xref: /sqlite-3.40.0/src/build.c (revision d5578433)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared.  This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
126 void sqlite3FinishCoding(Parse *pParse){
127   sqlite3 *db;
128   Vdbe *v;
129 
130   db = pParse->db;
131   if( db->mallocFailed ) return;
132   if( pParse->nested ) return;
133   if( pParse->nErr ) return;
134 
135   /* Begin by generating some termination code at the end of the
136   ** vdbe program
137   */
138   v = sqlite3GetVdbe(pParse);
139   assert( !pParse->isMultiWrite
140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141   if( v ){
142     sqlite3VdbeAddOp0(v, OP_Halt);
143 
144     /* The cookie mask contains one bit for each database file open.
145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
146     ** set for each database that is used.  Generate code to start a
147     ** transaction on each used database and to verify the schema cookie
148     ** on each used database.
149     */
150     if( pParse->cookieGoto>0 ){
151       yDbMask mask;
152       int iDb;
153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155         if( (mask & pParse->cookieMask)==0 ) continue;
156         sqlite3VdbeUsesBtree(v, iDb);
157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158         if( db->init.busy==0 ){
159           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161                             iDb, pParse->cookieValue[iDb],
162                             db->aDb[iDb].pSchema->iGeneration);
163         }
164       }
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
166       {
167         int i;
168         for(i=0; i<pParse->nVtabLock; i++){
169           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171         }
172         pParse->nVtabLock = 0;
173       }
174 #endif
175 
176       /* Once all the cookies have been verified and transactions opened,
177       ** obtain the required table-locks. This is a no-op unless the
178       ** shared-cache feature is enabled.
179       */
180       codeTableLocks(pParse);
181 
182       /* Initialize any AUTOINCREMENT data structures required.
183       */
184       sqlite3AutoincrementBegin(pParse);
185 
186       /* Finally, jump back to the beginning of the executable code. */
187       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
188     }
189   }
190 
191 
192   /* Get the VDBE program ready for execution
193   */
194   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197     sqlite3VdbeTrace(v, trace);
198 #endif
199     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
200     /* A minimum of one cursor is required if autoincrement is used
201     *  See ticket [a696379c1f08866] */
202     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203     sqlite3VdbeMakeReady(v, pParse);
204     pParse->rc = SQLITE_DONE;
205     pParse->colNamesSet = 0;
206   }else{
207     pParse->rc = SQLITE_ERROR;
208   }
209   pParse->nTab = 0;
210   pParse->nMem = 0;
211   pParse->nSet = 0;
212   pParse->nVar = 0;
213   pParse->cookieMask = 0;
214   pParse->cookieGoto = 0;
215 }
216 
217 /*
218 ** Run the parser and code generator recursively in order to generate
219 ** code for the SQL statement given onto the end of the pParse context
220 ** currently under construction.  When the parser is run recursively
221 ** this way, the final OP_Halt is not appended and other initialization
222 ** and finalization steps are omitted because those are handling by the
223 ** outermost parser.
224 **
225 ** Not everything is nestable.  This facility is designed to permit
226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
227 ** care if you decide to try to use this routine for some other purposes.
228 */
229 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
230   va_list ap;
231   char *zSql;
232   char *zErrMsg = 0;
233   sqlite3 *db = pParse->db;
234 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
235   char saveBuf[SAVE_SZ];
236 
237   if( pParse->nErr ) return;
238   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
239   va_start(ap, zFormat);
240   zSql = sqlite3VMPrintf(db, zFormat, ap);
241   va_end(ap);
242   if( zSql==0 ){
243     return;   /* A malloc must have failed */
244   }
245   pParse->nested++;
246   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
247   memset(&pParse->nVar, 0, SAVE_SZ);
248   sqlite3RunParser(pParse, zSql, &zErrMsg);
249   sqlite3DbFree(db, zErrMsg);
250   sqlite3DbFree(db, zSql);
251   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
252   pParse->nested--;
253 }
254 
255 /*
256 ** Locate the in-memory structure that describes a particular database
257 ** table given the name of that table and (optionally) the name of the
258 ** database containing the table.  Return NULL if not found.
259 **
260 ** If zDatabase is 0, all databases are searched for the table and the
261 ** first matching table is returned.  (No checking for duplicate table
262 ** names is done.)  The search order is TEMP first, then MAIN, then any
263 ** auxiliary databases added using the ATTACH command.
264 **
265 ** See also sqlite3LocateTable().
266 */
267 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
268   Table *p = 0;
269   int i;
270   int nName;
271   assert( zName!=0 );
272   nName = sqlite3Strlen30(zName);
273   /* All mutexes are required for schema access.  Make sure we hold them. */
274   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
275   for(i=OMIT_TEMPDB; i<db->nDb; i++){
276     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
277     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
278     assert( sqlite3SchemaMutexHeld(db, j, 0) );
279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
280     if( p ) break;
281   }
282   return p;
283 }
284 
285 /*
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table.  Return NULL if not found.  Also leave an
289 ** error message in pParse->zErrMsg.
290 **
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
294 */
295 Table *sqlite3LocateTable(
296   Parse *pParse,         /* context in which to report errors */
297   int isView,            /* True if looking for a VIEW rather than a TABLE */
298   const char *zName,     /* Name of the table we are looking for */
299   const char *zDbase     /* Name of the database.  Might be NULL */
300 ){
301   Table *p;
302 
303   /* Read the database schema. If an error occurs, leave an error message
304   ** and code in pParse and return NULL. */
305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
306     return 0;
307   }
308 
309   p = sqlite3FindTable(pParse->db, zName, zDbase);
310   if( p==0 ){
311     const char *zMsg = isView ? "no such view" : "no such table";
312     if( zDbase ){
313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
314     }else{
315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
316     }
317     pParse->checkSchema = 1;
318   }
319   return p;
320 }
321 
322 /*
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
327 **
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned.  (No checking
330 ** for duplicate index names is done.)  The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
333 */
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
335   Index *p = 0;
336   int i;
337   int nName = sqlite3Strlen30(zName);
338   /* All mutexes are required for schema access.  Make sure we hold them. */
339   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
340   for(i=OMIT_TEMPDB; i<db->nDb; i++){
341     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
342     Schema *pSchema = db->aDb[j].pSchema;
343     assert( pSchema );
344     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
345     assert( sqlite3SchemaMutexHeld(db, j, 0) );
346     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
347     if( p ) break;
348   }
349   return p;
350 }
351 
352 /*
353 ** Reclaim the memory used by an index
354 */
355 static void freeIndex(sqlite3 *db, Index *p){
356 #ifndef SQLITE_OMIT_ANALYZE
357   sqlite3DeleteIndexSamples(db, p);
358 #endif
359   sqlite3DbFree(db, p->zColAff);
360   sqlite3DbFree(db, p);
361 }
362 
363 /*
364 ** For the index called zIdxName which is found in the database iDb,
365 ** unlike that index from its Table then remove the index from
366 ** the index hash table and free all memory structures associated
367 ** with the index.
368 */
369 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
370   Index *pIndex;
371   int len;
372   Hash *pHash;
373 
374   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
375   pHash = &db->aDb[iDb].pSchema->idxHash;
376   len = sqlite3Strlen30(zIdxName);
377   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
378   if( ALWAYS(pIndex) ){
379     if( pIndex->pTable->pIndex==pIndex ){
380       pIndex->pTable->pIndex = pIndex->pNext;
381     }else{
382       Index *p;
383       /* Justification of ALWAYS();  The index must be on the list of
384       ** indices. */
385       p = pIndex->pTable->pIndex;
386       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
387       if( ALWAYS(p && p->pNext==pIndex) ){
388         p->pNext = pIndex->pNext;
389       }
390     }
391     freeIndex(db, pIndex);
392   }
393   db->flags |= SQLITE_InternChanges;
394 }
395 
396 /*
397 ** Look through the list of open database files in db->aDb[] and if
398 ** any have been closed, remove them from the list.  Reallocate the
399 ** db->aDb[] structure to a smaller size, if possible.
400 **
401 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
402 ** are never candidates for being collapsed.
403 */
404 void sqlite3CollapseDatabaseArray(sqlite3 *db){
405   int i, j;
406   for(i=j=2; i<db->nDb; i++){
407     struct Db *pDb = &db->aDb[i];
408     if( pDb->pBt==0 ){
409       sqlite3DbFree(db, pDb->zName);
410       pDb->zName = 0;
411       continue;
412     }
413     if( j<i ){
414       db->aDb[j] = db->aDb[i];
415     }
416     j++;
417   }
418   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
419   db->nDb = j;
420   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
421     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
422     sqlite3DbFree(db, db->aDb);
423     db->aDb = db->aDbStatic;
424   }
425 }
426 
427 /*
428 ** Reset the schema for the database at index iDb.  Also reset the
429 ** TEMP schema.
430 */
431 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
432   Db *pDb;
433   assert( iDb<db->nDb );
434 
435   /* Case 1:  Reset the single schema identified by iDb */
436   pDb = &db->aDb[iDb];
437   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
438   assert( pDb->pSchema!=0 );
439   sqlite3SchemaClear(pDb->pSchema);
440 
441   /* If any database other than TEMP is reset, then also reset TEMP
442   ** since TEMP might be holding triggers that reference tables in the
443   ** other database.
444   */
445   if( iDb!=1 ){
446     pDb = &db->aDb[1];
447     assert( pDb->pSchema!=0 );
448     sqlite3SchemaClear(pDb->pSchema);
449   }
450   return;
451 }
452 
453 /*
454 ** Erase all schema information from all attached databases (including
455 ** "main" and "temp") for a single database connection.
456 */
457 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
458   int i;
459   sqlite3BtreeEnterAll(db);
460   for(i=0; i<db->nDb; i++){
461     Db *pDb = &db->aDb[i];
462     if( pDb->pSchema ){
463       sqlite3SchemaClear(pDb->pSchema);
464     }
465   }
466   db->flags &= ~SQLITE_InternChanges;
467   sqlite3VtabUnlockList(db);
468   sqlite3BtreeLeaveAll(db);
469   sqlite3CollapseDatabaseArray(db);
470 }
471 
472 /*
473 ** This routine is called when a commit occurs.
474 */
475 void sqlite3CommitInternalChanges(sqlite3 *db){
476   db->flags &= ~SQLITE_InternChanges;
477 }
478 
479 /*
480 ** Delete memory allocated for the column names of a table or view (the
481 ** Table.aCol[] array).
482 */
483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
484   int i;
485   Column *pCol;
486   assert( pTable!=0 );
487   if( (pCol = pTable->aCol)!=0 ){
488     for(i=0; i<pTable->nCol; i++, pCol++){
489       sqlite3DbFree(db, pCol->zName);
490       sqlite3ExprDelete(db, pCol->pDflt);
491       sqlite3DbFree(db, pCol->zDflt);
492       sqlite3DbFree(db, pCol->zType);
493       sqlite3DbFree(db, pCol->zColl);
494     }
495     sqlite3DbFree(db, pTable->aCol);
496   }
497 }
498 
499 /*
500 ** Remove the memory data structures associated with the given
501 ** Table.  No changes are made to disk by this routine.
502 **
503 ** This routine just deletes the data structure.  It does not unlink
504 ** the table data structure from the hash table.  But it does destroy
505 ** memory structures of the indices and foreign keys associated with
506 ** the table.
507 **
508 ** The db parameter is optional.  It is needed if the Table object
509 ** contains lookaside memory.  (Table objects in the schema do not use
510 ** lookaside memory, but some ephemeral Table objects do.)  Or the
511 ** db parameter can be used with db->pnBytesFreed to measure the memory
512 ** used by the Table object.
513 */
514 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
515   Index *pIndex, *pNext;
516   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
517 
518   assert( !pTable || pTable->nRef>0 );
519 
520   /* Do not delete the table until the reference count reaches zero. */
521   if( !pTable ) return;
522   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
523 
524   /* Record the number of outstanding lookaside allocations in schema Tables
525   ** prior to doing any free() operations.  Since schema Tables do not use
526   ** lookaside, this number should not change. */
527   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
528                          db->lookaside.nOut : 0 );
529 
530   /* Delete all indices associated with this table. */
531   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
532     pNext = pIndex->pNext;
533     assert( pIndex->pSchema==pTable->pSchema );
534     if( !db || db->pnBytesFreed==0 ){
535       char *zName = pIndex->zName;
536       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
537          &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
538       );
539       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
540       assert( pOld==pIndex || pOld==0 );
541     }
542     freeIndex(db, pIndex);
543   }
544 
545   /* Delete any foreign keys attached to this table. */
546   sqlite3FkDelete(db, pTable);
547 
548   /* Delete the Table structure itself.
549   */
550   sqliteDeleteColumnNames(db, pTable);
551   sqlite3DbFree(db, pTable->zName);
552   sqlite3DbFree(db, pTable->zColAff);
553   sqlite3SelectDelete(db, pTable->pSelect);
554 #ifndef SQLITE_OMIT_CHECK
555   sqlite3ExprListDelete(db, pTable->pCheck);
556 #endif
557 #ifndef SQLITE_OMIT_VIRTUALTABLE
558   sqlite3VtabClear(db, pTable);
559 #endif
560   sqlite3DbFree(db, pTable);
561 
562   /* Verify that no lookaside memory was used by schema tables */
563   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
564 }
565 
566 /*
567 ** Unlink the given table from the hash tables and the delete the
568 ** table structure with all its indices and foreign keys.
569 */
570 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
571   Table *p;
572   Db *pDb;
573 
574   assert( db!=0 );
575   assert( iDb>=0 && iDb<db->nDb );
576   assert( zTabName );
577   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
578   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
579   pDb = &db->aDb[iDb];
580   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
581                         sqlite3Strlen30(zTabName),0);
582   sqlite3DeleteTable(db, p);
583   db->flags |= SQLITE_InternChanges;
584 }
585 
586 /*
587 ** Given a token, return a string that consists of the text of that
588 ** token.  Space to hold the returned string
589 ** is obtained from sqliteMalloc() and must be freed by the calling
590 ** function.
591 **
592 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
593 ** surround the body of the token are removed.
594 **
595 ** Tokens are often just pointers into the original SQL text and so
596 ** are not \000 terminated and are not persistent.  The returned string
597 ** is \000 terminated and is persistent.
598 */
599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
600   char *zName;
601   if( pName ){
602     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
603     sqlite3Dequote(zName);
604   }else{
605     zName = 0;
606   }
607   return zName;
608 }
609 
610 /*
611 ** Open the sqlite_master table stored in database number iDb for
612 ** writing. The table is opened using cursor 0.
613 */
614 void sqlite3OpenMasterTable(Parse *p, int iDb){
615   Vdbe *v = sqlite3GetVdbe(p);
616   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
617   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
618   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
619   if( p->nTab==0 ){
620     p->nTab = 1;
621   }
622 }
623 
624 /*
625 ** Parameter zName points to a nul-terminated buffer containing the name
626 ** of a database ("main", "temp" or the name of an attached db). This
627 ** function returns the index of the named database in db->aDb[], or
628 ** -1 if the named db cannot be found.
629 */
630 int sqlite3FindDbName(sqlite3 *db, const char *zName){
631   int i = -1;         /* Database number */
632   if( zName ){
633     Db *pDb;
634     int n = sqlite3Strlen30(zName);
635     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
636       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
637           0==sqlite3StrICmp(pDb->zName, zName) ){
638         break;
639       }
640     }
641   }
642   return i;
643 }
644 
645 /*
646 ** The token *pName contains the name of a database (either "main" or
647 ** "temp" or the name of an attached db). This routine returns the
648 ** index of the named database in db->aDb[], or -1 if the named db
649 ** does not exist.
650 */
651 int sqlite3FindDb(sqlite3 *db, Token *pName){
652   int i;                               /* Database number */
653   char *zName;                         /* Name we are searching for */
654   zName = sqlite3NameFromToken(db, pName);
655   i = sqlite3FindDbName(db, zName);
656   sqlite3DbFree(db, zName);
657   return i;
658 }
659 
660 /* The table or view or trigger name is passed to this routine via tokens
661 ** pName1 and pName2. If the table name was fully qualified, for example:
662 **
663 ** CREATE TABLE xxx.yyy (...);
664 **
665 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
666 ** the table name is not fully qualified, i.e.:
667 **
668 ** CREATE TABLE yyy(...);
669 **
670 ** Then pName1 is set to "yyy" and pName2 is "".
671 **
672 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
673 ** pName2) that stores the unqualified table name.  The index of the
674 ** database "xxx" is returned.
675 */
676 int sqlite3TwoPartName(
677   Parse *pParse,      /* Parsing and code generating context */
678   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
679   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
680   Token **pUnqual     /* Write the unqualified object name here */
681 ){
682   int iDb;                    /* Database holding the object */
683   sqlite3 *db = pParse->db;
684 
685   if( ALWAYS(pName2!=0) && pName2->n>0 ){
686     if( db->init.busy ) {
687       sqlite3ErrorMsg(pParse, "corrupt database");
688       pParse->nErr++;
689       return -1;
690     }
691     *pUnqual = pName2;
692     iDb = sqlite3FindDb(db, pName1);
693     if( iDb<0 ){
694       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
695       pParse->nErr++;
696       return -1;
697     }
698   }else{
699     assert( db->init.iDb==0 || db->init.busy );
700     iDb = db->init.iDb;
701     *pUnqual = pName1;
702   }
703   return iDb;
704 }
705 
706 /*
707 ** This routine is used to check if the UTF-8 string zName is a legal
708 ** unqualified name for a new schema object (table, index, view or
709 ** trigger). All names are legal except those that begin with the string
710 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
711 ** is reserved for internal use.
712 */
713 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
714   if( !pParse->db->init.busy && pParse->nested==0
715           && (pParse->db->flags & SQLITE_WriteSchema)==0
716           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
717     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
718     return SQLITE_ERROR;
719   }
720   return SQLITE_OK;
721 }
722 
723 /*
724 ** Begin constructing a new table representation in memory.  This is
725 ** the first of several action routines that get called in response
726 ** to a CREATE TABLE statement.  In particular, this routine is called
727 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
728 ** flag is true if the table should be stored in the auxiliary database
729 ** file instead of in the main database file.  This is normally the case
730 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
731 ** CREATE and TABLE.
732 **
733 ** The new table record is initialized and put in pParse->pNewTable.
734 ** As more of the CREATE TABLE statement is parsed, additional action
735 ** routines will be called to add more information to this record.
736 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
737 ** is called to complete the construction of the new table record.
738 */
739 void sqlite3StartTable(
740   Parse *pParse,   /* Parser context */
741   Token *pName1,   /* First part of the name of the table or view */
742   Token *pName2,   /* Second part of the name of the table or view */
743   int isTemp,      /* True if this is a TEMP table */
744   int isView,      /* True if this is a VIEW */
745   int isVirtual,   /* True if this is a VIRTUAL table */
746   int noErr        /* Do nothing if table already exists */
747 ){
748   Table *pTable;
749   char *zName = 0; /* The name of the new table */
750   sqlite3 *db = pParse->db;
751   Vdbe *v;
752   int iDb;         /* Database number to create the table in */
753   Token *pName;    /* Unqualified name of the table to create */
754 
755   /* The table or view name to create is passed to this routine via tokens
756   ** pName1 and pName2. If the table name was fully qualified, for example:
757   **
758   ** CREATE TABLE xxx.yyy (...);
759   **
760   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
761   ** the table name is not fully qualified, i.e.:
762   **
763   ** CREATE TABLE yyy(...);
764   **
765   ** Then pName1 is set to "yyy" and pName2 is "".
766   **
767   ** The call below sets the pName pointer to point at the token (pName1 or
768   ** pName2) that stores the unqualified table name. The variable iDb is
769   ** set to the index of the database that the table or view is to be
770   ** created in.
771   */
772   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
773   if( iDb<0 ) return;
774   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
775     /* If creating a temp table, the name may not be qualified. Unless
776     ** the database name is "temp" anyway.  */
777     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
778     return;
779   }
780   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
781 
782   pParse->sNameToken = *pName;
783   zName = sqlite3NameFromToken(db, pName);
784   if( zName==0 ) return;
785   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
786     goto begin_table_error;
787   }
788   if( db->init.iDb==1 ) isTemp = 1;
789 #ifndef SQLITE_OMIT_AUTHORIZATION
790   assert( (isTemp & 1)==isTemp );
791   {
792     int code;
793     char *zDb = db->aDb[iDb].zName;
794     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
795       goto begin_table_error;
796     }
797     if( isView ){
798       if( !OMIT_TEMPDB && isTemp ){
799         code = SQLITE_CREATE_TEMP_VIEW;
800       }else{
801         code = SQLITE_CREATE_VIEW;
802       }
803     }else{
804       if( !OMIT_TEMPDB && isTemp ){
805         code = SQLITE_CREATE_TEMP_TABLE;
806       }else{
807         code = SQLITE_CREATE_TABLE;
808       }
809     }
810     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
811       goto begin_table_error;
812     }
813   }
814 #endif
815 
816   /* Make sure the new table name does not collide with an existing
817   ** index or table name in the same database.  Issue an error message if
818   ** it does. The exception is if the statement being parsed was passed
819   ** to an sqlite3_declare_vtab() call. In that case only the column names
820   ** and types will be used, so there is no need to test for namespace
821   ** collisions.
822   */
823   if( !IN_DECLARE_VTAB ){
824     char *zDb = db->aDb[iDb].zName;
825     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
826       goto begin_table_error;
827     }
828     pTable = sqlite3FindTable(db, zName, zDb);
829     if( pTable ){
830       if( !noErr ){
831         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
832       }else{
833         assert( !db->init.busy );
834         sqlite3CodeVerifySchema(pParse, iDb);
835       }
836       goto begin_table_error;
837     }
838     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
839       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
840       goto begin_table_error;
841     }
842   }
843 
844   pTable = sqlite3DbMallocZero(db, sizeof(Table));
845   if( pTable==0 ){
846     db->mallocFailed = 1;
847     pParse->rc = SQLITE_NOMEM;
848     pParse->nErr++;
849     goto begin_table_error;
850   }
851   pTable->zName = zName;
852   pTable->iPKey = -1;
853   pTable->pSchema = db->aDb[iDb].pSchema;
854   pTable->nRef = 1;
855   pTable->nRowEst = 1000000;
856   assert( pParse->pNewTable==0 );
857   pParse->pNewTable = pTable;
858 
859   /* If this is the magic sqlite_sequence table used by autoincrement,
860   ** then record a pointer to this table in the main database structure
861   ** so that INSERT can find the table easily.
862   */
863 #ifndef SQLITE_OMIT_AUTOINCREMENT
864   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
865     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
866     pTable->pSchema->pSeqTab = pTable;
867   }
868 #endif
869 
870   /* Begin generating the code that will insert the table record into
871   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
872   ** and allocate the record number for the table entry now.  Before any
873   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
874   ** indices to be created and the table record must come before the
875   ** indices.  Hence, the record number for the table must be allocated
876   ** now.
877   */
878   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
879     int j1;
880     int fileFormat;
881     int reg1, reg2, reg3;
882     sqlite3BeginWriteOperation(pParse, 0, iDb);
883 
884 #ifndef SQLITE_OMIT_VIRTUALTABLE
885     if( isVirtual ){
886       sqlite3VdbeAddOp0(v, OP_VBegin);
887     }
888 #endif
889 
890     /* If the file format and encoding in the database have not been set,
891     ** set them now.
892     */
893     reg1 = pParse->regRowid = ++pParse->nMem;
894     reg2 = pParse->regRoot = ++pParse->nMem;
895     reg3 = ++pParse->nMem;
896     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
897     sqlite3VdbeUsesBtree(v, iDb);
898     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
899     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
900                   1 : SQLITE_MAX_FILE_FORMAT;
901     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
902     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
903     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
904     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
905     sqlite3VdbeJumpHere(v, j1);
906 
907     /* This just creates a place-holder record in the sqlite_master table.
908     ** The record created does not contain anything yet.  It will be replaced
909     ** by the real entry in code generated at sqlite3EndTable().
910     **
911     ** The rowid for the new entry is left in register pParse->regRowid.
912     ** The root page number of the new table is left in reg pParse->regRoot.
913     ** The rowid and root page number values are needed by the code that
914     ** sqlite3EndTable will generate.
915     */
916 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
917     if( isView || isVirtual ){
918       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
919     }else
920 #endif
921     {
922       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
923     }
924     sqlite3OpenMasterTable(pParse, iDb);
925     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
926     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
927     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
928     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
929     sqlite3VdbeAddOp0(v, OP_Close);
930   }
931 
932   /* Normal (non-error) return. */
933   return;
934 
935   /* If an error occurs, we jump here */
936 begin_table_error:
937   sqlite3DbFree(db, zName);
938   return;
939 }
940 
941 /*
942 ** This macro is used to compare two strings in a case-insensitive manner.
943 ** It is slightly faster than calling sqlite3StrICmp() directly, but
944 ** produces larger code.
945 **
946 ** WARNING: This macro is not compatible with the strcmp() family. It
947 ** returns true if the two strings are equal, otherwise false.
948 */
949 #define STRICMP(x, y) (\
950 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
951 sqlite3UpperToLower[*(unsigned char *)(y)]     \
952 && sqlite3StrICmp((x)+1,(y)+1)==0 )
953 
954 /*
955 ** Add a new column to the table currently being constructed.
956 **
957 ** The parser calls this routine once for each column declaration
958 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
959 ** first to get things going.  Then this routine is called for each
960 ** column.
961 */
962 void sqlite3AddColumn(Parse *pParse, Token *pName){
963   Table *p;
964   int i;
965   char *z;
966   Column *pCol;
967   sqlite3 *db = pParse->db;
968   if( (p = pParse->pNewTable)==0 ) return;
969 #if SQLITE_MAX_COLUMN
970   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
971     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
972     return;
973   }
974 #endif
975   z = sqlite3NameFromToken(db, pName);
976   if( z==0 ) return;
977   for(i=0; i<p->nCol; i++){
978     if( STRICMP(z, p->aCol[i].zName) ){
979       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
980       sqlite3DbFree(db, z);
981       return;
982     }
983   }
984   if( (p->nCol & 0x7)==0 ){
985     Column *aNew;
986     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
987     if( aNew==0 ){
988       sqlite3DbFree(db, z);
989       return;
990     }
991     p->aCol = aNew;
992   }
993   pCol = &p->aCol[p->nCol];
994   memset(pCol, 0, sizeof(p->aCol[0]));
995   pCol->zName = z;
996 
997   /* If there is no type specified, columns have the default affinity
998   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
999   ** be called next to set pCol->affinity correctly.
1000   */
1001   pCol->affinity = SQLITE_AFF_NONE;
1002   p->nCol++;
1003 }
1004 
1005 /*
1006 ** This routine is called by the parser while in the middle of
1007 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1008 ** been seen on a column.  This routine sets the notNull flag on
1009 ** the column currently under construction.
1010 */
1011 void sqlite3AddNotNull(Parse *pParse, int onError){
1012   Table *p;
1013   p = pParse->pNewTable;
1014   if( p==0 || NEVER(p->nCol<1) ) return;
1015   p->aCol[p->nCol-1].notNull = (u8)onError;
1016 }
1017 
1018 /*
1019 ** Scan the column type name zType (length nType) and return the
1020 ** associated affinity type.
1021 **
1022 ** This routine does a case-independent search of zType for the
1023 ** substrings in the following table. If one of the substrings is
1024 ** found, the corresponding affinity is returned. If zType contains
1025 ** more than one of the substrings, entries toward the top of
1026 ** the table take priority. For example, if zType is 'BLOBINT',
1027 ** SQLITE_AFF_INTEGER is returned.
1028 **
1029 ** Substring     | Affinity
1030 ** --------------------------------
1031 ** 'INT'         | SQLITE_AFF_INTEGER
1032 ** 'CHAR'        | SQLITE_AFF_TEXT
1033 ** 'CLOB'        | SQLITE_AFF_TEXT
1034 ** 'TEXT'        | SQLITE_AFF_TEXT
1035 ** 'BLOB'        | SQLITE_AFF_NONE
1036 ** 'REAL'        | SQLITE_AFF_REAL
1037 ** 'FLOA'        | SQLITE_AFF_REAL
1038 ** 'DOUB'        | SQLITE_AFF_REAL
1039 **
1040 ** If none of the substrings in the above table are found,
1041 ** SQLITE_AFF_NUMERIC is returned.
1042 */
1043 char sqlite3AffinityType(const char *zIn){
1044   u32 h = 0;
1045   char aff = SQLITE_AFF_NUMERIC;
1046 
1047   if( zIn ) while( zIn[0] ){
1048     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1049     zIn++;
1050     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1051       aff = SQLITE_AFF_TEXT;
1052     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1053       aff = SQLITE_AFF_TEXT;
1054     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1055       aff = SQLITE_AFF_TEXT;
1056     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1057         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1058       aff = SQLITE_AFF_NONE;
1059 #ifndef SQLITE_OMIT_FLOATING_POINT
1060     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1061         && aff==SQLITE_AFF_NUMERIC ){
1062       aff = SQLITE_AFF_REAL;
1063     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1064         && aff==SQLITE_AFF_NUMERIC ){
1065       aff = SQLITE_AFF_REAL;
1066     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1067         && aff==SQLITE_AFF_NUMERIC ){
1068       aff = SQLITE_AFF_REAL;
1069 #endif
1070     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1071       aff = SQLITE_AFF_INTEGER;
1072       break;
1073     }
1074   }
1075 
1076   return aff;
1077 }
1078 
1079 /*
1080 ** This routine is called by the parser while in the middle of
1081 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1082 ** token in the sequence of tokens that describe the type of the
1083 ** column currently under construction.   pLast is the last token
1084 ** in the sequence.  Use this information to construct a string
1085 ** that contains the typename of the column and store that string
1086 ** in zType.
1087 */
1088 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1089   Table *p;
1090   Column *pCol;
1091 
1092   p = pParse->pNewTable;
1093   if( p==0 || NEVER(p->nCol<1) ) return;
1094   pCol = &p->aCol[p->nCol-1];
1095   assert( pCol->zType==0 );
1096   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1097   pCol->affinity = sqlite3AffinityType(pCol->zType);
1098 }
1099 
1100 /*
1101 ** The expression is the default value for the most recently added column
1102 ** of the table currently under construction.
1103 **
1104 ** Default value expressions must be constant.  Raise an exception if this
1105 ** is not the case.
1106 **
1107 ** This routine is called by the parser while in the middle of
1108 ** parsing a CREATE TABLE statement.
1109 */
1110 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1111   Table *p;
1112   Column *pCol;
1113   sqlite3 *db = pParse->db;
1114   p = pParse->pNewTable;
1115   if( p!=0 ){
1116     pCol = &(p->aCol[p->nCol-1]);
1117     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1118       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1119           pCol->zName);
1120     }else{
1121       /* A copy of pExpr is used instead of the original, as pExpr contains
1122       ** tokens that point to volatile memory. The 'span' of the expression
1123       ** is required by pragma table_info.
1124       */
1125       sqlite3ExprDelete(db, pCol->pDflt);
1126       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1127       sqlite3DbFree(db, pCol->zDflt);
1128       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1129                                      (int)(pSpan->zEnd - pSpan->zStart));
1130     }
1131   }
1132   sqlite3ExprDelete(db, pSpan->pExpr);
1133 }
1134 
1135 /*
1136 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1137 ** of columns that form the primary key.  If pList is NULL, then the
1138 ** most recently added column of the table is the primary key.
1139 **
1140 ** A table can have at most one primary key.  If the table already has
1141 ** a primary key (and this is the second primary key) then create an
1142 ** error.
1143 **
1144 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1145 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1146 ** field of the table under construction to be the index of the
1147 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1148 ** no INTEGER PRIMARY KEY.
1149 **
1150 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1151 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1152 */
1153 void sqlite3AddPrimaryKey(
1154   Parse *pParse,    /* Parsing context */
1155   ExprList *pList,  /* List of field names to be indexed */
1156   int onError,      /* What to do with a uniqueness conflict */
1157   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1158   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1159 ){
1160   Table *pTab = pParse->pNewTable;
1161   char *zType = 0;
1162   int iCol = -1, i;
1163   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1164   if( pTab->tabFlags & TF_HasPrimaryKey ){
1165     sqlite3ErrorMsg(pParse,
1166       "table \"%s\" has more than one primary key", pTab->zName);
1167     goto primary_key_exit;
1168   }
1169   pTab->tabFlags |= TF_HasPrimaryKey;
1170   if( pList==0 ){
1171     iCol = pTab->nCol - 1;
1172     pTab->aCol[iCol].isPrimKey = 1;
1173   }else{
1174     for(i=0; i<pList->nExpr; i++){
1175       for(iCol=0; iCol<pTab->nCol; iCol++){
1176         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1177           break;
1178         }
1179       }
1180       if( iCol<pTab->nCol ){
1181         pTab->aCol[iCol].isPrimKey = 1;
1182       }
1183     }
1184     if( pList->nExpr>1 ) iCol = -1;
1185   }
1186   if( iCol>=0 && iCol<pTab->nCol ){
1187     zType = pTab->aCol[iCol].zType;
1188   }
1189   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1190         && sortOrder==SQLITE_SO_ASC ){
1191     pTab->iPKey = iCol;
1192     pTab->keyConf = (u8)onError;
1193     assert( autoInc==0 || autoInc==1 );
1194     pTab->tabFlags |= autoInc*TF_Autoincrement;
1195   }else if( autoInc ){
1196 #ifndef SQLITE_OMIT_AUTOINCREMENT
1197     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1198        "INTEGER PRIMARY KEY");
1199 #endif
1200   }else{
1201     Index *p;
1202     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1203     if( p ){
1204       p->autoIndex = 2;
1205     }
1206     pList = 0;
1207   }
1208 
1209 primary_key_exit:
1210   sqlite3ExprListDelete(pParse->db, pList);
1211   return;
1212 }
1213 
1214 /*
1215 ** Add a new CHECK constraint to the table currently under construction.
1216 */
1217 void sqlite3AddCheckConstraint(
1218   Parse *pParse,    /* Parsing context */
1219   Expr *pCheckExpr  /* The check expression */
1220 ){
1221 #ifndef SQLITE_OMIT_CHECK
1222   Table *pTab = pParse->pNewTable;
1223   if( pTab && !IN_DECLARE_VTAB ){
1224     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1225     if( pParse->constraintName.n ){
1226       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1227     }
1228   }else
1229 #endif
1230   {
1231     sqlite3ExprDelete(pParse->db, pCheckExpr);
1232   }
1233 }
1234 
1235 /*
1236 ** Set the collation function of the most recently parsed table column
1237 ** to the CollSeq given.
1238 */
1239 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1240   Table *p;
1241   int i;
1242   char *zColl;              /* Dequoted name of collation sequence */
1243   sqlite3 *db;
1244 
1245   if( (p = pParse->pNewTable)==0 ) return;
1246   i = p->nCol-1;
1247   db = pParse->db;
1248   zColl = sqlite3NameFromToken(db, pToken);
1249   if( !zColl ) return;
1250 
1251   if( sqlite3LocateCollSeq(pParse, zColl) ){
1252     Index *pIdx;
1253     p->aCol[i].zColl = zColl;
1254 
1255     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1256     ** then an index may have been created on this column before the
1257     ** collation type was added. Correct this if it is the case.
1258     */
1259     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1260       assert( pIdx->nColumn==1 );
1261       if( pIdx->aiColumn[0]==i ){
1262         pIdx->azColl[0] = p->aCol[i].zColl;
1263       }
1264     }
1265   }else{
1266     sqlite3DbFree(db, zColl);
1267   }
1268 }
1269 
1270 /*
1271 ** This function returns the collation sequence for database native text
1272 ** encoding identified by the string zName, length nName.
1273 **
1274 ** If the requested collation sequence is not available, or not available
1275 ** in the database native encoding, the collation factory is invoked to
1276 ** request it. If the collation factory does not supply such a sequence,
1277 ** and the sequence is available in another text encoding, then that is
1278 ** returned instead.
1279 **
1280 ** If no versions of the requested collations sequence are available, or
1281 ** another error occurs, NULL is returned and an error message written into
1282 ** pParse.
1283 **
1284 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1285 ** invokes the collation factory if the named collation cannot be found
1286 ** and generates an error message.
1287 **
1288 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1289 */
1290 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1291   sqlite3 *db = pParse->db;
1292   u8 enc = ENC(db);
1293   u8 initbusy = db->init.busy;
1294   CollSeq *pColl;
1295 
1296   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1297   if( !initbusy && (!pColl || !pColl->xCmp) ){
1298     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1299     if( !pColl ){
1300       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1301     }
1302   }
1303 
1304   return pColl;
1305 }
1306 
1307 
1308 /*
1309 ** Generate code that will increment the schema cookie.
1310 **
1311 ** The schema cookie is used to determine when the schema for the
1312 ** database changes.  After each schema change, the cookie value
1313 ** changes.  When a process first reads the schema it records the
1314 ** cookie.  Thereafter, whenever it goes to access the database,
1315 ** it checks the cookie to make sure the schema has not changed
1316 ** since it was last read.
1317 **
1318 ** This plan is not completely bullet-proof.  It is possible for
1319 ** the schema to change multiple times and for the cookie to be
1320 ** set back to prior value.  But schema changes are infrequent
1321 ** and the probability of hitting the same cookie value is only
1322 ** 1 chance in 2^32.  So we're safe enough.
1323 */
1324 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1325   int r1 = sqlite3GetTempReg(pParse);
1326   sqlite3 *db = pParse->db;
1327   Vdbe *v = pParse->pVdbe;
1328   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1329   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1330   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1331   sqlite3ReleaseTempReg(pParse, r1);
1332 }
1333 
1334 /*
1335 ** Measure the number of characters needed to output the given
1336 ** identifier.  The number returned includes any quotes used
1337 ** but does not include the null terminator.
1338 **
1339 ** The estimate is conservative.  It might be larger that what is
1340 ** really needed.
1341 */
1342 static int identLength(const char *z){
1343   int n;
1344   for(n=0; *z; n++, z++){
1345     if( *z=='"' ){ n++; }
1346   }
1347   return n + 2;
1348 }
1349 
1350 /*
1351 ** The first parameter is a pointer to an output buffer. The second
1352 ** parameter is a pointer to an integer that contains the offset at
1353 ** which to write into the output buffer. This function copies the
1354 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1355 ** to the specified offset in the buffer and updates *pIdx to refer
1356 ** to the first byte after the last byte written before returning.
1357 **
1358 ** If the string zSignedIdent consists entirely of alpha-numeric
1359 ** characters, does not begin with a digit and is not an SQL keyword,
1360 ** then it is copied to the output buffer exactly as it is. Otherwise,
1361 ** it is quoted using double-quotes.
1362 */
1363 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1364   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1365   int i, j, needQuote;
1366   i = *pIdx;
1367 
1368   for(j=0; zIdent[j]; j++){
1369     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1370   }
1371   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1372   if( !needQuote ){
1373     needQuote = zIdent[j];
1374   }
1375 
1376   if( needQuote ) z[i++] = '"';
1377   for(j=0; zIdent[j]; j++){
1378     z[i++] = zIdent[j];
1379     if( zIdent[j]=='"' ) z[i++] = '"';
1380   }
1381   if( needQuote ) z[i++] = '"';
1382   z[i] = 0;
1383   *pIdx = i;
1384 }
1385 
1386 /*
1387 ** Generate a CREATE TABLE statement appropriate for the given
1388 ** table.  Memory to hold the text of the statement is obtained
1389 ** from sqliteMalloc() and must be freed by the calling function.
1390 */
1391 static char *createTableStmt(sqlite3 *db, Table *p){
1392   int i, k, n;
1393   char *zStmt;
1394   char *zSep, *zSep2, *zEnd;
1395   Column *pCol;
1396   n = 0;
1397   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1398     n += identLength(pCol->zName) + 5;
1399   }
1400   n += identLength(p->zName);
1401   if( n<50 ){
1402     zSep = "";
1403     zSep2 = ",";
1404     zEnd = ")";
1405   }else{
1406     zSep = "\n  ";
1407     zSep2 = ",\n  ";
1408     zEnd = "\n)";
1409   }
1410   n += 35 + 6*p->nCol;
1411   zStmt = sqlite3DbMallocRaw(0, n);
1412   if( zStmt==0 ){
1413     db->mallocFailed = 1;
1414     return 0;
1415   }
1416   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1417   k = sqlite3Strlen30(zStmt);
1418   identPut(zStmt, &k, p->zName);
1419   zStmt[k++] = '(';
1420   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1421     static const char * const azType[] = {
1422         /* SQLITE_AFF_TEXT    */ " TEXT",
1423         /* SQLITE_AFF_NONE    */ "",
1424         /* SQLITE_AFF_NUMERIC */ " NUM",
1425         /* SQLITE_AFF_INTEGER */ " INT",
1426         /* SQLITE_AFF_REAL    */ " REAL"
1427     };
1428     int len;
1429     const char *zType;
1430 
1431     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1432     k += sqlite3Strlen30(&zStmt[k]);
1433     zSep = zSep2;
1434     identPut(zStmt, &k, pCol->zName);
1435     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1436     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1437     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1438     testcase( pCol->affinity==SQLITE_AFF_NONE );
1439     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1440     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1441     testcase( pCol->affinity==SQLITE_AFF_REAL );
1442 
1443     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1444     len = sqlite3Strlen30(zType);
1445     assert( pCol->affinity==SQLITE_AFF_NONE
1446             || pCol->affinity==sqlite3AffinityType(zType) );
1447     memcpy(&zStmt[k], zType, len);
1448     k += len;
1449     assert( k<=n );
1450   }
1451   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1452   return zStmt;
1453 }
1454 
1455 /*
1456 ** This routine is called to report the final ")" that terminates
1457 ** a CREATE TABLE statement.
1458 **
1459 ** The table structure that other action routines have been building
1460 ** is added to the internal hash tables, assuming no errors have
1461 ** occurred.
1462 **
1463 ** An entry for the table is made in the master table on disk, unless
1464 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1465 ** it means we are reading the sqlite_master table because we just
1466 ** connected to the database or because the sqlite_master table has
1467 ** recently changed, so the entry for this table already exists in
1468 ** the sqlite_master table.  We do not want to create it again.
1469 **
1470 ** If the pSelect argument is not NULL, it means that this routine
1471 ** was called to create a table generated from a
1472 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1473 ** the new table will match the result set of the SELECT.
1474 */
1475 void sqlite3EndTable(
1476   Parse *pParse,          /* Parse context */
1477   Token *pCons,           /* The ',' token after the last column defn. */
1478   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1479   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1480 ){
1481   Table *p;
1482   sqlite3 *db = pParse->db;
1483   int iDb;
1484 
1485   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1486     return;
1487   }
1488   p = pParse->pNewTable;
1489   if( p==0 ) return;
1490 
1491   assert( !db->init.busy || !pSelect );
1492 
1493   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1494 
1495 #ifndef SQLITE_OMIT_CHECK
1496   /* Resolve names in all CHECK constraint expressions.
1497   */
1498   if( p->pCheck ){
1499     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1500     NameContext sNC;                /* Name context for pParse->pNewTable */
1501     ExprList *pList;                /* List of all CHECK constraints */
1502     int i;                          /* Loop counter */
1503 
1504     memset(&sNC, 0, sizeof(sNC));
1505     memset(&sSrc, 0, sizeof(sSrc));
1506     sSrc.nSrc = 1;
1507     sSrc.a[0].zName = p->zName;
1508     sSrc.a[0].pTab = p;
1509     sSrc.a[0].iCursor = -1;
1510     sNC.pParse = pParse;
1511     sNC.pSrcList = &sSrc;
1512     sNC.ncFlags = NC_IsCheck;
1513     pList = p->pCheck;
1514     for(i=0; i<pList->nExpr; i++){
1515       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
1516         return;
1517       }
1518     }
1519   }
1520 #endif /* !defined(SQLITE_OMIT_CHECK) */
1521 
1522   /* If the db->init.busy is 1 it means we are reading the SQL off the
1523   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1524   ** So do not write to the disk again.  Extract the root page number
1525   ** for the table from the db->init.newTnum field.  (The page number
1526   ** should have been put there by the sqliteOpenCb routine.)
1527   */
1528   if( db->init.busy ){
1529     p->tnum = db->init.newTnum;
1530   }
1531 
1532   /* If not initializing, then create a record for the new table
1533   ** in the SQLITE_MASTER table of the database.
1534   **
1535   ** If this is a TEMPORARY table, write the entry into the auxiliary
1536   ** file instead of into the main database file.
1537   */
1538   if( !db->init.busy ){
1539     int n;
1540     Vdbe *v;
1541     char *zType;    /* "view" or "table" */
1542     char *zType2;   /* "VIEW" or "TABLE" */
1543     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1544 
1545     v = sqlite3GetVdbe(pParse);
1546     if( NEVER(v==0) ) return;
1547 
1548     sqlite3VdbeAddOp1(v, OP_Close, 0);
1549 
1550     /*
1551     ** Initialize zType for the new view or table.
1552     */
1553     if( p->pSelect==0 ){
1554       /* A regular table */
1555       zType = "table";
1556       zType2 = "TABLE";
1557 #ifndef SQLITE_OMIT_VIEW
1558     }else{
1559       /* A view */
1560       zType = "view";
1561       zType2 = "VIEW";
1562 #endif
1563     }
1564 
1565     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1566     ** statement to populate the new table. The root-page number for the
1567     ** new table is in register pParse->regRoot.
1568     **
1569     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1570     ** suitable state to query for the column names and types to be used
1571     ** by the new table.
1572     **
1573     ** A shared-cache write-lock is not required to write to the new table,
1574     ** as a schema-lock must have already been obtained to create it. Since
1575     ** a schema-lock excludes all other database users, the write-lock would
1576     ** be redundant.
1577     */
1578     if( pSelect ){
1579       SelectDest dest;
1580       Table *pSelTab;
1581 
1582       assert(pParse->nTab==1);
1583       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1584       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1585       pParse->nTab = 2;
1586       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1587       sqlite3Select(pParse, pSelect, &dest);
1588       sqlite3VdbeAddOp1(v, OP_Close, 1);
1589       if( pParse->nErr==0 ){
1590         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1591         if( pSelTab==0 ) return;
1592         assert( p->aCol==0 );
1593         p->nCol = pSelTab->nCol;
1594         p->aCol = pSelTab->aCol;
1595         pSelTab->nCol = 0;
1596         pSelTab->aCol = 0;
1597         sqlite3DeleteTable(db, pSelTab);
1598       }
1599     }
1600 
1601     /* Compute the complete text of the CREATE statement */
1602     if( pSelect ){
1603       zStmt = createTableStmt(db, p);
1604     }else{
1605       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1606       zStmt = sqlite3MPrintf(db,
1607           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1608       );
1609     }
1610 
1611     /* A slot for the record has already been allocated in the
1612     ** SQLITE_MASTER table.  We just need to update that slot with all
1613     ** the information we've collected.
1614     */
1615     sqlite3NestedParse(pParse,
1616       "UPDATE %Q.%s "
1617          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1618        "WHERE rowid=#%d",
1619       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1620       zType,
1621       p->zName,
1622       p->zName,
1623       pParse->regRoot,
1624       zStmt,
1625       pParse->regRowid
1626     );
1627     sqlite3DbFree(db, zStmt);
1628     sqlite3ChangeCookie(pParse, iDb);
1629 
1630 #ifndef SQLITE_OMIT_AUTOINCREMENT
1631     /* Check to see if we need to create an sqlite_sequence table for
1632     ** keeping track of autoincrement keys.
1633     */
1634     if( p->tabFlags & TF_Autoincrement ){
1635       Db *pDb = &db->aDb[iDb];
1636       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1637       if( pDb->pSchema->pSeqTab==0 ){
1638         sqlite3NestedParse(pParse,
1639           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1640           pDb->zName
1641         );
1642       }
1643     }
1644 #endif
1645 
1646     /* Reparse everything to update our internal data structures */
1647     sqlite3VdbeAddParseSchemaOp(v, iDb,
1648                sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
1649   }
1650 
1651 
1652   /* Add the table to the in-memory representation of the database.
1653   */
1654   if( db->init.busy ){
1655     Table *pOld;
1656     Schema *pSchema = p->pSchema;
1657     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1658     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1659                              sqlite3Strlen30(p->zName),p);
1660     if( pOld ){
1661       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1662       db->mallocFailed = 1;
1663       return;
1664     }
1665     pParse->pNewTable = 0;
1666     db->flags |= SQLITE_InternChanges;
1667 
1668 #ifndef SQLITE_OMIT_ALTERTABLE
1669     if( !p->pSelect ){
1670       const char *zName = (const char *)pParse->sNameToken.z;
1671       int nName;
1672       assert( !pSelect && pCons && pEnd );
1673       if( pCons->z==0 ){
1674         pCons = pEnd;
1675       }
1676       nName = (int)((const char *)pCons->z - zName);
1677       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1678     }
1679 #endif
1680   }
1681 }
1682 
1683 #ifndef SQLITE_OMIT_VIEW
1684 /*
1685 ** The parser calls this routine in order to create a new VIEW
1686 */
1687 void sqlite3CreateView(
1688   Parse *pParse,     /* The parsing context */
1689   Token *pBegin,     /* The CREATE token that begins the statement */
1690   Token *pName1,     /* The token that holds the name of the view */
1691   Token *pName2,     /* The token that holds the name of the view */
1692   Select *pSelect,   /* A SELECT statement that will become the new view */
1693   int isTemp,        /* TRUE for a TEMPORARY view */
1694   int noErr          /* Suppress error messages if VIEW already exists */
1695 ){
1696   Table *p;
1697   int n;
1698   const char *z;
1699   Token sEnd;
1700   DbFixer sFix;
1701   Token *pName = 0;
1702   int iDb;
1703   sqlite3 *db = pParse->db;
1704 
1705   if( pParse->nVar>0 ){
1706     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1707     sqlite3SelectDelete(db, pSelect);
1708     return;
1709   }
1710   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1711   p = pParse->pNewTable;
1712   if( p==0 || pParse->nErr ){
1713     sqlite3SelectDelete(db, pSelect);
1714     return;
1715   }
1716   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1717   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1718   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1719     && sqlite3FixSelect(&sFix, pSelect)
1720   ){
1721     sqlite3SelectDelete(db, pSelect);
1722     return;
1723   }
1724 
1725   /* Make a copy of the entire SELECT statement that defines the view.
1726   ** This will force all the Expr.token.z values to be dynamically
1727   ** allocated rather than point to the input string - which means that
1728   ** they will persist after the current sqlite3_exec() call returns.
1729   */
1730   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1731   sqlite3SelectDelete(db, pSelect);
1732   if( db->mallocFailed ){
1733     return;
1734   }
1735   if( !db->init.busy ){
1736     sqlite3ViewGetColumnNames(pParse, p);
1737   }
1738 
1739   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1740   ** the end.
1741   */
1742   sEnd = pParse->sLastToken;
1743   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1744     sEnd.z += sEnd.n;
1745   }
1746   sEnd.n = 0;
1747   n = (int)(sEnd.z - pBegin->z);
1748   z = pBegin->z;
1749   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1750   sEnd.z = &z[n-1];
1751   sEnd.n = 1;
1752 
1753   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1754   sqlite3EndTable(pParse, 0, &sEnd, 0);
1755   return;
1756 }
1757 #endif /* SQLITE_OMIT_VIEW */
1758 
1759 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1760 /*
1761 ** The Table structure pTable is really a VIEW.  Fill in the names of
1762 ** the columns of the view in the pTable structure.  Return the number
1763 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1764 */
1765 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1766   Table *pSelTab;   /* A fake table from which we get the result set */
1767   Select *pSel;     /* Copy of the SELECT that implements the view */
1768   int nErr = 0;     /* Number of errors encountered */
1769   int n;            /* Temporarily holds the number of cursors assigned */
1770   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1771   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1772 
1773   assert( pTable );
1774 
1775 #ifndef SQLITE_OMIT_VIRTUALTABLE
1776   if( sqlite3VtabCallConnect(pParse, pTable) ){
1777     return SQLITE_ERROR;
1778   }
1779   if( IsVirtual(pTable) ) return 0;
1780 #endif
1781 
1782 #ifndef SQLITE_OMIT_VIEW
1783   /* A positive nCol means the columns names for this view are
1784   ** already known.
1785   */
1786   if( pTable->nCol>0 ) return 0;
1787 
1788   /* A negative nCol is a special marker meaning that we are currently
1789   ** trying to compute the column names.  If we enter this routine with
1790   ** a negative nCol, it means two or more views form a loop, like this:
1791   **
1792   **     CREATE VIEW one AS SELECT * FROM two;
1793   **     CREATE VIEW two AS SELECT * FROM one;
1794   **
1795   ** Actually, the error above is now caught prior to reaching this point.
1796   ** But the following test is still important as it does come up
1797   ** in the following:
1798   **
1799   **     CREATE TABLE main.ex1(a);
1800   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1801   **     SELECT * FROM temp.ex1;
1802   */
1803   if( pTable->nCol<0 ){
1804     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1805     return 1;
1806   }
1807   assert( pTable->nCol>=0 );
1808 
1809   /* If we get this far, it means we need to compute the table names.
1810   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1811   ** "*" elements in the results set of the view and will assign cursors
1812   ** to the elements of the FROM clause.  But we do not want these changes
1813   ** to be permanent.  So the computation is done on a copy of the SELECT
1814   ** statement that defines the view.
1815   */
1816   assert( pTable->pSelect );
1817   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1818   if( pSel ){
1819     u8 enableLookaside = db->lookaside.bEnabled;
1820     n = pParse->nTab;
1821     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1822     pTable->nCol = -1;
1823     db->lookaside.bEnabled = 0;
1824 #ifndef SQLITE_OMIT_AUTHORIZATION
1825     xAuth = db->xAuth;
1826     db->xAuth = 0;
1827     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1828     db->xAuth = xAuth;
1829 #else
1830     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1831 #endif
1832     db->lookaside.bEnabled = enableLookaside;
1833     pParse->nTab = n;
1834     if( pSelTab ){
1835       assert( pTable->aCol==0 );
1836       pTable->nCol = pSelTab->nCol;
1837       pTable->aCol = pSelTab->aCol;
1838       pSelTab->nCol = 0;
1839       pSelTab->aCol = 0;
1840       sqlite3DeleteTable(db, pSelTab);
1841       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1842       pTable->pSchema->flags |= DB_UnresetViews;
1843     }else{
1844       pTable->nCol = 0;
1845       nErr++;
1846     }
1847     sqlite3SelectDelete(db, pSel);
1848   } else {
1849     nErr++;
1850   }
1851 #endif /* SQLITE_OMIT_VIEW */
1852   return nErr;
1853 }
1854 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1855 
1856 #ifndef SQLITE_OMIT_VIEW
1857 /*
1858 ** Clear the column names from every VIEW in database idx.
1859 */
1860 static void sqliteViewResetAll(sqlite3 *db, int idx){
1861   HashElem *i;
1862   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1863   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1864   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1865     Table *pTab = sqliteHashData(i);
1866     if( pTab->pSelect ){
1867       sqliteDeleteColumnNames(db, pTab);
1868       pTab->aCol = 0;
1869       pTab->nCol = 0;
1870     }
1871   }
1872   DbClearProperty(db, idx, DB_UnresetViews);
1873 }
1874 #else
1875 # define sqliteViewResetAll(A,B)
1876 #endif /* SQLITE_OMIT_VIEW */
1877 
1878 /*
1879 ** This function is called by the VDBE to adjust the internal schema
1880 ** used by SQLite when the btree layer moves a table root page. The
1881 ** root-page of a table or index in database iDb has changed from iFrom
1882 ** to iTo.
1883 **
1884 ** Ticket #1728:  The symbol table might still contain information
1885 ** on tables and/or indices that are the process of being deleted.
1886 ** If you are unlucky, one of those deleted indices or tables might
1887 ** have the same rootpage number as the real table or index that is
1888 ** being moved.  So we cannot stop searching after the first match
1889 ** because the first match might be for one of the deleted indices
1890 ** or tables and not the table/index that is actually being moved.
1891 ** We must continue looping until all tables and indices with
1892 ** rootpage==iFrom have been converted to have a rootpage of iTo
1893 ** in order to be certain that we got the right one.
1894 */
1895 #ifndef SQLITE_OMIT_AUTOVACUUM
1896 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1897   HashElem *pElem;
1898   Hash *pHash;
1899   Db *pDb;
1900 
1901   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1902   pDb = &db->aDb[iDb];
1903   pHash = &pDb->pSchema->tblHash;
1904   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1905     Table *pTab = sqliteHashData(pElem);
1906     if( pTab->tnum==iFrom ){
1907       pTab->tnum = iTo;
1908     }
1909   }
1910   pHash = &pDb->pSchema->idxHash;
1911   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1912     Index *pIdx = sqliteHashData(pElem);
1913     if( pIdx->tnum==iFrom ){
1914       pIdx->tnum = iTo;
1915     }
1916   }
1917 }
1918 #endif
1919 
1920 /*
1921 ** Write code to erase the table with root-page iTable from database iDb.
1922 ** Also write code to modify the sqlite_master table and internal schema
1923 ** if a root-page of another table is moved by the btree-layer whilst
1924 ** erasing iTable (this can happen with an auto-vacuum database).
1925 */
1926 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1927   Vdbe *v = sqlite3GetVdbe(pParse);
1928   int r1 = sqlite3GetTempReg(pParse);
1929   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1930   sqlite3MayAbort(pParse);
1931 #ifndef SQLITE_OMIT_AUTOVACUUM
1932   /* OP_Destroy stores an in integer r1. If this integer
1933   ** is non-zero, then it is the root page number of a table moved to
1934   ** location iTable. The following code modifies the sqlite_master table to
1935   ** reflect this.
1936   **
1937   ** The "#NNN" in the SQL is a special constant that means whatever value
1938   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1939   ** token for additional information.
1940   */
1941   sqlite3NestedParse(pParse,
1942      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1943      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1944 #endif
1945   sqlite3ReleaseTempReg(pParse, r1);
1946 }
1947 
1948 /*
1949 ** Write VDBE code to erase table pTab and all associated indices on disk.
1950 ** Code to update the sqlite_master tables and internal schema definitions
1951 ** in case a root-page belonging to another table is moved by the btree layer
1952 ** is also added (this can happen with an auto-vacuum database).
1953 */
1954 static void destroyTable(Parse *pParse, Table *pTab){
1955 #ifdef SQLITE_OMIT_AUTOVACUUM
1956   Index *pIdx;
1957   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1958   destroyRootPage(pParse, pTab->tnum, iDb);
1959   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1960     destroyRootPage(pParse, pIdx->tnum, iDb);
1961   }
1962 #else
1963   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1964   ** is not defined), then it is important to call OP_Destroy on the
1965   ** table and index root-pages in order, starting with the numerically
1966   ** largest root-page number. This guarantees that none of the root-pages
1967   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1968   ** following were coded:
1969   **
1970   ** OP_Destroy 4 0
1971   ** ...
1972   ** OP_Destroy 5 0
1973   **
1974   ** and root page 5 happened to be the largest root-page number in the
1975   ** database, then root page 5 would be moved to page 4 by the
1976   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1977   ** a free-list page.
1978   */
1979   int iTab = pTab->tnum;
1980   int iDestroyed = 0;
1981 
1982   while( 1 ){
1983     Index *pIdx;
1984     int iLargest = 0;
1985 
1986     if( iDestroyed==0 || iTab<iDestroyed ){
1987       iLargest = iTab;
1988     }
1989     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1990       int iIdx = pIdx->tnum;
1991       assert( pIdx->pSchema==pTab->pSchema );
1992       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1993         iLargest = iIdx;
1994       }
1995     }
1996     if( iLargest==0 ){
1997       return;
1998     }else{
1999       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2000       destroyRootPage(pParse, iLargest, iDb);
2001       iDestroyed = iLargest;
2002     }
2003   }
2004 #endif
2005 }
2006 
2007 /*
2008 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2009 ** after a DROP INDEX or DROP TABLE command.
2010 */
2011 static void sqlite3ClearStatTables(
2012   Parse *pParse,         /* The parsing context */
2013   int iDb,               /* The database number */
2014   const char *zType,     /* "idx" or "tbl" */
2015   const char *zName      /* Name of index or table */
2016 ){
2017   int i;
2018   const char *zDbName = pParse->db->aDb[iDb].zName;
2019   for(i=1; i<=3; i++){
2020     char zTab[24];
2021     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2022     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2023       sqlite3NestedParse(pParse,
2024         "DELETE FROM %Q.%s WHERE %s=%Q",
2025         zDbName, zTab, zType, zName
2026       );
2027     }
2028   }
2029 }
2030 
2031 /*
2032 ** Generate code to drop a table.
2033 */
2034 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2035   Vdbe *v;
2036   sqlite3 *db = pParse->db;
2037   Trigger *pTrigger;
2038   Db *pDb = &db->aDb[iDb];
2039 
2040   v = sqlite3GetVdbe(pParse);
2041   assert( v!=0 );
2042   sqlite3BeginWriteOperation(pParse, 1, iDb);
2043 
2044 #ifndef SQLITE_OMIT_VIRTUALTABLE
2045   if( IsVirtual(pTab) ){
2046     sqlite3VdbeAddOp0(v, OP_VBegin);
2047   }
2048 #endif
2049 
2050   /* Drop all triggers associated with the table being dropped. Code
2051   ** is generated to remove entries from sqlite_master and/or
2052   ** sqlite_temp_master if required.
2053   */
2054   pTrigger = sqlite3TriggerList(pParse, pTab);
2055   while( pTrigger ){
2056     assert( pTrigger->pSchema==pTab->pSchema ||
2057         pTrigger->pSchema==db->aDb[1].pSchema );
2058     sqlite3DropTriggerPtr(pParse, pTrigger);
2059     pTrigger = pTrigger->pNext;
2060   }
2061 
2062 #ifndef SQLITE_OMIT_AUTOINCREMENT
2063   /* Remove any entries of the sqlite_sequence table associated with
2064   ** the table being dropped. This is done before the table is dropped
2065   ** at the btree level, in case the sqlite_sequence table needs to
2066   ** move as a result of the drop (can happen in auto-vacuum mode).
2067   */
2068   if( pTab->tabFlags & TF_Autoincrement ){
2069     sqlite3NestedParse(pParse,
2070       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2071       pDb->zName, pTab->zName
2072     );
2073   }
2074 #endif
2075 
2076   /* Drop all SQLITE_MASTER table and index entries that refer to the
2077   ** table. The program name loops through the master table and deletes
2078   ** every row that refers to a table of the same name as the one being
2079   ** dropped. Triggers are handled seperately because a trigger can be
2080   ** created in the temp database that refers to a table in another
2081   ** database.
2082   */
2083   sqlite3NestedParse(pParse,
2084       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2085       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2086   if( !isView && !IsVirtual(pTab) ){
2087     destroyTable(pParse, pTab);
2088   }
2089 
2090   /* Remove the table entry from SQLite's internal schema and modify
2091   ** the schema cookie.
2092   */
2093   if( IsVirtual(pTab) ){
2094     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2095   }
2096   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2097   sqlite3ChangeCookie(pParse, iDb);
2098   sqliteViewResetAll(db, iDb);
2099 }
2100 
2101 /*
2102 ** This routine is called to do the work of a DROP TABLE statement.
2103 ** pName is the name of the table to be dropped.
2104 */
2105 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2106   Table *pTab;
2107   Vdbe *v;
2108   sqlite3 *db = pParse->db;
2109   int iDb;
2110 
2111   if( db->mallocFailed ){
2112     goto exit_drop_table;
2113   }
2114   assert( pParse->nErr==0 );
2115   assert( pName->nSrc==1 );
2116   if( noErr ) db->suppressErr++;
2117   pTab = sqlite3LocateTable(pParse, isView,
2118                             pName->a[0].zName, pName->a[0].zDatabase);
2119   if( noErr ) db->suppressErr--;
2120 
2121   if( pTab==0 ){
2122     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2123     goto exit_drop_table;
2124   }
2125   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2126   assert( iDb>=0 && iDb<db->nDb );
2127 
2128   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2129   ** it is initialized.
2130   */
2131   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2132     goto exit_drop_table;
2133   }
2134 #ifndef SQLITE_OMIT_AUTHORIZATION
2135   {
2136     int code;
2137     const char *zTab = SCHEMA_TABLE(iDb);
2138     const char *zDb = db->aDb[iDb].zName;
2139     const char *zArg2 = 0;
2140     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2141       goto exit_drop_table;
2142     }
2143     if( isView ){
2144       if( !OMIT_TEMPDB && iDb==1 ){
2145         code = SQLITE_DROP_TEMP_VIEW;
2146       }else{
2147         code = SQLITE_DROP_VIEW;
2148       }
2149 #ifndef SQLITE_OMIT_VIRTUALTABLE
2150     }else if( IsVirtual(pTab) ){
2151       code = SQLITE_DROP_VTABLE;
2152       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2153 #endif
2154     }else{
2155       if( !OMIT_TEMPDB && iDb==1 ){
2156         code = SQLITE_DROP_TEMP_TABLE;
2157       }else{
2158         code = SQLITE_DROP_TABLE;
2159       }
2160     }
2161     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2162       goto exit_drop_table;
2163     }
2164     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2165       goto exit_drop_table;
2166     }
2167   }
2168 #endif
2169   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2170     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2171     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2172     goto exit_drop_table;
2173   }
2174 
2175 #ifndef SQLITE_OMIT_VIEW
2176   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2177   ** on a table.
2178   */
2179   if( isView && pTab->pSelect==0 ){
2180     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2181     goto exit_drop_table;
2182   }
2183   if( !isView && pTab->pSelect ){
2184     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2185     goto exit_drop_table;
2186   }
2187 #endif
2188 
2189   /* Generate code to remove the table from the master table
2190   ** on disk.
2191   */
2192   v = sqlite3GetVdbe(pParse);
2193   if( v ){
2194     sqlite3BeginWriteOperation(pParse, 1, iDb);
2195     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2196     sqlite3FkDropTable(pParse, pName, pTab);
2197     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2198   }
2199 
2200 exit_drop_table:
2201   sqlite3SrcListDelete(db, pName);
2202 }
2203 
2204 /*
2205 ** This routine is called to create a new foreign key on the table
2206 ** currently under construction.  pFromCol determines which columns
2207 ** in the current table point to the foreign key.  If pFromCol==0 then
2208 ** connect the key to the last column inserted.  pTo is the name of
2209 ** the table referred to.  pToCol is a list of tables in the other
2210 ** pTo table that the foreign key points to.  flags contains all
2211 ** information about the conflict resolution algorithms specified
2212 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2213 **
2214 ** An FKey structure is created and added to the table currently
2215 ** under construction in the pParse->pNewTable field.
2216 **
2217 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2218 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2219 */
2220 void sqlite3CreateForeignKey(
2221   Parse *pParse,       /* Parsing context */
2222   ExprList *pFromCol,  /* Columns in this table that point to other table */
2223   Token *pTo,          /* Name of the other table */
2224   ExprList *pToCol,    /* Columns in the other table */
2225   int flags            /* Conflict resolution algorithms. */
2226 ){
2227   sqlite3 *db = pParse->db;
2228 #ifndef SQLITE_OMIT_FOREIGN_KEY
2229   FKey *pFKey = 0;
2230   FKey *pNextTo;
2231   Table *p = pParse->pNewTable;
2232   int nByte;
2233   int i;
2234   int nCol;
2235   char *z;
2236 
2237   assert( pTo!=0 );
2238   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2239   if( pFromCol==0 ){
2240     int iCol = p->nCol-1;
2241     if( NEVER(iCol<0) ) goto fk_end;
2242     if( pToCol && pToCol->nExpr!=1 ){
2243       sqlite3ErrorMsg(pParse, "foreign key on %s"
2244          " should reference only one column of table %T",
2245          p->aCol[iCol].zName, pTo);
2246       goto fk_end;
2247     }
2248     nCol = 1;
2249   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2250     sqlite3ErrorMsg(pParse,
2251         "number of columns in foreign key does not match the number of "
2252         "columns in the referenced table");
2253     goto fk_end;
2254   }else{
2255     nCol = pFromCol->nExpr;
2256   }
2257   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2258   if( pToCol ){
2259     for(i=0; i<pToCol->nExpr; i++){
2260       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2261     }
2262   }
2263   pFKey = sqlite3DbMallocZero(db, nByte );
2264   if( pFKey==0 ){
2265     goto fk_end;
2266   }
2267   pFKey->pFrom = p;
2268   pFKey->pNextFrom = p->pFKey;
2269   z = (char*)&pFKey->aCol[nCol];
2270   pFKey->zTo = z;
2271   memcpy(z, pTo->z, pTo->n);
2272   z[pTo->n] = 0;
2273   sqlite3Dequote(z);
2274   z += pTo->n+1;
2275   pFKey->nCol = nCol;
2276   if( pFromCol==0 ){
2277     pFKey->aCol[0].iFrom = p->nCol-1;
2278   }else{
2279     for(i=0; i<nCol; i++){
2280       int j;
2281       for(j=0; j<p->nCol; j++){
2282         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2283           pFKey->aCol[i].iFrom = j;
2284           break;
2285         }
2286       }
2287       if( j>=p->nCol ){
2288         sqlite3ErrorMsg(pParse,
2289           "unknown column \"%s\" in foreign key definition",
2290           pFromCol->a[i].zName);
2291         goto fk_end;
2292       }
2293     }
2294   }
2295   if( pToCol ){
2296     for(i=0; i<nCol; i++){
2297       int n = sqlite3Strlen30(pToCol->a[i].zName);
2298       pFKey->aCol[i].zCol = z;
2299       memcpy(z, pToCol->a[i].zName, n);
2300       z[n] = 0;
2301       z += n+1;
2302     }
2303   }
2304   pFKey->isDeferred = 0;
2305   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2306   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2307 
2308   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2309   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2310       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2311   );
2312   if( pNextTo==pFKey ){
2313     db->mallocFailed = 1;
2314     goto fk_end;
2315   }
2316   if( pNextTo ){
2317     assert( pNextTo->pPrevTo==0 );
2318     pFKey->pNextTo = pNextTo;
2319     pNextTo->pPrevTo = pFKey;
2320   }
2321 
2322   /* Link the foreign key to the table as the last step.
2323   */
2324   p->pFKey = pFKey;
2325   pFKey = 0;
2326 
2327 fk_end:
2328   sqlite3DbFree(db, pFKey);
2329 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2330   sqlite3ExprListDelete(db, pFromCol);
2331   sqlite3ExprListDelete(db, pToCol);
2332 }
2333 
2334 /*
2335 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2336 ** clause is seen as part of a foreign key definition.  The isDeferred
2337 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2338 ** The behavior of the most recently created foreign key is adjusted
2339 ** accordingly.
2340 */
2341 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2342 #ifndef SQLITE_OMIT_FOREIGN_KEY
2343   Table *pTab;
2344   FKey *pFKey;
2345   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2346   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2347   pFKey->isDeferred = (u8)isDeferred;
2348 #endif
2349 }
2350 
2351 /*
2352 ** Generate code that will erase and refill index *pIdx.  This is
2353 ** used to initialize a newly created index or to recompute the
2354 ** content of an index in response to a REINDEX command.
2355 **
2356 ** if memRootPage is not negative, it means that the index is newly
2357 ** created.  The register specified by memRootPage contains the
2358 ** root page number of the index.  If memRootPage is negative, then
2359 ** the index already exists and must be cleared before being refilled and
2360 ** the root page number of the index is taken from pIndex->tnum.
2361 */
2362 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2363   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2364   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2365   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2366   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2367   int addr1;                     /* Address of top of loop */
2368   int addr2;                     /* Address to jump to for next iteration */
2369   int tnum;                      /* Root page of index */
2370   Vdbe *v;                       /* Generate code into this virtual machine */
2371   KeyInfo *pKey;                 /* KeyInfo for index */
2372 #ifdef SQLITE_OMIT_MERGE_SORT
2373   int regIdxKey;                 /* Registers containing the index key */
2374 #endif
2375   int regRecord;                 /* Register holding assemblied index record */
2376   sqlite3 *db = pParse->db;      /* The database connection */
2377   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2378 
2379 #ifndef SQLITE_OMIT_AUTHORIZATION
2380   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2381       db->aDb[iDb].zName ) ){
2382     return;
2383   }
2384 #endif
2385 
2386   /* Require a write-lock on the table to perform this operation */
2387   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2388 
2389   v = sqlite3GetVdbe(pParse);
2390   if( v==0 ) return;
2391   if( memRootPage>=0 ){
2392     tnum = memRootPage;
2393   }else{
2394     tnum = pIndex->tnum;
2395     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2396   }
2397   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2398   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2399                     (char *)pKey, P4_KEYINFO_HANDOFF);
2400   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2401 
2402 #ifndef SQLITE_OMIT_MERGE_SORT
2403   /* Open the sorter cursor if we are to use one. */
2404   iSorter = pParse->nTab++;
2405   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
2406 #else
2407   iSorter = iTab;
2408 #endif
2409 
2410   /* Open the table. Loop through all rows of the table, inserting index
2411   ** records into the sorter. */
2412   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2413   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2414   regRecord = sqlite3GetTempReg(pParse);
2415 
2416 #ifndef SQLITE_OMIT_MERGE_SORT
2417   sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2418   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2419   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2420   sqlite3VdbeJumpHere(v, addr1);
2421   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
2422   if( pIndex->onError!=OE_None ){
2423     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2424     sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
2425     addr2 = sqlite3VdbeCurrentAddr(v);
2426     sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
2427     sqlite3HaltConstraint(
2428         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
2429     );
2430   }else{
2431     addr2 = sqlite3VdbeCurrentAddr(v);
2432   }
2433   sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
2434   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
2435   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2436 #else
2437   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2438   addr2 = addr1 + 1;
2439   if( pIndex->onError!=OE_None ){
2440     const int regRowid = regIdxKey + pIndex->nColumn;
2441     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2442     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2443 
2444     /* The registers accessed by the OP_IsUnique opcode were allocated
2445     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2446     ** call above. Just before that function was freed they were released
2447     ** (made available to the compiler for reuse) using
2448     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2449     ** opcode use the values stored within seems dangerous. However, since
2450     ** we can be sure that no other temp registers have been allocated
2451     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2452     */
2453     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2454     sqlite3HaltConstraint(
2455         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2456   }
2457   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2458   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2459 #endif
2460   sqlite3ReleaseTempReg(pParse, regRecord);
2461   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
2462   sqlite3VdbeJumpHere(v, addr1);
2463 
2464   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2465   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2466   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2467 }
2468 
2469 /*
2470 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2471 ** and pTblList is the name of the table that is to be indexed.  Both will
2472 ** be NULL for a primary key or an index that is created to satisfy a
2473 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2474 ** as the table to be indexed.  pParse->pNewTable is a table that is
2475 ** currently being constructed by a CREATE TABLE statement.
2476 **
2477 ** pList is a list of columns to be indexed.  pList will be NULL if this
2478 ** is a primary key or unique-constraint on the most recent column added
2479 ** to the table currently under construction.
2480 **
2481 ** If the index is created successfully, return a pointer to the new Index
2482 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2483 ** as the tables primary key (Index.autoIndex==2).
2484 */
2485 Index *sqlite3CreateIndex(
2486   Parse *pParse,     /* All information about this parse */
2487   Token *pName1,     /* First part of index name. May be NULL */
2488   Token *pName2,     /* Second part of index name. May be NULL */
2489   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2490   ExprList *pList,   /* A list of columns to be indexed */
2491   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2492   Token *pStart,     /* The CREATE token that begins this statement */
2493   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2494   int sortOrder,     /* Sort order of primary key when pList==NULL */
2495   int ifNotExist     /* Omit error if index already exists */
2496 ){
2497   Index *pRet = 0;     /* Pointer to return */
2498   Table *pTab = 0;     /* Table to be indexed */
2499   Index *pIndex = 0;   /* The index to be created */
2500   char *zName = 0;     /* Name of the index */
2501   int nName;           /* Number of characters in zName */
2502   int i, j;
2503   Token nullId;        /* Fake token for an empty ID list */
2504   DbFixer sFix;        /* For assigning database names to pTable */
2505   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2506   sqlite3 *db = pParse->db;
2507   Db *pDb;             /* The specific table containing the indexed database */
2508   int iDb;             /* Index of the database that is being written */
2509   Token *pName = 0;    /* Unqualified name of the index to create */
2510   struct ExprList_item *pListItem; /* For looping over pList */
2511   int nCol;
2512   int nExtra = 0;
2513   char *zExtra;
2514 
2515   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2516   assert( pParse->nErr==0 );      /* Never called with prior errors */
2517   if( db->mallocFailed || IN_DECLARE_VTAB ){
2518     goto exit_create_index;
2519   }
2520   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2521     goto exit_create_index;
2522   }
2523 
2524   /*
2525   ** Find the table that is to be indexed.  Return early if not found.
2526   */
2527   if( pTblName!=0 ){
2528 
2529     /* Use the two-part index name to determine the database
2530     ** to search for the table. 'Fix' the table name to this db
2531     ** before looking up the table.
2532     */
2533     assert( pName1 && pName2 );
2534     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2535     if( iDb<0 ) goto exit_create_index;
2536     assert( pName && pName->z );
2537 
2538 #ifndef SQLITE_OMIT_TEMPDB
2539     /* If the index name was unqualified, check if the table
2540     ** is a temp table. If so, set the database to 1. Do not do this
2541     ** if initialising a database schema.
2542     */
2543     if( !db->init.busy ){
2544       pTab = sqlite3SrcListLookup(pParse, pTblName);
2545       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2546         iDb = 1;
2547       }
2548     }
2549 #endif
2550 
2551     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2552         sqlite3FixSrcList(&sFix, pTblName)
2553     ){
2554       /* Because the parser constructs pTblName from a single identifier,
2555       ** sqlite3FixSrcList can never fail. */
2556       assert(0);
2557     }
2558     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2559         pTblName->a[0].zDatabase);
2560     if( !pTab || db->mallocFailed ) goto exit_create_index;
2561     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2562   }else{
2563     assert( pName==0 );
2564     assert( pStart==0 );
2565     pTab = pParse->pNewTable;
2566     if( !pTab ) goto exit_create_index;
2567     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2568   }
2569   pDb = &db->aDb[iDb];
2570 
2571   assert( pTab!=0 );
2572   assert( pParse->nErr==0 );
2573   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2574        && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2575     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2576     goto exit_create_index;
2577   }
2578 #ifndef SQLITE_OMIT_VIEW
2579   if( pTab->pSelect ){
2580     sqlite3ErrorMsg(pParse, "views may not be indexed");
2581     goto exit_create_index;
2582   }
2583 #endif
2584 #ifndef SQLITE_OMIT_VIRTUALTABLE
2585   if( IsVirtual(pTab) ){
2586     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2587     goto exit_create_index;
2588   }
2589 #endif
2590 
2591   /*
2592   ** Find the name of the index.  Make sure there is not already another
2593   ** index or table with the same name.
2594   **
2595   ** Exception:  If we are reading the names of permanent indices from the
2596   ** sqlite_master table (because some other process changed the schema) and
2597   ** one of the index names collides with the name of a temporary table or
2598   ** index, then we will continue to process this index.
2599   **
2600   ** If pName==0 it means that we are
2601   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2602   ** own name.
2603   */
2604   if( pName ){
2605     zName = sqlite3NameFromToken(db, pName);
2606     if( zName==0 ) goto exit_create_index;
2607     assert( pName->z!=0 );
2608     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2609       goto exit_create_index;
2610     }
2611     if( !db->init.busy ){
2612       if( sqlite3FindTable(db, zName, 0)!=0 ){
2613         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2614         goto exit_create_index;
2615       }
2616     }
2617     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2618       if( !ifNotExist ){
2619         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2620       }else{
2621         assert( !db->init.busy );
2622         sqlite3CodeVerifySchema(pParse, iDb);
2623       }
2624       goto exit_create_index;
2625     }
2626   }else{
2627     int n;
2628     Index *pLoop;
2629     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2630     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2631     if( zName==0 ){
2632       goto exit_create_index;
2633     }
2634   }
2635 
2636   /* Check for authorization to create an index.
2637   */
2638 #ifndef SQLITE_OMIT_AUTHORIZATION
2639   {
2640     const char *zDb = pDb->zName;
2641     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2642       goto exit_create_index;
2643     }
2644     i = SQLITE_CREATE_INDEX;
2645     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2646     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2647       goto exit_create_index;
2648     }
2649   }
2650 #endif
2651 
2652   /* If pList==0, it means this routine was called to make a primary
2653   ** key out of the last column added to the table under construction.
2654   ** So create a fake list to simulate this.
2655   */
2656   if( pList==0 ){
2657     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2658     nullId.n = sqlite3Strlen30((char*)nullId.z);
2659     pList = sqlite3ExprListAppend(pParse, 0, 0);
2660     if( pList==0 ) goto exit_create_index;
2661     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2662     pList->a[0].sortOrder = (u8)sortOrder;
2663   }
2664 
2665   /* Figure out how many bytes of space are required to store explicitly
2666   ** specified collation sequence names.
2667   */
2668   for(i=0; i<pList->nExpr; i++){
2669     Expr *pExpr = pList->a[i].pExpr;
2670     if( pExpr ){
2671       CollSeq *pColl = pExpr->pColl;
2672       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2673       ** failure we have quit before reaching this point. */
2674       if( ALWAYS(pColl) ){
2675         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2676       }
2677     }
2678   }
2679 
2680   /*
2681   ** Allocate the index structure.
2682   */
2683   nName = sqlite3Strlen30(zName);
2684   nCol = pList->nExpr;
2685   pIndex = sqlite3DbMallocZero(db,
2686       ROUND8(sizeof(Index)) +              /* Index structure  */
2687       ROUND8(sizeof(tRowcnt)*(nCol+1)) +   /* Index.aiRowEst   */
2688       sizeof(char *)*nCol +                /* Index.azColl     */
2689       sizeof(int)*nCol +                   /* Index.aiColumn   */
2690       sizeof(u8)*nCol +                    /* Index.aSortOrder */
2691       nName + 1 +                          /* Index.zName      */
2692       nExtra                               /* Collation sequence names */
2693   );
2694   if( db->mallocFailed ){
2695     goto exit_create_index;
2696   }
2697   zExtra = (char*)pIndex;
2698   pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))];
2699   pIndex->azColl = (char**)
2700      ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1));
2701   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) );
2702   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
2703   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2704   pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
2705   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2706   zExtra = (char *)(&pIndex->zName[nName+1]);
2707   memcpy(pIndex->zName, zName, nName+1);
2708   pIndex->pTable = pTab;
2709   pIndex->nColumn = pList->nExpr;
2710   pIndex->onError = (u8)onError;
2711   pIndex->autoIndex = (u8)(pName==0);
2712   pIndex->pSchema = db->aDb[iDb].pSchema;
2713   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2714 
2715   /* Check to see if we should honor DESC requests on index columns
2716   */
2717   if( pDb->pSchema->file_format>=4 ){
2718     sortOrderMask = -1;   /* Honor DESC */
2719   }else{
2720     sortOrderMask = 0;    /* Ignore DESC */
2721   }
2722 
2723   /* Scan the names of the columns of the table to be indexed and
2724   ** load the column indices into the Index structure.  Report an error
2725   ** if any column is not found.
2726   **
2727   ** TODO:  Add a test to make sure that the same column is not named
2728   ** more than once within the same index.  Only the first instance of
2729   ** the column will ever be used by the optimizer.  Note that using the
2730   ** same column more than once cannot be an error because that would
2731   ** break backwards compatibility - it needs to be a warning.
2732   */
2733   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2734     const char *zColName = pListItem->zName;
2735     Column *pTabCol;
2736     int requestedSortOrder;
2737     char *zColl;                   /* Collation sequence name */
2738 
2739     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2740       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2741     }
2742     if( j>=pTab->nCol ){
2743       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2744         pTab->zName, zColName);
2745       pParse->checkSchema = 1;
2746       goto exit_create_index;
2747     }
2748     pIndex->aiColumn[i] = j;
2749     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2750     ** the way the "idxlist" non-terminal is constructed by the parser,
2751     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2752     ** must exist or else there must have been an OOM error.  But if there
2753     ** was an OOM error, we would never reach this point. */
2754     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2755       int nColl;
2756       zColl = pListItem->pExpr->pColl->zName;
2757       nColl = sqlite3Strlen30(zColl) + 1;
2758       assert( nExtra>=nColl );
2759       memcpy(zExtra, zColl, nColl);
2760       zColl = zExtra;
2761       zExtra += nColl;
2762       nExtra -= nColl;
2763     }else{
2764       zColl = pTab->aCol[j].zColl;
2765       if( !zColl ){
2766         zColl = "BINARY";
2767       }
2768     }
2769     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2770       goto exit_create_index;
2771     }
2772     pIndex->azColl[i] = zColl;
2773     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2774     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2775   }
2776   sqlite3DefaultRowEst(pIndex);
2777 
2778   if( pTab==pParse->pNewTable ){
2779     /* This routine has been called to create an automatic index as a
2780     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2781     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2782     ** i.e. one of:
2783     **
2784     ** CREATE TABLE t(x PRIMARY KEY, y);
2785     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2786     **
2787     ** Either way, check to see if the table already has such an index. If
2788     ** so, don't bother creating this one. This only applies to
2789     ** automatically created indices. Users can do as they wish with
2790     ** explicit indices.
2791     **
2792     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2793     ** (and thus suppressing the second one) even if they have different
2794     ** sort orders.
2795     **
2796     ** If there are different collating sequences or if the columns of
2797     ** the constraint occur in different orders, then the constraints are
2798     ** considered distinct and both result in separate indices.
2799     */
2800     Index *pIdx;
2801     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2802       int k;
2803       assert( pIdx->onError!=OE_None );
2804       assert( pIdx->autoIndex );
2805       assert( pIndex->onError!=OE_None );
2806 
2807       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2808       for(k=0; k<pIdx->nColumn; k++){
2809         const char *z1;
2810         const char *z2;
2811         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2812         z1 = pIdx->azColl[k];
2813         z2 = pIndex->azColl[k];
2814         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2815       }
2816       if( k==pIdx->nColumn ){
2817         if( pIdx->onError!=pIndex->onError ){
2818           /* This constraint creates the same index as a previous
2819           ** constraint specified somewhere in the CREATE TABLE statement.
2820           ** However the ON CONFLICT clauses are different. If both this
2821           ** constraint and the previous equivalent constraint have explicit
2822           ** ON CONFLICT clauses this is an error. Otherwise, use the
2823           ** explicitly specified behaviour for the index.
2824           */
2825           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2826             sqlite3ErrorMsg(pParse,
2827                 "conflicting ON CONFLICT clauses specified", 0);
2828           }
2829           if( pIdx->onError==OE_Default ){
2830             pIdx->onError = pIndex->onError;
2831           }
2832         }
2833         goto exit_create_index;
2834       }
2835     }
2836   }
2837 
2838   /* Link the new Index structure to its table and to the other
2839   ** in-memory database structures.
2840   */
2841   if( db->init.busy ){
2842     Index *p;
2843     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2844     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2845                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2846                           pIndex);
2847     if( p ){
2848       assert( p==pIndex );  /* Malloc must have failed */
2849       db->mallocFailed = 1;
2850       goto exit_create_index;
2851     }
2852     db->flags |= SQLITE_InternChanges;
2853     if( pTblName!=0 ){
2854       pIndex->tnum = db->init.newTnum;
2855     }
2856   }
2857 
2858   /* If the db->init.busy is 0 then create the index on disk.  This
2859   ** involves writing the index into the master table and filling in the
2860   ** index with the current table contents.
2861   **
2862   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2863   ** command.  db->init.busy is 1 when a database is opened and
2864   ** CREATE INDEX statements are read out of the master table.  In
2865   ** the latter case the index already exists on disk, which is why
2866   ** we don't want to recreate it.
2867   **
2868   ** If pTblName==0 it means this index is generated as a primary key
2869   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2870   ** has just been created, it contains no data and the index initialization
2871   ** step can be skipped.
2872   */
2873   else{ /* if( db->init.busy==0 ) */
2874     Vdbe *v;
2875     char *zStmt;
2876     int iMem = ++pParse->nMem;
2877 
2878     v = sqlite3GetVdbe(pParse);
2879     if( v==0 ) goto exit_create_index;
2880 
2881 
2882     /* Create the rootpage for the index
2883     */
2884     sqlite3BeginWriteOperation(pParse, 1, iDb);
2885     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2886 
2887     /* Gather the complete text of the CREATE INDEX statement into
2888     ** the zStmt variable
2889     */
2890     if( pStart ){
2891       assert( pEnd!=0 );
2892       /* A named index with an explicit CREATE INDEX statement */
2893       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2894         onError==OE_None ? "" : " UNIQUE",
2895         (int)(pEnd->z - pName->z) + 1,
2896         pName->z);
2897     }else{
2898       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2899       /* zStmt = sqlite3MPrintf(""); */
2900       zStmt = 0;
2901     }
2902 
2903     /* Add an entry in sqlite_master for this index
2904     */
2905     sqlite3NestedParse(pParse,
2906         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2907         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2908         pIndex->zName,
2909         pTab->zName,
2910         iMem,
2911         zStmt
2912     );
2913     sqlite3DbFree(db, zStmt);
2914 
2915     /* Fill the index with data and reparse the schema. Code an OP_Expire
2916     ** to invalidate all pre-compiled statements.
2917     */
2918     if( pTblName ){
2919       sqlite3RefillIndex(pParse, pIndex, iMem);
2920       sqlite3ChangeCookie(pParse, iDb);
2921       sqlite3VdbeAddParseSchemaOp(v, iDb,
2922          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
2923       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2924     }
2925   }
2926 
2927   /* When adding an index to the list of indices for a table, make
2928   ** sure all indices labeled OE_Replace come after all those labeled
2929   ** OE_Ignore.  This is necessary for the correct constraint check
2930   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2931   ** UPDATE and INSERT statements.
2932   */
2933   if( db->init.busy || pTblName==0 ){
2934     if( onError!=OE_Replace || pTab->pIndex==0
2935          || pTab->pIndex->onError==OE_Replace){
2936       pIndex->pNext = pTab->pIndex;
2937       pTab->pIndex = pIndex;
2938     }else{
2939       Index *pOther = pTab->pIndex;
2940       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2941         pOther = pOther->pNext;
2942       }
2943       pIndex->pNext = pOther->pNext;
2944       pOther->pNext = pIndex;
2945     }
2946     pRet = pIndex;
2947     pIndex = 0;
2948   }
2949 
2950   /* Clean up before exiting */
2951 exit_create_index:
2952   if( pIndex ){
2953     sqlite3DbFree(db, pIndex->zColAff);
2954     sqlite3DbFree(db, pIndex);
2955   }
2956   sqlite3ExprListDelete(db, pList);
2957   sqlite3SrcListDelete(db, pTblName);
2958   sqlite3DbFree(db, zName);
2959   return pRet;
2960 }
2961 
2962 /*
2963 ** Fill the Index.aiRowEst[] array with default information - information
2964 ** to be used when we have not run the ANALYZE command.
2965 **
2966 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2967 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2968 ** number of rows in the table that match any particular value of the
2969 ** first column of the index.  aiRowEst[2] is an estimate of the number
2970 ** of rows that match any particular combiniation of the first 2 columns
2971 ** of the index.  And so forth.  It must always be the case that
2972 *
2973 **           aiRowEst[N]<=aiRowEst[N-1]
2974 **           aiRowEst[N]>=1
2975 **
2976 ** Apart from that, we have little to go on besides intuition as to
2977 ** how aiRowEst[] should be initialized.  The numbers generated here
2978 ** are based on typical values found in actual indices.
2979 */
2980 void sqlite3DefaultRowEst(Index *pIdx){
2981   tRowcnt *a = pIdx->aiRowEst;
2982   int i;
2983   tRowcnt n;
2984   assert( a!=0 );
2985   a[0] = pIdx->pTable->nRowEst;
2986   if( a[0]<10 ) a[0] = 10;
2987   n = 10;
2988   for(i=1; i<=pIdx->nColumn; i++){
2989     a[i] = n;
2990     if( n>5 ) n--;
2991   }
2992   if( pIdx->onError!=OE_None ){
2993     a[pIdx->nColumn] = 1;
2994   }
2995 }
2996 
2997 /*
2998 ** This routine will drop an existing named index.  This routine
2999 ** implements the DROP INDEX statement.
3000 */
3001 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3002   Index *pIndex;
3003   Vdbe *v;
3004   sqlite3 *db = pParse->db;
3005   int iDb;
3006 
3007   assert( pParse->nErr==0 );   /* Never called with prior errors */
3008   if( db->mallocFailed ){
3009     goto exit_drop_index;
3010   }
3011   assert( pName->nSrc==1 );
3012   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3013     goto exit_drop_index;
3014   }
3015   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3016   if( pIndex==0 ){
3017     if( !ifExists ){
3018       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3019     }else{
3020       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3021     }
3022     pParse->checkSchema = 1;
3023     goto exit_drop_index;
3024   }
3025   if( pIndex->autoIndex ){
3026     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3027       "or PRIMARY KEY constraint cannot be dropped", 0);
3028     goto exit_drop_index;
3029   }
3030   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3031 #ifndef SQLITE_OMIT_AUTHORIZATION
3032   {
3033     int code = SQLITE_DROP_INDEX;
3034     Table *pTab = pIndex->pTable;
3035     const char *zDb = db->aDb[iDb].zName;
3036     const char *zTab = SCHEMA_TABLE(iDb);
3037     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3038       goto exit_drop_index;
3039     }
3040     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3041     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3042       goto exit_drop_index;
3043     }
3044   }
3045 #endif
3046 
3047   /* Generate code to remove the index and from the master table */
3048   v = sqlite3GetVdbe(pParse);
3049   if( v ){
3050     sqlite3BeginWriteOperation(pParse, 1, iDb);
3051     sqlite3NestedParse(pParse,
3052        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3053        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3054     );
3055     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3056     sqlite3ChangeCookie(pParse, iDb);
3057     destroyRootPage(pParse, pIndex->tnum, iDb);
3058     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3059   }
3060 
3061 exit_drop_index:
3062   sqlite3SrcListDelete(db, pName);
3063 }
3064 
3065 /*
3066 ** pArray is a pointer to an array of objects. Each object in the
3067 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3068 ** to extend the array so that there is space for a new object at the end.
3069 **
3070 ** When this function is called, *pnEntry contains the current size of
3071 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3072 ** in total).
3073 **
3074 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3075 ** space allocated for the new object is zeroed, *pnEntry updated to
3076 ** reflect the new size of the array and a pointer to the new allocation
3077 ** returned. *pIdx is set to the index of the new array entry in this case.
3078 **
3079 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3080 ** unchanged and a copy of pArray returned.
3081 */
3082 void *sqlite3ArrayAllocate(
3083   sqlite3 *db,      /* Connection to notify of malloc failures */
3084   void *pArray,     /* Array of objects.  Might be reallocated */
3085   int szEntry,      /* Size of each object in the array */
3086   int *pnEntry,     /* Number of objects currently in use */
3087   int *pIdx         /* Write the index of a new slot here */
3088 ){
3089   char *z;
3090   int n = *pnEntry;
3091   if( (n & (n-1))==0 ){
3092     int sz = (n==0) ? 1 : 2*n;
3093     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3094     if( pNew==0 ){
3095       *pIdx = -1;
3096       return pArray;
3097     }
3098     pArray = pNew;
3099   }
3100   z = (char*)pArray;
3101   memset(&z[n * szEntry], 0, szEntry);
3102   *pIdx = n;
3103   ++*pnEntry;
3104   return pArray;
3105 }
3106 
3107 /*
3108 ** Append a new element to the given IdList.  Create a new IdList if
3109 ** need be.
3110 **
3111 ** A new IdList is returned, or NULL if malloc() fails.
3112 */
3113 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3114   int i;
3115   if( pList==0 ){
3116     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3117     if( pList==0 ) return 0;
3118   }
3119   pList->a = sqlite3ArrayAllocate(
3120       db,
3121       pList->a,
3122       sizeof(pList->a[0]),
3123       &pList->nId,
3124       &i
3125   );
3126   if( i<0 ){
3127     sqlite3IdListDelete(db, pList);
3128     return 0;
3129   }
3130   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3131   return pList;
3132 }
3133 
3134 /*
3135 ** Delete an IdList.
3136 */
3137 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3138   int i;
3139   if( pList==0 ) return;
3140   for(i=0; i<pList->nId; i++){
3141     sqlite3DbFree(db, pList->a[i].zName);
3142   }
3143   sqlite3DbFree(db, pList->a);
3144   sqlite3DbFree(db, pList);
3145 }
3146 
3147 /*
3148 ** Return the index in pList of the identifier named zId.  Return -1
3149 ** if not found.
3150 */
3151 int sqlite3IdListIndex(IdList *pList, const char *zName){
3152   int i;
3153   if( pList==0 ) return -1;
3154   for(i=0; i<pList->nId; i++){
3155     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3156   }
3157   return -1;
3158 }
3159 
3160 /*
3161 ** Expand the space allocated for the given SrcList object by
3162 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3163 ** New slots are zeroed.
3164 **
3165 ** For example, suppose a SrcList initially contains two entries: A,B.
3166 ** To append 3 new entries onto the end, do this:
3167 **
3168 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3169 **
3170 ** After the call above it would contain:  A, B, nil, nil, nil.
3171 ** If the iStart argument had been 1 instead of 2, then the result
3172 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3173 ** the iStart value would be 0.  The result then would
3174 ** be: nil, nil, nil, A, B.
3175 **
3176 ** If a memory allocation fails the SrcList is unchanged.  The
3177 ** db->mallocFailed flag will be set to true.
3178 */
3179 SrcList *sqlite3SrcListEnlarge(
3180   sqlite3 *db,       /* Database connection to notify of OOM errors */
3181   SrcList *pSrc,     /* The SrcList to be enlarged */
3182   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3183   int iStart         /* Index in pSrc->a[] of first new slot */
3184 ){
3185   int i;
3186 
3187   /* Sanity checking on calling parameters */
3188   assert( iStart>=0 );
3189   assert( nExtra>=1 );
3190   assert( pSrc!=0 );
3191   assert( iStart<=pSrc->nSrc );
3192 
3193   /* Allocate additional space if needed */
3194   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3195     SrcList *pNew;
3196     int nAlloc = pSrc->nSrc+nExtra;
3197     int nGot;
3198     pNew = sqlite3DbRealloc(db, pSrc,
3199                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3200     if( pNew==0 ){
3201       assert( db->mallocFailed );
3202       return pSrc;
3203     }
3204     pSrc = pNew;
3205     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3206     pSrc->nAlloc = (u16)nGot;
3207   }
3208 
3209   /* Move existing slots that come after the newly inserted slots
3210   ** out of the way */
3211   for(i=pSrc->nSrc-1; i>=iStart; i--){
3212     pSrc->a[i+nExtra] = pSrc->a[i];
3213   }
3214   pSrc->nSrc += (i16)nExtra;
3215 
3216   /* Zero the newly allocated slots */
3217   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3218   for(i=iStart; i<iStart+nExtra; i++){
3219     pSrc->a[i].iCursor = -1;
3220   }
3221 
3222   /* Return a pointer to the enlarged SrcList */
3223   return pSrc;
3224 }
3225 
3226 
3227 /*
3228 ** Append a new table name to the given SrcList.  Create a new SrcList if
3229 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3230 **
3231 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3232 ** SrcList might be the same as the SrcList that was input or it might be
3233 ** a new one.  If an OOM error does occurs, then the prior value of pList
3234 ** that is input to this routine is automatically freed.
3235 **
3236 ** If pDatabase is not null, it means that the table has an optional
3237 ** database name prefix.  Like this:  "database.table".  The pDatabase
3238 ** points to the table name and the pTable points to the database name.
3239 ** The SrcList.a[].zName field is filled with the table name which might
3240 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3241 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3242 ** or with NULL if no database is specified.
3243 **
3244 ** In other words, if call like this:
3245 **
3246 **         sqlite3SrcListAppend(D,A,B,0);
3247 **
3248 ** Then B is a table name and the database name is unspecified.  If called
3249 ** like this:
3250 **
3251 **         sqlite3SrcListAppend(D,A,B,C);
3252 **
3253 ** Then C is the table name and B is the database name.  If C is defined
3254 ** then so is B.  In other words, we never have a case where:
3255 **
3256 **         sqlite3SrcListAppend(D,A,0,C);
3257 **
3258 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3259 ** before being added to the SrcList.
3260 */
3261 SrcList *sqlite3SrcListAppend(
3262   sqlite3 *db,        /* Connection to notify of malloc failures */
3263   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3264   Token *pTable,      /* Table to append */
3265   Token *pDatabase    /* Database of the table */
3266 ){
3267   struct SrcList_item *pItem;
3268   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3269   if( pList==0 ){
3270     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3271     if( pList==0 ) return 0;
3272     pList->nAlloc = 1;
3273   }
3274   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3275   if( db->mallocFailed ){
3276     sqlite3SrcListDelete(db, pList);
3277     return 0;
3278   }
3279   pItem = &pList->a[pList->nSrc-1];
3280   if( pDatabase && pDatabase->z==0 ){
3281     pDatabase = 0;
3282   }
3283   if( pDatabase ){
3284     Token *pTemp = pDatabase;
3285     pDatabase = pTable;
3286     pTable = pTemp;
3287   }
3288   pItem->zName = sqlite3NameFromToken(db, pTable);
3289   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3290   return pList;
3291 }
3292 
3293 /*
3294 ** Assign VdbeCursor index numbers to all tables in a SrcList
3295 */
3296 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3297   int i;
3298   struct SrcList_item *pItem;
3299   assert(pList || pParse->db->mallocFailed );
3300   if( pList ){
3301     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3302       if( pItem->iCursor>=0 ) break;
3303       pItem->iCursor = pParse->nTab++;
3304       if( pItem->pSelect ){
3305         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3306       }
3307     }
3308   }
3309 }
3310 
3311 /*
3312 ** Delete an entire SrcList including all its substructure.
3313 */
3314 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3315   int i;
3316   struct SrcList_item *pItem;
3317   if( pList==0 ) return;
3318   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3319     sqlite3DbFree(db, pItem->zDatabase);
3320     sqlite3DbFree(db, pItem->zName);
3321     sqlite3DbFree(db, pItem->zAlias);
3322     sqlite3DbFree(db, pItem->zIndex);
3323     sqlite3DeleteTable(db, pItem->pTab);
3324     sqlite3SelectDelete(db, pItem->pSelect);
3325     sqlite3ExprDelete(db, pItem->pOn);
3326     sqlite3IdListDelete(db, pItem->pUsing);
3327   }
3328   sqlite3DbFree(db, pList);
3329 }
3330 
3331 /*
3332 ** This routine is called by the parser to add a new term to the
3333 ** end of a growing FROM clause.  The "p" parameter is the part of
3334 ** the FROM clause that has already been constructed.  "p" is NULL
3335 ** if this is the first term of the FROM clause.  pTable and pDatabase
3336 ** are the name of the table and database named in the FROM clause term.
3337 ** pDatabase is NULL if the database name qualifier is missing - the
3338 ** usual case.  If the term has a alias, then pAlias points to the
3339 ** alias token.  If the term is a subquery, then pSubquery is the
3340 ** SELECT statement that the subquery encodes.  The pTable and
3341 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3342 ** parameters are the content of the ON and USING clauses.
3343 **
3344 ** Return a new SrcList which encodes is the FROM with the new
3345 ** term added.
3346 */
3347 SrcList *sqlite3SrcListAppendFromTerm(
3348   Parse *pParse,          /* Parsing context */
3349   SrcList *p,             /* The left part of the FROM clause already seen */
3350   Token *pTable,          /* Name of the table to add to the FROM clause */
3351   Token *pDatabase,       /* Name of the database containing pTable */
3352   Token *pAlias,          /* The right-hand side of the AS subexpression */
3353   Select *pSubquery,      /* A subquery used in place of a table name */
3354   Expr *pOn,              /* The ON clause of a join */
3355   IdList *pUsing          /* The USING clause of a join */
3356 ){
3357   struct SrcList_item *pItem;
3358   sqlite3 *db = pParse->db;
3359   if( !p && (pOn || pUsing) ){
3360     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3361       (pOn ? "ON" : "USING")
3362     );
3363     goto append_from_error;
3364   }
3365   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3366   if( p==0 || NEVER(p->nSrc==0) ){
3367     goto append_from_error;
3368   }
3369   pItem = &p->a[p->nSrc-1];
3370   assert( pAlias!=0 );
3371   if( pAlias->n ){
3372     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3373   }
3374   pItem->pSelect = pSubquery;
3375   pItem->pOn = pOn;
3376   pItem->pUsing = pUsing;
3377   return p;
3378 
3379  append_from_error:
3380   assert( p==0 );
3381   sqlite3ExprDelete(db, pOn);
3382   sqlite3IdListDelete(db, pUsing);
3383   sqlite3SelectDelete(db, pSubquery);
3384   return 0;
3385 }
3386 
3387 /*
3388 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3389 ** element of the source-list passed as the second argument.
3390 */
3391 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3392   assert( pIndexedBy!=0 );
3393   if( p && ALWAYS(p->nSrc>0) ){
3394     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3395     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3396     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3397       /* A "NOT INDEXED" clause was supplied. See parse.y
3398       ** construct "indexed_opt" for details. */
3399       pItem->notIndexed = 1;
3400     }else{
3401       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3402     }
3403   }
3404 }
3405 
3406 /*
3407 ** When building up a FROM clause in the parser, the join operator
3408 ** is initially attached to the left operand.  But the code generator
3409 ** expects the join operator to be on the right operand.  This routine
3410 ** Shifts all join operators from left to right for an entire FROM
3411 ** clause.
3412 **
3413 ** Example: Suppose the join is like this:
3414 **
3415 **           A natural cross join B
3416 **
3417 ** The operator is "natural cross join".  The A and B operands are stored
3418 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3419 ** operator with A.  This routine shifts that operator over to B.
3420 */
3421 void sqlite3SrcListShiftJoinType(SrcList *p){
3422   if( p ){
3423     int i;
3424     assert( p->a || p->nSrc==0 );
3425     for(i=p->nSrc-1; i>0; i--){
3426       p->a[i].jointype = p->a[i-1].jointype;
3427     }
3428     p->a[0].jointype = 0;
3429   }
3430 }
3431 
3432 /*
3433 ** Begin a transaction
3434 */
3435 void sqlite3BeginTransaction(Parse *pParse, int type){
3436   sqlite3 *db;
3437   Vdbe *v;
3438   int i;
3439 
3440   assert( pParse!=0 );
3441   db = pParse->db;
3442   assert( db!=0 );
3443 /*  if( db->aDb[0].pBt==0 ) return; */
3444   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3445     return;
3446   }
3447   v = sqlite3GetVdbe(pParse);
3448   if( !v ) return;
3449   if( type!=TK_DEFERRED ){
3450     for(i=0; i<db->nDb; i++){
3451       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3452       sqlite3VdbeUsesBtree(v, i);
3453     }
3454   }
3455   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3456 }
3457 
3458 /*
3459 ** Commit a transaction
3460 */
3461 void sqlite3CommitTransaction(Parse *pParse){
3462   Vdbe *v;
3463 
3464   assert( pParse!=0 );
3465   assert( pParse->db!=0 );
3466   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3467     return;
3468   }
3469   v = sqlite3GetVdbe(pParse);
3470   if( v ){
3471     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3472   }
3473 }
3474 
3475 /*
3476 ** Rollback a transaction
3477 */
3478 void sqlite3RollbackTransaction(Parse *pParse){
3479   Vdbe *v;
3480 
3481   assert( pParse!=0 );
3482   assert( pParse->db!=0 );
3483   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3484     return;
3485   }
3486   v = sqlite3GetVdbe(pParse);
3487   if( v ){
3488     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3489   }
3490 }
3491 
3492 /*
3493 ** This function is called by the parser when it parses a command to create,
3494 ** release or rollback an SQL savepoint.
3495 */
3496 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3497   char *zName = sqlite3NameFromToken(pParse->db, pName);
3498   if( zName ){
3499     Vdbe *v = sqlite3GetVdbe(pParse);
3500 #ifndef SQLITE_OMIT_AUTHORIZATION
3501     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3502     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3503 #endif
3504     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3505       sqlite3DbFree(pParse->db, zName);
3506       return;
3507     }
3508     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3509   }
3510 }
3511 
3512 /*
3513 ** Make sure the TEMP database is open and available for use.  Return
3514 ** the number of errors.  Leave any error messages in the pParse structure.
3515 */
3516 int sqlite3OpenTempDatabase(Parse *pParse){
3517   sqlite3 *db = pParse->db;
3518   if( db->aDb[1].pBt==0 && !pParse->explain ){
3519     int rc;
3520     Btree *pBt;
3521     static const int flags =
3522           SQLITE_OPEN_READWRITE |
3523           SQLITE_OPEN_CREATE |
3524           SQLITE_OPEN_EXCLUSIVE |
3525           SQLITE_OPEN_DELETEONCLOSE |
3526           SQLITE_OPEN_TEMP_DB;
3527 
3528     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3529     if( rc!=SQLITE_OK ){
3530       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3531         "file for storing temporary tables");
3532       pParse->rc = rc;
3533       return 1;
3534     }
3535     db->aDb[1].pBt = pBt;
3536     assert( db->aDb[1].pSchema );
3537     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3538       db->mallocFailed = 1;
3539       return 1;
3540     }
3541   }
3542   return 0;
3543 }
3544 
3545 /*
3546 ** Generate VDBE code that will verify the schema cookie and start
3547 ** a read-transaction for all named database files.
3548 **
3549 ** It is important that all schema cookies be verified and all
3550 ** read transactions be started before anything else happens in
3551 ** the VDBE program.  But this routine can be called after much other
3552 ** code has been generated.  So here is what we do:
3553 **
3554 ** The first time this routine is called, we code an OP_Goto that
3555 ** will jump to a subroutine at the end of the program.  Then we
3556 ** record every database that needs its schema verified in the
3557 ** pParse->cookieMask field.  Later, after all other code has been
3558 ** generated, the subroutine that does the cookie verifications and
3559 ** starts the transactions will be coded and the OP_Goto P2 value
3560 ** will be made to point to that subroutine.  The generation of the
3561 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3562 **
3563 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3564 ** schema on any databases.  This can be used to position the OP_Goto
3565 ** early in the code, before we know if any database tables will be used.
3566 */
3567 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3568   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3569 
3570   if( pToplevel->cookieGoto==0 ){
3571     Vdbe *v = sqlite3GetVdbe(pToplevel);
3572     if( v==0 ) return;  /* This only happens if there was a prior error */
3573     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3574   }
3575   if( iDb>=0 ){
3576     sqlite3 *db = pToplevel->db;
3577     yDbMask mask;
3578 
3579     assert( iDb<db->nDb );
3580     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3581     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3582     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3583     mask = ((yDbMask)1)<<iDb;
3584     if( (pToplevel->cookieMask & mask)==0 ){
3585       pToplevel->cookieMask |= mask;
3586       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3587       if( !OMIT_TEMPDB && iDb==1 ){
3588         sqlite3OpenTempDatabase(pToplevel);
3589       }
3590     }
3591   }
3592 }
3593 
3594 /*
3595 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3596 ** attached database. Otherwise, invoke it for the database named zDb only.
3597 */
3598 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3599   sqlite3 *db = pParse->db;
3600   int i;
3601   for(i=0; i<db->nDb; i++){
3602     Db *pDb = &db->aDb[i];
3603     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3604       sqlite3CodeVerifySchema(pParse, i);
3605     }
3606   }
3607 }
3608 
3609 /*
3610 ** Generate VDBE code that prepares for doing an operation that
3611 ** might change the database.
3612 **
3613 ** This routine starts a new transaction if we are not already within
3614 ** a transaction.  If we are already within a transaction, then a checkpoint
3615 ** is set if the setStatement parameter is true.  A checkpoint should
3616 ** be set for operations that might fail (due to a constraint) part of
3617 ** the way through and which will need to undo some writes without having to
3618 ** rollback the whole transaction.  For operations where all constraints
3619 ** can be checked before any changes are made to the database, it is never
3620 ** necessary to undo a write and the checkpoint should not be set.
3621 */
3622 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3623   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3624   sqlite3CodeVerifySchema(pParse, iDb);
3625   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3626   pToplevel->isMultiWrite |= setStatement;
3627 }
3628 
3629 /*
3630 ** Indicate that the statement currently under construction might write
3631 ** more than one entry (example: deleting one row then inserting another,
3632 ** inserting multiple rows in a table, or inserting a row and index entries.)
3633 ** If an abort occurs after some of these writes have completed, then it will
3634 ** be necessary to undo the completed writes.
3635 */
3636 void sqlite3MultiWrite(Parse *pParse){
3637   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3638   pToplevel->isMultiWrite = 1;
3639 }
3640 
3641 /*
3642 ** The code generator calls this routine if is discovers that it is
3643 ** possible to abort a statement prior to completion.  In order to
3644 ** perform this abort without corrupting the database, we need to make
3645 ** sure that the statement is protected by a statement transaction.
3646 **
3647 ** Technically, we only need to set the mayAbort flag if the
3648 ** isMultiWrite flag was previously set.  There is a time dependency
3649 ** such that the abort must occur after the multiwrite.  This makes
3650 ** some statements involving the REPLACE conflict resolution algorithm
3651 ** go a little faster.  But taking advantage of this time dependency
3652 ** makes it more difficult to prove that the code is correct (in
3653 ** particular, it prevents us from writing an effective
3654 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3655 ** to take the safe route and skip the optimization.
3656 */
3657 void sqlite3MayAbort(Parse *pParse){
3658   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3659   pToplevel->mayAbort = 1;
3660 }
3661 
3662 /*
3663 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3664 ** error. The onError parameter determines which (if any) of the statement
3665 ** and/or current transaction is rolled back.
3666 */
3667 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3668   Vdbe *v = sqlite3GetVdbe(pParse);
3669   if( onError==OE_Abort ){
3670     sqlite3MayAbort(pParse);
3671   }
3672   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3673 }
3674 
3675 /*
3676 ** Check to see if pIndex uses the collating sequence pColl.  Return
3677 ** true if it does and false if it does not.
3678 */
3679 #ifndef SQLITE_OMIT_REINDEX
3680 static int collationMatch(const char *zColl, Index *pIndex){
3681   int i;
3682   assert( zColl!=0 );
3683   for(i=0; i<pIndex->nColumn; i++){
3684     const char *z = pIndex->azColl[i];
3685     assert( z!=0 );
3686     if( 0==sqlite3StrICmp(z, zColl) ){
3687       return 1;
3688     }
3689   }
3690   return 0;
3691 }
3692 #endif
3693 
3694 /*
3695 ** Recompute all indices of pTab that use the collating sequence pColl.
3696 ** If pColl==0 then recompute all indices of pTab.
3697 */
3698 #ifndef SQLITE_OMIT_REINDEX
3699 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3700   Index *pIndex;              /* An index associated with pTab */
3701 
3702   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3703     if( zColl==0 || collationMatch(zColl, pIndex) ){
3704       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3705       sqlite3BeginWriteOperation(pParse, 0, iDb);
3706       sqlite3RefillIndex(pParse, pIndex, -1);
3707     }
3708   }
3709 }
3710 #endif
3711 
3712 /*
3713 ** Recompute all indices of all tables in all databases where the
3714 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3715 ** all indices everywhere.
3716 */
3717 #ifndef SQLITE_OMIT_REINDEX
3718 static void reindexDatabases(Parse *pParse, char const *zColl){
3719   Db *pDb;                    /* A single database */
3720   int iDb;                    /* The database index number */
3721   sqlite3 *db = pParse->db;   /* The database connection */
3722   HashElem *k;                /* For looping over tables in pDb */
3723   Table *pTab;                /* A table in the database */
3724 
3725   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
3726   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3727     assert( pDb!=0 );
3728     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3729       pTab = (Table*)sqliteHashData(k);
3730       reindexTable(pParse, pTab, zColl);
3731     }
3732   }
3733 }
3734 #endif
3735 
3736 /*
3737 ** Generate code for the REINDEX command.
3738 **
3739 **        REINDEX                            -- 1
3740 **        REINDEX  <collation>               -- 2
3741 **        REINDEX  ?<database>.?<tablename>  -- 3
3742 **        REINDEX  ?<database>.?<indexname>  -- 4
3743 **
3744 ** Form 1 causes all indices in all attached databases to be rebuilt.
3745 ** Form 2 rebuilds all indices in all databases that use the named
3746 ** collating function.  Forms 3 and 4 rebuild the named index or all
3747 ** indices associated with the named table.
3748 */
3749 #ifndef SQLITE_OMIT_REINDEX
3750 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3751   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3752   char *z;                    /* Name of a table or index */
3753   const char *zDb;            /* Name of the database */
3754   Table *pTab;                /* A table in the database */
3755   Index *pIndex;              /* An index associated with pTab */
3756   int iDb;                    /* The database index number */
3757   sqlite3 *db = pParse->db;   /* The database connection */
3758   Token *pObjName;            /* Name of the table or index to be reindexed */
3759 
3760   /* Read the database schema. If an error occurs, leave an error message
3761   ** and code in pParse and return NULL. */
3762   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3763     return;
3764   }
3765 
3766   if( pName1==0 ){
3767     reindexDatabases(pParse, 0);
3768     return;
3769   }else if( NEVER(pName2==0) || pName2->z==0 ){
3770     char *zColl;
3771     assert( pName1->z );
3772     zColl = sqlite3NameFromToken(pParse->db, pName1);
3773     if( !zColl ) return;
3774     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3775     if( pColl ){
3776       reindexDatabases(pParse, zColl);
3777       sqlite3DbFree(db, zColl);
3778       return;
3779     }
3780     sqlite3DbFree(db, zColl);
3781   }
3782   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3783   if( iDb<0 ) return;
3784   z = sqlite3NameFromToken(db, pObjName);
3785   if( z==0 ) return;
3786   zDb = db->aDb[iDb].zName;
3787   pTab = sqlite3FindTable(db, z, zDb);
3788   if( pTab ){
3789     reindexTable(pParse, pTab, 0);
3790     sqlite3DbFree(db, z);
3791     return;
3792   }
3793   pIndex = sqlite3FindIndex(db, z, zDb);
3794   sqlite3DbFree(db, z);
3795   if( pIndex ){
3796     sqlite3BeginWriteOperation(pParse, 0, iDb);
3797     sqlite3RefillIndex(pParse, pIndex, -1);
3798     return;
3799   }
3800   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3801 }
3802 #endif
3803 
3804 /*
3805 ** Return a dynamicly allocated KeyInfo structure that can be used
3806 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3807 **
3808 ** If successful, a pointer to the new structure is returned. In this case
3809 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3810 ** pointer. If an error occurs (out of memory or missing collation
3811 ** sequence), NULL is returned and the state of pParse updated to reflect
3812 ** the error.
3813 */
3814 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3815   int i;
3816   int nCol = pIdx->nColumn;
3817   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3818   sqlite3 *db = pParse->db;
3819   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3820 
3821   if( pKey ){
3822     pKey->db = pParse->db;
3823     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3824     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3825     for(i=0; i<nCol; i++){
3826       char *zColl = pIdx->azColl[i];
3827       assert( zColl );
3828       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3829       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3830     }
3831     pKey->nField = (u16)nCol;
3832   }
3833 
3834   if( pParse->nErr ){
3835     sqlite3DbFree(db, pKey);
3836     pKey = 0;
3837   }
3838   return pKey;
3839 }
3840