xref: /sqlite-3.40.0/src/build.c (revision c56fac74)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
120 */
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m){
123   int i;
124   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
125   return 1;
126 }
127 #endif
128 
129 /*
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared.  This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
134 ** parse.
135 **
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
138 */
139 void sqlite3FinishCoding(Parse *pParse){
140   sqlite3 *db;
141   Vdbe *v;
142 
143   assert( pParse->pToplevel==0 );
144   db = pParse->db;
145   if( pParse->nested ) return;
146   if( db->mallocFailed || pParse->nErr ){
147     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
148     return;
149   }
150 
151   /* Begin by generating some termination code at the end of the
152   ** vdbe program
153   */
154   v = sqlite3GetVdbe(pParse);
155   assert( !pParse->isMultiWrite
156        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
157   if( v ){
158     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
159     sqlite3VdbeAddOp0(v, OP_Halt);
160 
161 #if SQLITE_USER_AUTHENTICATION
162     if( pParse->nTableLock>0 && db->init.busy==0 ){
163       sqlite3UserAuthInit(db);
164       if( db->auth.authLevel<UAUTH_User ){
165         pParse->rc = SQLITE_AUTH_USER;
166         sqlite3ErrorMsg(pParse, "user not authenticated");
167         return;
168       }
169     }
170 #endif
171 
172     /* The cookie mask contains one bit for each database file open.
173     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
174     ** set for each database that is used.  Generate code to start a
175     ** transaction on each used database and to verify the schema cookie
176     ** on each used database.
177     */
178     if( db->mallocFailed==0
179      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
180     ){
181       int iDb, i;
182       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
183       sqlite3VdbeJumpHere(v, 0);
184       for(iDb=0; iDb<db->nDb; iDb++){
185         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
186         sqlite3VdbeUsesBtree(v, iDb);
187         sqlite3VdbeAddOp4Int(v,
188           OP_Transaction,                    /* Opcode */
189           iDb,                               /* P1 */
190           DbMaskTest(pParse->writeMask,iDb), /* P2 */
191           pParse->cookieValue[iDb],          /* P3 */
192           db->aDb[iDb].pSchema->iGeneration  /* P4 */
193         );
194         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
195         VdbeComment((v,
196               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
197       }
198 #ifndef SQLITE_OMIT_VIRTUALTABLE
199       for(i=0; i<pParse->nVtabLock; i++){
200         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
201         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
202       }
203       pParse->nVtabLock = 0;
204 #endif
205 
206       /* Once all the cookies have been verified and transactions opened,
207       ** obtain the required table-locks. This is a no-op unless the
208       ** shared-cache feature is enabled.
209       */
210       codeTableLocks(pParse);
211 
212       /* Initialize any AUTOINCREMENT data structures required.
213       */
214       sqlite3AutoincrementBegin(pParse);
215 
216       /* Code constant expressions that where factored out of inner loops */
217       if( pParse->pConstExpr ){
218         ExprList *pEL = pParse->pConstExpr;
219         pParse->okConstFactor = 0;
220         for(i=0; i<pEL->nExpr; i++){
221           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
222         }
223       }
224 
225       /* Finally, jump back to the beginning of the executable code. */
226       sqlite3VdbeGoto(v, 1);
227     }
228   }
229 
230 
231   /* Get the VDBE program ready for execution
232   */
233   if( v && pParse->nErr==0 && !db->mallocFailed ){
234     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
235     /* A minimum of one cursor is required if autoincrement is used
236     *  See ticket [a696379c1f08866] */
237     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
238     sqlite3VdbeMakeReady(v, pParse);
239     pParse->rc = SQLITE_DONE;
240     pParse->colNamesSet = 0;
241   }else{
242     pParse->rc = SQLITE_ERROR;
243   }
244   pParse->nTab = 0;
245   pParse->nMem = 0;
246   pParse->nSet = 0;
247   pParse->nVar = 0;
248   DbMaskZero(pParse->cookieMask);
249 }
250 
251 /*
252 ** Run the parser and code generator recursively in order to generate
253 ** code for the SQL statement given onto the end of the pParse context
254 ** currently under construction.  When the parser is run recursively
255 ** this way, the final OP_Halt is not appended and other initialization
256 ** and finalization steps are omitted because those are handling by the
257 ** outermost parser.
258 **
259 ** Not everything is nestable.  This facility is designed to permit
260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
261 ** care if you decide to try to use this routine for some other purposes.
262 */
263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
264   va_list ap;
265   char *zSql;
266   char *zErrMsg = 0;
267   sqlite3 *db = pParse->db;
268 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
269   char saveBuf[SAVE_SZ];
270 
271   if( pParse->nErr ) return;
272   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
273   va_start(ap, zFormat);
274   zSql = sqlite3VMPrintf(db, zFormat, ap);
275   va_end(ap);
276   if( zSql==0 ){
277     return;   /* A malloc must have failed */
278   }
279   pParse->nested++;
280   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
281   memset(&pParse->nVar, 0, SAVE_SZ);
282   sqlite3RunParser(pParse, zSql, &zErrMsg);
283   sqlite3DbFree(db, zErrMsg);
284   sqlite3DbFree(db, zSql);
285   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
286   pParse->nested--;
287 }
288 
289 #if SQLITE_USER_AUTHENTICATION
290 /*
291 ** Return TRUE if zTable is the name of the system table that stores the
292 ** list of users and their access credentials.
293 */
294 int sqlite3UserAuthTable(const char *zTable){
295   return sqlite3_stricmp(zTable, "sqlite_user")==0;
296 }
297 #endif
298 
299 /*
300 ** Locate the in-memory structure that describes a particular database
301 ** table given the name of that table and (optionally) the name of the
302 ** database containing the table.  Return NULL if not found.
303 **
304 ** If zDatabase is 0, all databases are searched for the table and the
305 ** first matching table is returned.  (No checking for duplicate table
306 ** names is done.)  The search order is TEMP first, then MAIN, then any
307 ** auxiliary databases added using the ATTACH command.
308 **
309 ** See also sqlite3LocateTable().
310 */
311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
312   Table *p = 0;
313   int i;
314 
315   /* All mutexes are required for schema access.  Make sure we hold them. */
316   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
317 #if SQLITE_USER_AUTHENTICATION
318   /* Only the admin user is allowed to know that the sqlite_user table
319   ** exists */
320   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
321     return 0;
322   }
323 #endif
324   for(i=OMIT_TEMPDB; i<db->nDb; i++){
325     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
326     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
327     assert( sqlite3SchemaMutexHeld(db, j, 0) );
328     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
329     if( p ) break;
330   }
331   return p;
332 }
333 
334 /*
335 ** Locate the in-memory structure that describes a particular database
336 ** table given the name of that table and (optionally) the name of the
337 ** database containing the table.  Return NULL if not found.  Also leave an
338 ** error message in pParse->zErrMsg.
339 **
340 ** The difference between this routine and sqlite3FindTable() is that this
341 ** routine leaves an error message in pParse->zErrMsg where
342 ** sqlite3FindTable() does not.
343 */
344 Table *sqlite3LocateTable(
345   Parse *pParse,         /* context in which to report errors */
346   int isView,            /* True if looking for a VIEW rather than a TABLE */
347   const char *zName,     /* Name of the table we are looking for */
348   const char *zDbase     /* Name of the database.  Might be NULL */
349 ){
350   Table *p;
351 
352   /* Read the database schema. If an error occurs, leave an error message
353   ** and code in pParse and return NULL. */
354   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
355     return 0;
356   }
357 
358   p = sqlite3FindTable(pParse->db, zName, zDbase);
359   if( p==0 ){
360     const char *zMsg = isView ? "no such view" : "no such table";
361 #ifndef SQLITE_OMIT_VIRTUALTABLE
362     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
363       /* If zName is the not the name of a table in the schema created using
364       ** CREATE, then check to see if it is the name of an virtual table that
365       ** can be an eponymous virtual table. */
366       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
367       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
368         return pMod->pEpoTab;
369       }
370     }
371 #endif
372     if( zDbase ){
373       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
374     }else{
375       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376     }
377     pParse->checkSchema = 1;
378   }
379 #if SQLITE_USER_AUTHENTICATION
380   else if( pParse->db->auth.authLevel<UAUTH_User ){
381     sqlite3ErrorMsg(pParse, "user not authenticated");
382     p = 0;
383   }
384 #endif
385   return p;
386 }
387 
388 /*
389 ** Locate the table identified by *p.
390 **
391 ** This is a wrapper around sqlite3LocateTable(). The difference between
392 ** sqlite3LocateTable() and this function is that this function restricts
393 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
394 ** non-NULL if it is part of a view or trigger program definition. See
395 ** sqlite3FixSrcList() for details.
396 */
397 Table *sqlite3LocateTableItem(
398   Parse *pParse,
399   int isView,
400   struct SrcList_item *p
401 ){
402   const char *zDb;
403   assert( p->pSchema==0 || p->zDatabase==0 );
404   if( p->pSchema ){
405     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
406     zDb = pParse->db->aDb[iDb].zName;
407   }else{
408     zDb = p->zDatabase;
409   }
410   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
411 }
412 
413 /*
414 ** Locate the in-memory structure that describes
415 ** a particular index given the name of that index
416 ** and the name of the database that contains the index.
417 ** Return NULL if not found.
418 **
419 ** If zDatabase is 0, all databases are searched for the
420 ** table and the first matching index is returned.  (No checking
421 ** for duplicate index names is done.)  The search order is
422 ** TEMP first, then MAIN, then any auxiliary databases added
423 ** using the ATTACH command.
424 */
425 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
426   Index *p = 0;
427   int i;
428   /* All mutexes are required for schema access.  Make sure we hold them. */
429   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
430   for(i=OMIT_TEMPDB; i<db->nDb; i++){
431     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
432     Schema *pSchema = db->aDb[j].pSchema;
433     assert( pSchema );
434     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
435     assert( sqlite3SchemaMutexHeld(db, j, 0) );
436     p = sqlite3HashFind(&pSchema->idxHash, zName);
437     if( p ) break;
438   }
439   return p;
440 }
441 
442 /*
443 ** Reclaim the memory used by an index
444 */
445 static void freeIndex(sqlite3 *db, Index *p){
446 #ifndef SQLITE_OMIT_ANALYZE
447   sqlite3DeleteIndexSamples(db, p);
448 #endif
449   sqlite3ExprDelete(db, p->pPartIdxWhere);
450   sqlite3ExprListDelete(db, p->aColExpr);
451   sqlite3DbFree(db, p->zColAff);
452   if( p->isResized ) sqlite3DbFree(db, p->azColl);
453 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
454   sqlite3_free(p->aiRowEst);
455 #endif
456   sqlite3DbFree(db, p);
457 }
458 
459 /*
460 ** For the index called zIdxName which is found in the database iDb,
461 ** unlike that index from its Table then remove the index from
462 ** the index hash table and free all memory structures associated
463 ** with the index.
464 */
465 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
466   Index *pIndex;
467   Hash *pHash;
468 
469   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
470   pHash = &db->aDb[iDb].pSchema->idxHash;
471   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
472   if( ALWAYS(pIndex) ){
473     if( pIndex->pTable->pIndex==pIndex ){
474       pIndex->pTable->pIndex = pIndex->pNext;
475     }else{
476       Index *p;
477       /* Justification of ALWAYS();  The index must be on the list of
478       ** indices. */
479       p = pIndex->pTable->pIndex;
480       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
481       if( ALWAYS(p && p->pNext==pIndex) ){
482         p->pNext = pIndex->pNext;
483       }
484     }
485     freeIndex(db, pIndex);
486   }
487   db->flags |= SQLITE_InternChanges;
488 }
489 
490 /*
491 ** Look through the list of open database files in db->aDb[] and if
492 ** any have been closed, remove them from the list.  Reallocate the
493 ** db->aDb[] structure to a smaller size, if possible.
494 **
495 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
496 ** are never candidates for being collapsed.
497 */
498 void sqlite3CollapseDatabaseArray(sqlite3 *db){
499   int i, j;
500   for(i=j=2; i<db->nDb; i++){
501     struct Db *pDb = &db->aDb[i];
502     if( pDb->pBt==0 ){
503       sqlite3DbFree(db, pDb->zName);
504       pDb->zName = 0;
505       continue;
506     }
507     if( j<i ){
508       db->aDb[j] = db->aDb[i];
509     }
510     j++;
511   }
512   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
513   db->nDb = j;
514   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
515     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
516     sqlite3DbFree(db, db->aDb);
517     db->aDb = db->aDbStatic;
518   }
519 }
520 
521 /*
522 ** Reset the schema for the database at index iDb.  Also reset the
523 ** TEMP schema.
524 */
525 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
526   Db *pDb;
527   assert( iDb<db->nDb );
528 
529   /* Case 1:  Reset the single schema identified by iDb */
530   pDb = &db->aDb[iDb];
531   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
532   assert( pDb->pSchema!=0 );
533   sqlite3SchemaClear(pDb->pSchema);
534 
535   /* If any database other than TEMP is reset, then also reset TEMP
536   ** since TEMP might be holding triggers that reference tables in the
537   ** other database.
538   */
539   if( iDb!=1 ){
540     pDb = &db->aDb[1];
541     assert( pDb->pSchema!=0 );
542     sqlite3SchemaClear(pDb->pSchema);
543   }
544   return;
545 }
546 
547 /*
548 ** Erase all schema information from all attached databases (including
549 ** "main" and "temp") for a single database connection.
550 */
551 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
552   int i;
553   sqlite3BtreeEnterAll(db);
554   for(i=0; i<db->nDb; i++){
555     Db *pDb = &db->aDb[i];
556     if( pDb->pSchema ){
557       sqlite3SchemaClear(pDb->pSchema);
558     }
559   }
560   db->flags &= ~SQLITE_InternChanges;
561   sqlite3VtabUnlockList(db);
562   sqlite3BtreeLeaveAll(db);
563   sqlite3CollapseDatabaseArray(db);
564 }
565 
566 /*
567 ** This routine is called when a commit occurs.
568 */
569 void sqlite3CommitInternalChanges(sqlite3 *db){
570   db->flags &= ~SQLITE_InternChanges;
571 }
572 
573 /*
574 ** Delete memory allocated for the column names of a table or view (the
575 ** Table.aCol[] array).
576 */
577 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
578   int i;
579   Column *pCol;
580   assert( pTable!=0 );
581   if( (pCol = pTable->aCol)!=0 ){
582     for(i=0; i<pTable->nCol; i++, pCol++){
583       sqlite3DbFree(db, pCol->zName);
584       sqlite3ExprDelete(db, pCol->pDflt);
585       sqlite3DbFree(db, pCol->zDflt);
586       sqlite3DbFree(db, pCol->zType);
587       sqlite3DbFree(db, pCol->zColl);
588     }
589     sqlite3DbFree(db, pTable->aCol);
590   }
591 }
592 
593 /*
594 ** Remove the memory data structures associated with the given
595 ** Table.  No changes are made to disk by this routine.
596 **
597 ** This routine just deletes the data structure.  It does not unlink
598 ** the table data structure from the hash table.  But it does destroy
599 ** memory structures of the indices and foreign keys associated with
600 ** the table.
601 **
602 ** The db parameter is optional.  It is needed if the Table object
603 ** contains lookaside memory.  (Table objects in the schema do not use
604 ** lookaside memory, but some ephemeral Table objects do.)  Or the
605 ** db parameter can be used with db->pnBytesFreed to measure the memory
606 ** used by the Table object.
607 */
608 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
609   Index *pIndex, *pNext;
610   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
611 
612   assert( !pTable || pTable->nRef>0 );
613 
614   /* Do not delete the table until the reference count reaches zero. */
615   if( !pTable ) return;
616   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
617 
618   /* Record the number of outstanding lookaside allocations in schema Tables
619   ** prior to doing any free() operations.  Since schema Tables do not use
620   ** lookaside, this number should not change. */
621   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
622                          db->lookaside.nOut : 0 );
623 
624   /* Delete all indices associated with this table. */
625   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
626     pNext = pIndex->pNext;
627     assert( pIndex->pSchema==pTable->pSchema );
628     if( !db || db->pnBytesFreed==0 ){
629       char *zName = pIndex->zName;
630       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
631          &pIndex->pSchema->idxHash, zName, 0
632       );
633       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
634       assert( pOld==pIndex || pOld==0 );
635     }
636     freeIndex(db, pIndex);
637   }
638 
639   /* Delete any foreign keys attached to this table. */
640   sqlite3FkDelete(db, pTable);
641 
642   /* Delete the Table structure itself.
643   */
644   sqlite3DeleteColumnNames(db, pTable);
645   sqlite3DbFree(db, pTable->zName);
646   sqlite3DbFree(db, pTable->zColAff);
647   sqlite3SelectDelete(db, pTable->pSelect);
648   sqlite3ExprListDelete(db, pTable->pCheck);
649 #ifndef SQLITE_OMIT_VIRTUALTABLE
650   sqlite3VtabClear(db, pTable);
651 #endif
652   sqlite3DbFree(db, pTable);
653 
654   /* Verify that no lookaside memory was used by schema tables */
655   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
656 }
657 
658 /*
659 ** Unlink the given table from the hash tables and the delete the
660 ** table structure with all its indices and foreign keys.
661 */
662 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
663   Table *p;
664   Db *pDb;
665 
666   assert( db!=0 );
667   assert( iDb>=0 && iDb<db->nDb );
668   assert( zTabName );
669   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
670   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
671   pDb = &db->aDb[iDb];
672   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
673   sqlite3DeleteTable(db, p);
674   db->flags |= SQLITE_InternChanges;
675 }
676 
677 /*
678 ** Given a token, return a string that consists of the text of that
679 ** token.  Space to hold the returned string
680 ** is obtained from sqliteMalloc() and must be freed by the calling
681 ** function.
682 **
683 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
684 ** surround the body of the token are removed.
685 **
686 ** Tokens are often just pointers into the original SQL text and so
687 ** are not \000 terminated and are not persistent.  The returned string
688 ** is \000 terminated and is persistent.
689 */
690 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
691   char *zName;
692   if( pName ){
693     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
694     sqlite3Dequote(zName);
695   }else{
696     zName = 0;
697   }
698   return zName;
699 }
700 
701 /*
702 ** Open the sqlite_master table stored in database number iDb for
703 ** writing. The table is opened using cursor 0.
704 */
705 void sqlite3OpenMasterTable(Parse *p, int iDb){
706   Vdbe *v = sqlite3GetVdbe(p);
707   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
708   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
709   if( p->nTab==0 ){
710     p->nTab = 1;
711   }
712 }
713 
714 /*
715 ** Parameter zName points to a nul-terminated buffer containing the name
716 ** of a database ("main", "temp" or the name of an attached db). This
717 ** function returns the index of the named database in db->aDb[], or
718 ** -1 if the named db cannot be found.
719 */
720 int sqlite3FindDbName(sqlite3 *db, const char *zName){
721   int i = -1;         /* Database number */
722   if( zName ){
723     Db *pDb;
724     int n = sqlite3Strlen30(zName);
725     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
726       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
727           0==sqlite3StrICmp(pDb->zName, zName) ){
728         break;
729       }
730     }
731   }
732   return i;
733 }
734 
735 /*
736 ** The token *pName contains the name of a database (either "main" or
737 ** "temp" or the name of an attached db). This routine returns the
738 ** index of the named database in db->aDb[], or -1 if the named db
739 ** does not exist.
740 */
741 int sqlite3FindDb(sqlite3 *db, Token *pName){
742   int i;                               /* Database number */
743   char *zName;                         /* Name we are searching for */
744   zName = sqlite3NameFromToken(db, pName);
745   i = sqlite3FindDbName(db, zName);
746   sqlite3DbFree(db, zName);
747   return i;
748 }
749 
750 /* The table or view or trigger name is passed to this routine via tokens
751 ** pName1 and pName2. If the table name was fully qualified, for example:
752 **
753 ** CREATE TABLE xxx.yyy (...);
754 **
755 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
756 ** the table name is not fully qualified, i.e.:
757 **
758 ** CREATE TABLE yyy(...);
759 **
760 ** Then pName1 is set to "yyy" and pName2 is "".
761 **
762 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
763 ** pName2) that stores the unqualified table name.  The index of the
764 ** database "xxx" is returned.
765 */
766 int sqlite3TwoPartName(
767   Parse *pParse,      /* Parsing and code generating context */
768   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
769   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
770   Token **pUnqual     /* Write the unqualified object name here */
771 ){
772   int iDb;                    /* Database holding the object */
773   sqlite3 *db = pParse->db;
774 
775   if( ALWAYS(pName2!=0) && pName2->n>0 ){
776     if( db->init.busy ) {
777       sqlite3ErrorMsg(pParse, "corrupt database");
778       return -1;
779     }
780     *pUnqual = pName2;
781     iDb = sqlite3FindDb(db, pName1);
782     if( iDb<0 ){
783       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
784       return -1;
785     }
786   }else{
787     assert( db->init.iDb==0 || db->init.busy );
788     iDb = db->init.iDb;
789     *pUnqual = pName1;
790   }
791   return iDb;
792 }
793 
794 /*
795 ** This routine is used to check if the UTF-8 string zName is a legal
796 ** unqualified name for a new schema object (table, index, view or
797 ** trigger). All names are legal except those that begin with the string
798 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
799 ** is reserved for internal use.
800 */
801 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
802   if( !pParse->db->init.busy && pParse->nested==0
803           && (pParse->db->flags & SQLITE_WriteSchema)==0
804           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
805     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
806     return SQLITE_ERROR;
807   }
808   return SQLITE_OK;
809 }
810 
811 /*
812 ** Return the PRIMARY KEY index of a table
813 */
814 Index *sqlite3PrimaryKeyIndex(Table *pTab){
815   Index *p;
816   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
817   return p;
818 }
819 
820 /*
821 ** Return the column of index pIdx that corresponds to table
822 ** column iCol.  Return -1 if not found.
823 */
824 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
825   int i;
826   for(i=0; i<pIdx->nColumn; i++){
827     if( iCol==pIdx->aiColumn[i] ) return i;
828   }
829   return -1;
830 }
831 
832 /*
833 ** Begin constructing a new table representation in memory.  This is
834 ** the first of several action routines that get called in response
835 ** to a CREATE TABLE statement.  In particular, this routine is called
836 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
837 ** flag is true if the table should be stored in the auxiliary database
838 ** file instead of in the main database file.  This is normally the case
839 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
840 ** CREATE and TABLE.
841 **
842 ** The new table record is initialized and put in pParse->pNewTable.
843 ** As more of the CREATE TABLE statement is parsed, additional action
844 ** routines will be called to add more information to this record.
845 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
846 ** is called to complete the construction of the new table record.
847 */
848 void sqlite3StartTable(
849   Parse *pParse,   /* Parser context */
850   Token *pName1,   /* First part of the name of the table or view */
851   Token *pName2,   /* Second part of the name of the table or view */
852   int isTemp,      /* True if this is a TEMP table */
853   int isView,      /* True if this is a VIEW */
854   int isVirtual,   /* True if this is a VIRTUAL table */
855   int noErr        /* Do nothing if table already exists */
856 ){
857   Table *pTable;
858   char *zName = 0; /* The name of the new table */
859   sqlite3 *db = pParse->db;
860   Vdbe *v;
861   int iDb;         /* Database number to create the table in */
862   Token *pName;    /* Unqualified name of the table to create */
863 
864   /* The table or view name to create is passed to this routine via tokens
865   ** pName1 and pName2. If the table name was fully qualified, for example:
866   **
867   ** CREATE TABLE xxx.yyy (...);
868   **
869   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
870   ** the table name is not fully qualified, i.e.:
871   **
872   ** CREATE TABLE yyy(...);
873   **
874   ** Then pName1 is set to "yyy" and pName2 is "".
875   **
876   ** The call below sets the pName pointer to point at the token (pName1 or
877   ** pName2) that stores the unqualified table name. The variable iDb is
878   ** set to the index of the database that the table or view is to be
879   ** created in.
880   */
881   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
882   if( iDb<0 ) return;
883   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
884     /* If creating a temp table, the name may not be qualified. Unless
885     ** the database name is "temp" anyway.  */
886     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
887     return;
888   }
889   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
890 
891   pParse->sNameToken = *pName;
892   zName = sqlite3NameFromToken(db, pName);
893   if( zName==0 ) return;
894   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
895     goto begin_table_error;
896   }
897   if( db->init.iDb==1 ) isTemp = 1;
898 #ifndef SQLITE_OMIT_AUTHORIZATION
899   assert( (isTemp & 1)==isTemp );
900   {
901     int code;
902     char *zDb = db->aDb[iDb].zName;
903     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
904       goto begin_table_error;
905     }
906     if( isView ){
907       if( !OMIT_TEMPDB && isTemp ){
908         code = SQLITE_CREATE_TEMP_VIEW;
909       }else{
910         code = SQLITE_CREATE_VIEW;
911       }
912     }else{
913       if( !OMIT_TEMPDB && isTemp ){
914         code = SQLITE_CREATE_TEMP_TABLE;
915       }else{
916         code = SQLITE_CREATE_TABLE;
917       }
918     }
919     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
920       goto begin_table_error;
921     }
922   }
923 #endif
924 
925   /* Make sure the new table name does not collide with an existing
926   ** index or table name in the same database.  Issue an error message if
927   ** it does. The exception is if the statement being parsed was passed
928   ** to an sqlite3_declare_vtab() call. In that case only the column names
929   ** and types will be used, so there is no need to test for namespace
930   ** collisions.
931   */
932   if( !IN_DECLARE_VTAB ){
933     char *zDb = db->aDb[iDb].zName;
934     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
935       goto begin_table_error;
936     }
937     pTable = sqlite3FindTable(db, zName, zDb);
938     if( pTable ){
939       if( !noErr ){
940         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
941       }else{
942         assert( !db->init.busy || CORRUPT_DB );
943         sqlite3CodeVerifySchema(pParse, iDb);
944       }
945       goto begin_table_error;
946     }
947     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
948       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
949       goto begin_table_error;
950     }
951   }
952 
953   pTable = sqlite3DbMallocZero(db, sizeof(Table));
954   if( pTable==0 ){
955     db->mallocFailed = 1;
956     pParse->rc = SQLITE_NOMEM;
957     pParse->nErr++;
958     goto begin_table_error;
959   }
960   pTable->zName = zName;
961   pTable->iPKey = -1;
962   pTable->pSchema = db->aDb[iDb].pSchema;
963   pTable->nRef = 1;
964   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
965   assert( pParse->pNewTable==0 );
966   pParse->pNewTable = pTable;
967 
968   /* If this is the magic sqlite_sequence table used by autoincrement,
969   ** then record a pointer to this table in the main database structure
970   ** so that INSERT can find the table easily.
971   */
972 #ifndef SQLITE_OMIT_AUTOINCREMENT
973   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
974     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
975     pTable->pSchema->pSeqTab = pTable;
976   }
977 #endif
978 
979   /* Begin generating the code that will insert the table record into
980   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
981   ** and allocate the record number for the table entry now.  Before any
982   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
983   ** indices to be created and the table record must come before the
984   ** indices.  Hence, the record number for the table must be allocated
985   ** now.
986   */
987   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
988     int addr1;
989     int fileFormat;
990     int reg1, reg2, reg3;
991     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
992     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
993     sqlite3BeginWriteOperation(pParse, 1, iDb);
994 
995 #ifndef SQLITE_OMIT_VIRTUALTABLE
996     if( isVirtual ){
997       sqlite3VdbeAddOp0(v, OP_VBegin);
998     }
999 #endif
1000 
1001     /* If the file format and encoding in the database have not been set,
1002     ** set them now.
1003     */
1004     reg1 = pParse->regRowid = ++pParse->nMem;
1005     reg2 = pParse->regRoot = ++pParse->nMem;
1006     reg3 = ++pParse->nMem;
1007     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1008     sqlite3VdbeUsesBtree(v, iDb);
1009     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1010     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1011                   1 : SQLITE_MAX_FILE_FORMAT;
1012     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
1013     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
1014     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1015     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1016     sqlite3VdbeJumpHere(v, addr1);
1017 
1018     /* This just creates a place-holder record in the sqlite_master table.
1019     ** The record created does not contain anything yet.  It will be replaced
1020     ** by the real entry in code generated at sqlite3EndTable().
1021     **
1022     ** The rowid for the new entry is left in register pParse->regRowid.
1023     ** The root page number of the new table is left in reg pParse->regRoot.
1024     ** The rowid and root page number values are needed by the code that
1025     ** sqlite3EndTable will generate.
1026     */
1027 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1028     if( isView || isVirtual ){
1029       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1030     }else
1031 #endif
1032     {
1033       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1034     }
1035     sqlite3OpenMasterTable(pParse, iDb);
1036     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1037     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1038     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1039     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1040     sqlite3VdbeAddOp0(v, OP_Close);
1041   }
1042 
1043   /* Normal (non-error) return. */
1044   return;
1045 
1046   /* If an error occurs, we jump here */
1047 begin_table_error:
1048   sqlite3DbFree(db, zName);
1049   return;
1050 }
1051 
1052 /*
1053 ** This macro is used to compare two strings in a case-insensitive manner.
1054 ** It is slightly faster than calling sqlite3StrICmp() directly, but
1055 ** produces larger code.
1056 **
1057 ** WARNING: This macro is not compatible with the strcmp() family. It
1058 ** returns true if the two strings are equal, otherwise false.
1059 */
1060 #define STRICMP(x, y) (\
1061 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
1062 sqlite3UpperToLower[*(unsigned char *)(y)]     \
1063 && sqlite3StrICmp((x)+1,(y)+1)==0 )
1064 
1065 /*
1066 ** Add a new column to the table currently being constructed.
1067 **
1068 ** The parser calls this routine once for each column declaration
1069 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1070 ** first to get things going.  Then this routine is called for each
1071 ** column.
1072 */
1073 void sqlite3AddColumn(Parse *pParse, Token *pName){
1074   Table *p;
1075   int i;
1076   char *z;
1077   Column *pCol;
1078   sqlite3 *db = pParse->db;
1079   if( (p = pParse->pNewTable)==0 ) return;
1080 #if SQLITE_MAX_COLUMN
1081   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1082     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1083     return;
1084   }
1085 #endif
1086   z = sqlite3NameFromToken(db, pName);
1087   if( z==0 ) return;
1088   for(i=0; i<p->nCol; i++){
1089     if( STRICMP(z, p->aCol[i].zName) ){
1090       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1091       sqlite3DbFree(db, z);
1092       return;
1093     }
1094   }
1095   if( (p->nCol & 0x7)==0 ){
1096     Column *aNew;
1097     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1098     if( aNew==0 ){
1099       sqlite3DbFree(db, z);
1100       return;
1101     }
1102     p->aCol = aNew;
1103   }
1104   pCol = &p->aCol[p->nCol];
1105   memset(pCol, 0, sizeof(p->aCol[0]));
1106   pCol->zName = z;
1107 
1108   /* If there is no type specified, columns have the default affinity
1109   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1110   ** be called next to set pCol->affinity correctly.
1111   */
1112   pCol->affinity = SQLITE_AFF_BLOB;
1113   pCol->szEst = 1;
1114   p->nCol++;
1115 }
1116 
1117 /*
1118 ** This routine is called by the parser while in the middle of
1119 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1120 ** been seen on a column.  This routine sets the notNull flag on
1121 ** the column currently under construction.
1122 */
1123 void sqlite3AddNotNull(Parse *pParse, int onError){
1124   Table *p;
1125   p = pParse->pNewTable;
1126   if( p==0 || NEVER(p->nCol<1) ) return;
1127   p->aCol[p->nCol-1].notNull = (u8)onError;
1128 }
1129 
1130 /*
1131 ** Scan the column type name zType (length nType) and return the
1132 ** associated affinity type.
1133 **
1134 ** This routine does a case-independent search of zType for the
1135 ** substrings in the following table. If one of the substrings is
1136 ** found, the corresponding affinity is returned. If zType contains
1137 ** more than one of the substrings, entries toward the top of
1138 ** the table take priority. For example, if zType is 'BLOBINT',
1139 ** SQLITE_AFF_INTEGER is returned.
1140 **
1141 ** Substring     | Affinity
1142 ** --------------------------------
1143 ** 'INT'         | SQLITE_AFF_INTEGER
1144 ** 'CHAR'        | SQLITE_AFF_TEXT
1145 ** 'CLOB'        | SQLITE_AFF_TEXT
1146 ** 'TEXT'        | SQLITE_AFF_TEXT
1147 ** 'BLOB'        | SQLITE_AFF_BLOB
1148 ** 'REAL'        | SQLITE_AFF_REAL
1149 ** 'FLOA'        | SQLITE_AFF_REAL
1150 ** 'DOUB'        | SQLITE_AFF_REAL
1151 **
1152 ** If none of the substrings in the above table are found,
1153 ** SQLITE_AFF_NUMERIC is returned.
1154 */
1155 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1156   u32 h = 0;
1157   char aff = SQLITE_AFF_NUMERIC;
1158   const char *zChar = 0;
1159 
1160   if( zIn==0 ) return aff;
1161   while( zIn[0] ){
1162     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1163     zIn++;
1164     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1165       aff = SQLITE_AFF_TEXT;
1166       zChar = zIn;
1167     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1168       aff = SQLITE_AFF_TEXT;
1169     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1170       aff = SQLITE_AFF_TEXT;
1171     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1172         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1173       aff = SQLITE_AFF_BLOB;
1174       if( zIn[0]=='(' ) zChar = zIn;
1175 #ifndef SQLITE_OMIT_FLOATING_POINT
1176     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1177         && aff==SQLITE_AFF_NUMERIC ){
1178       aff = SQLITE_AFF_REAL;
1179     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1180         && aff==SQLITE_AFF_NUMERIC ){
1181       aff = SQLITE_AFF_REAL;
1182     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1183         && aff==SQLITE_AFF_NUMERIC ){
1184       aff = SQLITE_AFF_REAL;
1185 #endif
1186     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1187       aff = SQLITE_AFF_INTEGER;
1188       break;
1189     }
1190   }
1191 
1192   /* If pszEst is not NULL, store an estimate of the field size.  The
1193   ** estimate is scaled so that the size of an integer is 1.  */
1194   if( pszEst ){
1195     *pszEst = 1;   /* default size is approx 4 bytes */
1196     if( aff<SQLITE_AFF_NUMERIC ){
1197       if( zChar ){
1198         while( zChar[0] ){
1199           if( sqlite3Isdigit(zChar[0]) ){
1200             int v = 0;
1201             sqlite3GetInt32(zChar, &v);
1202             v = v/4 + 1;
1203             if( v>255 ) v = 255;
1204             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1205             break;
1206           }
1207           zChar++;
1208         }
1209       }else{
1210         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1211       }
1212     }
1213   }
1214   return aff;
1215 }
1216 
1217 /*
1218 ** This routine is called by the parser while in the middle of
1219 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1220 ** token in the sequence of tokens that describe the type of the
1221 ** column currently under construction.   pLast is the last token
1222 ** in the sequence.  Use this information to construct a string
1223 ** that contains the typename of the column and store that string
1224 ** in zType.
1225 */
1226 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1227   Table *p;
1228   Column *pCol;
1229 
1230   p = pParse->pNewTable;
1231   if( p==0 || NEVER(p->nCol<1) ) return;
1232   pCol = &p->aCol[p->nCol-1];
1233   assert( pCol->zType==0 || CORRUPT_DB );
1234   sqlite3DbFree(pParse->db, pCol->zType);
1235   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1236   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1237 }
1238 
1239 /*
1240 ** The expression is the default value for the most recently added column
1241 ** of the table currently under construction.
1242 **
1243 ** Default value expressions must be constant.  Raise an exception if this
1244 ** is not the case.
1245 **
1246 ** This routine is called by the parser while in the middle of
1247 ** parsing a CREATE TABLE statement.
1248 */
1249 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1250   Table *p;
1251   Column *pCol;
1252   sqlite3 *db = pParse->db;
1253   p = pParse->pNewTable;
1254   if( p!=0 ){
1255     pCol = &(p->aCol[p->nCol-1]);
1256     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1257       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1258           pCol->zName);
1259     }else{
1260       /* A copy of pExpr is used instead of the original, as pExpr contains
1261       ** tokens that point to volatile memory. The 'span' of the expression
1262       ** is required by pragma table_info.
1263       */
1264       sqlite3ExprDelete(db, pCol->pDflt);
1265       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1266       sqlite3DbFree(db, pCol->zDflt);
1267       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1268                                      (int)(pSpan->zEnd - pSpan->zStart));
1269     }
1270   }
1271   sqlite3ExprDelete(db, pSpan->pExpr);
1272 }
1273 
1274 /*
1275 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1276 ** of columns that form the primary key.  If pList is NULL, then the
1277 ** most recently added column of the table is the primary key.
1278 **
1279 ** A table can have at most one primary key.  If the table already has
1280 ** a primary key (and this is the second primary key) then create an
1281 ** error.
1282 **
1283 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1284 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1285 ** field of the table under construction to be the index of the
1286 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1287 ** no INTEGER PRIMARY KEY.
1288 **
1289 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1290 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1291 */
1292 void sqlite3AddPrimaryKey(
1293   Parse *pParse,    /* Parsing context */
1294   ExprList *pList,  /* List of field names to be indexed */
1295   int onError,      /* What to do with a uniqueness conflict */
1296   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1297   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1298 ){
1299   Table *pTab = pParse->pNewTable;
1300   char *zType = 0;
1301   int iCol = -1, i;
1302   int nTerm;
1303   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1304   if( pTab->tabFlags & TF_HasPrimaryKey ){
1305     sqlite3ErrorMsg(pParse,
1306       "table \"%s\" has more than one primary key", pTab->zName);
1307     goto primary_key_exit;
1308   }
1309   pTab->tabFlags |= TF_HasPrimaryKey;
1310   if( pList==0 ){
1311     iCol = pTab->nCol - 1;
1312     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1313     zType = pTab->aCol[iCol].zType;
1314     nTerm = 1;
1315   }else{
1316     nTerm = pList->nExpr;
1317     for(i=0; i<nTerm; i++){
1318       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1319       assert( pCExpr!=0 );
1320       if( pCExpr->op==TK_ID ){
1321         const char *zCName = pCExpr->u.zToken;
1322         for(iCol=0; iCol<pTab->nCol; iCol++){
1323           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1324             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1325             zType = pTab->aCol[iCol].zType;
1326             break;
1327           }
1328         }
1329       }
1330     }
1331   }
1332   if( nTerm==1
1333    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1334    && sortOrder!=SQLITE_SO_DESC
1335   ){
1336     pTab->iPKey = iCol;
1337     pTab->keyConf = (u8)onError;
1338     assert( autoInc==0 || autoInc==1 );
1339     pTab->tabFlags |= autoInc*TF_Autoincrement;
1340     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1341   }else if( autoInc ){
1342 #ifndef SQLITE_OMIT_AUTOINCREMENT
1343     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1344        "INTEGER PRIMARY KEY");
1345 #endif
1346   }else{
1347     Index *p;
1348     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1349                            0, sortOrder, 0);
1350     if( p ){
1351       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1352     }
1353     pList = 0;
1354   }
1355 
1356 primary_key_exit:
1357   sqlite3ExprListDelete(pParse->db, pList);
1358   return;
1359 }
1360 
1361 /*
1362 ** Add a new CHECK constraint to the table currently under construction.
1363 */
1364 void sqlite3AddCheckConstraint(
1365   Parse *pParse,    /* Parsing context */
1366   Expr *pCheckExpr  /* The check expression */
1367 ){
1368 #ifndef SQLITE_OMIT_CHECK
1369   Table *pTab = pParse->pNewTable;
1370   sqlite3 *db = pParse->db;
1371   if( pTab && !IN_DECLARE_VTAB
1372    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1373   ){
1374     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1375     if( pParse->constraintName.n ){
1376       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1377     }
1378   }else
1379 #endif
1380   {
1381     sqlite3ExprDelete(pParse->db, pCheckExpr);
1382   }
1383 }
1384 
1385 /*
1386 ** Set the collation function of the most recently parsed table column
1387 ** to the CollSeq given.
1388 */
1389 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1390   Table *p;
1391   int i;
1392   char *zColl;              /* Dequoted name of collation sequence */
1393   sqlite3 *db;
1394 
1395   if( (p = pParse->pNewTable)==0 ) return;
1396   i = p->nCol-1;
1397   db = pParse->db;
1398   zColl = sqlite3NameFromToken(db, pToken);
1399   if( !zColl ) return;
1400 
1401   if( sqlite3LocateCollSeq(pParse, zColl) ){
1402     Index *pIdx;
1403     sqlite3DbFree(db, p->aCol[i].zColl);
1404     p->aCol[i].zColl = zColl;
1405 
1406     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1407     ** then an index may have been created on this column before the
1408     ** collation type was added. Correct this if it is the case.
1409     */
1410     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1411       assert( pIdx->nKeyCol==1 );
1412       if( pIdx->aiColumn[0]==i ){
1413         pIdx->azColl[0] = p->aCol[i].zColl;
1414       }
1415     }
1416   }else{
1417     sqlite3DbFree(db, zColl);
1418   }
1419 }
1420 
1421 /*
1422 ** This function returns the collation sequence for database native text
1423 ** encoding identified by the string zName, length nName.
1424 **
1425 ** If the requested collation sequence is not available, or not available
1426 ** in the database native encoding, the collation factory is invoked to
1427 ** request it. If the collation factory does not supply such a sequence,
1428 ** and the sequence is available in another text encoding, then that is
1429 ** returned instead.
1430 **
1431 ** If no versions of the requested collations sequence are available, or
1432 ** another error occurs, NULL is returned and an error message written into
1433 ** pParse.
1434 **
1435 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1436 ** invokes the collation factory if the named collation cannot be found
1437 ** and generates an error message.
1438 **
1439 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1440 */
1441 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1442   sqlite3 *db = pParse->db;
1443   u8 enc = ENC(db);
1444   u8 initbusy = db->init.busy;
1445   CollSeq *pColl;
1446 
1447   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1448   if( !initbusy && (!pColl || !pColl->xCmp) ){
1449     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1450   }
1451 
1452   return pColl;
1453 }
1454 
1455 
1456 /*
1457 ** Generate code that will increment the schema cookie.
1458 **
1459 ** The schema cookie is used to determine when the schema for the
1460 ** database changes.  After each schema change, the cookie value
1461 ** changes.  When a process first reads the schema it records the
1462 ** cookie.  Thereafter, whenever it goes to access the database,
1463 ** it checks the cookie to make sure the schema has not changed
1464 ** since it was last read.
1465 **
1466 ** This plan is not completely bullet-proof.  It is possible for
1467 ** the schema to change multiple times and for the cookie to be
1468 ** set back to prior value.  But schema changes are infrequent
1469 ** and the probability of hitting the same cookie value is only
1470 ** 1 chance in 2^32.  So we're safe enough.
1471 */
1472 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1473   int r1 = sqlite3GetTempReg(pParse);
1474   sqlite3 *db = pParse->db;
1475   Vdbe *v = pParse->pVdbe;
1476   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1477   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1478   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1479   sqlite3ReleaseTempReg(pParse, r1);
1480 }
1481 
1482 /*
1483 ** Measure the number of characters needed to output the given
1484 ** identifier.  The number returned includes any quotes used
1485 ** but does not include the null terminator.
1486 **
1487 ** The estimate is conservative.  It might be larger that what is
1488 ** really needed.
1489 */
1490 static int identLength(const char *z){
1491   int n;
1492   for(n=0; *z; n++, z++){
1493     if( *z=='"' ){ n++; }
1494   }
1495   return n + 2;
1496 }
1497 
1498 /*
1499 ** The first parameter is a pointer to an output buffer. The second
1500 ** parameter is a pointer to an integer that contains the offset at
1501 ** which to write into the output buffer. This function copies the
1502 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1503 ** to the specified offset in the buffer and updates *pIdx to refer
1504 ** to the first byte after the last byte written before returning.
1505 **
1506 ** If the string zSignedIdent consists entirely of alpha-numeric
1507 ** characters, does not begin with a digit and is not an SQL keyword,
1508 ** then it is copied to the output buffer exactly as it is. Otherwise,
1509 ** it is quoted using double-quotes.
1510 */
1511 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1512   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1513   int i, j, needQuote;
1514   i = *pIdx;
1515 
1516   for(j=0; zIdent[j]; j++){
1517     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1518   }
1519   needQuote = sqlite3Isdigit(zIdent[0])
1520             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1521             || zIdent[j]!=0
1522             || j==0;
1523 
1524   if( needQuote ) z[i++] = '"';
1525   for(j=0; zIdent[j]; j++){
1526     z[i++] = zIdent[j];
1527     if( zIdent[j]=='"' ) z[i++] = '"';
1528   }
1529   if( needQuote ) z[i++] = '"';
1530   z[i] = 0;
1531   *pIdx = i;
1532 }
1533 
1534 /*
1535 ** Generate a CREATE TABLE statement appropriate for the given
1536 ** table.  Memory to hold the text of the statement is obtained
1537 ** from sqliteMalloc() and must be freed by the calling function.
1538 */
1539 static char *createTableStmt(sqlite3 *db, Table *p){
1540   int i, k, n;
1541   char *zStmt;
1542   char *zSep, *zSep2, *zEnd;
1543   Column *pCol;
1544   n = 0;
1545   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1546     n += identLength(pCol->zName) + 5;
1547   }
1548   n += identLength(p->zName);
1549   if( n<50 ){
1550     zSep = "";
1551     zSep2 = ",";
1552     zEnd = ")";
1553   }else{
1554     zSep = "\n  ";
1555     zSep2 = ",\n  ";
1556     zEnd = "\n)";
1557   }
1558   n += 35 + 6*p->nCol;
1559   zStmt = sqlite3DbMallocRaw(0, n);
1560   if( zStmt==0 ){
1561     db->mallocFailed = 1;
1562     return 0;
1563   }
1564   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1565   k = sqlite3Strlen30(zStmt);
1566   identPut(zStmt, &k, p->zName);
1567   zStmt[k++] = '(';
1568   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1569     static const char * const azType[] = {
1570         /* SQLITE_AFF_BLOB    */ "",
1571         /* SQLITE_AFF_TEXT    */ " TEXT",
1572         /* SQLITE_AFF_NUMERIC */ " NUM",
1573         /* SQLITE_AFF_INTEGER */ " INT",
1574         /* SQLITE_AFF_REAL    */ " REAL"
1575     };
1576     int len;
1577     const char *zType;
1578 
1579     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1580     k += sqlite3Strlen30(&zStmt[k]);
1581     zSep = zSep2;
1582     identPut(zStmt, &k, pCol->zName);
1583     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1584     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1585     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1586     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1587     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1588     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1589     testcase( pCol->affinity==SQLITE_AFF_REAL );
1590 
1591     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1592     len = sqlite3Strlen30(zType);
1593     assert( pCol->affinity==SQLITE_AFF_BLOB
1594             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1595     memcpy(&zStmt[k], zType, len);
1596     k += len;
1597     assert( k<=n );
1598   }
1599   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1600   return zStmt;
1601 }
1602 
1603 /*
1604 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1605 ** on success and SQLITE_NOMEM on an OOM error.
1606 */
1607 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1608   char *zExtra;
1609   int nByte;
1610   if( pIdx->nColumn>=N ) return SQLITE_OK;
1611   assert( pIdx->isResized==0 );
1612   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1613   zExtra = sqlite3DbMallocZero(db, nByte);
1614   if( zExtra==0 ) return SQLITE_NOMEM;
1615   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1616   pIdx->azColl = (char**)zExtra;
1617   zExtra += sizeof(char*)*N;
1618   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1619   pIdx->aiColumn = (i16*)zExtra;
1620   zExtra += sizeof(i16)*N;
1621   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1622   pIdx->aSortOrder = (u8*)zExtra;
1623   pIdx->nColumn = N;
1624   pIdx->isResized = 1;
1625   return SQLITE_OK;
1626 }
1627 
1628 /*
1629 ** Estimate the total row width for a table.
1630 */
1631 static void estimateTableWidth(Table *pTab){
1632   unsigned wTable = 0;
1633   const Column *pTabCol;
1634   int i;
1635   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1636     wTable += pTabCol->szEst;
1637   }
1638   if( pTab->iPKey<0 ) wTable++;
1639   pTab->szTabRow = sqlite3LogEst(wTable*4);
1640 }
1641 
1642 /*
1643 ** Estimate the average size of a row for an index.
1644 */
1645 static void estimateIndexWidth(Index *pIdx){
1646   unsigned wIndex = 0;
1647   int i;
1648   const Column *aCol = pIdx->pTable->aCol;
1649   for(i=0; i<pIdx->nColumn; i++){
1650     i16 x = pIdx->aiColumn[i];
1651     assert( x<pIdx->pTable->nCol );
1652     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1653   }
1654   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1655 }
1656 
1657 /* Return true if value x is found any of the first nCol entries of aiCol[]
1658 */
1659 static int hasColumn(const i16 *aiCol, int nCol, int x){
1660   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1661   return 0;
1662 }
1663 
1664 /*
1665 ** This routine runs at the end of parsing a CREATE TABLE statement that
1666 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1667 ** internal schema data structures and the generated VDBE code so that they
1668 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1669 ** Changes include:
1670 **
1671 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1672 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1673 **          data storage is a covering index btree.
1674 **     (2)  Bypass the creation of the sqlite_master table entry
1675 **          for the PRIMARY KEY as the primary key index is now
1676 **          identified by the sqlite_master table entry of the table itself.
1677 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1678 **          schema to the rootpage from the main table.
1679 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1680 **     (5)  Add all table columns to the PRIMARY KEY Index object
1681 **          so that the PRIMARY KEY is a covering index.  The surplus
1682 **          columns are part of KeyInfo.nXField and are not used for
1683 **          sorting or lookup or uniqueness checks.
1684 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1685 **          indices with the PRIMARY KEY columns.
1686 */
1687 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1688   Index *pIdx;
1689   Index *pPk;
1690   int nPk;
1691   int i, j;
1692   sqlite3 *db = pParse->db;
1693   Vdbe *v = pParse->pVdbe;
1694 
1695   /* Convert the OP_CreateTable opcode that would normally create the
1696   ** root-page for the table into an OP_CreateIndex opcode.  The index
1697   ** created will become the PRIMARY KEY index.
1698   */
1699   if( pParse->addrCrTab ){
1700     assert( v );
1701     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1702   }
1703 
1704   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1705   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1706   */
1707   if( pTab->iPKey>=0 ){
1708     ExprList *pList;
1709     Token ipkToken;
1710     ipkToken.z = pTab->aCol[pTab->iPKey].zName;
1711     ipkToken.n = sqlite3Strlen30(ipkToken.z);
1712     pList = sqlite3ExprListAppend(pParse, 0,
1713                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1714     if( pList==0 ) return;
1715     pList->a[0].sortOrder = pParse->iPkSortOrder;
1716     assert( pParse->pNewTable==pTab );
1717     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1718     if( pPk==0 ) return;
1719     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1720     pTab->iPKey = -1;
1721   }else{
1722     pPk = sqlite3PrimaryKeyIndex(pTab);
1723 
1724     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1725     ** table entry. This is only required if currently generating VDBE
1726     ** code for a CREATE TABLE (not when parsing one as part of reading
1727     ** a database schema).  */
1728     if( v ){
1729       assert( db->init.busy==0 );
1730       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1731     }
1732 
1733     /*
1734     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1735     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1736     ** code assumes the PRIMARY KEY contains no repeated columns.
1737     */
1738     for(i=j=1; i<pPk->nKeyCol; i++){
1739       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1740         pPk->nColumn--;
1741       }else{
1742         pPk->aiColumn[j++] = pPk->aiColumn[i];
1743       }
1744     }
1745     pPk->nKeyCol = j;
1746   }
1747   pPk->isCovering = 1;
1748   assert( pPk!=0 );
1749   nPk = pPk->nKeyCol;
1750 
1751   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1752   ** do not enforce this for imposter tables.) */
1753   if( !db->init.imposterTable ){
1754     for(i=0; i<nPk; i++){
1755       pTab->aCol[pPk->aiColumn[i]].notNull = 1;
1756     }
1757     pPk->uniqNotNull = 1;
1758   }
1759 
1760   /* The root page of the PRIMARY KEY is the table root page */
1761   pPk->tnum = pTab->tnum;
1762 
1763   /* Update the in-memory representation of all UNIQUE indices by converting
1764   ** the final rowid column into one or more columns of the PRIMARY KEY.
1765   */
1766   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1767     int n;
1768     if( IsPrimaryKeyIndex(pIdx) ) continue;
1769     for(i=n=0; i<nPk; i++){
1770       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1771     }
1772     if( n==0 ){
1773       /* This index is a superset of the primary key */
1774       pIdx->nColumn = pIdx->nKeyCol;
1775       continue;
1776     }
1777     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1778     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1779       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1780         pIdx->aiColumn[j] = pPk->aiColumn[i];
1781         pIdx->azColl[j] = pPk->azColl[i];
1782         j++;
1783       }
1784     }
1785     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1786     assert( pIdx->nColumn>=j );
1787   }
1788 
1789   /* Add all table columns to the PRIMARY KEY index
1790   */
1791   if( nPk<pTab->nCol ){
1792     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1793     for(i=0, j=nPk; i<pTab->nCol; i++){
1794       if( !hasColumn(pPk->aiColumn, j, i) ){
1795         assert( j<pPk->nColumn );
1796         pPk->aiColumn[j] = i;
1797         pPk->azColl[j] = "BINARY";
1798         j++;
1799       }
1800     }
1801     assert( pPk->nColumn==j );
1802     assert( pTab->nCol==j );
1803   }else{
1804     pPk->nColumn = pTab->nCol;
1805   }
1806 }
1807 
1808 /*
1809 ** This routine is called to report the final ")" that terminates
1810 ** a CREATE TABLE statement.
1811 **
1812 ** The table structure that other action routines have been building
1813 ** is added to the internal hash tables, assuming no errors have
1814 ** occurred.
1815 **
1816 ** An entry for the table is made in the master table on disk, unless
1817 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1818 ** it means we are reading the sqlite_master table because we just
1819 ** connected to the database or because the sqlite_master table has
1820 ** recently changed, so the entry for this table already exists in
1821 ** the sqlite_master table.  We do not want to create it again.
1822 **
1823 ** If the pSelect argument is not NULL, it means that this routine
1824 ** was called to create a table generated from a
1825 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1826 ** the new table will match the result set of the SELECT.
1827 */
1828 void sqlite3EndTable(
1829   Parse *pParse,          /* Parse context */
1830   Token *pCons,           /* The ',' token after the last column defn. */
1831   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1832   u8 tabOpts,             /* Extra table options. Usually 0. */
1833   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1834 ){
1835   Table *p;                 /* The new table */
1836   sqlite3 *db = pParse->db; /* The database connection */
1837   int iDb;                  /* Database in which the table lives */
1838   Index *pIdx;              /* An implied index of the table */
1839 
1840   if( pEnd==0 && pSelect==0 ){
1841     return;
1842   }
1843   assert( !db->mallocFailed );
1844   p = pParse->pNewTable;
1845   if( p==0 ) return;
1846 
1847   assert( !db->init.busy || !pSelect );
1848 
1849   /* If the db->init.busy is 1 it means we are reading the SQL off the
1850   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1851   ** So do not write to the disk again.  Extract the root page number
1852   ** for the table from the db->init.newTnum field.  (The page number
1853   ** should have been put there by the sqliteOpenCb routine.)
1854   */
1855   if( db->init.busy ){
1856     p->tnum = db->init.newTnum;
1857   }
1858 
1859   /* Special processing for WITHOUT ROWID Tables */
1860   if( tabOpts & TF_WithoutRowid ){
1861     if( (p->tabFlags & TF_Autoincrement) ){
1862       sqlite3ErrorMsg(pParse,
1863           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1864       return;
1865     }
1866     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1867       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1868     }else{
1869       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1870       convertToWithoutRowidTable(pParse, p);
1871     }
1872   }
1873 
1874   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1875 
1876 #ifndef SQLITE_OMIT_CHECK
1877   /* Resolve names in all CHECK constraint expressions.
1878   */
1879   if( p->pCheck ){
1880     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1881   }
1882 #endif /* !defined(SQLITE_OMIT_CHECK) */
1883 
1884   /* Estimate the average row size for the table and for all implied indices */
1885   estimateTableWidth(p);
1886   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1887     estimateIndexWidth(pIdx);
1888   }
1889 
1890   /* If not initializing, then create a record for the new table
1891   ** in the SQLITE_MASTER table of the database.
1892   **
1893   ** If this is a TEMPORARY table, write the entry into the auxiliary
1894   ** file instead of into the main database file.
1895   */
1896   if( !db->init.busy ){
1897     int n;
1898     Vdbe *v;
1899     char *zType;    /* "view" or "table" */
1900     char *zType2;   /* "VIEW" or "TABLE" */
1901     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1902 
1903     v = sqlite3GetVdbe(pParse);
1904     if( NEVER(v==0) ) return;
1905 
1906     sqlite3VdbeAddOp1(v, OP_Close, 0);
1907 
1908     /*
1909     ** Initialize zType for the new view or table.
1910     */
1911     if( p->pSelect==0 ){
1912       /* A regular table */
1913       zType = "table";
1914       zType2 = "TABLE";
1915 #ifndef SQLITE_OMIT_VIEW
1916     }else{
1917       /* A view */
1918       zType = "view";
1919       zType2 = "VIEW";
1920 #endif
1921     }
1922 
1923     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1924     ** statement to populate the new table. The root-page number for the
1925     ** new table is in register pParse->regRoot.
1926     **
1927     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1928     ** suitable state to query for the column names and types to be used
1929     ** by the new table.
1930     **
1931     ** A shared-cache write-lock is not required to write to the new table,
1932     ** as a schema-lock must have already been obtained to create it. Since
1933     ** a schema-lock excludes all other database users, the write-lock would
1934     ** be redundant.
1935     */
1936     if( pSelect ){
1937       SelectDest dest;    /* Where the SELECT should store results */
1938       int regYield;       /* Register holding co-routine entry-point */
1939       int addrTop;        /* Top of the co-routine */
1940       int regRec;         /* A record to be insert into the new table */
1941       int regRowid;       /* Rowid of the next row to insert */
1942       int addrInsLoop;    /* Top of the loop for inserting rows */
1943       Table *pSelTab;     /* A table that describes the SELECT results */
1944 
1945       regYield = ++pParse->nMem;
1946       regRec = ++pParse->nMem;
1947       regRowid = ++pParse->nMem;
1948       assert(pParse->nTab==1);
1949       sqlite3MayAbort(pParse);
1950       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1951       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1952       pParse->nTab = 2;
1953       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1954       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1955       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1956       sqlite3Select(pParse, pSelect, &dest);
1957       sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1958       sqlite3VdbeJumpHere(v, addrTop - 1);
1959       if( pParse->nErr ) return;
1960       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1961       if( pSelTab==0 ) return;
1962       assert( p->aCol==0 );
1963       p->nCol = pSelTab->nCol;
1964       p->aCol = pSelTab->aCol;
1965       pSelTab->nCol = 0;
1966       pSelTab->aCol = 0;
1967       sqlite3DeleteTable(db, pSelTab);
1968       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1969       VdbeCoverage(v);
1970       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1971       sqlite3TableAffinity(v, p, 0);
1972       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1973       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1974       sqlite3VdbeGoto(v, addrInsLoop);
1975       sqlite3VdbeJumpHere(v, addrInsLoop);
1976       sqlite3VdbeAddOp1(v, OP_Close, 1);
1977     }
1978 
1979     /* Compute the complete text of the CREATE statement */
1980     if( pSelect ){
1981       zStmt = createTableStmt(db, p);
1982     }else{
1983       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1984       n = (int)(pEnd2->z - pParse->sNameToken.z);
1985       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1986       zStmt = sqlite3MPrintf(db,
1987           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1988       );
1989     }
1990 
1991     /* A slot for the record has already been allocated in the
1992     ** SQLITE_MASTER table.  We just need to update that slot with all
1993     ** the information we've collected.
1994     */
1995     sqlite3NestedParse(pParse,
1996       "UPDATE %Q.%s "
1997          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1998        "WHERE rowid=#%d",
1999       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2000       zType,
2001       p->zName,
2002       p->zName,
2003       pParse->regRoot,
2004       zStmt,
2005       pParse->regRowid
2006     );
2007     sqlite3DbFree(db, zStmt);
2008     sqlite3ChangeCookie(pParse, iDb);
2009 
2010 #ifndef SQLITE_OMIT_AUTOINCREMENT
2011     /* Check to see if we need to create an sqlite_sequence table for
2012     ** keeping track of autoincrement keys.
2013     */
2014     if( p->tabFlags & TF_Autoincrement ){
2015       Db *pDb = &db->aDb[iDb];
2016       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2017       if( pDb->pSchema->pSeqTab==0 ){
2018         sqlite3NestedParse(pParse,
2019           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2020           pDb->zName
2021         );
2022       }
2023     }
2024 #endif
2025 
2026     /* Reparse everything to update our internal data structures */
2027     sqlite3VdbeAddParseSchemaOp(v, iDb,
2028            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2029   }
2030 
2031 
2032   /* Add the table to the in-memory representation of the database.
2033   */
2034   if( db->init.busy ){
2035     Table *pOld;
2036     Schema *pSchema = p->pSchema;
2037     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2038     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2039     if( pOld ){
2040       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2041       db->mallocFailed = 1;
2042       return;
2043     }
2044     pParse->pNewTable = 0;
2045     db->flags |= SQLITE_InternChanges;
2046 
2047 #ifndef SQLITE_OMIT_ALTERTABLE
2048     if( !p->pSelect ){
2049       const char *zName = (const char *)pParse->sNameToken.z;
2050       int nName;
2051       assert( !pSelect && pCons && pEnd );
2052       if( pCons->z==0 ){
2053         pCons = pEnd;
2054       }
2055       nName = (int)((const char *)pCons->z - zName);
2056       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2057     }
2058 #endif
2059   }
2060 }
2061 
2062 #ifndef SQLITE_OMIT_VIEW
2063 /*
2064 ** The parser calls this routine in order to create a new VIEW
2065 */
2066 void sqlite3CreateView(
2067   Parse *pParse,     /* The parsing context */
2068   Token *pBegin,     /* The CREATE token that begins the statement */
2069   Token *pName1,     /* The token that holds the name of the view */
2070   Token *pName2,     /* The token that holds the name of the view */
2071   ExprList *pCNames, /* Optional list of view column names */
2072   Select *pSelect,   /* A SELECT statement that will become the new view */
2073   int isTemp,        /* TRUE for a TEMPORARY view */
2074   int noErr          /* Suppress error messages if VIEW already exists */
2075 ){
2076   Table *p;
2077   int n;
2078   const char *z;
2079   Token sEnd;
2080   DbFixer sFix;
2081   Token *pName = 0;
2082   int iDb;
2083   sqlite3 *db = pParse->db;
2084 
2085   if( pParse->nVar>0 ){
2086     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2087     goto create_view_fail;
2088   }
2089   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2090   p = pParse->pNewTable;
2091   if( p==0 || pParse->nErr ) goto create_view_fail;
2092   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2093   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2094   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2095   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2096 
2097   /* Make a copy of the entire SELECT statement that defines the view.
2098   ** This will force all the Expr.token.z values to be dynamically
2099   ** allocated rather than point to the input string - which means that
2100   ** they will persist after the current sqlite3_exec() call returns.
2101   */
2102   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2103   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2104   if( db->mallocFailed ) goto create_view_fail;
2105 
2106   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2107   ** the end.
2108   */
2109   sEnd = pParse->sLastToken;
2110   assert( sEnd.z[0]!=0 );
2111   if( sEnd.z[0]!=';' ){
2112     sEnd.z += sEnd.n;
2113   }
2114   sEnd.n = 0;
2115   n = (int)(sEnd.z - pBegin->z);
2116   assert( n>0 );
2117   z = pBegin->z;
2118   while( sqlite3Isspace(z[n-1]) ){ n--; }
2119   sEnd.z = &z[n-1];
2120   sEnd.n = 1;
2121 
2122   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2123   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2124 
2125 create_view_fail:
2126   sqlite3SelectDelete(db, pSelect);
2127   sqlite3ExprListDelete(db, pCNames);
2128   return;
2129 }
2130 #endif /* SQLITE_OMIT_VIEW */
2131 
2132 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2133 /*
2134 ** The Table structure pTable is really a VIEW.  Fill in the names of
2135 ** the columns of the view in the pTable structure.  Return the number
2136 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2137 */
2138 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2139   Table *pSelTab;   /* A fake table from which we get the result set */
2140   Select *pSel;     /* Copy of the SELECT that implements the view */
2141   int nErr = 0;     /* Number of errors encountered */
2142   int n;            /* Temporarily holds the number of cursors assigned */
2143   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2144   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2145   u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */
2146 
2147   assert( pTable );
2148 
2149 #ifndef SQLITE_OMIT_VIRTUALTABLE
2150   if( sqlite3VtabCallConnect(pParse, pTable) ){
2151     return SQLITE_ERROR;
2152   }
2153   if( IsVirtual(pTable) ) return 0;
2154 #endif
2155 
2156 #ifndef SQLITE_OMIT_VIEW
2157   /* A positive nCol means the columns names for this view are
2158   ** already known.
2159   */
2160   if( pTable->nCol>0 ) return 0;
2161 
2162   /* A negative nCol is a special marker meaning that we are currently
2163   ** trying to compute the column names.  If we enter this routine with
2164   ** a negative nCol, it means two or more views form a loop, like this:
2165   **
2166   **     CREATE VIEW one AS SELECT * FROM two;
2167   **     CREATE VIEW two AS SELECT * FROM one;
2168   **
2169   ** Actually, the error above is now caught prior to reaching this point.
2170   ** But the following test is still important as it does come up
2171   ** in the following:
2172   **
2173   **     CREATE TABLE main.ex1(a);
2174   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2175   **     SELECT * FROM temp.ex1;
2176   */
2177   if( pTable->nCol<0 ){
2178     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2179     return 1;
2180   }
2181   assert( pTable->nCol>=0 );
2182 
2183   /* If we get this far, it means we need to compute the table names.
2184   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2185   ** "*" elements in the results set of the view and will assign cursors
2186   ** to the elements of the FROM clause.  But we do not want these changes
2187   ** to be permanent.  So the computation is done on a copy of the SELECT
2188   ** statement that defines the view.
2189   */
2190   assert( pTable->pSelect );
2191   bEnabledLA = db->lookaside.bEnabled;
2192   if( pTable->pCheck ){
2193     db->lookaside.bEnabled = 0;
2194     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2195                                &pTable->nCol, &pTable->aCol);
2196   }else{
2197     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2198     if( pSel ){
2199       n = pParse->nTab;
2200       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2201       pTable->nCol = -1;
2202       db->lookaside.bEnabled = 0;
2203 #ifndef SQLITE_OMIT_AUTHORIZATION
2204       xAuth = db->xAuth;
2205       db->xAuth = 0;
2206       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2207       db->xAuth = xAuth;
2208 #else
2209       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2210 #endif
2211       pParse->nTab = n;
2212       if( pSelTab ){
2213         assert( pTable->aCol==0 );
2214         pTable->nCol = pSelTab->nCol;
2215         pTable->aCol = pSelTab->aCol;
2216         pSelTab->nCol = 0;
2217         pSelTab->aCol = 0;
2218         sqlite3DeleteTable(db, pSelTab);
2219         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2220       }else{
2221         pTable->nCol = 0;
2222         nErr++;
2223       }
2224       sqlite3SelectDelete(db, pSel);
2225     } else {
2226       nErr++;
2227     }
2228   }
2229   db->lookaside.bEnabled = bEnabledLA;
2230   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2231 #endif /* SQLITE_OMIT_VIEW */
2232   return nErr;
2233 }
2234 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2235 
2236 #ifndef SQLITE_OMIT_VIEW
2237 /*
2238 ** Clear the column names from every VIEW in database idx.
2239 */
2240 static void sqliteViewResetAll(sqlite3 *db, int idx){
2241   HashElem *i;
2242   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2243   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2244   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2245     Table *pTab = sqliteHashData(i);
2246     if( pTab->pSelect ){
2247       sqlite3DeleteColumnNames(db, pTab);
2248       pTab->aCol = 0;
2249       pTab->nCol = 0;
2250     }
2251   }
2252   DbClearProperty(db, idx, DB_UnresetViews);
2253 }
2254 #else
2255 # define sqliteViewResetAll(A,B)
2256 #endif /* SQLITE_OMIT_VIEW */
2257 
2258 /*
2259 ** This function is called by the VDBE to adjust the internal schema
2260 ** used by SQLite when the btree layer moves a table root page. The
2261 ** root-page of a table or index in database iDb has changed from iFrom
2262 ** to iTo.
2263 **
2264 ** Ticket #1728:  The symbol table might still contain information
2265 ** on tables and/or indices that are the process of being deleted.
2266 ** If you are unlucky, one of those deleted indices or tables might
2267 ** have the same rootpage number as the real table or index that is
2268 ** being moved.  So we cannot stop searching after the first match
2269 ** because the first match might be for one of the deleted indices
2270 ** or tables and not the table/index that is actually being moved.
2271 ** We must continue looping until all tables and indices with
2272 ** rootpage==iFrom have been converted to have a rootpage of iTo
2273 ** in order to be certain that we got the right one.
2274 */
2275 #ifndef SQLITE_OMIT_AUTOVACUUM
2276 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2277   HashElem *pElem;
2278   Hash *pHash;
2279   Db *pDb;
2280 
2281   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2282   pDb = &db->aDb[iDb];
2283   pHash = &pDb->pSchema->tblHash;
2284   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2285     Table *pTab = sqliteHashData(pElem);
2286     if( pTab->tnum==iFrom ){
2287       pTab->tnum = iTo;
2288     }
2289   }
2290   pHash = &pDb->pSchema->idxHash;
2291   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2292     Index *pIdx = sqliteHashData(pElem);
2293     if( pIdx->tnum==iFrom ){
2294       pIdx->tnum = iTo;
2295     }
2296   }
2297 }
2298 #endif
2299 
2300 /*
2301 ** Write code to erase the table with root-page iTable from database iDb.
2302 ** Also write code to modify the sqlite_master table and internal schema
2303 ** if a root-page of another table is moved by the btree-layer whilst
2304 ** erasing iTable (this can happen with an auto-vacuum database).
2305 */
2306 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2307   Vdbe *v = sqlite3GetVdbe(pParse);
2308   int r1 = sqlite3GetTempReg(pParse);
2309   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2310   sqlite3MayAbort(pParse);
2311 #ifndef SQLITE_OMIT_AUTOVACUUM
2312   /* OP_Destroy stores an in integer r1. If this integer
2313   ** is non-zero, then it is the root page number of a table moved to
2314   ** location iTable. The following code modifies the sqlite_master table to
2315   ** reflect this.
2316   **
2317   ** The "#NNN" in the SQL is a special constant that means whatever value
2318   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2319   ** token for additional information.
2320   */
2321   sqlite3NestedParse(pParse,
2322      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2323      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2324 #endif
2325   sqlite3ReleaseTempReg(pParse, r1);
2326 }
2327 
2328 /*
2329 ** Write VDBE code to erase table pTab and all associated indices on disk.
2330 ** Code to update the sqlite_master tables and internal schema definitions
2331 ** in case a root-page belonging to another table is moved by the btree layer
2332 ** is also added (this can happen with an auto-vacuum database).
2333 */
2334 static void destroyTable(Parse *pParse, Table *pTab){
2335 #ifdef SQLITE_OMIT_AUTOVACUUM
2336   Index *pIdx;
2337   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2338   destroyRootPage(pParse, pTab->tnum, iDb);
2339   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2340     destroyRootPage(pParse, pIdx->tnum, iDb);
2341   }
2342 #else
2343   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2344   ** is not defined), then it is important to call OP_Destroy on the
2345   ** table and index root-pages in order, starting with the numerically
2346   ** largest root-page number. This guarantees that none of the root-pages
2347   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2348   ** following were coded:
2349   **
2350   ** OP_Destroy 4 0
2351   ** ...
2352   ** OP_Destroy 5 0
2353   **
2354   ** and root page 5 happened to be the largest root-page number in the
2355   ** database, then root page 5 would be moved to page 4 by the
2356   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2357   ** a free-list page.
2358   */
2359   int iTab = pTab->tnum;
2360   int iDestroyed = 0;
2361 
2362   while( 1 ){
2363     Index *pIdx;
2364     int iLargest = 0;
2365 
2366     if( iDestroyed==0 || iTab<iDestroyed ){
2367       iLargest = iTab;
2368     }
2369     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2370       int iIdx = pIdx->tnum;
2371       assert( pIdx->pSchema==pTab->pSchema );
2372       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2373         iLargest = iIdx;
2374       }
2375     }
2376     if( iLargest==0 ){
2377       return;
2378     }else{
2379       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2380       assert( iDb>=0 && iDb<pParse->db->nDb );
2381       destroyRootPage(pParse, iLargest, iDb);
2382       iDestroyed = iLargest;
2383     }
2384   }
2385 #endif
2386 }
2387 
2388 /*
2389 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2390 ** after a DROP INDEX or DROP TABLE command.
2391 */
2392 static void sqlite3ClearStatTables(
2393   Parse *pParse,         /* The parsing context */
2394   int iDb,               /* The database number */
2395   const char *zType,     /* "idx" or "tbl" */
2396   const char *zName      /* Name of index or table */
2397 ){
2398   int i;
2399   const char *zDbName = pParse->db->aDb[iDb].zName;
2400   for(i=1; i<=4; i++){
2401     char zTab[24];
2402     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2403     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2404       sqlite3NestedParse(pParse,
2405         "DELETE FROM %Q.%s WHERE %s=%Q",
2406         zDbName, zTab, zType, zName
2407       );
2408     }
2409   }
2410 }
2411 
2412 /*
2413 ** Generate code to drop a table.
2414 */
2415 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2416   Vdbe *v;
2417   sqlite3 *db = pParse->db;
2418   Trigger *pTrigger;
2419   Db *pDb = &db->aDb[iDb];
2420 
2421   v = sqlite3GetVdbe(pParse);
2422   assert( v!=0 );
2423   sqlite3BeginWriteOperation(pParse, 1, iDb);
2424 
2425 #ifndef SQLITE_OMIT_VIRTUALTABLE
2426   if( IsVirtual(pTab) ){
2427     sqlite3VdbeAddOp0(v, OP_VBegin);
2428   }
2429 #endif
2430 
2431   /* Drop all triggers associated with the table being dropped. Code
2432   ** is generated to remove entries from sqlite_master and/or
2433   ** sqlite_temp_master if required.
2434   */
2435   pTrigger = sqlite3TriggerList(pParse, pTab);
2436   while( pTrigger ){
2437     assert( pTrigger->pSchema==pTab->pSchema ||
2438         pTrigger->pSchema==db->aDb[1].pSchema );
2439     sqlite3DropTriggerPtr(pParse, pTrigger);
2440     pTrigger = pTrigger->pNext;
2441   }
2442 
2443 #ifndef SQLITE_OMIT_AUTOINCREMENT
2444   /* Remove any entries of the sqlite_sequence table associated with
2445   ** the table being dropped. This is done before the table is dropped
2446   ** at the btree level, in case the sqlite_sequence table needs to
2447   ** move as a result of the drop (can happen in auto-vacuum mode).
2448   */
2449   if( pTab->tabFlags & TF_Autoincrement ){
2450     sqlite3NestedParse(pParse,
2451       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2452       pDb->zName, pTab->zName
2453     );
2454   }
2455 #endif
2456 
2457   /* Drop all SQLITE_MASTER table and index entries that refer to the
2458   ** table. The program name loops through the master table and deletes
2459   ** every row that refers to a table of the same name as the one being
2460   ** dropped. Triggers are handled separately because a trigger can be
2461   ** created in the temp database that refers to a table in another
2462   ** database.
2463   */
2464   sqlite3NestedParse(pParse,
2465       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2466       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2467   if( !isView && !IsVirtual(pTab) ){
2468     destroyTable(pParse, pTab);
2469   }
2470 
2471   /* Remove the table entry from SQLite's internal schema and modify
2472   ** the schema cookie.
2473   */
2474   if( IsVirtual(pTab) ){
2475     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2476   }
2477   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2478   sqlite3ChangeCookie(pParse, iDb);
2479   sqliteViewResetAll(db, iDb);
2480 }
2481 
2482 /*
2483 ** This routine is called to do the work of a DROP TABLE statement.
2484 ** pName is the name of the table to be dropped.
2485 */
2486 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2487   Table *pTab;
2488   Vdbe *v;
2489   sqlite3 *db = pParse->db;
2490   int iDb;
2491 
2492   if( db->mallocFailed ){
2493     goto exit_drop_table;
2494   }
2495   assert( pParse->nErr==0 );
2496   assert( pName->nSrc==1 );
2497   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2498   if( noErr ) db->suppressErr++;
2499   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2500   if( noErr ) db->suppressErr--;
2501 
2502   if( pTab==0 ){
2503     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2504     goto exit_drop_table;
2505   }
2506   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2507   assert( iDb>=0 && iDb<db->nDb );
2508 
2509   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2510   ** it is initialized.
2511   */
2512   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2513     goto exit_drop_table;
2514   }
2515 #ifndef SQLITE_OMIT_AUTHORIZATION
2516   {
2517     int code;
2518     const char *zTab = SCHEMA_TABLE(iDb);
2519     const char *zDb = db->aDb[iDb].zName;
2520     const char *zArg2 = 0;
2521     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2522       goto exit_drop_table;
2523     }
2524     if( isView ){
2525       if( !OMIT_TEMPDB && iDb==1 ){
2526         code = SQLITE_DROP_TEMP_VIEW;
2527       }else{
2528         code = SQLITE_DROP_VIEW;
2529       }
2530 #ifndef SQLITE_OMIT_VIRTUALTABLE
2531     }else if( IsVirtual(pTab) ){
2532       code = SQLITE_DROP_VTABLE;
2533       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2534 #endif
2535     }else{
2536       if( !OMIT_TEMPDB && iDb==1 ){
2537         code = SQLITE_DROP_TEMP_TABLE;
2538       }else{
2539         code = SQLITE_DROP_TABLE;
2540       }
2541     }
2542     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2543       goto exit_drop_table;
2544     }
2545     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2546       goto exit_drop_table;
2547     }
2548   }
2549 #endif
2550   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2551     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2552     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2553     goto exit_drop_table;
2554   }
2555 
2556 #ifndef SQLITE_OMIT_VIEW
2557   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2558   ** on a table.
2559   */
2560   if( isView && pTab->pSelect==0 ){
2561     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2562     goto exit_drop_table;
2563   }
2564   if( !isView && pTab->pSelect ){
2565     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2566     goto exit_drop_table;
2567   }
2568 #endif
2569 
2570   /* Generate code to remove the table from the master table
2571   ** on disk.
2572   */
2573   v = sqlite3GetVdbe(pParse);
2574   if( v ){
2575     sqlite3BeginWriteOperation(pParse, 1, iDb);
2576     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2577     sqlite3FkDropTable(pParse, pName, pTab);
2578     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2579   }
2580 
2581 exit_drop_table:
2582   sqlite3SrcListDelete(db, pName);
2583 }
2584 
2585 /*
2586 ** This routine is called to create a new foreign key on the table
2587 ** currently under construction.  pFromCol determines which columns
2588 ** in the current table point to the foreign key.  If pFromCol==0 then
2589 ** connect the key to the last column inserted.  pTo is the name of
2590 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2591 ** of tables in the parent pTo table.  flags contains all
2592 ** information about the conflict resolution algorithms specified
2593 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2594 **
2595 ** An FKey structure is created and added to the table currently
2596 ** under construction in the pParse->pNewTable field.
2597 **
2598 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2599 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2600 */
2601 void sqlite3CreateForeignKey(
2602   Parse *pParse,       /* Parsing context */
2603   ExprList *pFromCol,  /* Columns in this table that point to other table */
2604   Token *pTo,          /* Name of the other table */
2605   ExprList *pToCol,    /* Columns in the other table */
2606   int flags            /* Conflict resolution algorithms. */
2607 ){
2608   sqlite3 *db = pParse->db;
2609 #ifndef SQLITE_OMIT_FOREIGN_KEY
2610   FKey *pFKey = 0;
2611   FKey *pNextTo;
2612   Table *p = pParse->pNewTable;
2613   int nByte;
2614   int i;
2615   int nCol;
2616   char *z;
2617 
2618   assert( pTo!=0 );
2619   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2620   if( pFromCol==0 ){
2621     int iCol = p->nCol-1;
2622     if( NEVER(iCol<0) ) goto fk_end;
2623     if( pToCol && pToCol->nExpr!=1 ){
2624       sqlite3ErrorMsg(pParse, "foreign key on %s"
2625          " should reference only one column of table %T",
2626          p->aCol[iCol].zName, pTo);
2627       goto fk_end;
2628     }
2629     nCol = 1;
2630   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2631     sqlite3ErrorMsg(pParse,
2632         "number of columns in foreign key does not match the number of "
2633         "columns in the referenced table");
2634     goto fk_end;
2635   }else{
2636     nCol = pFromCol->nExpr;
2637   }
2638   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2639   if( pToCol ){
2640     for(i=0; i<pToCol->nExpr; i++){
2641       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2642     }
2643   }
2644   pFKey = sqlite3DbMallocZero(db, nByte );
2645   if( pFKey==0 ){
2646     goto fk_end;
2647   }
2648   pFKey->pFrom = p;
2649   pFKey->pNextFrom = p->pFKey;
2650   z = (char*)&pFKey->aCol[nCol];
2651   pFKey->zTo = z;
2652   memcpy(z, pTo->z, pTo->n);
2653   z[pTo->n] = 0;
2654   sqlite3Dequote(z);
2655   z += pTo->n+1;
2656   pFKey->nCol = nCol;
2657   if( pFromCol==0 ){
2658     pFKey->aCol[0].iFrom = p->nCol-1;
2659   }else{
2660     for(i=0; i<nCol; i++){
2661       int j;
2662       for(j=0; j<p->nCol; j++){
2663         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2664           pFKey->aCol[i].iFrom = j;
2665           break;
2666         }
2667       }
2668       if( j>=p->nCol ){
2669         sqlite3ErrorMsg(pParse,
2670           "unknown column \"%s\" in foreign key definition",
2671           pFromCol->a[i].zName);
2672         goto fk_end;
2673       }
2674     }
2675   }
2676   if( pToCol ){
2677     for(i=0; i<nCol; i++){
2678       int n = sqlite3Strlen30(pToCol->a[i].zName);
2679       pFKey->aCol[i].zCol = z;
2680       memcpy(z, pToCol->a[i].zName, n);
2681       z[n] = 0;
2682       z += n+1;
2683     }
2684   }
2685   pFKey->isDeferred = 0;
2686   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2687   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2688 
2689   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2690   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2691       pFKey->zTo, (void *)pFKey
2692   );
2693   if( pNextTo==pFKey ){
2694     db->mallocFailed = 1;
2695     goto fk_end;
2696   }
2697   if( pNextTo ){
2698     assert( pNextTo->pPrevTo==0 );
2699     pFKey->pNextTo = pNextTo;
2700     pNextTo->pPrevTo = pFKey;
2701   }
2702 
2703   /* Link the foreign key to the table as the last step.
2704   */
2705   p->pFKey = pFKey;
2706   pFKey = 0;
2707 
2708 fk_end:
2709   sqlite3DbFree(db, pFKey);
2710 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2711   sqlite3ExprListDelete(db, pFromCol);
2712   sqlite3ExprListDelete(db, pToCol);
2713 }
2714 
2715 /*
2716 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2717 ** clause is seen as part of a foreign key definition.  The isDeferred
2718 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2719 ** The behavior of the most recently created foreign key is adjusted
2720 ** accordingly.
2721 */
2722 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2723 #ifndef SQLITE_OMIT_FOREIGN_KEY
2724   Table *pTab;
2725   FKey *pFKey;
2726   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2727   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2728   pFKey->isDeferred = (u8)isDeferred;
2729 #endif
2730 }
2731 
2732 /*
2733 ** Generate code that will erase and refill index *pIdx.  This is
2734 ** used to initialize a newly created index or to recompute the
2735 ** content of an index in response to a REINDEX command.
2736 **
2737 ** if memRootPage is not negative, it means that the index is newly
2738 ** created.  The register specified by memRootPage contains the
2739 ** root page number of the index.  If memRootPage is negative, then
2740 ** the index already exists and must be cleared before being refilled and
2741 ** the root page number of the index is taken from pIndex->tnum.
2742 */
2743 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2744   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2745   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2746   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2747   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2748   int addr1;                     /* Address of top of loop */
2749   int addr2;                     /* Address to jump to for next iteration */
2750   int tnum;                      /* Root page of index */
2751   int iPartIdxLabel;             /* Jump to this label to skip a row */
2752   Vdbe *v;                       /* Generate code into this virtual machine */
2753   KeyInfo *pKey;                 /* KeyInfo for index */
2754   int regRecord;                 /* Register holding assembled index record */
2755   sqlite3 *db = pParse->db;      /* The database connection */
2756   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2757 
2758 #ifndef SQLITE_OMIT_AUTHORIZATION
2759   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2760       db->aDb[iDb].zName ) ){
2761     return;
2762   }
2763 #endif
2764 
2765   /* Require a write-lock on the table to perform this operation */
2766   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2767 
2768   v = sqlite3GetVdbe(pParse);
2769   if( v==0 ) return;
2770   if( memRootPage>=0 ){
2771     tnum = memRootPage;
2772   }else{
2773     tnum = pIndex->tnum;
2774   }
2775   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2776 
2777   /* Open the sorter cursor if we are to use one. */
2778   iSorter = pParse->nTab++;
2779   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2780                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2781 
2782   /* Open the table. Loop through all rows of the table, inserting index
2783   ** records into the sorter. */
2784   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2785   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2786   regRecord = sqlite3GetTempReg(pParse);
2787 
2788   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2789   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2790   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2791   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2792   sqlite3VdbeJumpHere(v, addr1);
2793   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2794   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2795                     (char *)pKey, P4_KEYINFO);
2796   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2797 
2798   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2799   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2800   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2801     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2802     sqlite3VdbeGoto(v, j2);
2803     addr2 = sqlite3VdbeCurrentAddr(v);
2804     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2805                          pIndex->nKeyCol); VdbeCoverage(v);
2806     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2807   }else{
2808     addr2 = sqlite3VdbeCurrentAddr(v);
2809   }
2810   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2811   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2812   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2813   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2814   sqlite3ReleaseTempReg(pParse, regRecord);
2815   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2816   sqlite3VdbeJumpHere(v, addr1);
2817 
2818   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2819   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2820   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2821 }
2822 
2823 /*
2824 ** Allocate heap space to hold an Index object with nCol columns.
2825 **
2826 ** Increase the allocation size to provide an extra nExtra bytes
2827 ** of 8-byte aligned space after the Index object and return a
2828 ** pointer to this extra space in *ppExtra.
2829 */
2830 Index *sqlite3AllocateIndexObject(
2831   sqlite3 *db,         /* Database connection */
2832   i16 nCol,            /* Total number of columns in the index */
2833   int nExtra,          /* Number of bytes of extra space to alloc */
2834   char **ppExtra       /* Pointer to the "extra" space */
2835 ){
2836   Index *p;            /* Allocated index object */
2837   int nByte;           /* Bytes of space for Index object + arrays */
2838 
2839   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2840           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2841           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2842                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2843                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2844   p = sqlite3DbMallocZero(db, nByte + nExtra);
2845   if( p ){
2846     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2847     p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
2848     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2849     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2850     p->aSortOrder = (u8*)pExtra;
2851     p->nColumn = nCol;
2852     p->nKeyCol = nCol - 1;
2853     *ppExtra = ((char*)p) + nByte;
2854   }
2855   return p;
2856 }
2857 
2858 /*
2859 ** Backwards Compatibility Hack:
2860 **
2861 ** Historical versions of SQLite accepted strings as column names in
2862 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
2863 **
2864 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
2865 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
2866 **
2867 ** This is goofy.  But to preserve backwards compatibility we continue to
2868 ** accept it.  This routine does the necessary conversion.  It converts
2869 ** the expression given in its argument from a TK_STRING into a TK_ID
2870 ** if the expression is just a TK_STRING with an optional COLLATE clause.
2871 ** If the epxression is anything other than TK_STRING, the expression is
2872 ** unchanged.
2873 */
2874 static void sqlite3StringToId(Expr *p){
2875   if( p->op==TK_STRING ){
2876     p->op = TK_ID;
2877   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
2878     p->pLeft->op = TK_ID;
2879   }
2880 }
2881 
2882 /*
2883 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2884 ** and pTblList is the name of the table that is to be indexed.  Both will
2885 ** be NULL for a primary key or an index that is created to satisfy a
2886 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2887 ** as the table to be indexed.  pParse->pNewTable is a table that is
2888 ** currently being constructed by a CREATE TABLE statement.
2889 **
2890 ** pList is a list of columns to be indexed.  pList will be NULL if this
2891 ** is a primary key or unique-constraint on the most recent column added
2892 ** to the table currently under construction.
2893 **
2894 ** If the index is created successfully, return a pointer to the new Index
2895 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2896 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2897 */
2898 Index *sqlite3CreateIndex(
2899   Parse *pParse,     /* All information about this parse */
2900   Token *pName1,     /* First part of index name. May be NULL */
2901   Token *pName2,     /* Second part of index name. May be NULL */
2902   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2903   ExprList *pList,   /* A list of columns to be indexed */
2904   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2905   Token *pStart,     /* The CREATE token that begins this statement */
2906   Expr *pPIWhere,    /* WHERE clause for partial indices */
2907   int sortOrder,     /* Sort order of primary key when pList==NULL */
2908   int ifNotExist     /* Omit error if index already exists */
2909 ){
2910   Index *pRet = 0;     /* Pointer to return */
2911   Table *pTab = 0;     /* Table to be indexed */
2912   Index *pIndex = 0;   /* The index to be created */
2913   char *zName = 0;     /* Name of the index */
2914   int nName;           /* Number of characters in zName */
2915   int i, j;
2916   DbFixer sFix;        /* For assigning database names to pTable */
2917   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2918   sqlite3 *db = pParse->db;
2919   Db *pDb;             /* The specific table containing the indexed database */
2920   int iDb;             /* Index of the database that is being written */
2921   Token *pName = 0;    /* Unqualified name of the index to create */
2922   struct ExprList_item *pListItem; /* For looping over pList */
2923   int nExtra = 0;                  /* Space allocated for zExtra[] */
2924   int nExtraCol;                   /* Number of extra columns needed */
2925   char *zExtra = 0;                /* Extra space after the Index object */
2926   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2927 
2928   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2929     goto exit_create_index;
2930   }
2931   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2932     goto exit_create_index;
2933   }
2934 
2935   /*
2936   ** Find the table that is to be indexed.  Return early if not found.
2937   */
2938   if( pTblName!=0 ){
2939 
2940     /* Use the two-part index name to determine the database
2941     ** to search for the table. 'Fix' the table name to this db
2942     ** before looking up the table.
2943     */
2944     assert( pName1 && pName2 );
2945     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2946     if( iDb<0 ) goto exit_create_index;
2947     assert( pName && pName->z );
2948 
2949 #ifndef SQLITE_OMIT_TEMPDB
2950     /* If the index name was unqualified, check if the table
2951     ** is a temp table. If so, set the database to 1. Do not do this
2952     ** if initialising a database schema.
2953     */
2954     if( !db->init.busy ){
2955       pTab = sqlite3SrcListLookup(pParse, pTblName);
2956       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2957         iDb = 1;
2958       }
2959     }
2960 #endif
2961 
2962     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2963     if( sqlite3FixSrcList(&sFix, pTblName) ){
2964       /* Because the parser constructs pTblName from a single identifier,
2965       ** sqlite3FixSrcList can never fail. */
2966       assert(0);
2967     }
2968     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2969     assert( db->mallocFailed==0 || pTab==0 );
2970     if( pTab==0 ) goto exit_create_index;
2971     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2972       sqlite3ErrorMsg(pParse,
2973            "cannot create a TEMP index on non-TEMP table \"%s\"",
2974            pTab->zName);
2975       goto exit_create_index;
2976     }
2977     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2978   }else{
2979     assert( pName==0 );
2980     assert( pStart==0 );
2981     pTab = pParse->pNewTable;
2982     if( !pTab ) goto exit_create_index;
2983     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2984   }
2985   pDb = &db->aDb[iDb];
2986 
2987   assert( pTab!=0 );
2988   assert( pParse->nErr==0 );
2989   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2990        && db->init.busy==0
2991 #if SQLITE_USER_AUTHENTICATION
2992        && sqlite3UserAuthTable(pTab->zName)==0
2993 #endif
2994        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2995     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2996     goto exit_create_index;
2997   }
2998 #ifndef SQLITE_OMIT_VIEW
2999   if( pTab->pSelect ){
3000     sqlite3ErrorMsg(pParse, "views may not be indexed");
3001     goto exit_create_index;
3002   }
3003 #endif
3004 #ifndef SQLITE_OMIT_VIRTUALTABLE
3005   if( IsVirtual(pTab) ){
3006     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3007     goto exit_create_index;
3008   }
3009 #endif
3010 
3011   /*
3012   ** Find the name of the index.  Make sure there is not already another
3013   ** index or table with the same name.
3014   **
3015   ** Exception:  If we are reading the names of permanent indices from the
3016   ** sqlite_master table (because some other process changed the schema) and
3017   ** one of the index names collides with the name of a temporary table or
3018   ** index, then we will continue to process this index.
3019   **
3020   ** If pName==0 it means that we are
3021   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3022   ** own name.
3023   */
3024   if( pName ){
3025     zName = sqlite3NameFromToken(db, pName);
3026     if( zName==0 ) goto exit_create_index;
3027     assert( pName->z!=0 );
3028     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3029       goto exit_create_index;
3030     }
3031     if( !db->init.busy ){
3032       if( sqlite3FindTable(db, zName, 0)!=0 ){
3033         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3034         goto exit_create_index;
3035       }
3036     }
3037     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3038       if( !ifNotExist ){
3039         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3040       }else{
3041         assert( !db->init.busy );
3042         sqlite3CodeVerifySchema(pParse, iDb);
3043       }
3044       goto exit_create_index;
3045     }
3046   }else{
3047     int n;
3048     Index *pLoop;
3049     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3050     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3051     if( zName==0 ){
3052       goto exit_create_index;
3053     }
3054   }
3055 
3056   /* Check for authorization to create an index.
3057   */
3058 #ifndef SQLITE_OMIT_AUTHORIZATION
3059   {
3060     const char *zDb = pDb->zName;
3061     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3062       goto exit_create_index;
3063     }
3064     i = SQLITE_CREATE_INDEX;
3065     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3066     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3067       goto exit_create_index;
3068     }
3069   }
3070 #endif
3071 
3072   /* If pList==0, it means this routine was called to make a primary
3073   ** key out of the last column added to the table under construction.
3074   ** So create a fake list to simulate this.
3075   */
3076   if( pList==0 ){
3077     Token prevCol;
3078     prevCol.z = pTab->aCol[pTab->nCol-1].zName;
3079     prevCol.n = sqlite3Strlen30(prevCol.z);
3080     pList = sqlite3ExprListAppend(pParse, 0,
3081               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3082     if( pList==0 ) goto exit_create_index;
3083     assert( pList->nExpr==1 );
3084     sqlite3ExprListSetSortOrder(pList, sortOrder);
3085   }else{
3086     sqlite3ExprListCheckLength(pParse, pList, "index");
3087   }
3088 
3089   /* Figure out how many bytes of space are required to store explicitly
3090   ** specified collation sequence names.
3091   */
3092   for(i=0; i<pList->nExpr; i++){
3093     Expr *pExpr = pList->a[i].pExpr;
3094     assert( pExpr!=0 );
3095     if( pExpr->op==TK_COLLATE ){
3096       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3097     }
3098   }
3099 
3100   /*
3101   ** Allocate the index structure.
3102   */
3103   nName = sqlite3Strlen30(zName);
3104   nExtraCol = pPk ? pPk->nKeyCol : 1;
3105   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3106                                       nName + nExtra + 1, &zExtra);
3107   if( db->mallocFailed ){
3108     goto exit_create_index;
3109   }
3110   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3111   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3112   pIndex->zName = zExtra;
3113   zExtra += nName + 1;
3114   memcpy(pIndex->zName, zName, nName+1);
3115   pIndex->pTable = pTab;
3116   pIndex->onError = (u8)onError;
3117   pIndex->uniqNotNull = onError!=OE_None;
3118   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3119   pIndex->pSchema = db->aDb[iDb].pSchema;
3120   pIndex->nKeyCol = pList->nExpr;
3121   if( pPIWhere ){
3122     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3123     pIndex->pPartIdxWhere = pPIWhere;
3124     pPIWhere = 0;
3125   }
3126   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3127 
3128   /* Check to see if we should honor DESC requests on index columns
3129   */
3130   if( pDb->pSchema->file_format>=4 ){
3131     sortOrderMask = -1;   /* Honor DESC */
3132   }else{
3133     sortOrderMask = 0;    /* Ignore DESC */
3134   }
3135 
3136   /* Analyze the list of expressions that form the terms of the index and
3137   ** report any errors.  In the common case where the expression is exactly
3138   ** a table column, store that column in aiColumn[].  For general expressions,
3139   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3140   **
3141   ** TODO: Issue a warning if two or more columns of the index are identical.
3142   ** TODO: Issue a warning if the table primary key is used as part of the
3143   ** index key.
3144   */
3145   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3146     Expr *pCExpr;                  /* The i-th index expression */
3147     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3148     char *zColl;                   /* Collation sequence name */
3149 
3150     sqlite3StringToId(pListItem->pExpr);
3151     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3152     if( pParse->nErr ) goto exit_create_index;
3153     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3154     if( pCExpr->op!=TK_COLUMN ){
3155       if( pTab==pParse->pNewTable ){
3156         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3157                                 "UNIQUE constraints");
3158         goto exit_create_index;
3159       }
3160       if( pIndex->aColExpr==0 ){
3161         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3162         pIndex->aColExpr = pCopy;
3163         if( !db->mallocFailed ){
3164           assert( pCopy!=0 );
3165           pListItem = &pCopy->a[i];
3166         }
3167       }
3168       j = XN_EXPR;
3169       pIndex->aiColumn[i] = XN_EXPR;
3170       pIndex->uniqNotNull = 0;
3171     }else{
3172       j = pCExpr->iColumn;
3173       assert( j<=0x7fff );
3174       if( j<0 ){
3175         j = pTab->iPKey;
3176       }else if( pTab->aCol[j].notNull==0 ){
3177         pIndex->uniqNotNull = 0;
3178       }
3179       pIndex->aiColumn[i] = (i16)j;
3180     }
3181     zColl = 0;
3182     if( pListItem->pExpr->op==TK_COLLATE ){
3183       int nColl;
3184       zColl = pListItem->pExpr->u.zToken;
3185       nColl = sqlite3Strlen30(zColl) + 1;
3186       assert( nExtra>=nColl );
3187       memcpy(zExtra, zColl, nColl);
3188       zColl = zExtra;
3189       zExtra += nColl;
3190       nExtra -= nColl;
3191     }else if( j>=0 ){
3192       zColl = pTab->aCol[j].zColl;
3193     }
3194     if( !zColl ) zColl = "BINARY";
3195     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3196       goto exit_create_index;
3197     }
3198     pIndex->azColl[i] = zColl;
3199     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3200     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3201   }
3202 
3203   /* Append the table key to the end of the index.  For WITHOUT ROWID
3204   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3205   ** normal tables (when pPk==0) this will be the rowid.
3206   */
3207   if( pPk ){
3208     for(j=0; j<pPk->nKeyCol; j++){
3209       int x = pPk->aiColumn[j];
3210       assert( x>=0 );
3211       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3212         pIndex->nColumn--;
3213       }else{
3214         pIndex->aiColumn[i] = x;
3215         pIndex->azColl[i] = pPk->azColl[j];
3216         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3217         i++;
3218       }
3219     }
3220     assert( i==pIndex->nColumn );
3221   }else{
3222     pIndex->aiColumn[i] = XN_ROWID;
3223     pIndex->azColl[i] = "BINARY";
3224   }
3225   sqlite3DefaultRowEst(pIndex);
3226   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3227 
3228   if( pTab==pParse->pNewTable ){
3229     /* This routine has been called to create an automatic index as a
3230     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3231     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3232     ** i.e. one of:
3233     **
3234     ** CREATE TABLE t(x PRIMARY KEY, y);
3235     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3236     **
3237     ** Either way, check to see if the table already has such an index. If
3238     ** so, don't bother creating this one. This only applies to
3239     ** automatically created indices. Users can do as they wish with
3240     ** explicit indices.
3241     **
3242     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3243     ** (and thus suppressing the second one) even if they have different
3244     ** sort orders.
3245     **
3246     ** If there are different collating sequences or if the columns of
3247     ** the constraint occur in different orders, then the constraints are
3248     ** considered distinct and both result in separate indices.
3249     */
3250     Index *pIdx;
3251     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3252       int k;
3253       assert( IsUniqueIndex(pIdx) );
3254       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3255       assert( IsUniqueIndex(pIndex) );
3256 
3257       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3258       for(k=0; k<pIdx->nKeyCol; k++){
3259         const char *z1;
3260         const char *z2;
3261         assert( pIdx->aiColumn[k]>=0 );
3262         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3263         z1 = pIdx->azColl[k];
3264         z2 = pIndex->azColl[k];
3265         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3266       }
3267       if( k==pIdx->nKeyCol ){
3268         if( pIdx->onError!=pIndex->onError ){
3269           /* This constraint creates the same index as a previous
3270           ** constraint specified somewhere in the CREATE TABLE statement.
3271           ** However the ON CONFLICT clauses are different. If both this
3272           ** constraint and the previous equivalent constraint have explicit
3273           ** ON CONFLICT clauses this is an error. Otherwise, use the
3274           ** explicitly specified behavior for the index.
3275           */
3276           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3277             sqlite3ErrorMsg(pParse,
3278                 "conflicting ON CONFLICT clauses specified", 0);
3279           }
3280           if( pIdx->onError==OE_Default ){
3281             pIdx->onError = pIndex->onError;
3282           }
3283         }
3284         pRet = pIdx;
3285         goto exit_create_index;
3286       }
3287     }
3288   }
3289 
3290   /* Link the new Index structure to its table and to the other
3291   ** in-memory database structures.
3292   */
3293   assert( pParse->nErr==0 );
3294   if( db->init.busy ){
3295     Index *p;
3296     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3297     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3298                           pIndex->zName, pIndex);
3299     if( p ){
3300       assert( p==pIndex );  /* Malloc must have failed */
3301       db->mallocFailed = 1;
3302       goto exit_create_index;
3303     }
3304     db->flags |= SQLITE_InternChanges;
3305     if( pTblName!=0 ){
3306       pIndex->tnum = db->init.newTnum;
3307     }
3308   }
3309 
3310   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3311   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3312   ** emit code to allocate the index rootpage on disk and make an entry for
3313   ** the index in the sqlite_master table and populate the index with
3314   ** content.  But, do not do this if we are simply reading the sqlite_master
3315   ** table to parse the schema, or if this index is the PRIMARY KEY index
3316   ** of a WITHOUT ROWID table.
3317   **
3318   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3319   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3320   ** has just been created, it contains no data and the index initialization
3321   ** step can be skipped.
3322   */
3323   else if( HasRowid(pTab) || pTblName!=0 ){
3324     Vdbe *v;
3325     char *zStmt;
3326     int iMem = ++pParse->nMem;
3327 
3328     v = sqlite3GetVdbe(pParse);
3329     if( v==0 ) goto exit_create_index;
3330 
3331     sqlite3BeginWriteOperation(pParse, 1, iDb);
3332 
3333     /* Create the rootpage for the index using CreateIndex. But before
3334     ** doing so, code a Noop instruction and store its address in
3335     ** Index.tnum. This is required in case this index is actually a
3336     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3337     ** that case the convertToWithoutRowidTable() routine will replace
3338     ** the Noop with a Goto to jump over the VDBE code generated below. */
3339     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3340     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3341 
3342     /* Gather the complete text of the CREATE INDEX statement into
3343     ** the zStmt variable
3344     */
3345     if( pStart ){
3346       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3347       if( pName->z[n-1]==';' ) n--;
3348       /* A named index with an explicit CREATE INDEX statement */
3349       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3350         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3351     }else{
3352       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3353       /* zStmt = sqlite3MPrintf(""); */
3354       zStmt = 0;
3355     }
3356 
3357     /* Add an entry in sqlite_master for this index
3358     */
3359     sqlite3NestedParse(pParse,
3360         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3361         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3362         pIndex->zName,
3363         pTab->zName,
3364         iMem,
3365         zStmt
3366     );
3367     sqlite3DbFree(db, zStmt);
3368 
3369     /* Fill the index with data and reparse the schema. Code an OP_Expire
3370     ** to invalidate all pre-compiled statements.
3371     */
3372     if( pTblName ){
3373       sqlite3RefillIndex(pParse, pIndex, iMem);
3374       sqlite3ChangeCookie(pParse, iDb);
3375       sqlite3VdbeAddParseSchemaOp(v, iDb,
3376          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3377       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3378     }
3379 
3380     sqlite3VdbeJumpHere(v, pIndex->tnum);
3381   }
3382 
3383   /* When adding an index to the list of indices for a table, make
3384   ** sure all indices labeled OE_Replace come after all those labeled
3385   ** OE_Ignore.  This is necessary for the correct constraint check
3386   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3387   ** UPDATE and INSERT statements.
3388   */
3389   if( db->init.busy || pTblName==0 ){
3390     if( onError!=OE_Replace || pTab->pIndex==0
3391          || pTab->pIndex->onError==OE_Replace){
3392       pIndex->pNext = pTab->pIndex;
3393       pTab->pIndex = pIndex;
3394     }else{
3395       Index *pOther = pTab->pIndex;
3396       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3397         pOther = pOther->pNext;
3398       }
3399       pIndex->pNext = pOther->pNext;
3400       pOther->pNext = pIndex;
3401     }
3402     pRet = pIndex;
3403     pIndex = 0;
3404   }
3405 
3406   /* Clean up before exiting */
3407 exit_create_index:
3408   if( pIndex ) freeIndex(db, pIndex);
3409   sqlite3ExprDelete(db, pPIWhere);
3410   sqlite3ExprListDelete(db, pList);
3411   sqlite3SrcListDelete(db, pTblName);
3412   sqlite3DbFree(db, zName);
3413   return pRet;
3414 }
3415 
3416 /*
3417 ** Fill the Index.aiRowEst[] array with default information - information
3418 ** to be used when we have not run the ANALYZE command.
3419 **
3420 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3421 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3422 ** number of rows in the table that match any particular value of the
3423 ** first column of the index.  aiRowEst[2] is an estimate of the number
3424 ** of rows that match any particular combination of the first 2 columns
3425 ** of the index.  And so forth.  It must always be the case that
3426 *
3427 **           aiRowEst[N]<=aiRowEst[N-1]
3428 **           aiRowEst[N]>=1
3429 **
3430 ** Apart from that, we have little to go on besides intuition as to
3431 ** how aiRowEst[] should be initialized.  The numbers generated here
3432 ** are based on typical values found in actual indices.
3433 */
3434 void sqlite3DefaultRowEst(Index *pIdx){
3435   /*                10,  9,  8,  7,  6 */
3436   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3437   LogEst *a = pIdx->aiRowLogEst;
3438   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3439   int i;
3440 
3441   /* Set the first entry (number of rows in the index) to the estimated
3442   ** number of rows in the table. Or 10, if the estimated number of rows
3443   ** in the table is less than that.  */
3444   a[0] = pIdx->pTable->nRowLogEst;
3445   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3446 
3447   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3448   ** 6 and each subsequent value (if any) is 5.  */
3449   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3450   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3451     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3452   }
3453 
3454   assert( 0==sqlite3LogEst(1) );
3455   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3456 }
3457 
3458 /*
3459 ** This routine will drop an existing named index.  This routine
3460 ** implements the DROP INDEX statement.
3461 */
3462 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3463   Index *pIndex;
3464   Vdbe *v;
3465   sqlite3 *db = pParse->db;
3466   int iDb;
3467 
3468   assert( pParse->nErr==0 );   /* Never called with prior errors */
3469   if( db->mallocFailed ){
3470     goto exit_drop_index;
3471   }
3472   assert( pName->nSrc==1 );
3473   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3474     goto exit_drop_index;
3475   }
3476   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3477   if( pIndex==0 ){
3478     if( !ifExists ){
3479       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3480     }else{
3481       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3482     }
3483     pParse->checkSchema = 1;
3484     goto exit_drop_index;
3485   }
3486   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3487     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3488       "or PRIMARY KEY constraint cannot be dropped", 0);
3489     goto exit_drop_index;
3490   }
3491   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3492 #ifndef SQLITE_OMIT_AUTHORIZATION
3493   {
3494     int code = SQLITE_DROP_INDEX;
3495     Table *pTab = pIndex->pTable;
3496     const char *zDb = db->aDb[iDb].zName;
3497     const char *zTab = SCHEMA_TABLE(iDb);
3498     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3499       goto exit_drop_index;
3500     }
3501     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3502     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3503       goto exit_drop_index;
3504     }
3505   }
3506 #endif
3507 
3508   /* Generate code to remove the index and from the master table */
3509   v = sqlite3GetVdbe(pParse);
3510   if( v ){
3511     sqlite3BeginWriteOperation(pParse, 1, iDb);
3512     sqlite3NestedParse(pParse,
3513        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3514        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3515     );
3516     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3517     sqlite3ChangeCookie(pParse, iDb);
3518     destroyRootPage(pParse, pIndex->tnum, iDb);
3519     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3520   }
3521 
3522 exit_drop_index:
3523   sqlite3SrcListDelete(db, pName);
3524 }
3525 
3526 /*
3527 ** pArray is a pointer to an array of objects. Each object in the
3528 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3529 ** to extend the array so that there is space for a new object at the end.
3530 **
3531 ** When this function is called, *pnEntry contains the current size of
3532 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3533 ** in total).
3534 **
3535 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3536 ** space allocated for the new object is zeroed, *pnEntry updated to
3537 ** reflect the new size of the array and a pointer to the new allocation
3538 ** returned. *pIdx is set to the index of the new array entry in this case.
3539 **
3540 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3541 ** unchanged and a copy of pArray returned.
3542 */
3543 void *sqlite3ArrayAllocate(
3544   sqlite3 *db,      /* Connection to notify of malloc failures */
3545   void *pArray,     /* Array of objects.  Might be reallocated */
3546   int szEntry,      /* Size of each object in the array */
3547   int *pnEntry,     /* Number of objects currently in use */
3548   int *pIdx         /* Write the index of a new slot here */
3549 ){
3550   char *z;
3551   int n = *pnEntry;
3552   if( (n & (n-1))==0 ){
3553     int sz = (n==0) ? 1 : 2*n;
3554     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3555     if( pNew==0 ){
3556       *pIdx = -1;
3557       return pArray;
3558     }
3559     pArray = pNew;
3560   }
3561   z = (char*)pArray;
3562   memset(&z[n * szEntry], 0, szEntry);
3563   *pIdx = n;
3564   ++*pnEntry;
3565   return pArray;
3566 }
3567 
3568 /*
3569 ** Append a new element to the given IdList.  Create a new IdList if
3570 ** need be.
3571 **
3572 ** A new IdList is returned, or NULL if malloc() fails.
3573 */
3574 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3575   int i;
3576   if( pList==0 ){
3577     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3578     if( pList==0 ) return 0;
3579   }
3580   pList->a = sqlite3ArrayAllocate(
3581       db,
3582       pList->a,
3583       sizeof(pList->a[0]),
3584       &pList->nId,
3585       &i
3586   );
3587   if( i<0 ){
3588     sqlite3IdListDelete(db, pList);
3589     return 0;
3590   }
3591   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3592   return pList;
3593 }
3594 
3595 /*
3596 ** Delete an IdList.
3597 */
3598 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3599   int i;
3600   if( pList==0 ) return;
3601   for(i=0; i<pList->nId; i++){
3602     sqlite3DbFree(db, pList->a[i].zName);
3603   }
3604   sqlite3DbFree(db, pList->a);
3605   sqlite3DbFree(db, pList);
3606 }
3607 
3608 /*
3609 ** Return the index in pList of the identifier named zId.  Return -1
3610 ** if not found.
3611 */
3612 int sqlite3IdListIndex(IdList *pList, const char *zName){
3613   int i;
3614   if( pList==0 ) return -1;
3615   for(i=0; i<pList->nId; i++){
3616     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3617   }
3618   return -1;
3619 }
3620 
3621 /*
3622 ** Expand the space allocated for the given SrcList object by
3623 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3624 ** New slots are zeroed.
3625 **
3626 ** For example, suppose a SrcList initially contains two entries: A,B.
3627 ** To append 3 new entries onto the end, do this:
3628 **
3629 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3630 **
3631 ** After the call above it would contain:  A, B, nil, nil, nil.
3632 ** If the iStart argument had been 1 instead of 2, then the result
3633 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3634 ** the iStart value would be 0.  The result then would
3635 ** be: nil, nil, nil, A, B.
3636 **
3637 ** If a memory allocation fails the SrcList is unchanged.  The
3638 ** db->mallocFailed flag will be set to true.
3639 */
3640 SrcList *sqlite3SrcListEnlarge(
3641   sqlite3 *db,       /* Database connection to notify of OOM errors */
3642   SrcList *pSrc,     /* The SrcList to be enlarged */
3643   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3644   int iStart         /* Index in pSrc->a[] of first new slot */
3645 ){
3646   int i;
3647 
3648   /* Sanity checking on calling parameters */
3649   assert( iStart>=0 );
3650   assert( nExtra>=1 );
3651   assert( pSrc!=0 );
3652   assert( iStart<=pSrc->nSrc );
3653 
3654   /* Allocate additional space if needed */
3655   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3656     SrcList *pNew;
3657     int nAlloc = pSrc->nSrc+nExtra;
3658     int nGot;
3659     pNew = sqlite3DbRealloc(db, pSrc,
3660                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3661     if( pNew==0 ){
3662       assert( db->mallocFailed );
3663       return pSrc;
3664     }
3665     pSrc = pNew;
3666     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3667     pSrc->nAlloc = nGot;
3668   }
3669 
3670   /* Move existing slots that come after the newly inserted slots
3671   ** out of the way */
3672   for(i=pSrc->nSrc-1; i>=iStart; i--){
3673     pSrc->a[i+nExtra] = pSrc->a[i];
3674   }
3675   pSrc->nSrc += nExtra;
3676 
3677   /* Zero the newly allocated slots */
3678   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3679   for(i=iStart; i<iStart+nExtra; i++){
3680     pSrc->a[i].iCursor = -1;
3681   }
3682 
3683   /* Return a pointer to the enlarged SrcList */
3684   return pSrc;
3685 }
3686 
3687 
3688 /*
3689 ** Append a new table name to the given SrcList.  Create a new SrcList if
3690 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3691 **
3692 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3693 ** SrcList might be the same as the SrcList that was input or it might be
3694 ** a new one.  If an OOM error does occurs, then the prior value of pList
3695 ** that is input to this routine is automatically freed.
3696 **
3697 ** If pDatabase is not null, it means that the table has an optional
3698 ** database name prefix.  Like this:  "database.table".  The pDatabase
3699 ** points to the table name and the pTable points to the database name.
3700 ** The SrcList.a[].zName field is filled with the table name which might
3701 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3702 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3703 ** or with NULL if no database is specified.
3704 **
3705 ** In other words, if call like this:
3706 **
3707 **         sqlite3SrcListAppend(D,A,B,0);
3708 **
3709 ** Then B is a table name and the database name is unspecified.  If called
3710 ** like this:
3711 **
3712 **         sqlite3SrcListAppend(D,A,B,C);
3713 **
3714 ** Then C is the table name and B is the database name.  If C is defined
3715 ** then so is B.  In other words, we never have a case where:
3716 **
3717 **         sqlite3SrcListAppend(D,A,0,C);
3718 **
3719 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3720 ** before being added to the SrcList.
3721 */
3722 SrcList *sqlite3SrcListAppend(
3723   sqlite3 *db,        /* Connection to notify of malloc failures */
3724   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3725   Token *pTable,      /* Table to append */
3726   Token *pDatabase    /* Database of the table */
3727 ){
3728   struct SrcList_item *pItem;
3729   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3730   if( pList==0 ){
3731     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3732     if( pList==0 ) return 0;
3733     pList->nAlloc = 1;
3734   }
3735   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3736   if( db->mallocFailed ){
3737     sqlite3SrcListDelete(db, pList);
3738     return 0;
3739   }
3740   pItem = &pList->a[pList->nSrc-1];
3741   if( pDatabase && pDatabase->z==0 ){
3742     pDatabase = 0;
3743   }
3744   if( pDatabase ){
3745     Token *pTemp = pDatabase;
3746     pDatabase = pTable;
3747     pTable = pTemp;
3748   }
3749   pItem->zName = sqlite3NameFromToken(db, pTable);
3750   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3751   return pList;
3752 }
3753 
3754 /*
3755 ** Assign VdbeCursor index numbers to all tables in a SrcList
3756 */
3757 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3758   int i;
3759   struct SrcList_item *pItem;
3760   assert(pList || pParse->db->mallocFailed );
3761   if( pList ){
3762     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3763       if( pItem->iCursor>=0 ) break;
3764       pItem->iCursor = pParse->nTab++;
3765       if( pItem->pSelect ){
3766         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3767       }
3768     }
3769   }
3770 }
3771 
3772 /*
3773 ** Delete an entire SrcList including all its substructure.
3774 */
3775 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3776   int i;
3777   struct SrcList_item *pItem;
3778   if( pList==0 ) return;
3779   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3780     sqlite3DbFree(db, pItem->zDatabase);
3781     sqlite3DbFree(db, pItem->zName);
3782     sqlite3DbFree(db, pItem->zAlias);
3783     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3784     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3785     sqlite3DeleteTable(db, pItem->pTab);
3786     sqlite3SelectDelete(db, pItem->pSelect);
3787     sqlite3ExprDelete(db, pItem->pOn);
3788     sqlite3IdListDelete(db, pItem->pUsing);
3789   }
3790   sqlite3DbFree(db, pList);
3791 }
3792 
3793 /*
3794 ** This routine is called by the parser to add a new term to the
3795 ** end of a growing FROM clause.  The "p" parameter is the part of
3796 ** the FROM clause that has already been constructed.  "p" is NULL
3797 ** if this is the first term of the FROM clause.  pTable and pDatabase
3798 ** are the name of the table and database named in the FROM clause term.
3799 ** pDatabase is NULL if the database name qualifier is missing - the
3800 ** usual case.  If the term has an alias, then pAlias points to the
3801 ** alias token.  If the term is a subquery, then pSubquery is the
3802 ** SELECT statement that the subquery encodes.  The pTable and
3803 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3804 ** parameters are the content of the ON and USING clauses.
3805 **
3806 ** Return a new SrcList which encodes is the FROM with the new
3807 ** term added.
3808 */
3809 SrcList *sqlite3SrcListAppendFromTerm(
3810   Parse *pParse,          /* Parsing context */
3811   SrcList *p,             /* The left part of the FROM clause already seen */
3812   Token *pTable,          /* Name of the table to add to the FROM clause */
3813   Token *pDatabase,       /* Name of the database containing pTable */
3814   Token *pAlias,          /* The right-hand side of the AS subexpression */
3815   Select *pSubquery,      /* A subquery used in place of a table name */
3816   Expr *pOn,              /* The ON clause of a join */
3817   IdList *pUsing          /* The USING clause of a join */
3818 ){
3819   struct SrcList_item *pItem;
3820   sqlite3 *db = pParse->db;
3821   if( !p && (pOn || pUsing) ){
3822     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3823       (pOn ? "ON" : "USING")
3824     );
3825     goto append_from_error;
3826   }
3827   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3828   if( p==0 || NEVER(p->nSrc==0) ){
3829     goto append_from_error;
3830   }
3831   pItem = &p->a[p->nSrc-1];
3832   assert( pAlias!=0 );
3833   if( pAlias->n ){
3834     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3835   }
3836   pItem->pSelect = pSubquery;
3837   pItem->pOn = pOn;
3838   pItem->pUsing = pUsing;
3839   return p;
3840 
3841  append_from_error:
3842   assert( p==0 );
3843   sqlite3ExprDelete(db, pOn);
3844   sqlite3IdListDelete(db, pUsing);
3845   sqlite3SelectDelete(db, pSubquery);
3846   return 0;
3847 }
3848 
3849 /*
3850 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3851 ** element of the source-list passed as the second argument.
3852 */
3853 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3854   assert( pIndexedBy!=0 );
3855   if( p && ALWAYS(p->nSrc>0) ){
3856     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3857     assert( pItem->fg.notIndexed==0 );
3858     assert( pItem->fg.isIndexedBy==0 );
3859     assert( pItem->fg.isTabFunc==0 );
3860     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3861       /* A "NOT INDEXED" clause was supplied. See parse.y
3862       ** construct "indexed_opt" for details. */
3863       pItem->fg.notIndexed = 1;
3864     }else{
3865       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3866       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3867     }
3868   }
3869 }
3870 
3871 /*
3872 ** Add the list of function arguments to the SrcList entry for a
3873 ** table-valued-function.
3874 */
3875 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3876   if( p && pList ){
3877     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3878     assert( pItem->fg.notIndexed==0 );
3879     assert( pItem->fg.isIndexedBy==0 );
3880     assert( pItem->fg.isTabFunc==0 );
3881     pItem->u1.pFuncArg = pList;
3882     pItem->fg.isTabFunc = 1;
3883   }else{
3884     sqlite3ExprListDelete(pParse->db, pList);
3885   }
3886 }
3887 
3888 /*
3889 ** When building up a FROM clause in the parser, the join operator
3890 ** is initially attached to the left operand.  But the code generator
3891 ** expects the join operator to be on the right operand.  This routine
3892 ** Shifts all join operators from left to right for an entire FROM
3893 ** clause.
3894 **
3895 ** Example: Suppose the join is like this:
3896 **
3897 **           A natural cross join B
3898 **
3899 ** The operator is "natural cross join".  The A and B operands are stored
3900 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3901 ** operator with A.  This routine shifts that operator over to B.
3902 */
3903 void sqlite3SrcListShiftJoinType(SrcList *p){
3904   if( p ){
3905     int i;
3906     for(i=p->nSrc-1; i>0; i--){
3907       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3908     }
3909     p->a[0].fg.jointype = 0;
3910   }
3911 }
3912 
3913 /*
3914 ** Begin a transaction
3915 */
3916 void sqlite3BeginTransaction(Parse *pParse, int type){
3917   sqlite3 *db;
3918   Vdbe *v;
3919   int i;
3920 
3921   assert( pParse!=0 );
3922   db = pParse->db;
3923   assert( db!=0 );
3924 /*  if( db->aDb[0].pBt==0 ) return; */
3925   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3926     return;
3927   }
3928   v = sqlite3GetVdbe(pParse);
3929   if( !v ) return;
3930   if( type!=TK_DEFERRED ){
3931     for(i=0; i<db->nDb; i++){
3932       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3933       sqlite3VdbeUsesBtree(v, i);
3934     }
3935   }
3936   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3937 }
3938 
3939 /*
3940 ** Commit a transaction
3941 */
3942 void sqlite3CommitTransaction(Parse *pParse){
3943   Vdbe *v;
3944 
3945   assert( pParse!=0 );
3946   assert( pParse->db!=0 );
3947   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3948     return;
3949   }
3950   v = sqlite3GetVdbe(pParse);
3951   if( v ){
3952     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3953   }
3954 }
3955 
3956 /*
3957 ** Rollback a transaction
3958 */
3959 void sqlite3RollbackTransaction(Parse *pParse){
3960   Vdbe *v;
3961 
3962   assert( pParse!=0 );
3963   assert( pParse->db!=0 );
3964   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3965     return;
3966   }
3967   v = sqlite3GetVdbe(pParse);
3968   if( v ){
3969     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3970   }
3971 }
3972 
3973 /*
3974 ** This function is called by the parser when it parses a command to create,
3975 ** release or rollback an SQL savepoint.
3976 */
3977 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3978   char *zName = sqlite3NameFromToken(pParse->db, pName);
3979   if( zName ){
3980     Vdbe *v = sqlite3GetVdbe(pParse);
3981 #ifndef SQLITE_OMIT_AUTHORIZATION
3982     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3983     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3984 #endif
3985     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3986       sqlite3DbFree(pParse->db, zName);
3987       return;
3988     }
3989     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3990   }
3991 }
3992 
3993 /*
3994 ** Make sure the TEMP database is open and available for use.  Return
3995 ** the number of errors.  Leave any error messages in the pParse structure.
3996 */
3997 int sqlite3OpenTempDatabase(Parse *pParse){
3998   sqlite3 *db = pParse->db;
3999   if( db->aDb[1].pBt==0 && !pParse->explain ){
4000     int rc;
4001     Btree *pBt;
4002     static const int flags =
4003           SQLITE_OPEN_READWRITE |
4004           SQLITE_OPEN_CREATE |
4005           SQLITE_OPEN_EXCLUSIVE |
4006           SQLITE_OPEN_DELETEONCLOSE |
4007           SQLITE_OPEN_TEMP_DB;
4008 
4009     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4010     if( rc!=SQLITE_OK ){
4011       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4012         "file for storing temporary tables");
4013       pParse->rc = rc;
4014       return 1;
4015     }
4016     db->aDb[1].pBt = pBt;
4017     assert( db->aDb[1].pSchema );
4018     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4019       db->mallocFailed = 1;
4020       return 1;
4021     }
4022   }
4023   return 0;
4024 }
4025 
4026 /*
4027 ** Record the fact that the schema cookie will need to be verified
4028 ** for database iDb.  The code to actually verify the schema cookie
4029 ** will occur at the end of the top-level VDBE and will be generated
4030 ** later, by sqlite3FinishCoding().
4031 */
4032 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4033   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4034   sqlite3 *db = pToplevel->db;
4035 
4036   assert( iDb>=0 && iDb<db->nDb );
4037   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4038   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4039   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4040   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4041     DbMaskSet(pToplevel->cookieMask, iDb);
4042     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4043     if( !OMIT_TEMPDB && iDb==1 ){
4044       sqlite3OpenTempDatabase(pToplevel);
4045     }
4046   }
4047 }
4048 
4049 /*
4050 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4051 ** attached database. Otherwise, invoke it for the database named zDb only.
4052 */
4053 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4054   sqlite3 *db = pParse->db;
4055   int i;
4056   for(i=0; i<db->nDb; i++){
4057     Db *pDb = &db->aDb[i];
4058     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4059       sqlite3CodeVerifySchema(pParse, i);
4060     }
4061   }
4062 }
4063 
4064 /*
4065 ** Generate VDBE code that prepares for doing an operation that
4066 ** might change the database.
4067 **
4068 ** This routine starts a new transaction if we are not already within
4069 ** a transaction.  If we are already within a transaction, then a checkpoint
4070 ** is set if the setStatement parameter is true.  A checkpoint should
4071 ** be set for operations that might fail (due to a constraint) part of
4072 ** the way through and which will need to undo some writes without having to
4073 ** rollback the whole transaction.  For operations where all constraints
4074 ** can be checked before any changes are made to the database, it is never
4075 ** necessary to undo a write and the checkpoint should not be set.
4076 */
4077 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4078   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4079   sqlite3CodeVerifySchema(pParse, iDb);
4080   DbMaskSet(pToplevel->writeMask, iDb);
4081   pToplevel->isMultiWrite |= setStatement;
4082 }
4083 
4084 /*
4085 ** Indicate that the statement currently under construction might write
4086 ** more than one entry (example: deleting one row then inserting another,
4087 ** inserting multiple rows in a table, or inserting a row and index entries.)
4088 ** If an abort occurs after some of these writes have completed, then it will
4089 ** be necessary to undo the completed writes.
4090 */
4091 void sqlite3MultiWrite(Parse *pParse){
4092   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4093   pToplevel->isMultiWrite = 1;
4094 }
4095 
4096 /*
4097 ** The code generator calls this routine if is discovers that it is
4098 ** possible to abort a statement prior to completion.  In order to
4099 ** perform this abort without corrupting the database, we need to make
4100 ** sure that the statement is protected by a statement transaction.
4101 **
4102 ** Technically, we only need to set the mayAbort flag if the
4103 ** isMultiWrite flag was previously set.  There is a time dependency
4104 ** such that the abort must occur after the multiwrite.  This makes
4105 ** some statements involving the REPLACE conflict resolution algorithm
4106 ** go a little faster.  But taking advantage of this time dependency
4107 ** makes it more difficult to prove that the code is correct (in
4108 ** particular, it prevents us from writing an effective
4109 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4110 ** to take the safe route and skip the optimization.
4111 */
4112 void sqlite3MayAbort(Parse *pParse){
4113   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4114   pToplevel->mayAbort = 1;
4115 }
4116 
4117 /*
4118 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4119 ** error. The onError parameter determines which (if any) of the statement
4120 ** and/or current transaction is rolled back.
4121 */
4122 void sqlite3HaltConstraint(
4123   Parse *pParse,    /* Parsing context */
4124   int errCode,      /* extended error code */
4125   int onError,      /* Constraint type */
4126   char *p4,         /* Error message */
4127   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4128   u8 p5Errmsg       /* P5_ErrMsg type */
4129 ){
4130   Vdbe *v = sqlite3GetVdbe(pParse);
4131   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4132   if( onError==OE_Abort ){
4133     sqlite3MayAbort(pParse);
4134   }
4135   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4136   if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
4137 }
4138 
4139 /*
4140 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4141 */
4142 void sqlite3UniqueConstraint(
4143   Parse *pParse,    /* Parsing context */
4144   int onError,      /* Constraint type */
4145   Index *pIdx       /* The index that triggers the constraint */
4146 ){
4147   char *zErr;
4148   int j;
4149   StrAccum errMsg;
4150   Table *pTab = pIdx->pTable;
4151 
4152   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4153   if( pIdx->aColExpr ){
4154     sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
4155   }else{
4156     for(j=0; j<pIdx->nKeyCol; j++){
4157       char *zCol;
4158       assert( pIdx->aiColumn[j]>=0 );
4159       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4160       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4161       sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
4162     }
4163   }
4164   zErr = sqlite3StrAccumFinish(&errMsg);
4165   sqlite3HaltConstraint(pParse,
4166     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4167                             : SQLITE_CONSTRAINT_UNIQUE,
4168     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4169 }
4170 
4171 
4172 /*
4173 ** Code an OP_Halt due to non-unique rowid.
4174 */
4175 void sqlite3RowidConstraint(
4176   Parse *pParse,    /* Parsing context */
4177   int onError,      /* Conflict resolution algorithm */
4178   Table *pTab       /* The table with the non-unique rowid */
4179 ){
4180   char *zMsg;
4181   int rc;
4182   if( pTab->iPKey>=0 ){
4183     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4184                           pTab->aCol[pTab->iPKey].zName);
4185     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4186   }else{
4187     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4188     rc = SQLITE_CONSTRAINT_ROWID;
4189   }
4190   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4191                         P5_ConstraintUnique);
4192 }
4193 
4194 /*
4195 ** Check to see if pIndex uses the collating sequence pColl.  Return
4196 ** true if it does and false if it does not.
4197 */
4198 #ifndef SQLITE_OMIT_REINDEX
4199 static int collationMatch(const char *zColl, Index *pIndex){
4200   int i;
4201   assert( zColl!=0 );
4202   for(i=0; i<pIndex->nColumn; i++){
4203     const char *z = pIndex->azColl[i];
4204     assert( z!=0 || pIndex->aiColumn[i]<0 );
4205     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4206       return 1;
4207     }
4208   }
4209   return 0;
4210 }
4211 #endif
4212 
4213 /*
4214 ** Recompute all indices of pTab that use the collating sequence pColl.
4215 ** If pColl==0 then recompute all indices of pTab.
4216 */
4217 #ifndef SQLITE_OMIT_REINDEX
4218 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4219   Index *pIndex;              /* An index associated with pTab */
4220 
4221   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4222     if( zColl==0 || collationMatch(zColl, pIndex) ){
4223       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4224       sqlite3BeginWriteOperation(pParse, 0, iDb);
4225       sqlite3RefillIndex(pParse, pIndex, -1);
4226     }
4227   }
4228 }
4229 #endif
4230 
4231 /*
4232 ** Recompute all indices of all tables in all databases where the
4233 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4234 ** all indices everywhere.
4235 */
4236 #ifndef SQLITE_OMIT_REINDEX
4237 static void reindexDatabases(Parse *pParse, char const *zColl){
4238   Db *pDb;                    /* A single database */
4239   int iDb;                    /* The database index number */
4240   sqlite3 *db = pParse->db;   /* The database connection */
4241   HashElem *k;                /* For looping over tables in pDb */
4242   Table *pTab;                /* A table in the database */
4243 
4244   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4245   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4246     assert( pDb!=0 );
4247     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4248       pTab = (Table*)sqliteHashData(k);
4249       reindexTable(pParse, pTab, zColl);
4250     }
4251   }
4252 }
4253 #endif
4254 
4255 /*
4256 ** Generate code for the REINDEX command.
4257 **
4258 **        REINDEX                            -- 1
4259 **        REINDEX  <collation>               -- 2
4260 **        REINDEX  ?<database>.?<tablename>  -- 3
4261 **        REINDEX  ?<database>.?<indexname>  -- 4
4262 **
4263 ** Form 1 causes all indices in all attached databases to be rebuilt.
4264 ** Form 2 rebuilds all indices in all databases that use the named
4265 ** collating function.  Forms 3 and 4 rebuild the named index or all
4266 ** indices associated with the named table.
4267 */
4268 #ifndef SQLITE_OMIT_REINDEX
4269 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4270   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4271   char *z;                    /* Name of a table or index */
4272   const char *zDb;            /* Name of the database */
4273   Table *pTab;                /* A table in the database */
4274   Index *pIndex;              /* An index associated with pTab */
4275   int iDb;                    /* The database index number */
4276   sqlite3 *db = pParse->db;   /* The database connection */
4277   Token *pObjName;            /* Name of the table or index to be reindexed */
4278 
4279   /* Read the database schema. If an error occurs, leave an error message
4280   ** and code in pParse and return NULL. */
4281   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4282     return;
4283   }
4284 
4285   if( pName1==0 ){
4286     reindexDatabases(pParse, 0);
4287     return;
4288   }else if( NEVER(pName2==0) || pName2->z==0 ){
4289     char *zColl;
4290     assert( pName1->z );
4291     zColl = sqlite3NameFromToken(pParse->db, pName1);
4292     if( !zColl ) return;
4293     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4294     if( pColl ){
4295       reindexDatabases(pParse, zColl);
4296       sqlite3DbFree(db, zColl);
4297       return;
4298     }
4299     sqlite3DbFree(db, zColl);
4300   }
4301   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4302   if( iDb<0 ) return;
4303   z = sqlite3NameFromToken(db, pObjName);
4304   if( z==0 ) return;
4305   zDb = db->aDb[iDb].zName;
4306   pTab = sqlite3FindTable(db, z, zDb);
4307   if( pTab ){
4308     reindexTable(pParse, pTab, 0);
4309     sqlite3DbFree(db, z);
4310     return;
4311   }
4312   pIndex = sqlite3FindIndex(db, z, zDb);
4313   sqlite3DbFree(db, z);
4314   if( pIndex ){
4315     sqlite3BeginWriteOperation(pParse, 0, iDb);
4316     sqlite3RefillIndex(pParse, pIndex, -1);
4317     return;
4318   }
4319   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4320 }
4321 #endif
4322 
4323 /*
4324 ** Return a KeyInfo structure that is appropriate for the given Index.
4325 **
4326 ** The KeyInfo structure for an index is cached in the Index object.
4327 ** So there might be multiple references to the returned pointer.  The
4328 ** caller should not try to modify the KeyInfo object.
4329 **
4330 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4331 ** when it has finished using it.
4332 */
4333 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4334   int i;
4335   int nCol = pIdx->nColumn;
4336   int nKey = pIdx->nKeyCol;
4337   KeyInfo *pKey;
4338   if( pParse->nErr ) return 0;
4339   if( pIdx->uniqNotNull ){
4340     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4341   }else{
4342     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4343   }
4344   if( pKey ){
4345     assert( sqlite3KeyInfoIsWriteable(pKey) );
4346     for(i=0; i<nCol; i++){
4347       char *zColl = pIdx->azColl[i];
4348       assert( zColl!=0 );
4349       pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
4350                         sqlite3LocateCollSeq(pParse, zColl);
4351       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4352     }
4353     if( pParse->nErr ){
4354       sqlite3KeyInfoUnref(pKey);
4355       pKey = 0;
4356     }
4357   }
4358   return pKey;
4359 }
4360 
4361 #ifndef SQLITE_OMIT_CTE
4362 /*
4363 ** This routine is invoked once per CTE by the parser while parsing a
4364 ** WITH clause.
4365 */
4366 With *sqlite3WithAdd(
4367   Parse *pParse,          /* Parsing context */
4368   With *pWith,            /* Existing WITH clause, or NULL */
4369   Token *pName,           /* Name of the common-table */
4370   ExprList *pArglist,     /* Optional column name list for the table */
4371   Select *pQuery          /* Query used to initialize the table */
4372 ){
4373   sqlite3 *db = pParse->db;
4374   With *pNew;
4375   char *zName;
4376 
4377   /* Check that the CTE name is unique within this WITH clause. If
4378   ** not, store an error in the Parse structure. */
4379   zName = sqlite3NameFromToken(pParse->db, pName);
4380   if( zName && pWith ){
4381     int i;
4382     for(i=0; i<pWith->nCte; i++){
4383       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4384         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4385       }
4386     }
4387   }
4388 
4389   if( pWith ){
4390     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4391     pNew = sqlite3DbRealloc(db, pWith, nByte);
4392   }else{
4393     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4394   }
4395   assert( zName!=0 || pNew==0 );
4396   assert( db->mallocFailed==0 || pNew==0 );
4397 
4398   if( pNew==0 ){
4399     sqlite3ExprListDelete(db, pArglist);
4400     sqlite3SelectDelete(db, pQuery);
4401     sqlite3DbFree(db, zName);
4402     pNew = pWith;
4403   }else{
4404     pNew->a[pNew->nCte].pSelect = pQuery;
4405     pNew->a[pNew->nCte].pCols = pArglist;
4406     pNew->a[pNew->nCte].zName = zName;
4407     pNew->a[pNew->nCte].zCteErr = 0;
4408     pNew->nCte++;
4409   }
4410 
4411   return pNew;
4412 }
4413 
4414 /*
4415 ** Free the contents of the With object passed as the second argument.
4416 */
4417 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4418   if( pWith ){
4419     int i;
4420     for(i=0; i<pWith->nCte; i++){
4421       struct Cte *pCte = &pWith->a[i];
4422       sqlite3ExprListDelete(db, pCte->pCols);
4423       sqlite3SelectDelete(db, pCte->pSelect);
4424       sqlite3DbFree(db, pCte->zName);
4425     }
4426     sqlite3DbFree(db, pWith);
4427   }
4428 }
4429 #endif /* !defined(SQLITE_OMIT_CTE) */
4430