1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.448 2007/11/12 09:50:26 danielk1977 Exp $ 26 */ 27 #include "sqliteInt.h" 28 #include <ctype.h> 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 int i; 69 int nBytes; 70 TableLock *p; 71 72 if( iDb<0 ){ 73 return; 74 } 75 76 for(i=0; i<pParse->nTableLock; i++){ 77 p = &pParse->aTableLock[i]; 78 if( p->iDb==iDb && p->iTab==iTab ){ 79 p->isWriteLock = (p->isWriteLock || isWriteLock); 80 return; 81 } 82 } 83 84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 85 pParse->aTableLock = 86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); 87 if( pParse->aTableLock ){ 88 p = &pParse->aTableLock[pParse->nTableLock++]; 89 p->iDb = iDb; 90 p->iTab = iTab; 91 p->isWriteLock = isWriteLock; 92 p->zName = zName; 93 }else{ 94 pParse->nTableLock = 0; 95 pParse->db->mallocFailed = 1; 96 } 97 } 98 99 /* 100 ** Code an OP_TableLock instruction for each table locked by the 101 ** statement (configured by calls to sqlite3TableLock()). 102 */ 103 static void codeTableLocks(Parse *pParse){ 104 int i; 105 Vdbe *pVdbe; 106 107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 108 return; 109 } 110 111 for(i=0; i<pParse->nTableLock; i++){ 112 TableLock *p = &pParse->aTableLock[i]; 113 int p1 = p->iDb; 114 if( p->isWriteLock ){ 115 p1 = -1*(p1+1); 116 } 117 sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC); 118 } 119 } 120 #else 121 #define codeTableLocks(x) 122 #endif 123 124 /* 125 ** This routine is called after a single SQL statement has been 126 ** parsed and a VDBE program to execute that statement has been 127 ** prepared. This routine puts the finishing touches on the 128 ** VDBE program and resets the pParse structure for the next 129 ** parse. 130 ** 131 ** Note that if an error occurred, it might be the case that 132 ** no VDBE code was generated. 133 */ 134 void sqlite3FinishCoding(Parse *pParse){ 135 sqlite3 *db; 136 Vdbe *v; 137 138 db = pParse->db; 139 if( db->mallocFailed ) return; 140 if( pParse->nested ) return; 141 if( !pParse->pVdbe ){ 142 if( pParse->rc==SQLITE_OK && pParse->nErr ){ 143 pParse->rc = SQLITE_ERROR; 144 return; 145 } 146 } 147 148 /* Begin by generating some termination code at the end of the 149 ** vdbe program 150 */ 151 v = sqlite3GetVdbe(pParse); 152 if( v ){ 153 sqlite3VdbeAddOp(v, OP_Halt, 0, 0); 154 155 /* The cookie mask contains one bit for each database file open. 156 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 157 ** set for each database that is used. Generate code to start a 158 ** transaction on each used database and to verify the schema cookie 159 ** on each used database. 160 */ 161 if( pParse->cookieGoto>0 ){ 162 u32 mask; 163 int iDb; 164 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 165 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 166 if( (mask & pParse->cookieMask)==0 ) continue; 167 sqlite3VdbeUsesBtree(v, iDb); 168 sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 169 sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 170 } 171 #ifndef SQLITE_OMIT_VIRTUALTABLE 172 if( pParse->pVirtualLock ){ 173 char *vtab = (char *)pParse->pVirtualLock->pVtab; 174 sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB); 175 } 176 #endif 177 178 /* Once all the cookies have been verified and transactions opened, 179 ** obtain the required table-locks. This is a no-op unless the 180 ** shared-cache feature is enabled. 181 */ 182 codeTableLocks(pParse); 183 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); 184 } 185 186 #ifndef SQLITE_OMIT_TRACE 187 /* Add a No-op that contains the complete text of the compiled SQL 188 ** statement as its P3 argument. This does not change the functionality 189 ** of the program. 190 ** 191 ** This is used to implement sqlite3_trace(). 192 */ 193 sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); 194 #endif /* SQLITE_OMIT_TRACE */ 195 } 196 197 198 /* Get the VDBE program ready for execution 199 */ 200 if( v && pParse->nErr==0 && !db->mallocFailed ){ 201 #ifdef SQLITE_DEBUG 202 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 203 sqlite3VdbeTrace(v, trace); 204 #endif 205 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, 206 pParse->nTab+3, pParse->explain); 207 pParse->rc = SQLITE_DONE; 208 pParse->colNamesSet = 0; 209 }else if( pParse->rc==SQLITE_OK ){ 210 pParse->rc = SQLITE_ERROR; 211 } 212 pParse->nTab = 0; 213 pParse->nMem = 0; 214 pParse->nSet = 0; 215 pParse->nVar = 0; 216 pParse->cookieMask = 0; 217 pParse->cookieGoto = 0; 218 } 219 220 /* 221 ** Run the parser and code generator recursively in order to generate 222 ** code for the SQL statement given onto the end of the pParse context 223 ** currently under construction. When the parser is run recursively 224 ** this way, the final OP_Halt is not appended and other initialization 225 ** and finalization steps are omitted because those are handling by the 226 ** outermost parser. 227 ** 228 ** Not everything is nestable. This facility is designed to permit 229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 230 ** care if you decide to try to use this routine for some other purposes. 231 */ 232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 233 va_list ap; 234 char *zSql; 235 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 236 char saveBuf[SAVE_SZ]; 237 238 if( pParse->nErr ) return; 239 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 240 va_start(ap, zFormat); 241 zSql = sqlite3VMPrintf(pParse->db, zFormat, ap); 242 va_end(ap); 243 if( zSql==0 ){ 244 pParse->db->mallocFailed = 1; 245 return; /* A malloc must have failed */ 246 } 247 pParse->nested++; 248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 249 memset(&pParse->nVar, 0, SAVE_SZ); 250 sqlite3RunParser(pParse, zSql, 0); 251 sqlite3_free(zSql); 252 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 253 pParse->nested--; 254 } 255 256 /* 257 ** Locate the in-memory structure that describes a particular database 258 ** table given the name of that table and (optionally) the name of the 259 ** database containing the table. Return NULL if not found. 260 ** 261 ** If zDatabase is 0, all databases are searched for the table and the 262 ** first matching table is returned. (No checking for duplicate table 263 ** names is done.) The search order is TEMP first, then MAIN, then any 264 ** auxiliary databases added using the ATTACH command. 265 ** 266 ** See also sqlite3LocateTable(). 267 */ 268 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 269 Table *p = 0; 270 int i; 271 assert( zName!=0 ); 272 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 273 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 274 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 275 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); 276 if( p ) break; 277 } 278 return p; 279 } 280 281 /* 282 ** Locate the in-memory structure that describes a particular database 283 ** table given the name of that table and (optionally) the name of the 284 ** database containing the table. Return NULL if not found. Also leave an 285 ** error message in pParse->zErrMsg. 286 ** 287 ** The difference between this routine and sqlite3FindTable() is that this 288 ** routine leaves an error message in pParse->zErrMsg where 289 ** sqlite3FindTable() does not. 290 */ 291 Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ 292 Table *p; 293 294 /* Read the database schema. If an error occurs, leave an error message 295 ** and code in pParse and return NULL. */ 296 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 297 return 0; 298 } 299 300 p = sqlite3FindTable(pParse->db, zName, zDbase); 301 if( p==0 ){ 302 if( zDbase ){ 303 sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); 304 }else{ 305 sqlite3ErrorMsg(pParse, "no such table: %s", zName); 306 } 307 pParse->checkSchema = 1; 308 } 309 return p; 310 } 311 312 /* 313 ** Locate the in-memory structure that describes 314 ** a particular index given the name of that index 315 ** and the name of the database that contains the index. 316 ** Return NULL if not found. 317 ** 318 ** If zDatabase is 0, all databases are searched for the 319 ** table and the first matching index is returned. (No checking 320 ** for duplicate index names is done.) The search order is 321 ** TEMP first, then MAIN, then any auxiliary databases added 322 ** using the ATTACH command. 323 */ 324 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 325 Index *p = 0; 326 int i; 327 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 328 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 329 Schema *pSchema = db->aDb[j].pSchema; 330 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 331 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 332 if( pSchema ){ 333 p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); 334 } 335 if( p ) break; 336 } 337 return p; 338 } 339 340 /* 341 ** Reclaim the memory used by an index 342 */ 343 static void freeIndex(Index *p){ 344 sqlite3_free(p->zColAff); 345 sqlite3_free(p); 346 } 347 348 /* 349 ** Remove the given index from the index hash table, and free 350 ** its memory structures. 351 ** 352 ** The index is removed from the database hash tables but 353 ** it is not unlinked from the Table that it indexes. 354 ** Unlinking from the Table must be done by the calling function. 355 */ 356 static void sqliteDeleteIndex(Index *p){ 357 Index *pOld; 358 const char *zName = p->zName; 359 360 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); 361 assert( pOld==0 || pOld==p ); 362 freeIndex(p); 363 } 364 365 /* 366 ** For the index called zIdxName which is found in the database iDb, 367 ** unlike that index from its Table then remove the index from 368 ** the index hash table and free all memory structures associated 369 ** with the index. 370 */ 371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 372 Index *pIndex; 373 int len; 374 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 375 376 len = strlen(zIdxName); 377 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 378 if( pIndex ){ 379 if( pIndex->pTable->pIndex==pIndex ){ 380 pIndex->pTable->pIndex = pIndex->pNext; 381 }else{ 382 Index *p; 383 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 384 if( p && p->pNext==pIndex ){ 385 p->pNext = pIndex->pNext; 386 } 387 } 388 freeIndex(pIndex); 389 } 390 db->flags |= SQLITE_InternChanges; 391 } 392 393 /* 394 ** Erase all schema information from the in-memory hash tables of 395 ** a single database. This routine is called to reclaim memory 396 ** before the database closes. It is also called during a rollback 397 ** if there were schema changes during the transaction or if a 398 ** schema-cookie mismatch occurs. 399 ** 400 ** If iDb<=0 then reset the internal schema tables for all database 401 ** files. If iDb>=2 then reset the internal schema for only the 402 ** single file indicated. 403 */ 404 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 405 int i, j; 406 407 assert( iDb>=0 && iDb<db->nDb ); 408 for(i=iDb; i<db->nDb; i++){ 409 Db *pDb = &db->aDb[i]; 410 if( pDb->pSchema ){ 411 sqlite3SchemaFree(pDb->pSchema); 412 } 413 if( iDb>0 ) return; 414 } 415 assert( iDb==0 ); 416 db->flags &= ~SQLITE_InternChanges; 417 418 /* If one or more of the auxiliary database files has been closed, 419 ** then remove them from the auxiliary database list. We take the 420 ** opportunity to do this here since we have just deleted all of the 421 ** schema hash tables and therefore do not have to make any changes 422 ** to any of those tables. 423 */ 424 for(i=0; i<db->nDb; i++){ 425 struct Db *pDb = &db->aDb[i]; 426 if( pDb->pBt==0 ){ 427 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 428 pDb->pAux = 0; 429 } 430 } 431 for(i=j=2; i<db->nDb; i++){ 432 struct Db *pDb = &db->aDb[i]; 433 if( pDb->pBt==0 ){ 434 sqlite3_free(pDb->zName); 435 pDb->zName = 0; 436 continue; 437 } 438 if( j<i ){ 439 db->aDb[j] = db->aDb[i]; 440 } 441 j++; 442 } 443 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 444 db->nDb = j; 445 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 446 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 447 sqlite3_free(db->aDb); 448 db->aDb = db->aDbStatic; 449 } 450 } 451 452 /* 453 ** This routine is called when a commit occurs. 454 */ 455 void sqlite3CommitInternalChanges(sqlite3 *db){ 456 db->flags &= ~SQLITE_InternChanges; 457 } 458 459 /* 460 ** Clear the column names from a table or view. 461 */ 462 static void sqliteResetColumnNames(Table *pTable){ 463 int i; 464 Column *pCol; 465 assert( pTable!=0 ); 466 if( (pCol = pTable->aCol)!=0 ){ 467 for(i=0; i<pTable->nCol; i++, pCol++){ 468 sqlite3_free(pCol->zName); 469 sqlite3ExprDelete(pCol->pDflt); 470 sqlite3_free(pCol->zType); 471 sqlite3_free(pCol->zColl); 472 } 473 sqlite3_free(pTable->aCol); 474 } 475 pTable->aCol = 0; 476 pTable->nCol = 0; 477 } 478 479 /* 480 ** Remove the memory data structures associated with the given 481 ** Table. No changes are made to disk by this routine. 482 ** 483 ** This routine just deletes the data structure. It does not unlink 484 ** the table data structure from the hash table. Nor does it remove 485 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 486 ** memory structures of the indices and foreign keys associated with 487 ** the table. 488 */ 489 void sqlite3DeleteTable(Table *pTable){ 490 Index *pIndex, *pNext; 491 FKey *pFKey, *pNextFKey; 492 493 if( pTable==0 ) return; 494 495 /* Do not delete the table until the reference count reaches zero. */ 496 pTable->nRef--; 497 if( pTable->nRef>0 ){ 498 return; 499 } 500 assert( pTable->nRef==0 ); 501 502 /* Delete all indices associated with this table 503 */ 504 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 505 pNext = pIndex->pNext; 506 assert( pIndex->pSchema==pTable->pSchema ); 507 sqliteDeleteIndex(pIndex); 508 } 509 510 #ifndef SQLITE_OMIT_FOREIGN_KEY 511 /* Delete all foreign keys associated with this table. The keys 512 ** should have already been unlinked from the pSchema->aFKey hash table 513 */ 514 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 515 pNextFKey = pFKey->pNextFrom; 516 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 517 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); 518 sqlite3_free(pFKey); 519 } 520 #endif 521 522 /* Delete the Table structure itself. 523 */ 524 sqliteResetColumnNames(pTable); 525 sqlite3_free(pTable->zName); 526 sqlite3_free(pTable->zColAff); 527 sqlite3SelectDelete(pTable->pSelect); 528 #ifndef SQLITE_OMIT_CHECK 529 sqlite3ExprDelete(pTable->pCheck); 530 #endif 531 sqlite3VtabClear(pTable); 532 sqlite3_free(pTable); 533 } 534 535 /* 536 ** Unlink the given table from the hash tables and the delete the 537 ** table structure with all its indices and foreign keys. 538 */ 539 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 540 Table *p; 541 FKey *pF1, *pF2; 542 Db *pDb; 543 544 assert( db!=0 ); 545 assert( iDb>=0 && iDb<db->nDb ); 546 assert( zTabName && zTabName[0] ); 547 pDb = &db->aDb[iDb]; 548 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); 549 if( p ){ 550 #ifndef SQLITE_OMIT_FOREIGN_KEY 551 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 552 int nTo = strlen(pF1->zTo) + 1; 553 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 554 if( pF2==pF1 ){ 555 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 556 }else{ 557 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 558 if( pF2 ){ 559 pF2->pNextTo = pF1->pNextTo; 560 } 561 } 562 } 563 #endif 564 sqlite3DeleteTable(p); 565 } 566 db->flags |= SQLITE_InternChanges; 567 } 568 569 /* 570 ** Given a token, return a string that consists of the text of that 571 ** token with any quotations removed. Space to hold the returned string 572 ** is obtained from sqliteMalloc() and must be freed by the calling 573 ** function. 574 ** 575 ** Tokens are often just pointers into the original SQL text and so 576 ** are not \000 terminated and are not persistent. The returned string 577 ** is \000 terminated and is persistent. 578 */ 579 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 580 char *zName; 581 if( pName ){ 582 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 583 sqlite3Dequote(zName); 584 }else{ 585 zName = 0; 586 } 587 return zName; 588 } 589 590 /* 591 ** Open the sqlite_master table stored in database number iDb for 592 ** writing. The table is opened using cursor 0. 593 */ 594 void sqlite3OpenMasterTable(Parse *p, int iDb){ 595 Vdbe *v = sqlite3GetVdbe(p); 596 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 597 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 598 sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); 599 sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ 600 } 601 602 /* 603 ** The token *pName contains the name of a database (either "main" or 604 ** "temp" or the name of an attached db). This routine returns the 605 ** index of the named database in db->aDb[], or -1 if the named db 606 ** does not exist. 607 */ 608 int sqlite3FindDb(sqlite3 *db, Token *pName){ 609 int i = -1; /* Database number */ 610 int n; /* Number of characters in the name */ 611 Db *pDb; /* A database whose name space is being searched */ 612 char *zName; /* Name we are searching for */ 613 614 zName = sqlite3NameFromToken(db, pName); 615 if( zName ){ 616 n = strlen(zName); 617 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 618 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 619 0==sqlite3StrICmp(pDb->zName, zName) ){ 620 break; 621 } 622 } 623 sqlite3_free(zName); 624 } 625 return i; 626 } 627 628 /* The table or view or trigger name is passed to this routine via tokens 629 ** pName1 and pName2. If the table name was fully qualified, for example: 630 ** 631 ** CREATE TABLE xxx.yyy (...); 632 ** 633 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 634 ** the table name is not fully qualified, i.e.: 635 ** 636 ** CREATE TABLE yyy(...); 637 ** 638 ** Then pName1 is set to "yyy" and pName2 is "". 639 ** 640 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 641 ** pName2) that stores the unqualified table name. The index of the 642 ** database "xxx" is returned. 643 */ 644 int sqlite3TwoPartName( 645 Parse *pParse, /* Parsing and code generating context */ 646 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 647 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 648 Token **pUnqual /* Write the unqualified object name here */ 649 ){ 650 int iDb; /* Database holding the object */ 651 sqlite3 *db = pParse->db; 652 653 if( pName2 && pName2->n>0 ){ 654 assert( !db->init.busy ); 655 *pUnqual = pName2; 656 iDb = sqlite3FindDb(db, pName1); 657 if( iDb<0 ){ 658 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 659 pParse->nErr++; 660 return -1; 661 } 662 }else{ 663 assert( db->init.iDb==0 || db->init.busy ); 664 iDb = db->init.iDb; 665 *pUnqual = pName1; 666 } 667 return iDb; 668 } 669 670 /* 671 ** This routine is used to check if the UTF-8 string zName is a legal 672 ** unqualified name for a new schema object (table, index, view or 673 ** trigger). All names are legal except those that begin with the string 674 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 675 ** is reserved for internal use. 676 */ 677 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 678 if( !pParse->db->init.busy && pParse->nested==0 679 && (pParse->db->flags & SQLITE_WriteSchema)==0 680 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 681 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 682 return SQLITE_ERROR; 683 } 684 return SQLITE_OK; 685 } 686 687 /* 688 ** Begin constructing a new table representation in memory. This is 689 ** the first of several action routines that get called in response 690 ** to a CREATE TABLE statement. In particular, this routine is called 691 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 692 ** flag is true if the table should be stored in the auxiliary database 693 ** file instead of in the main database file. This is normally the case 694 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 695 ** CREATE and TABLE. 696 ** 697 ** The new table record is initialized and put in pParse->pNewTable. 698 ** As more of the CREATE TABLE statement is parsed, additional action 699 ** routines will be called to add more information to this record. 700 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 701 ** is called to complete the construction of the new table record. 702 */ 703 void sqlite3StartTable( 704 Parse *pParse, /* Parser context */ 705 Token *pName1, /* First part of the name of the table or view */ 706 Token *pName2, /* Second part of the name of the table or view */ 707 int isTemp, /* True if this is a TEMP table */ 708 int isView, /* True if this is a VIEW */ 709 int isVirtual, /* True if this is a VIRTUAL table */ 710 int noErr /* Do nothing if table already exists */ 711 ){ 712 Table *pTable; 713 char *zName = 0; /* The name of the new table */ 714 sqlite3 *db = pParse->db; 715 Vdbe *v; 716 int iDb; /* Database number to create the table in */ 717 Token *pName; /* Unqualified name of the table to create */ 718 719 /* The table or view name to create is passed to this routine via tokens 720 ** pName1 and pName2. If the table name was fully qualified, for example: 721 ** 722 ** CREATE TABLE xxx.yyy (...); 723 ** 724 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 725 ** the table name is not fully qualified, i.e.: 726 ** 727 ** CREATE TABLE yyy(...); 728 ** 729 ** Then pName1 is set to "yyy" and pName2 is "". 730 ** 731 ** The call below sets the pName pointer to point at the token (pName1 or 732 ** pName2) that stores the unqualified table name. The variable iDb is 733 ** set to the index of the database that the table or view is to be 734 ** created in. 735 */ 736 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 737 if( iDb<0 ) return; 738 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 739 /* If creating a temp table, the name may not be qualified */ 740 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 741 return; 742 } 743 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 744 745 pParse->sNameToken = *pName; 746 zName = sqlite3NameFromToken(db, pName); 747 if( zName==0 ) return; 748 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 749 goto begin_table_error; 750 } 751 if( db->init.iDb==1 ) isTemp = 1; 752 #ifndef SQLITE_OMIT_AUTHORIZATION 753 assert( (isTemp & 1)==isTemp ); 754 { 755 int code; 756 char *zDb = db->aDb[iDb].zName; 757 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 758 goto begin_table_error; 759 } 760 if( isView ){ 761 if( !OMIT_TEMPDB && isTemp ){ 762 code = SQLITE_CREATE_TEMP_VIEW; 763 }else{ 764 code = SQLITE_CREATE_VIEW; 765 } 766 }else{ 767 if( !OMIT_TEMPDB && isTemp ){ 768 code = SQLITE_CREATE_TEMP_TABLE; 769 }else{ 770 code = SQLITE_CREATE_TABLE; 771 } 772 } 773 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 774 goto begin_table_error; 775 } 776 } 777 #endif 778 779 /* Make sure the new table name does not collide with an existing 780 ** index or table name in the same database. Issue an error message if 781 ** it does. The exception is if the statement being parsed was passed 782 ** to an sqlite3_declare_vtab() call. In that case only the column names 783 ** and types will be used, so there is no need to test for namespace 784 ** collisions. 785 */ 786 if( !IN_DECLARE_VTAB ){ 787 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 788 goto begin_table_error; 789 } 790 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 791 if( pTable ){ 792 if( !noErr ){ 793 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 794 } 795 goto begin_table_error; 796 } 797 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 798 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 799 goto begin_table_error; 800 } 801 } 802 803 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 804 if( pTable==0 ){ 805 db->mallocFailed = 1; 806 pParse->rc = SQLITE_NOMEM; 807 pParse->nErr++; 808 goto begin_table_error; 809 } 810 pTable->zName = zName; 811 pTable->iPKey = -1; 812 pTable->pSchema = db->aDb[iDb].pSchema; 813 pTable->nRef = 1; 814 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); 815 pParse->pNewTable = pTable; 816 817 /* If this is the magic sqlite_sequence table used by autoincrement, 818 ** then record a pointer to this table in the main database structure 819 ** so that INSERT can find the table easily. 820 */ 821 #ifndef SQLITE_OMIT_AUTOINCREMENT 822 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 823 pTable->pSchema->pSeqTab = pTable; 824 } 825 #endif 826 827 /* Begin generating the code that will insert the table record into 828 ** the SQLITE_MASTER table. Note in particular that we must go ahead 829 ** and allocate the record number for the table entry now. Before any 830 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 831 ** indices to be created and the table record must come before the 832 ** indices. Hence, the record number for the table must be allocated 833 ** now. 834 */ 835 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 836 int lbl; 837 int fileFormat; 838 sqlite3BeginWriteOperation(pParse, 0, iDb); 839 840 #ifndef SQLITE_OMIT_VIRTUALTABLE 841 if( isVirtual ){ 842 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 843 } 844 #endif 845 846 /* If the file format and encoding in the database have not been set, 847 ** set them now. 848 */ 849 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */ 850 sqlite3VdbeUsesBtree(v, iDb); 851 lbl = sqlite3VdbeMakeLabel(v); 852 sqlite3VdbeAddOp(v, OP_If, 0, lbl); 853 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 854 1 : SQLITE_MAX_FILE_FORMAT; 855 sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0); 856 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 857 sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0); 858 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); 859 sqlite3VdbeResolveLabel(v, lbl); 860 861 /* This just creates a place-holder record in the sqlite_master table. 862 ** The record created does not contain anything yet. It will be replaced 863 ** by the real entry in code generated at sqlite3EndTable(). 864 ** 865 ** The rowid for the new entry is left on the top of the stack. 866 ** The rowid value is needed by the code that sqlite3EndTable will 867 ** generate. 868 */ 869 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 870 if( isView || isVirtual ){ 871 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 872 }else 873 #endif 874 { 875 sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0); 876 } 877 sqlite3OpenMasterTable(pParse, iDb); 878 sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0); 879 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 880 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 881 sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND); 882 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 883 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 884 } 885 886 /* Normal (non-error) return. */ 887 return; 888 889 /* If an error occurs, we jump here */ 890 begin_table_error: 891 sqlite3_free(zName); 892 return; 893 } 894 895 /* 896 ** This macro is used to compare two strings in a case-insensitive manner. 897 ** It is slightly faster than calling sqlite3StrICmp() directly, but 898 ** produces larger code. 899 ** 900 ** WARNING: This macro is not compatible with the strcmp() family. It 901 ** returns true if the two strings are equal, otherwise false. 902 */ 903 #define STRICMP(x, y) (\ 904 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 905 sqlite3UpperToLower[*(unsigned char *)(y)] \ 906 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 907 908 /* 909 ** Add a new column to the table currently being constructed. 910 ** 911 ** The parser calls this routine once for each column declaration 912 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 913 ** first to get things going. Then this routine is called for each 914 ** column. 915 */ 916 void sqlite3AddColumn(Parse *pParse, Token *pName){ 917 Table *p; 918 int i; 919 char *z; 920 Column *pCol; 921 if( (p = pParse->pNewTable)==0 ) return; 922 if( p->nCol+1>SQLITE_MAX_COLUMN ){ 923 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 924 return; 925 } 926 z = sqlite3NameFromToken(pParse->db, pName); 927 if( z==0 ) return; 928 for(i=0; i<p->nCol; i++){ 929 if( STRICMP(z, p->aCol[i].zName) ){ 930 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 931 sqlite3_free(z); 932 return; 933 } 934 } 935 if( (p->nCol & 0x7)==0 ){ 936 Column *aNew; 937 aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 938 if( aNew==0 ){ 939 sqlite3_free(z); 940 return; 941 } 942 p->aCol = aNew; 943 } 944 pCol = &p->aCol[p->nCol]; 945 memset(pCol, 0, sizeof(p->aCol[0])); 946 pCol->zName = z; 947 948 /* If there is no type specified, columns have the default affinity 949 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 950 ** be called next to set pCol->affinity correctly. 951 */ 952 pCol->affinity = SQLITE_AFF_NONE; 953 p->nCol++; 954 } 955 956 /* 957 ** This routine is called by the parser while in the middle of 958 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 959 ** been seen on a column. This routine sets the notNull flag on 960 ** the column currently under construction. 961 */ 962 void sqlite3AddNotNull(Parse *pParse, int onError){ 963 Table *p; 964 int i; 965 if( (p = pParse->pNewTable)==0 ) return; 966 i = p->nCol-1; 967 if( i>=0 ) p->aCol[i].notNull = onError; 968 } 969 970 /* 971 ** Scan the column type name zType (length nType) and return the 972 ** associated affinity type. 973 ** 974 ** This routine does a case-independent search of zType for the 975 ** substrings in the following table. If one of the substrings is 976 ** found, the corresponding affinity is returned. If zType contains 977 ** more than one of the substrings, entries toward the top of 978 ** the table take priority. For example, if zType is 'BLOBINT', 979 ** SQLITE_AFF_INTEGER is returned. 980 ** 981 ** Substring | Affinity 982 ** -------------------------------- 983 ** 'INT' | SQLITE_AFF_INTEGER 984 ** 'CHAR' | SQLITE_AFF_TEXT 985 ** 'CLOB' | SQLITE_AFF_TEXT 986 ** 'TEXT' | SQLITE_AFF_TEXT 987 ** 'BLOB' | SQLITE_AFF_NONE 988 ** 'REAL' | SQLITE_AFF_REAL 989 ** 'FLOA' | SQLITE_AFF_REAL 990 ** 'DOUB' | SQLITE_AFF_REAL 991 ** 992 ** If none of the substrings in the above table are found, 993 ** SQLITE_AFF_NUMERIC is returned. 994 */ 995 char sqlite3AffinityType(const Token *pType){ 996 u32 h = 0; 997 char aff = SQLITE_AFF_NUMERIC; 998 const unsigned char *zIn = pType->z; 999 const unsigned char *zEnd = &pType->z[pType->n]; 1000 1001 while( zIn!=zEnd ){ 1002 h = (h<<8) + sqlite3UpperToLower[*zIn]; 1003 zIn++; 1004 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1005 aff = SQLITE_AFF_TEXT; 1006 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1007 aff = SQLITE_AFF_TEXT; 1008 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1009 aff = SQLITE_AFF_TEXT; 1010 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1011 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1012 aff = SQLITE_AFF_NONE; 1013 #ifndef SQLITE_OMIT_FLOATING_POINT 1014 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1015 && aff==SQLITE_AFF_NUMERIC ){ 1016 aff = SQLITE_AFF_REAL; 1017 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1018 && aff==SQLITE_AFF_NUMERIC ){ 1019 aff = SQLITE_AFF_REAL; 1020 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1021 && aff==SQLITE_AFF_NUMERIC ){ 1022 aff = SQLITE_AFF_REAL; 1023 #endif 1024 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1025 aff = SQLITE_AFF_INTEGER; 1026 break; 1027 } 1028 } 1029 1030 return aff; 1031 } 1032 1033 /* 1034 ** This routine is called by the parser while in the middle of 1035 ** parsing a CREATE TABLE statement. The pFirst token is the first 1036 ** token in the sequence of tokens that describe the type of the 1037 ** column currently under construction. pLast is the last token 1038 ** in the sequence. Use this information to construct a string 1039 ** that contains the typename of the column and store that string 1040 ** in zType. 1041 */ 1042 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1043 Table *p; 1044 int i; 1045 Column *pCol; 1046 1047 if( (p = pParse->pNewTable)==0 ) return; 1048 i = p->nCol-1; 1049 if( i<0 ) return; 1050 pCol = &p->aCol[i]; 1051 sqlite3_free(pCol->zType); 1052 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1053 pCol->affinity = sqlite3AffinityType(pType); 1054 } 1055 1056 /* 1057 ** The expression is the default value for the most recently added column 1058 ** of the table currently under construction. 1059 ** 1060 ** Default value expressions must be constant. Raise an exception if this 1061 ** is not the case. 1062 ** 1063 ** This routine is called by the parser while in the middle of 1064 ** parsing a CREATE TABLE statement. 1065 */ 1066 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1067 Table *p; 1068 Column *pCol; 1069 if( (p = pParse->pNewTable)!=0 ){ 1070 pCol = &(p->aCol[p->nCol-1]); 1071 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1072 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1073 pCol->zName); 1074 }else{ 1075 Expr *pCopy; 1076 sqlite3 *db = pParse->db; 1077 sqlite3ExprDelete(pCol->pDflt); 1078 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); 1079 if( pCopy ){ 1080 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); 1081 } 1082 } 1083 } 1084 sqlite3ExprDelete(pExpr); 1085 } 1086 1087 /* 1088 ** Designate the PRIMARY KEY for the table. pList is a list of names 1089 ** of columns that form the primary key. If pList is NULL, then the 1090 ** most recently added column of the table is the primary key. 1091 ** 1092 ** A table can have at most one primary key. If the table already has 1093 ** a primary key (and this is the second primary key) then create an 1094 ** error. 1095 ** 1096 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1097 ** then we will try to use that column as the rowid. Set the Table.iPKey 1098 ** field of the table under construction to be the index of the 1099 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1100 ** no INTEGER PRIMARY KEY. 1101 ** 1102 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1103 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1104 */ 1105 void sqlite3AddPrimaryKey( 1106 Parse *pParse, /* Parsing context */ 1107 ExprList *pList, /* List of field names to be indexed */ 1108 int onError, /* What to do with a uniqueness conflict */ 1109 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1110 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1111 ){ 1112 Table *pTab = pParse->pNewTable; 1113 char *zType = 0; 1114 int iCol = -1, i; 1115 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1116 if( pTab->hasPrimKey ){ 1117 sqlite3ErrorMsg(pParse, 1118 "table \"%s\" has more than one primary key", pTab->zName); 1119 goto primary_key_exit; 1120 } 1121 pTab->hasPrimKey = 1; 1122 if( pList==0 ){ 1123 iCol = pTab->nCol - 1; 1124 pTab->aCol[iCol].isPrimKey = 1; 1125 }else{ 1126 for(i=0; i<pList->nExpr; i++){ 1127 for(iCol=0; iCol<pTab->nCol; iCol++){ 1128 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1129 break; 1130 } 1131 } 1132 if( iCol<pTab->nCol ){ 1133 pTab->aCol[iCol].isPrimKey = 1; 1134 } 1135 } 1136 if( pList->nExpr>1 ) iCol = -1; 1137 } 1138 if( iCol>=0 && iCol<pTab->nCol ){ 1139 zType = pTab->aCol[iCol].zType; 1140 } 1141 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1142 && sortOrder==SQLITE_SO_ASC ){ 1143 pTab->iPKey = iCol; 1144 pTab->keyConf = onError; 1145 pTab->autoInc = autoInc; 1146 }else if( autoInc ){ 1147 #ifndef SQLITE_OMIT_AUTOINCREMENT 1148 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1149 "INTEGER PRIMARY KEY"); 1150 #endif 1151 }else{ 1152 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1153 pList = 0; 1154 } 1155 1156 primary_key_exit: 1157 sqlite3ExprListDelete(pList); 1158 return; 1159 } 1160 1161 /* 1162 ** Add a new CHECK constraint to the table currently under construction. 1163 */ 1164 void sqlite3AddCheckConstraint( 1165 Parse *pParse, /* Parsing context */ 1166 Expr *pCheckExpr /* The check expression */ 1167 ){ 1168 #ifndef SQLITE_OMIT_CHECK 1169 Table *pTab = pParse->pNewTable; 1170 sqlite3 *db = pParse->db; 1171 if( pTab && !IN_DECLARE_VTAB ){ 1172 /* The CHECK expression must be duplicated so that tokens refer 1173 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1174 ** statement */ 1175 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 1176 sqlite3ExprDup(db, pCheckExpr)); 1177 } 1178 #endif 1179 sqlite3ExprDelete(pCheckExpr); 1180 } 1181 1182 /* 1183 ** Set the collation function of the most recently parsed table column 1184 ** to the CollSeq given. 1185 */ 1186 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1187 Table *p; 1188 int i; 1189 char *zColl; /* Dequoted name of collation sequence */ 1190 1191 if( (p = pParse->pNewTable)==0 ) return; 1192 i = p->nCol-1; 1193 1194 zColl = sqlite3NameFromToken(pParse->db, pToken); 1195 if( !zColl ) return; 1196 1197 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ 1198 Index *pIdx; 1199 p->aCol[i].zColl = zColl; 1200 1201 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1202 ** then an index may have been created on this column before the 1203 ** collation type was added. Correct this if it is the case. 1204 */ 1205 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1206 assert( pIdx->nColumn==1 ); 1207 if( pIdx->aiColumn[0]==i ){ 1208 pIdx->azColl[0] = p->aCol[i].zColl; 1209 } 1210 } 1211 }else{ 1212 sqlite3_free(zColl); 1213 } 1214 } 1215 1216 /* 1217 ** This function returns the collation sequence for database native text 1218 ** encoding identified by the string zName, length nName. 1219 ** 1220 ** If the requested collation sequence is not available, or not available 1221 ** in the database native encoding, the collation factory is invoked to 1222 ** request it. If the collation factory does not supply such a sequence, 1223 ** and the sequence is available in another text encoding, then that is 1224 ** returned instead. 1225 ** 1226 ** If no versions of the requested collations sequence are available, or 1227 ** another error occurs, NULL is returned and an error message written into 1228 ** pParse. 1229 ** 1230 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1231 ** invokes the collation factory if the named collation cannot be found 1232 ** and generates an error message. 1233 */ 1234 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1235 sqlite3 *db = pParse->db; 1236 u8 enc = ENC(db); 1237 u8 initbusy = db->init.busy; 1238 CollSeq *pColl; 1239 1240 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1241 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1242 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1243 if( !pColl ){ 1244 if( nName<0 ){ 1245 nName = strlen(zName); 1246 } 1247 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1248 pColl = 0; 1249 } 1250 } 1251 1252 return pColl; 1253 } 1254 1255 1256 /* 1257 ** Generate code that will increment the schema cookie. 1258 ** 1259 ** The schema cookie is used to determine when the schema for the 1260 ** database changes. After each schema change, the cookie value 1261 ** changes. When a process first reads the schema it records the 1262 ** cookie. Thereafter, whenever it goes to access the database, 1263 ** it checks the cookie to make sure the schema has not changed 1264 ** since it was last read. 1265 ** 1266 ** This plan is not completely bullet-proof. It is possible for 1267 ** the schema to change multiple times and for the cookie to be 1268 ** set back to prior value. But schema changes are infrequent 1269 ** and the probability of hitting the same cookie value is only 1270 ** 1 chance in 2^32. So we're safe enough. 1271 */ 1272 void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ 1273 sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); 1274 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); 1275 } 1276 1277 /* 1278 ** Measure the number of characters needed to output the given 1279 ** identifier. The number returned includes any quotes used 1280 ** but does not include the null terminator. 1281 ** 1282 ** The estimate is conservative. It might be larger that what is 1283 ** really needed. 1284 */ 1285 static int identLength(const char *z){ 1286 int n; 1287 for(n=0; *z; n++, z++){ 1288 if( *z=='"' ){ n++; } 1289 } 1290 return n + 2; 1291 } 1292 1293 /* 1294 ** Write an identifier onto the end of the given string. Add 1295 ** quote characters as needed. 1296 */ 1297 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1298 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1299 int i, j, needQuote; 1300 i = *pIdx; 1301 for(j=0; zIdent[j]; j++){ 1302 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1303 } 1304 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 1305 || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1306 if( needQuote ) z[i++] = '"'; 1307 for(j=0; zIdent[j]; j++){ 1308 z[i++] = zIdent[j]; 1309 if( zIdent[j]=='"' ) z[i++] = '"'; 1310 } 1311 if( needQuote ) z[i++] = '"'; 1312 z[i] = 0; 1313 *pIdx = i; 1314 } 1315 1316 /* 1317 ** Generate a CREATE TABLE statement appropriate for the given 1318 ** table. Memory to hold the text of the statement is obtained 1319 ** from sqliteMalloc() and must be freed by the calling function. 1320 */ 1321 static char *createTableStmt(Table *p, int isTemp){ 1322 int i, k, n; 1323 char *zStmt; 1324 char *zSep, *zSep2, *zEnd, *z; 1325 Column *pCol; 1326 n = 0; 1327 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1328 n += identLength(pCol->zName); 1329 z = pCol->zType; 1330 if( z ){ 1331 n += (strlen(z) + 1); 1332 } 1333 } 1334 n += identLength(p->zName); 1335 if( n<50 ){ 1336 zSep = ""; 1337 zSep2 = ","; 1338 zEnd = ")"; 1339 }else{ 1340 zSep = "\n "; 1341 zSep2 = ",\n "; 1342 zEnd = "\n)"; 1343 } 1344 n += 35 + 6*p->nCol; 1345 zStmt = sqlite3_malloc( n ); 1346 if( zStmt==0 ) return 0; 1347 sqlite3_snprintf(n, zStmt, 1348 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); 1349 k = strlen(zStmt); 1350 identPut(zStmt, &k, p->zName); 1351 zStmt[k++] = '('; 1352 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1353 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1354 k += strlen(&zStmt[k]); 1355 zSep = zSep2; 1356 identPut(zStmt, &k, pCol->zName); 1357 if( (z = pCol->zType)!=0 ){ 1358 zStmt[k++] = ' '; 1359 assert( strlen(z)+k+1<=n ); 1360 sqlite3_snprintf(n-k, &zStmt[k], "%s", z); 1361 k += strlen(z); 1362 } 1363 } 1364 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1365 return zStmt; 1366 } 1367 1368 /* 1369 ** This routine is called to report the final ")" that terminates 1370 ** a CREATE TABLE statement. 1371 ** 1372 ** The table structure that other action routines have been building 1373 ** is added to the internal hash tables, assuming no errors have 1374 ** occurred. 1375 ** 1376 ** An entry for the table is made in the master table on disk, unless 1377 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1378 ** it means we are reading the sqlite_master table because we just 1379 ** connected to the database or because the sqlite_master table has 1380 ** recently changed, so the entry for this table already exists in 1381 ** the sqlite_master table. We do not want to create it again. 1382 ** 1383 ** If the pSelect argument is not NULL, it means that this routine 1384 ** was called to create a table generated from a 1385 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1386 ** the new table will match the result set of the SELECT. 1387 */ 1388 void sqlite3EndTable( 1389 Parse *pParse, /* Parse context */ 1390 Token *pCons, /* The ',' token after the last column defn. */ 1391 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1392 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1393 ){ 1394 Table *p; 1395 sqlite3 *db = pParse->db; 1396 int iDb; 1397 1398 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { 1399 return; 1400 } 1401 p = pParse->pNewTable; 1402 if( p==0 ) return; 1403 1404 assert( !db->init.busy || !pSelect ); 1405 1406 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1407 1408 #ifndef SQLITE_OMIT_CHECK 1409 /* Resolve names in all CHECK constraint expressions. 1410 */ 1411 if( p->pCheck ){ 1412 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1413 NameContext sNC; /* Name context for pParse->pNewTable */ 1414 1415 memset(&sNC, 0, sizeof(sNC)); 1416 memset(&sSrc, 0, sizeof(sSrc)); 1417 sSrc.nSrc = 1; 1418 sSrc.a[0].zName = p->zName; 1419 sSrc.a[0].pTab = p; 1420 sSrc.a[0].iCursor = -1; 1421 sNC.pParse = pParse; 1422 sNC.pSrcList = &sSrc; 1423 sNC.isCheck = 1; 1424 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ 1425 return; 1426 } 1427 } 1428 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1429 1430 /* If the db->init.busy is 1 it means we are reading the SQL off the 1431 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1432 ** So do not write to the disk again. Extract the root page number 1433 ** for the table from the db->init.newTnum field. (The page number 1434 ** should have been put there by the sqliteOpenCb routine.) 1435 */ 1436 if( db->init.busy ){ 1437 p->tnum = db->init.newTnum; 1438 } 1439 1440 /* If not initializing, then create a record for the new table 1441 ** in the SQLITE_MASTER table of the database. The record number 1442 ** for the new table entry should already be on the stack. 1443 ** 1444 ** If this is a TEMPORARY table, write the entry into the auxiliary 1445 ** file instead of into the main database file. 1446 */ 1447 if( !db->init.busy ){ 1448 int n; 1449 Vdbe *v; 1450 char *zType; /* "view" or "table" */ 1451 char *zType2; /* "VIEW" or "TABLE" */ 1452 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1453 1454 v = sqlite3GetVdbe(pParse); 1455 if( v==0 ) return; 1456 1457 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 1458 1459 /* Create the rootpage for the new table and push it onto the stack. 1460 ** A view has no rootpage, so just push a zero onto the stack for 1461 ** views. Initialize zType at the same time. 1462 */ 1463 if( p->pSelect==0 ){ 1464 /* A regular table */ 1465 zType = "table"; 1466 zType2 = "TABLE"; 1467 #ifndef SQLITE_OMIT_VIEW 1468 }else{ 1469 /* A view */ 1470 zType = "view"; 1471 zType2 = "VIEW"; 1472 #endif 1473 } 1474 1475 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1476 ** statement to populate the new table. The root-page number for the 1477 ** new table is on the top of the vdbe stack. 1478 ** 1479 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1480 ** suitable state to query for the column names and types to be used 1481 ** by the new table. 1482 ** 1483 ** A shared-cache write-lock is not required to write to the new table, 1484 ** as a schema-lock must have already been obtained to create it. Since 1485 ** a schema-lock excludes all other database users, the write-lock would 1486 ** be redundant. 1487 */ 1488 if( pSelect ){ 1489 Table *pSelTab; 1490 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1491 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1492 sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); 1493 pParse->nTab = 2; 1494 sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); 1495 sqlite3VdbeAddOp(v, OP_Close, 1, 0); 1496 if( pParse->nErr==0 ){ 1497 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); 1498 if( pSelTab==0 ) return; 1499 assert( p->aCol==0 ); 1500 p->nCol = pSelTab->nCol; 1501 p->aCol = pSelTab->aCol; 1502 pSelTab->nCol = 0; 1503 pSelTab->aCol = 0; 1504 sqlite3DeleteTable(pSelTab); 1505 } 1506 } 1507 1508 /* Compute the complete text of the CREATE statement */ 1509 if( pSelect ){ 1510 zStmt = createTableStmt(p, p->pSchema==db->aDb[1].pSchema); 1511 }else{ 1512 n = pEnd->z - pParse->sNameToken.z + 1; 1513 zStmt = sqlite3MPrintf(db, 1514 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1515 ); 1516 } 1517 1518 /* A slot for the record has already been allocated in the 1519 ** SQLITE_MASTER table. We just need to update that slot with all 1520 ** the information we've collected. The rowid for the preallocated 1521 ** slot is the 2nd item on the stack. The top of the stack is the 1522 ** root page for the new table (or a 0 if this is a view). 1523 */ 1524 sqlite3NestedParse(pParse, 1525 "UPDATE %Q.%s " 1526 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " 1527 "WHERE rowid=#1", 1528 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1529 zType, 1530 p->zName, 1531 p->zName, 1532 zStmt 1533 ); 1534 sqlite3_free(zStmt); 1535 sqlite3ChangeCookie(db, v, iDb); 1536 1537 #ifndef SQLITE_OMIT_AUTOINCREMENT 1538 /* Check to see if we need to create an sqlite_sequence table for 1539 ** keeping track of autoincrement keys. 1540 */ 1541 if( p->autoInc ){ 1542 Db *pDb = &db->aDb[iDb]; 1543 if( pDb->pSchema->pSeqTab==0 ){ 1544 sqlite3NestedParse(pParse, 1545 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1546 pDb->zName 1547 ); 1548 } 1549 } 1550 #endif 1551 1552 /* Reparse everything to update our internal data structures */ 1553 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 1554 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P3_DYNAMIC); 1555 } 1556 1557 1558 /* Add the table to the in-memory representation of the database. 1559 */ 1560 if( db->init.busy && pParse->nErr==0 ){ 1561 Table *pOld; 1562 FKey *pFKey; 1563 Schema *pSchema = p->pSchema; 1564 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); 1565 if( pOld ){ 1566 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1567 db->mallocFailed = 1; 1568 return; 1569 } 1570 #ifndef SQLITE_OMIT_FOREIGN_KEY 1571 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1572 void *data; 1573 int nTo = strlen(pFKey->zTo) + 1; 1574 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1575 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1576 if( data==(void *)pFKey ){ 1577 db->mallocFailed = 1; 1578 } 1579 } 1580 #endif 1581 pParse->pNewTable = 0; 1582 db->nTable++; 1583 db->flags |= SQLITE_InternChanges; 1584 1585 #ifndef SQLITE_OMIT_ALTERTABLE 1586 if( !p->pSelect ){ 1587 const char *zName = (const char *)pParse->sNameToken.z; 1588 int nName; 1589 assert( !pSelect && pCons && pEnd ); 1590 if( pCons->z==0 ){ 1591 pCons = pEnd; 1592 } 1593 nName = (const char *)pCons->z - zName; 1594 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1595 } 1596 #endif 1597 } 1598 } 1599 1600 #ifndef SQLITE_OMIT_VIEW 1601 /* 1602 ** The parser calls this routine in order to create a new VIEW 1603 */ 1604 void sqlite3CreateView( 1605 Parse *pParse, /* The parsing context */ 1606 Token *pBegin, /* The CREATE token that begins the statement */ 1607 Token *pName1, /* The token that holds the name of the view */ 1608 Token *pName2, /* The token that holds the name of the view */ 1609 Select *pSelect, /* A SELECT statement that will become the new view */ 1610 int isTemp, /* TRUE for a TEMPORARY view */ 1611 int noErr /* Suppress error messages if VIEW already exists */ 1612 ){ 1613 Table *p; 1614 int n; 1615 const unsigned char *z; 1616 Token sEnd; 1617 DbFixer sFix; 1618 Token *pName; 1619 int iDb; 1620 sqlite3 *db = pParse->db; 1621 1622 if( pParse->nVar>0 ){ 1623 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1624 sqlite3SelectDelete(pSelect); 1625 return; 1626 } 1627 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1628 p = pParse->pNewTable; 1629 if( p==0 || pParse->nErr ){ 1630 sqlite3SelectDelete(pSelect); 1631 return; 1632 } 1633 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1634 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1635 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1636 && sqlite3FixSelect(&sFix, pSelect) 1637 ){ 1638 sqlite3SelectDelete(pSelect); 1639 return; 1640 } 1641 1642 /* Make a copy of the entire SELECT statement that defines the view. 1643 ** This will force all the Expr.token.z values to be dynamically 1644 ** allocated rather than point to the input string - which means that 1645 ** they will persist after the current sqlite3_exec() call returns. 1646 */ 1647 p->pSelect = sqlite3SelectDup(db, pSelect); 1648 sqlite3SelectDelete(pSelect); 1649 if( db->mallocFailed ){ 1650 return; 1651 } 1652 if( !db->init.busy ){ 1653 sqlite3ViewGetColumnNames(pParse, p); 1654 } 1655 1656 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1657 ** the end. 1658 */ 1659 sEnd = pParse->sLastToken; 1660 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1661 sEnd.z += sEnd.n; 1662 } 1663 sEnd.n = 0; 1664 n = sEnd.z - pBegin->z; 1665 z = (const unsigned char*)pBegin->z; 1666 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1667 sEnd.z = &z[n-1]; 1668 sEnd.n = 1; 1669 1670 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1671 sqlite3EndTable(pParse, 0, &sEnd, 0); 1672 return; 1673 } 1674 #endif /* SQLITE_OMIT_VIEW */ 1675 1676 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1677 /* 1678 ** The Table structure pTable is really a VIEW. Fill in the names of 1679 ** the columns of the view in the pTable structure. Return the number 1680 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1681 */ 1682 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1683 Table *pSelTab; /* A fake table from which we get the result set */ 1684 Select *pSel; /* Copy of the SELECT that implements the view */ 1685 int nErr = 0; /* Number of errors encountered */ 1686 int n; /* Temporarily holds the number of cursors assigned */ 1687 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1688 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1689 1690 assert( pTable ); 1691 1692 #ifndef SQLITE_OMIT_VIRTUALTABLE 1693 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1694 return SQLITE_ERROR; 1695 } 1696 if( IsVirtual(pTable) ) return 0; 1697 #endif 1698 1699 #ifndef SQLITE_OMIT_VIEW 1700 /* A positive nCol means the columns names for this view are 1701 ** already known. 1702 */ 1703 if( pTable->nCol>0 ) return 0; 1704 1705 /* A negative nCol is a special marker meaning that we are currently 1706 ** trying to compute the column names. If we enter this routine with 1707 ** a negative nCol, it means two or more views form a loop, like this: 1708 ** 1709 ** CREATE VIEW one AS SELECT * FROM two; 1710 ** CREATE VIEW two AS SELECT * FROM one; 1711 ** 1712 ** Actually, this error is caught previously and so the following test 1713 ** should always fail. But we will leave it in place just to be safe. 1714 */ 1715 if( pTable->nCol<0 ){ 1716 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1717 return 1; 1718 } 1719 assert( pTable->nCol>=0 ); 1720 1721 /* If we get this far, it means we need to compute the table names. 1722 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1723 ** "*" elements in the results set of the view and will assign cursors 1724 ** to the elements of the FROM clause. But we do not want these changes 1725 ** to be permanent. So the computation is done on a copy of the SELECT 1726 ** statement that defines the view. 1727 */ 1728 assert( pTable->pSelect ); 1729 pSel = sqlite3SelectDup(db, pTable->pSelect); 1730 if( pSel ){ 1731 n = pParse->nTab; 1732 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1733 pTable->nCol = -1; 1734 #ifndef SQLITE_OMIT_AUTHORIZATION 1735 xAuth = db->xAuth; 1736 db->xAuth = 0; 1737 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1738 db->xAuth = xAuth; 1739 #else 1740 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1741 #endif 1742 pParse->nTab = n; 1743 if( pSelTab ){ 1744 assert( pTable->aCol==0 ); 1745 pTable->nCol = pSelTab->nCol; 1746 pTable->aCol = pSelTab->aCol; 1747 pSelTab->nCol = 0; 1748 pSelTab->aCol = 0; 1749 sqlite3DeleteTable(pSelTab); 1750 pTable->pSchema->flags |= DB_UnresetViews; 1751 }else{ 1752 pTable->nCol = 0; 1753 nErr++; 1754 } 1755 sqlite3SelectDelete(pSel); 1756 } else { 1757 nErr++; 1758 } 1759 #endif /* SQLITE_OMIT_VIEW */ 1760 return nErr; 1761 } 1762 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1763 1764 #ifndef SQLITE_OMIT_VIEW 1765 /* 1766 ** Clear the column names from every VIEW in database idx. 1767 */ 1768 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1769 HashElem *i; 1770 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1771 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1772 Table *pTab = sqliteHashData(i); 1773 if( pTab->pSelect ){ 1774 sqliteResetColumnNames(pTab); 1775 } 1776 } 1777 DbClearProperty(db, idx, DB_UnresetViews); 1778 } 1779 #else 1780 # define sqliteViewResetAll(A,B) 1781 #endif /* SQLITE_OMIT_VIEW */ 1782 1783 /* 1784 ** This function is called by the VDBE to adjust the internal schema 1785 ** used by SQLite when the btree layer moves a table root page. The 1786 ** root-page of a table or index in database iDb has changed from iFrom 1787 ** to iTo. 1788 ** 1789 ** Ticket #1728: The symbol table might still contain information 1790 ** on tables and/or indices that are the process of being deleted. 1791 ** If you are unlucky, one of those deleted indices or tables might 1792 ** have the same rootpage number as the real table or index that is 1793 ** being moved. So we cannot stop searching after the first match 1794 ** because the first match might be for one of the deleted indices 1795 ** or tables and not the table/index that is actually being moved. 1796 ** We must continue looping until all tables and indices with 1797 ** rootpage==iFrom have been converted to have a rootpage of iTo 1798 ** in order to be certain that we got the right one. 1799 */ 1800 #ifndef SQLITE_OMIT_AUTOVACUUM 1801 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1802 HashElem *pElem; 1803 Hash *pHash; 1804 1805 pHash = &pDb->pSchema->tblHash; 1806 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1807 Table *pTab = sqliteHashData(pElem); 1808 if( pTab->tnum==iFrom ){ 1809 pTab->tnum = iTo; 1810 } 1811 } 1812 pHash = &pDb->pSchema->idxHash; 1813 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1814 Index *pIdx = sqliteHashData(pElem); 1815 if( pIdx->tnum==iFrom ){ 1816 pIdx->tnum = iTo; 1817 } 1818 } 1819 } 1820 #endif 1821 1822 /* 1823 ** Write code to erase the table with root-page iTable from database iDb. 1824 ** Also write code to modify the sqlite_master table and internal schema 1825 ** if a root-page of another table is moved by the btree-layer whilst 1826 ** erasing iTable (this can happen with an auto-vacuum database). 1827 */ 1828 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1829 Vdbe *v = sqlite3GetVdbe(pParse); 1830 sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb); 1831 #ifndef SQLITE_OMIT_AUTOVACUUM 1832 /* OP_Destroy pushes an integer onto the stack. If this integer 1833 ** is non-zero, then it is the root page number of a table moved to 1834 ** location iTable. The following code modifies the sqlite_master table to 1835 ** reflect this. 1836 ** 1837 ** The "#0" in the SQL is a special constant that means whatever value 1838 ** is on the top of the stack. See sqlite3RegisterExpr(). 1839 */ 1840 sqlite3NestedParse(pParse, 1841 "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0", 1842 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable); 1843 #endif 1844 } 1845 1846 /* 1847 ** Write VDBE code to erase table pTab and all associated indices on disk. 1848 ** Code to update the sqlite_master tables and internal schema definitions 1849 ** in case a root-page belonging to another table is moved by the btree layer 1850 ** is also added (this can happen with an auto-vacuum database). 1851 */ 1852 static void destroyTable(Parse *pParse, Table *pTab){ 1853 #ifdef SQLITE_OMIT_AUTOVACUUM 1854 Index *pIdx; 1855 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1856 destroyRootPage(pParse, pTab->tnum, iDb); 1857 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1858 destroyRootPage(pParse, pIdx->tnum, iDb); 1859 } 1860 #else 1861 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1862 ** is not defined), then it is important to call OP_Destroy on the 1863 ** table and index root-pages in order, starting with the numerically 1864 ** largest root-page number. This guarantees that none of the root-pages 1865 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1866 ** following were coded: 1867 ** 1868 ** OP_Destroy 4 0 1869 ** ... 1870 ** OP_Destroy 5 0 1871 ** 1872 ** and root page 5 happened to be the largest root-page number in the 1873 ** database, then root page 5 would be moved to page 4 by the 1874 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1875 ** a free-list page. 1876 */ 1877 int iTab = pTab->tnum; 1878 int iDestroyed = 0; 1879 1880 while( 1 ){ 1881 Index *pIdx; 1882 int iLargest = 0; 1883 1884 if( iDestroyed==0 || iTab<iDestroyed ){ 1885 iLargest = iTab; 1886 } 1887 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1888 int iIdx = pIdx->tnum; 1889 assert( pIdx->pSchema==pTab->pSchema ); 1890 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1891 iLargest = iIdx; 1892 } 1893 } 1894 if( iLargest==0 ){ 1895 return; 1896 }else{ 1897 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1898 destroyRootPage(pParse, iLargest, iDb); 1899 iDestroyed = iLargest; 1900 } 1901 } 1902 #endif 1903 } 1904 1905 /* 1906 ** This routine is called to do the work of a DROP TABLE statement. 1907 ** pName is the name of the table to be dropped. 1908 */ 1909 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1910 Table *pTab; 1911 Vdbe *v; 1912 sqlite3 *db = pParse->db; 1913 int iDb; 1914 1915 if( pParse->nErr || db->mallocFailed ){ 1916 goto exit_drop_table; 1917 } 1918 assert( pName->nSrc==1 ); 1919 pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); 1920 1921 if( pTab==0 ){ 1922 if( noErr ){ 1923 sqlite3ErrorClear(pParse); 1924 } 1925 goto exit_drop_table; 1926 } 1927 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1928 assert( iDb>=0 && iDb<db->nDb ); 1929 1930 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 1931 ** it is initialized. 1932 */ 1933 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 1934 goto exit_drop_table; 1935 } 1936 #ifndef SQLITE_OMIT_AUTHORIZATION 1937 { 1938 int code; 1939 const char *zTab = SCHEMA_TABLE(iDb); 1940 const char *zDb = db->aDb[iDb].zName; 1941 const char *zArg2 = 0; 1942 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1943 goto exit_drop_table; 1944 } 1945 if( isView ){ 1946 if( !OMIT_TEMPDB && iDb==1 ){ 1947 code = SQLITE_DROP_TEMP_VIEW; 1948 }else{ 1949 code = SQLITE_DROP_VIEW; 1950 } 1951 #ifndef SQLITE_OMIT_VIRTUALTABLE 1952 }else if( IsVirtual(pTab) ){ 1953 code = SQLITE_DROP_VTABLE; 1954 zArg2 = pTab->pMod->zName; 1955 #endif 1956 }else{ 1957 if( !OMIT_TEMPDB && iDb==1 ){ 1958 code = SQLITE_DROP_TEMP_TABLE; 1959 }else{ 1960 code = SQLITE_DROP_TABLE; 1961 } 1962 } 1963 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 1964 goto exit_drop_table; 1965 } 1966 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 1967 goto exit_drop_table; 1968 } 1969 } 1970 #endif 1971 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ 1972 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 1973 goto exit_drop_table; 1974 } 1975 1976 #ifndef SQLITE_OMIT_VIEW 1977 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 1978 ** on a table. 1979 */ 1980 if( isView && pTab->pSelect==0 ){ 1981 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 1982 goto exit_drop_table; 1983 } 1984 if( !isView && pTab->pSelect ){ 1985 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 1986 goto exit_drop_table; 1987 } 1988 #endif 1989 1990 /* Generate code to remove the table from the master table 1991 ** on disk. 1992 */ 1993 v = sqlite3GetVdbe(pParse); 1994 if( v ){ 1995 Trigger *pTrigger; 1996 Db *pDb = &db->aDb[iDb]; 1997 sqlite3BeginWriteOperation(pParse, 0, iDb); 1998 1999 #ifndef SQLITE_OMIT_VIRTUALTABLE 2000 if( IsVirtual(pTab) ){ 2001 Vdbe *v = sqlite3GetVdbe(pParse); 2002 if( v ){ 2003 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 2004 } 2005 } 2006 #endif 2007 2008 /* Drop all triggers associated with the table being dropped. Code 2009 ** is generated to remove entries from sqlite_master and/or 2010 ** sqlite_temp_master if required. 2011 */ 2012 pTrigger = pTab->pTrigger; 2013 while( pTrigger ){ 2014 assert( pTrigger->pSchema==pTab->pSchema || 2015 pTrigger->pSchema==db->aDb[1].pSchema ); 2016 sqlite3DropTriggerPtr(pParse, pTrigger); 2017 pTrigger = pTrigger->pNext; 2018 } 2019 2020 #ifndef SQLITE_OMIT_AUTOINCREMENT 2021 /* Remove any entries of the sqlite_sequence table associated with 2022 ** the table being dropped. This is done before the table is dropped 2023 ** at the btree level, in case the sqlite_sequence table needs to 2024 ** move as a result of the drop (can happen in auto-vacuum mode). 2025 */ 2026 if( pTab->autoInc ){ 2027 sqlite3NestedParse(pParse, 2028 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2029 pDb->zName, pTab->zName 2030 ); 2031 } 2032 #endif 2033 2034 /* Drop all SQLITE_MASTER table and index entries that refer to the 2035 ** table. The program name loops through the master table and deletes 2036 ** every row that refers to a table of the same name as the one being 2037 ** dropped. Triggers are handled seperately because a trigger can be 2038 ** created in the temp database that refers to a table in another 2039 ** database. 2040 */ 2041 sqlite3NestedParse(pParse, 2042 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2043 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2044 if( !isView && !IsVirtual(pTab) ){ 2045 destroyTable(pParse, pTab); 2046 } 2047 2048 /* Remove the table entry from SQLite's internal schema and modify 2049 ** the schema cookie. 2050 */ 2051 if( IsVirtual(pTab) ){ 2052 sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0); 2053 } 2054 sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); 2055 sqlite3ChangeCookie(db, v, iDb); 2056 } 2057 sqliteViewResetAll(db, iDb); 2058 2059 exit_drop_table: 2060 sqlite3SrcListDelete(pName); 2061 } 2062 2063 /* 2064 ** This routine is called to create a new foreign key on the table 2065 ** currently under construction. pFromCol determines which columns 2066 ** in the current table point to the foreign key. If pFromCol==0 then 2067 ** connect the key to the last column inserted. pTo is the name of 2068 ** the table referred to. pToCol is a list of tables in the other 2069 ** pTo table that the foreign key points to. flags contains all 2070 ** information about the conflict resolution algorithms specified 2071 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2072 ** 2073 ** An FKey structure is created and added to the table currently 2074 ** under construction in the pParse->pNewTable field. The new FKey 2075 ** is not linked into db->aFKey at this point - that does not happen 2076 ** until sqlite3EndTable(). 2077 ** 2078 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2079 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2080 */ 2081 void sqlite3CreateForeignKey( 2082 Parse *pParse, /* Parsing context */ 2083 ExprList *pFromCol, /* Columns in this table that point to other table */ 2084 Token *pTo, /* Name of the other table */ 2085 ExprList *pToCol, /* Columns in the other table */ 2086 int flags /* Conflict resolution algorithms. */ 2087 ){ 2088 #ifndef SQLITE_OMIT_FOREIGN_KEY 2089 FKey *pFKey = 0; 2090 Table *p = pParse->pNewTable; 2091 int nByte; 2092 int i; 2093 int nCol; 2094 char *z; 2095 2096 assert( pTo!=0 ); 2097 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2098 if( pFromCol==0 ){ 2099 int iCol = p->nCol-1; 2100 if( iCol<0 ) goto fk_end; 2101 if( pToCol && pToCol->nExpr!=1 ){ 2102 sqlite3ErrorMsg(pParse, "foreign key on %s" 2103 " should reference only one column of table %T", 2104 p->aCol[iCol].zName, pTo); 2105 goto fk_end; 2106 } 2107 nCol = 1; 2108 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2109 sqlite3ErrorMsg(pParse, 2110 "number of columns in foreign key does not match the number of " 2111 "columns in the referenced table"); 2112 goto fk_end; 2113 }else{ 2114 nCol = pFromCol->nExpr; 2115 } 2116 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2117 if( pToCol ){ 2118 for(i=0; i<pToCol->nExpr; i++){ 2119 nByte += strlen(pToCol->a[i].zName) + 1; 2120 } 2121 } 2122 pFKey = sqlite3DbMallocZero(pParse->db, nByte ); 2123 if( pFKey==0 ){ 2124 goto fk_end; 2125 } 2126 pFKey->pFrom = p; 2127 pFKey->pNextFrom = p->pFKey; 2128 z = (char*)&pFKey[1]; 2129 pFKey->aCol = (struct sColMap*)z; 2130 z += sizeof(struct sColMap)*nCol; 2131 pFKey->zTo = z; 2132 memcpy(z, pTo->z, pTo->n); 2133 z[pTo->n] = 0; 2134 z += pTo->n+1; 2135 pFKey->pNextTo = 0; 2136 pFKey->nCol = nCol; 2137 if( pFromCol==0 ){ 2138 pFKey->aCol[0].iFrom = p->nCol-1; 2139 }else{ 2140 for(i=0; i<nCol; i++){ 2141 int j; 2142 for(j=0; j<p->nCol; j++){ 2143 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2144 pFKey->aCol[i].iFrom = j; 2145 break; 2146 } 2147 } 2148 if( j>=p->nCol ){ 2149 sqlite3ErrorMsg(pParse, 2150 "unknown column \"%s\" in foreign key definition", 2151 pFromCol->a[i].zName); 2152 goto fk_end; 2153 } 2154 } 2155 } 2156 if( pToCol ){ 2157 for(i=0; i<nCol; i++){ 2158 int n = strlen(pToCol->a[i].zName); 2159 pFKey->aCol[i].zCol = z; 2160 memcpy(z, pToCol->a[i].zName, n); 2161 z[n] = 0; 2162 z += n+1; 2163 } 2164 } 2165 pFKey->isDeferred = 0; 2166 pFKey->deleteConf = flags & 0xff; 2167 pFKey->updateConf = (flags >> 8 ) & 0xff; 2168 pFKey->insertConf = (flags >> 16 ) & 0xff; 2169 2170 /* Link the foreign key to the table as the last step. 2171 */ 2172 p->pFKey = pFKey; 2173 pFKey = 0; 2174 2175 fk_end: 2176 sqlite3_free(pFKey); 2177 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2178 sqlite3ExprListDelete(pFromCol); 2179 sqlite3ExprListDelete(pToCol); 2180 } 2181 2182 /* 2183 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2184 ** clause is seen as part of a foreign key definition. The isDeferred 2185 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2186 ** The behavior of the most recently created foreign key is adjusted 2187 ** accordingly. 2188 */ 2189 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2190 #ifndef SQLITE_OMIT_FOREIGN_KEY 2191 Table *pTab; 2192 FKey *pFKey; 2193 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2194 pFKey->isDeferred = isDeferred; 2195 #endif 2196 } 2197 2198 /* 2199 ** Generate code that will erase and refill index *pIdx. This is 2200 ** used to initialize a newly created index or to recompute the 2201 ** content of an index in response to a REINDEX command. 2202 ** 2203 ** if memRootPage is not negative, it means that the index is newly 2204 ** created. The memory cell specified by memRootPage contains the 2205 ** root page number of the index. If memRootPage is negative, then 2206 ** the index already exists and must be cleared before being refilled and 2207 ** the root page number of the index is taken from pIndex->tnum. 2208 */ 2209 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2210 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2211 int iTab = pParse->nTab; /* Btree cursor used for pTab */ 2212 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ 2213 int addr1; /* Address of top of loop */ 2214 int tnum; /* Root page of index */ 2215 Vdbe *v; /* Generate code into this virtual machine */ 2216 KeyInfo *pKey; /* KeyInfo for index */ 2217 sqlite3 *db = pParse->db; /* The database connection */ 2218 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2219 2220 #ifndef SQLITE_OMIT_AUTHORIZATION 2221 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2222 db->aDb[iDb].zName ) ){ 2223 return; 2224 } 2225 #endif 2226 2227 /* Require a write-lock on the table to perform this operation */ 2228 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2229 2230 v = sqlite3GetVdbe(pParse); 2231 if( v==0 ) return; 2232 if( memRootPage>=0 ){ 2233 sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); 2234 tnum = 0; 2235 }else{ 2236 tnum = pIndex->tnum; 2237 sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); 2238 } 2239 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2240 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2241 sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF); 2242 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2243 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 2244 sqlite3GenerateIndexKey(v, pIndex, iTab); 2245 if( pIndex->onError!=OE_None ){ 2246 int curaddr = sqlite3VdbeCurrentAddr(v); 2247 int addr2 = curaddr+4; 2248 sqlite3VdbeChangeP2(v, curaddr-1, addr2); 2249 sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); 2250 sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); 2251 sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2); 2252 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 2253 "indexed columns are not unique", P3_STATIC); 2254 assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) ); 2255 } 2256 sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0); 2257 sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1); 2258 sqlite3VdbeJumpHere(v, addr1); 2259 sqlite3VdbeAddOp(v, OP_Close, iTab, 0); 2260 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2261 } 2262 2263 /* 2264 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2265 ** and pTblList is the name of the table that is to be indexed. Both will 2266 ** be NULL for a primary key or an index that is created to satisfy a 2267 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2268 ** as the table to be indexed. pParse->pNewTable is a table that is 2269 ** currently being constructed by a CREATE TABLE statement. 2270 ** 2271 ** pList is a list of columns to be indexed. pList will be NULL if this 2272 ** is a primary key or unique-constraint on the most recent column added 2273 ** to the table currently under construction. 2274 */ 2275 void sqlite3CreateIndex( 2276 Parse *pParse, /* All information about this parse */ 2277 Token *pName1, /* First part of index name. May be NULL */ 2278 Token *pName2, /* Second part of index name. May be NULL */ 2279 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2280 ExprList *pList, /* A list of columns to be indexed */ 2281 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2282 Token *pStart, /* The CREATE token that begins this statement */ 2283 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2284 int sortOrder, /* Sort order of primary key when pList==NULL */ 2285 int ifNotExist /* Omit error if index already exists */ 2286 ){ 2287 Table *pTab = 0; /* Table to be indexed */ 2288 Index *pIndex = 0; /* The index to be created */ 2289 char *zName = 0; /* Name of the index */ 2290 int nName; /* Number of characters in zName */ 2291 int i, j; 2292 Token nullId; /* Fake token for an empty ID list */ 2293 DbFixer sFix; /* For assigning database names to pTable */ 2294 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2295 sqlite3 *db = pParse->db; 2296 Db *pDb; /* The specific table containing the indexed database */ 2297 int iDb; /* Index of the database that is being written */ 2298 Token *pName = 0; /* Unqualified name of the index to create */ 2299 struct ExprList_item *pListItem; /* For looping over pList */ 2300 int nCol; 2301 int nExtra = 0; 2302 char *zExtra; 2303 2304 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ 2305 goto exit_create_index; 2306 } 2307 2308 /* 2309 ** Find the table that is to be indexed. Return early if not found. 2310 */ 2311 if( pTblName!=0 ){ 2312 2313 /* Use the two-part index name to determine the database 2314 ** to search for the table. 'Fix' the table name to this db 2315 ** before looking up the table. 2316 */ 2317 assert( pName1 && pName2 ); 2318 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2319 if( iDb<0 ) goto exit_create_index; 2320 2321 #ifndef SQLITE_OMIT_TEMPDB 2322 /* If the index name was unqualified, check if the the table 2323 ** is a temp table. If so, set the database to 1. 2324 */ 2325 pTab = sqlite3SrcListLookup(pParse, pTblName); 2326 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2327 iDb = 1; 2328 } 2329 #endif 2330 2331 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2332 sqlite3FixSrcList(&sFix, pTblName) 2333 ){ 2334 /* Because the parser constructs pTblName from a single identifier, 2335 ** sqlite3FixSrcList can never fail. */ 2336 assert(0); 2337 } 2338 pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 2339 pTblName->a[0].zDatabase); 2340 if( !pTab ) goto exit_create_index; 2341 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2342 }else{ 2343 assert( pName==0 ); 2344 pTab = pParse->pNewTable; 2345 if( !pTab ) goto exit_create_index; 2346 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2347 } 2348 pDb = &db->aDb[iDb]; 2349 2350 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2351 if( pTab->readOnly ){ 2352 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2353 goto exit_create_index; 2354 } 2355 #ifndef SQLITE_OMIT_VIEW 2356 if( pTab->pSelect ){ 2357 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2358 goto exit_create_index; 2359 } 2360 #endif 2361 #ifndef SQLITE_OMIT_VIRTUALTABLE 2362 if( IsVirtual(pTab) ){ 2363 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2364 goto exit_create_index; 2365 } 2366 #endif 2367 2368 /* 2369 ** Find the name of the index. Make sure there is not already another 2370 ** index or table with the same name. 2371 ** 2372 ** Exception: If we are reading the names of permanent indices from the 2373 ** sqlite_master table (because some other process changed the schema) and 2374 ** one of the index names collides with the name of a temporary table or 2375 ** index, then we will continue to process this index. 2376 ** 2377 ** If pName==0 it means that we are 2378 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2379 ** own name. 2380 */ 2381 if( pName ){ 2382 zName = sqlite3NameFromToken(db, pName); 2383 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2384 if( zName==0 ) goto exit_create_index; 2385 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2386 goto exit_create_index; 2387 } 2388 if( !db->init.busy ){ 2389 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2390 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2391 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2392 goto exit_create_index; 2393 } 2394 } 2395 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2396 if( !ifNotExist ){ 2397 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2398 } 2399 goto exit_create_index; 2400 } 2401 }else{ 2402 char zBuf[30]; 2403 int n; 2404 Index *pLoop; 2405 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2406 sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n); 2407 zName = 0; 2408 sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); 2409 if( zName==0 ){ 2410 db->mallocFailed = 1; 2411 goto exit_create_index; 2412 } 2413 } 2414 2415 /* Check for authorization to create an index. 2416 */ 2417 #ifndef SQLITE_OMIT_AUTHORIZATION 2418 { 2419 const char *zDb = pDb->zName; 2420 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2421 goto exit_create_index; 2422 } 2423 i = SQLITE_CREATE_INDEX; 2424 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2425 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2426 goto exit_create_index; 2427 } 2428 } 2429 #endif 2430 2431 /* If pList==0, it means this routine was called to make a primary 2432 ** key out of the last column added to the table under construction. 2433 ** So create a fake list to simulate this. 2434 */ 2435 if( pList==0 ){ 2436 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2437 nullId.n = strlen((char*)nullId.z); 2438 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); 2439 if( pList==0 ) goto exit_create_index; 2440 pList->a[0].sortOrder = sortOrder; 2441 } 2442 2443 /* Figure out how many bytes of space are required to store explicitly 2444 ** specified collation sequence names. 2445 */ 2446 for(i=0; i<pList->nExpr; i++){ 2447 Expr *pExpr = pList->a[i].pExpr; 2448 if( pExpr ){ 2449 nExtra += (1 + strlen(pExpr->pColl->zName)); 2450 } 2451 } 2452 2453 /* 2454 ** Allocate the index structure. 2455 */ 2456 nName = strlen(zName); 2457 nCol = pList->nExpr; 2458 pIndex = sqlite3DbMallocZero(db, 2459 sizeof(Index) + /* Index structure */ 2460 sizeof(int)*nCol + /* Index.aiColumn */ 2461 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2462 sizeof(char *)*nCol + /* Index.azColl */ 2463 sizeof(u8)*nCol + /* Index.aSortOrder */ 2464 nName + 1 + /* Index.zName */ 2465 nExtra /* Collation sequence names */ 2466 ); 2467 if( db->mallocFailed ){ 2468 goto exit_create_index; 2469 } 2470 pIndex->azColl = (char**)(&pIndex[1]); 2471 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2472 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2473 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2474 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2475 zExtra = (char *)(&pIndex->zName[nName+1]); 2476 memcpy(pIndex->zName, zName, nName+1); 2477 pIndex->pTable = pTab; 2478 pIndex->nColumn = pList->nExpr; 2479 pIndex->onError = onError; 2480 pIndex->autoIndex = pName==0; 2481 pIndex->pSchema = db->aDb[iDb].pSchema; 2482 2483 /* Check to see if we should honor DESC requests on index columns 2484 */ 2485 if( pDb->pSchema->file_format>=4 ){ 2486 sortOrderMask = -1; /* Honor DESC */ 2487 }else{ 2488 sortOrderMask = 0; /* Ignore DESC */ 2489 } 2490 2491 /* Scan the names of the columns of the table to be indexed and 2492 ** load the column indices into the Index structure. Report an error 2493 ** if any column is not found. 2494 */ 2495 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2496 const char *zColName = pListItem->zName; 2497 Column *pTabCol; 2498 int requestedSortOrder; 2499 char *zColl; /* Collation sequence name */ 2500 2501 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2502 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2503 } 2504 if( j>=pTab->nCol ){ 2505 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2506 pTab->zName, zColName); 2507 goto exit_create_index; 2508 } 2509 /* TODO: Add a test to make sure that the same column is not named 2510 ** more than once within the same index. Only the first instance of 2511 ** the column will ever be used by the optimizer. Note that using the 2512 ** same column more than once cannot be an error because that would 2513 ** break backwards compatibility - it needs to be a warning. 2514 */ 2515 pIndex->aiColumn[i] = j; 2516 if( pListItem->pExpr ){ 2517 assert( pListItem->pExpr->pColl ); 2518 zColl = zExtra; 2519 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); 2520 zExtra += (strlen(zColl) + 1); 2521 }else{ 2522 zColl = pTab->aCol[j].zColl; 2523 if( !zColl ){ 2524 zColl = db->pDfltColl->zName; 2525 } 2526 } 2527 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2528 goto exit_create_index; 2529 } 2530 pIndex->azColl[i] = zColl; 2531 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2532 pIndex->aSortOrder[i] = requestedSortOrder; 2533 } 2534 sqlite3DefaultRowEst(pIndex); 2535 2536 if( pTab==pParse->pNewTable ){ 2537 /* This routine has been called to create an automatic index as a 2538 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2539 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2540 ** i.e. one of: 2541 ** 2542 ** CREATE TABLE t(x PRIMARY KEY, y); 2543 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2544 ** 2545 ** Either way, check to see if the table already has such an index. If 2546 ** so, don't bother creating this one. This only applies to 2547 ** automatically created indices. Users can do as they wish with 2548 ** explicit indices. 2549 */ 2550 Index *pIdx; 2551 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2552 int k; 2553 assert( pIdx->onError!=OE_None ); 2554 assert( pIdx->autoIndex ); 2555 assert( pIndex->onError!=OE_None ); 2556 2557 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2558 for(k=0; k<pIdx->nColumn; k++){ 2559 const char *z1 = pIdx->azColl[k]; 2560 const char *z2 = pIndex->azColl[k]; 2561 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2562 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2563 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2564 } 2565 if( k==pIdx->nColumn ){ 2566 if( pIdx->onError!=pIndex->onError ){ 2567 /* This constraint creates the same index as a previous 2568 ** constraint specified somewhere in the CREATE TABLE statement. 2569 ** However the ON CONFLICT clauses are different. If both this 2570 ** constraint and the previous equivalent constraint have explicit 2571 ** ON CONFLICT clauses this is an error. Otherwise, use the 2572 ** explicitly specified behaviour for the index. 2573 */ 2574 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2575 sqlite3ErrorMsg(pParse, 2576 "conflicting ON CONFLICT clauses specified", 0); 2577 } 2578 if( pIdx->onError==OE_Default ){ 2579 pIdx->onError = pIndex->onError; 2580 } 2581 } 2582 goto exit_create_index; 2583 } 2584 } 2585 } 2586 2587 /* Link the new Index structure to its table and to the other 2588 ** in-memory database structures. 2589 */ 2590 if( db->init.busy ){ 2591 Index *p; 2592 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2593 pIndex->zName, strlen(pIndex->zName)+1, pIndex); 2594 if( p ){ 2595 assert( p==pIndex ); /* Malloc must have failed */ 2596 db->mallocFailed = 1; 2597 goto exit_create_index; 2598 } 2599 db->flags |= SQLITE_InternChanges; 2600 if( pTblName!=0 ){ 2601 pIndex->tnum = db->init.newTnum; 2602 } 2603 } 2604 2605 /* If the db->init.busy is 0 then create the index on disk. This 2606 ** involves writing the index into the master table and filling in the 2607 ** index with the current table contents. 2608 ** 2609 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2610 ** command. db->init.busy is 1 when a database is opened and 2611 ** CREATE INDEX statements are read out of the master table. In 2612 ** the latter case the index already exists on disk, which is why 2613 ** we don't want to recreate it. 2614 ** 2615 ** If pTblName==0 it means this index is generated as a primary key 2616 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2617 ** has just been created, it contains no data and the index initialization 2618 ** step can be skipped. 2619 */ 2620 else if( db->init.busy==0 ){ 2621 Vdbe *v; 2622 char *zStmt; 2623 int iMem = pParse->nMem++; 2624 2625 v = sqlite3GetVdbe(pParse); 2626 if( v==0 ) goto exit_create_index; 2627 2628 2629 /* Create the rootpage for the index 2630 */ 2631 sqlite3BeginWriteOperation(pParse, 1, iDb); 2632 sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); 2633 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2634 2635 /* Gather the complete text of the CREATE INDEX statement into 2636 ** the zStmt variable 2637 */ 2638 if( pStart && pEnd ){ 2639 /* A named index with an explicit CREATE INDEX statement */ 2640 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2641 onError==OE_None ? "" : " UNIQUE", 2642 pEnd->z - pName->z + 1, 2643 pName->z); 2644 }else{ 2645 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2646 /* zStmt = sqlite3MPrintf(""); */ 2647 zStmt = 0; 2648 } 2649 2650 /* Add an entry in sqlite_master for this index 2651 */ 2652 sqlite3NestedParse(pParse, 2653 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);", 2654 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2655 pIndex->zName, 2656 pTab->zName, 2657 zStmt 2658 ); 2659 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2660 sqlite3_free(zStmt); 2661 2662 /* Fill the index with data and reparse the schema. Code an OP_Expire 2663 ** to invalidate all pre-compiled statements. 2664 */ 2665 if( pTblName ){ 2666 sqlite3RefillIndex(pParse, pIndex, iMem); 2667 sqlite3ChangeCookie(db, v, iDb); 2668 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 2669 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P3_DYNAMIC); 2670 sqlite3VdbeAddOp(v, OP_Expire, 0, 0); 2671 } 2672 } 2673 2674 /* When adding an index to the list of indices for a table, make 2675 ** sure all indices labeled OE_Replace come after all those labeled 2676 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2677 ** and INSERT. 2678 */ 2679 if( db->init.busy || pTblName==0 ){ 2680 if( onError!=OE_Replace || pTab->pIndex==0 2681 || pTab->pIndex->onError==OE_Replace){ 2682 pIndex->pNext = pTab->pIndex; 2683 pTab->pIndex = pIndex; 2684 }else{ 2685 Index *pOther = pTab->pIndex; 2686 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2687 pOther = pOther->pNext; 2688 } 2689 pIndex->pNext = pOther->pNext; 2690 pOther->pNext = pIndex; 2691 } 2692 pIndex = 0; 2693 } 2694 2695 /* Clean up before exiting */ 2696 exit_create_index: 2697 if( pIndex ){ 2698 freeIndex(pIndex); 2699 } 2700 sqlite3ExprListDelete(pList); 2701 sqlite3SrcListDelete(pTblName); 2702 sqlite3_free(zName); 2703 return; 2704 } 2705 2706 /* 2707 ** Generate code to make sure the file format number is at least minFormat. 2708 ** The generated code will increase the file format number if necessary. 2709 */ 2710 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2711 Vdbe *v; 2712 v = sqlite3GetVdbe(pParse); 2713 if( v ){ 2714 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); 2715 sqlite3VdbeUsesBtree(v, iDb); 2716 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2717 sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3); 2718 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2719 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 2720 } 2721 } 2722 2723 /* 2724 ** Fill the Index.aiRowEst[] array with default information - information 2725 ** to be used when we have not run the ANALYZE command. 2726 ** 2727 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2728 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2729 ** number of rows in the table that match any particular value of the 2730 ** first column of the index. aiRowEst[2] is an estimate of the number 2731 ** of rows that match any particular combiniation of the first 2 columns 2732 ** of the index. And so forth. It must always be the case that 2733 * 2734 ** aiRowEst[N]<=aiRowEst[N-1] 2735 ** aiRowEst[N]>=1 2736 ** 2737 ** Apart from that, we have little to go on besides intuition as to 2738 ** how aiRowEst[] should be initialized. The numbers generated here 2739 ** are based on typical values found in actual indices. 2740 */ 2741 void sqlite3DefaultRowEst(Index *pIdx){ 2742 unsigned *a = pIdx->aiRowEst; 2743 int i; 2744 assert( a!=0 ); 2745 a[0] = 1000000; 2746 for(i=pIdx->nColumn; i>=5; i--){ 2747 a[i] = 5; 2748 } 2749 while( i>=1 ){ 2750 a[i] = 11 - i; 2751 i--; 2752 } 2753 if( pIdx->onError!=OE_None ){ 2754 a[pIdx->nColumn] = 1; 2755 } 2756 } 2757 2758 /* 2759 ** This routine will drop an existing named index. This routine 2760 ** implements the DROP INDEX statement. 2761 */ 2762 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2763 Index *pIndex; 2764 Vdbe *v; 2765 sqlite3 *db = pParse->db; 2766 int iDb; 2767 2768 if( pParse->nErr || db->mallocFailed ){ 2769 goto exit_drop_index; 2770 } 2771 assert( pName->nSrc==1 ); 2772 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2773 goto exit_drop_index; 2774 } 2775 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2776 if( pIndex==0 ){ 2777 if( !ifExists ){ 2778 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2779 } 2780 pParse->checkSchema = 1; 2781 goto exit_drop_index; 2782 } 2783 if( pIndex->autoIndex ){ 2784 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2785 "or PRIMARY KEY constraint cannot be dropped", 0); 2786 goto exit_drop_index; 2787 } 2788 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2789 #ifndef SQLITE_OMIT_AUTHORIZATION 2790 { 2791 int code = SQLITE_DROP_INDEX; 2792 Table *pTab = pIndex->pTable; 2793 const char *zDb = db->aDb[iDb].zName; 2794 const char *zTab = SCHEMA_TABLE(iDb); 2795 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2796 goto exit_drop_index; 2797 } 2798 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2799 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2800 goto exit_drop_index; 2801 } 2802 } 2803 #endif 2804 2805 /* Generate code to remove the index and from the master table */ 2806 v = sqlite3GetVdbe(pParse); 2807 if( v ){ 2808 sqlite3NestedParse(pParse, 2809 "DELETE FROM %Q.%s WHERE name=%Q", 2810 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2811 pIndex->zName 2812 ); 2813 sqlite3ChangeCookie(db, v, iDb); 2814 destroyRootPage(pParse, pIndex->tnum, iDb); 2815 sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0); 2816 } 2817 2818 exit_drop_index: 2819 sqlite3SrcListDelete(pName); 2820 } 2821 2822 /* 2823 ** pArray is a pointer to an array of objects. Each object in the 2824 ** array is szEntry bytes in size. This routine allocates a new 2825 ** object on the end of the array. 2826 ** 2827 ** *pnEntry is the number of entries already in use. *pnAlloc is 2828 ** the previously allocated size of the array. initSize is the 2829 ** suggested initial array size allocation. 2830 ** 2831 ** The index of the new entry is returned in *pIdx. 2832 ** 2833 ** This routine returns a pointer to the array of objects. This 2834 ** might be the same as the pArray parameter or it might be a different 2835 ** pointer if the array was resized. 2836 */ 2837 void *sqlite3ArrayAllocate( 2838 sqlite3 *db, /* Connection to notify of malloc failures */ 2839 void *pArray, /* Array of objects. Might be reallocated */ 2840 int szEntry, /* Size of each object in the array */ 2841 int initSize, /* Suggested initial allocation, in elements */ 2842 int *pnEntry, /* Number of objects currently in use */ 2843 int *pnAlloc, /* Current size of the allocation, in elements */ 2844 int *pIdx /* Write the index of a new slot here */ 2845 ){ 2846 char *z; 2847 if( *pnEntry >= *pnAlloc ){ 2848 void *pNew; 2849 int newSize; 2850 newSize = (*pnAlloc)*2 + initSize; 2851 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 2852 if( pNew==0 ){ 2853 *pIdx = -1; 2854 return pArray; 2855 } 2856 *pnAlloc = newSize; 2857 pArray = pNew; 2858 } 2859 z = (char*)pArray; 2860 memset(&z[*pnEntry * szEntry], 0, szEntry); 2861 *pIdx = *pnEntry; 2862 ++*pnEntry; 2863 return pArray; 2864 } 2865 2866 /* 2867 ** Append a new element to the given IdList. Create a new IdList if 2868 ** need be. 2869 ** 2870 ** A new IdList is returned, or NULL if malloc() fails. 2871 */ 2872 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 2873 int i; 2874 if( pList==0 ){ 2875 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 2876 if( pList==0 ) return 0; 2877 pList->nAlloc = 0; 2878 } 2879 pList->a = sqlite3ArrayAllocate( 2880 db, 2881 pList->a, 2882 sizeof(pList->a[0]), 2883 5, 2884 &pList->nId, 2885 &pList->nAlloc, 2886 &i 2887 ); 2888 if( i<0 ){ 2889 sqlite3IdListDelete(pList); 2890 return 0; 2891 } 2892 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 2893 return pList; 2894 } 2895 2896 /* 2897 ** Delete an IdList. 2898 */ 2899 void sqlite3IdListDelete(IdList *pList){ 2900 int i; 2901 if( pList==0 ) return; 2902 for(i=0; i<pList->nId; i++){ 2903 sqlite3_free(pList->a[i].zName); 2904 } 2905 sqlite3_free(pList->a); 2906 sqlite3_free(pList); 2907 } 2908 2909 /* 2910 ** Return the index in pList of the identifier named zId. Return -1 2911 ** if not found. 2912 */ 2913 int sqlite3IdListIndex(IdList *pList, const char *zName){ 2914 int i; 2915 if( pList==0 ) return -1; 2916 for(i=0; i<pList->nId; i++){ 2917 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 2918 } 2919 return -1; 2920 } 2921 2922 /* 2923 ** Append a new table name to the given SrcList. Create a new SrcList if 2924 ** need be. A new entry is created in the SrcList even if pToken is NULL. 2925 ** 2926 ** A new SrcList is returned, or NULL if malloc() fails. 2927 ** 2928 ** If pDatabase is not null, it means that the table has an optional 2929 ** database name prefix. Like this: "database.table". The pDatabase 2930 ** points to the table name and the pTable points to the database name. 2931 ** The SrcList.a[].zName field is filled with the table name which might 2932 ** come from pTable (if pDatabase is NULL) or from pDatabase. 2933 ** SrcList.a[].zDatabase is filled with the database name from pTable, 2934 ** or with NULL if no database is specified. 2935 ** 2936 ** In other words, if call like this: 2937 ** 2938 ** sqlite3SrcListAppend(D,A,B,0); 2939 ** 2940 ** Then B is a table name and the database name is unspecified. If called 2941 ** like this: 2942 ** 2943 ** sqlite3SrcListAppend(D,A,B,C); 2944 ** 2945 ** Then C is the table name and B is the database name. 2946 */ 2947 SrcList *sqlite3SrcListAppend( 2948 sqlite3 *db, /* Connection to notify of malloc failures */ 2949 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 2950 Token *pTable, /* Table to append */ 2951 Token *pDatabase /* Database of the table */ 2952 ){ 2953 struct SrcList_item *pItem; 2954 if( pList==0 ){ 2955 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 2956 if( pList==0 ) return 0; 2957 pList->nAlloc = 1; 2958 } 2959 if( pList->nSrc>=pList->nAlloc ){ 2960 SrcList *pNew; 2961 pList->nAlloc *= 2; 2962 pNew = sqlite3DbRealloc(db, pList, 2963 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); 2964 if( pNew==0 ){ 2965 sqlite3SrcListDelete(pList); 2966 return 0; 2967 } 2968 pList = pNew; 2969 } 2970 pItem = &pList->a[pList->nSrc]; 2971 memset(pItem, 0, sizeof(pList->a[0])); 2972 if( pDatabase && pDatabase->z==0 ){ 2973 pDatabase = 0; 2974 } 2975 if( pDatabase && pTable ){ 2976 Token *pTemp = pDatabase; 2977 pDatabase = pTable; 2978 pTable = pTemp; 2979 } 2980 pItem->zName = sqlite3NameFromToken(db, pTable); 2981 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 2982 pItem->iCursor = -1; 2983 pItem->isPopulated = 0; 2984 pList->nSrc++; 2985 return pList; 2986 } 2987 2988 /* 2989 ** Assign cursors to all tables in a SrcList 2990 */ 2991 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 2992 int i; 2993 struct SrcList_item *pItem; 2994 assert(pList || pParse->db->mallocFailed ); 2995 if( pList ){ 2996 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 2997 if( pItem->iCursor>=0 ) break; 2998 pItem->iCursor = pParse->nTab++; 2999 if( pItem->pSelect ){ 3000 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3001 } 3002 } 3003 } 3004 } 3005 3006 /* 3007 ** Delete an entire SrcList including all its substructure. 3008 */ 3009 void sqlite3SrcListDelete(SrcList *pList){ 3010 int i; 3011 struct SrcList_item *pItem; 3012 if( pList==0 ) return; 3013 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3014 sqlite3_free(pItem->zDatabase); 3015 sqlite3_free(pItem->zName); 3016 sqlite3_free(pItem->zAlias); 3017 sqlite3DeleteTable(pItem->pTab); 3018 sqlite3SelectDelete(pItem->pSelect); 3019 sqlite3ExprDelete(pItem->pOn); 3020 sqlite3IdListDelete(pItem->pUsing); 3021 } 3022 sqlite3_free(pList); 3023 } 3024 3025 /* 3026 ** This routine is called by the parser to add a new term to the 3027 ** end of a growing FROM clause. The "p" parameter is the part of 3028 ** the FROM clause that has already been constructed. "p" is NULL 3029 ** if this is the first term of the FROM clause. pTable and pDatabase 3030 ** are the name of the table and database named in the FROM clause term. 3031 ** pDatabase is NULL if the database name qualifier is missing - the 3032 ** usual case. If the term has a alias, then pAlias points to the 3033 ** alias token. If the term is a subquery, then pSubquery is the 3034 ** SELECT statement that the subquery encodes. The pTable and 3035 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3036 ** parameters are the content of the ON and USING clauses. 3037 ** 3038 ** Return a new SrcList which encodes is the FROM with the new 3039 ** term added. 3040 */ 3041 SrcList *sqlite3SrcListAppendFromTerm( 3042 Parse *pParse, /* Parsing context */ 3043 SrcList *p, /* The left part of the FROM clause already seen */ 3044 Token *pTable, /* Name of the table to add to the FROM clause */ 3045 Token *pDatabase, /* Name of the database containing pTable */ 3046 Token *pAlias, /* The right-hand side of the AS subexpression */ 3047 Select *pSubquery, /* A subquery used in place of a table name */ 3048 Expr *pOn, /* The ON clause of a join */ 3049 IdList *pUsing /* The USING clause of a join */ 3050 ){ 3051 struct SrcList_item *pItem; 3052 sqlite3 *db = pParse->db; 3053 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3054 if( p==0 || p->nSrc==0 ){ 3055 sqlite3ExprDelete(pOn); 3056 sqlite3IdListDelete(pUsing); 3057 sqlite3SelectDelete(pSubquery); 3058 return p; 3059 } 3060 pItem = &p->a[p->nSrc-1]; 3061 if( pAlias && pAlias->n ){ 3062 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3063 } 3064 pItem->pSelect = pSubquery; 3065 pItem->pOn = pOn; 3066 pItem->pUsing = pUsing; 3067 return p; 3068 } 3069 3070 /* 3071 ** When building up a FROM clause in the parser, the join operator 3072 ** is initially attached to the left operand. But the code generator 3073 ** expects the join operator to be on the right operand. This routine 3074 ** Shifts all join operators from left to right for an entire FROM 3075 ** clause. 3076 ** 3077 ** Example: Suppose the join is like this: 3078 ** 3079 ** A natural cross join B 3080 ** 3081 ** The operator is "natural cross join". The A and B operands are stored 3082 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3083 ** operator with A. This routine shifts that operator over to B. 3084 */ 3085 void sqlite3SrcListShiftJoinType(SrcList *p){ 3086 if( p && p->a ){ 3087 int i; 3088 for(i=p->nSrc-1; i>0; i--){ 3089 p->a[i].jointype = p->a[i-1].jointype; 3090 } 3091 p->a[0].jointype = 0; 3092 } 3093 } 3094 3095 /* 3096 ** Begin a transaction 3097 */ 3098 void sqlite3BeginTransaction(Parse *pParse, int type){ 3099 sqlite3 *db; 3100 Vdbe *v; 3101 int i; 3102 3103 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3104 if( pParse->nErr || db->mallocFailed ) return; 3105 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3106 3107 v = sqlite3GetVdbe(pParse); 3108 if( !v ) return; 3109 if( type!=TK_DEFERRED ){ 3110 for(i=0; i<db->nDb; i++){ 3111 sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3112 sqlite3VdbeUsesBtree(v, i); 3113 } 3114 } 3115 sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); 3116 } 3117 3118 /* 3119 ** Commit a transaction 3120 */ 3121 void sqlite3CommitTransaction(Parse *pParse){ 3122 sqlite3 *db; 3123 Vdbe *v; 3124 3125 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3126 if( pParse->nErr || db->mallocFailed ) return; 3127 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3128 3129 v = sqlite3GetVdbe(pParse); 3130 if( v ){ 3131 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); 3132 } 3133 } 3134 3135 /* 3136 ** Rollback a transaction 3137 */ 3138 void sqlite3RollbackTransaction(Parse *pParse){ 3139 sqlite3 *db; 3140 Vdbe *v; 3141 3142 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3143 if( pParse->nErr || db->mallocFailed ) return; 3144 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3145 3146 v = sqlite3GetVdbe(pParse); 3147 if( v ){ 3148 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); 3149 } 3150 } 3151 3152 /* 3153 ** Make sure the TEMP database is open and available for use. Return 3154 ** the number of errors. Leave any error messages in the pParse structure. 3155 */ 3156 int sqlite3OpenTempDatabase(Parse *pParse){ 3157 sqlite3 *db = pParse->db; 3158 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3159 int rc; 3160 static const int flags = 3161 SQLITE_OPEN_READWRITE | 3162 SQLITE_OPEN_CREATE | 3163 SQLITE_OPEN_EXCLUSIVE | 3164 SQLITE_OPEN_DELETEONCLOSE | 3165 SQLITE_OPEN_TEMP_DB; 3166 3167 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, 3168 &db->aDb[1].pBt); 3169 if( rc!=SQLITE_OK ){ 3170 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3171 "file for storing temporary tables"); 3172 pParse->rc = rc; 3173 return 1; 3174 } 3175 if( db->flags & !db->autoCommit ){ 3176 rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); 3177 if( rc!=SQLITE_OK ){ 3178 sqlite3ErrorMsg(pParse, "unable to get a write lock on " 3179 "the temporary database file"); 3180 pParse->rc = rc; 3181 return 1; 3182 } 3183 } 3184 assert( db->aDb[1].pSchema ); 3185 } 3186 return 0; 3187 } 3188 3189 /* 3190 ** Generate VDBE code that will verify the schema cookie and start 3191 ** a read-transaction for all named database files. 3192 ** 3193 ** It is important that all schema cookies be verified and all 3194 ** read transactions be started before anything else happens in 3195 ** the VDBE program. But this routine can be called after much other 3196 ** code has been generated. So here is what we do: 3197 ** 3198 ** The first time this routine is called, we code an OP_Goto that 3199 ** will jump to a subroutine at the end of the program. Then we 3200 ** record every database that needs its schema verified in the 3201 ** pParse->cookieMask field. Later, after all other code has been 3202 ** generated, the subroutine that does the cookie verifications and 3203 ** starts the transactions will be coded and the OP_Goto P2 value 3204 ** will be made to point to that subroutine. The generation of the 3205 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3206 ** 3207 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3208 ** schema on any databases. This can be used to position the OP_Goto 3209 ** early in the code, before we know if any database tables will be used. 3210 */ 3211 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3212 sqlite3 *db; 3213 Vdbe *v; 3214 int mask; 3215 3216 v = sqlite3GetVdbe(pParse); 3217 if( v==0 ) return; /* This only happens if there was a prior error */ 3218 db = pParse->db; 3219 if( pParse->cookieGoto==0 ){ 3220 pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; 3221 } 3222 if( iDb>=0 ){ 3223 assert( iDb<db->nDb ); 3224 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3225 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3226 mask = 1<<iDb; 3227 if( (pParse->cookieMask & mask)==0 ){ 3228 pParse->cookieMask |= mask; 3229 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3230 if( !OMIT_TEMPDB && iDb==1 ){ 3231 sqlite3OpenTempDatabase(pParse); 3232 } 3233 } 3234 } 3235 } 3236 3237 /* 3238 ** Generate VDBE code that prepares for doing an operation that 3239 ** might change the database. 3240 ** 3241 ** This routine starts a new transaction if we are not already within 3242 ** a transaction. If we are already within a transaction, then a checkpoint 3243 ** is set if the setStatement parameter is true. A checkpoint should 3244 ** be set for operations that might fail (due to a constraint) part of 3245 ** the way through and which will need to undo some writes without having to 3246 ** rollback the whole transaction. For operations where all constraints 3247 ** can be checked before any changes are made to the database, it is never 3248 ** necessary to undo a write and the checkpoint should not be set. 3249 ** 3250 ** Only database iDb and the temp database are made writable by this call. 3251 ** If iDb==0, then the main and temp databases are made writable. If 3252 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 3253 ** specified auxiliary database and the temp database are made writable. 3254 */ 3255 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3256 Vdbe *v = sqlite3GetVdbe(pParse); 3257 if( v==0 ) return; 3258 sqlite3CodeVerifySchema(pParse, iDb); 3259 pParse->writeMask |= 1<<iDb; 3260 if( setStatement && pParse->nested==0 ){ 3261 sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); 3262 } 3263 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ 3264 sqlite3BeginWriteOperation(pParse, setStatement, 1); 3265 } 3266 } 3267 3268 /* 3269 ** Check to see if pIndex uses the collating sequence pColl. Return 3270 ** true if it does and false if it does not. 3271 */ 3272 #ifndef SQLITE_OMIT_REINDEX 3273 static int collationMatch(const char *zColl, Index *pIndex){ 3274 int i; 3275 for(i=0; i<pIndex->nColumn; i++){ 3276 const char *z = pIndex->azColl[i]; 3277 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3278 return 1; 3279 } 3280 } 3281 return 0; 3282 } 3283 #endif 3284 3285 /* 3286 ** Recompute all indices of pTab that use the collating sequence pColl. 3287 ** If pColl==0 then recompute all indices of pTab. 3288 */ 3289 #ifndef SQLITE_OMIT_REINDEX 3290 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3291 Index *pIndex; /* An index associated with pTab */ 3292 3293 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3294 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3295 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3296 sqlite3BeginWriteOperation(pParse, 0, iDb); 3297 sqlite3RefillIndex(pParse, pIndex, -1); 3298 } 3299 } 3300 } 3301 #endif 3302 3303 /* 3304 ** Recompute all indices of all tables in all databases where the 3305 ** indices use the collating sequence pColl. If pColl==0 then recompute 3306 ** all indices everywhere. 3307 */ 3308 #ifndef SQLITE_OMIT_REINDEX 3309 static void reindexDatabases(Parse *pParse, char const *zColl){ 3310 Db *pDb; /* A single database */ 3311 int iDb; /* The database index number */ 3312 sqlite3 *db = pParse->db; /* The database connection */ 3313 HashElem *k; /* For looping over tables in pDb */ 3314 Table *pTab; /* A table in the database */ 3315 3316 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3317 assert( pDb!=0 ); 3318 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3319 pTab = (Table*)sqliteHashData(k); 3320 reindexTable(pParse, pTab, zColl); 3321 } 3322 } 3323 } 3324 #endif 3325 3326 /* 3327 ** Generate code for the REINDEX command. 3328 ** 3329 ** REINDEX -- 1 3330 ** REINDEX <collation> -- 2 3331 ** REINDEX ?<database>.?<tablename> -- 3 3332 ** REINDEX ?<database>.?<indexname> -- 4 3333 ** 3334 ** Form 1 causes all indices in all attached databases to be rebuilt. 3335 ** Form 2 rebuilds all indices in all databases that use the named 3336 ** collating function. Forms 3 and 4 rebuild the named index or all 3337 ** indices associated with the named table. 3338 */ 3339 #ifndef SQLITE_OMIT_REINDEX 3340 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3341 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3342 char *z; /* Name of a table or index */ 3343 const char *zDb; /* Name of the database */ 3344 Table *pTab; /* A table in the database */ 3345 Index *pIndex; /* An index associated with pTab */ 3346 int iDb; /* The database index number */ 3347 sqlite3 *db = pParse->db; /* The database connection */ 3348 Token *pObjName; /* Name of the table or index to be reindexed */ 3349 3350 /* Read the database schema. If an error occurs, leave an error message 3351 ** and code in pParse and return NULL. */ 3352 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3353 return; 3354 } 3355 3356 if( pName1==0 || pName1->z==0 ){ 3357 reindexDatabases(pParse, 0); 3358 return; 3359 }else if( pName2==0 || pName2->z==0 ){ 3360 char *zColl; 3361 assert( pName1->z ); 3362 zColl = sqlite3NameFromToken(pParse->db, pName1); 3363 if( !zColl ) return; 3364 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); 3365 if( pColl ){ 3366 if( zColl ){ 3367 reindexDatabases(pParse, zColl); 3368 sqlite3_free(zColl); 3369 } 3370 return; 3371 } 3372 sqlite3_free(zColl); 3373 } 3374 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3375 if( iDb<0 ) return; 3376 z = sqlite3NameFromToken(db, pObjName); 3377 if( z==0 ) return; 3378 zDb = db->aDb[iDb].zName; 3379 pTab = sqlite3FindTable(db, z, zDb); 3380 if( pTab ){ 3381 reindexTable(pParse, pTab, 0); 3382 sqlite3_free(z); 3383 return; 3384 } 3385 pIndex = sqlite3FindIndex(db, z, zDb); 3386 sqlite3_free(z); 3387 if( pIndex ){ 3388 sqlite3BeginWriteOperation(pParse, 0, iDb); 3389 sqlite3RefillIndex(pParse, pIndex, -1); 3390 return; 3391 } 3392 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3393 } 3394 #endif 3395 3396 /* 3397 ** Return a dynamicly allocated KeyInfo structure that can be used 3398 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3399 ** 3400 ** If successful, a pointer to the new structure is returned. In this case 3401 ** the caller is responsible for calling sqlite3_free() on the returned 3402 ** pointer. If an error occurs (out of memory or missing collation 3403 ** sequence), NULL is returned and the state of pParse updated to reflect 3404 ** the error. 3405 */ 3406 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3407 int i; 3408 int nCol = pIdx->nColumn; 3409 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3410 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); 3411 3412 if( pKey ){ 3413 pKey->db = pParse->db; 3414 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3415 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3416 for(i=0; i<nCol; i++){ 3417 char *zColl = pIdx->azColl[i]; 3418 assert( zColl ); 3419 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3420 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3421 } 3422 pKey->nField = nCol; 3423 } 3424 3425 if( pParse->nErr ){ 3426 sqlite3_free(pKey); 3427 pKey = 0; 3428 } 3429 return pKey; 3430 } 3431