xref: /sqlite-3.40.0/src/build.c (revision bd5af9ea)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;             /* The database containing the table to be locked */
34   int iTab;            /* The root page of the table to be locked */
35   u8 isWriteLock;      /* True for write lock.  False for a read lock */
36   const char *zName;   /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   for(i=0; i<pToplevel->nTableLock; i++){
63     p = &pToplevel->aTableLock[i];
64     if( p->iDb==iDb && p->iTab==iTab ){
65       p->isWriteLock = (p->isWriteLock || isWriteLock);
66       return;
67     }
68   }
69 
70   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71   pToplevel->aTableLock =
72       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73   if( pToplevel->aTableLock ){
74     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75     p->iDb = iDb;
76     p->iTab = iTab;
77     p->isWriteLock = isWriteLock;
78     p->zName = zName;
79   }else{
80     pToplevel->nTableLock = 0;
81     pToplevel->db->mallocFailed = 1;
82   }
83 }
84 
85 /*
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
88 */
89 static void codeTableLocks(Parse *pParse){
90   int i;
91   Vdbe *pVdbe;
92 
93   pVdbe = sqlite3GetVdbe(pParse);
94   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
95 
96   for(i=0; i<pParse->nTableLock; i++){
97     TableLock *p = &pParse->aTableLock[i];
98     int p1 = p->iDb;
99     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100                       p->zName, P4_STATIC);
101   }
102 }
103 #else
104   #define codeTableLocks(x)
105 #endif
106 
107 /*
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
111 */
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114   int i;
115   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116   return 1;
117 }
118 #endif
119 
120 /*
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared.  This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
126 **
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
129 */
130 void sqlite3FinishCoding(Parse *pParse){
131   sqlite3 *db;
132   Vdbe *v;
133 
134   assert( pParse->pToplevel==0 );
135   db = pParse->db;
136   if( pParse->nested ) return;
137   if( db->mallocFailed || pParse->nErr ){
138     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139     return;
140   }
141 
142   /* Begin by generating some termination code at the end of the
143   ** vdbe program
144   */
145   v = sqlite3GetVdbe(pParse);
146   assert( !pParse->isMultiWrite
147        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148   if( v ){
149     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
150     sqlite3VdbeAddOp0(v, OP_Halt);
151 
152 #if SQLITE_USER_AUTHENTICATION
153     if( pParse->nTableLock>0 && db->init.busy==0 ){
154       sqlite3UserAuthInit(db);
155       if( db->auth.authLevel<UAUTH_User ){
156         pParse->rc = SQLITE_AUTH_USER;
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         return;
159       }
160     }
161 #endif
162 
163     /* The cookie mask contains one bit for each database file open.
164     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
165     ** set for each database that is used.  Generate code to start a
166     ** transaction on each used database and to verify the schema cookie
167     ** on each used database.
168     */
169     if( db->mallocFailed==0
170      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
171     ){
172       int iDb, i;
173       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174       sqlite3VdbeJumpHere(v, 0);
175       for(iDb=0; iDb<db->nDb; iDb++){
176         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177         sqlite3VdbeUsesBtree(v, iDb);
178         sqlite3VdbeAddOp4Int(v,
179           OP_Transaction,                    /* Opcode */
180           iDb,                               /* P1 */
181           DbMaskTest(pParse->writeMask,iDb), /* P2 */
182           pParse->cookieValue[iDb],          /* P3 */
183           db->aDb[iDb].pSchema->iGeneration  /* P4 */
184         );
185         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
186         VdbeComment((v,
187               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
188       }
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190       for(i=0; i<pParse->nVtabLock; i++){
191         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
192         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
193       }
194       pParse->nVtabLock = 0;
195 #endif
196 
197       /* Once all the cookies have been verified and transactions opened,
198       ** obtain the required table-locks. This is a no-op unless the
199       ** shared-cache feature is enabled.
200       */
201       codeTableLocks(pParse);
202 
203       /* Initialize any AUTOINCREMENT data structures required.
204       */
205       sqlite3AutoincrementBegin(pParse);
206 
207       /* Code constant expressions that where factored out of inner loops */
208       if( pParse->pConstExpr ){
209         ExprList *pEL = pParse->pConstExpr;
210         pParse->okConstFactor = 0;
211         for(i=0; i<pEL->nExpr; i++){
212           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
213         }
214       }
215 
216       /* Finally, jump back to the beginning of the executable code. */
217       sqlite3VdbeGoto(v, 1);
218     }
219   }
220 
221 
222   /* Get the VDBE program ready for execution
223   */
224   if( v && pParse->nErr==0 && !db->mallocFailed ){
225     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
226     /* A minimum of one cursor is required if autoincrement is used
227     *  See ticket [a696379c1f08866] */
228     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
229     sqlite3VdbeMakeReady(v, pParse);
230     pParse->rc = SQLITE_DONE;
231   }else{
232     pParse->rc = SQLITE_ERROR;
233   }
234 
235   /* We are done with this Parse object. There is no need to de-initialize it */
236 #if 0
237   pParse->colNamesSet = 0;
238   pParse->nTab = 0;
239   pParse->nMem = 0;
240   pParse->nSet = 0;
241   pParse->nVar = 0;
242   DbMaskZero(pParse->cookieMask);
243 #endif
244 }
245 
246 /*
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction.  When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
253 **
254 ** Not everything is nestable.  This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
256 ** care if you decide to try to use this routine for some other purposes.
257 */
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259   va_list ap;
260   char *zSql;
261   char *zErrMsg = 0;
262   sqlite3 *db = pParse->db;
263 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
264   char saveBuf[SAVE_SZ];
265 
266   if( pParse->nErr ) return;
267   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
268   va_start(ap, zFormat);
269   zSql = sqlite3VMPrintf(db, zFormat, ap);
270   va_end(ap);
271   if( zSql==0 ){
272     return;   /* A malloc must have failed */
273   }
274   pParse->nested++;
275   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
276   memset(&pParse->nVar, 0, SAVE_SZ);
277   sqlite3RunParser(pParse, zSql, &zErrMsg);
278   sqlite3DbFree(db, zErrMsg);
279   sqlite3DbFree(db, zSql);
280   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
281   pParse->nested--;
282 }
283 
284 #if SQLITE_USER_AUTHENTICATION
285 /*
286 ** Return TRUE if zTable is the name of the system table that stores the
287 ** list of users and their access credentials.
288 */
289 int sqlite3UserAuthTable(const char *zTable){
290   return sqlite3_stricmp(zTable, "sqlite_user")==0;
291 }
292 #endif
293 
294 /*
295 ** Locate the in-memory structure that describes a particular database
296 ** table given the name of that table and (optionally) the name of the
297 ** database containing the table.  Return NULL if not found.
298 **
299 ** If zDatabase is 0, all databases are searched for the table and the
300 ** first matching table is returned.  (No checking for duplicate table
301 ** names is done.)  The search order is TEMP first, then MAIN, then any
302 ** auxiliary databases added using the ATTACH command.
303 **
304 ** See also sqlite3LocateTable().
305 */
306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
307   Table *p = 0;
308   int i;
309 
310   /* All mutexes are required for schema access.  Make sure we hold them. */
311   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
312 #if SQLITE_USER_AUTHENTICATION
313   /* Only the admin user is allowed to know that the sqlite_user table
314   ** exists */
315   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
316     return 0;
317   }
318 #endif
319   for(i=OMIT_TEMPDB; i<db->nDb; i++){
320     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
321     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
322     assert( sqlite3SchemaMutexHeld(db, j, 0) );
323     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
324     if( p ) break;
325   }
326   return p;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   int isView,            /* True if looking for a VIEW rather than a TABLE */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = isView ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
363         return pMod->pEpoTab;
364       }
365     }
366 #endif
367     if( zDbase ){
368       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
369     }else{
370       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
371     }
372     pParse->checkSchema = 1;
373   }
374 
375   return p;
376 }
377 
378 /*
379 ** Locate the table identified by *p.
380 **
381 ** This is a wrapper around sqlite3LocateTable(). The difference between
382 ** sqlite3LocateTable() and this function is that this function restricts
383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
384 ** non-NULL if it is part of a view or trigger program definition. See
385 ** sqlite3FixSrcList() for details.
386 */
387 Table *sqlite3LocateTableItem(
388   Parse *pParse,
389   int isView,
390   struct SrcList_item *p
391 ){
392   const char *zDb;
393   assert( p->pSchema==0 || p->zDatabase==0 );
394   if( p->pSchema ){
395     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
396     zDb = pParse->db->aDb[iDb].zName;
397   }else{
398     zDb = p->zDatabase;
399   }
400   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
401 }
402 
403 /*
404 ** Locate the in-memory structure that describes
405 ** a particular index given the name of that index
406 ** and the name of the database that contains the index.
407 ** Return NULL if not found.
408 **
409 ** If zDatabase is 0, all databases are searched for the
410 ** table and the first matching index is returned.  (No checking
411 ** for duplicate index names is done.)  The search order is
412 ** TEMP first, then MAIN, then any auxiliary databases added
413 ** using the ATTACH command.
414 */
415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
416   Index *p = 0;
417   int i;
418   /* All mutexes are required for schema access.  Make sure we hold them. */
419   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
420   for(i=OMIT_TEMPDB; i<db->nDb; i++){
421     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
422     Schema *pSchema = db->aDb[j].pSchema;
423     assert( pSchema );
424     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
425     assert( sqlite3SchemaMutexHeld(db, j, 0) );
426     p = sqlite3HashFind(&pSchema->idxHash, zName);
427     if( p ) break;
428   }
429   return p;
430 }
431 
432 /*
433 ** Reclaim the memory used by an index
434 */
435 static void freeIndex(sqlite3 *db, Index *p){
436 #ifndef SQLITE_OMIT_ANALYZE
437   sqlite3DeleteIndexSamples(db, p);
438 #endif
439   sqlite3ExprDelete(db, p->pPartIdxWhere);
440   sqlite3ExprListDelete(db, p->aColExpr);
441   sqlite3DbFree(db, p->zColAff);
442   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
444   sqlite3_free(p->aiRowEst);
445 #endif
446   sqlite3DbFree(db, p);
447 }
448 
449 /*
450 ** For the index called zIdxName which is found in the database iDb,
451 ** unlike that index from its Table then remove the index from
452 ** the index hash table and free all memory structures associated
453 ** with the index.
454 */
455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
456   Index *pIndex;
457   Hash *pHash;
458 
459   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
460   pHash = &db->aDb[iDb].pSchema->idxHash;
461   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
462   if( ALWAYS(pIndex) ){
463     if( pIndex->pTable->pIndex==pIndex ){
464       pIndex->pTable->pIndex = pIndex->pNext;
465     }else{
466       Index *p;
467       /* Justification of ALWAYS();  The index must be on the list of
468       ** indices. */
469       p = pIndex->pTable->pIndex;
470       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
471       if( ALWAYS(p && p->pNext==pIndex) ){
472         p->pNext = pIndex->pNext;
473       }
474     }
475     freeIndex(db, pIndex);
476   }
477   db->flags |= SQLITE_InternChanges;
478 }
479 
480 /*
481 ** Look through the list of open database files in db->aDb[] and if
482 ** any have been closed, remove them from the list.  Reallocate the
483 ** db->aDb[] structure to a smaller size, if possible.
484 **
485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
486 ** are never candidates for being collapsed.
487 */
488 void sqlite3CollapseDatabaseArray(sqlite3 *db){
489   int i, j;
490   for(i=j=2; i<db->nDb; i++){
491     struct Db *pDb = &db->aDb[i];
492     if( pDb->pBt==0 ){
493       sqlite3DbFree(db, pDb->zName);
494       pDb->zName = 0;
495       continue;
496     }
497     if( j<i ){
498       db->aDb[j] = db->aDb[i];
499     }
500     j++;
501   }
502   db->nDb = j;
503   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
504     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
505     sqlite3DbFree(db, db->aDb);
506     db->aDb = db->aDbStatic;
507   }
508 }
509 
510 /*
511 ** Reset the schema for the database at index iDb.  Also reset the
512 ** TEMP schema.
513 */
514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
515   Db *pDb;
516   assert( iDb<db->nDb );
517 
518   /* Case 1:  Reset the single schema identified by iDb */
519   pDb = &db->aDb[iDb];
520   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
521   assert( pDb->pSchema!=0 );
522   sqlite3SchemaClear(pDb->pSchema);
523 
524   /* If any database other than TEMP is reset, then also reset TEMP
525   ** since TEMP might be holding triggers that reference tables in the
526   ** other database.
527   */
528   if( iDb!=1 ){
529     pDb = &db->aDb[1];
530     assert( pDb->pSchema!=0 );
531     sqlite3SchemaClear(pDb->pSchema);
532   }
533   return;
534 }
535 
536 /*
537 ** Erase all schema information from all attached databases (including
538 ** "main" and "temp") for a single database connection.
539 */
540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
541   int i;
542   sqlite3BtreeEnterAll(db);
543   for(i=0; i<db->nDb; i++){
544     Db *pDb = &db->aDb[i];
545     if( pDb->pSchema ){
546       sqlite3SchemaClear(pDb->pSchema);
547     }
548   }
549   db->flags &= ~SQLITE_InternChanges;
550   sqlite3VtabUnlockList(db);
551   sqlite3BtreeLeaveAll(db);
552   sqlite3CollapseDatabaseArray(db);
553 }
554 
555 /*
556 ** This routine is called when a commit occurs.
557 */
558 void sqlite3CommitInternalChanges(sqlite3 *db){
559   db->flags &= ~SQLITE_InternChanges;
560 }
561 
562 /*
563 ** Delete memory allocated for the column names of a table or view (the
564 ** Table.aCol[] array).
565 */
566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
567   int i;
568   Column *pCol;
569   assert( pTable!=0 );
570   if( (pCol = pTable->aCol)!=0 ){
571     for(i=0; i<pTable->nCol; i++, pCol++){
572       sqlite3DbFree(db, pCol->zName);
573       sqlite3ExprDelete(db, pCol->pDflt);
574       sqlite3DbFree(db, pCol->zDflt);
575       sqlite3DbFree(db, pCol->zType);
576       sqlite3DbFree(db, pCol->zColl);
577     }
578     sqlite3DbFree(db, pTable->aCol);
579   }
580 }
581 
582 /*
583 ** Remove the memory data structures associated with the given
584 ** Table.  No changes are made to disk by this routine.
585 **
586 ** This routine just deletes the data structure.  It does not unlink
587 ** the table data structure from the hash table.  But it does destroy
588 ** memory structures of the indices and foreign keys associated with
589 ** the table.
590 **
591 ** The db parameter is optional.  It is needed if the Table object
592 ** contains lookaside memory.  (Table objects in the schema do not use
593 ** lookaside memory, but some ephemeral Table objects do.)  Or the
594 ** db parameter can be used with db->pnBytesFreed to measure the memory
595 ** used by the Table object.
596 */
597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
598   Index *pIndex, *pNext;
599   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
600 
601   assert( !pTable || pTable->nRef>0 );
602 
603   /* Do not delete the table until the reference count reaches zero. */
604   if( !pTable ) return;
605   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
606 
607   /* Record the number of outstanding lookaside allocations in schema Tables
608   ** prior to doing any free() operations.  Since schema Tables do not use
609   ** lookaside, this number should not change. */
610   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
611                          db->lookaside.nOut : 0 );
612 
613   /* Delete all indices associated with this table. */
614   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
615     pNext = pIndex->pNext;
616     assert( pIndex->pSchema==pTable->pSchema );
617     if( !db || db->pnBytesFreed==0 ){
618       char *zName = pIndex->zName;
619       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620          &pIndex->pSchema->idxHash, zName, 0
621       );
622       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623       assert( pOld==pIndex || pOld==0 );
624     }
625     freeIndex(db, pIndex);
626   }
627 
628   /* Delete any foreign keys attached to this table. */
629   sqlite3FkDelete(db, pTable);
630 
631   /* Delete the Table structure itself.
632   */
633   sqlite3DeleteColumnNames(db, pTable);
634   sqlite3DbFree(db, pTable->zName);
635   sqlite3DbFree(db, pTable->zColAff);
636   sqlite3SelectDelete(db, pTable->pSelect);
637   sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639   sqlite3VtabClear(db, pTable);
640 #endif
641   sqlite3DbFree(db, pTable);
642 
643   /* Verify that no lookaside memory was used by schema tables */
644   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
645 }
646 
647 /*
648 ** Unlink the given table from the hash tables and the delete the
649 ** table structure with all its indices and foreign keys.
650 */
651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
652   Table *p;
653   Db *pDb;
654 
655   assert( db!=0 );
656   assert( iDb>=0 && iDb<db->nDb );
657   assert( zTabName );
658   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
659   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
660   pDb = &db->aDb[iDb];
661   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
662   sqlite3DeleteTable(db, p);
663   db->flags |= SQLITE_InternChanges;
664 }
665 
666 /*
667 ** Given a token, return a string that consists of the text of that
668 ** token.  Space to hold the returned string
669 ** is obtained from sqliteMalloc() and must be freed by the calling
670 ** function.
671 **
672 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
673 ** surround the body of the token are removed.
674 **
675 ** Tokens are often just pointers into the original SQL text and so
676 ** are not \000 terminated and are not persistent.  The returned string
677 ** is \000 terminated and is persistent.
678 */
679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
680   char *zName;
681   if( pName ){
682     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
683     sqlite3Dequote(zName);
684   }else{
685     zName = 0;
686   }
687   return zName;
688 }
689 
690 /*
691 ** Open the sqlite_master table stored in database number iDb for
692 ** writing. The table is opened using cursor 0.
693 */
694 void sqlite3OpenMasterTable(Parse *p, int iDb){
695   Vdbe *v = sqlite3GetVdbe(p);
696   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
697   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
698   if( p->nTab==0 ){
699     p->nTab = 1;
700   }
701 }
702 
703 /*
704 ** Parameter zName points to a nul-terminated buffer containing the name
705 ** of a database ("main", "temp" or the name of an attached db). This
706 ** function returns the index of the named database in db->aDb[], or
707 ** -1 if the named db cannot be found.
708 */
709 int sqlite3FindDbName(sqlite3 *db, const char *zName){
710   int i = -1;         /* Database number */
711   if( zName ){
712     Db *pDb;
713     int n = sqlite3Strlen30(zName);
714     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
715       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
716           0==sqlite3StrICmp(pDb->zName, zName) ){
717         break;
718       }
719     }
720   }
721   return i;
722 }
723 
724 /*
725 ** The token *pName contains the name of a database (either "main" or
726 ** "temp" or the name of an attached db). This routine returns the
727 ** index of the named database in db->aDb[], or -1 if the named db
728 ** does not exist.
729 */
730 int sqlite3FindDb(sqlite3 *db, Token *pName){
731   int i;                               /* Database number */
732   char *zName;                         /* Name we are searching for */
733   zName = sqlite3NameFromToken(db, pName);
734   i = sqlite3FindDbName(db, zName);
735   sqlite3DbFree(db, zName);
736   return i;
737 }
738 
739 /* The table or view or trigger name is passed to this routine via tokens
740 ** pName1 and pName2. If the table name was fully qualified, for example:
741 **
742 ** CREATE TABLE xxx.yyy (...);
743 **
744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
745 ** the table name is not fully qualified, i.e.:
746 **
747 ** CREATE TABLE yyy(...);
748 **
749 ** Then pName1 is set to "yyy" and pName2 is "".
750 **
751 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
752 ** pName2) that stores the unqualified table name.  The index of the
753 ** database "xxx" is returned.
754 */
755 int sqlite3TwoPartName(
756   Parse *pParse,      /* Parsing and code generating context */
757   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
758   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
759   Token **pUnqual     /* Write the unqualified object name here */
760 ){
761   int iDb;                    /* Database holding the object */
762   sqlite3 *db = pParse->db;
763 
764   assert( pName2!=0 );
765   if( pName2->n>0 ){
766     if( db->init.busy ) {
767       sqlite3ErrorMsg(pParse, "corrupt database");
768       return -1;
769     }
770     *pUnqual = pName2;
771     iDb = sqlite3FindDb(db, pName1);
772     if( iDb<0 ){
773       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
774       return -1;
775     }
776   }else{
777     assert( db->init.iDb==0 || db->init.busy );
778     iDb = db->init.iDb;
779     *pUnqual = pName1;
780   }
781   return iDb;
782 }
783 
784 /*
785 ** This routine is used to check if the UTF-8 string zName is a legal
786 ** unqualified name for a new schema object (table, index, view or
787 ** trigger). All names are legal except those that begin with the string
788 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
789 ** is reserved for internal use.
790 */
791 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
792   if( !pParse->db->init.busy && pParse->nested==0
793           && (pParse->db->flags & SQLITE_WriteSchema)==0
794           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
795     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
796     return SQLITE_ERROR;
797   }
798   return SQLITE_OK;
799 }
800 
801 /*
802 ** Return the PRIMARY KEY index of a table
803 */
804 Index *sqlite3PrimaryKeyIndex(Table *pTab){
805   Index *p;
806   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
807   return p;
808 }
809 
810 /*
811 ** Return the column of index pIdx that corresponds to table
812 ** column iCol.  Return -1 if not found.
813 */
814 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
815   int i;
816   for(i=0; i<pIdx->nColumn; i++){
817     if( iCol==pIdx->aiColumn[i] ) return i;
818   }
819   return -1;
820 }
821 
822 /*
823 ** Begin constructing a new table representation in memory.  This is
824 ** the first of several action routines that get called in response
825 ** to a CREATE TABLE statement.  In particular, this routine is called
826 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
827 ** flag is true if the table should be stored in the auxiliary database
828 ** file instead of in the main database file.  This is normally the case
829 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
830 ** CREATE and TABLE.
831 **
832 ** The new table record is initialized and put in pParse->pNewTable.
833 ** As more of the CREATE TABLE statement is parsed, additional action
834 ** routines will be called to add more information to this record.
835 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
836 ** is called to complete the construction of the new table record.
837 */
838 void sqlite3StartTable(
839   Parse *pParse,   /* Parser context */
840   Token *pName1,   /* First part of the name of the table or view */
841   Token *pName2,   /* Second part of the name of the table or view */
842   int isTemp,      /* True if this is a TEMP table */
843   int isView,      /* True if this is a VIEW */
844   int isVirtual,   /* True if this is a VIRTUAL table */
845   int noErr        /* Do nothing if table already exists */
846 ){
847   Table *pTable;
848   char *zName = 0; /* The name of the new table */
849   sqlite3 *db = pParse->db;
850   Vdbe *v;
851   int iDb;         /* Database number to create the table in */
852   Token *pName;    /* Unqualified name of the table to create */
853 
854   if( db->init.busy && db->init.newTnum==1 ){
855     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
856     iDb = db->init.iDb;
857     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
858     pName = pName1;
859   }else{
860     /* The common case */
861     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
862     if( iDb<0 ) return;
863     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
864       /* If creating a temp table, the name may not be qualified. Unless
865       ** the database name is "temp" anyway.  */
866       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
867       return;
868     }
869     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
870     zName = sqlite3NameFromToken(db, pName);
871   }
872   pParse->sNameToken = *pName;
873   if( zName==0 ) return;
874   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
875     goto begin_table_error;
876   }
877   if( db->init.iDb==1 ) isTemp = 1;
878 #ifndef SQLITE_OMIT_AUTHORIZATION
879   assert( isTemp==0 || isTemp==1 );
880   assert( isView==0 || isView==1 );
881   {
882     static const u8 aCode[] = {
883        SQLITE_CREATE_TABLE,
884        SQLITE_CREATE_TEMP_TABLE,
885        SQLITE_CREATE_VIEW,
886        SQLITE_CREATE_TEMP_VIEW
887     };
888     char *zDb = db->aDb[iDb].zName;
889     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
890       goto begin_table_error;
891     }
892     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
893                                        zName, 0, zDb) ){
894       goto begin_table_error;
895     }
896   }
897 #endif
898 
899   /* Make sure the new table name does not collide with an existing
900   ** index or table name in the same database.  Issue an error message if
901   ** it does. The exception is if the statement being parsed was passed
902   ** to an sqlite3_declare_vtab() call. In that case only the column names
903   ** and types will be used, so there is no need to test for namespace
904   ** collisions.
905   */
906   if( !IN_DECLARE_VTAB ){
907     char *zDb = db->aDb[iDb].zName;
908     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
909       goto begin_table_error;
910     }
911     pTable = sqlite3FindTable(db, zName, zDb);
912     if( pTable ){
913       if( !noErr ){
914         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
915       }else{
916         assert( !db->init.busy || CORRUPT_DB );
917         sqlite3CodeVerifySchema(pParse, iDb);
918       }
919       goto begin_table_error;
920     }
921     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
922       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
923       goto begin_table_error;
924     }
925   }
926 
927   pTable = sqlite3DbMallocZero(db, sizeof(Table));
928   if( pTable==0 ){
929     db->mallocFailed = 1;
930     pParse->rc = SQLITE_NOMEM;
931     pParse->nErr++;
932     goto begin_table_error;
933   }
934   pTable->zName = zName;
935   pTable->iPKey = -1;
936   pTable->pSchema = db->aDb[iDb].pSchema;
937   pTable->nRef = 1;
938   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
939   assert( pParse->pNewTable==0 );
940   pParse->pNewTable = pTable;
941 
942   /* If this is the magic sqlite_sequence table used by autoincrement,
943   ** then record a pointer to this table in the main database structure
944   ** so that INSERT can find the table easily.
945   */
946 #ifndef SQLITE_OMIT_AUTOINCREMENT
947   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
948     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
949     pTable->pSchema->pSeqTab = pTable;
950   }
951 #endif
952 
953   /* Begin generating the code that will insert the table record into
954   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
955   ** and allocate the record number for the table entry now.  Before any
956   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
957   ** indices to be created and the table record must come before the
958   ** indices.  Hence, the record number for the table must be allocated
959   ** now.
960   */
961   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
962     int addr1;
963     int fileFormat;
964     int reg1, reg2, reg3;
965     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
966     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
967     sqlite3BeginWriteOperation(pParse, 1, iDb);
968 
969 #ifndef SQLITE_OMIT_VIRTUALTABLE
970     if( isVirtual ){
971       sqlite3VdbeAddOp0(v, OP_VBegin);
972     }
973 #endif
974 
975     /* If the file format and encoding in the database have not been set,
976     ** set them now.
977     */
978     reg1 = pParse->regRowid = ++pParse->nMem;
979     reg2 = pParse->regRoot = ++pParse->nMem;
980     reg3 = ++pParse->nMem;
981     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
982     sqlite3VdbeUsesBtree(v, iDb);
983     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
984     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
985                   1 : SQLITE_MAX_FILE_FORMAT;
986     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
987     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
988     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
989     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
990     sqlite3VdbeJumpHere(v, addr1);
991 
992     /* This just creates a place-holder record in the sqlite_master table.
993     ** The record created does not contain anything yet.  It will be replaced
994     ** by the real entry in code generated at sqlite3EndTable().
995     **
996     ** The rowid for the new entry is left in register pParse->regRowid.
997     ** The root page number of the new table is left in reg pParse->regRoot.
998     ** The rowid and root page number values are needed by the code that
999     ** sqlite3EndTable will generate.
1000     */
1001 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1002     if( isView || isVirtual ){
1003       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1004     }else
1005 #endif
1006     {
1007       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1008     }
1009     sqlite3OpenMasterTable(pParse, iDb);
1010     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1011     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1012     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1013     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1014     sqlite3VdbeAddOp0(v, OP_Close);
1015   }
1016 
1017   /* Normal (non-error) return. */
1018   return;
1019 
1020   /* If an error occurs, we jump here */
1021 begin_table_error:
1022   sqlite3DbFree(db, zName);
1023   return;
1024 }
1025 
1026 /* Set properties of a table column based on the (magical)
1027 ** name of the column.
1028 */
1029 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1030 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1031   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1032     pCol->colFlags |= COLFLAG_HIDDEN;
1033   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1034     pTab->tabFlags |= TF_OOOHidden;
1035   }
1036 }
1037 #endif
1038 
1039 
1040 /*
1041 ** Add a new column to the table currently being constructed.
1042 **
1043 ** The parser calls this routine once for each column declaration
1044 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1045 ** first to get things going.  Then this routine is called for each
1046 ** column.
1047 */
1048 void sqlite3AddColumn(Parse *pParse, Token *pName){
1049   Table *p;
1050   int i;
1051   char *z;
1052   Column *pCol;
1053   sqlite3 *db = pParse->db;
1054   if( (p = pParse->pNewTable)==0 ) return;
1055 #if SQLITE_MAX_COLUMN
1056   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1057     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1058     return;
1059   }
1060 #endif
1061   z = sqlite3NameFromToken(db, pName);
1062   if( z==0 ) return;
1063   for(i=0; i<p->nCol; i++){
1064     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1065       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1066       sqlite3DbFree(db, z);
1067       return;
1068     }
1069   }
1070   if( (p->nCol & 0x7)==0 ){
1071     Column *aNew;
1072     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1073     if( aNew==0 ){
1074       sqlite3DbFree(db, z);
1075       return;
1076     }
1077     p->aCol = aNew;
1078   }
1079   pCol = &p->aCol[p->nCol];
1080   memset(pCol, 0, sizeof(p->aCol[0]));
1081   pCol->zName = z;
1082   sqlite3ColumnPropertiesFromName(p, pCol);
1083 
1084   /* If there is no type specified, columns have the default affinity
1085   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1086   ** be called next to set pCol->affinity correctly.
1087   */
1088   pCol->affinity = SQLITE_AFF_BLOB;
1089   pCol->szEst = 1;
1090   p->nCol++;
1091 }
1092 
1093 /*
1094 ** This routine is called by the parser while in the middle of
1095 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1096 ** been seen on a column.  This routine sets the notNull flag on
1097 ** the column currently under construction.
1098 */
1099 void sqlite3AddNotNull(Parse *pParse, int onError){
1100   Table *p;
1101   p = pParse->pNewTable;
1102   if( p==0 || NEVER(p->nCol<1) ) return;
1103   p->aCol[p->nCol-1].notNull = (u8)onError;
1104 }
1105 
1106 /*
1107 ** Scan the column type name zType (length nType) and return the
1108 ** associated affinity type.
1109 **
1110 ** This routine does a case-independent search of zType for the
1111 ** substrings in the following table. If one of the substrings is
1112 ** found, the corresponding affinity is returned. If zType contains
1113 ** more than one of the substrings, entries toward the top of
1114 ** the table take priority. For example, if zType is 'BLOBINT',
1115 ** SQLITE_AFF_INTEGER is returned.
1116 **
1117 ** Substring     | Affinity
1118 ** --------------------------------
1119 ** 'INT'         | SQLITE_AFF_INTEGER
1120 ** 'CHAR'        | SQLITE_AFF_TEXT
1121 ** 'CLOB'        | SQLITE_AFF_TEXT
1122 ** 'TEXT'        | SQLITE_AFF_TEXT
1123 ** 'BLOB'        | SQLITE_AFF_BLOB
1124 ** 'REAL'        | SQLITE_AFF_REAL
1125 ** 'FLOA'        | SQLITE_AFF_REAL
1126 ** 'DOUB'        | SQLITE_AFF_REAL
1127 **
1128 ** If none of the substrings in the above table are found,
1129 ** SQLITE_AFF_NUMERIC is returned.
1130 */
1131 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1132   u32 h = 0;
1133   char aff = SQLITE_AFF_NUMERIC;
1134   const char *zChar = 0;
1135 
1136   if( zIn==0 ) return aff;
1137   while( zIn[0] ){
1138     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1139     zIn++;
1140     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1141       aff = SQLITE_AFF_TEXT;
1142       zChar = zIn;
1143     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1144       aff = SQLITE_AFF_TEXT;
1145     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1146       aff = SQLITE_AFF_TEXT;
1147     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1148         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1149       aff = SQLITE_AFF_BLOB;
1150       if( zIn[0]=='(' ) zChar = zIn;
1151 #ifndef SQLITE_OMIT_FLOATING_POINT
1152     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1153         && aff==SQLITE_AFF_NUMERIC ){
1154       aff = SQLITE_AFF_REAL;
1155     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1156         && aff==SQLITE_AFF_NUMERIC ){
1157       aff = SQLITE_AFF_REAL;
1158     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1159         && aff==SQLITE_AFF_NUMERIC ){
1160       aff = SQLITE_AFF_REAL;
1161 #endif
1162     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1163       aff = SQLITE_AFF_INTEGER;
1164       break;
1165     }
1166   }
1167 
1168   /* If pszEst is not NULL, store an estimate of the field size.  The
1169   ** estimate is scaled so that the size of an integer is 1.  */
1170   if( pszEst ){
1171     *pszEst = 1;   /* default size is approx 4 bytes */
1172     if( aff<SQLITE_AFF_NUMERIC ){
1173       if( zChar ){
1174         while( zChar[0] ){
1175           if( sqlite3Isdigit(zChar[0]) ){
1176             int v = 0;
1177             sqlite3GetInt32(zChar, &v);
1178             v = v/4 + 1;
1179             if( v>255 ) v = 255;
1180             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1181             break;
1182           }
1183           zChar++;
1184         }
1185       }else{
1186         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1187       }
1188     }
1189   }
1190   return aff;
1191 }
1192 
1193 /*
1194 ** This routine is called by the parser while in the middle of
1195 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1196 ** token in the sequence of tokens that describe the type of the
1197 ** column currently under construction.   pLast is the last token
1198 ** in the sequence.  Use this information to construct a string
1199 ** that contains the typename of the column and store that string
1200 ** in zType.
1201 */
1202 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1203   Table *p;
1204   Column *pCol;
1205 
1206   p = pParse->pNewTable;
1207   if( p==0 || NEVER(p->nCol<1) ) return;
1208   pCol = &p->aCol[p->nCol-1];
1209   assert( pCol->zType==0 || CORRUPT_DB );
1210   sqlite3DbFree(pParse->db, pCol->zType);
1211   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1212   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1213 }
1214 
1215 /*
1216 ** The expression is the default value for the most recently added column
1217 ** of the table currently under construction.
1218 **
1219 ** Default value expressions must be constant.  Raise an exception if this
1220 ** is not the case.
1221 **
1222 ** This routine is called by the parser while in the middle of
1223 ** parsing a CREATE TABLE statement.
1224 */
1225 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1226   Table *p;
1227   Column *pCol;
1228   sqlite3 *db = pParse->db;
1229   p = pParse->pNewTable;
1230   if( p!=0 ){
1231     pCol = &(p->aCol[p->nCol-1]);
1232     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1233       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1234           pCol->zName);
1235     }else{
1236       /* A copy of pExpr is used instead of the original, as pExpr contains
1237       ** tokens that point to volatile memory. The 'span' of the expression
1238       ** is required by pragma table_info.
1239       */
1240       sqlite3ExprDelete(db, pCol->pDflt);
1241       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1242       sqlite3DbFree(db, pCol->zDflt);
1243       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1244                                      (int)(pSpan->zEnd - pSpan->zStart));
1245     }
1246   }
1247   sqlite3ExprDelete(db, pSpan->pExpr);
1248 }
1249 
1250 /*
1251 ** Backwards Compatibility Hack:
1252 **
1253 ** Historical versions of SQLite accepted strings as column names in
1254 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1255 **
1256 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1257 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1258 **
1259 ** This is goofy.  But to preserve backwards compatibility we continue to
1260 ** accept it.  This routine does the necessary conversion.  It converts
1261 ** the expression given in its argument from a TK_STRING into a TK_ID
1262 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1263 ** If the epxression is anything other than TK_STRING, the expression is
1264 ** unchanged.
1265 */
1266 static void sqlite3StringToId(Expr *p){
1267   if( p->op==TK_STRING ){
1268     p->op = TK_ID;
1269   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1270     p->pLeft->op = TK_ID;
1271   }
1272 }
1273 
1274 /*
1275 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1276 ** of columns that form the primary key.  If pList is NULL, then the
1277 ** most recently added column of the table is the primary key.
1278 **
1279 ** A table can have at most one primary key.  If the table already has
1280 ** a primary key (and this is the second primary key) then create an
1281 ** error.
1282 **
1283 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1284 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1285 ** field of the table under construction to be the index of the
1286 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1287 ** no INTEGER PRIMARY KEY.
1288 **
1289 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1290 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1291 */
1292 void sqlite3AddPrimaryKey(
1293   Parse *pParse,    /* Parsing context */
1294   ExprList *pList,  /* List of field names to be indexed */
1295   int onError,      /* What to do with a uniqueness conflict */
1296   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1297   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1298 ){
1299   Table *pTab = pParse->pNewTable;
1300   char *zType = 0;
1301   int iCol = -1, i;
1302   int nTerm;
1303   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1304   if( pTab->tabFlags & TF_HasPrimaryKey ){
1305     sqlite3ErrorMsg(pParse,
1306       "table \"%s\" has more than one primary key", pTab->zName);
1307     goto primary_key_exit;
1308   }
1309   pTab->tabFlags |= TF_HasPrimaryKey;
1310   if( pList==0 ){
1311     iCol = pTab->nCol - 1;
1312     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1313     zType = pTab->aCol[iCol].zType;
1314     nTerm = 1;
1315   }else{
1316     nTerm = pList->nExpr;
1317     for(i=0; i<nTerm; i++){
1318       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1319       assert( pCExpr!=0 );
1320       sqlite3StringToId(pCExpr);
1321       if( pCExpr->op==TK_ID ){
1322         const char *zCName = pCExpr->u.zToken;
1323         for(iCol=0; iCol<pTab->nCol; iCol++){
1324           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1325             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1326             zType = pTab->aCol[iCol].zType;
1327             break;
1328           }
1329         }
1330       }
1331     }
1332   }
1333   if( nTerm==1
1334    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1335    && sortOrder!=SQLITE_SO_DESC
1336   ){
1337     pTab->iPKey = iCol;
1338     pTab->keyConf = (u8)onError;
1339     assert( autoInc==0 || autoInc==1 );
1340     pTab->tabFlags |= autoInc*TF_Autoincrement;
1341     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1342   }else if( autoInc ){
1343 #ifndef SQLITE_OMIT_AUTOINCREMENT
1344     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1345        "INTEGER PRIMARY KEY");
1346 #endif
1347   }else{
1348     Index *p;
1349     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1350                            0, sortOrder, 0);
1351     if( p ){
1352       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1353     }
1354     pList = 0;
1355   }
1356 
1357 primary_key_exit:
1358   sqlite3ExprListDelete(pParse->db, pList);
1359   return;
1360 }
1361 
1362 /*
1363 ** Add a new CHECK constraint to the table currently under construction.
1364 */
1365 void sqlite3AddCheckConstraint(
1366   Parse *pParse,    /* Parsing context */
1367   Expr *pCheckExpr  /* The check expression */
1368 ){
1369 #ifndef SQLITE_OMIT_CHECK
1370   Table *pTab = pParse->pNewTable;
1371   sqlite3 *db = pParse->db;
1372   if( pTab && !IN_DECLARE_VTAB
1373    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1374   ){
1375     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1376     if( pParse->constraintName.n ){
1377       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1378     }
1379   }else
1380 #endif
1381   {
1382     sqlite3ExprDelete(pParse->db, pCheckExpr);
1383   }
1384 }
1385 
1386 /*
1387 ** Set the collation function of the most recently parsed table column
1388 ** to the CollSeq given.
1389 */
1390 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1391   Table *p;
1392   int i;
1393   char *zColl;              /* Dequoted name of collation sequence */
1394   sqlite3 *db;
1395 
1396   if( (p = pParse->pNewTable)==0 ) return;
1397   i = p->nCol-1;
1398   db = pParse->db;
1399   zColl = sqlite3NameFromToken(db, pToken);
1400   if( !zColl ) return;
1401 
1402   if( sqlite3LocateCollSeq(pParse, zColl) ){
1403     Index *pIdx;
1404     sqlite3DbFree(db, p->aCol[i].zColl);
1405     p->aCol[i].zColl = zColl;
1406 
1407     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1408     ** then an index may have been created on this column before the
1409     ** collation type was added. Correct this if it is the case.
1410     */
1411     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1412       assert( pIdx->nKeyCol==1 );
1413       if( pIdx->aiColumn[0]==i ){
1414         pIdx->azColl[0] = p->aCol[i].zColl;
1415       }
1416     }
1417   }else{
1418     sqlite3DbFree(db, zColl);
1419   }
1420 }
1421 
1422 /*
1423 ** This function returns the collation sequence for database native text
1424 ** encoding identified by the string zName, length nName.
1425 **
1426 ** If the requested collation sequence is not available, or not available
1427 ** in the database native encoding, the collation factory is invoked to
1428 ** request it. If the collation factory does not supply such a sequence,
1429 ** and the sequence is available in another text encoding, then that is
1430 ** returned instead.
1431 **
1432 ** If no versions of the requested collations sequence are available, or
1433 ** another error occurs, NULL is returned and an error message written into
1434 ** pParse.
1435 **
1436 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1437 ** invokes the collation factory if the named collation cannot be found
1438 ** and generates an error message.
1439 **
1440 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1441 */
1442 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1443   sqlite3 *db = pParse->db;
1444   u8 enc = ENC(db);
1445   u8 initbusy = db->init.busy;
1446   CollSeq *pColl;
1447 
1448   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1449   if( !initbusy && (!pColl || !pColl->xCmp) ){
1450     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1451   }
1452 
1453   return pColl;
1454 }
1455 
1456 
1457 /*
1458 ** Generate code that will increment the schema cookie.
1459 **
1460 ** The schema cookie is used to determine when the schema for the
1461 ** database changes.  After each schema change, the cookie value
1462 ** changes.  When a process first reads the schema it records the
1463 ** cookie.  Thereafter, whenever it goes to access the database,
1464 ** it checks the cookie to make sure the schema has not changed
1465 ** since it was last read.
1466 **
1467 ** This plan is not completely bullet-proof.  It is possible for
1468 ** the schema to change multiple times and for the cookie to be
1469 ** set back to prior value.  But schema changes are infrequent
1470 ** and the probability of hitting the same cookie value is only
1471 ** 1 chance in 2^32.  So we're safe enough.
1472 */
1473 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1474   int r1 = sqlite3GetTempReg(pParse);
1475   sqlite3 *db = pParse->db;
1476   Vdbe *v = pParse->pVdbe;
1477   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1478   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1479   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1480   sqlite3ReleaseTempReg(pParse, r1);
1481 }
1482 
1483 /*
1484 ** Measure the number of characters needed to output the given
1485 ** identifier.  The number returned includes any quotes used
1486 ** but does not include the null terminator.
1487 **
1488 ** The estimate is conservative.  It might be larger that what is
1489 ** really needed.
1490 */
1491 static int identLength(const char *z){
1492   int n;
1493   for(n=0; *z; n++, z++){
1494     if( *z=='"' ){ n++; }
1495   }
1496   return n + 2;
1497 }
1498 
1499 /*
1500 ** The first parameter is a pointer to an output buffer. The second
1501 ** parameter is a pointer to an integer that contains the offset at
1502 ** which to write into the output buffer. This function copies the
1503 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1504 ** to the specified offset in the buffer and updates *pIdx to refer
1505 ** to the first byte after the last byte written before returning.
1506 **
1507 ** If the string zSignedIdent consists entirely of alpha-numeric
1508 ** characters, does not begin with a digit and is not an SQL keyword,
1509 ** then it is copied to the output buffer exactly as it is. Otherwise,
1510 ** it is quoted using double-quotes.
1511 */
1512 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1513   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1514   int i, j, needQuote;
1515   i = *pIdx;
1516 
1517   for(j=0; zIdent[j]; j++){
1518     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1519   }
1520   needQuote = sqlite3Isdigit(zIdent[0])
1521             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1522             || zIdent[j]!=0
1523             || j==0;
1524 
1525   if( needQuote ) z[i++] = '"';
1526   for(j=0; zIdent[j]; j++){
1527     z[i++] = zIdent[j];
1528     if( zIdent[j]=='"' ) z[i++] = '"';
1529   }
1530   if( needQuote ) z[i++] = '"';
1531   z[i] = 0;
1532   *pIdx = i;
1533 }
1534 
1535 /*
1536 ** Generate a CREATE TABLE statement appropriate for the given
1537 ** table.  Memory to hold the text of the statement is obtained
1538 ** from sqliteMalloc() and must be freed by the calling function.
1539 */
1540 static char *createTableStmt(sqlite3 *db, Table *p){
1541   int i, k, n;
1542   char *zStmt;
1543   char *zSep, *zSep2, *zEnd;
1544   Column *pCol;
1545   n = 0;
1546   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1547     n += identLength(pCol->zName) + 5;
1548   }
1549   n += identLength(p->zName);
1550   if( n<50 ){
1551     zSep = "";
1552     zSep2 = ",";
1553     zEnd = ")";
1554   }else{
1555     zSep = "\n  ";
1556     zSep2 = ",\n  ";
1557     zEnd = "\n)";
1558   }
1559   n += 35 + 6*p->nCol;
1560   zStmt = sqlite3DbMallocRaw(0, n);
1561   if( zStmt==0 ){
1562     db->mallocFailed = 1;
1563     return 0;
1564   }
1565   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1566   k = sqlite3Strlen30(zStmt);
1567   identPut(zStmt, &k, p->zName);
1568   zStmt[k++] = '(';
1569   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1570     static const char * const azType[] = {
1571         /* SQLITE_AFF_BLOB    */ "",
1572         /* SQLITE_AFF_TEXT    */ " TEXT",
1573         /* SQLITE_AFF_NUMERIC */ " NUM",
1574         /* SQLITE_AFF_INTEGER */ " INT",
1575         /* SQLITE_AFF_REAL    */ " REAL"
1576     };
1577     int len;
1578     const char *zType;
1579 
1580     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1581     k += sqlite3Strlen30(&zStmt[k]);
1582     zSep = zSep2;
1583     identPut(zStmt, &k, pCol->zName);
1584     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1585     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1586     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1587     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1588     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1589     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1590     testcase( pCol->affinity==SQLITE_AFF_REAL );
1591 
1592     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1593     len = sqlite3Strlen30(zType);
1594     assert( pCol->affinity==SQLITE_AFF_BLOB
1595             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1596     memcpy(&zStmt[k], zType, len);
1597     k += len;
1598     assert( k<=n );
1599   }
1600   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1601   return zStmt;
1602 }
1603 
1604 /*
1605 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1606 ** on success and SQLITE_NOMEM on an OOM error.
1607 */
1608 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1609   char *zExtra;
1610   int nByte;
1611   if( pIdx->nColumn>=N ) return SQLITE_OK;
1612   assert( pIdx->isResized==0 );
1613   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1614   zExtra = sqlite3DbMallocZero(db, nByte);
1615   if( zExtra==0 ) return SQLITE_NOMEM;
1616   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1617   pIdx->azColl = (const char**)zExtra;
1618   zExtra += sizeof(char*)*N;
1619   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1620   pIdx->aiColumn = (i16*)zExtra;
1621   zExtra += sizeof(i16)*N;
1622   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1623   pIdx->aSortOrder = (u8*)zExtra;
1624   pIdx->nColumn = N;
1625   pIdx->isResized = 1;
1626   return SQLITE_OK;
1627 }
1628 
1629 /*
1630 ** Estimate the total row width for a table.
1631 */
1632 static void estimateTableWidth(Table *pTab){
1633   unsigned wTable = 0;
1634   const Column *pTabCol;
1635   int i;
1636   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1637     wTable += pTabCol->szEst;
1638   }
1639   if( pTab->iPKey<0 ) wTable++;
1640   pTab->szTabRow = sqlite3LogEst(wTable*4);
1641 }
1642 
1643 /*
1644 ** Estimate the average size of a row for an index.
1645 */
1646 static void estimateIndexWidth(Index *pIdx){
1647   unsigned wIndex = 0;
1648   int i;
1649   const Column *aCol = pIdx->pTable->aCol;
1650   for(i=0; i<pIdx->nColumn; i++){
1651     i16 x = pIdx->aiColumn[i];
1652     assert( x<pIdx->pTable->nCol );
1653     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1654   }
1655   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1656 }
1657 
1658 /* Return true if value x is found any of the first nCol entries of aiCol[]
1659 */
1660 static int hasColumn(const i16 *aiCol, int nCol, int x){
1661   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1662   return 0;
1663 }
1664 
1665 /*
1666 ** This routine runs at the end of parsing a CREATE TABLE statement that
1667 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1668 ** internal schema data structures and the generated VDBE code so that they
1669 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1670 ** Changes include:
1671 **
1672 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1673 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1674 **          data storage is a covering index btree.
1675 **     (2)  Bypass the creation of the sqlite_master table entry
1676 **          for the PRIMARY KEY as the primary key index is now
1677 **          identified by the sqlite_master table entry of the table itself.
1678 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1679 **          schema to the rootpage from the main table.
1680 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1681 **     (5)  Add all table columns to the PRIMARY KEY Index object
1682 **          so that the PRIMARY KEY is a covering index.  The surplus
1683 **          columns are part of KeyInfo.nXField and are not used for
1684 **          sorting or lookup or uniqueness checks.
1685 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1686 **          indices with the PRIMARY KEY columns.
1687 */
1688 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1689   Index *pIdx;
1690   Index *pPk;
1691   int nPk;
1692   int i, j;
1693   sqlite3 *db = pParse->db;
1694   Vdbe *v = pParse->pVdbe;
1695 
1696   /* Convert the OP_CreateTable opcode that would normally create the
1697   ** root-page for the table into an OP_CreateIndex opcode.  The index
1698   ** created will become the PRIMARY KEY index.
1699   */
1700   if( pParse->addrCrTab ){
1701     assert( v );
1702     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1703   }
1704 
1705   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1706   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1707   */
1708   if( pTab->iPKey>=0 ){
1709     ExprList *pList;
1710     Token ipkToken;
1711     ipkToken.z = pTab->aCol[pTab->iPKey].zName;
1712     ipkToken.n = sqlite3Strlen30(ipkToken.z);
1713     pList = sqlite3ExprListAppend(pParse, 0,
1714                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1715     if( pList==0 ) return;
1716     pList->a[0].sortOrder = pParse->iPkSortOrder;
1717     assert( pParse->pNewTable==pTab );
1718     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1719     if( pPk==0 ) return;
1720     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1721     pTab->iPKey = -1;
1722   }else{
1723     pPk = sqlite3PrimaryKeyIndex(pTab);
1724 
1725     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1726     ** table entry. This is only required if currently generating VDBE
1727     ** code for a CREATE TABLE (not when parsing one as part of reading
1728     ** a database schema).  */
1729     if( v ){
1730       assert( db->init.busy==0 );
1731       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1732     }
1733 
1734     /*
1735     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1736     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1737     ** code assumes the PRIMARY KEY contains no repeated columns.
1738     */
1739     for(i=j=1; i<pPk->nKeyCol; i++){
1740       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1741         pPk->nColumn--;
1742       }else{
1743         pPk->aiColumn[j++] = pPk->aiColumn[i];
1744       }
1745     }
1746     pPk->nKeyCol = j;
1747   }
1748   pPk->isCovering = 1;
1749   assert( pPk!=0 );
1750   nPk = pPk->nKeyCol;
1751 
1752   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1753   ** do not enforce this for imposter tables.) */
1754   if( !db->init.imposterTable ){
1755     for(i=0; i<nPk; i++){
1756       pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1757     }
1758     pPk->uniqNotNull = 1;
1759   }
1760 
1761   /* The root page of the PRIMARY KEY is the table root page */
1762   pPk->tnum = pTab->tnum;
1763 
1764   /* Update the in-memory representation of all UNIQUE indices by converting
1765   ** the final rowid column into one or more columns of the PRIMARY KEY.
1766   */
1767   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1768     int n;
1769     if( IsPrimaryKeyIndex(pIdx) ) continue;
1770     for(i=n=0; i<nPk; i++){
1771       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1772     }
1773     if( n==0 ){
1774       /* This index is a superset of the primary key */
1775       pIdx->nColumn = pIdx->nKeyCol;
1776       continue;
1777     }
1778     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1779     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1780       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1781         pIdx->aiColumn[j] = pPk->aiColumn[i];
1782         pIdx->azColl[j] = pPk->azColl[i];
1783         j++;
1784       }
1785     }
1786     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1787     assert( pIdx->nColumn>=j );
1788   }
1789 
1790   /* Add all table columns to the PRIMARY KEY index
1791   */
1792   if( nPk<pTab->nCol ){
1793     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1794     for(i=0, j=nPk; i<pTab->nCol; i++){
1795       if( !hasColumn(pPk->aiColumn, j, i) ){
1796         assert( j<pPk->nColumn );
1797         pPk->aiColumn[j] = i;
1798         pPk->azColl[j] = sqlite3StrBINARY;
1799         j++;
1800       }
1801     }
1802     assert( pPk->nColumn==j );
1803     assert( pTab->nCol==j );
1804   }else{
1805     pPk->nColumn = pTab->nCol;
1806   }
1807 }
1808 
1809 /*
1810 ** This routine is called to report the final ")" that terminates
1811 ** a CREATE TABLE statement.
1812 **
1813 ** The table structure that other action routines have been building
1814 ** is added to the internal hash tables, assuming no errors have
1815 ** occurred.
1816 **
1817 ** An entry for the table is made in the master table on disk, unless
1818 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1819 ** it means we are reading the sqlite_master table because we just
1820 ** connected to the database or because the sqlite_master table has
1821 ** recently changed, so the entry for this table already exists in
1822 ** the sqlite_master table.  We do not want to create it again.
1823 **
1824 ** If the pSelect argument is not NULL, it means that this routine
1825 ** was called to create a table generated from a
1826 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1827 ** the new table will match the result set of the SELECT.
1828 */
1829 void sqlite3EndTable(
1830   Parse *pParse,          /* Parse context */
1831   Token *pCons,           /* The ',' token after the last column defn. */
1832   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1833   u8 tabOpts,             /* Extra table options. Usually 0. */
1834   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1835 ){
1836   Table *p;                 /* The new table */
1837   sqlite3 *db = pParse->db; /* The database connection */
1838   int iDb;                  /* Database in which the table lives */
1839   Index *pIdx;              /* An implied index of the table */
1840 
1841   if( pEnd==0 && pSelect==0 ){
1842     return;
1843   }
1844   assert( !db->mallocFailed );
1845   p = pParse->pNewTable;
1846   if( p==0 ) return;
1847 
1848   assert( !db->init.busy || !pSelect );
1849 
1850   /* If the db->init.busy is 1 it means we are reading the SQL off the
1851   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1852   ** So do not write to the disk again.  Extract the root page number
1853   ** for the table from the db->init.newTnum field.  (The page number
1854   ** should have been put there by the sqliteOpenCb routine.)
1855   **
1856   ** If the root page number is 1, that means this is the sqlite_master
1857   ** table itself.  So mark it read-only.
1858   */
1859   if( db->init.busy ){
1860     p->tnum = db->init.newTnum;
1861     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1862   }
1863 
1864   /* Special processing for WITHOUT ROWID Tables */
1865   if( tabOpts & TF_WithoutRowid ){
1866     if( (p->tabFlags & TF_Autoincrement) ){
1867       sqlite3ErrorMsg(pParse,
1868           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1869       return;
1870     }
1871     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1872       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1873     }else{
1874       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1875       convertToWithoutRowidTable(pParse, p);
1876     }
1877   }
1878 
1879   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1880 
1881 #ifndef SQLITE_OMIT_CHECK
1882   /* Resolve names in all CHECK constraint expressions.
1883   */
1884   if( p->pCheck ){
1885     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1886   }
1887 #endif /* !defined(SQLITE_OMIT_CHECK) */
1888 
1889   /* Estimate the average row size for the table and for all implied indices */
1890   estimateTableWidth(p);
1891   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1892     estimateIndexWidth(pIdx);
1893   }
1894 
1895   /* If not initializing, then create a record for the new table
1896   ** in the SQLITE_MASTER table of the database.
1897   **
1898   ** If this is a TEMPORARY table, write the entry into the auxiliary
1899   ** file instead of into the main database file.
1900   */
1901   if( !db->init.busy ){
1902     int n;
1903     Vdbe *v;
1904     char *zType;    /* "view" or "table" */
1905     char *zType2;   /* "VIEW" or "TABLE" */
1906     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1907 
1908     v = sqlite3GetVdbe(pParse);
1909     if( NEVER(v==0) ) return;
1910 
1911     sqlite3VdbeAddOp1(v, OP_Close, 0);
1912 
1913     /*
1914     ** Initialize zType for the new view or table.
1915     */
1916     if( p->pSelect==0 ){
1917       /* A regular table */
1918       zType = "table";
1919       zType2 = "TABLE";
1920 #ifndef SQLITE_OMIT_VIEW
1921     }else{
1922       /* A view */
1923       zType = "view";
1924       zType2 = "VIEW";
1925 #endif
1926     }
1927 
1928     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1929     ** statement to populate the new table. The root-page number for the
1930     ** new table is in register pParse->regRoot.
1931     **
1932     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1933     ** suitable state to query for the column names and types to be used
1934     ** by the new table.
1935     **
1936     ** A shared-cache write-lock is not required to write to the new table,
1937     ** as a schema-lock must have already been obtained to create it. Since
1938     ** a schema-lock excludes all other database users, the write-lock would
1939     ** be redundant.
1940     */
1941     if( pSelect ){
1942       SelectDest dest;    /* Where the SELECT should store results */
1943       int regYield;       /* Register holding co-routine entry-point */
1944       int addrTop;        /* Top of the co-routine */
1945       int regRec;         /* A record to be insert into the new table */
1946       int regRowid;       /* Rowid of the next row to insert */
1947       int addrInsLoop;    /* Top of the loop for inserting rows */
1948       Table *pSelTab;     /* A table that describes the SELECT results */
1949 
1950       regYield = ++pParse->nMem;
1951       regRec = ++pParse->nMem;
1952       regRowid = ++pParse->nMem;
1953       assert(pParse->nTab==1);
1954       sqlite3MayAbort(pParse);
1955       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1956       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1957       pParse->nTab = 2;
1958       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1959       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1960       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1961       sqlite3Select(pParse, pSelect, &dest);
1962       sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1963       sqlite3VdbeJumpHere(v, addrTop - 1);
1964       if( pParse->nErr ) return;
1965       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1966       if( pSelTab==0 ) return;
1967       assert( p->aCol==0 );
1968       p->nCol = pSelTab->nCol;
1969       p->aCol = pSelTab->aCol;
1970       pSelTab->nCol = 0;
1971       pSelTab->aCol = 0;
1972       sqlite3DeleteTable(db, pSelTab);
1973       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1974       VdbeCoverage(v);
1975       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1976       sqlite3TableAffinity(v, p, 0);
1977       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1978       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1979       sqlite3VdbeGoto(v, addrInsLoop);
1980       sqlite3VdbeJumpHere(v, addrInsLoop);
1981       sqlite3VdbeAddOp1(v, OP_Close, 1);
1982     }
1983 
1984     /* Compute the complete text of the CREATE statement */
1985     if( pSelect ){
1986       zStmt = createTableStmt(db, p);
1987     }else{
1988       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1989       n = (int)(pEnd2->z - pParse->sNameToken.z);
1990       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1991       zStmt = sqlite3MPrintf(db,
1992           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1993       );
1994     }
1995 
1996     /* A slot for the record has already been allocated in the
1997     ** SQLITE_MASTER table.  We just need to update that slot with all
1998     ** the information we've collected.
1999     */
2000     sqlite3NestedParse(pParse,
2001       "UPDATE %Q.%s "
2002          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2003        "WHERE rowid=#%d",
2004       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2005       zType,
2006       p->zName,
2007       p->zName,
2008       pParse->regRoot,
2009       zStmt,
2010       pParse->regRowid
2011     );
2012     sqlite3DbFree(db, zStmt);
2013     sqlite3ChangeCookie(pParse, iDb);
2014 
2015 #ifndef SQLITE_OMIT_AUTOINCREMENT
2016     /* Check to see if we need to create an sqlite_sequence table for
2017     ** keeping track of autoincrement keys.
2018     */
2019     if( p->tabFlags & TF_Autoincrement ){
2020       Db *pDb = &db->aDb[iDb];
2021       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2022       if( pDb->pSchema->pSeqTab==0 ){
2023         sqlite3NestedParse(pParse,
2024           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2025           pDb->zName
2026         );
2027       }
2028     }
2029 #endif
2030 
2031     /* Reparse everything to update our internal data structures */
2032     sqlite3VdbeAddParseSchemaOp(v, iDb,
2033            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2034   }
2035 
2036 
2037   /* Add the table to the in-memory representation of the database.
2038   */
2039   if( db->init.busy ){
2040     Table *pOld;
2041     Schema *pSchema = p->pSchema;
2042     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2043     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2044     if( pOld ){
2045       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2046       db->mallocFailed = 1;
2047       return;
2048     }
2049     pParse->pNewTable = 0;
2050     db->flags |= SQLITE_InternChanges;
2051 
2052 #ifndef SQLITE_OMIT_ALTERTABLE
2053     if( !p->pSelect ){
2054       const char *zName = (const char *)pParse->sNameToken.z;
2055       int nName;
2056       assert( !pSelect && pCons && pEnd );
2057       if( pCons->z==0 ){
2058         pCons = pEnd;
2059       }
2060       nName = (int)((const char *)pCons->z - zName);
2061       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2062     }
2063 #endif
2064   }
2065 }
2066 
2067 #ifndef SQLITE_OMIT_VIEW
2068 /*
2069 ** The parser calls this routine in order to create a new VIEW
2070 */
2071 void sqlite3CreateView(
2072   Parse *pParse,     /* The parsing context */
2073   Token *pBegin,     /* The CREATE token that begins the statement */
2074   Token *pName1,     /* The token that holds the name of the view */
2075   Token *pName2,     /* The token that holds the name of the view */
2076   ExprList *pCNames, /* Optional list of view column names */
2077   Select *pSelect,   /* A SELECT statement that will become the new view */
2078   int isTemp,        /* TRUE for a TEMPORARY view */
2079   int noErr          /* Suppress error messages if VIEW already exists */
2080 ){
2081   Table *p;
2082   int n;
2083   const char *z;
2084   Token sEnd;
2085   DbFixer sFix;
2086   Token *pName = 0;
2087   int iDb;
2088   sqlite3 *db = pParse->db;
2089 
2090   if( pParse->nVar>0 ){
2091     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2092     goto create_view_fail;
2093   }
2094   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2095   p = pParse->pNewTable;
2096   if( p==0 || pParse->nErr ) goto create_view_fail;
2097   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2098   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2099   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2100   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2101 
2102   /* Make a copy of the entire SELECT statement that defines the view.
2103   ** This will force all the Expr.token.z values to be dynamically
2104   ** allocated rather than point to the input string - which means that
2105   ** they will persist after the current sqlite3_exec() call returns.
2106   */
2107   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2108   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2109   if( db->mallocFailed ) goto create_view_fail;
2110 
2111   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2112   ** the end.
2113   */
2114   sEnd = pParse->sLastToken;
2115   assert( sEnd.z[0]!=0 );
2116   if( sEnd.z[0]!=';' ){
2117     sEnd.z += sEnd.n;
2118   }
2119   sEnd.n = 0;
2120   n = (int)(sEnd.z - pBegin->z);
2121   assert( n>0 );
2122   z = pBegin->z;
2123   while( sqlite3Isspace(z[n-1]) ){ n--; }
2124   sEnd.z = &z[n-1];
2125   sEnd.n = 1;
2126 
2127   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2128   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2129 
2130 create_view_fail:
2131   sqlite3SelectDelete(db, pSelect);
2132   sqlite3ExprListDelete(db, pCNames);
2133   return;
2134 }
2135 #endif /* SQLITE_OMIT_VIEW */
2136 
2137 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2138 /*
2139 ** The Table structure pTable is really a VIEW.  Fill in the names of
2140 ** the columns of the view in the pTable structure.  Return the number
2141 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2142 */
2143 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2144   Table *pSelTab;   /* A fake table from which we get the result set */
2145   Select *pSel;     /* Copy of the SELECT that implements the view */
2146   int nErr = 0;     /* Number of errors encountered */
2147   int n;            /* Temporarily holds the number of cursors assigned */
2148   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2149   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2150   u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */
2151 
2152   assert( pTable );
2153 
2154 #ifndef SQLITE_OMIT_VIRTUALTABLE
2155   if( sqlite3VtabCallConnect(pParse, pTable) ){
2156     return SQLITE_ERROR;
2157   }
2158   if( IsVirtual(pTable) ) return 0;
2159 #endif
2160 
2161 #ifndef SQLITE_OMIT_VIEW
2162   /* A positive nCol means the columns names for this view are
2163   ** already known.
2164   */
2165   if( pTable->nCol>0 ) return 0;
2166 
2167   /* A negative nCol is a special marker meaning that we are currently
2168   ** trying to compute the column names.  If we enter this routine with
2169   ** a negative nCol, it means two or more views form a loop, like this:
2170   **
2171   **     CREATE VIEW one AS SELECT * FROM two;
2172   **     CREATE VIEW two AS SELECT * FROM one;
2173   **
2174   ** Actually, the error above is now caught prior to reaching this point.
2175   ** But the following test is still important as it does come up
2176   ** in the following:
2177   **
2178   **     CREATE TABLE main.ex1(a);
2179   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2180   **     SELECT * FROM temp.ex1;
2181   */
2182   if( pTable->nCol<0 ){
2183     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2184     return 1;
2185   }
2186   assert( pTable->nCol>=0 );
2187 
2188   /* If we get this far, it means we need to compute the table names.
2189   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2190   ** "*" elements in the results set of the view and will assign cursors
2191   ** to the elements of the FROM clause.  But we do not want these changes
2192   ** to be permanent.  So the computation is done on a copy of the SELECT
2193   ** statement that defines the view.
2194   */
2195   assert( pTable->pSelect );
2196   bEnabledLA = db->lookaside.bEnabled;
2197   if( pTable->pCheck ){
2198     db->lookaside.bEnabled = 0;
2199     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2200                                &pTable->nCol, &pTable->aCol);
2201   }else{
2202     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2203     if( pSel ){
2204       n = pParse->nTab;
2205       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2206       pTable->nCol = -1;
2207       db->lookaside.bEnabled = 0;
2208 #ifndef SQLITE_OMIT_AUTHORIZATION
2209       xAuth = db->xAuth;
2210       db->xAuth = 0;
2211       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2212       db->xAuth = xAuth;
2213 #else
2214       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2215 #endif
2216       pParse->nTab = n;
2217       if( pSelTab ){
2218         assert( pTable->aCol==0 );
2219         pTable->nCol = pSelTab->nCol;
2220         pTable->aCol = pSelTab->aCol;
2221         pSelTab->nCol = 0;
2222         pSelTab->aCol = 0;
2223         sqlite3DeleteTable(db, pSelTab);
2224         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2225       }else{
2226         pTable->nCol = 0;
2227         nErr++;
2228       }
2229       sqlite3SelectDelete(db, pSel);
2230     } else {
2231       nErr++;
2232     }
2233   }
2234   db->lookaside.bEnabled = bEnabledLA;
2235   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2236 #endif /* SQLITE_OMIT_VIEW */
2237   return nErr;
2238 }
2239 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2240 
2241 #ifndef SQLITE_OMIT_VIEW
2242 /*
2243 ** Clear the column names from every VIEW in database idx.
2244 */
2245 static void sqliteViewResetAll(sqlite3 *db, int idx){
2246   HashElem *i;
2247   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2248   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2249   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2250     Table *pTab = sqliteHashData(i);
2251     if( pTab->pSelect ){
2252       sqlite3DeleteColumnNames(db, pTab);
2253       pTab->aCol = 0;
2254       pTab->nCol = 0;
2255     }
2256   }
2257   DbClearProperty(db, idx, DB_UnresetViews);
2258 }
2259 #else
2260 # define sqliteViewResetAll(A,B)
2261 #endif /* SQLITE_OMIT_VIEW */
2262 
2263 /*
2264 ** This function is called by the VDBE to adjust the internal schema
2265 ** used by SQLite when the btree layer moves a table root page. The
2266 ** root-page of a table or index in database iDb has changed from iFrom
2267 ** to iTo.
2268 **
2269 ** Ticket #1728:  The symbol table might still contain information
2270 ** on tables and/or indices that are the process of being deleted.
2271 ** If you are unlucky, one of those deleted indices or tables might
2272 ** have the same rootpage number as the real table or index that is
2273 ** being moved.  So we cannot stop searching after the first match
2274 ** because the first match might be for one of the deleted indices
2275 ** or tables and not the table/index that is actually being moved.
2276 ** We must continue looping until all tables and indices with
2277 ** rootpage==iFrom have been converted to have a rootpage of iTo
2278 ** in order to be certain that we got the right one.
2279 */
2280 #ifndef SQLITE_OMIT_AUTOVACUUM
2281 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2282   HashElem *pElem;
2283   Hash *pHash;
2284   Db *pDb;
2285 
2286   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2287   pDb = &db->aDb[iDb];
2288   pHash = &pDb->pSchema->tblHash;
2289   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2290     Table *pTab = sqliteHashData(pElem);
2291     if( pTab->tnum==iFrom ){
2292       pTab->tnum = iTo;
2293     }
2294   }
2295   pHash = &pDb->pSchema->idxHash;
2296   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2297     Index *pIdx = sqliteHashData(pElem);
2298     if( pIdx->tnum==iFrom ){
2299       pIdx->tnum = iTo;
2300     }
2301   }
2302 }
2303 #endif
2304 
2305 /*
2306 ** Write code to erase the table with root-page iTable from database iDb.
2307 ** Also write code to modify the sqlite_master table and internal schema
2308 ** if a root-page of another table is moved by the btree-layer whilst
2309 ** erasing iTable (this can happen with an auto-vacuum database).
2310 */
2311 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2312   Vdbe *v = sqlite3GetVdbe(pParse);
2313   int r1 = sqlite3GetTempReg(pParse);
2314   assert( iTable>1 );
2315   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2316   sqlite3MayAbort(pParse);
2317 #ifndef SQLITE_OMIT_AUTOVACUUM
2318   /* OP_Destroy stores an in integer r1. If this integer
2319   ** is non-zero, then it is the root page number of a table moved to
2320   ** location iTable. The following code modifies the sqlite_master table to
2321   ** reflect this.
2322   **
2323   ** The "#NNN" in the SQL is a special constant that means whatever value
2324   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2325   ** token for additional information.
2326   */
2327   sqlite3NestedParse(pParse,
2328      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2329      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2330 #endif
2331   sqlite3ReleaseTempReg(pParse, r1);
2332 }
2333 
2334 /*
2335 ** Write VDBE code to erase table pTab and all associated indices on disk.
2336 ** Code to update the sqlite_master tables and internal schema definitions
2337 ** in case a root-page belonging to another table is moved by the btree layer
2338 ** is also added (this can happen with an auto-vacuum database).
2339 */
2340 static void destroyTable(Parse *pParse, Table *pTab){
2341 #ifdef SQLITE_OMIT_AUTOVACUUM
2342   Index *pIdx;
2343   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2344   destroyRootPage(pParse, pTab->tnum, iDb);
2345   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2346     destroyRootPage(pParse, pIdx->tnum, iDb);
2347   }
2348 #else
2349   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2350   ** is not defined), then it is important to call OP_Destroy on the
2351   ** table and index root-pages in order, starting with the numerically
2352   ** largest root-page number. This guarantees that none of the root-pages
2353   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2354   ** following were coded:
2355   **
2356   ** OP_Destroy 4 0
2357   ** ...
2358   ** OP_Destroy 5 0
2359   **
2360   ** and root page 5 happened to be the largest root-page number in the
2361   ** database, then root page 5 would be moved to page 4 by the
2362   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2363   ** a free-list page.
2364   */
2365   int iTab = pTab->tnum;
2366   int iDestroyed = 0;
2367 
2368   while( 1 ){
2369     Index *pIdx;
2370     int iLargest = 0;
2371 
2372     if( iDestroyed==0 || iTab<iDestroyed ){
2373       iLargest = iTab;
2374     }
2375     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2376       int iIdx = pIdx->tnum;
2377       assert( pIdx->pSchema==pTab->pSchema );
2378       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2379         iLargest = iIdx;
2380       }
2381     }
2382     if( iLargest==0 ){
2383       return;
2384     }else{
2385       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2386       assert( iDb>=0 && iDb<pParse->db->nDb );
2387       destroyRootPage(pParse, iLargest, iDb);
2388       iDestroyed = iLargest;
2389     }
2390   }
2391 #endif
2392 }
2393 
2394 /*
2395 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2396 ** after a DROP INDEX or DROP TABLE command.
2397 */
2398 static void sqlite3ClearStatTables(
2399   Parse *pParse,         /* The parsing context */
2400   int iDb,               /* The database number */
2401   const char *zType,     /* "idx" or "tbl" */
2402   const char *zName      /* Name of index or table */
2403 ){
2404   int i;
2405   const char *zDbName = pParse->db->aDb[iDb].zName;
2406   for(i=1; i<=4; i++){
2407     char zTab[24];
2408     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2409     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2410       sqlite3NestedParse(pParse,
2411         "DELETE FROM %Q.%s WHERE %s=%Q",
2412         zDbName, zTab, zType, zName
2413       );
2414     }
2415   }
2416 }
2417 
2418 /*
2419 ** Generate code to drop a table.
2420 */
2421 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2422   Vdbe *v;
2423   sqlite3 *db = pParse->db;
2424   Trigger *pTrigger;
2425   Db *pDb = &db->aDb[iDb];
2426 
2427   v = sqlite3GetVdbe(pParse);
2428   assert( v!=0 );
2429   sqlite3BeginWriteOperation(pParse, 1, iDb);
2430 
2431 #ifndef SQLITE_OMIT_VIRTUALTABLE
2432   if( IsVirtual(pTab) ){
2433     sqlite3VdbeAddOp0(v, OP_VBegin);
2434   }
2435 #endif
2436 
2437   /* Drop all triggers associated with the table being dropped. Code
2438   ** is generated to remove entries from sqlite_master and/or
2439   ** sqlite_temp_master if required.
2440   */
2441   pTrigger = sqlite3TriggerList(pParse, pTab);
2442   while( pTrigger ){
2443     assert( pTrigger->pSchema==pTab->pSchema ||
2444         pTrigger->pSchema==db->aDb[1].pSchema );
2445     sqlite3DropTriggerPtr(pParse, pTrigger);
2446     pTrigger = pTrigger->pNext;
2447   }
2448 
2449 #ifndef SQLITE_OMIT_AUTOINCREMENT
2450   /* Remove any entries of the sqlite_sequence table associated with
2451   ** the table being dropped. This is done before the table is dropped
2452   ** at the btree level, in case the sqlite_sequence table needs to
2453   ** move as a result of the drop (can happen in auto-vacuum mode).
2454   */
2455   if( pTab->tabFlags & TF_Autoincrement ){
2456     sqlite3NestedParse(pParse,
2457       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2458       pDb->zName, pTab->zName
2459     );
2460   }
2461 #endif
2462 
2463   /* Drop all SQLITE_MASTER table and index entries that refer to the
2464   ** table. The program name loops through the master table and deletes
2465   ** every row that refers to a table of the same name as the one being
2466   ** dropped. Triggers are handled separately because a trigger can be
2467   ** created in the temp database that refers to a table in another
2468   ** database.
2469   */
2470   sqlite3NestedParse(pParse,
2471       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2472       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2473   if( !isView && !IsVirtual(pTab) ){
2474     destroyTable(pParse, pTab);
2475   }
2476 
2477   /* Remove the table entry from SQLite's internal schema and modify
2478   ** the schema cookie.
2479   */
2480   if( IsVirtual(pTab) ){
2481     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2482   }
2483   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2484   sqlite3ChangeCookie(pParse, iDb);
2485   sqliteViewResetAll(db, iDb);
2486 }
2487 
2488 /*
2489 ** This routine is called to do the work of a DROP TABLE statement.
2490 ** pName is the name of the table to be dropped.
2491 */
2492 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2493   Table *pTab;
2494   Vdbe *v;
2495   sqlite3 *db = pParse->db;
2496   int iDb;
2497 
2498   if( db->mallocFailed ){
2499     goto exit_drop_table;
2500   }
2501   assert( pParse->nErr==0 );
2502   assert( pName->nSrc==1 );
2503   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2504   if( noErr ) db->suppressErr++;
2505   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2506   if( noErr ) db->suppressErr--;
2507 
2508   if( pTab==0 ){
2509     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2510     goto exit_drop_table;
2511   }
2512   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2513   assert( iDb>=0 && iDb<db->nDb );
2514 
2515   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2516   ** it is initialized.
2517   */
2518   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2519     goto exit_drop_table;
2520   }
2521 #ifndef SQLITE_OMIT_AUTHORIZATION
2522   {
2523     int code;
2524     const char *zTab = SCHEMA_TABLE(iDb);
2525     const char *zDb = db->aDb[iDb].zName;
2526     const char *zArg2 = 0;
2527     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2528       goto exit_drop_table;
2529     }
2530     if( isView ){
2531       if( !OMIT_TEMPDB && iDb==1 ){
2532         code = SQLITE_DROP_TEMP_VIEW;
2533       }else{
2534         code = SQLITE_DROP_VIEW;
2535       }
2536 #ifndef SQLITE_OMIT_VIRTUALTABLE
2537     }else if( IsVirtual(pTab) ){
2538       code = SQLITE_DROP_VTABLE;
2539       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2540 #endif
2541     }else{
2542       if( !OMIT_TEMPDB && iDb==1 ){
2543         code = SQLITE_DROP_TEMP_TABLE;
2544       }else{
2545         code = SQLITE_DROP_TABLE;
2546       }
2547     }
2548     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2549       goto exit_drop_table;
2550     }
2551     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2552       goto exit_drop_table;
2553     }
2554   }
2555 #endif
2556   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2557     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2558     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2559     goto exit_drop_table;
2560   }
2561 
2562 #ifndef SQLITE_OMIT_VIEW
2563   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2564   ** on a table.
2565   */
2566   if( isView && pTab->pSelect==0 ){
2567     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2568     goto exit_drop_table;
2569   }
2570   if( !isView && pTab->pSelect ){
2571     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2572     goto exit_drop_table;
2573   }
2574 #endif
2575 
2576   /* Generate code to remove the table from the master table
2577   ** on disk.
2578   */
2579   v = sqlite3GetVdbe(pParse);
2580   if( v ){
2581     sqlite3BeginWriteOperation(pParse, 1, iDb);
2582     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2583     sqlite3FkDropTable(pParse, pName, pTab);
2584     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2585   }
2586 
2587 exit_drop_table:
2588   sqlite3SrcListDelete(db, pName);
2589 }
2590 
2591 /*
2592 ** This routine is called to create a new foreign key on the table
2593 ** currently under construction.  pFromCol determines which columns
2594 ** in the current table point to the foreign key.  If pFromCol==0 then
2595 ** connect the key to the last column inserted.  pTo is the name of
2596 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2597 ** of tables in the parent pTo table.  flags contains all
2598 ** information about the conflict resolution algorithms specified
2599 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2600 **
2601 ** An FKey structure is created and added to the table currently
2602 ** under construction in the pParse->pNewTable field.
2603 **
2604 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2605 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2606 */
2607 void sqlite3CreateForeignKey(
2608   Parse *pParse,       /* Parsing context */
2609   ExprList *pFromCol,  /* Columns in this table that point to other table */
2610   Token *pTo,          /* Name of the other table */
2611   ExprList *pToCol,    /* Columns in the other table */
2612   int flags            /* Conflict resolution algorithms. */
2613 ){
2614   sqlite3 *db = pParse->db;
2615 #ifndef SQLITE_OMIT_FOREIGN_KEY
2616   FKey *pFKey = 0;
2617   FKey *pNextTo;
2618   Table *p = pParse->pNewTable;
2619   int nByte;
2620   int i;
2621   int nCol;
2622   char *z;
2623 
2624   assert( pTo!=0 );
2625   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2626   if( pFromCol==0 ){
2627     int iCol = p->nCol-1;
2628     if( NEVER(iCol<0) ) goto fk_end;
2629     if( pToCol && pToCol->nExpr!=1 ){
2630       sqlite3ErrorMsg(pParse, "foreign key on %s"
2631          " should reference only one column of table %T",
2632          p->aCol[iCol].zName, pTo);
2633       goto fk_end;
2634     }
2635     nCol = 1;
2636   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2637     sqlite3ErrorMsg(pParse,
2638         "number of columns in foreign key does not match the number of "
2639         "columns in the referenced table");
2640     goto fk_end;
2641   }else{
2642     nCol = pFromCol->nExpr;
2643   }
2644   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2645   if( pToCol ){
2646     for(i=0; i<pToCol->nExpr; i++){
2647       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2648     }
2649   }
2650   pFKey = sqlite3DbMallocZero(db, nByte );
2651   if( pFKey==0 ){
2652     goto fk_end;
2653   }
2654   pFKey->pFrom = p;
2655   pFKey->pNextFrom = p->pFKey;
2656   z = (char*)&pFKey->aCol[nCol];
2657   pFKey->zTo = z;
2658   memcpy(z, pTo->z, pTo->n);
2659   z[pTo->n] = 0;
2660   sqlite3Dequote(z);
2661   z += pTo->n+1;
2662   pFKey->nCol = nCol;
2663   if( pFromCol==0 ){
2664     pFKey->aCol[0].iFrom = p->nCol-1;
2665   }else{
2666     for(i=0; i<nCol; i++){
2667       int j;
2668       for(j=0; j<p->nCol; j++){
2669         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2670           pFKey->aCol[i].iFrom = j;
2671           break;
2672         }
2673       }
2674       if( j>=p->nCol ){
2675         sqlite3ErrorMsg(pParse,
2676           "unknown column \"%s\" in foreign key definition",
2677           pFromCol->a[i].zName);
2678         goto fk_end;
2679       }
2680     }
2681   }
2682   if( pToCol ){
2683     for(i=0; i<nCol; i++){
2684       int n = sqlite3Strlen30(pToCol->a[i].zName);
2685       pFKey->aCol[i].zCol = z;
2686       memcpy(z, pToCol->a[i].zName, n);
2687       z[n] = 0;
2688       z += n+1;
2689     }
2690   }
2691   pFKey->isDeferred = 0;
2692   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2693   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2694 
2695   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2696   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2697       pFKey->zTo, (void *)pFKey
2698   );
2699   if( pNextTo==pFKey ){
2700     db->mallocFailed = 1;
2701     goto fk_end;
2702   }
2703   if( pNextTo ){
2704     assert( pNextTo->pPrevTo==0 );
2705     pFKey->pNextTo = pNextTo;
2706     pNextTo->pPrevTo = pFKey;
2707   }
2708 
2709   /* Link the foreign key to the table as the last step.
2710   */
2711   p->pFKey = pFKey;
2712   pFKey = 0;
2713 
2714 fk_end:
2715   sqlite3DbFree(db, pFKey);
2716 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2717   sqlite3ExprListDelete(db, pFromCol);
2718   sqlite3ExprListDelete(db, pToCol);
2719 }
2720 
2721 /*
2722 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2723 ** clause is seen as part of a foreign key definition.  The isDeferred
2724 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2725 ** The behavior of the most recently created foreign key is adjusted
2726 ** accordingly.
2727 */
2728 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2729 #ifndef SQLITE_OMIT_FOREIGN_KEY
2730   Table *pTab;
2731   FKey *pFKey;
2732   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2733   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2734   pFKey->isDeferred = (u8)isDeferred;
2735 #endif
2736 }
2737 
2738 /*
2739 ** Generate code that will erase and refill index *pIdx.  This is
2740 ** used to initialize a newly created index or to recompute the
2741 ** content of an index in response to a REINDEX command.
2742 **
2743 ** if memRootPage is not negative, it means that the index is newly
2744 ** created.  The register specified by memRootPage contains the
2745 ** root page number of the index.  If memRootPage is negative, then
2746 ** the index already exists and must be cleared before being refilled and
2747 ** the root page number of the index is taken from pIndex->tnum.
2748 */
2749 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2750   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2751   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2752   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2753   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2754   int addr1;                     /* Address of top of loop */
2755   int addr2;                     /* Address to jump to for next iteration */
2756   int tnum;                      /* Root page of index */
2757   int iPartIdxLabel;             /* Jump to this label to skip a row */
2758   Vdbe *v;                       /* Generate code into this virtual machine */
2759   KeyInfo *pKey;                 /* KeyInfo for index */
2760   int regRecord;                 /* Register holding assembled index record */
2761   sqlite3 *db = pParse->db;      /* The database connection */
2762   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2763 
2764 #ifndef SQLITE_OMIT_AUTHORIZATION
2765   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2766       db->aDb[iDb].zName ) ){
2767     return;
2768   }
2769 #endif
2770 
2771   /* Require a write-lock on the table to perform this operation */
2772   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2773 
2774   v = sqlite3GetVdbe(pParse);
2775   if( v==0 ) return;
2776   if( memRootPage>=0 ){
2777     tnum = memRootPage;
2778   }else{
2779     tnum = pIndex->tnum;
2780   }
2781   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2782 
2783   /* Open the sorter cursor if we are to use one. */
2784   iSorter = pParse->nTab++;
2785   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2786                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2787 
2788   /* Open the table. Loop through all rows of the table, inserting index
2789   ** records into the sorter. */
2790   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2791   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2792   regRecord = sqlite3GetTempReg(pParse);
2793 
2794   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2795   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2796   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2797   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2798   sqlite3VdbeJumpHere(v, addr1);
2799   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2800   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2801                     (char *)pKey, P4_KEYINFO);
2802   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2803 
2804   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2805   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2806   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2807     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2808     sqlite3VdbeGoto(v, j2);
2809     addr2 = sqlite3VdbeCurrentAddr(v);
2810     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2811                          pIndex->nKeyCol); VdbeCoverage(v);
2812     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2813   }else{
2814     addr2 = sqlite3VdbeCurrentAddr(v);
2815   }
2816   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2817   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2818   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2819   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2820   sqlite3ReleaseTempReg(pParse, regRecord);
2821   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2822   sqlite3VdbeJumpHere(v, addr1);
2823 
2824   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2825   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2826   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2827 }
2828 
2829 /*
2830 ** Allocate heap space to hold an Index object with nCol columns.
2831 **
2832 ** Increase the allocation size to provide an extra nExtra bytes
2833 ** of 8-byte aligned space after the Index object and return a
2834 ** pointer to this extra space in *ppExtra.
2835 */
2836 Index *sqlite3AllocateIndexObject(
2837   sqlite3 *db,         /* Database connection */
2838   i16 nCol,            /* Total number of columns in the index */
2839   int nExtra,          /* Number of bytes of extra space to alloc */
2840   char **ppExtra       /* Pointer to the "extra" space */
2841 ){
2842   Index *p;            /* Allocated index object */
2843   int nByte;           /* Bytes of space for Index object + arrays */
2844 
2845   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2846           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2847           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2848                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2849                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2850   p = sqlite3DbMallocZero(db, nByte + nExtra);
2851   if( p ){
2852     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2853     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2854     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2855     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2856     p->aSortOrder = (u8*)pExtra;
2857     p->nColumn = nCol;
2858     p->nKeyCol = nCol - 1;
2859     *ppExtra = ((char*)p) + nByte;
2860   }
2861   return p;
2862 }
2863 
2864 /*
2865 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2866 ** and pTblList is the name of the table that is to be indexed.  Both will
2867 ** be NULL for a primary key or an index that is created to satisfy a
2868 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2869 ** as the table to be indexed.  pParse->pNewTable is a table that is
2870 ** currently being constructed by a CREATE TABLE statement.
2871 **
2872 ** pList is a list of columns to be indexed.  pList will be NULL if this
2873 ** is a primary key or unique-constraint on the most recent column added
2874 ** to the table currently under construction.
2875 **
2876 ** If the index is created successfully, return a pointer to the new Index
2877 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2878 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2879 */
2880 Index *sqlite3CreateIndex(
2881   Parse *pParse,     /* All information about this parse */
2882   Token *pName1,     /* First part of index name. May be NULL */
2883   Token *pName2,     /* Second part of index name. May be NULL */
2884   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2885   ExprList *pList,   /* A list of columns to be indexed */
2886   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2887   Token *pStart,     /* The CREATE token that begins this statement */
2888   Expr *pPIWhere,    /* WHERE clause for partial indices */
2889   int sortOrder,     /* Sort order of primary key when pList==NULL */
2890   int ifNotExist     /* Omit error if index already exists */
2891 ){
2892   Index *pRet = 0;     /* Pointer to return */
2893   Table *pTab = 0;     /* Table to be indexed */
2894   Index *pIndex = 0;   /* The index to be created */
2895   char *zName = 0;     /* Name of the index */
2896   int nName;           /* Number of characters in zName */
2897   int i, j;
2898   DbFixer sFix;        /* For assigning database names to pTable */
2899   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2900   sqlite3 *db = pParse->db;
2901   Db *pDb;             /* The specific table containing the indexed database */
2902   int iDb;             /* Index of the database that is being written */
2903   Token *pName = 0;    /* Unqualified name of the index to create */
2904   struct ExprList_item *pListItem; /* For looping over pList */
2905   int nExtra = 0;                  /* Space allocated for zExtra[] */
2906   int nExtraCol;                   /* Number of extra columns needed */
2907   char *zExtra = 0;                /* Extra space after the Index object */
2908   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2909 
2910   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2911     goto exit_create_index;
2912   }
2913   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2914     goto exit_create_index;
2915   }
2916 
2917   /*
2918   ** Find the table that is to be indexed.  Return early if not found.
2919   */
2920   if( pTblName!=0 ){
2921 
2922     /* Use the two-part index name to determine the database
2923     ** to search for the table. 'Fix' the table name to this db
2924     ** before looking up the table.
2925     */
2926     assert( pName1 && pName2 );
2927     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2928     if( iDb<0 ) goto exit_create_index;
2929     assert( pName && pName->z );
2930 
2931 #ifndef SQLITE_OMIT_TEMPDB
2932     /* If the index name was unqualified, check if the table
2933     ** is a temp table. If so, set the database to 1. Do not do this
2934     ** if initialising a database schema.
2935     */
2936     if( !db->init.busy ){
2937       pTab = sqlite3SrcListLookup(pParse, pTblName);
2938       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2939         iDb = 1;
2940       }
2941     }
2942 #endif
2943 
2944     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2945     if( sqlite3FixSrcList(&sFix, pTblName) ){
2946       /* Because the parser constructs pTblName from a single identifier,
2947       ** sqlite3FixSrcList can never fail. */
2948       assert(0);
2949     }
2950     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2951     assert( db->mallocFailed==0 || pTab==0 );
2952     if( pTab==0 ) goto exit_create_index;
2953     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2954       sqlite3ErrorMsg(pParse,
2955            "cannot create a TEMP index on non-TEMP table \"%s\"",
2956            pTab->zName);
2957       goto exit_create_index;
2958     }
2959     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2960   }else{
2961     assert( pName==0 );
2962     assert( pStart==0 );
2963     pTab = pParse->pNewTable;
2964     if( !pTab ) goto exit_create_index;
2965     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2966   }
2967   pDb = &db->aDb[iDb];
2968 
2969   assert( pTab!=0 );
2970   assert( pParse->nErr==0 );
2971   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2972        && db->init.busy==0
2973 #if SQLITE_USER_AUTHENTICATION
2974        && sqlite3UserAuthTable(pTab->zName)==0
2975 #endif
2976        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2977     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2978     goto exit_create_index;
2979   }
2980 #ifndef SQLITE_OMIT_VIEW
2981   if( pTab->pSelect ){
2982     sqlite3ErrorMsg(pParse, "views may not be indexed");
2983     goto exit_create_index;
2984   }
2985 #endif
2986 #ifndef SQLITE_OMIT_VIRTUALTABLE
2987   if( IsVirtual(pTab) ){
2988     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2989     goto exit_create_index;
2990   }
2991 #endif
2992 
2993   /*
2994   ** Find the name of the index.  Make sure there is not already another
2995   ** index or table with the same name.
2996   **
2997   ** Exception:  If we are reading the names of permanent indices from the
2998   ** sqlite_master table (because some other process changed the schema) and
2999   ** one of the index names collides with the name of a temporary table or
3000   ** index, then we will continue to process this index.
3001   **
3002   ** If pName==0 it means that we are
3003   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3004   ** own name.
3005   */
3006   if( pName ){
3007     zName = sqlite3NameFromToken(db, pName);
3008     if( zName==0 ) goto exit_create_index;
3009     assert( pName->z!=0 );
3010     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3011       goto exit_create_index;
3012     }
3013     if( !db->init.busy ){
3014       if( sqlite3FindTable(db, zName, 0)!=0 ){
3015         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3016         goto exit_create_index;
3017       }
3018     }
3019     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3020       if( !ifNotExist ){
3021         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3022       }else{
3023         assert( !db->init.busy );
3024         sqlite3CodeVerifySchema(pParse, iDb);
3025       }
3026       goto exit_create_index;
3027     }
3028   }else{
3029     int n;
3030     Index *pLoop;
3031     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3032     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3033     if( zName==0 ){
3034       goto exit_create_index;
3035     }
3036   }
3037 
3038   /* Check for authorization to create an index.
3039   */
3040 #ifndef SQLITE_OMIT_AUTHORIZATION
3041   {
3042     const char *zDb = pDb->zName;
3043     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3044       goto exit_create_index;
3045     }
3046     i = SQLITE_CREATE_INDEX;
3047     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3048     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3049       goto exit_create_index;
3050     }
3051   }
3052 #endif
3053 
3054   /* If pList==0, it means this routine was called to make a primary
3055   ** key out of the last column added to the table under construction.
3056   ** So create a fake list to simulate this.
3057   */
3058   if( pList==0 ){
3059     Token prevCol;
3060     prevCol.z = pTab->aCol[pTab->nCol-1].zName;
3061     prevCol.n = sqlite3Strlen30(prevCol.z);
3062     pList = sqlite3ExprListAppend(pParse, 0,
3063               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3064     if( pList==0 ) goto exit_create_index;
3065     assert( pList->nExpr==1 );
3066     sqlite3ExprListSetSortOrder(pList, sortOrder);
3067   }else{
3068     sqlite3ExprListCheckLength(pParse, pList, "index");
3069   }
3070 
3071   /* Figure out how many bytes of space are required to store explicitly
3072   ** specified collation sequence names.
3073   */
3074   for(i=0; i<pList->nExpr; i++){
3075     Expr *pExpr = pList->a[i].pExpr;
3076     assert( pExpr!=0 );
3077     if( pExpr->op==TK_COLLATE ){
3078       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3079     }
3080   }
3081 
3082   /*
3083   ** Allocate the index structure.
3084   */
3085   nName = sqlite3Strlen30(zName);
3086   nExtraCol = pPk ? pPk->nKeyCol : 1;
3087   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3088                                       nName + nExtra + 1, &zExtra);
3089   if( db->mallocFailed ){
3090     goto exit_create_index;
3091   }
3092   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3093   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3094   pIndex->zName = zExtra;
3095   zExtra += nName + 1;
3096   memcpy(pIndex->zName, zName, nName+1);
3097   pIndex->pTable = pTab;
3098   pIndex->onError = (u8)onError;
3099   pIndex->uniqNotNull = onError!=OE_None;
3100   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3101   pIndex->pSchema = db->aDb[iDb].pSchema;
3102   pIndex->nKeyCol = pList->nExpr;
3103   if( pPIWhere ){
3104     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3105     pIndex->pPartIdxWhere = pPIWhere;
3106     pPIWhere = 0;
3107   }
3108   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3109 
3110   /* Check to see if we should honor DESC requests on index columns
3111   */
3112   if( pDb->pSchema->file_format>=4 ){
3113     sortOrderMask = -1;   /* Honor DESC */
3114   }else{
3115     sortOrderMask = 0;    /* Ignore DESC */
3116   }
3117 
3118   /* Analyze the list of expressions that form the terms of the index and
3119   ** report any errors.  In the common case where the expression is exactly
3120   ** a table column, store that column in aiColumn[].  For general expressions,
3121   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3122   **
3123   ** TODO: Issue a warning if two or more columns of the index are identical.
3124   ** TODO: Issue a warning if the table primary key is used as part of the
3125   ** index key.
3126   */
3127   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3128     Expr *pCExpr;                  /* The i-th index expression */
3129     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3130     const char *zColl;             /* Collation sequence name */
3131 
3132     sqlite3StringToId(pListItem->pExpr);
3133     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3134     if( pParse->nErr ) goto exit_create_index;
3135     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3136     if( pCExpr->op!=TK_COLUMN ){
3137       if( pTab==pParse->pNewTable ){
3138         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3139                                 "UNIQUE constraints");
3140         goto exit_create_index;
3141       }
3142       if( pIndex->aColExpr==0 ){
3143         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3144         pIndex->aColExpr = pCopy;
3145         if( !db->mallocFailed ){
3146           assert( pCopy!=0 );
3147           pListItem = &pCopy->a[i];
3148         }
3149       }
3150       j = XN_EXPR;
3151       pIndex->aiColumn[i] = XN_EXPR;
3152       pIndex->uniqNotNull = 0;
3153     }else{
3154       j = pCExpr->iColumn;
3155       assert( j<=0x7fff );
3156       if( j<0 ){
3157         j = pTab->iPKey;
3158       }else if( pTab->aCol[j].notNull==0 ){
3159         pIndex->uniqNotNull = 0;
3160       }
3161       pIndex->aiColumn[i] = (i16)j;
3162     }
3163     zColl = 0;
3164     if( pListItem->pExpr->op==TK_COLLATE ){
3165       int nColl;
3166       zColl = pListItem->pExpr->u.zToken;
3167       nColl = sqlite3Strlen30(zColl) + 1;
3168       assert( nExtra>=nColl );
3169       memcpy(zExtra, zColl, nColl);
3170       zColl = zExtra;
3171       zExtra += nColl;
3172       nExtra -= nColl;
3173     }else if( j>=0 ){
3174       zColl = pTab->aCol[j].zColl;
3175     }
3176     if( !zColl ) zColl = sqlite3StrBINARY;
3177     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3178       goto exit_create_index;
3179     }
3180     pIndex->azColl[i] = zColl;
3181     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3182     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3183   }
3184 
3185   /* Append the table key to the end of the index.  For WITHOUT ROWID
3186   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3187   ** normal tables (when pPk==0) this will be the rowid.
3188   */
3189   if( pPk ){
3190     for(j=0; j<pPk->nKeyCol; j++){
3191       int x = pPk->aiColumn[j];
3192       assert( x>=0 );
3193       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3194         pIndex->nColumn--;
3195       }else{
3196         pIndex->aiColumn[i] = x;
3197         pIndex->azColl[i] = pPk->azColl[j];
3198         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3199         i++;
3200       }
3201     }
3202     assert( i==pIndex->nColumn );
3203   }else{
3204     pIndex->aiColumn[i] = XN_ROWID;
3205     pIndex->azColl[i] = sqlite3StrBINARY;
3206   }
3207   sqlite3DefaultRowEst(pIndex);
3208   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3209 
3210   if( pTab==pParse->pNewTable ){
3211     /* This routine has been called to create an automatic index as a
3212     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3213     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3214     ** i.e. one of:
3215     **
3216     ** CREATE TABLE t(x PRIMARY KEY, y);
3217     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3218     **
3219     ** Either way, check to see if the table already has such an index. If
3220     ** so, don't bother creating this one. This only applies to
3221     ** automatically created indices. Users can do as they wish with
3222     ** explicit indices.
3223     **
3224     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3225     ** (and thus suppressing the second one) even if they have different
3226     ** sort orders.
3227     **
3228     ** If there are different collating sequences or if the columns of
3229     ** the constraint occur in different orders, then the constraints are
3230     ** considered distinct and both result in separate indices.
3231     */
3232     Index *pIdx;
3233     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3234       int k;
3235       assert( IsUniqueIndex(pIdx) );
3236       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3237       assert( IsUniqueIndex(pIndex) );
3238 
3239       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3240       for(k=0; k<pIdx->nKeyCol; k++){
3241         const char *z1;
3242         const char *z2;
3243         assert( pIdx->aiColumn[k]>=0 );
3244         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3245         z1 = pIdx->azColl[k];
3246         z2 = pIndex->azColl[k];
3247         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3248       }
3249       if( k==pIdx->nKeyCol ){
3250         if( pIdx->onError!=pIndex->onError ){
3251           /* This constraint creates the same index as a previous
3252           ** constraint specified somewhere in the CREATE TABLE statement.
3253           ** However the ON CONFLICT clauses are different. If both this
3254           ** constraint and the previous equivalent constraint have explicit
3255           ** ON CONFLICT clauses this is an error. Otherwise, use the
3256           ** explicitly specified behavior for the index.
3257           */
3258           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3259             sqlite3ErrorMsg(pParse,
3260                 "conflicting ON CONFLICT clauses specified", 0);
3261           }
3262           if( pIdx->onError==OE_Default ){
3263             pIdx->onError = pIndex->onError;
3264           }
3265         }
3266         pRet = pIdx;
3267         goto exit_create_index;
3268       }
3269     }
3270   }
3271 
3272   /* Link the new Index structure to its table and to the other
3273   ** in-memory database structures.
3274   */
3275   assert( pParse->nErr==0 );
3276   if( db->init.busy ){
3277     Index *p;
3278     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3279     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3280                           pIndex->zName, pIndex);
3281     if( p ){
3282       assert( p==pIndex );  /* Malloc must have failed */
3283       db->mallocFailed = 1;
3284       goto exit_create_index;
3285     }
3286     db->flags |= SQLITE_InternChanges;
3287     if( pTblName!=0 ){
3288       pIndex->tnum = db->init.newTnum;
3289     }
3290   }
3291 
3292   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3293   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3294   ** emit code to allocate the index rootpage on disk and make an entry for
3295   ** the index in the sqlite_master table and populate the index with
3296   ** content.  But, do not do this if we are simply reading the sqlite_master
3297   ** table to parse the schema, or if this index is the PRIMARY KEY index
3298   ** of a WITHOUT ROWID table.
3299   **
3300   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3301   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3302   ** has just been created, it contains no data and the index initialization
3303   ** step can be skipped.
3304   */
3305   else if( HasRowid(pTab) || pTblName!=0 ){
3306     Vdbe *v;
3307     char *zStmt;
3308     int iMem = ++pParse->nMem;
3309 
3310     v = sqlite3GetVdbe(pParse);
3311     if( v==0 ) goto exit_create_index;
3312 
3313     sqlite3BeginWriteOperation(pParse, 1, iDb);
3314 
3315     /* Create the rootpage for the index using CreateIndex. But before
3316     ** doing so, code a Noop instruction and store its address in
3317     ** Index.tnum. This is required in case this index is actually a
3318     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3319     ** that case the convertToWithoutRowidTable() routine will replace
3320     ** the Noop with a Goto to jump over the VDBE code generated below. */
3321     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3322     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3323 
3324     /* Gather the complete text of the CREATE INDEX statement into
3325     ** the zStmt variable
3326     */
3327     if( pStart ){
3328       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3329       if( pName->z[n-1]==';' ) n--;
3330       /* A named index with an explicit CREATE INDEX statement */
3331       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3332         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3333     }else{
3334       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3335       /* zStmt = sqlite3MPrintf(""); */
3336       zStmt = 0;
3337     }
3338 
3339     /* Add an entry in sqlite_master for this index
3340     */
3341     sqlite3NestedParse(pParse,
3342         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3343         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3344         pIndex->zName,
3345         pTab->zName,
3346         iMem,
3347         zStmt
3348     );
3349     sqlite3DbFree(db, zStmt);
3350 
3351     /* Fill the index with data and reparse the schema. Code an OP_Expire
3352     ** to invalidate all pre-compiled statements.
3353     */
3354     if( pTblName ){
3355       sqlite3RefillIndex(pParse, pIndex, iMem);
3356       sqlite3ChangeCookie(pParse, iDb);
3357       sqlite3VdbeAddParseSchemaOp(v, iDb,
3358          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3359       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3360     }
3361 
3362     sqlite3VdbeJumpHere(v, pIndex->tnum);
3363   }
3364 
3365   /* When adding an index to the list of indices for a table, make
3366   ** sure all indices labeled OE_Replace come after all those labeled
3367   ** OE_Ignore.  This is necessary for the correct constraint check
3368   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3369   ** UPDATE and INSERT statements.
3370   */
3371   if( db->init.busy || pTblName==0 ){
3372     if( onError!=OE_Replace || pTab->pIndex==0
3373          || pTab->pIndex->onError==OE_Replace){
3374       pIndex->pNext = pTab->pIndex;
3375       pTab->pIndex = pIndex;
3376     }else{
3377       Index *pOther = pTab->pIndex;
3378       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3379         pOther = pOther->pNext;
3380       }
3381       pIndex->pNext = pOther->pNext;
3382       pOther->pNext = pIndex;
3383     }
3384     pRet = pIndex;
3385     pIndex = 0;
3386   }
3387 
3388   /* Clean up before exiting */
3389 exit_create_index:
3390   if( pIndex ) freeIndex(db, pIndex);
3391   sqlite3ExprDelete(db, pPIWhere);
3392   sqlite3ExprListDelete(db, pList);
3393   sqlite3SrcListDelete(db, pTblName);
3394   sqlite3DbFree(db, zName);
3395   return pRet;
3396 }
3397 
3398 /*
3399 ** Fill the Index.aiRowEst[] array with default information - information
3400 ** to be used when we have not run the ANALYZE command.
3401 **
3402 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3403 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3404 ** number of rows in the table that match any particular value of the
3405 ** first column of the index.  aiRowEst[2] is an estimate of the number
3406 ** of rows that match any particular combination of the first 2 columns
3407 ** of the index.  And so forth.  It must always be the case that
3408 *
3409 **           aiRowEst[N]<=aiRowEst[N-1]
3410 **           aiRowEst[N]>=1
3411 **
3412 ** Apart from that, we have little to go on besides intuition as to
3413 ** how aiRowEst[] should be initialized.  The numbers generated here
3414 ** are based on typical values found in actual indices.
3415 */
3416 void sqlite3DefaultRowEst(Index *pIdx){
3417   /*                10,  9,  8,  7,  6 */
3418   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3419   LogEst *a = pIdx->aiRowLogEst;
3420   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3421   int i;
3422 
3423   /* Set the first entry (number of rows in the index) to the estimated
3424   ** number of rows in the table. Or 10, if the estimated number of rows
3425   ** in the table is less than that.  */
3426   a[0] = pIdx->pTable->nRowLogEst;
3427   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3428 
3429   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3430   ** 6 and each subsequent value (if any) is 5.  */
3431   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3432   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3433     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3434   }
3435 
3436   assert( 0==sqlite3LogEst(1) );
3437   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3438 }
3439 
3440 /*
3441 ** This routine will drop an existing named index.  This routine
3442 ** implements the DROP INDEX statement.
3443 */
3444 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3445   Index *pIndex;
3446   Vdbe *v;
3447   sqlite3 *db = pParse->db;
3448   int iDb;
3449 
3450   assert( pParse->nErr==0 );   /* Never called with prior errors */
3451   if( db->mallocFailed ){
3452     goto exit_drop_index;
3453   }
3454   assert( pName->nSrc==1 );
3455   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3456     goto exit_drop_index;
3457   }
3458   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3459   if( pIndex==0 ){
3460     if( !ifExists ){
3461       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3462     }else{
3463       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3464     }
3465     pParse->checkSchema = 1;
3466     goto exit_drop_index;
3467   }
3468   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3469     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3470       "or PRIMARY KEY constraint cannot be dropped", 0);
3471     goto exit_drop_index;
3472   }
3473   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3474 #ifndef SQLITE_OMIT_AUTHORIZATION
3475   {
3476     int code = SQLITE_DROP_INDEX;
3477     Table *pTab = pIndex->pTable;
3478     const char *zDb = db->aDb[iDb].zName;
3479     const char *zTab = SCHEMA_TABLE(iDb);
3480     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3481       goto exit_drop_index;
3482     }
3483     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3484     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3485       goto exit_drop_index;
3486     }
3487   }
3488 #endif
3489 
3490   /* Generate code to remove the index and from the master table */
3491   v = sqlite3GetVdbe(pParse);
3492   if( v ){
3493     sqlite3BeginWriteOperation(pParse, 1, iDb);
3494     sqlite3NestedParse(pParse,
3495        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3496        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3497     );
3498     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3499     sqlite3ChangeCookie(pParse, iDb);
3500     destroyRootPage(pParse, pIndex->tnum, iDb);
3501     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3502   }
3503 
3504 exit_drop_index:
3505   sqlite3SrcListDelete(db, pName);
3506 }
3507 
3508 /*
3509 ** pArray is a pointer to an array of objects. Each object in the
3510 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3511 ** to extend the array so that there is space for a new object at the end.
3512 **
3513 ** When this function is called, *pnEntry contains the current size of
3514 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3515 ** in total).
3516 **
3517 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3518 ** space allocated for the new object is zeroed, *pnEntry updated to
3519 ** reflect the new size of the array and a pointer to the new allocation
3520 ** returned. *pIdx is set to the index of the new array entry in this case.
3521 **
3522 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3523 ** unchanged and a copy of pArray returned.
3524 */
3525 void *sqlite3ArrayAllocate(
3526   sqlite3 *db,      /* Connection to notify of malloc failures */
3527   void *pArray,     /* Array of objects.  Might be reallocated */
3528   int szEntry,      /* Size of each object in the array */
3529   int *pnEntry,     /* Number of objects currently in use */
3530   int *pIdx         /* Write the index of a new slot here */
3531 ){
3532   char *z;
3533   int n = *pnEntry;
3534   if( (n & (n-1))==0 ){
3535     int sz = (n==0) ? 1 : 2*n;
3536     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3537     if( pNew==0 ){
3538       *pIdx = -1;
3539       return pArray;
3540     }
3541     pArray = pNew;
3542   }
3543   z = (char*)pArray;
3544   memset(&z[n * szEntry], 0, szEntry);
3545   *pIdx = n;
3546   ++*pnEntry;
3547   return pArray;
3548 }
3549 
3550 /*
3551 ** Append a new element to the given IdList.  Create a new IdList if
3552 ** need be.
3553 **
3554 ** A new IdList is returned, or NULL if malloc() fails.
3555 */
3556 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3557   int i;
3558   if( pList==0 ){
3559     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3560     if( pList==0 ) return 0;
3561   }
3562   pList->a = sqlite3ArrayAllocate(
3563       db,
3564       pList->a,
3565       sizeof(pList->a[0]),
3566       &pList->nId,
3567       &i
3568   );
3569   if( i<0 ){
3570     sqlite3IdListDelete(db, pList);
3571     return 0;
3572   }
3573   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3574   return pList;
3575 }
3576 
3577 /*
3578 ** Delete an IdList.
3579 */
3580 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3581   int i;
3582   if( pList==0 ) return;
3583   for(i=0; i<pList->nId; i++){
3584     sqlite3DbFree(db, pList->a[i].zName);
3585   }
3586   sqlite3DbFree(db, pList->a);
3587   sqlite3DbFree(db, pList);
3588 }
3589 
3590 /*
3591 ** Return the index in pList of the identifier named zId.  Return -1
3592 ** if not found.
3593 */
3594 int sqlite3IdListIndex(IdList *pList, const char *zName){
3595   int i;
3596   if( pList==0 ) return -1;
3597   for(i=0; i<pList->nId; i++){
3598     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3599   }
3600   return -1;
3601 }
3602 
3603 /*
3604 ** Expand the space allocated for the given SrcList object by
3605 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3606 ** New slots are zeroed.
3607 **
3608 ** For example, suppose a SrcList initially contains two entries: A,B.
3609 ** To append 3 new entries onto the end, do this:
3610 **
3611 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3612 **
3613 ** After the call above it would contain:  A, B, nil, nil, nil.
3614 ** If the iStart argument had been 1 instead of 2, then the result
3615 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3616 ** the iStart value would be 0.  The result then would
3617 ** be: nil, nil, nil, A, B.
3618 **
3619 ** If a memory allocation fails the SrcList is unchanged.  The
3620 ** db->mallocFailed flag will be set to true.
3621 */
3622 SrcList *sqlite3SrcListEnlarge(
3623   sqlite3 *db,       /* Database connection to notify of OOM errors */
3624   SrcList *pSrc,     /* The SrcList to be enlarged */
3625   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3626   int iStart         /* Index in pSrc->a[] of first new slot */
3627 ){
3628   int i;
3629 
3630   /* Sanity checking on calling parameters */
3631   assert( iStart>=0 );
3632   assert( nExtra>=1 );
3633   assert( pSrc!=0 );
3634   assert( iStart<=pSrc->nSrc );
3635 
3636   /* Allocate additional space if needed */
3637   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3638     SrcList *pNew;
3639     int nAlloc = pSrc->nSrc+nExtra;
3640     int nGot;
3641     pNew = sqlite3DbRealloc(db, pSrc,
3642                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3643     if( pNew==0 ){
3644       assert( db->mallocFailed );
3645       return pSrc;
3646     }
3647     pSrc = pNew;
3648     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3649     pSrc->nAlloc = nGot;
3650   }
3651 
3652   /* Move existing slots that come after the newly inserted slots
3653   ** out of the way */
3654   for(i=pSrc->nSrc-1; i>=iStart; i--){
3655     pSrc->a[i+nExtra] = pSrc->a[i];
3656   }
3657   pSrc->nSrc += nExtra;
3658 
3659   /* Zero the newly allocated slots */
3660   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3661   for(i=iStart; i<iStart+nExtra; i++){
3662     pSrc->a[i].iCursor = -1;
3663   }
3664 
3665   /* Return a pointer to the enlarged SrcList */
3666   return pSrc;
3667 }
3668 
3669 
3670 /*
3671 ** Append a new table name to the given SrcList.  Create a new SrcList if
3672 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3673 **
3674 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3675 ** SrcList might be the same as the SrcList that was input or it might be
3676 ** a new one.  If an OOM error does occurs, then the prior value of pList
3677 ** that is input to this routine is automatically freed.
3678 **
3679 ** If pDatabase is not null, it means that the table has an optional
3680 ** database name prefix.  Like this:  "database.table".  The pDatabase
3681 ** points to the table name and the pTable points to the database name.
3682 ** The SrcList.a[].zName field is filled with the table name which might
3683 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3684 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3685 ** or with NULL if no database is specified.
3686 **
3687 ** In other words, if call like this:
3688 **
3689 **         sqlite3SrcListAppend(D,A,B,0);
3690 **
3691 ** Then B is a table name and the database name is unspecified.  If called
3692 ** like this:
3693 **
3694 **         sqlite3SrcListAppend(D,A,B,C);
3695 **
3696 ** Then C is the table name and B is the database name.  If C is defined
3697 ** then so is B.  In other words, we never have a case where:
3698 **
3699 **         sqlite3SrcListAppend(D,A,0,C);
3700 **
3701 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3702 ** before being added to the SrcList.
3703 */
3704 SrcList *sqlite3SrcListAppend(
3705   sqlite3 *db,        /* Connection to notify of malloc failures */
3706   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3707   Token *pTable,      /* Table to append */
3708   Token *pDatabase    /* Database of the table */
3709 ){
3710   struct SrcList_item *pItem;
3711   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3712   if( pList==0 ){
3713     pList = sqlite3DbMallocRaw(db, sizeof(SrcList) );
3714     if( pList==0 ) return 0;
3715     pList->nAlloc = 1;
3716     pList->nSrc = 0;
3717   }
3718   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3719   if( db->mallocFailed ){
3720     sqlite3SrcListDelete(db, pList);
3721     return 0;
3722   }
3723   pItem = &pList->a[pList->nSrc-1];
3724   if( pDatabase && pDatabase->z==0 ){
3725     pDatabase = 0;
3726   }
3727   if( pDatabase ){
3728     Token *pTemp = pDatabase;
3729     pDatabase = pTable;
3730     pTable = pTemp;
3731   }
3732   pItem->zName = sqlite3NameFromToken(db, pTable);
3733   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3734   return pList;
3735 }
3736 
3737 /*
3738 ** Assign VdbeCursor index numbers to all tables in a SrcList
3739 */
3740 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3741   int i;
3742   struct SrcList_item *pItem;
3743   assert(pList || pParse->db->mallocFailed );
3744   if( pList ){
3745     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3746       if( pItem->iCursor>=0 ) break;
3747       pItem->iCursor = pParse->nTab++;
3748       if( pItem->pSelect ){
3749         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3750       }
3751     }
3752   }
3753 }
3754 
3755 /*
3756 ** Delete an entire SrcList including all its substructure.
3757 */
3758 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3759   int i;
3760   struct SrcList_item *pItem;
3761   if( pList==0 ) return;
3762   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3763     sqlite3DbFree(db, pItem->zDatabase);
3764     sqlite3DbFree(db, pItem->zName);
3765     sqlite3DbFree(db, pItem->zAlias);
3766     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3767     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3768     sqlite3DeleteTable(db, pItem->pTab);
3769     sqlite3SelectDelete(db, pItem->pSelect);
3770     sqlite3ExprDelete(db, pItem->pOn);
3771     sqlite3IdListDelete(db, pItem->pUsing);
3772   }
3773   sqlite3DbFree(db, pList);
3774 }
3775 
3776 /*
3777 ** This routine is called by the parser to add a new term to the
3778 ** end of a growing FROM clause.  The "p" parameter is the part of
3779 ** the FROM clause that has already been constructed.  "p" is NULL
3780 ** if this is the first term of the FROM clause.  pTable and pDatabase
3781 ** are the name of the table and database named in the FROM clause term.
3782 ** pDatabase is NULL if the database name qualifier is missing - the
3783 ** usual case.  If the term has an alias, then pAlias points to the
3784 ** alias token.  If the term is a subquery, then pSubquery is the
3785 ** SELECT statement that the subquery encodes.  The pTable and
3786 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3787 ** parameters are the content of the ON and USING clauses.
3788 **
3789 ** Return a new SrcList which encodes is the FROM with the new
3790 ** term added.
3791 */
3792 SrcList *sqlite3SrcListAppendFromTerm(
3793   Parse *pParse,          /* Parsing context */
3794   SrcList *p,             /* The left part of the FROM clause already seen */
3795   Token *pTable,          /* Name of the table to add to the FROM clause */
3796   Token *pDatabase,       /* Name of the database containing pTable */
3797   Token *pAlias,          /* The right-hand side of the AS subexpression */
3798   Select *pSubquery,      /* A subquery used in place of a table name */
3799   Expr *pOn,              /* The ON clause of a join */
3800   IdList *pUsing          /* The USING clause of a join */
3801 ){
3802   struct SrcList_item *pItem;
3803   sqlite3 *db = pParse->db;
3804   if( !p && (pOn || pUsing) ){
3805     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3806       (pOn ? "ON" : "USING")
3807     );
3808     goto append_from_error;
3809   }
3810   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3811   if( p==0 || NEVER(p->nSrc==0) ){
3812     goto append_from_error;
3813   }
3814   pItem = &p->a[p->nSrc-1];
3815   assert( pAlias!=0 );
3816   if( pAlias->n ){
3817     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3818   }
3819   pItem->pSelect = pSubquery;
3820   pItem->pOn = pOn;
3821   pItem->pUsing = pUsing;
3822   return p;
3823 
3824  append_from_error:
3825   assert( p==0 );
3826   sqlite3ExprDelete(db, pOn);
3827   sqlite3IdListDelete(db, pUsing);
3828   sqlite3SelectDelete(db, pSubquery);
3829   return 0;
3830 }
3831 
3832 /*
3833 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3834 ** element of the source-list passed as the second argument.
3835 */
3836 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3837   assert( pIndexedBy!=0 );
3838   if( p && ALWAYS(p->nSrc>0) ){
3839     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3840     assert( pItem->fg.notIndexed==0 );
3841     assert( pItem->fg.isIndexedBy==0 );
3842     assert( pItem->fg.isTabFunc==0 );
3843     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3844       /* A "NOT INDEXED" clause was supplied. See parse.y
3845       ** construct "indexed_opt" for details. */
3846       pItem->fg.notIndexed = 1;
3847     }else{
3848       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3849       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3850     }
3851   }
3852 }
3853 
3854 /*
3855 ** Add the list of function arguments to the SrcList entry for a
3856 ** table-valued-function.
3857 */
3858 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3859   if( p ){
3860     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3861     assert( pItem->fg.notIndexed==0 );
3862     assert( pItem->fg.isIndexedBy==0 );
3863     assert( pItem->fg.isTabFunc==0 );
3864     pItem->u1.pFuncArg = pList;
3865     pItem->fg.isTabFunc = 1;
3866   }else{
3867     sqlite3ExprListDelete(pParse->db, pList);
3868   }
3869 }
3870 
3871 /*
3872 ** When building up a FROM clause in the parser, the join operator
3873 ** is initially attached to the left operand.  But the code generator
3874 ** expects the join operator to be on the right operand.  This routine
3875 ** Shifts all join operators from left to right for an entire FROM
3876 ** clause.
3877 **
3878 ** Example: Suppose the join is like this:
3879 **
3880 **           A natural cross join B
3881 **
3882 ** The operator is "natural cross join".  The A and B operands are stored
3883 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3884 ** operator with A.  This routine shifts that operator over to B.
3885 */
3886 void sqlite3SrcListShiftJoinType(SrcList *p){
3887   if( p ){
3888     int i;
3889     for(i=p->nSrc-1; i>0; i--){
3890       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3891     }
3892     p->a[0].fg.jointype = 0;
3893   }
3894 }
3895 
3896 /*
3897 ** Begin a transaction
3898 */
3899 void sqlite3BeginTransaction(Parse *pParse, int type){
3900   sqlite3 *db;
3901   Vdbe *v;
3902   int i;
3903 
3904   assert( pParse!=0 );
3905   db = pParse->db;
3906   assert( db!=0 );
3907 /*  if( db->aDb[0].pBt==0 ) return; */
3908   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3909     return;
3910   }
3911   v = sqlite3GetVdbe(pParse);
3912   if( !v ) return;
3913   if( type!=TK_DEFERRED ){
3914     for(i=0; i<db->nDb; i++){
3915       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3916       sqlite3VdbeUsesBtree(v, i);
3917     }
3918   }
3919   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3920 }
3921 
3922 /*
3923 ** Commit a transaction
3924 */
3925 void sqlite3CommitTransaction(Parse *pParse){
3926   Vdbe *v;
3927 
3928   assert( pParse!=0 );
3929   assert( pParse->db!=0 );
3930   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3931     return;
3932   }
3933   v = sqlite3GetVdbe(pParse);
3934   if( v ){
3935     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3936   }
3937 }
3938 
3939 /*
3940 ** Rollback a transaction
3941 */
3942 void sqlite3RollbackTransaction(Parse *pParse){
3943   Vdbe *v;
3944 
3945   assert( pParse!=0 );
3946   assert( pParse->db!=0 );
3947   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3948     return;
3949   }
3950   v = sqlite3GetVdbe(pParse);
3951   if( v ){
3952     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3953   }
3954 }
3955 
3956 /*
3957 ** This function is called by the parser when it parses a command to create,
3958 ** release or rollback an SQL savepoint.
3959 */
3960 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3961   char *zName = sqlite3NameFromToken(pParse->db, pName);
3962   if( zName ){
3963     Vdbe *v = sqlite3GetVdbe(pParse);
3964 #ifndef SQLITE_OMIT_AUTHORIZATION
3965     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3966     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3967 #endif
3968     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3969       sqlite3DbFree(pParse->db, zName);
3970       return;
3971     }
3972     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3973   }
3974 }
3975 
3976 /*
3977 ** Make sure the TEMP database is open and available for use.  Return
3978 ** the number of errors.  Leave any error messages in the pParse structure.
3979 */
3980 int sqlite3OpenTempDatabase(Parse *pParse){
3981   sqlite3 *db = pParse->db;
3982   if( db->aDb[1].pBt==0 && !pParse->explain ){
3983     int rc;
3984     Btree *pBt;
3985     static const int flags =
3986           SQLITE_OPEN_READWRITE |
3987           SQLITE_OPEN_CREATE |
3988           SQLITE_OPEN_EXCLUSIVE |
3989           SQLITE_OPEN_DELETEONCLOSE |
3990           SQLITE_OPEN_TEMP_DB;
3991 
3992     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3993     if( rc!=SQLITE_OK ){
3994       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3995         "file for storing temporary tables");
3996       pParse->rc = rc;
3997       return 1;
3998     }
3999     db->aDb[1].pBt = pBt;
4000     assert( db->aDb[1].pSchema );
4001     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4002       db->mallocFailed = 1;
4003       return 1;
4004     }
4005   }
4006   return 0;
4007 }
4008 
4009 /*
4010 ** Record the fact that the schema cookie will need to be verified
4011 ** for database iDb.  The code to actually verify the schema cookie
4012 ** will occur at the end of the top-level VDBE and will be generated
4013 ** later, by sqlite3FinishCoding().
4014 */
4015 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4016   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4017   sqlite3 *db = pToplevel->db;
4018 
4019   assert( iDb>=0 && iDb<db->nDb );
4020   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4021   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4022   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4023   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4024     DbMaskSet(pToplevel->cookieMask, iDb);
4025     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4026     if( !OMIT_TEMPDB && iDb==1 ){
4027       sqlite3OpenTempDatabase(pToplevel);
4028     }
4029   }
4030 }
4031 
4032 /*
4033 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4034 ** attached database. Otherwise, invoke it for the database named zDb only.
4035 */
4036 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4037   sqlite3 *db = pParse->db;
4038   int i;
4039   for(i=0; i<db->nDb; i++){
4040     Db *pDb = &db->aDb[i];
4041     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4042       sqlite3CodeVerifySchema(pParse, i);
4043     }
4044   }
4045 }
4046 
4047 /*
4048 ** Generate VDBE code that prepares for doing an operation that
4049 ** might change the database.
4050 **
4051 ** This routine starts a new transaction if we are not already within
4052 ** a transaction.  If we are already within a transaction, then a checkpoint
4053 ** is set if the setStatement parameter is true.  A checkpoint should
4054 ** be set for operations that might fail (due to a constraint) part of
4055 ** the way through and which will need to undo some writes without having to
4056 ** rollback the whole transaction.  For operations where all constraints
4057 ** can be checked before any changes are made to the database, it is never
4058 ** necessary to undo a write and the checkpoint should not be set.
4059 */
4060 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4061   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4062   sqlite3CodeVerifySchema(pParse, iDb);
4063   DbMaskSet(pToplevel->writeMask, iDb);
4064   pToplevel->isMultiWrite |= setStatement;
4065 }
4066 
4067 /*
4068 ** Indicate that the statement currently under construction might write
4069 ** more than one entry (example: deleting one row then inserting another,
4070 ** inserting multiple rows in a table, or inserting a row and index entries.)
4071 ** If an abort occurs after some of these writes have completed, then it will
4072 ** be necessary to undo the completed writes.
4073 */
4074 void sqlite3MultiWrite(Parse *pParse){
4075   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4076   pToplevel->isMultiWrite = 1;
4077 }
4078 
4079 /*
4080 ** The code generator calls this routine if is discovers that it is
4081 ** possible to abort a statement prior to completion.  In order to
4082 ** perform this abort without corrupting the database, we need to make
4083 ** sure that the statement is protected by a statement transaction.
4084 **
4085 ** Technically, we only need to set the mayAbort flag if the
4086 ** isMultiWrite flag was previously set.  There is a time dependency
4087 ** such that the abort must occur after the multiwrite.  This makes
4088 ** some statements involving the REPLACE conflict resolution algorithm
4089 ** go a little faster.  But taking advantage of this time dependency
4090 ** makes it more difficult to prove that the code is correct (in
4091 ** particular, it prevents us from writing an effective
4092 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4093 ** to take the safe route and skip the optimization.
4094 */
4095 void sqlite3MayAbort(Parse *pParse){
4096   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4097   pToplevel->mayAbort = 1;
4098 }
4099 
4100 /*
4101 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4102 ** error. The onError parameter determines which (if any) of the statement
4103 ** and/or current transaction is rolled back.
4104 */
4105 void sqlite3HaltConstraint(
4106   Parse *pParse,    /* Parsing context */
4107   int errCode,      /* extended error code */
4108   int onError,      /* Constraint type */
4109   char *p4,         /* Error message */
4110   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4111   u8 p5Errmsg       /* P5_ErrMsg type */
4112 ){
4113   Vdbe *v = sqlite3GetVdbe(pParse);
4114   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4115   if( onError==OE_Abort ){
4116     sqlite3MayAbort(pParse);
4117   }
4118   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4119   sqlite3VdbeChangeP5(v, p5Errmsg);
4120 }
4121 
4122 /*
4123 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4124 */
4125 void sqlite3UniqueConstraint(
4126   Parse *pParse,    /* Parsing context */
4127   int onError,      /* Constraint type */
4128   Index *pIdx       /* The index that triggers the constraint */
4129 ){
4130   char *zErr;
4131   int j;
4132   StrAccum errMsg;
4133   Table *pTab = pIdx->pTable;
4134 
4135   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4136   if( pIdx->aColExpr ){
4137     sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
4138   }else{
4139     for(j=0; j<pIdx->nKeyCol; j++){
4140       char *zCol;
4141       assert( pIdx->aiColumn[j]>=0 );
4142       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4143       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4144       sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
4145     }
4146   }
4147   zErr = sqlite3StrAccumFinish(&errMsg);
4148   sqlite3HaltConstraint(pParse,
4149     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4150                             : SQLITE_CONSTRAINT_UNIQUE,
4151     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4152 }
4153 
4154 
4155 /*
4156 ** Code an OP_Halt due to non-unique rowid.
4157 */
4158 void sqlite3RowidConstraint(
4159   Parse *pParse,    /* Parsing context */
4160   int onError,      /* Conflict resolution algorithm */
4161   Table *pTab       /* The table with the non-unique rowid */
4162 ){
4163   char *zMsg;
4164   int rc;
4165   if( pTab->iPKey>=0 ){
4166     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4167                           pTab->aCol[pTab->iPKey].zName);
4168     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4169   }else{
4170     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4171     rc = SQLITE_CONSTRAINT_ROWID;
4172   }
4173   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4174                         P5_ConstraintUnique);
4175 }
4176 
4177 /*
4178 ** Check to see if pIndex uses the collating sequence pColl.  Return
4179 ** true if it does and false if it does not.
4180 */
4181 #ifndef SQLITE_OMIT_REINDEX
4182 static int collationMatch(const char *zColl, Index *pIndex){
4183   int i;
4184   assert( zColl!=0 );
4185   for(i=0; i<pIndex->nColumn; i++){
4186     const char *z = pIndex->azColl[i];
4187     assert( z!=0 || pIndex->aiColumn[i]<0 );
4188     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4189       return 1;
4190     }
4191   }
4192   return 0;
4193 }
4194 #endif
4195 
4196 /*
4197 ** Recompute all indices of pTab that use the collating sequence pColl.
4198 ** If pColl==0 then recompute all indices of pTab.
4199 */
4200 #ifndef SQLITE_OMIT_REINDEX
4201 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4202   Index *pIndex;              /* An index associated with pTab */
4203 
4204   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4205     if( zColl==0 || collationMatch(zColl, pIndex) ){
4206       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4207       sqlite3BeginWriteOperation(pParse, 0, iDb);
4208       sqlite3RefillIndex(pParse, pIndex, -1);
4209     }
4210   }
4211 }
4212 #endif
4213 
4214 /*
4215 ** Recompute all indices of all tables in all databases where the
4216 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4217 ** all indices everywhere.
4218 */
4219 #ifndef SQLITE_OMIT_REINDEX
4220 static void reindexDatabases(Parse *pParse, char const *zColl){
4221   Db *pDb;                    /* A single database */
4222   int iDb;                    /* The database index number */
4223   sqlite3 *db = pParse->db;   /* The database connection */
4224   HashElem *k;                /* For looping over tables in pDb */
4225   Table *pTab;                /* A table in the database */
4226 
4227   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4228   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4229     assert( pDb!=0 );
4230     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4231       pTab = (Table*)sqliteHashData(k);
4232       reindexTable(pParse, pTab, zColl);
4233     }
4234   }
4235 }
4236 #endif
4237 
4238 /*
4239 ** Generate code for the REINDEX command.
4240 **
4241 **        REINDEX                            -- 1
4242 **        REINDEX  <collation>               -- 2
4243 **        REINDEX  ?<database>.?<tablename>  -- 3
4244 **        REINDEX  ?<database>.?<indexname>  -- 4
4245 **
4246 ** Form 1 causes all indices in all attached databases to be rebuilt.
4247 ** Form 2 rebuilds all indices in all databases that use the named
4248 ** collating function.  Forms 3 and 4 rebuild the named index or all
4249 ** indices associated with the named table.
4250 */
4251 #ifndef SQLITE_OMIT_REINDEX
4252 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4253   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4254   char *z;                    /* Name of a table or index */
4255   const char *zDb;            /* Name of the database */
4256   Table *pTab;                /* A table in the database */
4257   Index *pIndex;              /* An index associated with pTab */
4258   int iDb;                    /* The database index number */
4259   sqlite3 *db = pParse->db;   /* The database connection */
4260   Token *pObjName;            /* Name of the table or index to be reindexed */
4261 
4262   /* Read the database schema. If an error occurs, leave an error message
4263   ** and code in pParse and return NULL. */
4264   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4265     return;
4266   }
4267 
4268   if( pName1==0 ){
4269     reindexDatabases(pParse, 0);
4270     return;
4271   }else if( NEVER(pName2==0) || pName2->z==0 ){
4272     char *zColl;
4273     assert( pName1->z );
4274     zColl = sqlite3NameFromToken(pParse->db, pName1);
4275     if( !zColl ) return;
4276     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4277     if( pColl ){
4278       reindexDatabases(pParse, zColl);
4279       sqlite3DbFree(db, zColl);
4280       return;
4281     }
4282     sqlite3DbFree(db, zColl);
4283   }
4284   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4285   if( iDb<0 ) return;
4286   z = sqlite3NameFromToken(db, pObjName);
4287   if( z==0 ) return;
4288   zDb = db->aDb[iDb].zName;
4289   pTab = sqlite3FindTable(db, z, zDb);
4290   if( pTab ){
4291     reindexTable(pParse, pTab, 0);
4292     sqlite3DbFree(db, z);
4293     return;
4294   }
4295   pIndex = sqlite3FindIndex(db, z, zDb);
4296   sqlite3DbFree(db, z);
4297   if( pIndex ){
4298     sqlite3BeginWriteOperation(pParse, 0, iDb);
4299     sqlite3RefillIndex(pParse, pIndex, -1);
4300     return;
4301   }
4302   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4303 }
4304 #endif
4305 
4306 /*
4307 ** Return a KeyInfo structure that is appropriate for the given Index.
4308 **
4309 ** The KeyInfo structure for an index is cached in the Index object.
4310 ** So there might be multiple references to the returned pointer.  The
4311 ** caller should not try to modify the KeyInfo object.
4312 **
4313 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4314 ** when it has finished using it.
4315 */
4316 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4317   int i;
4318   int nCol = pIdx->nColumn;
4319   int nKey = pIdx->nKeyCol;
4320   KeyInfo *pKey;
4321   if( pParse->nErr ) return 0;
4322   if( pIdx->uniqNotNull ){
4323     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4324   }else{
4325     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4326   }
4327   if( pKey ){
4328     assert( sqlite3KeyInfoIsWriteable(pKey) );
4329     for(i=0; i<nCol; i++){
4330       const char *zColl = pIdx->azColl[i];
4331       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4332                         sqlite3LocateCollSeq(pParse, zColl);
4333       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4334     }
4335     if( pParse->nErr ){
4336       sqlite3KeyInfoUnref(pKey);
4337       pKey = 0;
4338     }
4339   }
4340   return pKey;
4341 }
4342 
4343 #ifndef SQLITE_OMIT_CTE
4344 /*
4345 ** This routine is invoked once per CTE by the parser while parsing a
4346 ** WITH clause.
4347 */
4348 With *sqlite3WithAdd(
4349   Parse *pParse,          /* Parsing context */
4350   With *pWith,            /* Existing WITH clause, or NULL */
4351   Token *pName,           /* Name of the common-table */
4352   ExprList *pArglist,     /* Optional column name list for the table */
4353   Select *pQuery          /* Query used to initialize the table */
4354 ){
4355   sqlite3 *db = pParse->db;
4356   With *pNew;
4357   char *zName;
4358 
4359   /* Check that the CTE name is unique within this WITH clause. If
4360   ** not, store an error in the Parse structure. */
4361   zName = sqlite3NameFromToken(pParse->db, pName);
4362   if( zName && pWith ){
4363     int i;
4364     for(i=0; i<pWith->nCte; i++){
4365       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4366         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4367       }
4368     }
4369   }
4370 
4371   if( pWith ){
4372     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4373     pNew = sqlite3DbRealloc(db, pWith, nByte);
4374   }else{
4375     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4376   }
4377   assert( zName!=0 || pNew==0 );
4378   assert( db->mallocFailed==0 || pNew==0 );
4379 
4380   if( pNew==0 ){
4381     sqlite3ExprListDelete(db, pArglist);
4382     sqlite3SelectDelete(db, pQuery);
4383     sqlite3DbFree(db, zName);
4384     pNew = pWith;
4385   }else{
4386     pNew->a[pNew->nCte].pSelect = pQuery;
4387     pNew->a[pNew->nCte].pCols = pArglist;
4388     pNew->a[pNew->nCte].zName = zName;
4389     pNew->a[pNew->nCte].zCteErr = 0;
4390     pNew->nCte++;
4391   }
4392 
4393   return pNew;
4394 }
4395 
4396 /*
4397 ** Free the contents of the With object passed as the second argument.
4398 */
4399 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4400   if( pWith ){
4401     int i;
4402     for(i=0; i<pWith->nCte; i++){
4403       struct Cte *pCte = &pWith->a[i];
4404       sqlite3ExprListDelete(db, pCte->pCols);
4405       sqlite3SelectDelete(db, pCte->pSelect);
4406       sqlite3DbFree(db, pCte->zName);
4407     }
4408     sqlite3DbFree(db, pWith);
4409   }
4410 }
4411 #endif /* !defined(SQLITE_OMIT_CTE) */
4412