xref: /sqlite-3.40.0/src/build.c (revision cc285c5a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
120 */
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m){
123   int i;
124   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
125   return 1;
126 }
127 #endif
128 
129 /*
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared.  This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
134 ** parse.
135 **
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
138 */
139 void sqlite3FinishCoding(Parse *pParse){
140   sqlite3 *db;
141   Vdbe *v;
142 
143   assert( pParse->pToplevel==0 );
144   db = pParse->db;
145   if( db->mallocFailed ) return;
146   if( pParse->nested ) return;
147   if( pParse->nErr ) return;
148 
149   /* Begin by generating some termination code at the end of the
150   ** vdbe program
151   */
152   v = sqlite3GetVdbe(pParse);
153   assert( !pParse->isMultiWrite
154        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
155   if( v ){
156     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
157     sqlite3VdbeAddOp0(v, OP_Halt);
158 
159 #if SQLITE_USER_AUTHENTICATION
160     if( pParse->nTableLock>0 && db->init.busy==0 ){
161       sqlite3UserAuthInit(db);
162       if( db->auth.authLevel<UAUTH_User ){
163         pParse->rc = SQLITE_AUTH_USER;
164         sqlite3ErrorMsg(pParse, "user not authenticated");
165         return;
166       }
167     }
168 #endif
169 
170     /* The cookie mask contains one bit for each database file open.
171     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
172     ** set for each database that is used.  Generate code to start a
173     ** transaction on each used database and to verify the schema cookie
174     ** on each used database.
175     */
176     if( db->mallocFailed==0
177      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
178     ){
179       int iDb, i;
180       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
181       sqlite3VdbeJumpHere(v, 0);
182       for(iDb=0; iDb<db->nDb; iDb++){
183         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
184         sqlite3VdbeUsesBtree(v, iDb);
185         sqlite3VdbeAddOp4Int(v,
186           OP_Transaction,                    /* Opcode */
187           iDb,                               /* P1 */
188           DbMaskTest(pParse->writeMask,iDb), /* P2 */
189           pParse->cookieValue[iDb],          /* P3 */
190           db->aDb[iDb].pSchema->iGeneration  /* P4 */
191         );
192         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
193       }
194 #ifndef SQLITE_OMIT_VIRTUALTABLE
195       for(i=0; i<pParse->nVtabLock; i++){
196         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
197         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
198       }
199       pParse->nVtabLock = 0;
200 #endif
201 
202       /* Once all the cookies have been verified and transactions opened,
203       ** obtain the required table-locks. This is a no-op unless the
204       ** shared-cache feature is enabled.
205       */
206       codeTableLocks(pParse);
207 
208       /* Initialize any AUTOINCREMENT data structures required.
209       */
210       sqlite3AutoincrementBegin(pParse);
211 
212       /* Code constant expressions that where factored out of inner loops */
213       if( pParse->pConstExpr ){
214         ExprList *pEL = pParse->pConstExpr;
215         pParse->okConstFactor = 0;
216         for(i=0; i<pEL->nExpr; i++){
217           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
218         }
219       }
220 
221       /* Finally, jump back to the beginning of the executable code. */
222       sqlite3VdbeAddOp2(v, OP_Goto, 0, 1);
223     }
224   }
225 
226 
227   /* Get the VDBE program ready for execution
228   */
229   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
230     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
231     /* A minimum of one cursor is required if autoincrement is used
232     *  See ticket [a696379c1f08866] */
233     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
234     sqlite3VdbeMakeReady(v, pParse);
235     pParse->rc = SQLITE_DONE;
236     pParse->colNamesSet = 0;
237   }else{
238     pParse->rc = SQLITE_ERROR;
239   }
240   pParse->nTab = 0;
241   pParse->nMem = 0;
242   pParse->nSet = 0;
243   pParse->nVar = 0;
244   DbMaskZero(pParse->cookieMask);
245 }
246 
247 /*
248 ** Run the parser and code generator recursively in order to generate
249 ** code for the SQL statement given onto the end of the pParse context
250 ** currently under construction.  When the parser is run recursively
251 ** this way, the final OP_Halt is not appended and other initialization
252 ** and finalization steps are omitted because those are handling by the
253 ** outermost parser.
254 **
255 ** Not everything is nestable.  This facility is designed to permit
256 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
257 ** care if you decide to try to use this routine for some other purposes.
258 */
259 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
260   va_list ap;
261   char *zSql;
262   char *zErrMsg = 0;
263   sqlite3 *db = pParse->db;
264 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
265   char saveBuf[SAVE_SZ];
266 
267   if( pParse->nErr ) return;
268   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
269   va_start(ap, zFormat);
270   zSql = sqlite3VMPrintf(db, zFormat, ap);
271   va_end(ap);
272   if( zSql==0 ){
273     return;   /* A malloc must have failed */
274   }
275   pParse->nested++;
276   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
277   memset(&pParse->nVar, 0, SAVE_SZ);
278   sqlite3RunParser(pParse, zSql, &zErrMsg);
279   sqlite3DbFree(db, zErrMsg);
280   sqlite3DbFree(db, zSql);
281   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
282   pParse->nested--;
283 }
284 
285 #if SQLITE_USER_AUTHENTICATION
286 /*
287 ** Return TRUE if zTable is the name of the system table that stores the
288 ** list of users and their access credentials.
289 */
290 int sqlite3UserAuthTable(const char *zTable){
291   return sqlite3_stricmp(zTable, "sqlite_user")==0;
292 }
293 #endif
294 
295 /*
296 ** Locate the in-memory structure that describes a particular database
297 ** table given the name of that table and (optionally) the name of the
298 ** database containing the table.  Return NULL if not found.
299 **
300 ** If zDatabase is 0, all databases are searched for the table and the
301 ** first matching table is returned.  (No checking for duplicate table
302 ** names is done.)  The search order is TEMP first, then MAIN, then any
303 ** auxiliary databases added using the ATTACH command.
304 **
305 ** See also sqlite3LocateTable().
306 */
307 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
308   Table *p = 0;
309   int i;
310 
311   /* All mutexes are required for schema access.  Make sure we hold them. */
312   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
313 #if SQLITE_USER_AUTHENTICATION
314   /* Only the admin user is allowed to know that the sqlite_user table
315   ** exists */
316   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
317     return 0;
318   }
319 #endif
320   for(i=OMIT_TEMPDB; i<db->nDb; i++){
321     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
322     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
323     assert( sqlite3SchemaMutexHeld(db, j, 0) );
324     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
325     if( p ) break;
326   }
327   return p;
328 }
329 
330 /*
331 ** Locate the in-memory structure that describes a particular database
332 ** table given the name of that table and (optionally) the name of the
333 ** database containing the table.  Return NULL if not found.  Also leave an
334 ** error message in pParse->zErrMsg.
335 **
336 ** The difference between this routine and sqlite3FindTable() is that this
337 ** routine leaves an error message in pParse->zErrMsg where
338 ** sqlite3FindTable() does not.
339 */
340 Table *sqlite3LocateTable(
341   Parse *pParse,         /* context in which to report errors */
342   int isView,            /* True if looking for a VIEW rather than a TABLE */
343   const char *zName,     /* Name of the table we are looking for */
344   const char *zDbase     /* Name of the database.  Might be NULL */
345 ){
346   Table *p;
347 
348   /* Read the database schema. If an error occurs, leave an error message
349   ** and code in pParse and return NULL. */
350   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
351     return 0;
352   }
353 
354   p = sqlite3FindTable(pParse->db, zName, zDbase);
355   if( p==0 ){
356     const char *zMsg = isView ? "no such view" : "no such table";
357     if( zDbase ){
358       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
359     }else{
360       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
361     }
362     pParse->checkSchema = 1;
363   }
364 #if SQLITE_USER_AUTHENICATION
365   else if( pParse->db->auth.authLevel<UAUTH_User ){
366     sqlite3ErrorMsg(pParse, "user not authenticated");
367     p = 0;
368   }
369 #endif
370   return p;
371 }
372 
373 /*
374 ** Locate the table identified by *p.
375 **
376 ** This is a wrapper around sqlite3LocateTable(). The difference between
377 ** sqlite3LocateTable() and this function is that this function restricts
378 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
379 ** non-NULL if it is part of a view or trigger program definition. See
380 ** sqlite3FixSrcList() for details.
381 */
382 Table *sqlite3LocateTableItem(
383   Parse *pParse,
384   int isView,
385   struct SrcList_item *p
386 ){
387   const char *zDb;
388   assert( p->pSchema==0 || p->zDatabase==0 );
389   if( p->pSchema ){
390     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
391     zDb = pParse->db->aDb[iDb].zName;
392   }else{
393     zDb = p->zDatabase;
394   }
395   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
396 }
397 
398 /*
399 ** Locate the in-memory structure that describes
400 ** a particular index given the name of that index
401 ** and the name of the database that contains the index.
402 ** Return NULL if not found.
403 **
404 ** If zDatabase is 0, all databases are searched for the
405 ** table and the first matching index is returned.  (No checking
406 ** for duplicate index names is done.)  The search order is
407 ** TEMP first, then MAIN, then any auxiliary databases added
408 ** using the ATTACH command.
409 */
410 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
411   Index *p = 0;
412   int i;
413   /* All mutexes are required for schema access.  Make sure we hold them. */
414   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
415   for(i=OMIT_TEMPDB; i<db->nDb; i++){
416     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
417     Schema *pSchema = db->aDb[j].pSchema;
418     assert( pSchema );
419     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
420     assert( sqlite3SchemaMutexHeld(db, j, 0) );
421     p = sqlite3HashFind(&pSchema->idxHash, zName);
422     if( p ) break;
423   }
424   return p;
425 }
426 
427 /*
428 ** Reclaim the memory used by an index
429 */
430 static void freeIndex(sqlite3 *db, Index *p){
431 #ifndef SQLITE_OMIT_ANALYZE
432   sqlite3DeleteIndexSamples(db, p);
433 #endif
434   sqlite3ExprDelete(db, p->pPartIdxWhere);
435   sqlite3DbFree(db, p->zColAff);
436   if( p->isResized ) sqlite3DbFree(db, p->azColl);
437 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
438   sqlite3_free(p->aiRowEst);
439 #endif
440   sqlite3DbFree(db, p);
441 }
442 
443 /*
444 ** For the index called zIdxName which is found in the database iDb,
445 ** unlike that index from its Table then remove the index from
446 ** the index hash table and free all memory structures associated
447 ** with the index.
448 */
449 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
450   Index *pIndex;
451   Hash *pHash;
452 
453   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
454   pHash = &db->aDb[iDb].pSchema->idxHash;
455   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
456   if( ALWAYS(pIndex) ){
457     if( pIndex->pTable->pIndex==pIndex ){
458       pIndex->pTable->pIndex = pIndex->pNext;
459     }else{
460       Index *p;
461       /* Justification of ALWAYS();  The index must be on the list of
462       ** indices. */
463       p = pIndex->pTable->pIndex;
464       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
465       if( ALWAYS(p && p->pNext==pIndex) ){
466         p->pNext = pIndex->pNext;
467       }
468     }
469     freeIndex(db, pIndex);
470   }
471   db->flags |= SQLITE_InternChanges;
472 }
473 
474 /*
475 ** Look through the list of open database files in db->aDb[] and if
476 ** any have been closed, remove them from the list.  Reallocate the
477 ** db->aDb[] structure to a smaller size, if possible.
478 **
479 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
480 ** are never candidates for being collapsed.
481 */
482 void sqlite3CollapseDatabaseArray(sqlite3 *db){
483   int i, j;
484   for(i=j=2; i<db->nDb; i++){
485     struct Db *pDb = &db->aDb[i];
486     if( pDb->pBt==0 ){
487       sqlite3DbFree(db, pDb->zName);
488       pDb->zName = 0;
489       continue;
490     }
491     if( j<i ){
492       db->aDb[j] = db->aDb[i];
493     }
494     j++;
495   }
496   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
497   db->nDb = j;
498   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
499     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
500     sqlite3DbFree(db, db->aDb);
501     db->aDb = db->aDbStatic;
502   }
503 }
504 
505 /*
506 ** Reset the schema for the database at index iDb.  Also reset the
507 ** TEMP schema.
508 */
509 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
510   Db *pDb;
511   assert( iDb<db->nDb );
512 
513   /* Case 1:  Reset the single schema identified by iDb */
514   pDb = &db->aDb[iDb];
515   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
516   assert( pDb->pSchema!=0 );
517   sqlite3SchemaClear(pDb->pSchema);
518 
519   /* If any database other than TEMP is reset, then also reset TEMP
520   ** since TEMP might be holding triggers that reference tables in the
521   ** other database.
522   */
523   if( iDb!=1 ){
524     pDb = &db->aDb[1];
525     assert( pDb->pSchema!=0 );
526     sqlite3SchemaClear(pDb->pSchema);
527   }
528   return;
529 }
530 
531 /*
532 ** Erase all schema information from all attached databases (including
533 ** "main" and "temp") for a single database connection.
534 */
535 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
536   int i;
537   sqlite3BtreeEnterAll(db);
538   for(i=0; i<db->nDb; i++){
539     Db *pDb = &db->aDb[i];
540     if( pDb->pSchema ){
541       sqlite3SchemaClear(pDb->pSchema);
542     }
543   }
544   db->flags &= ~SQLITE_InternChanges;
545   sqlite3VtabUnlockList(db);
546   sqlite3BtreeLeaveAll(db);
547   sqlite3CollapseDatabaseArray(db);
548 }
549 
550 /*
551 ** This routine is called when a commit occurs.
552 */
553 void sqlite3CommitInternalChanges(sqlite3 *db){
554   db->flags &= ~SQLITE_InternChanges;
555 }
556 
557 /*
558 ** Delete memory allocated for the column names of a table or view (the
559 ** Table.aCol[] array).
560 */
561 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
562   int i;
563   Column *pCol;
564   assert( pTable!=0 );
565   if( (pCol = pTable->aCol)!=0 ){
566     for(i=0; i<pTable->nCol; i++, pCol++){
567       sqlite3DbFree(db, pCol->zName);
568       sqlite3ExprDelete(db, pCol->pDflt);
569       sqlite3DbFree(db, pCol->zDflt);
570       sqlite3DbFree(db, pCol->zType);
571       sqlite3DbFree(db, pCol->zColl);
572     }
573     sqlite3DbFree(db, pTable->aCol);
574   }
575 }
576 
577 /*
578 ** Remove the memory data structures associated with the given
579 ** Table.  No changes are made to disk by this routine.
580 **
581 ** This routine just deletes the data structure.  It does not unlink
582 ** the table data structure from the hash table.  But it does destroy
583 ** memory structures of the indices and foreign keys associated with
584 ** the table.
585 **
586 ** The db parameter is optional.  It is needed if the Table object
587 ** contains lookaside memory.  (Table objects in the schema do not use
588 ** lookaside memory, but some ephemeral Table objects do.)  Or the
589 ** db parameter can be used with db->pnBytesFreed to measure the memory
590 ** used by the Table object.
591 */
592 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
593   Index *pIndex, *pNext;
594   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
595 
596   assert( !pTable || pTable->nRef>0 );
597 
598   /* Do not delete the table until the reference count reaches zero. */
599   if( !pTable ) return;
600   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
601 
602   /* Record the number of outstanding lookaside allocations in schema Tables
603   ** prior to doing any free() operations.  Since schema Tables do not use
604   ** lookaside, this number should not change. */
605   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
606                          db->lookaside.nOut : 0 );
607 
608   /* Delete all indices associated with this table. */
609   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
610     pNext = pIndex->pNext;
611     assert( pIndex->pSchema==pTable->pSchema );
612     if( !db || db->pnBytesFreed==0 ){
613       char *zName = pIndex->zName;
614       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
615          &pIndex->pSchema->idxHash, zName, 0
616       );
617       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
618       assert( pOld==pIndex || pOld==0 );
619     }
620     freeIndex(db, pIndex);
621   }
622 
623   /* Delete any foreign keys attached to this table. */
624   sqlite3FkDelete(db, pTable);
625 
626   /* Delete the Table structure itself.
627   */
628   sqliteDeleteColumnNames(db, pTable);
629   sqlite3DbFree(db, pTable->zName);
630   sqlite3DbFree(db, pTable->zColAff);
631   sqlite3SelectDelete(db, pTable->pSelect);
632 #ifndef SQLITE_OMIT_CHECK
633   sqlite3ExprListDelete(db, pTable->pCheck);
634 #endif
635 #ifndef SQLITE_OMIT_VIRTUALTABLE
636   sqlite3VtabClear(db, pTable);
637 #endif
638   sqlite3DbFree(db, pTable);
639 
640   /* Verify that no lookaside memory was used by schema tables */
641   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
642 }
643 
644 /*
645 ** Unlink the given table from the hash tables and the delete the
646 ** table structure with all its indices and foreign keys.
647 */
648 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
649   Table *p;
650   Db *pDb;
651 
652   assert( db!=0 );
653   assert( iDb>=0 && iDb<db->nDb );
654   assert( zTabName );
655   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
656   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
657   pDb = &db->aDb[iDb];
658   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
659   sqlite3DeleteTable(db, p);
660   db->flags |= SQLITE_InternChanges;
661 }
662 
663 /*
664 ** Given a token, return a string that consists of the text of that
665 ** token.  Space to hold the returned string
666 ** is obtained from sqliteMalloc() and must be freed by the calling
667 ** function.
668 **
669 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
670 ** surround the body of the token are removed.
671 **
672 ** Tokens are often just pointers into the original SQL text and so
673 ** are not \000 terminated and are not persistent.  The returned string
674 ** is \000 terminated and is persistent.
675 */
676 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
677   char *zName;
678   if( pName ){
679     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
680     sqlite3Dequote(zName);
681   }else{
682     zName = 0;
683   }
684   return zName;
685 }
686 
687 /*
688 ** Open the sqlite_master table stored in database number iDb for
689 ** writing. The table is opened using cursor 0.
690 */
691 void sqlite3OpenMasterTable(Parse *p, int iDb){
692   Vdbe *v = sqlite3GetVdbe(p);
693   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
694   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
695   if( p->nTab==0 ){
696     p->nTab = 1;
697   }
698 }
699 
700 /*
701 ** Parameter zName points to a nul-terminated buffer containing the name
702 ** of a database ("main", "temp" or the name of an attached db). This
703 ** function returns the index of the named database in db->aDb[], or
704 ** -1 if the named db cannot be found.
705 */
706 int sqlite3FindDbName(sqlite3 *db, const char *zName){
707   int i = -1;         /* Database number */
708   if( zName ){
709     Db *pDb;
710     int n = sqlite3Strlen30(zName);
711     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
712       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
713           0==sqlite3StrICmp(pDb->zName, zName) ){
714         break;
715       }
716     }
717   }
718   return i;
719 }
720 
721 /*
722 ** The token *pName contains the name of a database (either "main" or
723 ** "temp" or the name of an attached db). This routine returns the
724 ** index of the named database in db->aDb[], or -1 if the named db
725 ** does not exist.
726 */
727 int sqlite3FindDb(sqlite3 *db, Token *pName){
728   int i;                               /* Database number */
729   char *zName;                         /* Name we are searching for */
730   zName = sqlite3NameFromToken(db, pName);
731   i = sqlite3FindDbName(db, zName);
732   sqlite3DbFree(db, zName);
733   return i;
734 }
735 
736 /* The table or view or trigger name is passed to this routine via tokens
737 ** pName1 and pName2. If the table name was fully qualified, for example:
738 **
739 ** CREATE TABLE xxx.yyy (...);
740 **
741 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
742 ** the table name is not fully qualified, i.e.:
743 **
744 ** CREATE TABLE yyy(...);
745 **
746 ** Then pName1 is set to "yyy" and pName2 is "".
747 **
748 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
749 ** pName2) that stores the unqualified table name.  The index of the
750 ** database "xxx" is returned.
751 */
752 int sqlite3TwoPartName(
753   Parse *pParse,      /* Parsing and code generating context */
754   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
755   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
756   Token **pUnqual     /* Write the unqualified object name here */
757 ){
758   int iDb;                    /* Database holding the object */
759   sqlite3 *db = pParse->db;
760 
761   if( ALWAYS(pName2!=0) && pName2->n>0 ){
762     if( db->init.busy ) {
763       sqlite3ErrorMsg(pParse, "corrupt database");
764       pParse->nErr++;
765       return -1;
766     }
767     *pUnqual = pName2;
768     iDb = sqlite3FindDb(db, pName1);
769     if( iDb<0 ){
770       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
771       pParse->nErr++;
772       return -1;
773     }
774   }else{
775     assert( db->init.iDb==0 || db->init.busy );
776     iDb = db->init.iDb;
777     *pUnqual = pName1;
778   }
779   return iDb;
780 }
781 
782 /*
783 ** This routine is used to check if the UTF-8 string zName is a legal
784 ** unqualified name for a new schema object (table, index, view or
785 ** trigger). All names are legal except those that begin with the string
786 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
787 ** is reserved for internal use.
788 */
789 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
790   if( !pParse->db->init.busy && pParse->nested==0
791           && (pParse->db->flags & SQLITE_WriteSchema)==0
792           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
793     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
794     return SQLITE_ERROR;
795   }
796   return SQLITE_OK;
797 }
798 
799 /*
800 ** Return the PRIMARY KEY index of a table
801 */
802 Index *sqlite3PrimaryKeyIndex(Table *pTab){
803   Index *p;
804   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
805   return p;
806 }
807 
808 /*
809 ** Return the column of index pIdx that corresponds to table
810 ** column iCol.  Return -1 if not found.
811 */
812 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
813   int i;
814   for(i=0; i<pIdx->nColumn; i++){
815     if( iCol==pIdx->aiColumn[i] ) return i;
816   }
817   return -1;
818 }
819 
820 /*
821 ** Begin constructing a new table representation in memory.  This is
822 ** the first of several action routines that get called in response
823 ** to a CREATE TABLE statement.  In particular, this routine is called
824 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
825 ** flag is true if the table should be stored in the auxiliary database
826 ** file instead of in the main database file.  This is normally the case
827 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
828 ** CREATE and TABLE.
829 **
830 ** The new table record is initialized and put in pParse->pNewTable.
831 ** As more of the CREATE TABLE statement is parsed, additional action
832 ** routines will be called to add more information to this record.
833 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
834 ** is called to complete the construction of the new table record.
835 */
836 void sqlite3StartTable(
837   Parse *pParse,   /* Parser context */
838   Token *pName1,   /* First part of the name of the table or view */
839   Token *pName2,   /* Second part of the name of the table or view */
840   int isTemp,      /* True if this is a TEMP table */
841   int isView,      /* True if this is a VIEW */
842   int isVirtual,   /* True if this is a VIRTUAL table */
843   int noErr        /* Do nothing if table already exists */
844 ){
845   Table *pTable;
846   char *zName = 0; /* The name of the new table */
847   sqlite3 *db = pParse->db;
848   Vdbe *v;
849   int iDb;         /* Database number to create the table in */
850   Token *pName;    /* Unqualified name of the table to create */
851 
852   /* The table or view name to create is passed to this routine via tokens
853   ** pName1 and pName2. If the table name was fully qualified, for example:
854   **
855   ** CREATE TABLE xxx.yyy (...);
856   **
857   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
858   ** the table name is not fully qualified, i.e.:
859   **
860   ** CREATE TABLE yyy(...);
861   **
862   ** Then pName1 is set to "yyy" and pName2 is "".
863   **
864   ** The call below sets the pName pointer to point at the token (pName1 or
865   ** pName2) that stores the unqualified table name. The variable iDb is
866   ** set to the index of the database that the table or view is to be
867   ** created in.
868   */
869   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
870   if( iDb<0 ) return;
871   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
872     /* If creating a temp table, the name may not be qualified. Unless
873     ** the database name is "temp" anyway.  */
874     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
875     return;
876   }
877   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
878 
879   pParse->sNameToken = *pName;
880   zName = sqlite3NameFromToken(db, pName);
881   if( zName==0 ) return;
882   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
883     goto begin_table_error;
884   }
885   if( db->init.iDb==1 ) isTemp = 1;
886 #ifndef SQLITE_OMIT_AUTHORIZATION
887   assert( (isTemp & 1)==isTemp );
888   {
889     int code;
890     char *zDb = db->aDb[iDb].zName;
891     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
892       goto begin_table_error;
893     }
894     if( isView ){
895       if( !OMIT_TEMPDB && isTemp ){
896         code = SQLITE_CREATE_TEMP_VIEW;
897       }else{
898         code = SQLITE_CREATE_VIEW;
899       }
900     }else{
901       if( !OMIT_TEMPDB && isTemp ){
902         code = SQLITE_CREATE_TEMP_TABLE;
903       }else{
904         code = SQLITE_CREATE_TABLE;
905       }
906     }
907     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
908       goto begin_table_error;
909     }
910   }
911 #endif
912 
913   /* Make sure the new table name does not collide with an existing
914   ** index or table name in the same database.  Issue an error message if
915   ** it does. The exception is if the statement being parsed was passed
916   ** to an sqlite3_declare_vtab() call. In that case only the column names
917   ** and types will be used, so there is no need to test for namespace
918   ** collisions.
919   */
920   if( !IN_DECLARE_VTAB ){
921     char *zDb = db->aDb[iDb].zName;
922     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
923       goto begin_table_error;
924     }
925     pTable = sqlite3FindTable(db, zName, zDb);
926     if( pTable ){
927       if( !noErr ){
928         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
929       }else{
930         assert( !db->init.busy );
931         sqlite3CodeVerifySchema(pParse, iDb);
932       }
933       goto begin_table_error;
934     }
935     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
936       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
937       goto begin_table_error;
938     }
939   }
940 
941   pTable = sqlite3DbMallocZero(db, sizeof(Table));
942   if( pTable==0 ){
943     db->mallocFailed = 1;
944     pParse->rc = SQLITE_NOMEM;
945     pParse->nErr++;
946     goto begin_table_error;
947   }
948   pTable->zName = zName;
949   pTable->iPKey = -1;
950   pTable->pSchema = db->aDb[iDb].pSchema;
951   pTable->nRef = 1;
952   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
953   assert( pParse->pNewTable==0 );
954   pParse->pNewTable = pTable;
955 
956   /* If this is the magic sqlite_sequence table used by autoincrement,
957   ** then record a pointer to this table in the main database structure
958   ** so that INSERT can find the table easily.
959   */
960 #ifndef SQLITE_OMIT_AUTOINCREMENT
961   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
962     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
963     pTable->pSchema->pSeqTab = pTable;
964   }
965 #endif
966 
967   /* Begin generating the code that will insert the table record into
968   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
969   ** and allocate the record number for the table entry now.  Before any
970   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
971   ** indices to be created and the table record must come before the
972   ** indices.  Hence, the record number for the table must be allocated
973   ** now.
974   */
975   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
976     int j1;
977     int fileFormat;
978     int reg1, reg2, reg3;
979     sqlite3BeginWriteOperation(pParse, 0, iDb);
980 
981 #ifndef SQLITE_OMIT_VIRTUALTABLE
982     if( isVirtual ){
983       sqlite3VdbeAddOp0(v, OP_VBegin);
984     }
985 #endif
986 
987     /* If the file format and encoding in the database have not been set,
988     ** set them now.
989     */
990     reg1 = pParse->regRowid = ++pParse->nMem;
991     reg2 = pParse->regRoot = ++pParse->nMem;
992     reg3 = ++pParse->nMem;
993     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
994     sqlite3VdbeUsesBtree(v, iDb);
995     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
996     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
997                   1 : SQLITE_MAX_FILE_FORMAT;
998     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
999     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
1000     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1001     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1002     sqlite3VdbeJumpHere(v, j1);
1003 
1004     /* This just creates a place-holder record in the sqlite_master table.
1005     ** The record created does not contain anything yet.  It will be replaced
1006     ** by the real entry in code generated at sqlite3EndTable().
1007     **
1008     ** The rowid for the new entry is left in register pParse->regRowid.
1009     ** The root page number of the new table is left in reg pParse->regRoot.
1010     ** The rowid and root page number values are needed by the code that
1011     ** sqlite3EndTable will generate.
1012     */
1013 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1014     if( isView || isVirtual ){
1015       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1016     }else
1017 #endif
1018     {
1019       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1020     }
1021     sqlite3OpenMasterTable(pParse, iDb);
1022     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1023     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
1024     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1025     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1026     sqlite3VdbeAddOp0(v, OP_Close);
1027   }
1028 
1029   /* Normal (non-error) return. */
1030   return;
1031 
1032   /* If an error occurs, we jump here */
1033 begin_table_error:
1034   sqlite3DbFree(db, zName);
1035   return;
1036 }
1037 
1038 /*
1039 ** This macro is used to compare two strings in a case-insensitive manner.
1040 ** It is slightly faster than calling sqlite3StrICmp() directly, but
1041 ** produces larger code.
1042 **
1043 ** WARNING: This macro is not compatible with the strcmp() family. It
1044 ** returns true if the two strings are equal, otherwise false.
1045 */
1046 #define STRICMP(x, y) (\
1047 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
1048 sqlite3UpperToLower[*(unsigned char *)(y)]     \
1049 && sqlite3StrICmp((x)+1,(y)+1)==0 )
1050 
1051 /*
1052 ** Add a new column to the table currently being constructed.
1053 **
1054 ** The parser calls this routine once for each column declaration
1055 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1056 ** first to get things going.  Then this routine is called for each
1057 ** column.
1058 */
1059 void sqlite3AddColumn(Parse *pParse, Token *pName){
1060   Table *p;
1061   int i;
1062   char *z;
1063   Column *pCol;
1064   sqlite3 *db = pParse->db;
1065   if( (p = pParse->pNewTable)==0 ) return;
1066 #if SQLITE_MAX_COLUMN
1067   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1068     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1069     return;
1070   }
1071 #endif
1072   z = sqlite3NameFromToken(db, pName);
1073   if( z==0 ) return;
1074   for(i=0; i<p->nCol; i++){
1075     if( STRICMP(z, p->aCol[i].zName) ){
1076       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1077       sqlite3DbFree(db, z);
1078       return;
1079     }
1080   }
1081   if( (p->nCol & 0x7)==0 ){
1082     Column *aNew;
1083     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1084     if( aNew==0 ){
1085       sqlite3DbFree(db, z);
1086       return;
1087     }
1088     p->aCol = aNew;
1089   }
1090   pCol = &p->aCol[p->nCol];
1091   memset(pCol, 0, sizeof(p->aCol[0]));
1092   pCol->zName = z;
1093 
1094   /* If there is no type specified, columns have the default affinity
1095   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
1096   ** be called next to set pCol->affinity correctly.
1097   */
1098   pCol->affinity = SQLITE_AFF_NONE;
1099   pCol->szEst = 1;
1100   p->nCol++;
1101 }
1102 
1103 /*
1104 ** This routine is called by the parser while in the middle of
1105 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1106 ** been seen on a column.  This routine sets the notNull flag on
1107 ** the column currently under construction.
1108 */
1109 void sqlite3AddNotNull(Parse *pParse, int onError){
1110   Table *p;
1111   p = pParse->pNewTable;
1112   if( p==0 || NEVER(p->nCol<1) ) return;
1113   p->aCol[p->nCol-1].notNull = (u8)onError;
1114 }
1115 
1116 /*
1117 ** Scan the column type name zType (length nType) and return the
1118 ** associated affinity type.
1119 **
1120 ** This routine does a case-independent search of zType for the
1121 ** substrings in the following table. If one of the substrings is
1122 ** found, the corresponding affinity is returned. If zType contains
1123 ** more than one of the substrings, entries toward the top of
1124 ** the table take priority. For example, if zType is 'BLOBINT',
1125 ** SQLITE_AFF_INTEGER is returned.
1126 **
1127 ** Substring     | Affinity
1128 ** --------------------------------
1129 ** 'INT'         | SQLITE_AFF_INTEGER
1130 ** 'CHAR'        | SQLITE_AFF_TEXT
1131 ** 'CLOB'        | SQLITE_AFF_TEXT
1132 ** 'TEXT'        | SQLITE_AFF_TEXT
1133 ** 'BLOB'        | SQLITE_AFF_NONE
1134 ** 'REAL'        | SQLITE_AFF_REAL
1135 ** 'FLOA'        | SQLITE_AFF_REAL
1136 ** 'DOUB'        | SQLITE_AFF_REAL
1137 **
1138 ** If none of the substrings in the above table are found,
1139 ** SQLITE_AFF_NUMERIC is returned.
1140 */
1141 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1142   u32 h = 0;
1143   char aff = SQLITE_AFF_NUMERIC;
1144   const char *zChar = 0;
1145 
1146   if( zIn==0 ) return aff;
1147   while( zIn[0] ){
1148     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1149     zIn++;
1150     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1151       aff = SQLITE_AFF_TEXT;
1152       zChar = zIn;
1153     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1154       aff = SQLITE_AFF_TEXT;
1155     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1156       aff = SQLITE_AFF_TEXT;
1157     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1158         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1159       aff = SQLITE_AFF_NONE;
1160       if( zIn[0]=='(' ) zChar = zIn;
1161 #ifndef SQLITE_OMIT_FLOATING_POINT
1162     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1163         && aff==SQLITE_AFF_NUMERIC ){
1164       aff = SQLITE_AFF_REAL;
1165     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1166         && aff==SQLITE_AFF_NUMERIC ){
1167       aff = SQLITE_AFF_REAL;
1168     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1169         && aff==SQLITE_AFF_NUMERIC ){
1170       aff = SQLITE_AFF_REAL;
1171 #endif
1172     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1173       aff = SQLITE_AFF_INTEGER;
1174       break;
1175     }
1176   }
1177 
1178   /* If pszEst is not NULL, store an estimate of the field size.  The
1179   ** estimate is scaled so that the size of an integer is 1.  */
1180   if( pszEst ){
1181     *pszEst = 1;   /* default size is approx 4 bytes */
1182     if( aff<SQLITE_AFF_NUMERIC ){
1183       if( zChar ){
1184         while( zChar[0] ){
1185           if( sqlite3Isdigit(zChar[0]) ){
1186             int v = 0;
1187             sqlite3GetInt32(zChar, &v);
1188             v = v/4 + 1;
1189             if( v>255 ) v = 255;
1190             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1191             break;
1192           }
1193           zChar++;
1194         }
1195       }else{
1196         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1197       }
1198     }
1199   }
1200   return aff;
1201 }
1202 
1203 /*
1204 ** This routine is called by the parser while in the middle of
1205 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1206 ** token in the sequence of tokens that describe the type of the
1207 ** column currently under construction.   pLast is the last token
1208 ** in the sequence.  Use this information to construct a string
1209 ** that contains the typename of the column and store that string
1210 ** in zType.
1211 */
1212 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1213   Table *p;
1214   Column *pCol;
1215 
1216   p = pParse->pNewTable;
1217   if( p==0 || NEVER(p->nCol<1) ) return;
1218   pCol = &p->aCol[p->nCol-1];
1219   assert( pCol->zType==0 );
1220   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1221   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1222 }
1223 
1224 /*
1225 ** The expression is the default value for the most recently added column
1226 ** of the table currently under construction.
1227 **
1228 ** Default value expressions must be constant.  Raise an exception if this
1229 ** is not the case.
1230 **
1231 ** This routine is called by the parser while in the middle of
1232 ** parsing a CREATE TABLE statement.
1233 */
1234 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1235   Table *p;
1236   Column *pCol;
1237   sqlite3 *db = pParse->db;
1238   p = pParse->pNewTable;
1239   if( p!=0 ){
1240     pCol = &(p->aCol[p->nCol-1]);
1241     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1242       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1243           pCol->zName);
1244     }else{
1245       /* A copy of pExpr is used instead of the original, as pExpr contains
1246       ** tokens that point to volatile memory. The 'span' of the expression
1247       ** is required by pragma table_info.
1248       */
1249       sqlite3ExprDelete(db, pCol->pDflt);
1250       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1251       sqlite3DbFree(db, pCol->zDflt);
1252       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1253                                      (int)(pSpan->zEnd - pSpan->zStart));
1254     }
1255   }
1256   sqlite3ExprDelete(db, pSpan->pExpr);
1257 }
1258 
1259 /*
1260 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1261 ** of columns that form the primary key.  If pList is NULL, then the
1262 ** most recently added column of the table is the primary key.
1263 **
1264 ** A table can have at most one primary key.  If the table already has
1265 ** a primary key (and this is the second primary key) then create an
1266 ** error.
1267 **
1268 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1269 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1270 ** field of the table under construction to be the index of the
1271 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1272 ** no INTEGER PRIMARY KEY.
1273 **
1274 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1275 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1276 */
1277 void sqlite3AddPrimaryKey(
1278   Parse *pParse,    /* Parsing context */
1279   ExprList *pList,  /* List of field names to be indexed */
1280   int onError,      /* What to do with a uniqueness conflict */
1281   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1282   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1283 ){
1284   Table *pTab = pParse->pNewTable;
1285   char *zType = 0;
1286   int iCol = -1, i;
1287   int nTerm;
1288   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1289   if( pTab->tabFlags & TF_HasPrimaryKey ){
1290     sqlite3ErrorMsg(pParse,
1291       "table \"%s\" has more than one primary key", pTab->zName);
1292     goto primary_key_exit;
1293   }
1294   pTab->tabFlags |= TF_HasPrimaryKey;
1295   if( pList==0 ){
1296     iCol = pTab->nCol - 1;
1297     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1298     zType = pTab->aCol[iCol].zType;
1299     nTerm = 1;
1300   }else{
1301     nTerm = pList->nExpr;
1302     for(i=0; i<nTerm; i++){
1303       for(iCol=0; iCol<pTab->nCol; iCol++){
1304         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1305           pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1306           zType = pTab->aCol[iCol].zType;
1307           break;
1308         }
1309       }
1310     }
1311   }
1312   if( nTerm==1
1313    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1314    && sortOrder==SQLITE_SO_ASC
1315   ){
1316     pTab->iPKey = iCol;
1317     pTab->keyConf = (u8)onError;
1318     assert( autoInc==0 || autoInc==1 );
1319     pTab->tabFlags |= autoInc*TF_Autoincrement;
1320     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1321   }else if( autoInc ){
1322 #ifndef SQLITE_OMIT_AUTOINCREMENT
1323     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1324        "INTEGER PRIMARY KEY");
1325 #endif
1326   }else{
1327     Vdbe *v = pParse->pVdbe;
1328     Index *p;
1329     if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop);
1330     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1331                            0, sortOrder, 0);
1332     if( p ){
1333       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1334       if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK);
1335     }
1336     pList = 0;
1337   }
1338 
1339 primary_key_exit:
1340   sqlite3ExprListDelete(pParse->db, pList);
1341   return;
1342 }
1343 
1344 /*
1345 ** Add a new CHECK constraint to the table currently under construction.
1346 */
1347 void sqlite3AddCheckConstraint(
1348   Parse *pParse,    /* Parsing context */
1349   Expr *pCheckExpr  /* The check expression */
1350 ){
1351 #ifndef SQLITE_OMIT_CHECK
1352   Table *pTab = pParse->pNewTable;
1353   sqlite3 *db = pParse->db;
1354   if( pTab && !IN_DECLARE_VTAB
1355    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1356   ){
1357     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1358     if( pParse->constraintName.n ){
1359       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1360     }
1361   }else
1362 #endif
1363   {
1364     sqlite3ExprDelete(pParse->db, pCheckExpr);
1365   }
1366 }
1367 
1368 /*
1369 ** Set the collation function of the most recently parsed table column
1370 ** to the CollSeq given.
1371 */
1372 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1373   Table *p;
1374   int i;
1375   char *zColl;              /* Dequoted name of collation sequence */
1376   sqlite3 *db;
1377 
1378   if( (p = pParse->pNewTable)==0 ) return;
1379   i = p->nCol-1;
1380   db = pParse->db;
1381   zColl = sqlite3NameFromToken(db, pToken);
1382   if( !zColl ) return;
1383 
1384   if( sqlite3LocateCollSeq(pParse, zColl) ){
1385     Index *pIdx;
1386     sqlite3DbFree(db, p->aCol[i].zColl);
1387     p->aCol[i].zColl = zColl;
1388 
1389     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1390     ** then an index may have been created on this column before the
1391     ** collation type was added. Correct this if it is the case.
1392     */
1393     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1394       assert( pIdx->nKeyCol==1 );
1395       if( pIdx->aiColumn[0]==i ){
1396         pIdx->azColl[0] = p->aCol[i].zColl;
1397       }
1398     }
1399   }else{
1400     sqlite3DbFree(db, zColl);
1401   }
1402 }
1403 
1404 /*
1405 ** This function returns the collation sequence for database native text
1406 ** encoding identified by the string zName, length nName.
1407 **
1408 ** If the requested collation sequence is not available, or not available
1409 ** in the database native encoding, the collation factory is invoked to
1410 ** request it. If the collation factory does not supply such a sequence,
1411 ** and the sequence is available in another text encoding, then that is
1412 ** returned instead.
1413 **
1414 ** If no versions of the requested collations sequence are available, or
1415 ** another error occurs, NULL is returned and an error message written into
1416 ** pParse.
1417 **
1418 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1419 ** invokes the collation factory if the named collation cannot be found
1420 ** and generates an error message.
1421 **
1422 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1423 */
1424 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1425   sqlite3 *db = pParse->db;
1426   u8 enc = ENC(db);
1427   u8 initbusy = db->init.busy;
1428   CollSeq *pColl;
1429 
1430   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1431   if( !initbusy && (!pColl || !pColl->xCmp) ){
1432     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1433   }
1434 
1435   return pColl;
1436 }
1437 
1438 
1439 /*
1440 ** Generate code that will increment the schema cookie.
1441 **
1442 ** The schema cookie is used to determine when the schema for the
1443 ** database changes.  After each schema change, the cookie value
1444 ** changes.  When a process first reads the schema it records the
1445 ** cookie.  Thereafter, whenever it goes to access the database,
1446 ** it checks the cookie to make sure the schema has not changed
1447 ** since it was last read.
1448 **
1449 ** This plan is not completely bullet-proof.  It is possible for
1450 ** the schema to change multiple times and for the cookie to be
1451 ** set back to prior value.  But schema changes are infrequent
1452 ** and the probability of hitting the same cookie value is only
1453 ** 1 chance in 2^32.  So we're safe enough.
1454 */
1455 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1456   int r1 = sqlite3GetTempReg(pParse);
1457   sqlite3 *db = pParse->db;
1458   Vdbe *v = pParse->pVdbe;
1459   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1460   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1461   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1462   sqlite3ReleaseTempReg(pParse, r1);
1463 }
1464 
1465 /*
1466 ** Measure the number of characters needed to output the given
1467 ** identifier.  The number returned includes any quotes used
1468 ** but does not include the null terminator.
1469 **
1470 ** The estimate is conservative.  It might be larger that what is
1471 ** really needed.
1472 */
1473 static int identLength(const char *z){
1474   int n;
1475   for(n=0; *z; n++, z++){
1476     if( *z=='"' ){ n++; }
1477   }
1478   return n + 2;
1479 }
1480 
1481 /*
1482 ** The first parameter is a pointer to an output buffer. The second
1483 ** parameter is a pointer to an integer that contains the offset at
1484 ** which to write into the output buffer. This function copies the
1485 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1486 ** to the specified offset in the buffer and updates *pIdx to refer
1487 ** to the first byte after the last byte written before returning.
1488 **
1489 ** If the string zSignedIdent consists entirely of alpha-numeric
1490 ** characters, does not begin with a digit and is not an SQL keyword,
1491 ** then it is copied to the output buffer exactly as it is. Otherwise,
1492 ** it is quoted using double-quotes.
1493 */
1494 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1495   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1496   int i, j, needQuote;
1497   i = *pIdx;
1498 
1499   for(j=0; zIdent[j]; j++){
1500     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1501   }
1502   needQuote = sqlite3Isdigit(zIdent[0])
1503             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1504             || zIdent[j]!=0
1505             || j==0;
1506 
1507   if( needQuote ) z[i++] = '"';
1508   for(j=0; zIdent[j]; j++){
1509     z[i++] = zIdent[j];
1510     if( zIdent[j]=='"' ) z[i++] = '"';
1511   }
1512   if( needQuote ) z[i++] = '"';
1513   z[i] = 0;
1514   *pIdx = i;
1515 }
1516 
1517 /*
1518 ** Generate a CREATE TABLE statement appropriate for the given
1519 ** table.  Memory to hold the text of the statement is obtained
1520 ** from sqliteMalloc() and must be freed by the calling function.
1521 */
1522 static char *createTableStmt(sqlite3 *db, Table *p){
1523   int i, k, n;
1524   char *zStmt;
1525   char *zSep, *zSep2, *zEnd;
1526   Column *pCol;
1527   n = 0;
1528   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1529     n += identLength(pCol->zName) + 5;
1530   }
1531   n += identLength(p->zName);
1532   if( n<50 ){
1533     zSep = "";
1534     zSep2 = ",";
1535     zEnd = ")";
1536   }else{
1537     zSep = "\n  ";
1538     zSep2 = ",\n  ";
1539     zEnd = "\n)";
1540   }
1541   n += 35 + 6*p->nCol;
1542   zStmt = sqlite3DbMallocRaw(0, n);
1543   if( zStmt==0 ){
1544     db->mallocFailed = 1;
1545     return 0;
1546   }
1547   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1548   k = sqlite3Strlen30(zStmt);
1549   identPut(zStmt, &k, p->zName);
1550   zStmt[k++] = '(';
1551   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1552     static const char * const azType[] = {
1553         /* SQLITE_AFF_NONE    */ "",
1554         /* SQLITE_AFF_TEXT    */ " TEXT",
1555         /* SQLITE_AFF_NUMERIC */ " NUM",
1556         /* SQLITE_AFF_INTEGER */ " INT",
1557         /* SQLITE_AFF_REAL    */ " REAL"
1558     };
1559     int len;
1560     const char *zType;
1561 
1562     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1563     k += sqlite3Strlen30(&zStmt[k]);
1564     zSep = zSep2;
1565     identPut(zStmt, &k, pCol->zName);
1566     assert( pCol->affinity-SQLITE_AFF_NONE >= 0 );
1567     assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) );
1568     testcase( pCol->affinity==SQLITE_AFF_NONE );
1569     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1570     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1571     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1572     testcase( pCol->affinity==SQLITE_AFF_REAL );
1573 
1574     zType = azType[pCol->affinity - SQLITE_AFF_NONE];
1575     len = sqlite3Strlen30(zType);
1576     assert( pCol->affinity==SQLITE_AFF_NONE
1577             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1578     memcpy(&zStmt[k], zType, len);
1579     k += len;
1580     assert( k<=n );
1581   }
1582   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1583   return zStmt;
1584 }
1585 
1586 /*
1587 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1588 ** on success and SQLITE_NOMEM on an OOM error.
1589 */
1590 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1591   char *zExtra;
1592   int nByte;
1593   if( pIdx->nColumn>=N ) return SQLITE_OK;
1594   assert( pIdx->isResized==0 );
1595   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1596   zExtra = sqlite3DbMallocZero(db, nByte);
1597   if( zExtra==0 ) return SQLITE_NOMEM;
1598   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1599   pIdx->azColl = (char**)zExtra;
1600   zExtra += sizeof(char*)*N;
1601   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1602   pIdx->aiColumn = (i16*)zExtra;
1603   zExtra += sizeof(i16)*N;
1604   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1605   pIdx->aSortOrder = (u8*)zExtra;
1606   pIdx->nColumn = N;
1607   pIdx->isResized = 1;
1608   return SQLITE_OK;
1609 }
1610 
1611 /*
1612 ** Estimate the total row width for a table.
1613 */
1614 static void estimateTableWidth(Table *pTab){
1615   unsigned wTable = 0;
1616   const Column *pTabCol;
1617   int i;
1618   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1619     wTable += pTabCol->szEst;
1620   }
1621   if( pTab->iPKey<0 ) wTable++;
1622   pTab->szTabRow = sqlite3LogEst(wTable*4);
1623 }
1624 
1625 /*
1626 ** Estimate the average size of a row for an index.
1627 */
1628 static void estimateIndexWidth(Index *pIdx){
1629   unsigned wIndex = 0;
1630   int i;
1631   const Column *aCol = pIdx->pTable->aCol;
1632   for(i=0; i<pIdx->nColumn; i++){
1633     i16 x = pIdx->aiColumn[i];
1634     assert( x<pIdx->pTable->nCol );
1635     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1636   }
1637   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1638 }
1639 
1640 /* Return true if value x is found any of the first nCol entries of aiCol[]
1641 */
1642 static int hasColumn(const i16 *aiCol, int nCol, int x){
1643   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1644   return 0;
1645 }
1646 
1647 /*
1648 ** This routine runs at the end of parsing a CREATE TABLE statement that
1649 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1650 ** internal schema data structures and the generated VDBE code so that they
1651 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1652 ** Changes include:
1653 **
1654 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1655 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1656 **          data storage is a covering index btree.
1657 **     (2)  Bypass the creation of the sqlite_master table entry
1658 **          for the PRIMARY KEY as the primary key index is now
1659 **          identified by the sqlite_master table entry of the table itself.
1660 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1661 **          schema to the rootpage from the main table.
1662 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1663 **     (5)  Add all table columns to the PRIMARY KEY Index object
1664 **          so that the PRIMARY KEY is a covering index.  The surplus
1665 **          columns are part of KeyInfo.nXField and are not used for
1666 **          sorting or lookup or uniqueness checks.
1667 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1668 **          indices with the PRIMARY KEY columns.
1669 */
1670 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1671   Index *pIdx;
1672   Index *pPk;
1673   int nPk;
1674   int i, j;
1675   sqlite3 *db = pParse->db;
1676   Vdbe *v = pParse->pVdbe;
1677 
1678   /* Convert the OP_CreateTable opcode that would normally create the
1679   ** root-page for the table into an OP_CreateIndex opcode.  The index
1680   ** created will become the PRIMARY KEY index.
1681   */
1682   if( pParse->addrCrTab ){
1683     assert( v );
1684     sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex;
1685   }
1686 
1687   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1688   ** table entry.
1689   */
1690   if( pParse->addrSkipPK ){
1691     assert( v );
1692     sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto;
1693   }
1694 
1695   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1696   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1697   */
1698   if( pTab->iPKey>=0 ){
1699     ExprList *pList;
1700     pList = sqlite3ExprListAppend(pParse, 0, 0);
1701     if( pList==0 ) return;
1702     pList->a[0].zName = sqlite3DbStrDup(pParse->db,
1703                                         pTab->aCol[pTab->iPKey].zName);
1704     pList->a[0].sortOrder = pParse->iPkSortOrder;
1705     assert( pParse->pNewTable==pTab );
1706     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1707     if( pPk==0 ) return;
1708     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1709     pTab->iPKey = -1;
1710   }else{
1711     pPk = sqlite3PrimaryKeyIndex(pTab);
1712     /*
1713     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1714     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1715     ** code assumes the PRIMARY KEY contains no repeated columns.
1716     */
1717     for(i=j=1; i<pPk->nKeyCol; i++){
1718       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1719         pPk->nColumn--;
1720       }else{
1721         pPk->aiColumn[j++] = pPk->aiColumn[i];
1722       }
1723     }
1724     pPk->nKeyCol = j;
1725   }
1726   pPk->isCovering = 1;
1727   assert( pPk!=0 );
1728   nPk = pPk->nKeyCol;
1729 
1730   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1731   ** do not enforce this for imposter tables.) */
1732   if( !db->init.imposterTable ){
1733     for(i=0; i<nPk; i++){
1734       pTab->aCol[pPk->aiColumn[i]].notNull = 1;
1735     }
1736     pPk->uniqNotNull = 1;
1737   }
1738 
1739   /* The root page of the PRIMARY KEY is the table root page */
1740   pPk->tnum = pTab->tnum;
1741 
1742   /* Update the in-memory representation of all UNIQUE indices by converting
1743   ** the final rowid column into one or more columns of the PRIMARY KEY.
1744   */
1745   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1746     int n;
1747     if( IsPrimaryKeyIndex(pIdx) ) continue;
1748     for(i=n=0; i<nPk; i++){
1749       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1750     }
1751     if( n==0 ){
1752       /* This index is a superset of the primary key */
1753       pIdx->nColumn = pIdx->nKeyCol;
1754       continue;
1755     }
1756     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1757     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1758       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1759         pIdx->aiColumn[j] = pPk->aiColumn[i];
1760         pIdx->azColl[j] = pPk->azColl[i];
1761         j++;
1762       }
1763     }
1764     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1765     assert( pIdx->nColumn>=j );
1766   }
1767 
1768   /* Add all table columns to the PRIMARY KEY index
1769   */
1770   if( nPk<pTab->nCol ){
1771     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1772     for(i=0, j=nPk; i<pTab->nCol; i++){
1773       if( !hasColumn(pPk->aiColumn, j, i) ){
1774         assert( j<pPk->nColumn );
1775         pPk->aiColumn[j] = i;
1776         pPk->azColl[j] = "BINARY";
1777         j++;
1778       }
1779     }
1780     assert( pPk->nColumn==j );
1781     assert( pTab->nCol==j );
1782   }else{
1783     pPk->nColumn = pTab->nCol;
1784   }
1785 }
1786 
1787 /*
1788 ** This routine is called to report the final ")" that terminates
1789 ** a CREATE TABLE statement.
1790 **
1791 ** The table structure that other action routines have been building
1792 ** is added to the internal hash tables, assuming no errors have
1793 ** occurred.
1794 **
1795 ** An entry for the table is made in the master table on disk, unless
1796 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1797 ** it means we are reading the sqlite_master table because we just
1798 ** connected to the database or because the sqlite_master table has
1799 ** recently changed, so the entry for this table already exists in
1800 ** the sqlite_master table.  We do not want to create it again.
1801 **
1802 ** If the pSelect argument is not NULL, it means that this routine
1803 ** was called to create a table generated from a
1804 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1805 ** the new table will match the result set of the SELECT.
1806 */
1807 void sqlite3EndTable(
1808   Parse *pParse,          /* Parse context */
1809   Token *pCons,           /* The ',' token after the last column defn. */
1810   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1811   u8 tabOpts,             /* Extra table options. Usually 0. */
1812   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1813 ){
1814   Table *p;                 /* The new table */
1815   sqlite3 *db = pParse->db; /* The database connection */
1816   int iDb;                  /* Database in which the table lives */
1817   Index *pIdx;              /* An implied index of the table */
1818 
1819   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1820     return;
1821   }
1822   p = pParse->pNewTable;
1823   if( p==0 ) return;
1824 
1825   assert( !db->init.busy || !pSelect );
1826 
1827   /* If the db->init.busy is 1 it means we are reading the SQL off the
1828   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1829   ** So do not write to the disk again.  Extract the root page number
1830   ** for the table from the db->init.newTnum field.  (The page number
1831   ** should have been put there by the sqliteOpenCb routine.)
1832   */
1833   if( db->init.busy ){
1834     p->tnum = db->init.newTnum;
1835   }
1836 
1837   /* Special processing for WITHOUT ROWID Tables */
1838   if( tabOpts & TF_WithoutRowid ){
1839     if( (p->tabFlags & TF_Autoincrement) ){
1840       sqlite3ErrorMsg(pParse,
1841           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1842       return;
1843     }
1844     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1845       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1846     }else{
1847       p->tabFlags |= TF_WithoutRowid;
1848       convertToWithoutRowidTable(pParse, p);
1849     }
1850   }
1851 
1852   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1853 
1854 #ifndef SQLITE_OMIT_CHECK
1855   /* Resolve names in all CHECK constraint expressions.
1856   */
1857   if( p->pCheck ){
1858     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1859   }
1860 #endif /* !defined(SQLITE_OMIT_CHECK) */
1861 
1862   /* Estimate the average row size for the table and for all implied indices */
1863   estimateTableWidth(p);
1864   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1865     estimateIndexWidth(pIdx);
1866   }
1867 
1868   /* If not initializing, then create a record for the new table
1869   ** in the SQLITE_MASTER table of the database.
1870   **
1871   ** If this is a TEMPORARY table, write the entry into the auxiliary
1872   ** file instead of into the main database file.
1873   */
1874   if( !db->init.busy ){
1875     int n;
1876     Vdbe *v;
1877     char *zType;    /* "view" or "table" */
1878     char *zType2;   /* "VIEW" or "TABLE" */
1879     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1880 
1881     v = sqlite3GetVdbe(pParse);
1882     if( NEVER(v==0) ) return;
1883 
1884     sqlite3VdbeAddOp1(v, OP_Close, 0);
1885 
1886     /*
1887     ** Initialize zType for the new view or table.
1888     */
1889     if( p->pSelect==0 ){
1890       /* A regular table */
1891       zType = "table";
1892       zType2 = "TABLE";
1893 #ifndef SQLITE_OMIT_VIEW
1894     }else{
1895       /* A view */
1896       zType = "view";
1897       zType2 = "VIEW";
1898 #endif
1899     }
1900 
1901     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1902     ** statement to populate the new table. The root-page number for the
1903     ** new table is in register pParse->regRoot.
1904     **
1905     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1906     ** suitable state to query for the column names and types to be used
1907     ** by the new table.
1908     **
1909     ** A shared-cache write-lock is not required to write to the new table,
1910     ** as a schema-lock must have already been obtained to create it. Since
1911     ** a schema-lock excludes all other database users, the write-lock would
1912     ** be redundant.
1913     */
1914     if( pSelect ){
1915       SelectDest dest;
1916       Table *pSelTab;
1917 
1918       assert(pParse->nTab==1);
1919       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1920       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1921       pParse->nTab = 2;
1922       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1923       sqlite3Select(pParse, pSelect, &dest);
1924       sqlite3VdbeAddOp1(v, OP_Close, 1);
1925       if( pParse->nErr==0 ){
1926         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1927         if( pSelTab==0 ) return;
1928         assert( p->aCol==0 );
1929         p->nCol = pSelTab->nCol;
1930         p->aCol = pSelTab->aCol;
1931         pSelTab->nCol = 0;
1932         pSelTab->aCol = 0;
1933         sqlite3DeleteTable(db, pSelTab);
1934       }
1935     }
1936 
1937     /* Compute the complete text of the CREATE statement */
1938     if( pSelect ){
1939       zStmt = createTableStmt(db, p);
1940     }else{
1941       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1942       n = (int)(pEnd2->z - pParse->sNameToken.z);
1943       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1944       zStmt = sqlite3MPrintf(db,
1945           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1946       );
1947     }
1948 
1949     /* A slot for the record has already been allocated in the
1950     ** SQLITE_MASTER table.  We just need to update that slot with all
1951     ** the information we've collected.
1952     */
1953     sqlite3NestedParse(pParse,
1954       "UPDATE %Q.%s "
1955          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1956        "WHERE rowid=#%d",
1957       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1958       zType,
1959       p->zName,
1960       p->zName,
1961       pParse->regRoot,
1962       zStmt,
1963       pParse->regRowid
1964     );
1965     sqlite3DbFree(db, zStmt);
1966     sqlite3ChangeCookie(pParse, iDb);
1967 
1968 #ifndef SQLITE_OMIT_AUTOINCREMENT
1969     /* Check to see if we need to create an sqlite_sequence table for
1970     ** keeping track of autoincrement keys.
1971     */
1972     if( p->tabFlags & TF_Autoincrement ){
1973       Db *pDb = &db->aDb[iDb];
1974       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1975       if( pDb->pSchema->pSeqTab==0 ){
1976         sqlite3NestedParse(pParse,
1977           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1978           pDb->zName
1979         );
1980       }
1981     }
1982 #endif
1983 
1984     /* Reparse everything to update our internal data structures */
1985     sqlite3VdbeAddParseSchemaOp(v, iDb,
1986            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
1987   }
1988 
1989 
1990   /* Add the table to the in-memory representation of the database.
1991   */
1992   if( db->init.busy ){
1993     Table *pOld;
1994     Schema *pSchema = p->pSchema;
1995     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1996     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
1997     if( pOld ){
1998       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1999       db->mallocFailed = 1;
2000       return;
2001     }
2002     pParse->pNewTable = 0;
2003     db->flags |= SQLITE_InternChanges;
2004 
2005 #ifndef SQLITE_OMIT_ALTERTABLE
2006     if( !p->pSelect ){
2007       const char *zName = (const char *)pParse->sNameToken.z;
2008       int nName;
2009       assert( !pSelect && pCons && pEnd );
2010       if( pCons->z==0 ){
2011         pCons = pEnd;
2012       }
2013       nName = (int)((const char *)pCons->z - zName);
2014       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2015     }
2016 #endif
2017   }
2018 }
2019 
2020 #ifndef SQLITE_OMIT_VIEW
2021 /*
2022 ** The parser calls this routine in order to create a new VIEW
2023 */
2024 void sqlite3CreateView(
2025   Parse *pParse,     /* The parsing context */
2026   Token *pBegin,     /* The CREATE token that begins the statement */
2027   Token *pName1,     /* The token that holds the name of the view */
2028   Token *pName2,     /* The token that holds the name of the view */
2029   Select *pSelect,   /* A SELECT statement that will become the new view */
2030   int isTemp,        /* TRUE for a TEMPORARY view */
2031   int noErr          /* Suppress error messages if VIEW already exists */
2032 ){
2033   Table *p;
2034   int n;
2035   const char *z;
2036   Token sEnd;
2037   DbFixer sFix;
2038   Token *pName = 0;
2039   int iDb;
2040   sqlite3 *db = pParse->db;
2041 
2042   if( pParse->nVar>0 ){
2043     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2044     sqlite3SelectDelete(db, pSelect);
2045     return;
2046   }
2047   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2048   p = pParse->pNewTable;
2049   if( p==0 || pParse->nErr ){
2050     sqlite3SelectDelete(db, pSelect);
2051     return;
2052   }
2053   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2054   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2055   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2056   if( sqlite3FixSelect(&sFix, pSelect) ){
2057     sqlite3SelectDelete(db, pSelect);
2058     return;
2059   }
2060 
2061   /* Make a copy of the entire SELECT statement that defines the view.
2062   ** This will force all the Expr.token.z values to be dynamically
2063   ** allocated rather than point to the input string - which means that
2064   ** they will persist after the current sqlite3_exec() call returns.
2065   */
2066   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2067   sqlite3SelectDelete(db, pSelect);
2068   if( db->mallocFailed ){
2069     return;
2070   }
2071   if( !db->init.busy ){
2072     sqlite3ViewGetColumnNames(pParse, p);
2073   }
2074 
2075   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2076   ** the end.
2077   */
2078   sEnd = pParse->sLastToken;
2079   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
2080     sEnd.z += sEnd.n;
2081   }
2082   sEnd.n = 0;
2083   n = (int)(sEnd.z - pBegin->z);
2084   z = pBegin->z;
2085   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
2086   sEnd.z = &z[n-1];
2087   sEnd.n = 1;
2088 
2089   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2090   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2091   return;
2092 }
2093 #endif /* SQLITE_OMIT_VIEW */
2094 
2095 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2096 /*
2097 ** The Table structure pTable is really a VIEW.  Fill in the names of
2098 ** the columns of the view in the pTable structure.  Return the number
2099 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2100 */
2101 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2102   Table *pSelTab;   /* A fake table from which we get the result set */
2103   Select *pSel;     /* Copy of the SELECT that implements the view */
2104   int nErr = 0;     /* Number of errors encountered */
2105   int n;            /* Temporarily holds the number of cursors assigned */
2106   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2107   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2108 
2109   assert( pTable );
2110 
2111 #ifndef SQLITE_OMIT_VIRTUALTABLE
2112   if( sqlite3VtabCallConnect(pParse, pTable) ){
2113     return SQLITE_ERROR;
2114   }
2115   if( IsVirtual(pTable) ) return 0;
2116 #endif
2117 
2118 #ifndef SQLITE_OMIT_VIEW
2119   /* A positive nCol means the columns names for this view are
2120   ** already known.
2121   */
2122   if( pTable->nCol>0 ) return 0;
2123 
2124   /* A negative nCol is a special marker meaning that we are currently
2125   ** trying to compute the column names.  If we enter this routine with
2126   ** a negative nCol, it means two or more views form a loop, like this:
2127   **
2128   **     CREATE VIEW one AS SELECT * FROM two;
2129   **     CREATE VIEW two AS SELECT * FROM one;
2130   **
2131   ** Actually, the error above is now caught prior to reaching this point.
2132   ** But the following test is still important as it does come up
2133   ** in the following:
2134   **
2135   **     CREATE TABLE main.ex1(a);
2136   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2137   **     SELECT * FROM temp.ex1;
2138   */
2139   if( pTable->nCol<0 ){
2140     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2141     return 1;
2142   }
2143   assert( pTable->nCol>=0 );
2144 
2145   /* If we get this far, it means we need to compute the table names.
2146   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2147   ** "*" elements in the results set of the view and will assign cursors
2148   ** to the elements of the FROM clause.  But we do not want these changes
2149   ** to be permanent.  So the computation is done on a copy of the SELECT
2150   ** statement that defines the view.
2151   */
2152   assert( pTable->pSelect );
2153   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2154   if( pSel ){
2155     u8 enableLookaside = db->lookaside.bEnabled;
2156     n = pParse->nTab;
2157     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2158     pTable->nCol = -1;
2159     db->lookaside.bEnabled = 0;
2160 #ifndef SQLITE_OMIT_AUTHORIZATION
2161     xAuth = db->xAuth;
2162     db->xAuth = 0;
2163     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2164     db->xAuth = xAuth;
2165 #else
2166     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2167 #endif
2168     db->lookaside.bEnabled = enableLookaside;
2169     pParse->nTab = n;
2170     if( pSelTab ){
2171       assert( pTable->aCol==0 );
2172       pTable->nCol = pSelTab->nCol;
2173       pTable->aCol = pSelTab->aCol;
2174       pSelTab->nCol = 0;
2175       pSelTab->aCol = 0;
2176       sqlite3DeleteTable(db, pSelTab);
2177       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2178       pTable->pSchema->schemaFlags |= DB_UnresetViews;
2179     }else{
2180       pTable->nCol = 0;
2181       nErr++;
2182     }
2183     sqlite3SelectDelete(db, pSel);
2184   } else {
2185     nErr++;
2186   }
2187 #endif /* SQLITE_OMIT_VIEW */
2188   return nErr;
2189 }
2190 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2191 
2192 #ifndef SQLITE_OMIT_VIEW
2193 /*
2194 ** Clear the column names from every VIEW in database idx.
2195 */
2196 static void sqliteViewResetAll(sqlite3 *db, int idx){
2197   HashElem *i;
2198   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2199   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2200   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2201     Table *pTab = sqliteHashData(i);
2202     if( pTab->pSelect ){
2203       sqliteDeleteColumnNames(db, pTab);
2204       pTab->aCol = 0;
2205       pTab->nCol = 0;
2206     }
2207   }
2208   DbClearProperty(db, idx, DB_UnresetViews);
2209 }
2210 #else
2211 # define sqliteViewResetAll(A,B)
2212 #endif /* SQLITE_OMIT_VIEW */
2213 
2214 /*
2215 ** This function is called by the VDBE to adjust the internal schema
2216 ** used by SQLite when the btree layer moves a table root page. The
2217 ** root-page of a table or index in database iDb has changed from iFrom
2218 ** to iTo.
2219 **
2220 ** Ticket #1728:  The symbol table might still contain information
2221 ** on tables and/or indices that are the process of being deleted.
2222 ** If you are unlucky, one of those deleted indices or tables might
2223 ** have the same rootpage number as the real table or index that is
2224 ** being moved.  So we cannot stop searching after the first match
2225 ** because the first match might be for one of the deleted indices
2226 ** or tables and not the table/index that is actually being moved.
2227 ** We must continue looping until all tables and indices with
2228 ** rootpage==iFrom have been converted to have a rootpage of iTo
2229 ** in order to be certain that we got the right one.
2230 */
2231 #ifndef SQLITE_OMIT_AUTOVACUUM
2232 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2233   HashElem *pElem;
2234   Hash *pHash;
2235   Db *pDb;
2236 
2237   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2238   pDb = &db->aDb[iDb];
2239   pHash = &pDb->pSchema->tblHash;
2240   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2241     Table *pTab = sqliteHashData(pElem);
2242     if( pTab->tnum==iFrom ){
2243       pTab->tnum = iTo;
2244     }
2245   }
2246   pHash = &pDb->pSchema->idxHash;
2247   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2248     Index *pIdx = sqliteHashData(pElem);
2249     if( pIdx->tnum==iFrom ){
2250       pIdx->tnum = iTo;
2251     }
2252   }
2253 }
2254 #endif
2255 
2256 /*
2257 ** Write code to erase the table with root-page iTable from database iDb.
2258 ** Also write code to modify the sqlite_master table and internal schema
2259 ** if a root-page of another table is moved by the btree-layer whilst
2260 ** erasing iTable (this can happen with an auto-vacuum database).
2261 */
2262 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2263   Vdbe *v = sqlite3GetVdbe(pParse);
2264   int r1 = sqlite3GetTempReg(pParse);
2265   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2266   sqlite3MayAbort(pParse);
2267 #ifndef SQLITE_OMIT_AUTOVACUUM
2268   /* OP_Destroy stores an in integer r1. If this integer
2269   ** is non-zero, then it is the root page number of a table moved to
2270   ** location iTable. The following code modifies the sqlite_master table to
2271   ** reflect this.
2272   **
2273   ** The "#NNN" in the SQL is a special constant that means whatever value
2274   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2275   ** token for additional information.
2276   */
2277   sqlite3NestedParse(pParse,
2278      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2279      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2280 #endif
2281   sqlite3ReleaseTempReg(pParse, r1);
2282 }
2283 
2284 /*
2285 ** Write VDBE code to erase table pTab and all associated indices on disk.
2286 ** Code to update the sqlite_master tables and internal schema definitions
2287 ** in case a root-page belonging to another table is moved by the btree layer
2288 ** is also added (this can happen with an auto-vacuum database).
2289 */
2290 static void destroyTable(Parse *pParse, Table *pTab){
2291 #ifdef SQLITE_OMIT_AUTOVACUUM
2292   Index *pIdx;
2293   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2294   destroyRootPage(pParse, pTab->tnum, iDb);
2295   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2296     destroyRootPage(pParse, pIdx->tnum, iDb);
2297   }
2298 #else
2299   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2300   ** is not defined), then it is important to call OP_Destroy on the
2301   ** table and index root-pages in order, starting with the numerically
2302   ** largest root-page number. This guarantees that none of the root-pages
2303   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2304   ** following were coded:
2305   **
2306   ** OP_Destroy 4 0
2307   ** ...
2308   ** OP_Destroy 5 0
2309   **
2310   ** and root page 5 happened to be the largest root-page number in the
2311   ** database, then root page 5 would be moved to page 4 by the
2312   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2313   ** a free-list page.
2314   */
2315   int iTab = pTab->tnum;
2316   int iDestroyed = 0;
2317 
2318   while( 1 ){
2319     Index *pIdx;
2320     int iLargest = 0;
2321 
2322     if( iDestroyed==0 || iTab<iDestroyed ){
2323       iLargest = iTab;
2324     }
2325     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2326       int iIdx = pIdx->tnum;
2327       assert( pIdx->pSchema==pTab->pSchema );
2328       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2329         iLargest = iIdx;
2330       }
2331     }
2332     if( iLargest==0 ){
2333       return;
2334     }else{
2335       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2336       assert( iDb>=0 && iDb<pParse->db->nDb );
2337       destroyRootPage(pParse, iLargest, iDb);
2338       iDestroyed = iLargest;
2339     }
2340   }
2341 #endif
2342 }
2343 
2344 /*
2345 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2346 ** after a DROP INDEX or DROP TABLE command.
2347 */
2348 static void sqlite3ClearStatTables(
2349   Parse *pParse,         /* The parsing context */
2350   int iDb,               /* The database number */
2351   const char *zType,     /* "idx" or "tbl" */
2352   const char *zName      /* Name of index or table */
2353 ){
2354   int i;
2355   const char *zDbName = pParse->db->aDb[iDb].zName;
2356   for(i=1; i<=4; i++){
2357     char zTab[24];
2358     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2359     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2360       sqlite3NestedParse(pParse,
2361         "DELETE FROM %Q.%s WHERE %s=%Q",
2362         zDbName, zTab, zType, zName
2363       );
2364     }
2365   }
2366 }
2367 
2368 /*
2369 ** Generate code to drop a table.
2370 */
2371 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2372   Vdbe *v;
2373   sqlite3 *db = pParse->db;
2374   Trigger *pTrigger;
2375   Db *pDb = &db->aDb[iDb];
2376 
2377   v = sqlite3GetVdbe(pParse);
2378   assert( v!=0 );
2379   sqlite3BeginWriteOperation(pParse, 1, iDb);
2380 
2381 #ifndef SQLITE_OMIT_VIRTUALTABLE
2382   if( IsVirtual(pTab) ){
2383     sqlite3VdbeAddOp0(v, OP_VBegin);
2384   }
2385 #endif
2386 
2387   /* Drop all triggers associated with the table being dropped. Code
2388   ** is generated to remove entries from sqlite_master and/or
2389   ** sqlite_temp_master if required.
2390   */
2391   pTrigger = sqlite3TriggerList(pParse, pTab);
2392   while( pTrigger ){
2393     assert( pTrigger->pSchema==pTab->pSchema ||
2394         pTrigger->pSchema==db->aDb[1].pSchema );
2395     sqlite3DropTriggerPtr(pParse, pTrigger);
2396     pTrigger = pTrigger->pNext;
2397   }
2398 
2399 #ifndef SQLITE_OMIT_AUTOINCREMENT
2400   /* Remove any entries of the sqlite_sequence table associated with
2401   ** the table being dropped. This is done before the table is dropped
2402   ** at the btree level, in case the sqlite_sequence table needs to
2403   ** move as a result of the drop (can happen in auto-vacuum mode).
2404   */
2405   if( pTab->tabFlags & TF_Autoincrement ){
2406     sqlite3NestedParse(pParse,
2407       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2408       pDb->zName, pTab->zName
2409     );
2410   }
2411 #endif
2412 
2413   /* Drop all SQLITE_MASTER table and index entries that refer to the
2414   ** table. The program name loops through the master table and deletes
2415   ** every row that refers to a table of the same name as the one being
2416   ** dropped. Triggers are handled separately because a trigger can be
2417   ** created in the temp database that refers to a table in another
2418   ** database.
2419   */
2420   sqlite3NestedParse(pParse,
2421       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2422       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2423   if( !isView && !IsVirtual(pTab) ){
2424     destroyTable(pParse, pTab);
2425   }
2426 
2427   /* Remove the table entry from SQLite's internal schema and modify
2428   ** the schema cookie.
2429   */
2430   if( IsVirtual(pTab) ){
2431     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2432   }
2433   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2434   sqlite3ChangeCookie(pParse, iDb);
2435   sqliteViewResetAll(db, iDb);
2436 }
2437 
2438 /*
2439 ** This routine is called to do the work of a DROP TABLE statement.
2440 ** pName is the name of the table to be dropped.
2441 */
2442 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2443   Table *pTab;
2444   Vdbe *v;
2445   sqlite3 *db = pParse->db;
2446   int iDb;
2447 
2448   if( db->mallocFailed ){
2449     goto exit_drop_table;
2450   }
2451   assert( pParse->nErr==0 );
2452   assert( pName->nSrc==1 );
2453   if( noErr ) db->suppressErr++;
2454   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2455   if( noErr ) db->suppressErr--;
2456 
2457   if( pTab==0 ){
2458     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2459     goto exit_drop_table;
2460   }
2461   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2462   assert( iDb>=0 && iDb<db->nDb );
2463 
2464   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2465   ** it is initialized.
2466   */
2467   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2468     goto exit_drop_table;
2469   }
2470 #ifndef SQLITE_OMIT_AUTHORIZATION
2471   {
2472     int code;
2473     const char *zTab = SCHEMA_TABLE(iDb);
2474     const char *zDb = db->aDb[iDb].zName;
2475     const char *zArg2 = 0;
2476     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2477       goto exit_drop_table;
2478     }
2479     if( isView ){
2480       if( !OMIT_TEMPDB && iDb==1 ){
2481         code = SQLITE_DROP_TEMP_VIEW;
2482       }else{
2483         code = SQLITE_DROP_VIEW;
2484       }
2485 #ifndef SQLITE_OMIT_VIRTUALTABLE
2486     }else if( IsVirtual(pTab) ){
2487       code = SQLITE_DROP_VTABLE;
2488       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2489 #endif
2490     }else{
2491       if( !OMIT_TEMPDB && iDb==1 ){
2492         code = SQLITE_DROP_TEMP_TABLE;
2493       }else{
2494         code = SQLITE_DROP_TABLE;
2495       }
2496     }
2497     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2498       goto exit_drop_table;
2499     }
2500     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2501       goto exit_drop_table;
2502     }
2503   }
2504 #endif
2505   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2506     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2507     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2508     goto exit_drop_table;
2509   }
2510 
2511 #ifndef SQLITE_OMIT_VIEW
2512   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2513   ** on a table.
2514   */
2515   if( isView && pTab->pSelect==0 ){
2516     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2517     goto exit_drop_table;
2518   }
2519   if( !isView && pTab->pSelect ){
2520     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2521     goto exit_drop_table;
2522   }
2523 #endif
2524 
2525   /* Generate code to remove the table from the master table
2526   ** on disk.
2527   */
2528   v = sqlite3GetVdbe(pParse);
2529   if( v ){
2530     sqlite3BeginWriteOperation(pParse, 1, iDb);
2531     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2532     sqlite3FkDropTable(pParse, pName, pTab);
2533     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2534   }
2535 
2536 exit_drop_table:
2537   sqlite3SrcListDelete(db, pName);
2538 }
2539 
2540 /*
2541 ** This routine is called to create a new foreign key on the table
2542 ** currently under construction.  pFromCol determines which columns
2543 ** in the current table point to the foreign key.  If pFromCol==0 then
2544 ** connect the key to the last column inserted.  pTo is the name of
2545 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2546 ** of tables in the parent pTo table.  flags contains all
2547 ** information about the conflict resolution algorithms specified
2548 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2549 **
2550 ** An FKey structure is created and added to the table currently
2551 ** under construction in the pParse->pNewTable field.
2552 **
2553 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2554 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2555 */
2556 void sqlite3CreateForeignKey(
2557   Parse *pParse,       /* Parsing context */
2558   ExprList *pFromCol,  /* Columns in this table that point to other table */
2559   Token *pTo,          /* Name of the other table */
2560   ExprList *pToCol,    /* Columns in the other table */
2561   int flags            /* Conflict resolution algorithms. */
2562 ){
2563   sqlite3 *db = pParse->db;
2564 #ifndef SQLITE_OMIT_FOREIGN_KEY
2565   FKey *pFKey = 0;
2566   FKey *pNextTo;
2567   Table *p = pParse->pNewTable;
2568   int nByte;
2569   int i;
2570   int nCol;
2571   char *z;
2572 
2573   assert( pTo!=0 );
2574   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2575   if( pFromCol==0 ){
2576     int iCol = p->nCol-1;
2577     if( NEVER(iCol<0) ) goto fk_end;
2578     if( pToCol && pToCol->nExpr!=1 ){
2579       sqlite3ErrorMsg(pParse, "foreign key on %s"
2580          " should reference only one column of table %T",
2581          p->aCol[iCol].zName, pTo);
2582       goto fk_end;
2583     }
2584     nCol = 1;
2585   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2586     sqlite3ErrorMsg(pParse,
2587         "number of columns in foreign key does not match the number of "
2588         "columns in the referenced table");
2589     goto fk_end;
2590   }else{
2591     nCol = pFromCol->nExpr;
2592   }
2593   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2594   if( pToCol ){
2595     for(i=0; i<pToCol->nExpr; i++){
2596       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2597     }
2598   }
2599   pFKey = sqlite3DbMallocZero(db, nByte );
2600   if( pFKey==0 ){
2601     goto fk_end;
2602   }
2603   pFKey->pFrom = p;
2604   pFKey->pNextFrom = p->pFKey;
2605   z = (char*)&pFKey->aCol[nCol];
2606   pFKey->zTo = z;
2607   memcpy(z, pTo->z, pTo->n);
2608   z[pTo->n] = 0;
2609   sqlite3Dequote(z);
2610   z += pTo->n+1;
2611   pFKey->nCol = nCol;
2612   if( pFromCol==0 ){
2613     pFKey->aCol[0].iFrom = p->nCol-1;
2614   }else{
2615     for(i=0; i<nCol; i++){
2616       int j;
2617       for(j=0; j<p->nCol; j++){
2618         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2619           pFKey->aCol[i].iFrom = j;
2620           break;
2621         }
2622       }
2623       if( j>=p->nCol ){
2624         sqlite3ErrorMsg(pParse,
2625           "unknown column \"%s\" in foreign key definition",
2626           pFromCol->a[i].zName);
2627         goto fk_end;
2628       }
2629     }
2630   }
2631   if( pToCol ){
2632     for(i=0; i<nCol; i++){
2633       int n = sqlite3Strlen30(pToCol->a[i].zName);
2634       pFKey->aCol[i].zCol = z;
2635       memcpy(z, pToCol->a[i].zName, n);
2636       z[n] = 0;
2637       z += n+1;
2638     }
2639   }
2640   pFKey->isDeferred = 0;
2641   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2642   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2643 
2644   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2645   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2646       pFKey->zTo, (void *)pFKey
2647   );
2648   if( pNextTo==pFKey ){
2649     db->mallocFailed = 1;
2650     goto fk_end;
2651   }
2652   if( pNextTo ){
2653     assert( pNextTo->pPrevTo==0 );
2654     pFKey->pNextTo = pNextTo;
2655     pNextTo->pPrevTo = pFKey;
2656   }
2657 
2658   /* Link the foreign key to the table as the last step.
2659   */
2660   p->pFKey = pFKey;
2661   pFKey = 0;
2662 
2663 fk_end:
2664   sqlite3DbFree(db, pFKey);
2665 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2666   sqlite3ExprListDelete(db, pFromCol);
2667   sqlite3ExprListDelete(db, pToCol);
2668 }
2669 
2670 /*
2671 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2672 ** clause is seen as part of a foreign key definition.  The isDeferred
2673 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2674 ** The behavior of the most recently created foreign key is adjusted
2675 ** accordingly.
2676 */
2677 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2678 #ifndef SQLITE_OMIT_FOREIGN_KEY
2679   Table *pTab;
2680   FKey *pFKey;
2681   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2682   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2683   pFKey->isDeferred = (u8)isDeferred;
2684 #endif
2685 }
2686 
2687 /*
2688 ** Generate code that will erase and refill index *pIdx.  This is
2689 ** used to initialize a newly created index or to recompute the
2690 ** content of an index in response to a REINDEX command.
2691 **
2692 ** if memRootPage is not negative, it means that the index is newly
2693 ** created.  The register specified by memRootPage contains the
2694 ** root page number of the index.  If memRootPage is negative, then
2695 ** the index already exists and must be cleared before being refilled and
2696 ** the root page number of the index is taken from pIndex->tnum.
2697 */
2698 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2699   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2700   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2701   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2702   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2703   int addr1;                     /* Address of top of loop */
2704   int addr2;                     /* Address to jump to for next iteration */
2705   int tnum;                      /* Root page of index */
2706   int iPartIdxLabel;             /* Jump to this label to skip a row */
2707   Vdbe *v;                       /* Generate code into this virtual machine */
2708   KeyInfo *pKey;                 /* KeyInfo for index */
2709   int regRecord;                 /* Register holding assembled index record */
2710   sqlite3 *db = pParse->db;      /* The database connection */
2711   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2712 
2713 #ifndef SQLITE_OMIT_AUTHORIZATION
2714   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2715       db->aDb[iDb].zName ) ){
2716     return;
2717   }
2718 #endif
2719 
2720   /* Require a write-lock on the table to perform this operation */
2721   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2722 
2723   v = sqlite3GetVdbe(pParse);
2724   if( v==0 ) return;
2725   if( memRootPage>=0 ){
2726     tnum = memRootPage;
2727   }else{
2728     tnum = pIndex->tnum;
2729   }
2730   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2731 
2732   /* Open the sorter cursor if we are to use one. */
2733   iSorter = pParse->nTab++;
2734   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2735                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2736 
2737   /* Open the table. Loop through all rows of the table, inserting index
2738   ** records into the sorter. */
2739   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2740   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2741   regRecord = sqlite3GetTempReg(pParse);
2742 
2743   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2744   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2745   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2746   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2747   sqlite3VdbeJumpHere(v, addr1);
2748   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2749   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2750                     (char *)pKey, P4_KEYINFO);
2751   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2752 
2753   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2754   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2755   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2756     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2757     sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
2758     addr2 = sqlite3VdbeCurrentAddr(v);
2759     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2760                          pIndex->nKeyCol); VdbeCoverage(v);
2761     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2762   }else{
2763     addr2 = sqlite3VdbeCurrentAddr(v);
2764   }
2765   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2766   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
2767   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2768   sqlite3ReleaseTempReg(pParse, regRecord);
2769   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2770   sqlite3VdbeJumpHere(v, addr1);
2771 
2772   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2773   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2774   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2775 }
2776 
2777 /*
2778 ** Allocate heap space to hold an Index object with nCol columns.
2779 **
2780 ** Increase the allocation size to provide an extra nExtra bytes
2781 ** of 8-byte aligned space after the Index object and return a
2782 ** pointer to this extra space in *ppExtra.
2783 */
2784 Index *sqlite3AllocateIndexObject(
2785   sqlite3 *db,         /* Database connection */
2786   i16 nCol,            /* Total number of columns in the index */
2787   int nExtra,          /* Number of bytes of extra space to alloc */
2788   char **ppExtra       /* Pointer to the "extra" space */
2789 ){
2790   Index *p;            /* Allocated index object */
2791   int nByte;           /* Bytes of space for Index object + arrays */
2792 
2793   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2794           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2795           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2796                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2797                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2798   p = sqlite3DbMallocZero(db, nByte + nExtra);
2799   if( p ){
2800     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2801     p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
2802     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2803     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2804     p->aSortOrder = (u8*)pExtra;
2805     p->nColumn = nCol;
2806     p->nKeyCol = nCol - 1;
2807     *ppExtra = ((char*)p) + nByte;
2808   }
2809   return p;
2810 }
2811 
2812 /*
2813 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2814 ** and pTblList is the name of the table that is to be indexed.  Both will
2815 ** be NULL for a primary key or an index that is created to satisfy a
2816 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2817 ** as the table to be indexed.  pParse->pNewTable is a table that is
2818 ** currently being constructed by a CREATE TABLE statement.
2819 **
2820 ** pList is a list of columns to be indexed.  pList will be NULL if this
2821 ** is a primary key or unique-constraint on the most recent column added
2822 ** to the table currently under construction.
2823 **
2824 ** If the index is created successfully, return a pointer to the new Index
2825 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2826 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2827 */
2828 Index *sqlite3CreateIndex(
2829   Parse *pParse,     /* All information about this parse */
2830   Token *pName1,     /* First part of index name. May be NULL */
2831   Token *pName2,     /* Second part of index name. May be NULL */
2832   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2833   ExprList *pList,   /* A list of columns to be indexed */
2834   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2835   Token *pStart,     /* The CREATE token that begins this statement */
2836   Expr *pPIWhere,    /* WHERE clause for partial indices */
2837   int sortOrder,     /* Sort order of primary key when pList==NULL */
2838   int ifNotExist     /* Omit error if index already exists */
2839 ){
2840   Index *pRet = 0;     /* Pointer to return */
2841   Table *pTab = 0;     /* Table to be indexed */
2842   Index *pIndex = 0;   /* The index to be created */
2843   char *zName = 0;     /* Name of the index */
2844   int nName;           /* Number of characters in zName */
2845   int i, j;
2846   DbFixer sFix;        /* For assigning database names to pTable */
2847   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2848   sqlite3 *db = pParse->db;
2849   Db *pDb;             /* The specific table containing the indexed database */
2850   int iDb;             /* Index of the database that is being written */
2851   Token *pName = 0;    /* Unqualified name of the index to create */
2852   struct ExprList_item *pListItem; /* For looping over pList */
2853   const Column *pTabCol;           /* A column in the table */
2854   int nExtra = 0;                  /* Space allocated for zExtra[] */
2855   int nExtraCol;                   /* Number of extra columns needed */
2856   char *zExtra = 0;                /* Extra space after the Index object */
2857   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2858 
2859   assert( pParse->nErr==0 );      /* Never called with prior errors */
2860   if( db->mallocFailed || IN_DECLARE_VTAB ){
2861     goto exit_create_index;
2862   }
2863   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2864     goto exit_create_index;
2865   }
2866 
2867   /*
2868   ** Find the table that is to be indexed.  Return early if not found.
2869   */
2870   if( pTblName!=0 ){
2871 
2872     /* Use the two-part index name to determine the database
2873     ** to search for the table. 'Fix' the table name to this db
2874     ** before looking up the table.
2875     */
2876     assert( pName1 && pName2 );
2877     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2878     if( iDb<0 ) goto exit_create_index;
2879     assert( pName && pName->z );
2880 
2881 #ifndef SQLITE_OMIT_TEMPDB
2882     /* If the index name was unqualified, check if the table
2883     ** is a temp table. If so, set the database to 1. Do not do this
2884     ** if initialising a database schema.
2885     */
2886     if( !db->init.busy ){
2887       pTab = sqlite3SrcListLookup(pParse, pTblName);
2888       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2889         iDb = 1;
2890       }
2891     }
2892 #endif
2893 
2894     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2895     if( sqlite3FixSrcList(&sFix, pTblName) ){
2896       /* Because the parser constructs pTblName from a single identifier,
2897       ** sqlite3FixSrcList can never fail. */
2898       assert(0);
2899     }
2900     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2901     assert( db->mallocFailed==0 || pTab==0 );
2902     if( pTab==0 ) goto exit_create_index;
2903     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2904       sqlite3ErrorMsg(pParse,
2905            "cannot create a TEMP index on non-TEMP table \"%s\"",
2906            pTab->zName);
2907       goto exit_create_index;
2908     }
2909     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2910   }else{
2911     assert( pName==0 );
2912     assert( pStart==0 );
2913     pTab = pParse->pNewTable;
2914     if( !pTab ) goto exit_create_index;
2915     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2916   }
2917   pDb = &db->aDb[iDb];
2918 
2919   assert( pTab!=0 );
2920   assert( pParse->nErr==0 );
2921   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2922        && db->init.busy==0
2923 #if SQLITE_USER_AUTHENTICATION
2924        && sqlite3UserAuthTable(pTab->zName)==0
2925 #endif
2926        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2927     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2928     goto exit_create_index;
2929   }
2930 #ifndef SQLITE_OMIT_VIEW
2931   if( pTab->pSelect ){
2932     sqlite3ErrorMsg(pParse, "views may not be indexed");
2933     goto exit_create_index;
2934   }
2935 #endif
2936 #ifndef SQLITE_OMIT_VIRTUALTABLE
2937   if( IsVirtual(pTab) ){
2938     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2939     goto exit_create_index;
2940   }
2941 #endif
2942 
2943   /*
2944   ** Find the name of the index.  Make sure there is not already another
2945   ** index or table with the same name.
2946   **
2947   ** Exception:  If we are reading the names of permanent indices from the
2948   ** sqlite_master table (because some other process changed the schema) and
2949   ** one of the index names collides with the name of a temporary table or
2950   ** index, then we will continue to process this index.
2951   **
2952   ** If pName==0 it means that we are
2953   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2954   ** own name.
2955   */
2956   if( pName ){
2957     zName = sqlite3NameFromToken(db, pName);
2958     if( zName==0 ) goto exit_create_index;
2959     assert( pName->z!=0 );
2960     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2961       goto exit_create_index;
2962     }
2963     if( !db->init.busy ){
2964       if( sqlite3FindTable(db, zName, 0)!=0 ){
2965         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2966         goto exit_create_index;
2967       }
2968     }
2969     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2970       if( !ifNotExist ){
2971         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2972       }else{
2973         assert( !db->init.busy );
2974         sqlite3CodeVerifySchema(pParse, iDb);
2975       }
2976       goto exit_create_index;
2977     }
2978   }else{
2979     int n;
2980     Index *pLoop;
2981     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2982     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2983     if( zName==0 ){
2984       goto exit_create_index;
2985     }
2986   }
2987 
2988   /* Check for authorization to create an index.
2989   */
2990 #ifndef SQLITE_OMIT_AUTHORIZATION
2991   {
2992     const char *zDb = pDb->zName;
2993     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2994       goto exit_create_index;
2995     }
2996     i = SQLITE_CREATE_INDEX;
2997     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2998     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2999       goto exit_create_index;
3000     }
3001   }
3002 #endif
3003 
3004   /* If pList==0, it means this routine was called to make a primary
3005   ** key out of the last column added to the table under construction.
3006   ** So create a fake list to simulate this.
3007   */
3008   if( pList==0 ){
3009     pList = sqlite3ExprListAppend(pParse, 0, 0);
3010     if( pList==0 ) goto exit_create_index;
3011     pList->a[0].zName = sqlite3DbStrDup(pParse->db,
3012                                         pTab->aCol[pTab->nCol-1].zName);
3013     pList->a[0].sortOrder = (u8)sortOrder;
3014   }
3015 
3016   /* Figure out how many bytes of space are required to store explicitly
3017   ** specified collation sequence names.
3018   */
3019   for(i=0; i<pList->nExpr; i++){
3020     Expr *pExpr = pList->a[i].pExpr;
3021     if( pExpr ){
3022       assert( pExpr->op==TK_COLLATE );
3023       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3024     }
3025   }
3026 
3027   /*
3028   ** Allocate the index structure.
3029   */
3030   nName = sqlite3Strlen30(zName);
3031   nExtraCol = pPk ? pPk->nKeyCol : 1;
3032   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3033                                       nName + nExtra + 1, &zExtra);
3034   if( db->mallocFailed ){
3035     goto exit_create_index;
3036   }
3037   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3038   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3039   pIndex->zName = zExtra;
3040   zExtra += nName + 1;
3041   memcpy(pIndex->zName, zName, nName+1);
3042   pIndex->pTable = pTab;
3043   pIndex->onError = (u8)onError;
3044   pIndex->uniqNotNull = onError!=OE_None;
3045   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3046   pIndex->pSchema = db->aDb[iDb].pSchema;
3047   pIndex->nKeyCol = pList->nExpr;
3048   if( pPIWhere ){
3049     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3050     pIndex->pPartIdxWhere = pPIWhere;
3051     pPIWhere = 0;
3052   }
3053   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3054 
3055   /* Check to see if we should honor DESC requests on index columns
3056   */
3057   if( pDb->pSchema->file_format>=4 ){
3058     sortOrderMask = -1;   /* Honor DESC */
3059   }else{
3060     sortOrderMask = 0;    /* Ignore DESC */
3061   }
3062 
3063   /* Scan the names of the columns of the table to be indexed and
3064   ** load the column indices into the Index structure.  Report an error
3065   ** if any column is not found.
3066   **
3067   ** TODO:  Add a test to make sure that the same column is not named
3068   ** more than once within the same index.  Only the first instance of
3069   ** the column will ever be used by the optimizer.  Note that using the
3070   ** same column more than once cannot be an error because that would
3071   ** break backwards compatibility - it needs to be a warning.
3072   */
3073   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3074     const char *zColName = pListItem->zName;
3075     int requestedSortOrder;
3076     char *zColl;                   /* Collation sequence name */
3077 
3078     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
3079       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
3080     }
3081     if( j>=pTab->nCol ){
3082       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
3083         pTab->zName, zColName);
3084       pParse->checkSchema = 1;
3085       goto exit_create_index;
3086     }
3087     assert( j<=0x7fff );
3088     pIndex->aiColumn[i] = (i16)j;
3089     if( pListItem->pExpr ){
3090       int nColl;
3091       assert( pListItem->pExpr->op==TK_COLLATE );
3092       zColl = pListItem->pExpr->u.zToken;
3093       nColl = sqlite3Strlen30(zColl) + 1;
3094       assert( nExtra>=nColl );
3095       memcpy(zExtra, zColl, nColl);
3096       zColl = zExtra;
3097       zExtra += nColl;
3098       nExtra -= nColl;
3099     }else{
3100       zColl = pTab->aCol[j].zColl;
3101       if( !zColl ) zColl = "BINARY";
3102     }
3103     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3104       goto exit_create_index;
3105     }
3106     pIndex->azColl[i] = zColl;
3107     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3108     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3109     if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0;
3110   }
3111   if( pPk ){
3112     for(j=0; j<pPk->nKeyCol; j++){
3113       int x = pPk->aiColumn[j];
3114       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3115         pIndex->nColumn--;
3116       }else{
3117         pIndex->aiColumn[i] = x;
3118         pIndex->azColl[i] = pPk->azColl[j];
3119         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3120         i++;
3121       }
3122     }
3123     assert( i==pIndex->nColumn );
3124   }else{
3125     pIndex->aiColumn[i] = -1;
3126     pIndex->azColl[i] = "BINARY";
3127   }
3128   sqlite3DefaultRowEst(pIndex);
3129   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3130 
3131   if( pTab==pParse->pNewTable ){
3132     /* This routine has been called to create an automatic index as a
3133     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3134     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3135     ** i.e. one of:
3136     **
3137     ** CREATE TABLE t(x PRIMARY KEY, y);
3138     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3139     **
3140     ** Either way, check to see if the table already has such an index. If
3141     ** so, don't bother creating this one. This only applies to
3142     ** automatically created indices. Users can do as they wish with
3143     ** explicit indices.
3144     **
3145     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3146     ** (and thus suppressing the second one) even if they have different
3147     ** sort orders.
3148     **
3149     ** If there are different collating sequences or if the columns of
3150     ** the constraint occur in different orders, then the constraints are
3151     ** considered distinct and both result in separate indices.
3152     */
3153     Index *pIdx;
3154     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3155       int k;
3156       assert( IsUniqueIndex(pIdx) );
3157       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3158       assert( IsUniqueIndex(pIndex) );
3159 
3160       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3161       for(k=0; k<pIdx->nKeyCol; k++){
3162         const char *z1;
3163         const char *z2;
3164         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3165         z1 = pIdx->azColl[k];
3166         z2 = pIndex->azColl[k];
3167         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3168       }
3169       if( k==pIdx->nKeyCol ){
3170         if( pIdx->onError!=pIndex->onError ){
3171           /* This constraint creates the same index as a previous
3172           ** constraint specified somewhere in the CREATE TABLE statement.
3173           ** However the ON CONFLICT clauses are different. If both this
3174           ** constraint and the previous equivalent constraint have explicit
3175           ** ON CONFLICT clauses this is an error. Otherwise, use the
3176           ** explicitly specified behavior for the index.
3177           */
3178           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3179             sqlite3ErrorMsg(pParse,
3180                 "conflicting ON CONFLICT clauses specified", 0);
3181           }
3182           if( pIdx->onError==OE_Default ){
3183             pIdx->onError = pIndex->onError;
3184           }
3185         }
3186         goto exit_create_index;
3187       }
3188     }
3189   }
3190 
3191   /* Link the new Index structure to its table and to the other
3192   ** in-memory database structures.
3193   */
3194   if( db->init.busy ){
3195     Index *p;
3196     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3197     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3198                           pIndex->zName, pIndex);
3199     if( p ){
3200       assert( p==pIndex );  /* Malloc must have failed */
3201       db->mallocFailed = 1;
3202       goto exit_create_index;
3203     }
3204     db->flags |= SQLITE_InternChanges;
3205     if( pTblName!=0 ){
3206       pIndex->tnum = db->init.newTnum;
3207     }
3208   }
3209 
3210   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3211   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3212   ** emit code to allocate the index rootpage on disk and make an entry for
3213   ** the index in the sqlite_master table and populate the index with
3214   ** content.  But, do not do this if we are simply reading the sqlite_master
3215   ** table to parse the schema, or if this index is the PRIMARY KEY index
3216   ** of a WITHOUT ROWID table.
3217   **
3218   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3219   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3220   ** has just been created, it contains no data and the index initialization
3221   ** step can be skipped.
3222   */
3223   else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){
3224     Vdbe *v;
3225     char *zStmt;
3226     int iMem = ++pParse->nMem;
3227 
3228     v = sqlite3GetVdbe(pParse);
3229     if( v==0 ) goto exit_create_index;
3230 
3231 
3232     /* Create the rootpage for the index
3233     */
3234     sqlite3BeginWriteOperation(pParse, 1, iDb);
3235     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3236 
3237     /* Gather the complete text of the CREATE INDEX statement into
3238     ** the zStmt variable
3239     */
3240     if( pStart ){
3241       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3242       if( pName->z[n-1]==';' ) n--;
3243       /* A named index with an explicit CREATE INDEX statement */
3244       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3245         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3246     }else{
3247       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3248       /* zStmt = sqlite3MPrintf(""); */
3249       zStmt = 0;
3250     }
3251 
3252     /* Add an entry in sqlite_master for this index
3253     */
3254     sqlite3NestedParse(pParse,
3255         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3256         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3257         pIndex->zName,
3258         pTab->zName,
3259         iMem,
3260         zStmt
3261     );
3262     sqlite3DbFree(db, zStmt);
3263 
3264     /* Fill the index with data and reparse the schema. Code an OP_Expire
3265     ** to invalidate all pre-compiled statements.
3266     */
3267     if( pTblName ){
3268       sqlite3RefillIndex(pParse, pIndex, iMem);
3269       sqlite3ChangeCookie(pParse, iDb);
3270       sqlite3VdbeAddParseSchemaOp(v, iDb,
3271          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3272       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3273     }
3274   }
3275 
3276   /* When adding an index to the list of indices for a table, make
3277   ** sure all indices labeled OE_Replace come after all those labeled
3278   ** OE_Ignore.  This is necessary for the correct constraint check
3279   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3280   ** UPDATE and INSERT statements.
3281   */
3282   if( db->init.busy || pTblName==0 ){
3283     if( onError!=OE_Replace || pTab->pIndex==0
3284          || pTab->pIndex->onError==OE_Replace){
3285       pIndex->pNext = pTab->pIndex;
3286       pTab->pIndex = pIndex;
3287     }else{
3288       Index *pOther = pTab->pIndex;
3289       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3290         pOther = pOther->pNext;
3291       }
3292       pIndex->pNext = pOther->pNext;
3293       pOther->pNext = pIndex;
3294     }
3295     pRet = pIndex;
3296     pIndex = 0;
3297   }
3298 
3299   /* Clean up before exiting */
3300 exit_create_index:
3301   if( pIndex ) freeIndex(db, pIndex);
3302   sqlite3ExprDelete(db, pPIWhere);
3303   sqlite3ExprListDelete(db, pList);
3304   sqlite3SrcListDelete(db, pTblName);
3305   sqlite3DbFree(db, zName);
3306   return pRet;
3307 }
3308 
3309 /*
3310 ** Fill the Index.aiRowEst[] array with default information - information
3311 ** to be used when we have not run the ANALYZE command.
3312 **
3313 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3314 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3315 ** number of rows in the table that match any particular value of the
3316 ** first column of the index.  aiRowEst[2] is an estimate of the number
3317 ** of rows that match any particular combination of the first 2 columns
3318 ** of the index.  And so forth.  It must always be the case that
3319 *
3320 **           aiRowEst[N]<=aiRowEst[N-1]
3321 **           aiRowEst[N]>=1
3322 **
3323 ** Apart from that, we have little to go on besides intuition as to
3324 ** how aiRowEst[] should be initialized.  The numbers generated here
3325 ** are based on typical values found in actual indices.
3326 */
3327 void sqlite3DefaultRowEst(Index *pIdx){
3328   /*                10,  9,  8,  7,  6 */
3329   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3330   LogEst *a = pIdx->aiRowLogEst;
3331   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3332   int i;
3333 
3334   /* Set the first entry (number of rows in the index) to the estimated
3335   ** number of rows in the table. Or 10, if the estimated number of rows
3336   ** in the table is less than that.  */
3337   a[0] = pIdx->pTable->nRowLogEst;
3338   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3339 
3340   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3341   ** 6 and each subsequent value (if any) is 5.  */
3342   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3343   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3344     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3345   }
3346 
3347   assert( 0==sqlite3LogEst(1) );
3348   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3349 }
3350 
3351 /*
3352 ** This routine will drop an existing named index.  This routine
3353 ** implements the DROP INDEX statement.
3354 */
3355 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3356   Index *pIndex;
3357   Vdbe *v;
3358   sqlite3 *db = pParse->db;
3359   int iDb;
3360 
3361   assert( pParse->nErr==0 );   /* Never called with prior errors */
3362   if( db->mallocFailed ){
3363     goto exit_drop_index;
3364   }
3365   assert( pName->nSrc==1 );
3366   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3367     goto exit_drop_index;
3368   }
3369   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3370   if( pIndex==0 ){
3371     if( !ifExists ){
3372       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3373     }else{
3374       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3375     }
3376     pParse->checkSchema = 1;
3377     goto exit_drop_index;
3378   }
3379   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3380     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3381       "or PRIMARY KEY constraint cannot be dropped", 0);
3382     goto exit_drop_index;
3383   }
3384   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3385 #ifndef SQLITE_OMIT_AUTHORIZATION
3386   {
3387     int code = SQLITE_DROP_INDEX;
3388     Table *pTab = pIndex->pTable;
3389     const char *zDb = db->aDb[iDb].zName;
3390     const char *zTab = SCHEMA_TABLE(iDb);
3391     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3392       goto exit_drop_index;
3393     }
3394     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3395     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3396       goto exit_drop_index;
3397     }
3398   }
3399 #endif
3400 
3401   /* Generate code to remove the index and from the master table */
3402   v = sqlite3GetVdbe(pParse);
3403   if( v ){
3404     sqlite3BeginWriteOperation(pParse, 1, iDb);
3405     sqlite3NestedParse(pParse,
3406        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3407        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3408     );
3409     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3410     sqlite3ChangeCookie(pParse, iDb);
3411     destroyRootPage(pParse, pIndex->tnum, iDb);
3412     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3413   }
3414 
3415 exit_drop_index:
3416   sqlite3SrcListDelete(db, pName);
3417 }
3418 
3419 /*
3420 ** pArray is a pointer to an array of objects. Each object in the
3421 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3422 ** to extend the array so that there is space for a new object at the end.
3423 **
3424 ** When this function is called, *pnEntry contains the current size of
3425 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3426 ** in total).
3427 **
3428 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3429 ** space allocated for the new object is zeroed, *pnEntry updated to
3430 ** reflect the new size of the array and a pointer to the new allocation
3431 ** returned. *pIdx is set to the index of the new array entry in this case.
3432 **
3433 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3434 ** unchanged and a copy of pArray returned.
3435 */
3436 void *sqlite3ArrayAllocate(
3437   sqlite3 *db,      /* Connection to notify of malloc failures */
3438   void *pArray,     /* Array of objects.  Might be reallocated */
3439   int szEntry,      /* Size of each object in the array */
3440   int *pnEntry,     /* Number of objects currently in use */
3441   int *pIdx         /* Write the index of a new slot here */
3442 ){
3443   char *z;
3444   int n = *pnEntry;
3445   if( (n & (n-1))==0 ){
3446     int sz = (n==0) ? 1 : 2*n;
3447     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3448     if( pNew==0 ){
3449       *pIdx = -1;
3450       return pArray;
3451     }
3452     pArray = pNew;
3453   }
3454   z = (char*)pArray;
3455   memset(&z[n * szEntry], 0, szEntry);
3456   *pIdx = n;
3457   ++*pnEntry;
3458   return pArray;
3459 }
3460 
3461 /*
3462 ** Append a new element to the given IdList.  Create a new IdList if
3463 ** need be.
3464 **
3465 ** A new IdList is returned, or NULL if malloc() fails.
3466 */
3467 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3468   int i;
3469   if( pList==0 ){
3470     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3471     if( pList==0 ) return 0;
3472   }
3473   pList->a = sqlite3ArrayAllocate(
3474       db,
3475       pList->a,
3476       sizeof(pList->a[0]),
3477       &pList->nId,
3478       &i
3479   );
3480   if( i<0 ){
3481     sqlite3IdListDelete(db, pList);
3482     return 0;
3483   }
3484   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3485   return pList;
3486 }
3487 
3488 /*
3489 ** Delete an IdList.
3490 */
3491 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3492   int i;
3493   if( pList==0 ) return;
3494   for(i=0; i<pList->nId; i++){
3495     sqlite3DbFree(db, pList->a[i].zName);
3496   }
3497   sqlite3DbFree(db, pList->a);
3498   sqlite3DbFree(db, pList);
3499 }
3500 
3501 /*
3502 ** Return the index in pList of the identifier named zId.  Return -1
3503 ** if not found.
3504 */
3505 int sqlite3IdListIndex(IdList *pList, const char *zName){
3506   int i;
3507   if( pList==0 ) return -1;
3508   for(i=0; i<pList->nId; i++){
3509     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3510   }
3511   return -1;
3512 }
3513 
3514 /*
3515 ** Expand the space allocated for the given SrcList object by
3516 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3517 ** New slots are zeroed.
3518 **
3519 ** For example, suppose a SrcList initially contains two entries: A,B.
3520 ** To append 3 new entries onto the end, do this:
3521 **
3522 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3523 **
3524 ** After the call above it would contain:  A, B, nil, nil, nil.
3525 ** If the iStart argument had been 1 instead of 2, then the result
3526 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3527 ** the iStart value would be 0.  The result then would
3528 ** be: nil, nil, nil, A, B.
3529 **
3530 ** If a memory allocation fails the SrcList is unchanged.  The
3531 ** db->mallocFailed flag will be set to true.
3532 */
3533 SrcList *sqlite3SrcListEnlarge(
3534   sqlite3 *db,       /* Database connection to notify of OOM errors */
3535   SrcList *pSrc,     /* The SrcList to be enlarged */
3536   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3537   int iStart         /* Index in pSrc->a[] of first new slot */
3538 ){
3539   int i;
3540 
3541   /* Sanity checking on calling parameters */
3542   assert( iStart>=0 );
3543   assert( nExtra>=1 );
3544   assert( pSrc!=0 );
3545   assert( iStart<=pSrc->nSrc );
3546 
3547   /* Allocate additional space if needed */
3548   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3549     SrcList *pNew;
3550     int nAlloc = pSrc->nSrc+nExtra;
3551     int nGot;
3552     pNew = sqlite3DbRealloc(db, pSrc,
3553                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3554     if( pNew==0 ){
3555       assert( db->mallocFailed );
3556       return pSrc;
3557     }
3558     pSrc = pNew;
3559     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3560     pSrc->nAlloc = nGot;
3561   }
3562 
3563   /* Move existing slots that come after the newly inserted slots
3564   ** out of the way */
3565   for(i=pSrc->nSrc-1; i>=iStart; i--){
3566     pSrc->a[i+nExtra] = pSrc->a[i];
3567   }
3568   pSrc->nSrc += nExtra;
3569 
3570   /* Zero the newly allocated slots */
3571   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3572   for(i=iStart; i<iStart+nExtra; i++){
3573     pSrc->a[i].iCursor = -1;
3574   }
3575 
3576   /* Return a pointer to the enlarged SrcList */
3577   return pSrc;
3578 }
3579 
3580 
3581 /*
3582 ** Append a new table name to the given SrcList.  Create a new SrcList if
3583 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3584 **
3585 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3586 ** SrcList might be the same as the SrcList that was input or it might be
3587 ** a new one.  If an OOM error does occurs, then the prior value of pList
3588 ** that is input to this routine is automatically freed.
3589 **
3590 ** If pDatabase is not null, it means that the table has an optional
3591 ** database name prefix.  Like this:  "database.table".  The pDatabase
3592 ** points to the table name and the pTable points to the database name.
3593 ** The SrcList.a[].zName field is filled with the table name which might
3594 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3595 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3596 ** or with NULL if no database is specified.
3597 **
3598 ** In other words, if call like this:
3599 **
3600 **         sqlite3SrcListAppend(D,A,B,0);
3601 **
3602 ** Then B is a table name and the database name is unspecified.  If called
3603 ** like this:
3604 **
3605 **         sqlite3SrcListAppend(D,A,B,C);
3606 **
3607 ** Then C is the table name and B is the database name.  If C is defined
3608 ** then so is B.  In other words, we never have a case where:
3609 **
3610 **         sqlite3SrcListAppend(D,A,0,C);
3611 **
3612 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3613 ** before being added to the SrcList.
3614 */
3615 SrcList *sqlite3SrcListAppend(
3616   sqlite3 *db,        /* Connection to notify of malloc failures */
3617   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3618   Token *pTable,      /* Table to append */
3619   Token *pDatabase    /* Database of the table */
3620 ){
3621   struct SrcList_item *pItem;
3622   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3623   if( pList==0 ){
3624     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3625     if( pList==0 ) return 0;
3626     pList->nAlloc = 1;
3627   }
3628   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3629   if( db->mallocFailed ){
3630     sqlite3SrcListDelete(db, pList);
3631     return 0;
3632   }
3633   pItem = &pList->a[pList->nSrc-1];
3634   if( pDatabase && pDatabase->z==0 ){
3635     pDatabase = 0;
3636   }
3637   if( pDatabase ){
3638     Token *pTemp = pDatabase;
3639     pDatabase = pTable;
3640     pTable = pTemp;
3641   }
3642   pItem->zName = sqlite3NameFromToken(db, pTable);
3643   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3644   return pList;
3645 }
3646 
3647 /*
3648 ** Assign VdbeCursor index numbers to all tables in a SrcList
3649 */
3650 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3651   int i;
3652   struct SrcList_item *pItem;
3653   assert(pList || pParse->db->mallocFailed );
3654   if( pList ){
3655     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3656       if( pItem->iCursor>=0 ) break;
3657       pItem->iCursor = pParse->nTab++;
3658       if( pItem->pSelect ){
3659         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3660       }
3661     }
3662   }
3663 }
3664 
3665 /*
3666 ** Delete an entire SrcList including all its substructure.
3667 */
3668 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3669   int i;
3670   struct SrcList_item *pItem;
3671   if( pList==0 ) return;
3672   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3673     sqlite3DbFree(db, pItem->zDatabase);
3674     sqlite3DbFree(db, pItem->zName);
3675     sqlite3DbFree(db, pItem->zAlias);
3676     sqlite3DbFree(db, pItem->zIndex);
3677     sqlite3DeleteTable(db, pItem->pTab);
3678     sqlite3SelectDelete(db, pItem->pSelect);
3679     sqlite3ExprDelete(db, pItem->pOn);
3680     sqlite3IdListDelete(db, pItem->pUsing);
3681   }
3682   sqlite3DbFree(db, pList);
3683 }
3684 
3685 /*
3686 ** This routine is called by the parser to add a new term to the
3687 ** end of a growing FROM clause.  The "p" parameter is the part of
3688 ** the FROM clause that has already been constructed.  "p" is NULL
3689 ** if this is the first term of the FROM clause.  pTable and pDatabase
3690 ** are the name of the table and database named in the FROM clause term.
3691 ** pDatabase is NULL if the database name qualifier is missing - the
3692 ** usual case.  If the term has an alias, then pAlias points to the
3693 ** alias token.  If the term is a subquery, then pSubquery is the
3694 ** SELECT statement that the subquery encodes.  The pTable and
3695 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3696 ** parameters are the content of the ON and USING clauses.
3697 **
3698 ** Return a new SrcList which encodes is the FROM with the new
3699 ** term added.
3700 */
3701 SrcList *sqlite3SrcListAppendFromTerm(
3702   Parse *pParse,          /* Parsing context */
3703   SrcList *p,             /* The left part of the FROM clause already seen */
3704   Token *pTable,          /* Name of the table to add to the FROM clause */
3705   Token *pDatabase,       /* Name of the database containing pTable */
3706   Token *pAlias,          /* The right-hand side of the AS subexpression */
3707   Select *pSubquery,      /* A subquery used in place of a table name */
3708   Expr *pOn,              /* The ON clause of a join */
3709   IdList *pUsing          /* The USING clause of a join */
3710 ){
3711   struct SrcList_item *pItem;
3712   sqlite3 *db = pParse->db;
3713   if( !p && (pOn || pUsing) ){
3714     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3715       (pOn ? "ON" : "USING")
3716     );
3717     goto append_from_error;
3718   }
3719   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3720   if( p==0 || NEVER(p->nSrc==0) ){
3721     goto append_from_error;
3722   }
3723   pItem = &p->a[p->nSrc-1];
3724   assert( pAlias!=0 );
3725   if( pAlias->n ){
3726     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3727   }
3728   pItem->pSelect = pSubquery;
3729   pItem->pOn = pOn;
3730   pItem->pUsing = pUsing;
3731   return p;
3732 
3733  append_from_error:
3734   assert( p==0 );
3735   sqlite3ExprDelete(db, pOn);
3736   sqlite3IdListDelete(db, pUsing);
3737   sqlite3SelectDelete(db, pSubquery);
3738   return 0;
3739 }
3740 
3741 /*
3742 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3743 ** element of the source-list passed as the second argument.
3744 */
3745 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3746   assert( pIndexedBy!=0 );
3747   if( p && ALWAYS(p->nSrc>0) ){
3748     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3749     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3750     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3751       /* A "NOT INDEXED" clause was supplied. See parse.y
3752       ** construct "indexed_opt" for details. */
3753       pItem->notIndexed = 1;
3754     }else{
3755       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3756     }
3757   }
3758 }
3759 
3760 /*
3761 ** When building up a FROM clause in the parser, the join operator
3762 ** is initially attached to the left operand.  But the code generator
3763 ** expects the join operator to be on the right operand.  This routine
3764 ** Shifts all join operators from left to right for an entire FROM
3765 ** clause.
3766 **
3767 ** Example: Suppose the join is like this:
3768 **
3769 **           A natural cross join B
3770 **
3771 ** The operator is "natural cross join".  The A and B operands are stored
3772 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3773 ** operator with A.  This routine shifts that operator over to B.
3774 */
3775 void sqlite3SrcListShiftJoinType(SrcList *p){
3776   if( p ){
3777     int i;
3778     assert( p->a || p->nSrc==0 );
3779     for(i=p->nSrc-1; i>0; i--){
3780       p->a[i].jointype = p->a[i-1].jointype;
3781     }
3782     p->a[0].jointype = 0;
3783   }
3784 }
3785 
3786 /*
3787 ** Begin a transaction
3788 */
3789 void sqlite3BeginTransaction(Parse *pParse, int type){
3790   sqlite3 *db;
3791   Vdbe *v;
3792   int i;
3793 
3794   assert( pParse!=0 );
3795   db = pParse->db;
3796   assert( db!=0 );
3797 /*  if( db->aDb[0].pBt==0 ) return; */
3798   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3799     return;
3800   }
3801   v = sqlite3GetVdbe(pParse);
3802   if( !v ) return;
3803   if( type!=TK_DEFERRED ){
3804     for(i=0; i<db->nDb; i++){
3805       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3806       sqlite3VdbeUsesBtree(v, i);
3807     }
3808   }
3809   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3810 }
3811 
3812 /*
3813 ** Commit a transaction
3814 */
3815 void sqlite3CommitTransaction(Parse *pParse){
3816   Vdbe *v;
3817 
3818   assert( pParse!=0 );
3819   assert( pParse->db!=0 );
3820   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3821     return;
3822   }
3823   v = sqlite3GetVdbe(pParse);
3824   if( v ){
3825     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3826   }
3827 }
3828 
3829 /*
3830 ** Rollback a transaction
3831 */
3832 void sqlite3RollbackTransaction(Parse *pParse){
3833   Vdbe *v;
3834 
3835   assert( pParse!=0 );
3836   assert( pParse->db!=0 );
3837   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3838     return;
3839   }
3840   v = sqlite3GetVdbe(pParse);
3841   if( v ){
3842     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3843   }
3844 }
3845 
3846 /*
3847 ** This function is called by the parser when it parses a command to create,
3848 ** release or rollback an SQL savepoint.
3849 */
3850 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3851   char *zName = sqlite3NameFromToken(pParse->db, pName);
3852   if( zName ){
3853     Vdbe *v = sqlite3GetVdbe(pParse);
3854 #ifndef SQLITE_OMIT_AUTHORIZATION
3855     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3856     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3857 #endif
3858     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3859       sqlite3DbFree(pParse->db, zName);
3860       return;
3861     }
3862     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3863   }
3864 }
3865 
3866 /*
3867 ** Make sure the TEMP database is open and available for use.  Return
3868 ** the number of errors.  Leave any error messages in the pParse structure.
3869 */
3870 int sqlite3OpenTempDatabase(Parse *pParse){
3871   sqlite3 *db = pParse->db;
3872   if( db->aDb[1].pBt==0 && !pParse->explain ){
3873     int rc;
3874     Btree *pBt;
3875     static const int flags =
3876           SQLITE_OPEN_READWRITE |
3877           SQLITE_OPEN_CREATE |
3878           SQLITE_OPEN_EXCLUSIVE |
3879           SQLITE_OPEN_DELETEONCLOSE |
3880           SQLITE_OPEN_TEMP_DB;
3881 
3882     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3883     if( rc!=SQLITE_OK ){
3884       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3885         "file for storing temporary tables");
3886       pParse->rc = rc;
3887       return 1;
3888     }
3889     db->aDb[1].pBt = pBt;
3890     assert( db->aDb[1].pSchema );
3891     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3892       db->mallocFailed = 1;
3893       return 1;
3894     }
3895   }
3896   return 0;
3897 }
3898 
3899 /*
3900 ** Record the fact that the schema cookie will need to be verified
3901 ** for database iDb.  The code to actually verify the schema cookie
3902 ** will occur at the end of the top-level VDBE and will be generated
3903 ** later, by sqlite3FinishCoding().
3904 */
3905 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3906   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3907   sqlite3 *db = pToplevel->db;
3908 
3909   assert( iDb>=0 && iDb<db->nDb );
3910   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3911   assert( iDb<SQLITE_MAX_ATTACHED+2 );
3912   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3913   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
3914     DbMaskSet(pToplevel->cookieMask, iDb);
3915     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3916     if( !OMIT_TEMPDB && iDb==1 ){
3917       sqlite3OpenTempDatabase(pToplevel);
3918     }
3919   }
3920 }
3921 
3922 /*
3923 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3924 ** attached database. Otherwise, invoke it for the database named zDb only.
3925 */
3926 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3927   sqlite3 *db = pParse->db;
3928   int i;
3929   for(i=0; i<db->nDb; i++){
3930     Db *pDb = &db->aDb[i];
3931     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3932       sqlite3CodeVerifySchema(pParse, i);
3933     }
3934   }
3935 }
3936 
3937 /*
3938 ** Generate VDBE code that prepares for doing an operation that
3939 ** might change the database.
3940 **
3941 ** This routine starts a new transaction if we are not already within
3942 ** a transaction.  If we are already within a transaction, then a checkpoint
3943 ** is set if the setStatement parameter is true.  A checkpoint should
3944 ** be set for operations that might fail (due to a constraint) part of
3945 ** the way through and which will need to undo some writes without having to
3946 ** rollback the whole transaction.  For operations where all constraints
3947 ** can be checked before any changes are made to the database, it is never
3948 ** necessary to undo a write and the checkpoint should not be set.
3949 */
3950 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3951   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3952   sqlite3CodeVerifySchema(pParse, iDb);
3953   DbMaskSet(pToplevel->writeMask, iDb);
3954   pToplevel->isMultiWrite |= setStatement;
3955 }
3956 
3957 /*
3958 ** Indicate that the statement currently under construction might write
3959 ** more than one entry (example: deleting one row then inserting another,
3960 ** inserting multiple rows in a table, or inserting a row and index entries.)
3961 ** If an abort occurs after some of these writes have completed, then it will
3962 ** be necessary to undo the completed writes.
3963 */
3964 void sqlite3MultiWrite(Parse *pParse){
3965   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3966   pToplevel->isMultiWrite = 1;
3967 }
3968 
3969 /*
3970 ** The code generator calls this routine if is discovers that it is
3971 ** possible to abort a statement prior to completion.  In order to
3972 ** perform this abort without corrupting the database, we need to make
3973 ** sure that the statement is protected by a statement transaction.
3974 **
3975 ** Technically, we only need to set the mayAbort flag if the
3976 ** isMultiWrite flag was previously set.  There is a time dependency
3977 ** such that the abort must occur after the multiwrite.  This makes
3978 ** some statements involving the REPLACE conflict resolution algorithm
3979 ** go a little faster.  But taking advantage of this time dependency
3980 ** makes it more difficult to prove that the code is correct (in
3981 ** particular, it prevents us from writing an effective
3982 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3983 ** to take the safe route and skip the optimization.
3984 */
3985 void sqlite3MayAbort(Parse *pParse){
3986   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3987   pToplevel->mayAbort = 1;
3988 }
3989 
3990 /*
3991 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3992 ** error. The onError parameter determines which (if any) of the statement
3993 ** and/or current transaction is rolled back.
3994 */
3995 void sqlite3HaltConstraint(
3996   Parse *pParse,    /* Parsing context */
3997   int errCode,      /* extended error code */
3998   int onError,      /* Constraint type */
3999   char *p4,         /* Error message */
4000   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4001   u8 p5Errmsg       /* P5_ErrMsg type */
4002 ){
4003   Vdbe *v = sqlite3GetVdbe(pParse);
4004   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4005   if( onError==OE_Abort ){
4006     sqlite3MayAbort(pParse);
4007   }
4008   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4009   if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
4010 }
4011 
4012 /*
4013 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4014 */
4015 void sqlite3UniqueConstraint(
4016   Parse *pParse,    /* Parsing context */
4017   int onError,      /* Constraint type */
4018   Index *pIdx       /* The index that triggers the constraint */
4019 ){
4020   char *zErr;
4021   int j;
4022   StrAccum errMsg;
4023   Table *pTab = pIdx->pTable;
4024 
4025   sqlite3StrAccumInit(&errMsg, 0, 0, 200);
4026   errMsg.db = pParse->db;
4027   for(j=0; j<pIdx->nKeyCol; j++){
4028     char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4029     if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4030     sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4031     sqlite3StrAccumAppend(&errMsg, ".", 1);
4032     sqlite3StrAccumAppendAll(&errMsg, zCol);
4033   }
4034   zErr = sqlite3StrAccumFinish(&errMsg);
4035   sqlite3HaltConstraint(pParse,
4036     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4037                             : SQLITE_CONSTRAINT_UNIQUE,
4038     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4039 }
4040 
4041 
4042 /*
4043 ** Code an OP_Halt due to non-unique rowid.
4044 */
4045 void sqlite3RowidConstraint(
4046   Parse *pParse,    /* Parsing context */
4047   int onError,      /* Conflict resolution algorithm */
4048   Table *pTab       /* The table with the non-unique rowid */
4049 ){
4050   char *zMsg;
4051   int rc;
4052   if( pTab->iPKey>=0 ){
4053     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4054                           pTab->aCol[pTab->iPKey].zName);
4055     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4056   }else{
4057     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4058     rc = SQLITE_CONSTRAINT_ROWID;
4059   }
4060   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4061                         P5_ConstraintUnique);
4062 }
4063 
4064 /*
4065 ** Check to see if pIndex uses the collating sequence pColl.  Return
4066 ** true if it does and false if it does not.
4067 */
4068 #ifndef SQLITE_OMIT_REINDEX
4069 static int collationMatch(const char *zColl, Index *pIndex){
4070   int i;
4071   assert( zColl!=0 );
4072   for(i=0; i<pIndex->nColumn; i++){
4073     const char *z = pIndex->azColl[i];
4074     assert( z!=0 || pIndex->aiColumn[i]<0 );
4075     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4076       return 1;
4077     }
4078   }
4079   return 0;
4080 }
4081 #endif
4082 
4083 /*
4084 ** Recompute all indices of pTab that use the collating sequence pColl.
4085 ** If pColl==0 then recompute all indices of pTab.
4086 */
4087 #ifndef SQLITE_OMIT_REINDEX
4088 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4089   Index *pIndex;              /* An index associated with pTab */
4090 
4091   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4092     if( zColl==0 || collationMatch(zColl, pIndex) ){
4093       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4094       sqlite3BeginWriteOperation(pParse, 0, iDb);
4095       sqlite3RefillIndex(pParse, pIndex, -1);
4096     }
4097   }
4098 }
4099 #endif
4100 
4101 /*
4102 ** Recompute all indices of all tables in all databases where the
4103 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4104 ** all indices everywhere.
4105 */
4106 #ifndef SQLITE_OMIT_REINDEX
4107 static void reindexDatabases(Parse *pParse, char const *zColl){
4108   Db *pDb;                    /* A single database */
4109   int iDb;                    /* The database index number */
4110   sqlite3 *db = pParse->db;   /* The database connection */
4111   HashElem *k;                /* For looping over tables in pDb */
4112   Table *pTab;                /* A table in the database */
4113 
4114   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4115   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4116     assert( pDb!=0 );
4117     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4118       pTab = (Table*)sqliteHashData(k);
4119       reindexTable(pParse, pTab, zColl);
4120     }
4121   }
4122 }
4123 #endif
4124 
4125 /*
4126 ** Generate code for the REINDEX command.
4127 **
4128 **        REINDEX                            -- 1
4129 **        REINDEX  <collation>               -- 2
4130 **        REINDEX  ?<database>.?<tablename>  -- 3
4131 **        REINDEX  ?<database>.?<indexname>  -- 4
4132 **
4133 ** Form 1 causes all indices in all attached databases to be rebuilt.
4134 ** Form 2 rebuilds all indices in all databases that use the named
4135 ** collating function.  Forms 3 and 4 rebuild the named index or all
4136 ** indices associated with the named table.
4137 */
4138 #ifndef SQLITE_OMIT_REINDEX
4139 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4140   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4141   char *z;                    /* Name of a table or index */
4142   const char *zDb;            /* Name of the database */
4143   Table *pTab;                /* A table in the database */
4144   Index *pIndex;              /* An index associated with pTab */
4145   int iDb;                    /* The database index number */
4146   sqlite3 *db = pParse->db;   /* The database connection */
4147   Token *pObjName;            /* Name of the table or index to be reindexed */
4148 
4149   /* Read the database schema. If an error occurs, leave an error message
4150   ** and code in pParse and return NULL. */
4151   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4152     return;
4153   }
4154 
4155   if( pName1==0 ){
4156     reindexDatabases(pParse, 0);
4157     return;
4158   }else if( NEVER(pName2==0) || pName2->z==0 ){
4159     char *zColl;
4160     assert( pName1->z );
4161     zColl = sqlite3NameFromToken(pParse->db, pName1);
4162     if( !zColl ) return;
4163     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4164     if( pColl ){
4165       reindexDatabases(pParse, zColl);
4166       sqlite3DbFree(db, zColl);
4167       return;
4168     }
4169     sqlite3DbFree(db, zColl);
4170   }
4171   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4172   if( iDb<0 ) return;
4173   z = sqlite3NameFromToken(db, pObjName);
4174   if( z==0 ) return;
4175   zDb = db->aDb[iDb].zName;
4176   pTab = sqlite3FindTable(db, z, zDb);
4177   if( pTab ){
4178     reindexTable(pParse, pTab, 0);
4179     sqlite3DbFree(db, z);
4180     return;
4181   }
4182   pIndex = sqlite3FindIndex(db, z, zDb);
4183   sqlite3DbFree(db, z);
4184   if( pIndex ){
4185     sqlite3BeginWriteOperation(pParse, 0, iDb);
4186     sqlite3RefillIndex(pParse, pIndex, -1);
4187     return;
4188   }
4189   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4190 }
4191 #endif
4192 
4193 /*
4194 ** Return a KeyInfo structure that is appropriate for the given Index.
4195 **
4196 ** The KeyInfo structure for an index is cached in the Index object.
4197 ** So there might be multiple references to the returned pointer.  The
4198 ** caller should not try to modify the KeyInfo object.
4199 **
4200 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4201 ** when it has finished using it.
4202 */
4203 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4204   int i;
4205   int nCol = pIdx->nColumn;
4206   int nKey = pIdx->nKeyCol;
4207   KeyInfo *pKey;
4208   if( pParse->nErr ) return 0;
4209   if( pIdx->uniqNotNull ){
4210     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4211   }else{
4212     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4213   }
4214   if( pKey ){
4215     assert( sqlite3KeyInfoIsWriteable(pKey) );
4216     for(i=0; i<nCol; i++){
4217       char *zColl = pIdx->azColl[i];
4218       assert( zColl!=0 );
4219       pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
4220                         sqlite3LocateCollSeq(pParse, zColl);
4221       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4222     }
4223     if( pParse->nErr ){
4224       sqlite3KeyInfoUnref(pKey);
4225       pKey = 0;
4226     }
4227   }
4228   return pKey;
4229 }
4230 
4231 #ifndef SQLITE_OMIT_CTE
4232 /*
4233 ** This routine is invoked once per CTE by the parser while parsing a
4234 ** WITH clause.
4235 */
4236 With *sqlite3WithAdd(
4237   Parse *pParse,          /* Parsing context */
4238   With *pWith,            /* Existing WITH clause, or NULL */
4239   Token *pName,           /* Name of the common-table */
4240   ExprList *pArglist,     /* Optional column name list for the table */
4241   Select *pQuery          /* Query used to initialize the table */
4242 ){
4243   sqlite3 *db = pParse->db;
4244   With *pNew;
4245   char *zName;
4246 
4247   /* Check that the CTE name is unique within this WITH clause. If
4248   ** not, store an error in the Parse structure. */
4249   zName = sqlite3NameFromToken(pParse->db, pName);
4250   if( zName && pWith ){
4251     int i;
4252     for(i=0; i<pWith->nCte; i++){
4253       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4254         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4255       }
4256     }
4257   }
4258 
4259   if( pWith ){
4260     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4261     pNew = sqlite3DbRealloc(db, pWith, nByte);
4262   }else{
4263     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4264   }
4265   assert( zName!=0 || pNew==0 );
4266   assert( db->mallocFailed==0 || pNew==0 );
4267 
4268   if( pNew==0 ){
4269     sqlite3ExprListDelete(db, pArglist);
4270     sqlite3SelectDelete(db, pQuery);
4271     sqlite3DbFree(db, zName);
4272     pNew = pWith;
4273   }else{
4274     pNew->a[pNew->nCte].pSelect = pQuery;
4275     pNew->a[pNew->nCte].pCols = pArglist;
4276     pNew->a[pNew->nCte].zName = zName;
4277     pNew->a[pNew->nCte].zErr = 0;
4278     pNew->nCte++;
4279   }
4280 
4281   return pNew;
4282 }
4283 
4284 /*
4285 ** Free the contents of the With object passed as the second argument.
4286 */
4287 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4288   if( pWith ){
4289     int i;
4290     for(i=0; i<pWith->nCte; i++){
4291       struct Cte *pCte = &pWith->a[i];
4292       sqlite3ExprListDelete(db, pCte->pCols);
4293       sqlite3SelectDelete(db, pCte->pSelect);
4294       sqlite3DbFree(db, pCte->zName);
4295     }
4296     sqlite3DbFree(db, pWith);
4297   }
4298 }
4299 #endif /* !defined(SQLITE_OMIT_CTE) */
4300