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2013       );
2014     }
2015 
2016     /* A slot for the record has already been allocated in the
2017     ** SQLITE_MASTER table.  We just need to update that slot with all
2018     ** the information we've collected.
2019     */
2020     sqlite3NestedParse(pParse,
2021       "UPDATE %Q.%s "
2022          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2023        "WHERE rowid=#%d",
2024       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2025       zType,
2026       p->zName,
2027       p->zName,
2028       pParse->regRoot,
2029       zStmt,
2030       pParse->regRowid
2031     );
2032     sqlite3DbFree(db, zStmt);
2033     sqlite3ChangeCookie(pParse, iDb);
2034 
2035 #ifndef SQLITE_OMIT_AUTOINCREMENT
2036     /* Check to see if we need to create an sqlite_sequence table for
2037     ** keeping track of autoincrement keys.
2038     */
2039     if( p->tabFlags & TF_Autoincrement ){
2040       Db *pDb = &db->aDb[iDb];
2041       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2042       if( pDb->pSchema->pSeqTab==0 ){
2043         sqlite3NestedParse(pParse,
2044           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2045           pDb->zName
2046         );
2047       }
2048     }
2049 #endif
2050 
2051     /* Reparse everything to update our internal data structures */
2052     sqlite3VdbeAddParseSchemaOp(v, iDb,
2053            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2054   }
2055 
2056 
2057   /* Add the table to the in-memory representation of the database.
2058   */
2059   if( db->init.busy ){
2060     Table *pOld;
2061     Schema *pSchema = p->pSchema;
2062     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2063     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2064     if( pOld ){
2065       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2066       db->mallocFailed = 1;
2067       return;
2068     }
2069     pParse->pNewTable = 0;
2070     db->flags |= SQLITE_InternChanges;
2071 
2072 #ifndef SQLITE_OMIT_ALTERTABLE
2073     if( !p->pSelect ){
2074       const char *zName = (const char *)pParse->sNameToken.z;
2075       int nName;
2076       assert( !pSelect && pCons && pEnd );
2077       if( pCons->z==0 ){
2078         pCons = pEnd;
2079       }
2080       nName = (int)((const char *)pCons->z - zName);
2081       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2082     }
2083 #endif
2084   }
2085 }
2086 
2087 #ifndef SQLITE_OMIT_VIEW
2088 /*
2089 ** The parser calls this routine in order to create a new VIEW
2090 */
2091 void sqlite3CreateView(
2092   Parse *pParse,     /* The parsing context */
2093   Token *pBegin,     /* The CREATE token that begins the statement */
2094   Token *pName1,     /* The token that holds the name of the view */
2095   Token *pName2,     /* The token that holds the name of the view */
2096   ExprList *pCNames, /* Optional list of view column names */
2097   Select *pSelect,   /* A SELECT statement that will become the new view */
2098   int isTemp,        /* TRUE for a TEMPORARY view */
2099   int noErr          /* Suppress error messages if VIEW already exists */
2100 ){
2101   Table *p;
2102   int n;
2103   const char *z;
2104   Token sEnd;
2105   DbFixer sFix;
2106   Token *pName = 0;
2107   int iDb;
2108   sqlite3 *db = pParse->db;
2109 
2110   if( pParse->nVar>0 ){
2111     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2112     goto create_view_fail;
2113   }
2114   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2115   p = pParse->pNewTable;
2116   if( p==0 || pParse->nErr ) goto create_view_fail;
2117   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2118   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2119   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2120   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2121 
2122   /* Make a copy of the entire SELECT statement that defines the view.
2123   ** This will force all the Expr.token.z values to be dynamically
2124   ** allocated rather than point to the input string - which means that
2125   ** they will persist after the current sqlite3_exec() call returns.
2126   */
2127   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2128   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2129   if( db->mallocFailed ) goto create_view_fail;
2130 
2131   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2132   ** the end.
2133   */
2134   sEnd = pParse->sLastToken;
2135   assert( sEnd.z[0]!=0 );
2136   if( sEnd.z[0]!=';' ){
2137     sEnd.z += sEnd.n;
2138   }
2139   sEnd.n = 0;
2140   n = (int)(sEnd.z - pBegin->z);
2141   assert( n>0 );
2142   z = pBegin->z;
2143   while( sqlite3Isspace(z[n-1]) ){ n--; }
2144   sEnd.z = &z[n-1];
2145   sEnd.n = 1;
2146 
2147   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2148   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2149 
2150 create_view_fail:
2151   sqlite3SelectDelete(db, pSelect);
2152   sqlite3ExprListDelete(db, pCNames);
2153   return;
2154 }
2155 #endif /* SQLITE_OMIT_VIEW */
2156 
2157 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2158 /*
2159 ** The Table structure pTable is really a VIEW.  Fill in the names of
2160 ** the columns of the view in the pTable structure.  Return the number
2161 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2162 */
2163 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2164   Table *pSelTab;   /* A fake table from which we get the result set */
2165   Select *pSel;     /* Copy of the SELECT that implements the view */
2166   int nErr = 0;     /* Number of errors encountered */
2167   int n;            /* Temporarily holds the number of cursors assigned */
2168   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2169   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2170   u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */
2171 
2172   assert( pTable );
2173 
2174 #ifndef SQLITE_OMIT_VIRTUALTABLE
2175   if( sqlite3VtabCallConnect(pParse, pTable) ){
2176     return SQLITE_ERROR;
2177   }
2178   if( IsVirtual(pTable) ) return 0;
2179 #endif
2180 
2181 #ifndef SQLITE_OMIT_VIEW
2182   /* A positive nCol means the columns names for this view are
2183   ** already known.
2184   */
2185   if( pTable->nCol>0 ) return 0;
2186 
2187   /* A negative nCol is a special marker meaning that we are currently
2188   ** trying to compute the column names.  If we enter this routine with
2189   ** a negative nCol, it means two or more views form a loop, like this:
2190   **
2191   **     CREATE VIEW one AS SELECT * FROM two;
2192   **     CREATE VIEW two AS SELECT * FROM one;
2193   **
2194   ** Actually, the error above is now caught prior to reaching this point.
2195   ** But the following test is still important as it does come up
2196   ** in the following:
2197   **
2198   **     CREATE TABLE main.ex1(a);
2199   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2200   **     SELECT * FROM temp.ex1;
2201   */
2202   if( pTable->nCol<0 ){
2203     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2204     return 1;
2205   }
2206   assert( pTable->nCol>=0 );
2207 
2208   /* If we get this far, it means we need to compute the table names.
2209   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2210   ** "*" elements in the results set of the view and will assign cursors
2211   ** to the elements of the FROM clause.  But we do not want these changes
2212   ** to be permanent.  So the computation is done on a copy of the SELECT
2213   ** statement that defines the view.
2214   */
2215   assert( pTable->pSelect );
2216   bEnabledLA = db->lookaside.bEnabled;
2217   if( pTable->pCheck ){
2218     db->lookaside.bEnabled = 0;
2219     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2220                                &pTable->nCol, &pTable->aCol);
2221   }else{
2222     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2223     if( pSel ){
2224       n = pParse->nTab;
2225       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2226       pTable->nCol = -1;
2227       db->lookaside.bEnabled = 0;
2228 #ifndef SQLITE_OMIT_AUTHORIZATION
2229       xAuth = db->xAuth;
2230       db->xAuth = 0;
2231       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2232       db->xAuth = xAuth;
2233 #else
2234       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2235 #endif
2236       pParse->nTab = n;
2237       if( pSelTab ){
2238         assert( pTable->aCol==0 );
2239         pTable->nCol = pSelTab->nCol;
2240         pTable->aCol = pSelTab->aCol;
2241         pSelTab->nCol = 0;
2242         pSelTab->aCol = 0;
2243         sqlite3DeleteTable(db, pSelTab);
2244         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2245       }else{
2246         pTable->nCol = 0;
2247         nErr++;
2248       }
2249       sqlite3SelectDelete(db, pSel);
2250     } else {
2251       nErr++;
2252     }
2253   }
2254   db->lookaside.bEnabled = bEnabledLA;
2255   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2256 #endif /* SQLITE_OMIT_VIEW */
2257   return nErr;
2258 }
2259 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2260 
2261 #ifndef SQLITE_OMIT_VIEW
2262 /*
2263 ** Clear the column names from every VIEW in database idx.
2264 */
2265 static void sqliteViewResetAll(sqlite3 *db, int idx){
2266   HashElem *i;
2267   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2268   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2269   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2270     Table *pTab = sqliteHashData(i);
2271     if( pTab->pSelect ){
2272       sqlite3DeleteColumnNames(db, pTab);
2273       pTab->aCol = 0;
2274       pTab->nCol = 0;
2275     }
2276   }
2277   DbClearProperty(db, idx, DB_UnresetViews);
2278 }
2279 #else
2280 # define sqliteViewResetAll(A,B)
2281 #endif /* SQLITE_OMIT_VIEW */
2282 
2283 /*
2284 ** This function is called by the VDBE to adjust the internal schema
2285 ** used by SQLite when the btree layer moves a table root page. The
2286 ** root-page of a table or index in database iDb has changed from iFrom
2287 ** to iTo.
2288 **
2289 ** Ticket #1728:  The symbol table might still contain information
2290 ** on tables and/or indices that are the process of being deleted.
2291 ** If you are unlucky, one of those deleted indices or tables might
2292 ** have the same rootpage number as the real table or index that is
2293 ** being moved.  So we cannot stop searching after the first match
2294 ** because the first match might be for one of the deleted indices
2295 ** or tables and not the table/index that is actually being moved.
2296 ** We must continue looping until all tables and indices with
2297 ** rootpage==iFrom have been converted to have a rootpage of iTo
2298 ** in order to be certain that we got the right one.
2299 */
2300 #ifndef SQLITE_OMIT_AUTOVACUUM
2301 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2302   HashElem *pElem;
2303   Hash *pHash;
2304   Db *pDb;
2305 
2306   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2307   pDb = &db->aDb[iDb];
2308   pHash = &pDb->pSchema->tblHash;
2309   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2310     Table *pTab = sqliteHashData(pElem);
2311     if( pTab->tnum==iFrom ){
2312       pTab->tnum = iTo;
2313     }
2314   }
2315   pHash = &pDb->pSchema->idxHash;
2316   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2317     Index *pIdx = sqliteHashData(pElem);
2318     if( pIdx->tnum==iFrom ){
2319       pIdx->tnum = iTo;
2320     }
2321   }
2322 }
2323 #endif
2324 
2325 /*
2326 ** Write code to erase the table with root-page iTable from database iDb.
2327 ** Also write code to modify the sqlite_master table and internal schema
2328 ** if a root-page of another table is moved by the btree-layer whilst
2329 ** erasing iTable (this can happen with an auto-vacuum database).
2330 */
2331 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2332   Vdbe *v = sqlite3GetVdbe(pParse);
2333   int r1 = sqlite3GetTempReg(pParse);
2334   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2335   sqlite3MayAbort(pParse);
2336 #ifndef SQLITE_OMIT_AUTOVACUUM
2337   /* OP_Destroy stores an in integer r1. If this integer
2338   ** is non-zero, then it is the root page number of a table moved to
2339   ** location iTable. The following code modifies the sqlite_master table to
2340   ** reflect this.
2341   **
2342   ** The "#NNN" in the SQL is a special constant that means whatever value
2343   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2344   ** token for additional information.
2345   */
2346   sqlite3NestedParse(pParse,
2347      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2348      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2349 #endif
2350   sqlite3ReleaseTempReg(pParse, r1);
2351 }
2352 
2353 /*
2354 ** Write VDBE code to erase table pTab and all associated indices on disk.
2355 ** Code to update the sqlite_master tables and internal schema definitions
2356 ** in case a root-page belonging to another table is moved by the btree layer
2357 ** is also added (this can happen with an auto-vacuum database).
2358 */
2359 static void destroyTable(Parse *pParse, Table *pTab){
2360 #ifdef SQLITE_OMIT_AUTOVACUUM
2361   Index *pIdx;
2362   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2363   destroyRootPage(pParse, pTab->tnum, iDb);
2364   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2365     destroyRootPage(pParse, pIdx->tnum, iDb);
2366   }
2367 #else
2368   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2369   ** is not defined), then it is important to call OP_Destroy on the
2370   ** table and index root-pages in order, starting with the numerically
2371   ** largest root-page number. This guarantees that none of the root-pages
2372   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2373   ** following were coded:
2374   **
2375   ** OP_Destroy 4 0
2376   ** ...
2377   ** OP_Destroy 5 0
2378   **
2379   ** and root page 5 happened to be the largest root-page number in the
2380   ** database, then root page 5 would be moved to page 4 by the
2381   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2382   ** a free-list page.
2383   */
2384   int iTab = pTab->tnum;
2385   int iDestroyed = 0;
2386 
2387   while( 1 ){
2388     Index *pIdx;
2389     int iLargest = 0;
2390 
2391     if( iDestroyed==0 || iTab<iDestroyed ){
2392       iLargest = iTab;
2393     }
2394     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2395       int iIdx = pIdx->tnum;
2396       assert( pIdx->pSchema==pTab->pSchema );
2397       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2398         iLargest = iIdx;
2399       }
2400     }
2401     if( iLargest==0 ){
2402       return;
2403     }else{
2404       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2405       assert( iDb>=0 && iDb<pParse->db->nDb );
2406       destroyRootPage(pParse, iLargest, iDb);
2407       iDestroyed = iLargest;
2408     }
2409   }
2410 #endif
2411 }
2412 
2413 /*
2414 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2415 ** after a DROP INDEX or DROP TABLE command.
2416 */
2417 static void sqlite3ClearStatTables(
2418   Parse *pParse,         /* The parsing context */
2419   int iDb,               /* The database number */
2420   const char *zType,     /* "idx" or "tbl" */
2421   const char *zName      /* Name of index or table */
2422 ){
2423   int i;
2424   const char *zDbName = pParse->db->aDb[iDb].zName;
2425   for(i=1; i<=4; i++){
2426     char zTab[24];
2427     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2428     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2429       sqlite3NestedParse(pParse,
2430         "DELETE FROM %Q.%s WHERE %s=%Q",
2431         zDbName, zTab, zType, zName
2432       );
2433     }
2434   }
2435 }
2436 
2437 /*
2438 ** Generate code to drop a table.
2439 */
2440 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2441   Vdbe *v;
2442   sqlite3 *db = pParse->db;
2443   Trigger *pTrigger;
2444   Db *pDb = &db->aDb[iDb];
2445 
2446   v = sqlite3GetVdbe(pParse);
2447   assert( v!=0 );
2448   sqlite3BeginWriteOperation(pParse, 1, iDb);
2449 
2450 #ifndef SQLITE_OMIT_VIRTUALTABLE
2451   if( IsVirtual(pTab) ){
2452     sqlite3VdbeAddOp0(v, OP_VBegin);
2453   }
2454 #endif
2455 
2456   /* Drop all triggers associated with the table being dropped. Code
2457   ** is generated to remove entries from sqlite_master and/or
2458   ** sqlite_temp_master if required.
2459   */
2460   pTrigger = sqlite3TriggerList(pParse, pTab);
2461   while( pTrigger ){
2462     assert( pTrigger->pSchema==pTab->pSchema ||
2463         pTrigger->pSchema==db->aDb[1].pSchema );
2464     sqlite3DropTriggerPtr(pParse, pTrigger);
2465     pTrigger = pTrigger->pNext;
2466   }
2467 
2468 #ifndef SQLITE_OMIT_AUTOINCREMENT
2469   /* Remove any entries of the sqlite_sequence table associated with
2470   ** the table being dropped. This is done before the table is dropped
2471   ** at the btree level, in case the sqlite_sequence table needs to
2472   ** move as a result of the drop (can happen in auto-vacuum mode).
2473   */
2474   if( pTab->tabFlags & TF_Autoincrement ){
2475     sqlite3NestedParse(pParse,
2476       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2477       pDb->zName, pTab->zName
2478     );
2479   }
2480 #endif
2481 
2482   /* Drop all SQLITE_MASTER table and index entries that refer to the
2483   ** table. The program name loops through the master table and deletes
2484   ** every row that refers to a table of the same name as the one being
2485   ** dropped. Triggers are handled separately because a trigger can be
2486   ** created in the temp database that refers to a table in another
2487   ** database.
2488   */
2489   sqlite3NestedParse(pParse,
2490       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2491       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2492   if( !isView && !IsVirtual(pTab) ){
2493     destroyTable(pParse, pTab);
2494   }
2495 
2496   /* Remove the table entry from SQLite's internal schema and modify
2497   ** the schema cookie.
2498   */
2499   if( IsVirtual(pTab) ){
2500     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2501   }
2502   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2503   sqlite3ChangeCookie(pParse, iDb);
2504   sqliteViewResetAll(db, iDb);
2505 }
2506 
2507 /*
2508 ** This routine is called to do the work of a DROP TABLE statement.
2509 ** pName is the name of the table to be dropped.
2510 */
2511 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2512   Table *pTab;
2513   Vdbe *v;
2514   sqlite3 *db = pParse->db;
2515   int iDb;
2516 
2517   if( db->mallocFailed ){
2518     goto exit_drop_table;
2519   }
2520   assert( pParse->nErr==0 );
2521   assert( pName->nSrc==1 );
2522   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2523   if( noErr ) db->suppressErr++;
2524   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2525   if( noErr ) db->suppressErr--;
2526 
2527   if( pTab==0 ){
2528     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2529     goto exit_drop_table;
2530   }
2531   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2532   assert( iDb>=0 && iDb<db->nDb );
2533 
2534   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2535   ** it is initialized.
2536   */
2537   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2538     goto exit_drop_table;
2539   }
2540 #ifndef SQLITE_OMIT_AUTHORIZATION
2541   {
2542     int code;
2543     const char *zTab = SCHEMA_TABLE(iDb);
2544     const char *zDb = db->aDb[iDb].zName;
2545     const char *zArg2 = 0;
2546     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2547       goto exit_drop_table;
2548     }
2549     if( isView ){
2550       if( !OMIT_TEMPDB && iDb==1 ){
2551         code = SQLITE_DROP_TEMP_VIEW;
2552       }else{
2553         code = SQLITE_DROP_VIEW;
2554       }
2555 #ifndef SQLITE_OMIT_VIRTUALTABLE
2556     }else if( IsVirtual(pTab) ){
2557       code = SQLITE_DROP_VTABLE;
2558       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2559 #endif
2560     }else{
2561       if( !OMIT_TEMPDB && iDb==1 ){
2562         code = SQLITE_DROP_TEMP_TABLE;
2563       }else{
2564         code = SQLITE_DROP_TABLE;
2565       }
2566     }
2567     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2568       goto exit_drop_table;
2569     }
2570     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2571       goto exit_drop_table;
2572     }
2573   }
2574 #endif
2575   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2576     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2577     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2578     goto exit_drop_table;
2579   }
2580 
2581 #ifndef SQLITE_OMIT_VIEW
2582   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2583   ** on a table.
2584   */
2585   if( isView && pTab->pSelect==0 ){
2586     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2587     goto exit_drop_table;
2588   }
2589   if( !isView && pTab->pSelect ){
2590     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2591     goto exit_drop_table;
2592   }
2593 #endif
2594 
2595   /* Generate code to remove the table from the master table
2596   ** on disk.
2597   */
2598   v = sqlite3GetVdbe(pParse);
2599   if( v ){
2600     sqlite3BeginWriteOperation(pParse, 1, iDb);
2601     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2602     sqlite3FkDropTable(pParse, pName, pTab);
2603     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2604   }
2605 
2606 exit_drop_table:
2607   sqlite3SrcListDelete(db, pName);
2608 }
2609 
2610 /*
2611 ** This routine is called to create a new foreign key on the table
2612 ** currently under construction.  pFromCol determines which columns
2613 ** in the current table point to the foreign key.  If pFromCol==0 then
2614 ** connect the key to the last column inserted.  pTo is the name of
2615 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2616 ** of tables in the parent pTo table.  flags contains all
2617 ** information about the conflict resolution algorithms specified
2618 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2619 **
2620 ** An FKey structure is created and added to the table currently
2621 ** under construction in the pParse->pNewTable field.
2622 **
2623 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2624 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2625 */
2626 void sqlite3CreateForeignKey(
2627   Parse *pParse,       /* Parsing context */
2628   ExprList *pFromCol,  /* Columns in this table that point to other table */
2629   Token *pTo,          /* Name of the other table */
2630   ExprList *pToCol,    /* Columns in the other table */
2631   int flags            /* Conflict resolution algorithms. */
2632 ){
2633   sqlite3 *db = pParse->db;
2634 #ifndef SQLITE_OMIT_FOREIGN_KEY
2635   FKey *pFKey = 0;
2636   FKey *pNextTo;
2637   Table *p = pParse->pNewTable;
2638   int nByte;
2639   int i;
2640   int nCol;
2641   char *z;
2642 
2643   assert( pTo!=0 );
2644   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2645   if( pFromCol==0 ){
2646     int iCol = p->nCol-1;
2647     if( NEVER(iCol<0) ) goto fk_end;
2648     if( pToCol && pToCol->nExpr!=1 ){
2649       sqlite3ErrorMsg(pParse, "foreign key on %s"
2650          " should reference only one column of table %T",
2651          p->aCol[iCol].zName, pTo);
2652       goto fk_end;
2653     }
2654     nCol = 1;
2655   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2656     sqlite3ErrorMsg(pParse,
2657         "number of columns in foreign key does not match the number of "
2658         "columns in the referenced table");
2659     goto fk_end;
2660   }else{
2661     nCol = pFromCol->nExpr;
2662   }
2663   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2664   if( pToCol ){
2665     for(i=0; i<pToCol->nExpr; i++){
2666       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2667     }
2668   }
2669   pFKey = sqlite3DbMallocZero(db, nByte );
2670   if( pFKey==0 ){
2671     goto fk_end;
2672   }
2673   pFKey->pFrom = p;
2674   pFKey->pNextFrom = p->pFKey;
2675   z = (char*)&pFKey->aCol[nCol];
2676   pFKey->zTo = z;
2677   memcpy(z, pTo->z, pTo->n);
2678   z[pTo->n] = 0;
2679   sqlite3Dequote(z);
2680   z += pTo->n+1;
2681   pFKey->nCol = nCol;
2682   if( pFromCol==0 ){
2683     pFKey->aCol[0].iFrom = p->nCol-1;
2684   }else{
2685     for(i=0; i<nCol; i++){
2686       int j;
2687       for(j=0; j<p->nCol; j++){
2688         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2689           pFKey->aCol[i].iFrom = j;
2690           break;
2691         }
2692       }
2693       if( j>=p->nCol ){
2694         sqlite3ErrorMsg(pParse,
2695           "unknown column \"%s\" in foreign key definition",
2696           pFromCol->a[i].zName);
2697         goto fk_end;
2698       }
2699     }
2700   }
2701   if( pToCol ){
2702     for(i=0; i<nCol; i++){
2703       int n = sqlite3Strlen30(pToCol->a[i].zName);
2704       pFKey->aCol[i].zCol = z;
2705       memcpy(z, pToCol->a[i].zName, n);
2706       z[n] = 0;
2707       z += n+1;
2708     }
2709   }
2710   pFKey->isDeferred = 0;
2711   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2712   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2713 
2714   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2715   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2716       pFKey->zTo, (void *)pFKey
2717   );
2718   if( pNextTo==pFKey ){
2719     db->mallocFailed = 1;
2720     goto fk_end;
2721   }
2722   if( pNextTo ){
2723     assert( pNextTo->pPrevTo==0 );
2724     pFKey->pNextTo = pNextTo;
2725     pNextTo->pPrevTo = pFKey;
2726   }
2727 
2728   /* Link the foreign key to the table as the last step.
2729   */
2730   p->pFKey = pFKey;
2731   pFKey = 0;
2732 
2733 fk_end:
2734   sqlite3DbFree(db, pFKey);
2735 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2736   sqlite3ExprListDelete(db, pFromCol);
2737   sqlite3ExprListDelete(db, pToCol);
2738 }
2739 
2740 /*
2741 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2742 ** clause is seen as part of a foreign key definition.  The isDeferred
2743 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2744 ** The behavior of the most recently created foreign key is adjusted
2745 ** accordingly.
2746 */
2747 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2748 #ifndef SQLITE_OMIT_FOREIGN_KEY
2749   Table *pTab;
2750   FKey *pFKey;
2751   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2752   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2753   pFKey->isDeferred = (u8)isDeferred;
2754 #endif
2755 }
2756 
2757 /*
2758 ** Generate code that will erase and refill index *pIdx.  This is
2759 ** used to initialize a newly created index or to recompute the
2760 ** content of an index in response to a REINDEX command.
2761 **
2762 ** if memRootPage is not negative, it means that the index is newly
2763 ** created.  The register specified by memRootPage contains the
2764 ** root page number of the index.  If memRootPage is negative, then
2765 ** the index already exists and must be cleared before being refilled and
2766 ** the root page number of the index is taken from pIndex->tnum.
2767 */
2768 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2769   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2770   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2771   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2772   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2773   int addr1;                     /* Address of top of loop */
2774   int addr2;                     /* Address to jump to for next iteration */
2775   int tnum;                      /* Root page of index */
2776   int iPartIdxLabel;             /* Jump to this label to skip a row */
2777   Vdbe *v;                       /* Generate code into this virtual machine */
2778   KeyInfo *pKey;                 /* KeyInfo for index */
2779   int regRecord;                 /* Register holding assembled index record */
2780   sqlite3 *db = pParse->db;      /* The database connection */
2781   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2782 
2783 #ifndef SQLITE_OMIT_AUTHORIZATION
2784   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2785       db->aDb[iDb].zName ) ){
2786     return;
2787   }
2788 #endif
2789 
2790   /* Require a write-lock on the table to perform this operation */
2791   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2792 
2793   v = sqlite3GetVdbe(pParse);
2794   if( v==0 ) return;
2795   if( memRootPage>=0 ){
2796     tnum = memRootPage;
2797   }else{
2798     tnum = pIndex->tnum;
2799   }
2800   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2801 
2802   /* Open the sorter cursor if we are to use one. */
2803   iSorter = pParse->nTab++;
2804   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2805                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2806 
2807   /* Open the table. Loop through all rows of the table, inserting index
2808   ** records into the sorter. */
2809   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2810   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2811   regRecord = sqlite3GetTempReg(pParse);
2812 
2813   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2814   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2815   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2816   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2817   sqlite3VdbeJumpHere(v, addr1);
2818   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2819   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2820                     (char *)pKey, P4_KEYINFO);
2821   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2822 
2823   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2824   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2825   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2826     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2827     sqlite3VdbeGoto(v, j2);
2828     addr2 = sqlite3VdbeCurrentAddr(v);
2829     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2830                          pIndex->nKeyCol); VdbeCoverage(v);
2831     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2832   }else{
2833     addr2 = sqlite3VdbeCurrentAddr(v);
2834   }
2835   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2836   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2837   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2838   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2839   sqlite3ReleaseTempReg(pParse, regRecord);
2840   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2841   sqlite3VdbeJumpHere(v, addr1);
2842 
2843   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2844   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2845   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2846 }
2847 
2848 /*
2849 ** Allocate heap space to hold an Index object with nCol columns.
2850 **
2851 ** Increase the allocation size to provide an extra nExtra bytes
2852 ** of 8-byte aligned space after the Index object and return a
2853 ** pointer to this extra space in *ppExtra.
2854 */
2855 Index *sqlite3AllocateIndexObject(
2856   sqlite3 *db,         /* Database connection */
2857   i16 nCol,            /* Total number of columns in the index */
2858   int nExtra,          /* Number of bytes of extra space to alloc */
2859   char **ppExtra       /* Pointer to the "extra" space */
2860 ){
2861   Index *p;            /* Allocated index object */
2862   int nByte;           /* Bytes of space for Index object + arrays */
2863 
2864   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2865           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2866           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2867                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2868                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2869   p = sqlite3DbMallocZero(db, nByte + nExtra);
2870   if( p ){
2871     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2872     p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
2873     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2874     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2875     p->aSortOrder = (u8*)pExtra;
2876     p->nColumn = nCol;
2877     p->nKeyCol = nCol - 1;
2878     *ppExtra = ((char*)p) + nByte;
2879   }
2880   return p;
2881 }
2882 
2883 /*
2884 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2885 ** and pTblList is the name of the table that is to be indexed.  Both will
2886 ** be NULL for a primary key or an index that is created to satisfy a
2887 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2888 ** as the table to be indexed.  pParse->pNewTable is a table that is
2889 ** currently being constructed by a CREATE TABLE statement.
2890 **
2891 ** pList is a list of columns to be indexed.  pList will be NULL if this
2892 ** is a primary key or unique-constraint on the most recent column added
2893 ** to the table currently under construction.
2894 **
2895 ** If the index is created successfully, return a pointer to the new Index
2896 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2897 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2898 */
2899 Index *sqlite3CreateIndex(
2900   Parse *pParse,     /* All information about this parse */
2901   Token *pName1,     /* First part of index name. May be NULL */
2902   Token *pName2,     /* Second part of index name. May be NULL */
2903   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2904   ExprList *pList,   /* A list of columns to be indexed */
2905   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2906   Token *pStart,     /* The CREATE token that begins this statement */
2907   Expr *pPIWhere,    /* WHERE clause for partial indices */
2908   int sortOrder,     /* Sort order of primary key when pList==NULL */
2909   int ifNotExist     /* Omit error if index already exists */
2910 ){
2911   Index *pRet = 0;     /* Pointer to return */
2912   Table *pTab = 0;     /* Table to be indexed */
2913   Index *pIndex = 0;   /* The index to be created */
2914   char *zName = 0;     /* Name of the index */
2915   int nName;           /* Number of characters in zName */
2916   int i, j;
2917   DbFixer sFix;        /* For assigning database names to pTable */
2918   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2919   sqlite3 *db = pParse->db;
2920   Db *pDb;             /* The specific table containing the indexed database */
2921   int iDb;             /* Index of the database that is being written */
2922   Token *pName = 0;    /* Unqualified name of the index to create */
2923   struct ExprList_item *pListItem; /* For looping over pList */
2924   int nExtra = 0;                  /* Space allocated for zExtra[] */
2925   int nExtraCol;                   /* Number of extra columns needed */
2926   char *zExtra = 0;                /* Extra space after the Index object */
2927   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2928 
2929   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2930     goto exit_create_index;
2931   }
2932   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2933     goto exit_create_index;
2934   }
2935 
2936   /*
2937   ** Find the table that is to be indexed.  Return early if not found.
2938   */
2939   if( pTblName!=0 ){
2940 
2941     /* Use the two-part index name to determine the database
2942     ** to search for the table. 'Fix' the table name to this db
2943     ** before looking up the table.
2944     */
2945     assert( pName1 && pName2 );
2946     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2947     if( iDb<0 ) goto exit_create_index;
2948     assert( pName && pName->z );
2949 
2950 #ifndef SQLITE_OMIT_TEMPDB
2951     /* If the index name was unqualified, check if the table
2952     ** is a temp table. If so, set the database to 1. Do not do this
2953     ** if initialising a database schema.
2954     */
2955     if( !db->init.busy ){
2956       pTab = sqlite3SrcListLookup(pParse, pTblName);
2957       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2958         iDb = 1;
2959       }
2960     }
2961 #endif
2962 
2963     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2964     if( sqlite3FixSrcList(&sFix, pTblName) ){
2965       /* Because the parser constructs pTblName from a single identifier,
2966       ** sqlite3FixSrcList can never fail. */
2967       assert(0);
2968     }
2969     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2970     assert( db->mallocFailed==0 || pTab==0 );
2971     if( pTab==0 ) goto exit_create_index;
2972     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2973       sqlite3ErrorMsg(pParse,
2974            "cannot create a TEMP index on non-TEMP table \"%s\"",
2975            pTab->zName);
2976       goto exit_create_index;
2977     }
2978     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2979   }else{
2980     assert( pName==0 );
2981     assert( pStart==0 );
2982     pTab = pParse->pNewTable;
2983     if( !pTab ) goto exit_create_index;
2984     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2985   }
2986   pDb = &db->aDb[iDb];
2987 
2988   assert( pTab!=0 );
2989   assert( pParse->nErr==0 );
2990   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2991        && db->init.busy==0
2992 #if SQLITE_USER_AUTHENTICATION
2993        && sqlite3UserAuthTable(pTab->zName)==0
2994 #endif
2995        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2996     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2997     goto exit_create_index;
2998   }
2999 #ifndef SQLITE_OMIT_VIEW
3000   if( pTab->pSelect ){
3001     sqlite3ErrorMsg(pParse, "views may not be indexed");
3002     goto exit_create_index;
3003   }
3004 #endif
3005 #ifndef SQLITE_OMIT_VIRTUALTABLE
3006   if( IsVirtual(pTab) ){
3007     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3008     goto exit_create_index;
3009   }
3010 #endif
3011 
3012   /*
3013   ** Find the name of the index.  Make sure there is not already another
3014   ** index or table with the same name.
3015   **
3016   ** Exception:  If we are reading the names of permanent indices from the
3017   ** sqlite_master table (because some other process changed the schema) and
3018   ** one of the index names collides with the name of a temporary table or
3019   ** index, then we will continue to process this index.
3020   **
3021   ** If pName==0 it means that we are
3022   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3023   ** own name.
3024   */
3025   if( pName ){
3026     zName = sqlite3NameFromToken(db, pName);
3027     if( zName==0 ) goto exit_create_index;
3028     assert( pName->z!=0 );
3029     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3030       goto exit_create_index;
3031     }
3032     if( !db->init.busy ){
3033       if( sqlite3FindTable(db, zName, 0)!=0 ){
3034         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3035         goto exit_create_index;
3036       }
3037     }
3038     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3039       if( !ifNotExist ){
3040         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3041       }else{
3042         assert( !db->init.busy );
3043         sqlite3CodeVerifySchema(pParse, iDb);
3044       }
3045       goto exit_create_index;
3046     }
3047   }else{
3048     int n;
3049     Index *pLoop;
3050     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3051     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3052     if( zName==0 ){
3053       goto exit_create_index;
3054     }
3055   }
3056 
3057   /* Check for authorization to create an index.
3058   */
3059 #ifndef SQLITE_OMIT_AUTHORIZATION
3060   {
3061     const char *zDb = pDb->zName;
3062     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3063       goto exit_create_index;
3064     }
3065     i = SQLITE_CREATE_INDEX;
3066     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3067     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3068       goto exit_create_index;
3069     }
3070   }
3071 #endif
3072 
3073   /* If pList==0, it means this routine was called to make a primary
3074   ** key out of the last column added to the table under construction.
3075   ** So create a fake list to simulate this.
3076   */
3077   if( pList==0 ){
3078     Token prevCol;
3079     prevCol.z = pTab->aCol[pTab->nCol-1].zName;
3080     prevCol.n = sqlite3Strlen30(prevCol.z);
3081     pList = sqlite3ExprListAppend(pParse, 0,
3082               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3083     if( pList==0 ) goto exit_create_index;
3084     assert( pList->nExpr==1 );
3085     sqlite3ExprListSetSortOrder(pList, sortOrder);
3086   }else{
3087     sqlite3ExprListCheckLength(pParse, pList, "index");
3088   }
3089 
3090   /* Figure out how many bytes of space are required to store explicitly
3091   ** specified collation sequence names.
3092   */
3093   for(i=0; i<pList->nExpr; i++){
3094     Expr *pExpr = pList->a[i].pExpr;
3095     assert( pExpr!=0 );
3096     if( pExpr->op==TK_COLLATE ){
3097       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3098     }
3099   }
3100 
3101   /*
3102   ** Allocate the index structure.
3103   */
3104   nName = sqlite3Strlen30(zName);
3105   nExtraCol = pPk ? pPk->nKeyCol : 1;
3106   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3107                                       nName + nExtra + 1, &zExtra);
3108   if( db->mallocFailed ){
3109     goto exit_create_index;
3110   }
3111   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3112   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3113   pIndex->zName = zExtra;
3114   zExtra += nName + 1;
3115   memcpy(pIndex->zName, zName, nName+1);
3116   pIndex->pTable = pTab;
3117   pIndex->onError = (u8)onError;
3118   pIndex->uniqNotNull = onError!=OE_None;
3119   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3120   pIndex->pSchema = db->aDb[iDb].pSchema;
3121   pIndex->nKeyCol = pList->nExpr;
3122   if( pPIWhere ){
3123     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3124     pIndex->pPartIdxWhere = pPIWhere;
3125     pPIWhere = 0;
3126   }
3127   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3128 
3129   /* Check to see if we should honor DESC requests on index columns
3130   */
3131   if( pDb->pSchema->file_format>=4 ){
3132     sortOrderMask = -1;   /* Honor DESC */
3133   }else{
3134     sortOrderMask = 0;    /* Ignore DESC */
3135   }
3136 
3137   /* Analyze the list of expressions that form the terms of the index and
3138   ** report any errors.  In the common case where the expression is exactly
3139   ** a table column, store that column in aiColumn[].  For general expressions,
3140   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3141   **
3142   ** TODO: Issue a warning if two or more columns of the index are identical.
3143   ** TODO: Issue a warning if the table primary key is used as part of the
3144   ** index key.
3145   */
3146   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3147     Expr *pCExpr;                  /* The i-th index expression */
3148     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3149     char *zColl;                   /* Collation sequence name */
3150 
3151     sqlite3StringToId(pListItem->pExpr);
3152     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3153     if( pParse->nErr ) goto exit_create_index;
3154     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3155     if( pCExpr->op!=TK_COLUMN ){
3156       if( pTab==pParse->pNewTable ){
3157         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3158                                 "UNIQUE constraints");
3159         goto exit_create_index;
3160       }
3161       if( pIndex->aColExpr==0 ){
3162         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3163         pIndex->aColExpr = pCopy;
3164         if( !db->mallocFailed ){
3165           assert( pCopy!=0 );
3166           pListItem = &pCopy->a[i];
3167         }
3168       }
3169       j = XN_EXPR;
3170       pIndex->aiColumn[i] = XN_EXPR;
3171       pIndex->uniqNotNull = 0;
3172     }else{
3173       j = pCExpr->iColumn;
3174       assert( j<=0x7fff );
3175       if( j<0 ){
3176         j = pTab->iPKey;
3177       }else if( pTab->aCol[j].notNull==0 ){
3178         pIndex->uniqNotNull = 0;
3179       }
3180       pIndex->aiColumn[i] = (i16)j;
3181     }
3182     zColl = 0;
3183     if( pListItem->pExpr->op==TK_COLLATE ){
3184       int nColl;
3185       zColl = pListItem->pExpr->u.zToken;
3186       nColl = sqlite3Strlen30(zColl) + 1;
3187       assert( nExtra>=nColl );
3188       memcpy(zExtra, zColl, nColl);
3189       zColl = zExtra;
3190       zExtra += nColl;
3191       nExtra -= nColl;
3192     }else if( j>=0 ){
3193       zColl = pTab->aCol[j].zColl;
3194     }
3195     if( !zColl ) zColl = "BINARY";
3196     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3197       goto exit_create_index;
3198     }
3199     pIndex->azColl[i] = zColl;
3200     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3201     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3202   }
3203 
3204   /* Append the table key to the end of the index.  For WITHOUT ROWID
3205   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3206   ** normal tables (when pPk==0) this will be the rowid.
3207   */
3208   if( pPk ){
3209     for(j=0; j<pPk->nKeyCol; j++){
3210       int x = pPk->aiColumn[j];
3211       assert( x>=0 );
3212       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3213         pIndex->nColumn--;
3214       }else{
3215         pIndex->aiColumn[i] = x;
3216         pIndex->azColl[i] = pPk->azColl[j];
3217         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3218         i++;
3219       }
3220     }
3221     assert( i==pIndex->nColumn );
3222   }else{
3223     pIndex->aiColumn[i] = XN_ROWID;
3224     pIndex->azColl[i] = "BINARY";
3225   }
3226   sqlite3DefaultRowEst(pIndex);
3227   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3228 
3229   if( pTab==pParse->pNewTable ){
3230     /* This routine has been called to create an automatic index as a
3231     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3232     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3233     ** i.e. one of:
3234     **
3235     ** CREATE TABLE t(x PRIMARY KEY, y);
3236     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3237     **
3238     ** Either way, check to see if the table already has such an index. If
3239     ** so, don't bother creating this one. This only applies to
3240     ** automatically created indices. Users can do as they wish with
3241     ** explicit indices.
3242     **
3243     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3244     ** (and thus suppressing the second one) even if they have different
3245     ** sort orders.
3246     **
3247     ** If there are different collating sequences or if the columns of
3248     ** the constraint occur in different orders, then the constraints are
3249     ** considered distinct and both result in separate indices.
3250     */
3251     Index *pIdx;
3252     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3253       int k;
3254       assert( IsUniqueIndex(pIdx) );
3255       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3256       assert( IsUniqueIndex(pIndex) );
3257 
3258       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3259       for(k=0; k<pIdx->nKeyCol; k++){
3260         const char *z1;
3261         const char *z2;
3262         assert( pIdx->aiColumn[k]>=0 );
3263         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3264         z1 = pIdx->azColl[k];
3265         z2 = pIndex->azColl[k];
3266         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3267       }
3268       if( k==pIdx->nKeyCol ){
3269         if( pIdx->onError!=pIndex->onError ){
3270           /* This constraint creates the same index as a previous
3271           ** constraint specified somewhere in the CREATE TABLE statement.
3272           ** However the ON CONFLICT clauses are different. If both this
3273           ** constraint and the previous equivalent constraint have explicit
3274           ** ON CONFLICT clauses this is an error. Otherwise, use the
3275           ** explicitly specified behavior for the index.
3276           */
3277           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3278             sqlite3ErrorMsg(pParse,
3279                 "conflicting ON CONFLICT clauses specified", 0);
3280           }
3281           if( pIdx->onError==OE_Default ){
3282             pIdx->onError = pIndex->onError;
3283           }
3284         }
3285         pRet = pIdx;
3286         goto exit_create_index;
3287       }
3288     }
3289   }
3290 
3291   /* Link the new Index structure to its table and to the other
3292   ** in-memory database structures.
3293   */
3294   assert( pParse->nErr==0 );
3295   if( db->init.busy ){
3296     Index *p;
3297     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3298     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3299                           pIndex->zName, pIndex);
3300     if( p ){
3301       assert( p==pIndex );  /* Malloc must have failed */
3302       db->mallocFailed = 1;
3303       goto exit_create_index;
3304     }
3305     db->flags |= SQLITE_InternChanges;
3306     if( pTblName!=0 ){
3307       pIndex->tnum = db->init.newTnum;
3308     }
3309   }
3310 
3311   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3312   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3313   ** emit code to allocate the index rootpage on disk and make an entry for
3314   ** the index in the sqlite_master table and populate the index with
3315   ** content.  But, do not do this if we are simply reading the sqlite_master
3316   ** table to parse the schema, or if this index is the PRIMARY KEY index
3317   ** of a WITHOUT ROWID table.
3318   **
3319   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3320   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3321   ** has just been created, it contains no data and the index initialization
3322   ** step can be skipped.
3323   */
3324   else if( HasRowid(pTab) || pTblName!=0 ){
3325     Vdbe *v;
3326     char *zStmt;
3327     int iMem = ++pParse->nMem;
3328 
3329     v = sqlite3GetVdbe(pParse);
3330     if( v==0 ) goto exit_create_index;
3331 
3332     sqlite3BeginWriteOperation(pParse, 1, iDb);
3333 
3334     /* Create the rootpage for the index using CreateIndex. But before
3335     ** doing so, code a Noop instruction and store its address in
3336     ** Index.tnum. This is required in case this index is actually a
3337     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3338     ** that case the convertToWithoutRowidTable() routine will replace
3339     ** the Noop with a Goto to jump over the VDBE code generated below. */
3340     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3341     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3342 
3343     /* Gather the complete text of the CREATE INDEX statement into
3344     ** the zStmt variable
3345     */
3346     if( pStart ){
3347       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3348       if( pName->z[n-1]==';' ) n--;
3349       /* A named index with an explicit CREATE INDEX statement */
3350       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3351         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3352     }else{
3353       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3354       /* zStmt = sqlite3MPrintf(""); */
3355       zStmt = 0;
3356     }
3357 
3358     /* Add an entry in sqlite_master for this index
3359     */
3360     sqlite3NestedParse(pParse,
3361         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3362         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3363         pIndex->zName,
3364         pTab->zName,
3365         iMem,
3366         zStmt
3367     );
3368     sqlite3DbFree(db, zStmt);
3369 
3370     /* Fill the index with data and reparse the schema. Code an OP_Expire
3371     ** to invalidate all pre-compiled statements.
3372     */
3373     if( pTblName ){
3374       sqlite3RefillIndex(pParse, pIndex, iMem);
3375       sqlite3ChangeCookie(pParse, iDb);
3376       sqlite3VdbeAddParseSchemaOp(v, iDb,
3377          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3378       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3379     }
3380 
3381     sqlite3VdbeJumpHere(v, pIndex->tnum);
3382   }
3383 
3384   /* When adding an index to the list of indices for a table, make
3385   ** sure all indices labeled OE_Replace come after all those labeled
3386   ** OE_Ignore.  This is necessary for the correct constraint check
3387   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3388   ** UPDATE and INSERT statements.
3389   */
3390   if( db->init.busy || pTblName==0 ){
3391     if( onError!=OE_Replace || pTab->pIndex==0
3392          || pTab->pIndex->onError==OE_Replace){
3393       pIndex->pNext = pTab->pIndex;
3394       pTab->pIndex = pIndex;
3395     }else{
3396       Index *pOther = pTab->pIndex;
3397       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3398         pOther = pOther->pNext;
3399       }
3400       pIndex->pNext = pOther->pNext;
3401       pOther->pNext = pIndex;
3402     }
3403     pRet = pIndex;
3404     pIndex = 0;
3405   }
3406 
3407   /* Clean up before exiting */
3408 exit_create_index:
3409   if( pIndex ) freeIndex(db, pIndex);
3410   sqlite3ExprDelete(db, pPIWhere);
3411   sqlite3ExprListDelete(db, pList);
3412   sqlite3SrcListDelete(db, pTblName);
3413   sqlite3DbFree(db, zName);
3414   return pRet;
3415 }
3416 
3417 /*
3418 ** Fill the Index.aiRowEst[] array with default information - information
3419 ** to be used when we have not run the ANALYZE command.
3420 **
3421 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3422 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3423 ** number of rows in the table that match any particular value of the
3424 ** first column of the index.  aiRowEst[2] is an estimate of the number
3425 ** of rows that match any particular combination of the first 2 columns
3426 ** of the index.  And so forth.  It must always be the case that
3427 *
3428 **           aiRowEst[N]<=aiRowEst[N-1]
3429 **           aiRowEst[N]>=1
3430 **
3431 ** Apart from that, we have little to go on besides intuition as to
3432 ** how aiRowEst[] should be initialized.  The numbers generated here
3433 ** are based on typical values found in actual indices.
3434 */
3435 void sqlite3DefaultRowEst(Index *pIdx){
3436   /*                10,  9,  8,  7,  6 */
3437   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3438   LogEst *a = pIdx->aiRowLogEst;
3439   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3440   int i;
3441 
3442   /* Set the first entry (number of rows in the index) to the estimated
3443   ** number of rows in the table. Or 10, if the estimated number of rows
3444   ** in the table is less than that.  */
3445   a[0] = pIdx->pTable->nRowLogEst;
3446   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3447 
3448   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3449   ** 6 and each subsequent value (if any) is 5.  */
3450   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3451   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3452     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3453   }
3454 
3455   assert( 0==sqlite3LogEst(1) );
3456   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3457 }
3458 
3459 /*
3460 ** This routine will drop an existing named index.  This routine
3461 ** implements the DROP INDEX statement.
3462 */
3463 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3464   Index *pIndex;
3465   Vdbe *v;
3466   sqlite3 *db = pParse->db;
3467   int iDb;
3468 
3469   assert( pParse->nErr==0 );   /* Never called with prior errors */
3470   if( db->mallocFailed ){
3471     goto exit_drop_index;
3472   }
3473   assert( pName->nSrc==1 );
3474   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3475     goto exit_drop_index;
3476   }
3477   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3478   if( pIndex==0 ){
3479     if( !ifExists ){
3480       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3481     }else{
3482       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3483     }
3484     pParse->checkSchema = 1;
3485     goto exit_drop_index;
3486   }
3487   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3488     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3489       "or PRIMARY KEY constraint cannot be dropped", 0);
3490     goto exit_drop_index;
3491   }
3492   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3493 #ifndef SQLITE_OMIT_AUTHORIZATION
3494   {
3495     int code = SQLITE_DROP_INDEX;
3496     Table *pTab = pIndex->pTable;
3497     const char *zDb = db->aDb[iDb].zName;
3498     const char *zTab = SCHEMA_TABLE(iDb);
3499     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3500       goto exit_drop_index;
3501     }
3502     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3503     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3504       goto exit_drop_index;
3505     }
3506   }
3507 #endif
3508 
3509   /* Generate code to remove the index and from the master table */
3510   v = sqlite3GetVdbe(pParse);
3511   if( v ){
3512     sqlite3BeginWriteOperation(pParse, 1, iDb);
3513     sqlite3NestedParse(pParse,
3514        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3515        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3516     );
3517     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3518     sqlite3ChangeCookie(pParse, iDb);
3519     destroyRootPage(pParse, pIndex->tnum, iDb);
3520     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3521   }
3522 
3523 exit_drop_index:
3524   sqlite3SrcListDelete(db, pName);
3525 }
3526 
3527 /*
3528 ** pArray is a pointer to an array of objects. Each object in the
3529 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3530 ** to extend the array so that there is space for a new object at the end.
3531 **
3532 ** When this function is called, *pnEntry contains the current size of
3533 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3534 ** in total).
3535 **
3536 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3537 ** space allocated for the new object is zeroed, *pnEntry updated to
3538 ** reflect the new size of the array and a pointer to the new allocation
3539 ** returned. *pIdx is set to the index of the new array entry in this case.
3540 **
3541 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3542 ** unchanged and a copy of pArray returned.
3543 */
3544 void *sqlite3ArrayAllocate(
3545   sqlite3 *db,      /* Connection to notify of malloc failures */
3546   void *pArray,     /* Array of objects.  Might be reallocated */
3547   int szEntry,      /* Size of each object in the array */
3548   int *pnEntry,     /* Number of objects currently in use */
3549   int *pIdx         /* Write the index of a new slot here */
3550 ){
3551   char *z;
3552   int n = *pnEntry;
3553   if( (n & (n-1))==0 ){
3554     int sz = (n==0) ? 1 : 2*n;
3555     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3556     if( pNew==0 ){
3557       *pIdx = -1;
3558       return pArray;
3559     }
3560     pArray = pNew;
3561   }
3562   z = (char*)pArray;
3563   memset(&z[n * szEntry], 0, szEntry);
3564   *pIdx = n;
3565   ++*pnEntry;
3566   return pArray;
3567 }
3568 
3569 /*
3570 ** Append a new element to the given IdList.  Create a new IdList if
3571 ** need be.
3572 **
3573 ** A new IdList is returned, or NULL if malloc() fails.
3574 */
3575 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3576   int i;
3577   if( pList==0 ){
3578     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3579     if( pList==0 ) return 0;
3580   }
3581   pList->a = sqlite3ArrayAllocate(
3582       db,
3583       pList->a,
3584       sizeof(pList->a[0]),
3585       &pList->nId,
3586       &i
3587   );
3588   if( i<0 ){
3589     sqlite3IdListDelete(db, pList);
3590     return 0;
3591   }
3592   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3593   return pList;
3594 }
3595 
3596 /*
3597 ** Delete an IdList.
3598 */
3599 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3600   int i;
3601   if( pList==0 ) return;
3602   for(i=0; i<pList->nId; i++){
3603     sqlite3DbFree(db, pList->a[i].zName);
3604   }
3605   sqlite3DbFree(db, pList->a);
3606   sqlite3DbFree(db, pList);
3607 }
3608 
3609 /*
3610 ** Return the index in pList of the identifier named zId.  Return -1
3611 ** if not found.
3612 */
3613 int sqlite3IdListIndex(IdList *pList, const char *zName){
3614   int i;
3615   if( pList==0 ) return -1;
3616   for(i=0; i<pList->nId; i++){
3617     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3618   }
3619   return -1;
3620 }
3621 
3622 /*
3623 ** Expand the space allocated for the given SrcList object by
3624 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3625 ** New slots are zeroed.
3626 **
3627 ** For example, suppose a SrcList initially contains two entries: A,B.
3628 ** To append 3 new entries onto the end, do this:
3629 **
3630 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3631 **
3632 ** After the call above it would contain:  A, B, nil, nil, nil.
3633 ** If the iStart argument had been 1 instead of 2, then the result
3634 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3635 ** the iStart value would be 0.  The result then would
3636 ** be: nil, nil, nil, A, B.
3637 **
3638 ** If a memory allocation fails the SrcList is unchanged.  The
3639 ** db->mallocFailed flag will be set to true.
3640 */
3641 SrcList *sqlite3SrcListEnlarge(
3642   sqlite3 *db,       /* Database connection to notify of OOM errors */
3643   SrcList *pSrc,     /* The SrcList to be enlarged */
3644   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3645   int iStart         /* Index in pSrc->a[] of first new slot */
3646 ){
3647   int i;
3648 
3649   /* Sanity checking on calling parameters */
3650   assert( iStart>=0 );
3651   assert( nExtra>=1 );
3652   assert( pSrc!=0 );
3653   assert( iStart<=pSrc->nSrc );
3654 
3655   /* Allocate additional space if needed */
3656   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3657     SrcList *pNew;
3658     int nAlloc = pSrc->nSrc+nExtra;
3659     int nGot;
3660     pNew = sqlite3DbRealloc(db, pSrc,
3661                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3662     if( pNew==0 ){
3663       assert( db->mallocFailed );
3664       return pSrc;
3665     }
3666     pSrc = pNew;
3667     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3668     pSrc->nAlloc = nGot;
3669   }
3670 
3671   /* Move existing slots that come after the newly inserted slots
3672   ** out of the way */
3673   for(i=pSrc->nSrc-1; i>=iStart; i--){
3674     pSrc->a[i+nExtra] = pSrc->a[i];
3675   }
3676   pSrc->nSrc += nExtra;
3677 
3678   /* Zero the newly allocated slots */
3679   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3680   for(i=iStart; i<iStart+nExtra; i++){
3681     pSrc->a[i].iCursor = -1;
3682   }
3683 
3684   /* Return a pointer to the enlarged SrcList */
3685   return pSrc;
3686 }
3687 
3688 
3689 /*
3690 ** Append a new table name to the given SrcList.  Create a new SrcList if
3691 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3692 **
3693 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3694 ** SrcList might be the same as the SrcList that was input or it might be
3695 ** a new one.  If an OOM error does occurs, then the prior value of pList
3696 ** that is input to this routine is automatically freed.
3697 **
3698 ** If pDatabase is not null, it means that the table has an optional
3699 ** database name prefix.  Like this:  "database.table".  The pDatabase
3700 ** points to the table name and the pTable points to the database name.
3701 ** The SrcList.a[].zName field is filled with the table name which might
3702 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3703 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3704 ** or with NULL if no database is specified.
3705 **
3706 ** In other words, if call like this:
3707 **
3708 **         sqlite3SrcListAppend(D,A,B,0);
3709 **
3710 ** Then B is a table name and the database name is unspecified.  If called
3711 ** like this:
3712 **
3713 **         sqlite3SrcListAppend(D,A,B,C);
3714 **
3715 ** Then C is the table name and B is the database name.  If C is defined
3716 ** then so is B.  In other words, we never have a case where:
3717 **
3718 **         sqlite3SrcListAppend(D,A,0,C);
3719 **
3720 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3721 ** before being added to the SrcList.
3722 */
3723 SrcList *sqlite3SrcListAppend(
3724   sqlite3 *db,        /* Connection to notify of malloc failures */
3725   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3726   Token *pTable,      /* Table to append */
3727   Token *pDatabase    /* Database of the table */
3728 ){
3729   struct SrcList_item *pItem;
3730   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3731   if( pList==0 ){
3732     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3733     if( pList==0 ) return 0;
3734     pList->nAlloc = 1;
3735   }
3736   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3737   if( db->mallocFailed ){
3738     sqlite3SrcListDelete(db, pList);
3739     return 0;
3740   }
3741   pItem = &pList->a[pList->nSrc-1];
3742   if( pDatabase && pDatabase->z==0 ){
3743     pDatabase = 0;
3744   }
3745   if( pDatabase ){
3746     Token *pTemp = pDatabase;
3747     pDatabase = pTable;
3748     pTable = pTemp;
3749   }
3750   pItem->zName = sqlite3NameFromToken(db, pTable);
3751   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3752   return pList;
3753 }
3754 
3755 /*
3756 ** Assign VdbeCursor index numbers to all tables in a SrcList
3757 */
3758 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3759   int i;
3760   struct SrcList_item *pItem;
3761   assert(pList || pParse->db->mallocFailed );
3762   if( pList ){
3763     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3764       if( pItem->iCursor>=0 ) break;
3765       pItem->iCursor = pParse->nTab++;
3766       if( pItem->pSelect ){
3767         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3768       }
3769     }
3770   }
3771 }
3772 
3773 /*
3774 ** Delete an entire SrcList including all its substructure.
3775 */
3776 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3777   int i;
3778   struct SrcList_item *pItem;
3779   if( pList==0 ) return;
3780   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3781     sqlite3DbFree(db, pItem->zDatabase);
3782     sqlite3DbFree(db, pItem->zName);
3783     sqlite3DbFree(db, pItem->zAlias);
3784     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3785     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3786     sqlite3DeleteTable(db, pItem->pTab);
3787     sqlite3SelectDelete(db, pItem->pSelect);
3788     sqlite3ExprDelete(db, pItem->pOn);
3789     sqlite3IdListDelete(db, pItem->pUsing);
3790   }
3791   sqlite3DbFree(db, pList);
3792 }
3793 
3794 /*
3795 ** This routine is called by the parser to add a new term to the
3796 ** end of a growing FROM clause.  The "p" parameter is the part of
3797 ** the FROM clause that has already been constructed.  "p" is NULL
3798 ** if this is the first term of the FROM clause.  pTable and pDatabase
3799 ** are the name of the table and database named in the FROM clause term.
3800 ** pDatabase is NULL if the database name qualifier is missing - the
3801 ** usual case.  If the term has an alias, then pAlias points to the
3802 ** alias token.  If the term is a subquery, then pSubquery is the
3803 ** SELECT statement that the subquery encodes.  The pTable and
3804 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3805 ** parameters are the content of the ON and USING clauses.
3806 **
3807 ** Return a new SrcList which encodes is the FROM with the new
3808 ** term added.
3809 */
3810 SrcList *sqlite3SrcListAppendFromTerm(
3811   Parse *pParse,          /* Parsing context */
3812   SrcList *p,             /* The left part of the FROM clause already seen */
3813   Token *pTable,          /* Name of the table to add to the FROM clause */
3814   Token *pDatabase,       /* Name of the database containing pTable */
3815   Token *pAlias,          /* The right-hand side of the AS subexpression */
3816   Select *pSubquery,      /* A subquery used in place of a table name */
3817   Expr *pOn,              /* The ON clause of a join */
3818   IdList *pUsing          /* The USING clause of a join */
3819 ){
3820   struct SrcList_item *pItem;
3821   sqlite3 *db = pParse->db;
3822   if( !p && (pOn || pUsing) ){
3823     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3824       (pOn ? "ON" : "USING")
3825     );
3826     goto append_from_error;
3827   }
3828   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3829   if( p==0 || NEVER(p->nSrc==0) ){
3830     goto append_from_error;
3831   }
3832   pItem = &p->a[p->nSrc-1];
3833   assert( pAlias!=0 );
3834   if( pAlias->n ){
3835     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3836   }
3837   pItem->pSelect = pSubquery;
3838   pItem->pOn = pOn;
3839   pItem->pUsing = pUsing;
3840   return p;
3841 
3842  append_from_error:
3843   assert( p==0 );
3844   sqlite3ExprDelete(db, pOn);
3845   sqlite3IdListDelete(db, pUsing);
3846   sqlite3SelectDelete(db, pSubquery);
3847   return 0;
3848 }
3849 
3850 /*
3851 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3852 ** element of the source-list passed as the second argument.
3853 */
3854 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3855   assert( pIndexedBy!=0 );
3856   if( p && ALWAYS(p->nSrc>0) ){
3857     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3858     assert( pItem->fg.notIndexed==0 );
3859     assert( pItem->fg.isIndexedBy==0 );
3860     assert( pItem->fg.isTabFunc==0 );
3861     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3862       /* A "NOT INDEXED" clause was supplied. See parse.y
3863       ** construct "indexed_opt" for details. */
3864       pItem->fg.notIndexed = 1;
3865     }else{
3866       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3867       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3868     }
3869   }
3870 }
3871 
3872 /*
3873 ** Add the list of function arguments to the SrcList entry for a
3874 ** table-valued-function.
3875 */
3876 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3877   if( p && pList ){
3878     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3879     assert( pItem->fg.notIndexed==0 );
3880     assert( pItem->fg.isIndexedBy==0 );
3881     assert( pItem->fg.isTabFunc==0 );
3882     pItem->u1.pFuncArg = pList;
3883     pItem->fg.isTabFunc = 1;
3884   }else{
3885     sqlite3ExprListDelete(pParse->db, pList);
3886   }
3887 }
3888 
3889 /*
3890 ** When building up a FROM clause in the parser, the join operator
3891 ** is initially attached to the left operand.  But the code generator
3892 ** expects the join operator to be on the right operand.  This routine
3893 ** Shifts all join operators from left to right for an entire FROM
3894 ** clause.
3895 **
3896 ** Example: Suppose the join is like this:
3897 **
3898 **           A natural cross join B
3899 **
3900 ** The operator is "natural cross join".  The A and B operands are stored
3901 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3902 ** operator with A.  This routine shifts that operator over to B.
3903 */
3904 void sqlite3SrcListShiftJoinType(SrcList *p){
3905   if( p ){
3906     int i;
3907     for(i=p->nSrc-1; i>0; i--){
3908       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3909     }
3910     p->a[0].fg.jointype = 0;
3911   }
3912 }
3913 
3914 /*
3915 ** Begin a transaction
3916 */
3917 void sqlite3BeginTransaction(Parse *pParse, int type){
3918   sqlite3 *db;
3919   Vdbe *v;
3920   int i;
3921 
3922   assert( pParse!=0 );
3923   db = pParse->db;
3924   assert( db!=0 );
3925 /*  if( db->aDb[0].pBt==0 ) return; */
3926   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3927     return;
3928   }
3929   v = sqlite3GetVdbe(pParse);
3930   if( !v ) return;
3931   if( type!=TK_DEFERRED ){
3932     for(i=0; i<db->nDb; i++){
3933       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3934       sqlite3VdbeUsesBtree(v, i);
3935     }
3936   }
3937   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3938 }
3939 
3940 /*
3941 ** Commit a transaction
3942 */
3943 void sqlite3CommitTransaction(Parse *pParse){
3944   Vdbe *v;
3945 
3946   assert( pParse!=0 );
3947   assert( pParse->db!=0 );
3948   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3949     return;
3950   }
3951   v = sqlite3GetVdbe(pParse);
3952   if( v ){
3953     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3954   }
3955 }
3956 
3957 /*
3958 ** Rollback a transaction
3959 */
3960 void sqlite3RollbackTransaction(Parse *pParse){
3961   Vdbe *v;
3962 
3963   assert( pParse!=0 );
3964   assert( pParse->db!=0 );
3965   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3966     return;
3967   }
3968   v = sqlite3GetVdbe(pParse);
3969   if( v ){
3970     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3971   }
3972 }
3973 
3974 /*
3975 ** This function is called by the parser when it parses a command to create,
3976 ** release or rollback an SQL savepoint.
3977 */
3978 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3979   char *zName = sqlite3NameFromToken(pParse->db, pName);
3980   if( zName ){
3981     Vdbe *v = sqlite3GetVdbe(pParse);
3982 #ifndef SQLITE_OMIT_AUTHORIZATION
3983     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3984     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3985 #endif
3986     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3987       sqlite3DbFree(pParse->db, zName);
3988       return;
3989     }
3990     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3991   }
3992 }
3993 
3994 /*
3995 ** Make sure the TEMP database is open and available for use.  Return
3996 ** the number of errors.  Leave any error messages in the pParse structure.
3997 */
3998 int sqlite3OpenTempDatabase(Parse *pParse){
3999   sqlite3 *db = pParse->db;
4000   if( db->aDb[1].pBt==0 && !pParse->explain ){
4001     int rc;
4002     Btree *pBt;
4003     static const int flags =
4004           SQLITE_OPEN_READWRITE |
4005           SQLITE_OPEN_CREATE |
4006           SQLITE_OPEN_EXCLUSIVE |
4007           SQLITE_OPEN_DELETEONCLOSE |
4008           SQLITE_OPEN_TEMP_DB;
4009 
4010     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4011     if( rc!=SQLITE_OK ){
4012       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4013         "file for storing temporary tables");
4014       pParse->rc = rc;
4015       return 1;
4016     }
4017     db->aDb[1].pBt = pBt;
4018     assert( db->aDb[1].pSchema );
4019     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4020       db->mallocFailed = 1;
4021       return 1;
4022     }
4023   }
4024   return 0;
4025 }
4026 
4027 /*
4028 ** Record the fact that the schema cookie will need to be verified
4029 ** for database iDb.  The code to actually verify the schema cookie
4030 ** will occur at the end of the top-level VDBE and will be generated
4031 ** later, by sqlite3FinishCoding().
4032 */
4033 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4034   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4035   sqlite3 *db = pToplevel->db;
4036 
4037   assert( iDb>=0 && iDb<db->nDb );
4038   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4039   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4040   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4041   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4042     DbMaskSet(pToplevel->cookieMask, iDb);
4043     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4044     if( !OMIT_TEMPDB && iDb==1 ){
4045       sqlite3OpenTempDatabase(pToplevel);
4046     }
4047   }
4048 }
4049 
4050 /*
4051 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4052 ** attached database. Otherwise, invoke it for the database named zDb only.
4053 */
4054 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4055   sqlite3 *db = pParse->db;
4056   int i;
4057   for(i=0; i<db->nDb; i++){
4058     Db *pDb = &db->aDb[i];
4059     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4060       sqlite3CodeVerifySchema(pParse, i);
4061     }
4062   }
4063 }
4064 
4065 /*
4066 ** Generate VDBE code that prepares for doing an operation that
4067 ** might change the database.
4068 **
4069 ** This routine starts a new transaction if we are not already within
4070 ** a transaction.  If we are already within a transaction, then a checkpoint
4071 ** is set if the setStatement parameter is true.  A checkpoint should
4072 ** be set for operations that might fail (due to a constraint) part of
4073 ** the way through and which will need to undo some writes without having to
4074 ** rollback the whole transaction.  For operations where all constraints
4075 ** can be checked before any changes are made to the database, it is never
4076 ** necessary to undo a write and the checkpoint should not be set.
4077 */
4078 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4079   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4080   sqlite3CodeVerifySchema(pParse, iDb);
4081   DbMaskSet(pToplevel->writeMask, iDb);
4082   pToplevel->isMultiWrite |= setStatement;
4083 }
4084 
4085 /*
4086 ** Indicate that the statement currently under construction might write
4087 ** more than one entry (example: deleting one row then inserting another,
4088 ** inserting multiple rows in a table, or inserting a row and index entries.)
4089 ** If an abort occurs after some of these writes have completed, then it will
4090 ** be necessary to undo the completed writes.
4091 */
4092 void sqlite3MultiWrite(Parse *pParse){
4093   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4094   pToplevel->isMultiWrite = 1;
4095 }
4096 
4097 /*
4098 ** The code generator calls this routine if is discovers that it is
4099 ** possible to abort a statement prior to completion.  In order to
4100 ** perform this abort without corrupting the database, we need to make
4101 ** sure that the statement is protected by a statement transaction.
4102 **
4103 ** Technically, we only need to set the mayAbort flag if the
4104 ** isMultiWrite flag was previously set.  There is a time dependency
4105 ** such that the abort must occur after the multiwrite.  This makes
4106 ** some statements involving the REPLACE conflict resolution algorithm
4107 ** go a little faster.  But taking advantage of this time dependency
4108 ** makes it more difficult to prove that the code is correct (in
4109 ** particular, it prevents us from writing an effective
4110 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4111 ** to take the safe route and skip the optimization.
4112 */
4113 void sqlite3MayAbort(Parse *pParse){
4114   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4115   pToplevel->mayAbort = 1;
4116 }
4117 
4118 /*
4119 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4120 ** error. The onError parameter determines which (if any) of the statement
4121 ** and/or current transaction is rolled back.
4122 */
4123 void sqlite3HaltConstraint(
4124   Parse *pParse,    /* Parsing context */
4125   int errCode,      /* extended error code */
4126   int onError,      /* Constraint type */
4127   char *p4,         /* Error message */
4128   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4129   u8 p5Errmsg       /* P5_ErrMsg type */
4130 ){
4131   Vdbe *v = sqlite3GetVdbe(pParse);
4132   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4133   if( onError==OE_Abort ){
4134     sqlite3MayAbort(pParse);
4135   }
4136   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4137   if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
4138 }
4139 
4140 /*
4141 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4142 */
4143 void sqlite3UniqueConstraint(
4144   Parse *pParse,    /* Parsing context */
4145   int onError,      /* Constraint type */
4146   Index *pIdx       /* The index that triggers the constraint */
4147 ){
4148   char *zErr;
4149   int j;
4150   StrAccum errMsg;
4151   Table *pTab = pIdx->pTable;
4152 
4153   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4154   if( pIdx->aColExpr ){
4155     sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
4156   }else{
4157     for(j=0; j<pIdx->nKeyCol; j++){
4158       char *zCol;
4159       assert( pIdx->aiColumn[j]>=0 );
4160       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4161       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4162       sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
4163     }
4164   }
4165   zErr = sqlite3StrAccumFinish(&errMsg);
4166   sqlite3HaltConstraint(pParse,
4167     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4168                             : SQLITE_CONSTRAINT_UNIQUE,
4169     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4170 }
4171 
4172 
4173 /*
4174 ** Code an OP_Halt due to non-unique rowid.
4175 */
4176 void sqlite3RowidConstraint(
4177   Parse *pParse,    /* Parsing context */
4178   int onError,      /* Conflict resolution algorithm */
4179   Table *pTab       /* The table with the non-unique rowid */
4180 ){
4181   char *zMsg;
4182   int rc;
4183   if( pTab->iPKey>=0 ){
4184     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4185                           pTab->aCol[pTab->iPKey].zName);
4186     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4187   }else{
4188     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4189     rc = SQLITE_CONSTRAINT_ROWID;
4190   }
4191   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4192                         P5_ConstraintUnique);
4193 }
4194 
4195 /*
4196 ** Check to see if pIndex uses the collating sequence pColl.  Return
4197 ** true if it does and false if it does not.
4198 */
4199 #ifndef SQLITE_OMIT_REINDEX
4200 static int collationMatch(const char *zColl, Index *pIndex){
4201   int i;
4202   assert( zColl!=0 );
4203   for(i=0; i<pIndex->nColumn; i++){
4204     const char *z = pIndex->azColl[i];
4205     assert( z!=0 || pIndex->aiColumn[i]<0 );
4206     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4207       return 1;
4208     }
4209   }
4210   return 0;
4211 }
4212 #endif
4213 
4214 /*
4215 ** Recompute all indices of pTab that use the collating sequence pColl.
4216 ** If pColl==0 then recompute all indices of pTab.
4217 */
4218 #ifndef SQLITE_OMIT_REINDEX
4219 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4220   Index *pIndex;              /* An index associated with pTab */
4221 
4222   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4223     if( zColl==0 || collationMatch(zColl, pIndex) ){
4224       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4225       sqlite3BeginWriteOperation(pParse, 0, iDb);
4226       sqlite3RefillIndex(pParse, pIndex, -1);
4227     }
4228   }
4229 }
4230 #endif
4231 
4232 /*
4233 ** Recompute all indices of all tables in all databases where the
4234 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4235 ** all indices everywhere.
4236 */
4237 #ifndef SQLITE_OMIT_REINDEX
4238 static void reindexDatabases(Parse *pParse, char const *zColl){
4239   Db *pDb;                    /* A single database */
4240   int iDb;                    /* The database index number */
4241   sqlite3 *db = pParse->db;   /* The database connection */
4242   HashElem *k;                /* For looping over tables in pDb */
4243   Table *pTab;                /* A table in the database */
4244 
4245   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4246   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4247     assert( pDb!=0 );
4248     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4249       pTab = (Table*)sqliteHashData(k);
4250       reindexTable(pParse, pTab, zColl);
4251     }
4252   }
4253 }
4254 #endif
4255 
4256 /*
4257 ** Generate code for the REINDEX command.
4258 **
4259 **        REINDEX                            -- 1
4260 **        REINDEX  <collation>               -- 2
4261 **        REINDEX  ?<database>.?<tablename>  -- 3
4262 **        REINDEX  ?<database>.?<indexname>  -- 4
4263 **
4264 ** Form 1 causes all indices in all attached databases to be rebuilt.
4265 ** Form 2 rebuilds all indices in all databases that use the named
4266 ** collating function.  Forms 3 and 4 rebuild the named index or all
4267 ** indices associated with the named table.
4268 */
4269 #ifndef SQLITE_OMIT_REINDEX
4270 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4271   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4272   char *z;                    /* Name of a table or index */
4273   const char *zDb;            /* Name of the database */
4274   Table *pTab;                /* A table in the database */
4275   Index *pIndex;              /* An index associated with pTab */
4276   int iDb;                    /* The database index number */
4277   sqlite3 *db = pParse->db;   /* The database connection */
4278   Token *pObjName;            /* Name of the table or index to be reindexed */
4279 
4280   /* Read the database schema. If an error occurs, leave an error message
4281   ** and code in pParse and return NULL. */
4282   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4283     return;
4284   }
4285 
4286   if( pName1==0 ){
4287     reindexDatabases(pParse, 0);
4288     return;
4289   }else if( NEVER(pName2==0) || pName2->z==0 ){
4290     char *zColl;
4291     assert( pName1->z );
4292     zColl = sqlite3NameFromToken(pParse->db, pName1);
4293     if( !zColl ) return;
4294     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4295     if( pColl ){
4296       reindexDatabases(pParse, zColl);
4297       sqlite3DbFree(db, zColl);
4298       return;
4299     }
4300     sqlite3DbFree(db, zColl);
4301   }
4302   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4303   if( iDb<0 ) return;
4304   z = sqlite3NameFromToken(db, pObjName);
4305   if( z==0 ) return;
4306   zDb = db->aDb[iDb].zName;
4307   pTab = sqlite3FindTable(db, z, zDb);
4308   if( pTab ){
4309     reindexTable(pParse, pTab, 0);
4310     sqlite3DbFree(db, z);
4311     return;
4312   }
4313   pIndex = sqlite3FindIndex(db, z, zDb);
4314   sqlite3DbFree(db, z);
4315   if( pIndex ){
4316     sqlite3BeginWriteOperation(pParse, 0, iDb);
4317     sqlite3RefillIndex(pParse, pIndex, -1);
4318     return;
4319   }
4320   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4321 }
4322 #endif
4323 
4324 /*
4325 ** Return a KeyInfo structure that is appropriate for the given Index.
4326 **
4327 ** The KeyInfo structure for an index is cached in the Index object.
4328 ** So there might be multiple references to the returned pointer.  The
4329 ** caller should not try to modify the KeyInfo object.
4330 **
4331 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4332 ** when it has finished using it.
4333 */
4334 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4335   int i;
4336   int nCol = pIdx->nColumn;
4337   int nKey = pIdx->nKeyCol;
4338   KeyInfo *pKey;
4339   if( pParse->nErr ) return 0;
4340   if( pIdx->uniqNotNull ){
4341     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4342   }else{
4343     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4344   }
4345   if( pKey ){
4346     assert( sqlite3KeyInfoIsWriteable(pKey) );
4347     for(i=0; i<nCol; i++){
4348       char *zColl = pIdx->azColl[i];
4349       assert( zColl!=0 );
4350       pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
4351                         sqlite3LocateCollSeq(pParse, zColl);
4352       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4353     }
4354     if( pParse->nErr ){
4355       sqlite3KeyInfoUnref(pKey);
4356       pKey = 0;
4357     }
4358   }
4359   return pKey;
4360 }
4361 
4362 #ifndef SQLITE_OMIT_CTE
4363 /*
4364 ** This routine is invoked once per CTE by the parser while parsing a
4365 ** WITH clause.
4366 */
4367 With *sqlite3WithAdd(
4368   Parse *pParse,          /* Parsing context */
4369   With *pWith,            /* Existing WITH clause, or NULL */
4370   Token *pName,           /* Name of the common-table */
4371   ExprList *pArglist,     /* Optional column name list for the table */
4372   Select *pQuery          /* Query used to initialize the table */
4373 ){
4374   sqlite3 *db = pParse->db;
4375   With *pNew;
4376   char *zName;
4377 
4378   /* Check that the CTE name is unique within this WITH clause. If
4379   ** not, store an error in the Parse structure. */
4380   zName = sqlite3NameFromToken(pParse->db, pName);
4381   if( zName && pWith ){
4382     int i;
4383     for(i=0; i<pWith->nCte; i++){
4384       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4385         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4386       }
4387     }
4388   }
4389 
4390   if( pWith ){
4391     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4392     pNew = sqlite3DbRealloc(db, pWith, nByte);
4393   }else{
4394     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4395   }
4396   assert( zName!=0 || pNew==0 );
4397   assert( db->mallocFailed==0 || pNew==0 );
4398 
4399   if( pNew==0 ){
4400     sqlite3ExprListDelete(db, pArglist);
4401     sqlite3SelectDelete(db, pQuery);
4402     sqlite3DbFree(db, zName);
4403     pNew = pWith;
4404   }else{
4405     pNew->a[pNew->nCte].pSelect = pQuery;
4406     pNew->a[pNew->nCte].pCols = pArglist;
4407     pNew->a[pNew->nCte].zName = zName;
4408     pNew->a[pNew->nCte].zCteErr = 0;
4409     pNew->nCte++;
4410   }
4411 
4412   return pNew;
4413 }
4414 
4415 /*
4416 ** Free the contents of the With object passed as the second argument.
4417 */
4418 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4419   if( pWith ){
4420     int i;
4421     for(i=0; i<pWith->nCte; i++){
4422       struct Cte *pCte = &pWith->a[i];
4423       sqlite3ExprListDelete(db, pCte->pCols);
4424       sqlite3SelectDelete(db, pCte->pSelect);
4425       sqlite3DbFree(db, pCte->zName);
4426     }
4427     sqlite3DbFree(db, pWith);
4428   }
4429 }
4430 #endif /* !defined(SQLITE_OMIT_CTE) */
4431