1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 if( pParse->nested ) return; 147 if( db->mallocFailed || pParse->nErr ){ 148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 149 return; 150 } 151 152 /* Begin by generating some termination code at the end of the 153 ** vdbe program 154 */ 155 v = pParse->pVdbe; 156 if( v==0 ){ 157 if( db->init.busy ){ 158 pParse->rc = SQLITE_DONE; 159 return; 160 } 161 v = sqlite3GetVdbe(pParse); 162 if( v==0 ) pParse->rc = SQLITE_ERROR; 163 } 164 assert( !pParse->isMultiWrite 165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 166 if( v ){ 167 if( pParse->bReturning ){ 168 Returning *pReturning = pParse->u1.pReturning; 169 int addrRewind; 170 int i; 171 int reg; 172 173 addrRewind = 174 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 175 VdbeCoverage(v); 176 reg = pReturning->iRetReg; 177 for(i=0; i<pReturning->nRetCol; i++){ 178 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 179 } 180 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 181 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 182 VdbeCoverage(v); 183 sqlite3VdbeJumpHere(v, addrRewind); 184 } 185 sqlite3VdbeAddOp0(v, OP_Halt); 186 187 #if SQLITE_USER_AUTHENTICATION 188 if( pParse->nTableLock>0 && db->init.busy==0 ){ 189 sqlite3UserAuthInit(db); 190 if( db->auth.authLevel<UAUTH_User ){ 191 sqlite3ErrorMsg(pParse, "user not authenticated"); 192 pParse->rc = SQLITE_AUTH_USER; 193 return; 194 } 195 } 196 #endif 197 198 /* The cookie mask contains one bit for each database file open. 199 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 200 ** set for each database that is used. Generate code to start a 201 ** transaction on each used database and to verify the schema cookie 202 ** on each used database. 203 */ 204 if( db->mallocFailed==0 205 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 206 ){ 207 int iDb, i; 208 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 209 sqlite3VdbeJumpHere(v, 0); 210 for(iDb=0; iDb<db->nDb; iDb++){ 211 Schema *pSchema; 212 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 213 sqlite3VdbeUsesBtree(v, iDb); 214 pSchema = db->aDb[iDb].pSchema; 215 sqlite3VdbeAddOp4Int(v, 216 OP_Transaction, /* Opcode */ 217 iDb, /* P1 */ 218 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 219 pSchema->schema_cookie, /* P3 */ 220 pSchema->iGeneration /* P4 */ 221 ); 222 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 223 VdbeComment((v, 224 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 225 } 226 #ifndef SQLITE_OMIT_VIRTUALTABLE 227 for(i=0; i<pParse->nVtabLock; i++){ 228 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 229 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 230 } 231 pParse->nVtabLock = 0; 232 #endif 233 234 /* Once all the cookies have been verified and transactions opened, 235 ** obtain the required table-locks. This is a no-op unless the 236 ** shared-cache feature is enabled. 237 */ 238 codeTableLocks(pParse); 239 240 /* Initialize any AUTOINCREMENT data structures required. 241 */ 242 sqlite3AutoincrementBegin(pParse); 243 244 /* Code constant expressions that where factored out of inner loops. 245 ** 246 ** The pConstExpr list might also contain expressions that we simply 247 ** want to keep around until the Parse object is deleted. Such 248 ** expressions have iConstExprReg==0. Do not generate code for 249 ** those expressions, of course. 250 */ 251 if( pParse->pConstExpr ){ 252 ExprList *pEL = pParse->pConstExpr; 253 pParse->okConstFactor = 0; 254 for(i=0; i<pEL->nExpr; i++){ 255 int iReg = pEL->a[i].u.iConstExprReg; 256 if( iReg>0 ){ 257 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 258 } 259 } 260 } 261 262 if( pParse->bReturning ){ 263 Returning *pRet = pParse->u1.pReturning; 264 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 265 } 266 267 /* Finally, jump back to the beginning of the executable code. */ 268 sqlite3VdbeGoto(v, 1); 269 } 270 } 271 272 /* Get the VDBE program ready for execution 273 */ 274 if( v && pParse->nErr==0 && !db->mallocFailed ){ 275 /* A minimum of one cursor is required if autoincrement is used 276 * See ticket [a696379c1f08866] */ 277 assert( pParse->pAinc==0 || pParse->nTab>0 ); 278 sqlite3VdbeMakeReady(v, pParse); 279 pParse->rc = SQLITE_DONE; 280 }else{ 281 pParse->rc = SQLITE_ERROR; 282 } 283 } 284 285 /* 286 ** Run the parser and code generator recursively in order to generate 287 ** code for the SQL statement given onto the end of the pParse context 288 ** currently under construction. When the parser is run recursively 289 ** this way, the final OP_Halt is not appended and other initialization 290 ** and finalization steps are omitted because those are handling by the 291 ** outermost parser. 292 ** 293 ** Not everything is nestable. This facility is designed to permit 294 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 295 ** care if you decide to try to use this routine for some other purposes. 296 */ 297 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 298 va_list ap; 299 char *zSql; 300 char *zErrMsg = 0; 301 sqlite3 *db = pParse->db; 302 char saveBuf[PARSE_TAIL_SZ]; 303 304 if( pParse->nErr ) return; 305 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 306 va_start(ap, zFormat); 307 zSql = sqlite3VMPrintf(db, zFormat, ap); 308 va_end(ap); 309 if( zSql==0 ){ 310 /* This can result either from an OOM or because the formatted string 311 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 312 ** an error */ 313 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 314 pParse->nErr++; 315 return; 316 } 317 pParse->nested++; 318 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 319 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 320 sqlite3RunParser(pParse, zSql, &zErrMsg); 321 sqlite3DbFree(db, zErrMsg); 322 sqlite3DbFree(db, zSql); 323 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 324 pParse->nested--; 325 } 326 327 #if SQLITE_USER_AUTHENTICATION 328 /* 329 ** Return TRUE if zTable is the name of the system table that stores the 330 ** list of users and their access credentials. 331 */ 332 int sqlite3UserAuthTable(const char *zTable){ 333 return sqlite3_stricmp(zTable, "sqlite_user")==0; 334 } 335 #endif 336 337 /* 338 ** Locate the in-memory structure that describes a particular database 339 ** table given the name of that table and (optionally) the name of the 340 ** database containing the table. Return NULL if not found. 341 ** 342 ** If zDatabase is 0, all databases are searched for the table and the 343 ** first matching table is returned. (No checking for duplicate table 344 ** names is done.) The search order is TEMP first, then MAIN, then any 345 ** auxiliary databases added using the ATTACH command. 346 ** 347 ** See also sqlite3LocateTable(). 348 */ 349 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 350 Table *p = 0; 351 int i; 352 353 /* All mutexes are required for schema access. Make sure we hold them. */ 354 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 355 #if SQLITE_USER_AUTHENTICATION 356 /* Only the admin user is allowed to know that the sqlite_user table 357 ** exists */ 358 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 359 return 0; 360 } 361 #endif 362 if( zDatabase ){ 363 for(i=0; i<db->nDb; i++){ 364 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 365 } 366 if( i>=db->nDb ){ 367 /* No match against the official names. But always match "main" 368 ** to schema 0 as a legacy fallback. */ 369 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 370 i = 0; 371 }else{ 372 return 0; 373 } 374 } 375 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 376 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 377 if( i==1 ){ 378 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 379 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 380 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 381 ){ 382 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 383 DFLT_TEMP_SCHEMA_TABLE); 384 } 385 }else{ 386 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 387 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 388 DFLT_SCHEMA_TABLE); 389 } 390 } 391 } 392 }else{ 393 /* Match against TEMP first */ 394 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 395 if( p ) return p; 396 /* The main database is second */ 397 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 398 if( p ) return p; 399 /* Attached databases are in order of attachment */ 400 for(i=2; i<db->nDb; i++){ 401 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 402 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 403 if( p ) break; 404 } 405 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 406 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 407 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 408 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 409 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 410 DFLT_TEMP_SCHEMA_TABLE); 411 } 412 } 413 } 414 return p; 415 } 416 417 /* 418 ** Locate the in-memory structure that describes a particular database 419 ** table given the name of that table and (optionally) the name of the 420 ** database containing the table. Return NULL if not found. Also leave an 421 ** error message in pParse->zErrMsg. 422 ** 423 ** The difference between this routine and sqlite3FindTable() is that this 424 ** routine leaves an error message in pParse->zErrMsg where 425 ** sqlite3FindTable() does not. 426 */ 427 Table *sqlite3LocateTable( 428 Parse *pParse, /* context in which to report errors */ 429 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 430 const char *zName, /* Name of the table we are looking for */ 431 const char *zDbase /* Name of the database. Might be NULL */ 432 ){ 433 Table *p; 434 sqlite3 *db = pParse->db; 435 436 /* Read the database schema. If an error occurs, leave an error message 437 ** and code in pParse and return NULL. */ 438 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 439 && SQLITE_OK!=sqlite3ReadSchema(pParse) 440 ){ 441 return 0; 442 } 443 444 p = sqlite3FindTable(db, zName, zDbase); 445 if( p==0 ){ 446 #ifndef SQLITE_OMIT_VIRTUALTABLE 447 /* If zName is the not the name of a table in the schema created using 448 ** CREATE, then check to see if it is the name of an virtual table that 449 ** can be an eponymous virtual table. */ 450 if( pParse->disableVtab==0 && db->init.busy==0 ){ 451 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 452 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 453 pMod = sqlite3PragmaVtabRegister(db, zName); 454 } 455 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 456 return pMod->pEpoTab; 457 } 458 } 459 #endif 460 if( flags & LOCATE_NOERR ) return 0; 461 pParse->checkSchema = 1; 462 }else if( IsVirtual(p) && pParse->disableVtab ){ 463 p = 0; 464 } 465 466 if( p==0 ){ 467 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 468 if( zDbase ){ 469 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 470 }else{ 471 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 472 } 473 }else{ 474 assert( HasRowid(p) || p->iPKey<0 ); 475 } 476 477 return p; 478 } 479 480 /* 481 ** Locate the table identified by *p. 482 ** 483 ** This is a wrapper around sqlite3LocateTable(). The difference between 484 ** sqlite3LocateTable() and this function is that this function restricts 485 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 486 ** non-NULL if it is part of a view or trigger program definition. See 487 ** sqlite3FixSrcList() for details. 488 */ 489 Table *sqlite3LocateTableItem( 490 Parse *pParse, 491 u32 flags, 492 SrcItem *p 493 ){ 494 const char *zDb; 495 assert( p->pSchema==0 || p->zDatabase==0 ); 496 if( p->pSchema ){ 497 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 498 zDb = pParse->db->aDb[iDb].zDbSName; 499 }else{ 500 zDb = p->zDatabase; 501 } 502 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 503 } 504 505 /* 506 ** Locate the in-memory structure that describes 507 ** a particular index given the name of that index 508 ** and the name of the database that contains the index. 509 ** Return NULL if not found. 510 ** 511 ** If zDatabase is 0, all databases are searched for the 512 ** table and the first matching index is returned. (No checking 513 ** for duplicate index names is done.) The search order is 514 ** TEMP first, then MAIN, then any auxiliary databases added 515 ** using the ATTACH command. 516 */ 517 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 518 Index *p = 0; 519 int i; 520 /* All mutexes are required for schema access. Make sure we hold them. */ 521 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 522 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 523 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 524 Schema *pSchema = db->aDb[j].pSchema; 525 assert( pSchema ); 526 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 527 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 528 p = sqlite3HashFind(&pSchema->idxHash, zName); 529 if( p ) break; 530 } 531 return p; 532 } 533 534 /* 535 ** Reclaim the memory used by an index 536 */ 537 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 538 #ifndef SQLITE_OMIT_ANALYZE 539 sqlite3DeleteIndexSamples(db, p); 540 #endif 541 sqlite3ExprDelete(db, p->pPartIdxWhere); 542 sqlite3ExprListDelete(db, p->aColExpr); 543 sqlite3DbFree(db, p->zColAff); 544 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 545 #ifdef SQLITE_ENABLE_STAT4 546 sqlite3_free(p->aiRowEst); 547 #endif 548 sqlite3DbFree(db, p); 549 } 550 551 /* 552 ** For the index called zIdxName which is found in the database iDb, 553 ** unlike that index from its Table then remove the index from 554 ** the index hash table and free all memory structures associated 555 ** with the index. 556 */ 557 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 558 Index *pIndex; 559 Hash *pHash; 560 561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 562 pHash = &db->aDb[iDb].pSchema->idxHash; 563 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 564 if( ALWAYS(pIndex) ){ 565 if( pIndex->pTable->pIndex==pIndex ){ 566 pIndex->pTable->pIndex = pIndex->pNext; 567 }else{ 568 Index *p; 569 /* Justification of ALWAYS(); The index must be on the list of 570 ** indices. */ 571 p = pIndex->pTable->pIndex; 572 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 573 if( ALWAYS(p && p->pNext==pIndex) ){ 574 p->pNext = pIndex->pNext; 575 } 576 } 577 sqlite3FreeIndex(db, pIndex); 578 } 579 db->mDbFlags |= DBFLAG_SchemaChange; 580 } 581 582 /* 583 ** Look through the list of open database files in db->aDb[] and if 584 ** any have been closed, remove them from the list. Reallocate the 585 ** db->aDb[] structure to a smaller size, if possible. 586 ** 587 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 588 ** are never candidates for being collapsed. 589 */ 590 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 591 int i, j; 592 for(i=j=2; i<db->nDb; i++){ 593 struct Db *pDb = &db->aDb[i]; 594 if( pDb->pBt==0 ){ 595 sqlite3DbFree(db, pDb->zDbSName); 596 pDb->zDbSName = 0; 597 continue; 598 } 599 if( j<i ){ 600 db->aDb[j] = db->aDb[i]; 601 } 602 j++; 603 } 604 db->nDb = j; 605 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 606 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 607 sqlite3DbFree(db, db->aDb); 608 db->aDb = db->aDbStatic; 609 } 610 } 611 612 /* 613 ** Reset the schema for the database at index iDb. Also reset the 614 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 615 ** Deferred resets may be run by calling with iDb<0. 616 */ 617 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 618 int i; 619 assert( iDb<db->nDb ); 620 621 if( iDb>=0 ){ 622 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 623 DbSetProperty(db, iDb, DB_ResetWanted); 624 DbSetProperty(db, 1, DB_ResetWanted); 625 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 626 } 627 628 if( db->nSchemaLock==0 ){ 629 for(i=0; i<db->nDb; i++){ 630 if( DbHasProperty(db, i, DB_ResetWanted) ){ 631 sqlite3SchemaClear(db->aDb[i].pSchema); 632 } 633 } 634 } 635 } 636 637 /* 638 ** Erase all schema information from all attached databases (including 639 ** "main" and "temp") for a single database connection. 640 */ 641 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 642 int i; 643 sqlite3BtreeEnterAll(db); 644 for(i=0; i<db->nDb; i++){ 645 Db *pDb = &db->aDb[i]; 646 if( pDb->pSchema ){ 647 if( db->nSchemaLock==0 ){ 648 sqlite3SchemaClear(pDb->pSchema); 649 }else{ 650 DbSetProperty(db, i, DB_ResetWanted); 651 } 652 } 653 } 654 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 655 sqlite3VtabUnlockList(db); 656 sqlite3BtreeLeaveAll(db); 657 if( db->nSchemaLock==0 ){ 658 sqlite3CollapseDatabaseArray(db); 659 } 660 } 661 662 /* 663 ** This routine is called when a commit occurs. 664 */ 665 void sqlite3CommitInternalChanges(sqlite3 *db){ 666 db->mDbFlags &= ~DBFLAG_SchemaChange; 667 } 668 669 /* 670 ** Delete memory allocated for the column names of a table or view (the 671 ** Table.aCol[] array). 672 */ 673 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 674 int i; 675 Column *pCol; 676 assert( pTable!=0 ); 677 if( (pCol = pTable->aCol)!=0 ){ 678 for(i=0; i<pTable->nCol; i++, pCol++){ 679 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 680 sqlite3DbFree(db, pCol->zName); 681 sqlite3ExprDelete(db, pCol->pDflt); 682 sqlite3DbFree(db, pCol->zColl); 683 } 684 sqlite3DbFree(db, pTable->aCol); 685 } 686 } 687 688 /* 689 ** Remove the memory data structures associated with the given 690 ** Table. No changes are made to disk by this routine. 691 ** 692 ** This routine just deletes the data structure. It does not unlink 693 ** the table data structure from the hash table. But it does destroy 694 ** memory structures of the indices and foreign keys associated with 695 ** the table. 696 ** 697 ** The db parameter is optional. It is needed if the Table object 698 ** contains lookaside memory. (Table objects in the schema do not use 699 ** lookaside memory, but some ephemeral Table objects do.) Or the 700 ** db parameter can be used with db->pnBytesFreed to measure the memory 701 ** used by the Table object. 702 */ 703 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 704 Index *pIndex, *pNext; 705 706 #ifdef SQLITE_DEBUG 707 /* Record the number of outstanding lookaside allocations in schema Tables 708 ** prior to doing any free() operations. Since schema Tables do not use 709 ** lookaside, this number should not change. 710 ** 711 ** If malloc has already failed, it may be that it failed while allocating 712 ** a Table object that was going to be marked ephemeral. So do not check 713 ** that no lookaside memory is used in this case either. */ 714 int nLookaside = 0; 715 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 716 nLookaside = sqlite3LookasideUsed(db, 0); 717 } 718 #endif 719 720 /* Delete all indices associated with this table. */ 721 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 722 pNext = pIndex->pNext; 723 assert( pIndex->pSchema==pTable->pSchema 724 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 725 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 726 char *zName = pIndex->zName; 727 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 728 &pIndex->pSchema->idxHash, zName, 0 729 ); 730 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 731 assert( pOld==pIndex || pOld==0 ); 732 } 733 sqlite3FreeIndex(db, pIndex); 734 } 735 736 /* Delete any foreign keys attached to this table. */ 737 sqlite3FkDelete(db, pTable); 738 739 /* Delete the Table structure itself. 740 */ 741 sqlite3DeleteColumnNames(db, pTable); 742 sqlite3DbFree(db, pTable->zName); 743 sqlite3DbFree(db, pTable->zColAff); 744 sqlite3SelectDelete(db, pTable->pSelect); 745 sqlite3ExprListDelete(db, pTable->pCheck); 746 #ifndef SQLITE_OMIT_VIRTUALTABLE 747 sqlite3VtabClear(db, pTable); 748 #endif 749 sqlite3DbFree(db, pTable); 750 751 /* Verify that no lookaside memory was used by schema tables */ 752 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 753 } 754 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 755 /* Do not delete the table until the reference count reaches zero. */ 756 if( !pTable ) return; 757 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 758 deleteTable(db, pTable); 759 } 760 761 762 /* 763 ** Unlink the given table from the hash tables and the delete the 764 ** table structure with all its indices and foreign keys. 765 */ 766 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 767 Table *p; 768 Db *pDb; 769 770 assert( db!=0 ); 771 assert( iDb>=0 && iDb<db->nDb ); 772 assert( zTabName ); 773 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 774 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 775 pDb = &db->aDb[iDb]; 776 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 777 sqlite3DeleteTable(db, p); 778 db->mDbFlags |= DBFLAG_SchemaChange; 779 } 780 781 /* 782 ** Given a token, return a string that consists of the text of that 783 ** token. Space to hold the returned string 784 ** is obtained from sqliteMalloc() and must be freed by the calling 785 ** function. 786 ** 787 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 788 ** surround the body of the token are removed. 789 ** 790 ** Tokens are often just pointers into the original SQL text and so 791 ** are not \000 terminated and are not persistent. The returned string 792 ** is \000 terminated and is persistent. 793 */ 794 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 795 char *zName; 796 if( pName ){ 797 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 798 sqlite3Dequote(zName); 799 }else{ 800 zName = 0; 801 } 802 return zName; 803 } 804 805 /* 806 ** Open the sqlite_schema table stored in database number iDb for 807 ** writing. The table is opened using cursor 0. 808 */ 809 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 810 Vdbe *v = sqlite3GetVdbe(p); 811 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 812 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 813 if( p->nTab==0 ){ 814 p->nTab = 1; 815 } 816 } 817 818 /* 819 ** Parameter zName points to a nul-terminated buffer containing the name 820 ** of a database ("main", "temp" or the name of an attached db). This 821 ** function returns the index of the named database in db->aDb[], or 822 ** -1 if the named db cannot be found. 823 */ 824 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 825 int i = -1; /* Database number */ 826 if( zName ){ 827 Db *pDb; 828 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 829 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 830 /* "main" is always an acceptable alias for the primary database 831 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 832 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 833 } 834 } 835 return i; 836 } 837 838 /* 839 ** The token *pName contains the name of a database (either "main" or 840 ** "temp" or the name of an attached db). This routine returns the 841 ** index of the named database in db->aDb[], or -1 if the named db 842 ** does not exist. 843 */ 844 int sqlite3FindDb(sqlite3 *db, Token *pName){ 845 int i; /* Database number */ 846 char *zName; /* Name we are searching for */ 847 zName = sqlite3NameFromToken(db, pName); 848 i = sqlite3FindDbName(db, zName); 849 sqlite3DbFree(db, zName); 850 return i; 851 } 852 853 /* The table or view or trigger name is passed to this routine via tokens 854 ** pName1 and pName2. If the table name was fully qualified, for example: 855 ** 856 ** CREATE TABLE xxx.yyy (...); 857 ** 858 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 859 ** the table name is not fully qualified, i.e.: 860 ** 861 ** CREATE TABLE yyy(...); 862 ** 863 ** Then pName1 is set to "yyy" and pName2 is "". 864 ** 865 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 866 ** pName2) that stores the unqualified table name. The index of the 867 ** database "xxx" is returned. 868 */ 869 int sqlite3TwoPartName( 870 Parse *pParse, /* Parsing and code generating context */ 871 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 872 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 873 Token **pUnqual /* Write the unqualified object name here */ 874 ){ 875 int iDb; /* Database holding the object */ 876 sqlite3 *db = pParse->db; 877 878 assert( pName2!=0 ); 879 if( pName2->n>0 ){ 880 if( db->init.busy ) { 881 sqlite3ErrorMsg(pParse, "corrupt database"); 882 return -1; 883 } 884 *pUnqual = pName2; 885 iDb = sqlite3FindDb(db, pName1); 886 if( iDb<0 ){ 887 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 888 return -1; 889 } 890 }else{ 891 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 892 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 893 iDb = db->init.iDb; 894 *pUnqual = pName1; 895 } 896 return iDb; 897 } 898 899 /* 900 ** True if PRAGMA writable_schema is ON 901 */ 902 int sqlite3WritableSchema(sqlite3 *db){ 903 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 904 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 905 SQLITE_WriteSchema ); 906 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 907 SQLITE_Defensive ); 908 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 909 (SQLITE_WriteSchema|SQLITE_Defensive) ); 910 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 911 } 912 913 /* 914 ** This routine is used to check if the UTF-8 string zName is a legal 915 ** unqualified name for a new schema object (table, index, view or 916 ** trigger). All names are legal except those that begin with the string 917 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 918 ** is reserved for internal use. 919 ** 920 ** When parsing the sqlite_schema table, this routine also checks to 921 ** make sure the "type", "name", and "tbl_name" columns are consistent 922 ** with the SQL. 923 */ 924 int sqlite3CheckObjectName( 925 Parse *pParse, /* Parsing context */ 926 const char *zName, /* Name of the object to check */ 927 const char *zType, /* Type of this object */ 928 const char *zTblName /* Parent table name for triggers and indexes */ 929 ){ 930 sqlite3 *db = pParse->db; 931 if( sqlite3WritableSchema(db) 932 || db->init.imposterTable 933 || !sqlite3Config.bExtraSchemaChecks 934 ){ 935 /* Skip these error checks for writable_schema=ON */ 936 return SQLITE_OK; 937 } 938 if( db->init.busy ){ 939 if( sqlite3_stricmp(zType, db->init.azInit[0]) 940 || sqlite3_stricmp(zName, db->init.azInit[1]) 941 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 942 ){ 943 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 944 return SQLITE_ERROR; 945 } 946 }else{ 947 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 948 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 949 ){ 950 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 951 zName); 952 return SQLITE_ERROR; 953 } 954 955 } 956 return SQLITE_OK; 957 } 958 959 /* 960 ** Return the PRIMARY KEY index of a table 961 */ 962 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 963 Index *p; 964 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 965 return p; 966 } 967 968 /* 969 ** Convert an table column number into a index column number. That is, 970 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 971 ** find the (first) offset of that column in index pIdx. Or return -1 972 ** if column iCol is not used in index pIdx. 973 */ 974 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 975 int i; 976 for(i=0; i<pIdx->nColumn; i++){ 977 if( iCol==pIdx->aiColumn[i] ) return i; 978 } 979 return -1; 980 } 981 982 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 983 /* Convert a storage column number into a table column number. 984 ** 985 ** The storage column number (0,1,2,....) is the index of the value 986 ** as it appears in the record on disk. The true column number 987 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 988 ** 989 ** The storage column number is less than the table column number if 990 ** and only there are VIRTUAL columns to the left. 991 ** 992 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 993 */ 994 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 995 if( pTab->tabFlags & TF_HasVirtual ){ 996 int i; 997 for(i=0; i<=iCol; i++){ 998 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 999 } 1000 } 1001 return iCol; 1002 } 1003 #endif 1004 1005 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1006 /* Convert a table column number into a storage column number. 1007 ** 1008 ** The storage column number (0,1,2,....) is the index of the value 1009 ** as it appears in the record on disk. Or, if the input column is 1010 ** the N-th virtual column (zero-based) then the storage number is 1011 ** the number of non-virtual columns in the table plus N. 1012 ** 1013 ** The true column number is the index (0,1,2,...) of the column in 1014 ** the CREATE TABLE statement. 1015 ** 1016 ** If the input column is a VIRTUAL column, then it should not appear 1017 ** in storage. But the value sometimes is cached in registers that 1018 ** follow the range of registers used to construct storage. This 1019 ** avoids computing the same VIRTUAL column multiple times, and provides 1020 ** values for use by OP_Param opcodes in triggers. Hence, if the 1021 ** input column is a VIRTUAL table, put it after all the other columns. 1022 ** 1023 ** In the following, N means "normal column", S means STORED, and 1024 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1025 ** 1026 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1027 ** -- 0 1 2 3 4 5 6 7 8 1028 ** 1029 ** Then the mapping from this function is as follows: 1030 ** 1031 ** INPUTS: 0 1 2 3 4 5 6 7 8 1032 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1033 ** 1034 ** So, in other words, this routine shifts all the virtual columns to 1035 ** the end. 1036 ** 1037 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1038 ** this routine is a no-op macro. If the pTab does not have any virtual 1039 ** columns, then this routine is no-op that always return iCol. If iCol 1040 ** is negative (indicating the ROWID column) then this routine return iCol. 1041 */ 1042 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1043 int i; 1044 i16 n; 1045 assert( iCol<pTab->nCol ); 1046 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1047 for(i=0, n=0; i<iCol; i++){ 1048 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1049 } 1050 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1051 /* iCol is a virtual column itself */ 1052 return pTab->nNVCol + i - n; 1053 }else{ 1054 /* iCol is a normal or stored column */ 1055 return n; 1056 } 1057 } 1058 #endif 1059 1060 /* 1061 ** Insert a single OP_JournalMode query opcode in order to force the 1062 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1063 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1064 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1065 ** will return false for sqlite3_stmt_readonly() even if that statement 1066 ** is a read-only no-op. 1067 */ 1068 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1069 int iReg = ++pParse->nMem; 1070 Vdbe *v = sqlite3GetVdbe(pParse); 1071 if( v ){ 1072 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1073 sqlite3VdbeUsesBtree(v, 0); 1074 } 1075 } 1076 1077 /* 1078 ** Begin constructing a new table representation in memory. This is 1079 ** the first of several action routines that get called in response 1080 ** to a CREATE TABLE statement. In particular, this routine is called 1081 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1082 ** flag is true if the table should be stored in the auxiliary database 1083 ** file instead of in the main database file. This is normally the case 1084 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1085 ** CREATE and TABLE. 1086 ** 1087 ** The new table record is initialized and put in pParse->pNewTable. 1088 ** As more of the CREATE TABLE statement is parsed, additional action 1089 ** routines will be called to add more information to this record. 1090 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1091 ** is called to complete the construction of the new table record. 1092 */ 1093 void sqlite3StartTable( 1094 Parse *pParse, /* Parser context */ 1095 Token *pName1, /* First part of the name of the table or view */ 1096 Token *pName2, /* Second part of the name of the table or view */ 1097 int isTemp, /* True if this is a TEMP table */ 1098 int isView, /* True if this is a VIEW */ 1099 int isVirtual, /* True if this is a VIRTUAL table */ 1100 int noErr /* Do nothing if table already exists */ 1101 ){ 1102 Table *pTable; 1103 char *zName = 0; /* The name of the new table */ 1104 sqlite3 *db = pParse->db; 1105 Vdbe *v; 1106 int iDb; /* Database number to create the table in */ 1107 Token *pName; /* Unqualified name of the table to create */ 1108 1109 if( db->init.busy && db->init.newTnum==1 ){ 1110 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1111 iDb = db->init.iDb; 1112 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1113 pName = pName1; 1114 }else{ 1115 /* The common case */ 1116 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1117 if( iDb<0 ) return; 1118 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1119 /* If creating a temp table, the name may not be qualified. Unless 1120 ** the database name is "temp" anyway. */ 1121 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1122 return; 1123 } 1124 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1125 zName = sqlite3NameFromToken(db, pName); 1126 if( IN_RENAME_OBJECT ){ 1127 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1128 } 1129 } 1130 pParse->sNameToken = *pName; 1131 if( zName==0 ) return; 1132 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1133 goto begin_table_error; 1134 } 1135 if( db->init.iDb==1 ) isTemp = 1; 1136 #ifndef SQLITE_OMIT_AUTHORIZATION 1137 assert( isTemp==0 || isTemp==1 ); 1138 assert( isView==0 || isView==1 ); 1139 { 1140 static const u8 aCode[] = { 1141 SQLITE_CREATE_TABLE, 1142 SQLITE_CREATE_TEMP_TABLE, 1143 SQLITE_CREATE_VIEW, 1144 SQLITE_CREATE_TEMP_VIEW 1145 }; 1146 char *zDb = db->aDb[iDb].zDbSName; 1147 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1148 goto begin_table_error; 1149 } 1150 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1151 zName, 0, zDb) ){ 1152 goto begin_table_error; 1153 } 1154 } 1155 #endif 1156 1157 /* Make sure the new table name does not collide with an existing 1158 ** index or table name in the same database. Issue an error message if 1159 ** it does. The exception is if the statement being parsed was passed 1160 ** to an sqlite3_declare_vtab() call. In that case only the column names 1161 ** and types will be used, so there is no need to test for namespace 1162 ** collisions. 1163 */ 1164 if( !IN_SPECIAL_PARSE ){ 1165 char *zDb = db->aDb[iDb].zDbSName; 1166 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1167 goto begin_table_error; 1168 } 1169 pTable = sqlite3FindTable(db, zName, zDb); 1170 if( pTable ){ 1171 if( !noErr ){ 1172 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1173 }else{ 1174 assert( !db->init.busy || CORRUPT_DB ); 1175 sqlite3CodeVerifySchema(pParse, iDb); 1176 sqlite3ForceNotReadOnly(pParse); 1177 } 1178 goto begin_table_error; 1179 } 1180 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1181 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1182 goto begin_table_error; 1183 } 1184 } 1185 1186 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1187 if( pTable==0 ){ 1188 assert( db->mallocFailed ); 1189 pParse->rc = SQLITE_NOMEM_BKPT; 1190 pParse->nErr++; 1191 goto begin_table_error; 1192 } 1193 pTable->zName = zName; 1194 pTable->iPKey = -1; 1195 pTable->pSchema = db->aDb[iDb].pSchema; 1196 pTable->nTabRef = 1; 1197 #ifdef SQLITE_DEFAULT_ROWEST 1198 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1199 #else 1200 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1201 #endif 1202 assert( pParse->pNewTable==0 ); 1203 pParse->pNewTable = pTable; 1204 1205 /* Begin generating the code that will insert the table record into 1206 ** the schema table. Note in particular that we must go ahead 1207 ** and allocate the record number for the table entry now. Before any 1208 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1209 ** indices to be created and the table record must come before the 1210 ** indices. Hence, the record number for the table must be allocated 1211 ** now. 1212 */ 1213 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1214 int addr1; 1215 int fileFormat; 1216 int reg1, reg2, reg3; 1217 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1218 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1219 sqlite3BeginWriteOperation(pParse, 1, iDb); 1220 1221 #ifndef SQLITE_OMIT_VIRTUALTABLE 1222 if( isVirtual ){ 1223 sqlite3VdbeAddOp0(v, OP_VBegin); 1224 } 1225 #endif 1226 1227 /* If the file format and encoding in the database have not been set, 1228 ** set them now. 1229 */ 1230 reg1 = pParse->regRowid = ++pParse->nMem; 1231 reg2 = pParse->regRoot = ++pParse->nMem; 1232 reg3 = ++pParse->nMem; 1233 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1234 sqlite3VdbeUsesBtree(v, iDb); 1235 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1236 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1237 1 : SQLITE_MAX_FILE_FORMAT; 1238 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1239 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1240 sqlite3VdbeJumpHere(v, addr1); 1241 1242 /* This just creates a place-holder record in the sqlite_schema table. 1243 ** The record created does not contain anything yet. It will be replaced 1244 ** by the real entry in code generated at sqlite3EndTable(). 1245 ** 1246 ** The rowid for the new entry is left in register pParse->regRowid. 1247 ** The root page number of the new table is left in reg pParse->regRoot. 1248 ** The rowid and root page number values are needed by the code that 1249 ** sqlite3EndTable will generate. 1250 */ 1251 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1252 if( isView || isVirtual ){ 1253 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1254 }else 1255 #endif 1256 { 1257 assert( !pParse->bReturning ); 1258 pParse->u1.addrCrTab = 1259 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1260 } 1261 sqlite3OpenSchemaTable(pParse, iDb); 1262 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1263 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1264 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1265 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1266 sqlite3VdbeAddOp0(v, OP_Close); 1267 } 1268 1269 /* Normal (non-error) return. */ 1270 return; 1271 1272 /* If an error occurs, we jump here */ 1273 begin_table_error: 1274 sqlite3DbFree(db, zName); 1275 return; 1276 } 1277 1278 /* Set properties of a table column based on the (magical) 1279 ** name of the column. 1280 */ 1281 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1282 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1283 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1284 pCol->colFlags |= COLFLAG_HIDDEN; 1285 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1286 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1287 pTab->tabFlags |= TF_OOOHidden; 1288 } 1289 } 1290 #endif 1291 1292 /* 1293 ** Name of the special TEMP trigger used to implement RETURNING. The 1294 ** name begins with "sqlite_" so that it is guaranteed not to collide 1295 ** with any application-generated triggers. 1296 */ 1297 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1298 1299 /* 1300 ** Clean up the data structures associated with the RETURNING clause. 1301 */ 1302 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1303 Hash *pHash; 1304 pHash = &(db->aDb[1].pSchema->trigHash); 1305 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1306 sqlite3ExprListDelete(db, pRet->pReturnEL); 1307 sqlite3DbFree(db, pRet); 1308 } 1309 1310 /* 1311 ** Add the RETURNING clause to the parse currently underway. 1312 ** 1313 ** This routine creates a special TEMP trigger that will fire for each row 1314 ** of the DML statement. That TEMP trigger contains a single SELECT 1315 ** statement with a result set that is the argument of the RETURNING clause. 1316 ** The trigger has the Trigger.bReturning flag and an opcode of 1317 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1318 ** knows to handle it specially. The TEMP trigger is automatically 1319 ** removed at the end of the parse. 1320 ** 1321 ** When this routine is called, we do not yet know if the RETURNING clause 1322 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1323 ** RETURNING trigger instead. It will then be converted into the appropriate 1324 ** type on the first call to sqlite3TriggersExist(). 1325 */ 1326 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1327 Returning *pRet; 1328 Hash *pHash; 1329 sqlite3 *db = pParse->db; 1330 if( pParse->pNewTrigger ){ 1331 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1332 }else{ 1333 assert( pParse->bReturning==0 ); 1334 } 1335 pParse->bReturning = 1; 1336 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1337 if( pRet==0 ){ 1338 sqlite3ExprListDelete(db, pList); 1339 return; 1340 } 1341 pParse->u1.pReturning = pRet; 1342 pRet->pParse = pParse; 1343 pRet->pReturnEL = pList; 1344 sqlite3ParserAddCleanup(pParse, 1345 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1346 testcase( pParse->earlyCleanup ); 1347 if( db->mallocFailed ) return; 1348 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1349 pRet->retTrig.op = TK_RETURNING; 1350 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1351 pRet->retTrig.bReturning = 1; 1352 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1353 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1354 pRet->retTrig.step_list = &pRet->retTStep; 1355 pRet->retTStep.op = TK_RETURNING; 1356 pRet->retTStep.pTrig = &pRet->retTrig; 1357 pRet->retTStep.pExprList = pList; 1358 pHash = &(db->aDb[1].pSchema->trigHash); 1359 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1360 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1361 ==&pRet->retTrig ){ 1362 sqlite3OomFault(db); 1363 } 1364 } 1365 1366 /* 1367 ** Add a new column to the table currently being constructed. 1368 ** 1369 ** The parser calls this routine once for each column declaration 1370 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1371 ** first to get things going. Then this routine is called for each 1372 ** column. 1373 */ 1374 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1375 Table *p; 1376 int i; 1377 char *z; 1378 char *zType; 1379 Column *pCol; 1380 sqlite3 *db = pParse->db; 1381 u8 hName; 1382 1383 if( (p = pParse->pNewTable)==0 ) return; 1384 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1385 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1386 return; 1387 } 1388 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1389 if( z==0 ) return; 1390 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1391 memcpy(z, pName->z, pName->n); 1392 z[pName->n] = 0; 1393 sqlite3Dequote(z); 1394 hName = sqlite3StrIHash(z); 1395 for(i=0; i<p->nCol; i++){ 1396 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1397 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1398 sqlite3DbFree(db, z); 1399 return; 1400 } 1401 } 1402 if( (p->nCol & 0x7)==0 ){ 1403 Column *aNew; 1404 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1405 if( aNew==0 ){ 1406 sqlite3DbFree(db, z); 1407 return; 1408 } 1409 p->aCol = aNew; 1410 } 1411 pCol = &p->aCol[p->nCol]; 1412 memset(pCol, 0, sizeof(p->aCol[0])); 1413 pCol->zName = z; 1414 pCol->hName = hName; 1415 sqlite3ColumnPropertiesFromName(p, pCol); 1416 1417 if( pType->n==0 ){ 1418 /* If there is no type specified, columns have the default affinity 1419 ** 'BLOB' with a default size of 4 bytes. */ 1420 pCol->affinity = SQLITE_AFF_BLOB; 1421 pCol->szEst = 1; 1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1423 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1424 pCol->colFlags |= COLFLAG_SORTERREF; 1425 } 1426 #endif 1427 }else{ 1428 zType = z + sqlite3Strlen30(z) + 1; 1429 memcpy(zType, pType->z, pType->n); 1430 zType[pType->n] = 0; 1431 sqlite3Dequote(zType); 1432 pCol->affinity = sqlite3AffinityType(zType, pCol); 1433 pCol->colFlags |= COLFLAG_HASTYPE; 1434 } 1435 p->nCol++; 1436 p->nNVCol++; 1437 pParse->constraintName.n = 0; 1438 } 1439 1440 /* 1441 ** This routine is called by the parser while in the middle of 1442 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1443 ** been seen on a column. This routine sets the notNull flag on 1444 ** the column currently under construction. 1445 */ 1446 void sqlite3AddNotNull(Parse *pParse, int onError){ 1447 Table *p; 1448 Column *pCol; 1449 p = pParse->pNewTable; 1450 if( p==0 || NEVER(p->nCol<1) ) return; 1451 pCol = &p->aCol[p->nCol-1]; 1452 pCol->notNull = (u8)onError; 1453 p->tabFlags |= TF_HasNotNull; 1454 1455 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1456 ** on this column. */ 1457 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1458 Index *pIdx; 1459 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1460 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1461 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1462 pIdx->uniqNotNull = 1; 1463 } 1464 } 1465 } 1466 } 1467 1468 /* 1469 ** Scan the column type name zType (length nType) and return the 1470 ** associated affinity type. 1471 ** 1472 ** This routine does a case-independent search of zType for the 1473 ** substrings in the following table. If one of the substrings is 1474 ** found, the corresponding affinity is returned. If zType contains 1475 ** more than one of the substrings, entries toward the top of 1476 ** the table take priority. For example, if zType is 'BLOBINT', 1477 ** SQLITE_AFF_INTEGER is returned. 1478 ** 1479 ** Substring | Affinity 1480 ** -------------------------------- 1481 ** 'INT' | SQLITE_AFF_INTEGER 1482 ** 'CHAR' | SQLITE_AFF_TEXT 1483 ** 'CLOB' | SQLITE_AFF_TEXT 1484 ** 'TEXT' | SQLITE_AFF_TEXT 1485 ** 'BLOB' | SQLITE_AFF_BLOB 1486 ** 'REAL' | SQLITE_AFF_REAL 1487 ** 'FLOA' | SQLITE_AFF_REAL 1488 ** 'DOUB' | SQLITE_AFF_REAL 1489 ** 1490 ** If none of the substrings in the above table are found, 1491 ** SQLITE_AFF_NUMERIC is returned. 1492 */ 1493 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1494 u32 h = 0; 1495 char aff = SQLITE_AFF_NUMERIC; 1496 const char *zChar = 0; 1497 1498 assert( zIn!=0 ); 1499 while( zIn[0] ){ 1500 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1501 zIn++; 1502 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1503 aff = SQLITE_AFF_TEXT; 1504 zChar = zIn; 1505 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1506 aff = SQLITE_AFF_TEXT; 1507 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1508 aff = SQLITE_AFF_TEXT; 1509 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1510 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1511 aff = SQLITE_AFF_BLOB; 1512 if( zIn[0]=='(' ) zChar = zIn; 1513 #ifndef SQLITE_OMIT_FLOATING_POINT 1514 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1515 && aff==SQLITE_AFF_NUMERIC ){ 1516 aff = SQLITE_AFF_REAL; 1517 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1518 && aff==SQLITE_AFF_NUMERIC ){ 1519 aff = SQLITE_AFF_REAL; 1520 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1521 && aff==SQLITE_AFF_NUMERIC ){ 1522 aff = SQLITE_AFF_REAL; 1523 #endif 1524 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1525 aff = SQLITE_AFF_INTEGER; 1526 break; 1527 } 1528 } 1529 1530 /* If pCol is not NULL, store an estimate of the field size. The 1531 ** estimate is scaled so that the size of an integer is 1. */ 1532 if( pCol ){ 1533 int v = 0; /* default size is approx 4 bytes */ 1534 if( aff<SQLITE_AFF_NUMERIC ){ 1535 if( zChar ){ 1536 while( zChar[0] ){ 1537 if( sqlite3Isdigit(zChar[0]) ){ 1538 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1539 sqlite3GetInt32(zChar, &v); 1540 break; 1541 } 1542 zChar++; 1543 } 1544 }else{ 1545 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1546 } 1547 } 1548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1549 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1550 pCol->colFlags |= COLFLAG_SORTERREF; 1551 } 1552 #endif 1553 v = v/4 + 1; 1554 if( v>255 ) v = 255; 1555 pCol->szEst = v; 1556 } 1557 return aff; 1558 } 1559 1560 /* 1561 ** The expression is the default value for the most recently added column 1562 ** of the table currently under construction. 1563 ** 1564 ** Default value expressions must be constant. Raise an exception if this 1565 ** is not the case. 1566 ** 1567 ** This routine is called by the parser while in the middle of 1568 ** parsing a CREATE TABLE statement. 1569 */ 1570 void sqlite3AddDefaultValue( 1571 Parse *pParse, /* Parsing context */ 1572 Expr *pExpr, /* The parsed expression of the default value */ 1573 const char *zStart, /* Start of the default value text */ 1574 const char *zEnd /* First character past end of defaut value text */ 1575 ){ 1576 Table *p; 1577 Column *pCol; 1578 sqlite3 *db = pParse->db; 1579 p = pParse->pNewTable; 1580 if( p!=0 ){ 1581 int isInit = db->init.busy && db->init.iDb!=1; 1582 pCol = &(p->aCol[p->nCol-1]); 1583 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1584 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1585 pCol->zName); 1586 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1587 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1588 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1589 testcase( pCol->colFlags & COLFLAG_STORED ); 1590 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1591 #endif 1592 }else{ 1593 /* A copy of pExpr is used instead of the original, as pExpr contains 1594 ** tokens that point to volatile memory. 1595 */ 1596 Expr x; 1597 sqlite3ExprDelete(db, pCol->pDflt); 1598 memset(&x, 0, sizeof(x)); 1599 x.op = TK_SPAN; 1600 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1601 x.pLeft = pExpr; 1602 x.flags = EP_Skip; 1603 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1604 sqlite3DbFree(db, x.u.zToken); 1605 } 1606 } 1607 if( IN_RENAME_OBJECT ){ 1608 sqlite3RenameExprUnmap(pParse, pExpr); 1609 } 1610 sqlite3ExprDelete(db, pExpr); 1611 } 1612 1613 /* 1614 ** Backwards Compatibility Hack: 1615 ** 1616 ** Historical versions of SQLite accepted strings as column names in 1617 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1618 ** 1619 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1620 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1621 ** 1622 ** This is goofy. But to preserve backwards compatibility we continue to 1623 ** accept it. This routine does the necessary conversion. It converts 1624 ** the expression given in its argument from a TK_STRING into a TK_ID 1625 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1626 ** If the expression is anything other than TK_STRING, the expression is 1627 ** unchanged. 1628 */ 1629 static void sqlite3StringToId(Expr *p){ 1630 if( p->op==TK_STRING ){ 1631 p->op = TK_ID; 1632 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1633 p->pLeft->op = TK_ID; 1634 } 1635 } 1636 1637 /* 1638 ** Tag the given column as being part of the PRIMARY KEY 1639 */ 1640 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1641 pCol->colFlags |= COLFLAG_PRIMKEY; 1642 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1643 if( pCol->colFlags & COLFLAG_GENERATED ){ 1644 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1645 testcase( pCol->colFlags & COLFLAG_STORED ); 1646 sqlite3ErrorMsg(pParse, 1647 "generated columns cannot be part of the PRIMARY KEY"); 1648 } 1649 #endif 1650 } 1651 1652 /* 1653 ** Designate the PRIMARY KEY for the table. pList is a list of names 1654 ** of columns that form the primary key. If pList is NULL, then the 1655 ** most recently added column of the table is the primary key. 1656 ** 1657 ** A table can have at most one primary key. If the table already has 1658 ** a primary key (and this is the second primary key) then create an 1659 ** error. 1660 ** 1661 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1662 ** then we will try to use that column as the rowid. Set the Table.iPKey 1663 ** field of the table under construction to be the index of the 1664 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1665 ** no INTEGER PRIMARY KEY. 1666 ** 1667 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1668 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1669 */ 1670 void sqlite3AddPrimaryKey( 1671 Parse *pParse, /* Parsing context */ 1672 ExprList *pList, /* List of field names to be indexed */ 1673 int onError, /* What to do with a uniqueness conflict */ 1674 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1675 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1676 ){ 1677 Table *pTab = pParse->pNewTable; 1678 Column *pCol = 0; 1679 int iCol = -1, i; 1680 int nTerm; 1681 if( pTab==0 ) goto primary_key_exit; 1682 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1683 sqlite3ErrorMsg(pParse, 1684 "table \"%s\" has more than one primary key", pTab->zName); 1685 goto primary_key_exit; 1686 } 1687 pTab->tabFlags |= TF_HasPrimaryKey; 1688 if( pList==0 ){ 1689 iCol = pTab->nCol - 1; 1690 pCol = &pTab->aCol[iCol]; 1691 makeColumnPartOfPrimaryKey(pParse, pCol); 1692 nTerm = 1; 1693 }else{ 1694 nTerm = pList->nExpr; 1695 for(i=0; i<nTerm; i++){ 1696 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1697 assert( pCExpr!=0 ); 1698 sqlite3StringToId(pCExpr); 1699 if( pCExpr->op==TK_ID ){ 1700 const char *zCName = pCExpr->u.zToken; 1701 for(iCol=0; iCol<pTab->nCol; iCol++){ 1702 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1703 pCol = &pTab->aCol[iCol]; 1704 makeColumnPartOfPrimaryKey(pParse, pCol); 1705 break; 1706 } 1707 } 1708 } 1709 } 1710 } 1711 if( nTerm==1 1712 && pCol 1713 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1714 && sortOrder!=SQLITE_SO_DESC 1715 ){ 1716 if( IN_RENAME_OBJECT && pList ){ 1717 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1718 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1719 } 1720 pTab->iPKey = iCol; 1721 pTab->keyConf = (u8)onError; 1722 assert( autoInc==0 || autoInc==1 ); 1723 pTab->tabFlags |= autoInc*TF_Autoincrement; 1724 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1725 (void)sqlite3HasExplicitNulls(pParse, pList); 1726 }else if( autoInc ){ 1727 #ifndef SQLITE_OMIT_AUTOINCREMENT 1728 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1729 "INTEGER PRIMARY KEY"); 1730 #endif 1731 }else{ 1732 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1733 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1734 pList = 0; 1735 } 1736 1737 primary_key_exit: 1738 sqlite3ExprListDelete(pParse->db, pList); 1739 return; 1740 } 1741 1742 /* 1743 ** Add a new CHECK constraint to the table currently under construction. 1744 */ 1745 void sqlite3AddCheckConstraint( 1746 Parse *pParse, /* Parsing context */ 1747 Expr *pCheckExpr, /* The check expression */ 1748 const char *zStart, /* Opening "(" */ 1749 const char *zEnd /* Closing ")" */ 1750 ){ 1751 #ifndef SQLITE_OMIT_CHECK 1752 Table *pTab = pParse->pNewTable; 1753 sqlite3 *db = pParse->db; 1754 if( pTab && !IN_DECLARE_VTAB 1755 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1756 ){ 1757 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1758 if( pParse->constraintName.n ){ 1759 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1760 }else{ 1761 Token t; 1762 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1763 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1764 t.z = zStart; 1765 t.n = (int)(zEnd - t.z); 1766 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1767 } 1768 }else 1769 #endif 1770 { 1771 sqlite3ExprDelete(pParse->db, pCheckExpr); 1772 } 1773 } 1774 1775 /* 1776 ** Set the collation function of the most recently parsed table column 1777 ** to the CollSeq given. 1778 */ 1779 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1780 Table *p; 1781 int i; 1782 char *zColl; /* Dequoted name of collation sequence */ 1783 sqlite3 *db; 1784 1785 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1786 i = p->nCol-1; 1787 db = pParse->db; 1788 zColl = sqlite3NameFromToken(db, pToken); 1789 if( !zColl ) return; 1790 1791 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1792 Index *pIdx; 1793 sqlite3DbFree(db, p->aCol[i].zColl); 1794 p->aCol[i].zColl = zColl; 1795 1796 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1797 ** then an index may have been created on this column before the 1798 ** collation type was added. Correct this if it is the case. 1799 */ 1800 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1801 assert( pIdx->nKeyCol==1 ); 1802 if( pIdx->aiColumn[0]==i ){ 1803 pIdx->azColl[0] = p->aCol[i].zColl; 1804 } 1805 } 1806 }else{ 1807 sqlite3DbFree(db, zColl); 1808 } 1809 } 1810 1811 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1812 ** column. 1813 */ 1814 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1815 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1816 u8 eType = COLFLAG_VIRTUAL; 1817 Table *pTab = pParse->pNewTable; 1818 Column *pCol; 1819 if( pTab==0 ){ 1820 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1821 goto generated_done; 1822 } 1823 pCol = &(pTab->aCol[pTab->nCol-1]); 1824 if( IN_DECLARE_VTAB ){ 1825 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1826 goto generated_done; 1827 } 1828 if( pCol->pDflt ) goto generated_error; 1829 if( pType ){ 1830 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1831 /* no-op */ 1832 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1833 eType = COLFLAG_STORED; 1834 }else{ 1835 goto generated_error; 1836 } 1837 } 1838 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1839 pCol->colFlags |= eType; 1840 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1841 assert( TF_HasStored==COLFLAG_STORED ); 1842 pTab->tabFlags |= eType; 1843 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1844 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1845 } 1846 pCol->pDflt = pExpr; 1847 pExpr = 0; 1848 goto generated_done; 1849 1850 generated_error: 1851 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1852 pCol->zName); 1853 generated_done: 1854 sqlite3ExprDelete(pParse->db, pExpr); 1855 #else 1856 /* Throw and error for the GENERATED ALWAYS AS clause if the 1857 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1858 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1859 sqlite3ExprDelete(pParse->db, pExpr); 1860 #endif 1861 } 1862 1863 /* 1864 ** Generate code that will increment the schema cookie. 1865 ** 1866 ** The schema cookie is used to determine when the schema for the 1867 ** database changes. After each schema change, the cookie value 1868 ** changes. When a process first reads the schema it records the 1869 ** cookie. Thereafter, whenever it goes to access the database, 1870 ** it checks the cookie to make sure the schema has not changed 1871 ** since it was last read. 1872 ** 1873 ** This plan is not completely bullet-proof. It is possible for 1874 ** the schema to change multiple times and for the cookie to be 1875 ** set back to prior value. But schema changes are infrequent 1876 ** and the probability of hitting the same cookie value is only 1877 ** 1 chance in 2^32. So we're safe enough. 1878 ** 1879 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1880 ** the schema-version whenever the schema changes. 1881 */ 1882 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1883 sqlite3 *db = pParse->db; 1884 Vdbe *v = pParse->pVdbe; 1885 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1887 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1888 } 1889 1890 /* 1891 ** Measure the number of characters needed to output the given 1892 ** identifier. The number returned includes any quotes used 1893 ** but does not include the null terminator. 1894 ** 1895 ** The estimate is conservative. It might be larger that what is 1896 ** really needed. 1897 */ 1898 static int identLength(const char *z){ 1899 int n; 1900 for(n=0; *z; n++, z++){ 1901 if( *z=='"' ){ n++; } 1902 } 1903 return n + 2; 1904 } 1905 1906 /* 1907 ** The first parameter is a pointer to an output buffer. The second 1908 ** parameter is a pointer to an integer that contains the offset at 1909 ** which to write into the output buffer. This function copies the 1910 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1911 ** to the specified offset in the buffer and updates *pIdx to refer 1912 ** to the first byte after the last byte written before returning. 1913 ** 1914 ** If the string zSignedIdent consists entirely of alpha-numeric 1915 ** characters, does not begin with a digit and is not an SQL keyword, 1916 ** then it is copied to the output buffer exactly as it is. Otherwise, 1917 ** it is quoted using double-quotes. 1918 */ 1919 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1920 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1921 int i, j, needQuote; 1922 i = *pIdx; 1923 1924 for(j=0; zIdent[j]; j++){ 1925 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1926 } 1927 needQuote = sqlite3Isdigit(zIdent[0]) 1928 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1929 || zIdent[j]!=0 1930 || j==0; 1931 1932 if( needQuote ) z[i++] = '"'; 1933 for(j=0; zIdent[j]; j++){ 1934 z[i++] = zIdent[j]; 1935 if( zIdent[j]=='"' ) z[i++] = '"'; 1936 } 1937 if( needQuote ) z[i++] = '"'; 1938 z[i] = 0; 1939 *pIdx = i; 1940 } 1941 1942 /* 1943 ** Generate a CREATE TABLE statement appropriate for the given 1944 ** table. Memory to hold the text of the statement is obtained 1945 ** from sqliteMalloc() and must be freed by the calling function. 1946 */ 1947 static char *createTableStmt(sqlite3 *db, Table *p){ 1948 int i, k, n; 1949 char *zStmt; 1950 char *zSep, *zSep2, *zEnd; 1951 Column *pCol; 1952 n = 0; 1953 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1954 n += identLength(pCol->zName) + 5; 1955 } 1956 n += identLength(p->zName); 1957 if( n<50 ){ 1958 zSep = ""; 1959 zSep2 = ","; 1960 zEnd = ")"; 1961 }else{ 1962 zSep = "\n "; 1963 zSep2 = ",\n "; 1964 zEnd = "\n)"; 1965 } 1966 n += 35 + 6*p->nCol; 1967 zStmt = sqlite3DbMallocRaw(0, n); 1968 if( zStmt==0 ){ 1969 sqlite3OomFault(db); 1970 return 0; 1971 } 1972 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1973 k = sqlite3Strlen30(zStmt); 1974 identPut(zStmt, &k, p->zName); 1975 zStmt[k++] = '('; 1976 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1977 static const char * const azType[] = { 1978 /* SQLITE_AFF_BLOB */ "", 1979 /* SQLITE_AFF_TEXT */ " TEXT", 1980 /* SQLITE_AFF_NUMERIC */ " NUM", 1981 /* SQLITE_AFF_INTEGER */ " INT", 1982 /* SQLITE_AFF_REAL */ " REAL" 1983 }; 1984 int len; 1985 const char *zType; 1986 1987 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1988 k += sqlite3Strlen30(&zStmt[k]); 1989 zSep = zSep2; 1990 identPut(zStmt, &k, pCol->zName); 1991 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1992 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1993 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1994 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1995 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1996 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1997 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1998 1999 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2000 len = sqlite3Strlen30(zType); 2001 assert( pCol->affinity==SQLITE_AFF_BLOB 2002 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2003 memcpy(&zStmt[k], zType, len); 2004 k += len; 2005 assert( k<=n ); 2006 } 2007 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2008 return zStmt; 2009 } 2010 2011 /* 2012 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2013 ** on success and SQLITE_NOMEM on an OOM error. 2014 */ 2015 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2016 char *zExtra; 2017 int nByte; 2018 if( pIdx->nColumn>=N ) return SQLITE_OK; 2019 assert( pIdx->isResized==0 ); 2020 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2021 zExtra = sqlite3DbMallocZero(db, nByte); 2022 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2023 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2024 pIdx->azColl = (const char**)zExtra; 2025 zExtra += sizeof(char*)*N; 2026 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2027 pIdx->aiRowLogEst = (LogEst*)zExtra; 2028 zExtra += sizeof(LogEst)*N; 2029 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2030 pIdx->aiColumn = (i16*)zExtra; 2031 zExtra += sizeof(i16)*N; 2032 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2033 pIdx->aSortOrder = (u8*)zExtra; 2034 pIdx->nColumn = N; 2035 pIdx->isResized = 1; 2036 return SQLITE_OK; 2037 } 2038 2039 /* 2040 ** Estimate the total row width for a table. 2041 */ 2042 static void estimateTableWidth(Table *pTab){ 2043 unsigned wTable = 0; 2044 const Column *pTabCol; 2045 int i; 2046 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2047 wTable += pTabCol->szEst; 2048 } 2049 if( pTab->iPKey<0 ) wTable++; 2050 pTab->szTabRow = sqlite3LogEst(wTable*4); 2051 } 2052 2053 /* 2054 ** Estimate the average size of a row for an index. 2055 */ 2056 static void estimateIndexWidth(Index *pIdx){ 2057 unsigned wIndex = 0; 2058 int i; 2059 const Column *aCol = pIdx->pTable->aCol; 2060 for(i=0; i<pIdx->nColumn; i++){ 2061 i16 x = pIdx->aiColumn[i]; 2062 assert( x<pIdx->pTable->nCol ); 2063 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2064 } 2065 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2066 } 2067 2068 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2069 ** This is used to determine if the column number x appears in any of the 2070 ** first nCol entries of an index. 2071 */ 2072 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2073 while( nCol-- > 0 ){ 2074 assert( aiCol[0]>=0 ); 2075 if( x==*(aiCol++) ){ 2076 return 1; 2077 } 2078 } 2079 return 0; 2080 } 2081 2082 /* 2083 ** Return true if any of the first nKey entries of index pIdx exactly 2084 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2085 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2086 ** or may not be the same index as pPk. 2087 ** 2088 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2089 ** not a rowid or expression. 2090 ** 2091 ** This routine differs from hasColumn() in that both the column and the 2092 ** collating sequence must match for this routine, but for hasColumn() only 2093 ** the column name must match. 2094 */ 2095 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2096 int i, j; 2097 assert( nKey<=pIdx->nColumn ); 2098 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2099 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2100 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2101 assert( pPk->pTable==pIdx->pTable ); 2102 testcase( pPk==pIdx ); 2103 j = pPk->aiColumn[iCol]; 2104 assert( j!=XN_ROWID && j!=XN_EXPR ); 2105 for(i=0; i<nKey; i++){ 2106 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2107 if( pIdx->aiColumn[i]==j 2108 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2109 ){ 2110 return 1; 2111 } 2112 } 2113 return 0; 2114 } 2115 2116 /* Recompute the colNotIdxed field of the Index. 2117 ** 2118 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2119 ** columns that are within the first 63 columns of the table. The 2120 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2121 ** of the table have a 1. 2122 ** 2123 ** 2019-10-24: For the purpose of this computation, virtual columns are 2124 ** not considered to be covered by the index, even if they are in the 2125 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2126 ** able to find all instances of a reference to the indexed table column 2127 ** and convert them into references to the index. Hence we always want 2128 ** the actual table at hand in order to recompute the virtual column, if 2129 ** necessary. 2130 ** 2131 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2132 ** to determine if the index is covering index. 2133 */ 2134 static void recomputeColumnsNotIndexed(Index *pIdx){ 2135 Bitmask m = 0; 2136 int j; 2137 Table *pTab = pIdx->pTable; 2138 for(j=pIdx->nColumn-1; j>=0; j--){ 2139 int x = pIdx->aiColumn[j]; 2140 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2141 testcase( x==BMS-1 ); 2142 testcase( x==BMS-2 ); 2143 if( x<BMS-1 ) m |= MASKBIT(x); 2144 } 2145 } 2146 pIdx->colNotIdxed = ~m; 2147 assert( (pIdx->colNotIdxed>>63)==1 ); 2148 } 2149 2150 /* 2151 ** This routine runs at the end of parsing a CREATE TABLE statement that 2152 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2153 ** internal schema data structures and the generated VDBE code so that they 2154 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2155 ** Changes include: 2156 ** 2157 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2158 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2159 ** into BTREE_BLOBKEY. 2160 ** (3) Bypass the creation of the sqlite_schema table entry 2161 ** for the PRIMARY KEY as the primary key index is now 2162 ** identified by the sqlite_schema table entry of the table itself. 2163 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2164 ** schema to the rootpage from the main table. 2165 ** (5) Add all table columns to the PRIMARY KEY Index object 2166 ** so that the PRIMARY KEY is a covering index. The surplus 2167 ** columns are part of KeyInfo.nAllField and are not used for 2168 ** sorting or lookup or uniqueness checks. 2169 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2170 ** indices with the PRIMARY KEY columns. 2171 ** 2172 ** For virtual tables, only (1) is performed. 2173 */ 2174 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2175 Index *pIdx; 2176 Index *pPk; 2177 int nPk; 2178 int nExtra; 2179 int i, j; 2180 sqlite3 *db = pParse->db; 2181 Vdbe *v = pParse->pVdbe; 2182 2183 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2184 */ 2185 if( !db->init.imposterTable ){ 2186 for(i=0; i<pTab->nCol; i++){ 2187 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2188 pTab->aCol[i].notNull = OE_Abort; 2189 } 2190 } 2191 pTab->tabFlags |= TF_HasNotNull; 2192 } 2193 2194 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2195 ** into BTREE_BLOBKEY. 2196 */ 2197 assert( !pParse->bReturning ); 2198 if( pParse->u1.addrCrTab ){ 2199 assert( v ); 2200 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2201 } 2202 2203 /* Locate the PRIMARY KEY index. Or, if this table was originally 2204 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2205 */ 2206 if( pTab->iPKey>=0 ){ 2207 ExprList *pList; 2208 Token ipkToken; 2209 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2210 pList = sqlite3ExprListAppend(pParse, 0, 2211 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2212 if( pList==0 ){ 2213 pTab->tabFlags &= ~TF_WithoutRowid; 2214 return; 2215 } 2216 if( IN_RENAME_OBJECT ){ 2217 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2218 } 2219 pList->a[0].sortFlags = pParse->iPkSortOrder; 2220 assert( pParse->pNewTable==pTab ); 2221 pTab->iPKey = -1; 2222 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2223 SQLITE_IDXTYPE_PRIMARYKEY); 2224 if( db->mallocFailed || pParse->nErr ){ 2225 pTab->tabFlags &= ~TF_WithoutRowid; 2226 return; 2227 } 2228 pPk = sqlite3PrimaryKeyIndex(pTab); 2229 assert( pPk->nKeyCol==1 ); 2230 }else{ 2231 pPk = sqlite3PrimaryKeyIndex(pTab); 2232 assert( pPk!=0 ); 2233 2234 /* 2235 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2236 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2237 ** code assumes the PRIMARY KEY contains no repeated columns. 2238 */ 2239 for(i=j=1; i<pPk->nKeyCol; i++){ 2240 if( isDupColumn(pPk, j, pPk, i) ){ 2241 pPk->nColumn--; 2242 }else{ 2243 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2244 pPk->azColl[j] = pPk->azColl[i]; 2245 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2246 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2247 } 2248 } 2249 pPk->nKeyCol = j; 2250 } 2251 assert( pPk!=0 ); 2252 pPk->isCovering = 1; 2253 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2254 nPk = pPk->nColumn = pPk->nKeyCol; 2255 2256 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2257 ** table entry. This is only required if currently generating VDBE 2258 ** code for a CREATE TABLE (not when parsing one as part of reading 2259 ** a database schema). */ 2260 if( v && pPk->tnum>0 ){ 2261 assert( db->init.busy==0 ); 2262 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2263 } 2264 2265 /* The root page of the PRIMARY KEY is the table root page */ 2266 pPk->tnum = pTab->tnum; 2267 2268 /* Update the in-memory representation of all UNIQUE indices by converting 2269 ** the final rowid column into one or more columns of the PRIMARY KEY. 2270 */ 2271 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2272 int n; 2273 if( IsPrimaryKeyIndex(pIdx) ) continue; 2274 for(i=n=0; i<nPk; i++){ 2275 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2276 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2277 n++; 2278 } 2279 } 2280 if( n==0 ){ 2281 /* This index is a superset of the primary key */ 2282 pIdx->nColumn = pIdx->nKeyCol; 2283 continue; 2284 } 2285 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2286 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2287 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2288 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2289 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2290 pIdx->azColl[j] = pPk->azColl[i]; 2291 if( pPk->aSortOrder[i] ){ 2292 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2293 pIdx->bAscKeyBug = 1; 2294 } 2295 j++; 2296 } 2297 } 2298 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2299 assert( pIdx->nColumn>=j ); 2300 } 2301 2302 /* Add all table columns to the PRIMARY KEY index 2303 */ 2304 nExtra = 0; 2305 for(i=0; i<pTab->nCol; i++){ 2306 if( !hasColumn(pPk->aiColumn, nPk, i) 2307 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2308 } 2309 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2310 for(i=0, j=nPk; i<pTab->nCol; i++){ 2311 if( !hasColumn(pPk->aiColumn, j, i) 2312 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2313 ){ 2314 assert( j<pPk->nColumn ); 2315 pPk->aiColumn[j] = i; 2316 pPk->azColl[j] = sqlite3StrBINARY; 2317 j++; 2318 } 2319 } 2320 assert( pPk->nColumn==j ); 2321 assert( pTab->nNVCol<=j ); 2322 recomputeColumnsNotIndexed(pPk); 2323 } 2324 2325 2326 #ifndef SQLITE_OMIT_VIRTUALTABLE 2327 /* 2328 ** Return true if pTab is a virtual table and zName is a shadow table name 2329 ** for that virtual table. 2330 */ 2331 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2332 int nName; /* Length of zName */ 2333 Module *pMod; /* Module for the virtual table */ 2334 2335 if( !IsVirtual(pTab) ) return 0; 2336 nName = sqlite3Strlen30(pTab->zName); 2337 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2338 if( zName[nName]!='_' ) return 0; 2339 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2340 if( pMod==0 ) return 0; 2341 if( pMod->pModule->iVersion<3 ) return 0; 2342 if( pMod->pModule->xShadowName==0 ) return 0; 2343 return pMod->pModule->xShadowName(zName+nName+1); 2344 } 2345 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2346 2347 #ifndef SQLITE_OMIT_VIRTUALTABLE 2348 /* 2349 ** Return true if zName is a shadow table name in the current database 2350 ** connection. 2351 ** 2352 ** zName is temporarily modified while this routine is running, but is 2353 ** restored to its original value prior to this routine returning. 2354 */ 2355 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2356 char *zTail; /* Pointer to the last "_" in zName */ 2357 Table *pTab; /* Table that zName is a shadow of */ 2358 zTail = strrchr(zName, '_'); 2359 if( zTail==0 ) return 0; 2360 *zTail = 0; 2361 pTab = sqlite3FindTable(db, zName, 0); 2362 *zTail = '_'; 2363 if( pTab==0 ) return 0; 2364 if( !IsVirtual(pTab) ) return 0; 2365 return sqlite3IsShadowTableOf(db, pTab, zName); 2366 } 2367 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2368 2369 2370 #ifdef SQLITE_DEBUG 2371 /* 2372 ** Mark all nodes of an expression as EP_Immutable, indicating that 2373 ** they should not be changed. Expressions attached to a table or 2374 ** index definition are tagged this way to help ensure that we do 2375 ** not pass them into code generator routines by mistake. 2376 */ 2377 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2378 ExprSetVVAProperty(pExpr, EP_Immutable); 2379 return WRC_Continue; 2380 } 2381 static void markExprListImmutable(ExprList *pList){ 2382 if( pList ){ 2383 Walker w; 2384 memset(&w, 0, sizeof(w)); 2385 w.xExprCallback = markImmutableExprStep; 2386 w.xSelectCallback = sqlite3SelectWalkNoop; 2387 w.xSelectCallback2 = 0; 2388 sqlite3WalkExprList(&w, pList); 2389 } 2390 } 2391 #else 2392 #define markExprListImmutable(X) /* no-op */ 2393 #endif /* SQLITE_DEBUG */ 2394 2395 2396 /* 2397 ** This routine is called to report the final ")" that terminates 2398 ** a CREATE TABLE statement. 2399 ** 2400 ** The table structure that other action routines have been building 2401 ** is added to the internal hash tables, assuming no errors have 2402 ** occurred. 2403 ** 2404 ** An entry for the table is made in the schema table on disk, unless 2405 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2406 ** it means we are reading the sqlite_schema table because we just 2407 ** connected to the database or because the sqlite_schema table has 2408 ** recently changed, so the entry for this table already exists in 2409 ** the sqlite_schema table. We do not want to create it again. 2410 ** 2411 ** If the pSelect argument is not NULL, it means that this routine 2412 ** was called to create a table generated from a 2413 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2414 ** the new table will match the result set of the SELECT. 2415 */ 2416 void sqlite3EndTable( 2417 Parse *pParse, /* Parse context */ 2418 Token *pCons, /* The ',' token after the last column defn. */ 2419 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2420 u8 tabOpts, /* Extra table options. Usually 0. */ 2421 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2422 ){ 2423 Table *p; /* The new table */ 2424 sqlite3 *db = pParse->db; /* The database connection */ 2425 int iDb; /* Database in which the table lives */ 2426 Index *pIdx; /* An implied index of the table */ 2427 2428 if( pEnd==0 && pSelect==0 ){ 2429 return; 2430 } 2431 p = pParse->pNewTable; 2432 if( p==0 ) return; 2433 2434 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2435 p->tabFlags |= TF_Shadow; 2436 } 2437 2438 /* If the db->init.busy is 1 it means we are reading the SQL off the 2439 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2440 ** So do not write to the disk again. Extract the root page number 2441 ** for the table from the db->init.newTnum field. (The page number 2442 ** should have been put there by the sqliteOpenCb routine.) 2443 ** 2444 ** If the root page number is 1, that means this is the sqlite_schema 2445 ** table itself. So mark it read-only. 2446 */ 2447 if( db->init.busy ){ 2448 if( pSelect ){ 2449 sqlite3ErrorMsg(pParse, ""); 2450 return; 2451 } 2452 p->tnum = db->init.newTnum; 2453 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2454 } 2455 2456 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2457 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2458 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2459 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2460 2461 /* Special processing for WITHOUT ROWID Tables */ 2462 if( tabOpts & TF_WithoutRowid ){ 2463 if( (p->tabFlags & TF_Autoincrement) ){ 2464 sqlite3ErrorMsg(pParse, 2465 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2466 return; 2467 } 2468 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2469 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2470 return; 2471 } 2472 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2473 convertToWithoutRowidTable(pParse, p); 2474 } 2475 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2476 2477 #ifndef SQLITE_OMIT_CHECK 2478 /* Resolve names in all CHECK constraint expressions. 2479 */ 2480 if( p->pCheck ){ 2481 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2482 if( pParse->nErr ){ 2483 /* If errors are seen, delete the CHECK constraints now, else they might 2484 ** actually be used if PRAGMA writable_schema=ON is set. */ 2485 sqlite3ExprListDelete(db, p->pCheck); 2486 p->pCheck = 0; 2487 }else{ 2488 markExprListImmutable(p->pCheck); 2489 } 2490 } 2491 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2492 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2493 if( p->tabFlags & TF_HasGenerated ){ 2494 int ii, nNG = 0; 2495 testcase( p->tabFlags & TF_HasVirtual ); 2496 testcase( p->tabFlags & TF_HasStored ); 2497 for(ii=0; ii<p->nCol; ii++){ 2498 u32 colFlags = p->aCol[ii].colFlags; 2499 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2500 Expr *pX = p->aCol[ii].pDflt; 2501 testcase( colFlags & COLFLAG_VIRTUAL ); 2502 testcase( colFlags & COLFLAG_STORED ); 2503 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2504 /* If there are errors in resolving the expression, change the 2505 ** expression to a NULL. This prevents code generators that operate 2506 ** on the expression from inserting extra parts into the expression 2507 ** tree that have been allocated from lookaside memory, which is 2508 ** illegal in a schema and will lead to errors or heap corruption 2509 ** when the database connection closes. */ 2510 sqlite3ExprDelete(db, pX); 2511 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2512 } 2513 }else{ 2514 nNG++; 2515 } 2516 } 2517 if( nNG==0 ){ 2518 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2519 return; 2520 } 2521 } 2522 #endif 2523 2524 /* Estimate the average row size for the table and for all implied indices */ 2525 estimateTableWidth(p); 2526 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2527 estimateIndexWidth(pIdx); 2528 } 2529 2530 /* If not initializing, then create a record for the new table 2531 ** in the schema table of the database. 2532 ** 2533 ** If this is a TEMPORARY table, write the entry into the auxiliary 2534 ** file instead of into the main database file. 2535 */ 2536 if( !db->init.busy ){ 2537 int n; 2538 Vdbe *v; 2539 char *zType; /* "view" or "table" */ 2540 char *zType2; /* "VIEW" or "TABLE" */ 2541 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2542 2543 v = sqlite3GetVdbe(pParse); 2544 if( NEVER(v==0) ) return; 2545 2546 sqlite3VdbeAddOp1(v, OP_Close, 0); 2547 2548 /* 2549 ** Initialize zType for the new view or table. 2550 */ 2551 if( p->pSelect==0 ){ 2552 /* A regular table */ 2553 zType = "table"; 2554 zType2 = "TABLE"; 2555 #ifndef SQLITE_OMIT_VIEW 2556 }else{ 2557 /* A view */ 2558 zType = "view"; 2559 zType2 = "VIEW"; 2560 #endif 2561 } 2562 2563 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2564 ** statement to populate the new table. The root-page number for the 2565 ** new table is in register pParse->regRoot. 2566 ** 2567 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2568 ** suitable state to query for the column names and types to be used 2569 ** by the new table. 2570 ** 2571 ** A shared-cache write-lock is not required to write to the new table, 2572 ** as a schema-lock must have already been obtained to create it. Since 2573 ** a schema-lock excludes all other database users, the write-lock would 2574 ** be redundant. 2575 */ 2576 if( pSelect ){ 2577 SelectDest dest; /* Where the SELECT should store results */ 2578 int regYield; /* Register holding co-routine entry-point */ 2579 int addrTop; /* Top of the co-routine */ 2580 int regRec; /* A record to be insert into the new table */ 2581 int regRowid; /* Rowid of the next row to insert */ 2582 int addrInsLoop; /* Top of the loop for inserting rows */ 2583 Table *pSelTab; /* A table that describes the SELECT results */ 2584 2585 regYield = ++pParse->nMem; 2586 regRec = ++pParse->nMem; 2587 regRowid = ++pParse->nMem; 2588 assert(pParse->nTab==1); 2589 sqlite3MayAbort(pParse); 2590 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2591 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2592 pParse->nTab = 2; 2593 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2594 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2595 if( pParse->nErr ) return; 2596 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2597 if( pSelTab==0 ) return; 2598 assert( p->aCol==0 ); 2599 p->nCol = p->nNVCol = pSelTab->nCol; 2600 p->aCol = pSelTab->aCol; 2601 pSelTab->nCol = 0; 2602 pSelTab->aCol = 0; 2603 sqlite3DeleteTable(db, pSelTab); 2604 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2605 sqlite3Select(pParse, pSelect, &dest); 2606 if( pParse->nErr ) return; 2607 sqlite3VdbeEndCoroutine(v, regYield); 2608 sqlite3VdbeJumpHere(v, addrTop - 1); 2609 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2610 VdbeCoverage(v); 2611 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2612 sqlite3TableAffinity(v, p, 0); 2613 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2614 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2615 sqlite3VdbeGoto(v, addrInsLoop); 2616 sqlite3VdbeJumpHere(v, addrInsLoop); 2617 sqlite3VdbeAddOp1(v, OP_Close, 1); 2618 } 2619 2620 /* Compute the complete text of the CREATE statement */ 2621 if( pSelect ){ 2622 zStmt = createTableStmt(db, p); 2623 }else{ 2624 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2625 n = (int)(pEnd2->z - pParse->sNameToken.z); 2626 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2627 zStmt = sqlite3MPrintf(db, 2628 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2629 ); 2630 } 2631 2632 /* A slot for the record has already been allocated in the 2633 ** schema table. We just need to update that slot with all 2634 ** the information we've collected. 2635 */ 2636 sqlite3NestedParse(pParse, 2637 "UPDATE %Q." DFLT_SCHEMA_TABLE 2638 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2639 " WHERE rowid=#%d", 2640 db->aDb[iDb].zDbSName, 2641 zType, 2642 p->zName, 2643 p->zName, 2644 pParse->regRoot, 2645 zStmt, 2646 pParse->regRowid 2647 ); 2648 sqlite3DbFree(db, zStmt); 2649 sqlite3ChangeCookie(pParse, iDb); 2650 2651 #ifndef SQLITE_OMIT_AUTOINCREMENT 2652 /* Check to see if we need to create an sqlite_sequence table for 2653 ** keeping track of autoincrement keys. 2654 */ 2655 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2656 Db *pDb = &db->aDb[iDb]; 2657 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2658 if( pDb->pSchema->pSeqTab==0 ){ 2659 sqlite3NestedParse(pParse, 2660 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2661 pDb->zDbSName 2662 ); 2663 } 2664 } 2665 #endif 2666 2667 /* Reparse everything to update our internal data structures */ 2668 sqlite3VdbeAddParseSchemaOp(v, iDb, 2669 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2670 } 2671 2672 /* Add the table to the in-memory representation of the database. 2673 */ 2674 if( db->init.busy ){ 2675 Table *pOld; 2676 Schema *pSchema = p->pSchema; 2677 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2678 assert( HasRowid(p) || p->iPKey<0 ); 2679 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2680 if( pOld ){ 2681 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2682 sqlite3OomFault(db); 2683 return; 2684 } 2685 pParse->pNewTable = 0; 2686 db->mDbFlags |= DBFLAG_SchemaChange; 2687 2688 /* If this is the magic sqlite_sequence table used by autoincrement, 2689 ** then record a pointer to this table in the main database structure 2690 ** so that INSERT can find the table easily. */ 2691 assert( !pParse->nested ); 2692 #ifndef SQLITE_OMIT_AUTOINCREMENT 2693 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2694 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2695 p->pSchema->pSeqTab = p; 2696 } 2697 #endif 2698 } 2699 2700 #ifndef SQLITE_OMIT_ALTERTABLE 2701 if( !pSelect && !p->pSelect ){ 2702 assert( pCons && pEnd ); 2703 if( pCons->z==0 ){ 2704 pCons = pEnd; 2705 } 2706 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2707 } 2708 #endif 2709 } 2710 2711 #ifndef SQLITE_OMIT_VIEW 2712 /* 2713 ** The parser calls this routine in order to create a new VIEW 2714 */ 2715 void sqlite3CreateView( 2716 Parse *pParse, /* The parsing context */ 2717 Token *pBegin, /* The CREATE token that begins the statement */ 2718 Token *pName1, /* The token that holds the name of the view */ 2719 Token *pName2, /* The token that holds the name of the view */ 2720 ExprList *pCNames, /* Optional list of view column names */ 2721 Select *pSelect, /* A SELECT statement that will become the new view */ 2722 int isTemp, /* TRUE for a TEMPORARY view */ 2723 int noErr /* Suppress error messages if VIEW already exists */ 2724 ){ 2725 Table *p; 2726 int n; 2727 const char *z; 2728 Token sEnd; 2729 DbFixer sFix; 2730 Token *pName = 0; 2731 int iDb; 2732 sqlite3 *db = pParse->db; 2733 2734 if( pParse->nVar>0 ){ 2735 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2736 goto create_view_fail; 2737 } 2738 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2739 p = pParse->pNewTable; 2740 if( p==0 || pParse->nErr ) goto create_view_fail; 2741 2742 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2743 ** on a view, even though views do not have rowids. The following flag 2744 ** setting fixes this problem. But the fix can be disabled by compiling 2745 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2746 ** depend upon the old buggy behavior. */ 2747 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2748 p->tabFlags |= TF_NoVisibleRowid; 2749 #endif 2750 2751 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2752 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2753 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2754 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2755 2756 /* Make a copy of the entire SELECT statement that defines the view. 2757 ** This will force all the Expr.token.z values to be dynamically 2758 ** allocated rather than point to the input string - which means that 2759 ** they will persist after the current sqlite3_exec() call returns. 2760 */ 2761 pSelect->selFlags |= SF_View; 2762 if( IN_RENAME_OBJECT ){ 2763 p->pSelect = pSelect; 2764 pSelect = 0; 2765 }else{ 2766 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2767 } 2768 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2769 if( db->mallocFailed ) goto create_view_fail; 2770 2771 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2772 ** the end. 2773 */ 2774 sEnd = pParse->sLastToken; 2775 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2776 if( sEnd.z[0]!=';' ){ 2777 sEnd.z += sEnd.n; 2778 } 2779 sEnd.n = 0; 2780 n = (int)(sEnd.z - pBegin->z); 2781 assert( n>0 ); 2782 z = pBegin->z; 2783 while( sqlite3Isspace(z[n-1]) ){ n--; } 2784 sEnd.z = &z[n-1]; 2785 sEnd.n = 1; 2786 2787 /* Use sqlite3EndTable() to add the view to the schema table */ 2788 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2789 2790 create_view_fail: 2791 sqlite3SelectDelete(db, pSelect); 2792 if( IN_RENAME_OBJECT ){ 2793 sqlite3RenameExprlistUnmap(pParse, pCNames); 2794 } 2795 sqlite3ExprListDelete(db, pCNames); 2796 return; 2797 } 2798 #endif /* SQLITE_OMIT_VIEW */ 2799 2800 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2801 /* 2802 ** The Table structure pTable is really a VIEW. Fill in the names of 2803 ** the columns of the view in the pTable structure. Return the number 2804 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2805 */ 2806 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2807 Table *pSelTab; /* A fake table from which we get the result set */ 2808 Select *pSel; /* Copy of the SELECT that implements the view */ 2809 int nErr = 0; /* Number of errors encountered */ 2810 int n; /* Temporarily holds the number of cursors assigned */ 2811 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2812 #ifndef SQLITE_OMIT_VIRTUALTABLE 2813 int rc; 2814 #endif 2815 #ifndef SQLITE_OMIT_AUTHORIZATION 2816 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2817 #endif 2818 2819 assert( pTable ); 2820 2821 #ifndef SQLITE_OMIT_VIRTUALTABLE 2822 db->nSchemaLock++; 2823 rc = sqlite3VtabCallConnect(pParse, pTable); 2824 db->nSchemaLock--; 2825 if( rc ){ 2826 return 1; 2827 } 2828 if( IsVirtual(pTable) ) return 0; 2829 #endif 2830 2831 #ifndef SQLITE_OMIT_VIEW 2832 /* A positive nCol means the columns names for this view are 2833 ** already known. 2834 */ 2835 if( pTable->nCol>0 ) return 0; 2836 2837 /* A negative nCol is a special marker meaning that we are currently 2838 ** trying to compute the column names. If we enter this routine with 2839 ** a negative nCol, it means two or more views form a loop, like this: 2840 ** 2841 ** CREATE VIEW one AS SELECT * FROM two; 2842 ** CREATE VIEW two AS SELECT * FROM one; 2843 ** 2844 ** Actually, the error above is now caught prior to reaching this point. 2845 ** But the following test is still important as it does come up 2846 ** in the following: 2847 ** 2848 ** CREATE TABLE main.ex1(a); 2849 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2850 ** SELECT * FROM temp.ex1; 2851 */ 2852 if( pTable->nCol<0 ){ 2853 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2854 return 1; 2855 } 2856 assert( pTable->nCol>=0 ); 2857 2858 /* If we get this far, it means we need to compute the table names. 2859 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2860 ** "*" elements in the results set of the view and will assign cursors 2861 ** to the elements of the FROM clause. But we do not want these changes 2862 ** to be permanent. So the computation is done on a copy of the SELECT 2863 ** statement that defines the view. 2864 */ 2865 assert( pTable->pSelect ); 2866 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2867 if( pSel ){ 2868 u8 eParseMode = pParse->eParseMode; 2869 pParse->eParseMode = PARSE_MODE_NORMAL; 2870 n = pParse->nTab; 2871 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2872 pTable->nCol = -1; 2873 DisableLookaside; 2874 #ifndef SQLITE_OMIT_AUTHORIZATION 2875 xAuth = db->xAuth; 2876 db->xAuth = 0; 2877 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2878 db->xAuth = xAuth; 2879 #else 2880 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2881 #endif 2882 pParse->nTab = n; 2883 if( pSelTab==0 ){ 2884 pTable->nCol = 0; 2885 nErr++; 2886 }else if( pTable->pCheck ){ 2887 /* CREATE VIEW name(arglist) AS ... 2888 ** The names of the columns in the table are taken from 2889 ** arglist which is stored in pTable->pCheck. The pCheck field 2890 ** normally holds CHECK constraints on an ordinary table, but for 2891 ** a VIEW it holds the list of column names. 2892 */ 2893 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2894 &pTable->nCol, &pTable->aCol); 2895 if( db->mallocFailed==0 2896 && pParse->nErr==0 2897 && pTable->nCol==pSel->pEList->nExpr 2898 ){ 2899 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2900 SQLITE_AFF_NONE); 2901 } 2902 }else{ 2903 /* CREATE VIEW name AS... without an argument list. Construct 2904 ** the column names from the SELECT statement that defines the view. 2905 */ 2906 assert( pTable->aCol==0 ); 2907 pTable->nCol = pSelTab->nCol; 2908 pTable->aCol = pSelTab->aCol; 2909 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 2910 pSelTab->nCol = 0; 2911 pSelTab->aCol = 0; 2912 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2913 } 2914 pTable->nNVCol = pTable->nCol; 2915 sqlite3DeleteTable(db, pSelTab); 2916 sqlite3SelectDelete(db, pSel); 2917 EnableLookaside; 2918 pParse->eParseMode = eParseMode; 2919 } else { 2920 nErr++; 2921 } 2922 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2923 if( db->mallocFailed ){ 2924 sqlite3DeleteColumnNames(db, pTable); 2925 pTable->aCol = 0; 2926 pTable->nCol = 0; 2927 } 2928 #endif /* SQLITE_OMIT_VIEW */ 2929 return nErr; 2930 } 2931 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2932 2933 #ifndef SQLITE_OMIT_VIEW 2934 /* 2935 ** Clear the column names from every VIEW in database idx. 2936 */ 2937 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2938 HashElem *i; 2939 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2940 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2941 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2942 Table *pTab = sqliteHashData(i); 2943 if( pTab->pSelect ){ 2944 sqlite3DeleteColumnNames(db, pTab); 2945 pTab->aCol = 0; 2946 pTab->nCol = 0; 2947 } 2948 } 2949 DbClearProperty(db, idx, DB_UnresetViews); 2950 } 2951 #else 2952 # define sqliteViewResetAll(A,B) 2953 #endif /* SQLITE_OMIT_VIEW */ 2954 2955 /* 2956 ** This function is called by the VDBE to adjust the internal schema 2957 ** used by SQLite when the btree layer moves a table root page. The 2958 ** root-page of a table or index in database iDb has changed from iFrom 2959 ** to iTo. 2960 ** 2961 ** Ticket #1728: The symbol table might still contain information 2962 ** on tables and/or indices that are the process of being deleted. 2963 ** If you are unlucky, one of those deleted indices or tables might 2964 ** have the same rootpage number as the real table or index that is 2965 ** being moved. So we cannot stop searching after the first match 2966 ** because the first match might be for one of the deleted indices 2967 ** or tables and not the table/index that is actually being moved. 2968 ** We must continue looping until all tables and indices with 2969 ** rootpage==iFrom have been converted to have a rootpage of iTo 2970 ** in order to be certain that we got the right one. 2971 */ 2972 #ifndef SQLITE_OMIT_AUTOVACUUM 2973 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2974 HashElem *pElem; 2975 Hash *pHash; 2976 Db *pDb; 2977 2978 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2979 pDb = &db->aDb[iDb]; 2980 pHash = &pDb->pSchema->tblHash; 2981 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2982 Table *pTab = sqliteHashData(pElem); 2983 if( pTab->tnum==iFrom ){ 2984 pTab->tnum = iTo; 2985 } 2986 } 2987 pHash = &pDb->pSchema->idxHash; 2988 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2989 Index *pIdx = sqliteHashData(pElem); 2990 if( pIdx->tnum==iFrom ){ 2991 pIdx->tnum = iTo; 2992 } 2993 } 2994 } 2995 #endif 2996 2997 /* 2998 ** Write code to erase the table with root-page iTable from database iDb. 2999 ** Also write code to modify the sqlite_schema table and internal schema 3000 ** if a root-page of another table is moved by the btree-layer whilst 3001 ** erasing iTable (this can happen with an auto-vacuum database). 3002 */ 3003 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3004 Vdbe *v = sqlite3GetVdbe(pParse); 3005 int r1 = sqlite3GetTempReg(pParse); 3006 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3007 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3008 sqlite3MayAbort(pParse); 3009 #ifndef SQLITE_OMIT_AUTOVACUUM 3010 /* OP_Destroy stores an in integer r1. If this integer 3011 ** is non-zero, then it is the root page number of a table moved to 3012 ** location iTable. The following code modifies the sqlite_schema table to 3013 ** reflect this. 3014 ** 3015 ** The "#NNN" in the SQL is a special constant that means whatever value 3016 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3017 ** token for additional information. 3018 */ 3019 sqlite3NestedParse(pParse, 3020 "UPDATE %Q." DFLT_SCHEMA_TABLE 3021 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3022 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3023 #endif 3024 sqlite3ReleaseTempReg(pParse, r1); 3025 } 3026 3027 /* 3028 ** Write VDBE code to erase table pTab and all associated indices on disk. 3029 ** Code to update the sqlite_schema tables and internal schema definitions 3030 ** in case a root-page belonging to another table is moved by the btree layer 3031 ** is also added (this can happen with an auto-vacuum database). 3032 */ 3033 static void destroyTable(Parse *pParse, Table *pTab){ 3034 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3035 ** is not defined), then it is important to call OP_Destroy on the 3036 ** table and index root-pages in order, starting with the numerically 3037 ** largest root-page number. This guarantees that none of the root-pages 3038 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3039 ** following were coded: 3040 ** 3041 ** OP_Destroy 4 0 3042 ** ... 3043 ** OP_Destroy 5 0 3044 ** 3045 ** and root page 5 happened to be the largest root-page number in the 3046 ** database, then root page 5 would be moved to page 4 by the 3047 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3048 ** a free-list page. 3049 */ 3050 Pgno iTab = pTab->tnum; 3051 Pgno iDestroyed = 0; 3052 3053 while( 1 ){ 3054 Index *pIdx; 3055 Pgno iLargest = 0; 3056 3057 if( iDestroyed==0 || iTab<iDestroyed ){ 3058 iLargest = iTab; 3059 } 3060 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3061 Pgno iIdx = pIdx->tnum; 3062 assert( pIdx->pSchema==pTab->pSchema ); 3063 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3064 iLargest = iIdx; 3065 } 3066 } 3067 if( iLargest==0 ){ 3068 return; 3069 }else{ 3070 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3071 assert( iDb>=0 && iDb<pParse->db->nDb ); 3072 destroyRootPage(pParse, iLargest, iDb); 3073 iDestroyed = iLargest; 3074 } 3075 } 3076 } 3077 3078 /* 3079 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3080 ** after a DROP INDEX or DROP TABLE command. 3081 */ 3082 static void sqlite3ClearStatTables( 3083 Parse *pParse, /* The parsing context */ 3084 int iDb, /* The database number */ 3085 const char *zType, /* "idx" or "tbl" */ 3086 const char *zName /* Name of index or table */ 3087 ){ 3088 int i; 3089 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3090 for(i=1; i<=4; i++){ 3091 char zTab[24]; 3092 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3093 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3094 sqlite3NestedParse(pParse, 3095 "DELETE FROM %Q.%s WHERE %s=%Q", 3096 zDbName, zTab, zType, zName 3097 ); 3098 } 3099 } 3100 } 3101 3102 /* 3103 ** Generate code to drop a table. 3104 */ 3105 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3106 Vdbe *v; 3107 sqlite3 *db = pParse->db; 3108 Trigger *pTrigger; 3109 Db *pDb = &db->aDb[iDb]; 3110 3111 v = sqlite3GetVdbe(pParse); 3112 assert( v!=0 ); 3113 sqlite3BeginWriteOperation(pParse, 1, iDb); 3114 3115 #ifndef SQLITE_OMIT_VIRTUALTABLE 3116 if( IsVirtual(pTab) ){ 3117 sqlite3VdbeAddOp0(v, OP_VBegin); 3118 } 3119 #endif 3120 3121 /* Drop all triggers associated with the table being dropped. Code 3122 ** is generated to remove entries from sqlite_schema and/or 3123 ** sqlite_temp_schema if required. 3124 */ 3125 pTrigger = sqlite3TriggerList(pParse, pTab); 3126 while( pTrigger ){ 3127 assert( pTrigger->pSchema==pTab->pSchema || 3128 pTrigger->pSchema==db->aDb[1].pSchema ); 3129 sqlite3DropTriggerPtr(pParse, pTrigger); 3130 pTrigger = pTrigger->pNext; 3131 } 3132 3133 #ifndef SQLITE_OMIT_AUTOINCREMENT 3134 /* Remove any entries of the sqlite_sequence table associated with 3135 ** the table being dropped. This is done before the table is dropped 3136 ** at the btree level, in case the sqlite_sequence table needs to 3137 ** move as a result of the drop (can happen in auto-vacuum mode). 3138 */ 3139 if( pTab->tabFlags & TF_Autoincrement ){ 3140 sqlite3NestedParse(pParse, 3141 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3142 pDb->zDbSName, pTab->zName 3143 ); 3144 } 3145 #endif 3146 3147 /* Drop all entries in the schema table that refer to the 3148 ** table. The program name loops through the schema table and deletes 3149 ** every row that refers to a table of the same name as the one being 3150 ** dropped. Triggers are handled separately because a trigger can be 3151 ** created in the temp database that refers to a table in another 3152 ** database. 3153 */ 3154 sqlite3NestedParse(pParse, 3155 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3156 " WHERE tbl_name=%Q and type!='trigger'", 3157 pDb->zDbSName, pTab->zName); 3158 if( !isView && !IsVirtual(pTab) ){ 3159 destroyTable(pParse, pTab); 3160 } 3161 3162 /* Remove the table entry from SQLite's internal schema and modify 3163 ** the schema cookie. 3164 */ 3165 if( IsVirtual(pTab) ){ 3166 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3167 sqlite3MayAbort(pParse); 3168 } 3169 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3170 sqlite3ChangeCookie(pParse, iDb); 3171 sqliteViewResetAll(db, iDb); 3172 } 3173 3174 /* 3175 ** Return TRUE if shadow tables should be read-only in the current 3176 ** context. 3177 */ 3178 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3179 #ifndef SQLITE_OMIT_VIRTUALTABLE 3180 if( (db->flags & SQLITE_Defensive)!=0 3181 && db->pVtabCtx==0 3182 && db->nVdbeExec==0 3183 ){ 3184 return 1; 3185 } 3186 #endif 3187 return 0; 3188 } 3189 3190 /* 3191 ** Return true if it is not allowed to drop the given table 3192 */ 3193 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3194 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3195 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3196 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3197 return 1; 3198 } 3199 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3200 return 1; 3201 } 3202 return 0; 3203 } 3204 3205 /* 3206 ** This routine is called to do the work of a DROP TABLE statement. 3207 ** pName is the name of the table to be dropped. 3208 */ 3209 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3210 Table *pTab; 3211 Vdbe *v; 3212 sqlite3 *db = pParse->db; 3213 int iDb; 3214 3215 if( db->mallocFailed ){ 3216 goto exit_drop_table; 3217 } 3218 assert( pParse->nErr==0 ); 3219 assert( pName->nSrc==1 ); 3220 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3221 if( noErr ) db->suppressErr++; 3222 assert( isView==0 || isView==LOCATE_VIEW ); 3223 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3224 if( noErr ) db->suppressErr--; 3225 3226 if( pTab==0 ){ 3227 if( noErr ){ 3228 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3229 sqlite3ForceNotReadOnly(pParse); 3230 } 3231 goto exit_drop_table; 3232 } 3233 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3234 assert( iDb>=0 && iDb<db->nDb ); 3235 3236 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3237 ** it is initialized. 3238 */ 3239 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3240 goto exit_drop_table; 3241 } 3242 #ifndef SQLITE_OMIT_AUTHORIZATION 3243 { 3244 int code; 3245 const char *zTab = SCHEMA_TABLE(iDb); 3246 const char *zDb = db->aDb[iDb].zDbSName; 3247 const char *zArg2 = 0; 3248 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3249 goto exit_drop_table; 3250 } 3251 if( isView ){ 3252 if( !OMIT_TEMPDB && iDb==1 ){ 3253 code = SQLITE_DROP_TEMP_VIEW; 3254 }else{ 3255 code = SQLITE_DROP_VIEW; 3256 } 3257 #ifndef SQLITE_OMIT_VIRTUALTABLE 3258 }else if( IsVirtual(pTab) ){ 3259 code = SQLITE_DROP_VTABLE; 3260 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3261 #endif 3262 }else{ 3263 if( !OMIT_TEMPDB && iDb==1 ){ 3264 code = SQLITE_DROP_TEMP_TABLE; 3265 }else{ 3266 code = SQLITE_DROP_TABLE; 3267 } 3268 } 3269 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3270 goto exit_drop_table; 3271 } 3272 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3273 goto exit_drop_table; 3274 } 3275 } 3276 #endif 3277 if( tableMayNotBeDropped(db, pTab) ){ 3278 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3279 goto exit_drop_table; 3280 } 3281 3282 #ifndef SQLITE_OMIT_VIEW 3283 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3284 ** on a table. 3285 */ 3286 if( isView && pTab->pSelect==0 ){ 3287 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3288 goto exit_drop_table; 3289 } 3290 if( !isView && pTab->pSelect ){ 3291 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3292 goto exit_drop_table; 3293 } 3294 #endif 3295 3296 /* Generate code to remove the table from the schema table 3297 ** on disk. 3298 */ 3299 v = sqlite3GetVdbe(pParse); 3300 if( v ){ 3301 sqlite3BeginWriteOperation(pParse, 1, iDb); 3302 if( !isView ){ 3303 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3304 sqlite3FkDropTable(pParse, pName, pTab); 3305 } 3306 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3307 } 3308 3309 exit_drop_table: 3310 sqlite3SrcListDelete(db, pName); 3311 } 3312 3313 /* 3314 ** This routine is called to create a new foreign key on the table 3315 ** currently under construction. pFromCol determines which columns 3316 ** in the current table point to the foreign key. If pFromCol==0 then 3317 ** connect the key to the last column inserted. pTo is the name of 3318 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3319 ** of tables in the parent pTo table. flags contains all 3320 ** information about the conflict resolution algorithms specified 3321 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3322 ** 3323 ** An FKey structure is created and added to the table currently 3324 ** under construction in the pParse->pNewTable field. 3325 ** 3326 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3327 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3328 */ 3329 void sqlite3CreateForeignKey( 3330 Parse *pParse, /* Parsing context */ 3331 ExprList *pFromCol, /* Columns in this table that point to other table */ 3332 Token *pTo, /* Name of the other table */ 3333 ExprList *pToCol, /* Columns in the other table */ 3334 int flags /* Conflict resolution algorithms. */ 3335 ){ 3336 sqlite3 *db = pParse->db; 3337 #ifndef SQLITE_OMIT_FOREIGN_KEY 3338 FKey *pFKey = 0; 3339 FKey *pNextTo; 3340 Table *p = pParse->pNewTable; 3341 int nByte; 3342 int i; 3343 int nCol; 3344 char *z; 3345 3346 assert( pTo!=0 ); 3347 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3348 if( pFromCol==0 ){ 3349 int iCol = p->nCol-1; 3350 if( NEVER(iCol<0) ) goto fk_end; 3351 if( pToCol && pToCol->nExpr!=1 ){ 3352 sqlite3ErrorMsg(pParse, "foreign key on %s" 3353 " should reference only one column of table %T", 3354 p->aCol[iCol].zName, pTo); 3355 goto fk_end; 3356 } 3357 nCol = 1; 3358 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3359 sqlite3ErrorMsg(pParse, 3360 "number of columns in foreign key does not match the number of " 3361 "columns in the referenced table"); 3362 goto fk_end; 3363 }else{ 3364 nCol = pFromCol->nExpr; 3365 } 3366 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3367 if( pToCol ){ 3368 for(i=0; i<pToCol->nExpr; i++){ 3369 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3370 } 3371 } 3372 pFKey = sqlite3DbMallocZero(db, nByte ); 3373 if( pFKey==0 ){ 3374 goto fk_end; 3375 } 3376 pFKey->pFrom = p; 3377 pFKey->pNextFrom = p->pFKey; 3378 z = (char*)&pFKey->aCol[nCol]; 3379 pFKey->zTo = z; 3380 if( IN_RENAME_OBJECT ){ 3381 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3382 } 3383 memcpy(z, pTo->z, pTo->n); 3384 z[pTo->n] = 0; 3385 sqlite3Dequote(z); 3386 z += pTo->n+1; 3387 pFKey->nCol = nCol; 3388 if( pFromCol==0 ){ 3389 pFKey->aCol[0].iFrom = p->nCol-1; 3390 }else{ 3391 for(i=0; i<nCol; i++){ 3392 int j; 3393 for(j=0; j<p->nCol; j++){ 3394 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3395 pFKey->aCol[i].iFrom = j; 3396 break; 3397 } 3398 } 3399 if( j>=p->nCol ){ 3400 sqlite3ErrorMsg(pParse, 3401 "unknown column \"%s\" in foreign key definition", 3402 pFromCol->a[i].zEName); 3403 goto fk_end; 3404 } 3405 if( IN_RENAME_OBJECT ){ 3406 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3407 } 3408 } 3409 } 3410 if( pToCol ){ 3411 for(i=0; i<nCol; i++){ 3412 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3413 pFKey->aCol[i].zCol = z; 3414 if( IN_RENAME_OBJECT ){ 3415 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3416 } 3417 memcpy(z, pToCol->a[i].zEName, n); 3418 z[n] = 0; 3419 z += n+1; 3420 } 3421 } 3422 pFKey->isDeferred = 0; 3423 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3424 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3425 3426 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3427 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3428 pFKey->zTo, (void *)pFKey 3429 ); 3430 if( pNextTo==pFKey ){ 3431 sqlite3OomFault(db); 3432 goto fk_end; 3433 } 3434 if( pNextTo ){ 3435 assert( pNextTo->pPrevTo==0 ); 3436 pFKey->pNextTo = pNextTo; 3437 pNextTo->pPrevTo = pFKey; 3438 } 3439 3440 /* Link the foreign key to the table as the last step. 3441 */ 3442 p->pFKey = pFKey; 3443 pFKey = 0; 3444 3445 fk_end: 3446 sqlite3DbFree(db, pFKey); 3447 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3448 sqlite3ExprListDelete(db, pFromCol); 3449 sqlite3ExprListDelete(db, pToCol); 3450 } 3451 3452 /* 3453 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3454 ** clause is seen as part of a foreign key definition. The isDeferred 3455 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3456 ** The behavior of the most recently created foreign key is adjusted 3457 ** accordingly. 3458 */ 3459 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3460 #ifndef SQLITE_OMIT_FOREIGN_KEY 3461 Table *pTab; 3462 FKey *pFKey; 3463 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3464 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3465 pFKey->isDeferred = (u8)isDeferred; 3466 #endif 3467 } 3468 3469 /* 3470 ** Generate code that will erase and refill index *pIdx. This is 3471 ** used to initialize a newly created index or to recompute the 3472 ** content of an index in response to a REINDEX command. 3473 ** 3474 ** if memRootPage is not negative, it means that the index is newly 3475 ** created. The register specified by memRootPage contains the 3476 ** root page number of the index. If memRootPage is negative, then 3477 ** the index already exists and must be cleared before being refilled and 3478 ** the root page number of the index is taken from pIndex->tnum. 3479 */ 3480 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3481 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3482 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3483 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3484 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3485 int addr1; /* Address of top of loop */ 3486 int addr2; /* Address to jump to for next iteration */ 3487 Pgno tnum; /* Root page of index */ 3488 int iPartIdxLabel; /* Jump to this label to skip a row */ 3489 Vdbe *v; /* Generate code into this virtual machine */ 3490 KeyInfo *pKey; /* KeyInfo for index */ 3491 int regRecord; /* Register holding assembled index record */ 3492 sqlite3 *db = pParse->db; /* The database connection */ 3493 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3494 3495 #ifndef SQLITE_OMIT_AUTHORIZATION 3496 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3497 db->aDb[iDb].zDbSName ) ){ 3498 return; 3499 } 3500 #endif 3501 3502 /* Require a write-lock on the table to perform this operation */ 3503 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3504 3505 v = sqlite3GetVdbe(pParse); 3506 if( v==0 ) return; 3507 if( memRootPage>=0 ){ 3508 tnum = (Pgno)memRootPage; 3509 }else{ 3510 tnum = pIndex->tnum; 3511 } 3512 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3513 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3514 3515 /* Open the sorter cursor if we are to use one. */ 3516 iSorter = pParse->nTab++; 3517 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3518 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3519 3520 /* Open the table. Loop through all rows of the table, inserting index 3521 ** records into the sorter. */ 3522 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3523 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3524 regRecord = sqlite3GetTempReg(pParse); 3525 sqlite3MultiWrite(pParse); 3526 3527 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3528 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3529 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3530 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3531 sqlite3VdbeJumpHere(v, addr1); 3532 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3533 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3534 (char *)pKey, P4_KEYINFO); 3535 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3536 3537 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3538 if( IsUniqueIndex(pIndex) ){ 3539 int j2 = sqlite3VdbeGoto(v, 1); 3540 addr2 = sqlite3VdbeCurrentAddr(v); 3541 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3542 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3543 pIndex->nKeyCol); VdbeCoverage(v); 3544 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3545 sqlite3VdbeJumpHere(v, j2); 3546 }else{ 3547 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3548 ** abort. The exception is if one of the indexed expressions contains a 3549 ** user function that throws an exception when it is evaluated. But the 3550 ** overhead of adding a statement journal to a CREATE INDEX statement is 3551 ** very small (since most of the pages written do not contain content that 3552 ** needs to be restored if the statement aborts), so we call 3553 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3554 sqlite3MayAbort(pParse); 3555 addr2 = sqlite3VdbeCurrentAddr(v); 3556 } 3557 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3558 if( !pIndex->bAscKeyBug ){ 3559 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3560 ** faster by avoiding unnecessary seeks. But the optimization does 3561 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3562 ** with DESC primary keys, since those indexes have there keys in 3563 ** a different order from the main table. 3564 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3565 */ 3566 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3567 } 3568 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3569 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3570 sqlite3ReleaseTempReg(pParse, regRecord); 3571 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3572 sqlite3VdbeJumpHere(v, addr1); 3573 3574 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3575 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3576 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3577 } 3578 3579 /* 3580 ** Allocate heap space to hold an Index object with nCol columns. 3581 ** 3582 ** Increase the allocation size to provide an extra nExtra bytes 3583 ** of 8-byte aligned space after the Index object and return a 3584 ** pointer to this extra space in *ppExtra. 3585 */ 3586 Index *sqlite3AllocateIndexObject( 3587 sqlite3 *db, /* Database connection */ 3588 i16 nCol, /* Total number of columns in the index */ 3589 int nExtra, /* Number of bytes of extra space to alloc */ 3590 char **ppExtra /* Pointer to the "extra" space */ 3591 ){ 3592 Index *p; /* Allocated index object */ 3593 int nByte; /* Bytes of space for Index object + arrays */ 3594 3595 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3596 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3597 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3598 sizeof(i16)*nCol + /* Index.aiColumn */ 3599 sizeof(u8)*nCol); /* Index.aSortOrder */ 3600 p = sqlite3DbMallocZero(db, nByte + nExtra); 3601 if( p ){ 3602 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3603 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3604 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3605 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3606 p->aSortOrder = (u8*)pExtra; 3607 p->nColumn = nCol; 3608 p->nKeyCol = nCol - 1; 3609 *ppExtra = ((char*)p) + nByte; 3610 } 3611 return p; 3612 } 3613 3614 /* 3615 ** If expression list pList contains an expression that was parsed with 3616 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3617 ** pParse and return non-zero. Otherwise, return zero. 3618 */ 3619 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3620 if( pList ){ 3621 int i; 3622 for(i=0; i<pList->nExpr; i++){ 3623 if( pList->a[i].bNulls ){ 3624 u8 sf = pList->a[i].sortFlags; 3625 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3626 (sf==0 || sf==3) ? "FIRST" : "LAST" 3627 ); 3628 return 1; 3629 } 3630 } 3631 } 3632 return 0; 3633 } 3634 3635 /* 3636 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3637 ** and pTblList is the name of the table that is to be indexed. Both will 3638 ** be NULL for a primary key or an index that is created to satisfy a 3639 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3640 ** as the table to be indexed. pParse->pNewTable is a table that is 3641 ** currently being constructed by a CREATE TABLE statement. 3642 ** 3643 ** pList is a list of columns to be indexed. pList will be NULL if this 3644 ** is a primary key or unique-constraint on the most recent column added 3645 ** to the table currently under construction. 3646 */ 3647 void sqlite3CreateIndex( 3648 Parse *pParse, /* All information about this parse */ 3649 Token *pName1, /* First part of index name. May be NULL */ 3650 Token *pName2, /* Second part of index name. May be NULL */ 3651 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3652 ExprList *pList, /* A list of columns to be indexed */ 3653 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3654 Token *pStart, /* The CREATE token that begins this statement */ 3655 Expr *pPIWhere, /* WHERE clause for partial indices */ 3656 int sortOrder, /* Sort order of primary key when pList==NULL */ 3657 int ifNotExist, /* Omit error if index already exists */ 3658 u8 idxType /* The index type */ 3659 ){ 3660 Table *pTab = 0; /* Table to be indexed */ 3661 Index *pIndex = 0; /* The index to be created */ 3662 char *zName = 0; /* Name of the index */ 3663 int nName; /* Number of characters in zName */ 3664 int i, j; 3665 DbFixer sFix; /* For assigning database names to pTable */ 3666 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3667 sqlite3 *db = pParse->db; 3668 Db *pDb; /* The specific table containing the indexed database */ 3669 int iDb; /* Index of the database that is being written */ 3670 Token *pName = 0; /* Unqualified name of the index to create */ 3671 struct ExprList_item *pListItem; /* For looping over pList */ 3672 int nExtra = 0; /* Space allocated for zExtra[] */ 3673 int nExtraCol; /* Number of extra columns needed */ 3674 char *zExtra = 0; /* Extra space after the Index object */ 3675 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3676 3677 if( db->mallocFailed || pParse->nErr>0 ){ 3678 goto exit_create_index; 3679 } 3680 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3681 goto exit_create_index; 3682 } 3683 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3684 goto exit_create_index; 3685 } 3686 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3687 goto exit_create_index; 3688 } 3689 3690 /* 3691 ** Find the table that is to be indexed. Return early if not found. 3692 */ 3693 if( pTblName!=0 ){ 3694 3695 /* Use the two-part index name to determine the database 3696 ** to search for the table. 'Fix' the table name to this db 3697 ** before looking up the table. 3698 */ 3699 assert( pName1 && pName2 ); 3700 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3701 if( iDb<0 ) goto exit_create_index; 3702 assert( pName && pName->z ); 3703 3704 #ifndef SQLITE_OMIT_TEMPDB 3705 /* If the index name was unqualified, check if the table 3706 ** is a temp table. If so, set the database to 1. Do not do this 3707 ** if initialising a database schema. 3708 */ 3709 if( !db->init.busy ){ 3710 pTab = sqlite3SrcListLookup(pParse, pTblName); 3711 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3712 iDb = 1; 3713 } 3714 } 3715 #endif 3716 3717 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3718 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3719 /* Because the parser constructs pTblName from a single identifier, 3720 ** sqlite3FixSrcList can never fail. */ 3721 assert(0); 3722 } 3723 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3724 assert( db->mallocFailed==0 || pTab==0 ); 3725 if( pTab==0 ) goto exit_create_index; 3726 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3727 sqlite3ErrorMsg(pParse, 3728 "cannot create a TEMP index on non-TEMP table \"%s\"", 3729 pTab->zName); 3730 goto exit_create_index; 3731 } 3732 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3733 }else{ 3734 assert( pName==0 ); 3735 assert( pStart==0 ); 3736 pTab = pParse->pNewTable; 3737 if( !pTab ) goto exit_create_index; 3738 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3739 } 3740 pDb = &db->aDb[iDb]; 3741 3742 assert( pTab!=0 ); 3743 assert( pParse->nErr==0 ); 3744 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3745 && db->init.busy==0 3746 && pTblName!=0 3747 #if SQLITE_USER_AUTHENTICATION 3748 && sqlite3UserAuthTable(pTab->zName)==0 3749 #endif 3750 ){ 3751 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3752 goto exit_create_index; 3753 } 3754 #ifndef SQLITE_OMIT_VIEW 3755 if( pTab->pSelect ){ 3756 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3757 goto exit_create_index; 3758 } 3759 #endif 3760 #ifndef SQLITE_OMIT_VIRTUALTABLE 3761 if( IsVirtual(pTab) ){ 3762 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3763 goto exit_create_index; 3764 } 3765 #endif 3766 3767 /* 3768 ** Find the name of the index. Make sure there is not already another 3769 ** index or table with the same name. 3770 ** 3771 ** Exception: If we are reading the names of permanent indices from the 3772 ** sqlite_schema table (because some other process changed the schema) and 3773 ** one of the index names collides with the name of a temporary table or 3774 ** index, then we will continue to process this index. 3775 ** 3776 ** If pName==0 it means that we are 3777 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3778 ** own name. 3779 */ 3780 if( pName ){ 3781 zName = sqlite3NameFromToken(db, pName); 3782 if( zName==0 ) goto exit_create_index; 3783 assert( pName->z!=0 ); 3784 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3785 goto exit_create_index; 3786 } 3787 if( !IN_RENAME_OBJECT ){ 3788 if( !db->init.busy ){ 3789 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3790 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3791 goto exit_create_index; 3792 } 3793 } 3794 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3795 if( !ifNotExist ){ 3796 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3797 }else{ 3798 assert( !db->init.busy ); 3799 sqlite3CodeVerifySchema(pParse, iDb); 3800 sqlite3ForceNotReadOnly(pParse); 3801 } 3802 goto exit_create_index; 3803 } 3804 } 3805 }else{ 3806 int n; 3807 Index *pLoop; 3808 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3809 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3810 if( zName==0 ){ 3811 goto exit_create_index; 3812 } 3813 3814 /* Automatic index names generated from within sqlite3_declare_vtab() 3815 ** must have names that are distinct from normal automatic index names. 3816 ** The following statement converts "sqlite3_autoindex..." into 3817 ** "sqlite3_butoindex..." in order to make the names distinct. 3818 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3819 if( IN_SPECIAL_PARSE ) zName[7]++; 3820 } 3821 3822 /* Check for authorization to create an index. 3823 */ 3824 #ifndef SQLITE_OMIT_AUTHORIZATION 3825 if( !IN_RENAME_OBJECT ){ 3826 const char *zDb = pDb->zDbSName; 3827 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3828 goto exit_create_index; 3829 } 3830 i = SQLITE_CREATE_INDEX; 3831 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3832 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3833 goto exit_create_index; 3834 } 3835 } 3836 #endif 3837 3838 /* If pList==0, it means this routine was called to make a primary 3839 ** key out of the last column added to the table under construction. 3840 ** So create a fake list to simulate this. 3841 */ 3842 if( pList==0 ){ 3843 Token prevCol; 3844 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3845 pCol->colFlags |= COLFLAG_UNIQUE; 3846 sqlite3TokenInit(&prevCol, pCol->zName); 3847 pList = sqlite3ExprListAppend(pParse, 0, 3848 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3849 if( pList==0 ) goto exit_create_index; 3850 assert( pList->nExpr==1 ); 3851 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3852 }else{ 3853 sqlite3ExprListCheckLength(pParse, pList, "index"); 3854 if( pParse->nErr ) goto exit_create_index; 3855 } 3856 3857 /* Figure out how many bytes of space are required to store explicitly 3858 ** specified collation sequence names. 3859 */ 3860 for(i=0; i<pList->nExpr; i++){ 3861 Expr *pExpr = pList->a[i].pExpr; 3862 assert( pExpr!=0 ); 3863 if( pExpr->op==TK_COLLATE ){ 3864 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3865 } 3866 } 3867 3868 /* 3869 ** Allocate the index structure. 3870 */ 3871 nName = sqlite3Strlen30(zName); 3872 nExtraCol = pPk ? pPk->nKeyCol : 1; 3873 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3874 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3875 nName + nExtra + 1, &zExtra); 3876 if( db->mallocFailed ){ 3877 goto exit_create_index; 3878 } 3879 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3880 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3881 pIndex->zName = zExtra; 3882 zExtra += nName + 1; 3883 memcpy(pIndex->zName, zName, nName+1); 3884 pIndex->pTable = pTab; 3885 pIndex->onError = (u8)onError; 3886 pIndex->uniqNotNull = onError!=OE_None; 3887 pIndex->idxType = idxType; 3888 pIndex->pSchema = db->aDb[iDb].pSchema; 3889 pIndex->nKeyCol = pList->nExpr; 3890 if( pPIWhere ){ 3891 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3892 pIndex->pPartIdxWhere = pPIWhere; 3893 pPIWhere = 0; 3894 } 3895 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3896 3897 /* Check to see if we should honor DESC requests on index columns 3898 */ 3899 if( pDb->pSchema->file_format>=4 ){ 3900 sortOrderMask = -1; /* Honor DESC */ 3901 }else{ 3902 sortOrderMask = 0; /* Ignore DESC */ 3903 } 3904 3905 /* Analyze the list of expressions that form the terms of the index and 3906 ** report any errors. In the common case where the expression is exactly 3907 ** a table column, store that column in aiColumn[]. For general expressions, 3908 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3909 ** 3910 ** TODO: Issue a warning if two or more columns of the index are identical. 3911 ** TODO: Issue a warning if the table primary key is used as part of the 3912 ** index key. 3913 */ 3914 pListItem = pList->a; 3915 if( IN_RENAME_OBJECT ){ 3916 pIndex->aColExpr = pList; 3917 pList = 0; 3918 } 3919 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3920 Expr *pCExpr; /* The i-th index expression */ 3921 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3922 const char *zColl; /* Collation sequence name */ 3923 3924 sqlite3StringToId(pListItem->pExpr); 3925 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3926 if( pParse->nErr ) goto exit_create_index; 3927 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3928 if( pCExpr->op!=TK_COLUMN ){ 3929 if( pTab==pParse->pNewTable ){ 3930 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3931 "UNIQUE constraints"); 3932 goto exit_create_index; 3933 } 3934 if( pIndex->aColExpr==0 ){ 3935 pIndex->aColExpr = pList; 3936 pList = 0; 3937 } 3938 j = XN_EXPR; 3939 pIndex->aiColumn[i] = XN_EXPR; 3940 pIndex->uniqNotNull = 0; 3941 }else{ 3942 j = pCExpr->iColumn; 3943 assert( j<=0x7fff ); 3944 if( j<0 ){ 3945 j = pTab->iPKey; 3946 }else{ 3947 if( pTab->aCol[j].notNull==0 ){ 3948 pIndex->uniqNotNull = 0; 3949 } 3950 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3951 pIndex->bHasVCol = 1; 3952 } 3953 } 3954 pIndex->aiColumn[i] = (i16)j; 3955 } 3956 zColl = 0; 3957 if( pListItem->pExpr->op==TK_COLLATE ){ 3958 int nColl; 3959 zColl = pListItem->pExpr->u.zToken; 3960 nColl = sqlite3Strlen30(zColl) + 1; 3961 assert( nExtra>=nColl ); 3962 memcpy(zExtra, zColl, nColl); 3963 zColl = zExtra; 3964 zExtra += nColl; 3965 nExtra -= nColl; 3966 }else if( j>=0 ){ 3967 zColl = pTab->aCol[j].zColl; 3968 } 3969 if( !zColl ) zColl = sqlite3StrBINARY; 3970 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3971 goto exit_create_index; 3972 } 3973 pIndex->azColl[i] = zColl; 3974 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3975 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3976 } 3977 3978 /* Append the table key to the end of the index. For WITHOUT ROWID 3979 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3980 ** normal tables (when pPk==0) this will be the rowid. 3981 */ 3982 if( pPk ){ 3983 for(j=0; j<pPk->nKeyCol; j++){ 3984 int x = pPk->aiColumn[j]; 3985 assert( x>=0 ); 3986 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3987 pIndex->nColumn--; 3988 }else{ 3989 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3990 pIndex->aiColumn[i] = x; 3991 pIndex->azColl[i] = pPk->azColl[j]; 3992 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3993 i++; 3994 } 3995 } 3996 assert( i==pIndex->nColumn ); 3997 }else{ 3998 pIndex->aiColumn[i] = XN_ROWID; 3999 pIndex->azColl[i] = sqlite3StrBINARY; 4000 } 4001 sqlite3DefaultRowEst(pIndex); 4002 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4003 4004 /* If this index contains every column of its table, then mark 4005 ** it as a covering index */ 4006 assert( HasRowid(pTab) 4007 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4008 recomputeColumnsNotIndexed(pIndex); 4009 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4010 pIndex->isCovering = 1; 4011 for(j=0; j<pTab->nCol; j++){ 4012 if( j==pTab->iPKey ) continue; 4013 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4014 pIndex->isCovering = 0; 4015 break; 4016 } 4017 } 4018 4019 if( pTab==pParse->pNewTable ){ 4020 /* This routine has been called to create an automatic index as a 4021 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4022 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4023 ** i.e. one of: 4024 ** 4025 ** CREATE TABLE t(x PRIMARY KEY, y); 4026 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4027 ** 4028 ** Either way, check to see if the table already has such an index. If 4029 ** so, don't bother creating this one. This only applies to 4030 ** automatically created indices. Users can do as they wish with 4031 ** explicit indices. 4032 ** 4033 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4034 ** (and thus suppressing the second one) even if they have different 4035 ** sort orders. 4036 ** 4037 ** If there are different collating sequences or if the columns of 4038 ** the constraint occur in different orders, then the constraints are 4039 ** considered distinct and both result in separate indices. 4040 */ 4041 Index *pIdx; 4042 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4043 int k; 4044 assert( IsUniqueIndex(pIdx) ); 4045 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4046 assert( IsUniqueIndex(pIndex) ); 4047 4048 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4049 for(k=0; k<pIdx->nKeyCol; k++){ 4050 const char *z1; 4051 const char *z2; 4052 assert( pIdx->aiColumn[k]>=0 ); 4053 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4054 z1 = pIdx->azColl[k]; 4055 z2 = pIndex->azColl[k]; 4056 if( sqlite3StrICmp(z1, z2) ) break; 4057 } 4058 if( k==pIdx->nKeyCol ){ 4059 if( pIdx->onError!=pIndex->onError ){ 4060 /* This constraint creates the same index as a previous 4061 ** constraint specified somewhere in the CREATE TABLE statement. 4062 ** However the ON CONFLICT clauses are different. If both this 4063 ** constraint and the previous equivalent constraint have explicit 4064 ** ON CONFLICT clauses this is an error. Otherwise, use the 4065 ** explicitly specified behavior for the index. 4066 */ 4067 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4068 sqlite3ErrorMsg(pParse, 4069 "conflicting ON CONFLICT clauses specified", 0); 4070 } 4071 if( pIdx->onError==OE_Default ){ 4072 pIdx->onError = pIndex->onError; 4073 } 4074 } 4075 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4076 if( IN_RENAME_OBJECT ){ 4077 pIndex->pNext = pParse->pNewIndex; 4078 pParse->pNewIndex = pIndex; 4079 pIndex = 0; 4080 } 4081 goto exit_create_index; 4082 } 4083 } 4084 } 4085 4086 if( !IN_RENAME_OBJECT ){ 4087 4088 /* Link the new Index structure to its table and to the other 4089 ** in-memory database structures. 4090 */ 4091 assert( pParse->nErr==0 ); 4092 if( db->init.busy ){ 4093 Index *p; 4094 assert( !IN_SPECIAL_PARSE ); 4095 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4096 if( pTblName!=0 ){ 4097 pIndex->tnum = db->init.newTnum; 4098 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4099 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4100 pParse->rc = SQLITE_CORRUPT_BKPT; 4101 goto exit_create_index; 4102 } 4103 } 4104 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4105 pIndex->zName, pIndex); 4106 if( p ){ 4107 assert( p==pIndex ); /* Malloc must have failed */ 4108 sqlite3OomFault(db); 4109 goto exit_create_index; 4110 } 4111 db->mDbFlags |= DBFLAG_SchemaChange; 4112 } 4113 4114 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4115 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4116 ** emit code to allocate the index rootpage on disk and make an entry for 4117 ** the index in the sqlite_schema table and populate the index with 4118 ** content. But, do not do this if we are simply reading the sqlite_schema 4119 ** table to parse the schema, or if this index is the PRIMARY KEY index 4120 ** of a WITHOUT ROWID table. 4121 ** 4122 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4123 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4124 ** has just been created, it contains no data and the index initialization 4125 ** step can be skipped. 4126 */ 4127 else if( HasRowid(pTab) || pTblName!=0 ){ 4128 Vdbe *v; 4129 char *zStmt; 4130 int iMem = ++pParse->nMem; 4131 4132 v = sqlite3GetVdbe(pParse); 4133 if( v==0 ) goto exit_create_index; 4134 4135 sqlite3BeginWriteOperation(pParse, 1, iDb); 4136 4137 /* Create the rootpage for the index using CreateIndex. But before 4138 ** doing so, code a Noop instruction and store its address in 4139 ** Index.tnum. This is required in case this index is actually a 4140 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4141 ** that case the convertToWithoutRowidTable() routine will replace 4142 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4143 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4144 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4145 4146 /* Gather the complete text of the CREATE INDEX statement into 4147 ** the zStmt variable 4148 */ 4149 assert( pName!=0 || pStart==0 ); 4150 if( pStart ){ 4151 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4152 if( pName->z[n-1]==';' ) n--; 4153 /* A named index with an explicit CREATE INDEX statement */ 4154 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4155 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4156 }else{ 4157 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4158 /* zStmt = sqlite3MPrintf(""); */ 4159 zStmt = 0; 4160 } 4161 4162 /* Add an entry in sqlite_schema for this index 4163 */ 4164 sqlite3NestedParse(pParse, 4165 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4166 db->aDb[iDb].zDbSName, 4167 pIndex->zName, 4168 pTab->zName, 4169 iMem, 4170 zStmt 4171 ); 4172 sqlite3DbFree(db, zStmt); 4173 4174 /* Fill the index with data and reparse the schema. Code an OP_Expire 4175 ** to invalidate all pre-compiled statements. 4176 */ 4177 if( pTblName ){ 4178 sqlite3RefillIndex(pParse, pIndex, iMem); 4179 sqlite3ChangeCookie(pParse, iDb); 4180 sqlite3VdbeAddParseSchemaOp(v, iDb, 4181 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4182 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4183 } 4184 4185 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4186 } 4187 } 4188 if( db->init.busy || pTblName==0 ){ 4189 pIndex->pNext = pTab->pIndex; 4190 pTab->pIndex = pIndex; 4191 pIndex = 0; 4192 } 4193 else if( IN_RENAME_OBJECT ){ 4194 assert( pParse->pNewIndex==0 ); 4195 pParse->pNewIndex = pIndex; 4196 pIndex = 0; 4197 } 4198 4199 /* Clean up before exiting */ 4200 exit_create_index: 4201 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4202 if( pTab ){ 4203 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4204 ** The list was already ordered when this routine was entered, so at this 4205 ** point at most a single index (the newly added index) will be out of 4206 ** order. So we have to reorder at most one index. */ 4207 Index **ppFrom = &pTab->pIndex; 4208 Index *pThis; 4209 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4210 Index *pNext; 4211 if( pThis->onError!=OE_Replace ) continue; 4212 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4213 *ppFrom = pNext; 4214 pThis->pNext = pNext->pNext; 4215 pNext->pNext = pThis; 4216 ppFrom = &pNext->pNext; 4217 } 4218 break; 4219 } 4220 #ifdef SQLITE_DEBUG 4221 /* Verify that all REPLACE indexes really are now at the end 4222 ** of the index list. In other words, no other index type ever 4223 ** comes after a REPLACE index on the list. */ 4224 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4225 assert( pThis->onError!=OE_Replace 4226 || pThis->pNext==0 4227 || pThis->pNext->onError==OE_Replace ); 4228 } 4229 #endif 4230 } 4231 sqlite3ExprDelete(db, pPIWhere); 4232 sqlite3ExprListDelete(db, pList); 4233 sqlite3SrcListDelete(db, pTblName); 4234 sqlite3DbFree(db, zName); 4235 } 4236 4237 /* 4238 ** Fill the Index.aiRowEst[] array with default information - information 4239 ** to be used when we have not run the ANALYZE command. 4240 ** 4241 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4242 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4243 ** number of rows in the table that match any particular value of the 4244 ** first column of the index. aiRowEst[2] is an estimate of the number 4245 ** of rows that match any particular combination of the first 2 columns 4246 ** of the index. And so forth. It must always be the case that 4247 * 4248 ** aiRowEst[N]<=aiRowEst[N-1] 4249 ** aiRowEst[N]>=1 4250 ** 4251 ** Apart from that, we have little to go on besides intuition as to 4252 ** how aiRowEst[] should be initialized. The numbers generated here 4253 ** are based on typical values found in actual indices. 4254 */ 4255 void sqlite3DefaultRowEst(Index *pIdx){ 4256 /* 10, 9, 8, 7, 6 */ 4257 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4258 LogEst *a = pIdx->aiRowLogEst; 4259 LogEst x; 4260 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4261 int i; 4262 4263 /* Indexes with default row estimates should not have stat1 data */ 4264 assert( !pIdx->hasStat1 ); 4265 4266 /* Set the first entry (number of rows in the index) to the estimated 4267 ** number of rows in the table, or half the number of rows in the table 4268 ** for a partial index. 4269 ** 4270 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4271 ** table but other parts we are having to guess at, then do not let the 4272 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4273 ** Failure to do this can cause the indexes for which we do not have 4274 ** stat1 data to be ignored by the query planner. 4275 */ 4276 x = pIdx->pTable->nRowLogEst; 4277 assert( 99==sqlite3LogEst(1000) ); 4278 if( x<99 ){ 4279 pIdx->pTable->nRowLogEst = x = 99; 4280 } 4281 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4282 a[0] = x; 4283 4284 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4285 ** 6 and each subsequent value (if any) is 5. */ 4286 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4287 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4288 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4289 } 4290 4291 assert( 0==sqlite3LogEst(1) ); 4292 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4293 } 4294 4295 /* 4296 ** This routine will drop an existing named index. This routine 4297 ** implements the DROP INDEX statement. 4298 */ 4299 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4300 Index *pIndex; 4301 Vdbe *v; 4302 sqlite3 *db = pParse->db; 4303 int iDb; 4304 4305 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4306 if( db->mallocFailed ){ 4307 goto exit_drop_index; 4308 } 4309 assert( pName->nSrc==1 ); 4310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4311 goto exit_drop_index; 4312 } 4313 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4314 if( pIndex==0 ){ 4315 if( !ifExists ){ 4316 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4317 }else{ 4318 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4319 sqlite3ForceNotReadOnly(pParse); 4320 } 4321 pParse->checkSchema = 1; 4322 goto exit_drop_index; 4323 } 4324 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4325 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4326 "or PRIMARY KEY constraint cannot be dropped", 0); 4327 goto exit_drop_index; 4328 } 4329 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4330 #ifndef SQLITE_OMIT_AUTHORIZATION 4331 { 4332 int code = SQLITE_DROP_INDEX; 4333 Table *pTab = pIndex->pTable; 4334 const char *zDb = db->aDb[iDb].zDbSName; 4335 const char *zTab = SCHEMA_TABLE(iDb); 4336 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4337 goto exit_drop_index; 4338 } 4339 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4340 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4341 goto exit_drop_index; 4342 } 4343 } 4344 #endif 4345 4346 /* Generate code to remove the index and from the schema table */ 4347 v = sqlite3GetVdbe(pParse); 4348 if( v ){ 4349 sqlite3BeginWriteOperation(pParse, 1, iDb); 4350 sqlite3NestedParse(pParse, 4351 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4352 db->aDb[iDb].zDbSName, pIndex->zName 4353 ); 4354 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4355 sqlite3ChangeCookie(pParse, iDb); 4356 destroyRootPage(pParse, pIndex->tnum, iDb); 4357 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4358 } 4359 4360 exit_drop_index: 4361 sqlite3SrcListDelete(db, pName); 4362 } 4363 4364 /* 4365 ** pArray is a pointer to an array of objects. Each object in the 4366 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4367 ** to extend the array so that there is space for a new object at the end. 4368 ** 4369 ** When this function is called, *pnEntry contains the current size of 4370 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4371 ** in total). 4372 ** 4373 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4374 ** space allocated for the new object is zeroed, *pnEntry updated to 4375 ** reflect the new size of the array and a pointer to the new allocation 4376 ** returned. *pIdx is set to the index of the new array entry in this case. 4377 ** 4378 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4379 ** unchanged and a copy of pArray returned. 4380 */ 4381 void *sqlite3ArrayAllocate( 4382 sqlite3 *db, /* Connection to notify of malloc failures */ 4383 void *pArray, /* Array of objects. Might be reallocated */ 4384 int szEntry, /* Size of each object in the array */ 4385 int *pnEntry, /* Number of objects currently in use */ 4386 int *pIdx /* Write the index of a new slot here */ 4387 ){ 4388 char *z; 4389 sqlite3_int64 n = *pIdx = *pnEntry; 4390 if( (n & (n-1))==0 ){ 4391 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4392 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4393 if( pNew==0 ){ 4394 *pIdx = -1; 4395 return pArray; 4396 } 4397 pArray = pNew; 4398 } 4399 z = (char*)pArray; 4400 memset(&z[n * szEntry], 0, szEntry); 4401 ++*pnEntry; 4402 return pArray; 4403 } 4404 4405 /* 4406 ** Append a new element to the given IdList. Create a new IdList if 4407 ** need be. 4408 ** 4409 ** A new IdList is returned, or NULL if malloc() fails. 4410 */ 4411 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4412 sqlite3 *db = pParse->db; 4413 int i; 4414 if( pList==0 ){ 4415 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4416 if( pList==0 ) return 0; 4417 } 4418 pList->a = sqlite3ArrayAllocate( 4419 db, 4420 pList->a, 4421 sizeof(pList->a[0]), 4422 &pList->nId, 4423 &i 4424 ); 4425 if( i<0 ){ 4426 sqlite3IdListDelete(db, pList); 4427 return 0; 4428 } 4429 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4430 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4431 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4432 } 4433 return pList; 4434 } 4435 4436 /* 4437 ** Delete an IdList. 4438 */ 4439 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4440 int i; 4441 if( pList==0 ) return; 4442 for(i=0; i<pList->nId; i++){ 4443 sqlite3DbFree(db, pList->a[i].zName); 4444 } 4445 sqlite3DbFree(db, pList->a); 4446 sqlite3DbFreeNN(db, pList); 4447 } 4448 4449 /* 4450 ** Return the index in pList of the identifier named zId. Return -1 4451 ** if not found. 4452 */ 4453 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4454 int i; 4455 if( pList==0 ) return -1; 4456 for(i=0; i<pList->nId; i++){ 4457 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4458 } 4459 return -1; 4460 } 4461 4462 /* 4463 ** Maximum size of a SrcList object. 4464 ** The SrcList object is used to represent the FROM clause of a 4465 ** SELECT statement, and the query planner cannot deal with more 4466 ** than 64 tables in a join. So any value larger than 64 here 4467 ** is sufficient for most uses. Smaller values, like say 10, are 4468 ** appropriate for small and memory-limited applications. 4469 */ 4470 #ifndef SQLITE_MAX_SRCLIST 4471 # define SQLITE_MAX_SRCLIST 200 4472 #endif 4473 4474 /* 4475 ** Expand the space allocated for the given SrcList object by 4476 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4477 ** New slots are zeroed. 4478 ** 4479 ** For example, suppose a SrcList initially contains two entries: A,B. 4480 ** To append 3 new entries onto the end, do this: 4481 ** 4482 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4483 ** 4484 ** After the call above it would contain: A, B, nil, nil, nil. 4485 ** If the iStart argument had been 1 instead of 2, then the result 4486 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4487 ** the iStart value would be 0. The result then would 4488 ** be: nil, nil, nil, A, B. 4489 ** 4490 ** If a memory allocation fails or the SrcList becomes too large, leave 4491 ** the original SrcList unchanged, return NULL, and leave an error message 4492 ** in pParse. 4493 */ 4494 SrcList *sqlite3SrcListEnlarge( 4495 Parse *pParse, /* Parsing context into which errors are reported */ 4496 SrcList *pSrc, /* The SrcList to be enlarged */ 4497 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4498 int iStart /* Index in pSrc->a[] of first new slot */ 4499 ){ 4500 int i; 4501 4502 /* Sanity checking on calling parameters */ 4503 assert( iStart>=0 ); 4504 assert( nExtra>=1 ); 4505 assert( pSrc!=0 ); 4506 assert( iStart<=pSrc->nSrc ); 4507 4508 /* Allocate additional space if needed */ 4509 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4510 SrcList *pNew; 4511 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4512 sqlite3 *db = pParse->db; 4513 4514 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4515 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4516 SQLITE_MAX_SRCLIST); 4517 return 0; 4518 } 4519 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4520 pNew = sqlite3DbRealloc(db, pSrc, 4521 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4522 if( pNew==0 ){ 4523 assert( db->mallocFailed ); 4524 return 0; 4525 } 4526 pSrc = pNew; 4527 pSrc->nAlloc = nAlloc; 4528 } 4529 4530 /* Move existing slots that come after the newly inserted slots 4531 ** out of the way */ 4532 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4533 pSrc->a[i+nExtra] = pSrc->a[i]; 4534 } 4535 pSrc->nSrc += nExtra; 4536 4537 /* Zero the newly allocated slots */ 4538 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4539 for(i=iStart; i<iStart+nExtra; i++){ 4540 pSrc->a[i].iCursor = -1; 4541 } 4542 4543 /* Return a pointer to the enlarged SrcList */ 4544 return pSrc; 4545 } 4546 4547 4548 /* 4549 ** Append a new table name to the given SrcList. Create a new SrcList if 4550 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4551 ** 4552 ** A SrcList is returned, or NULL if there is an OOM error or if the 4553 ** SrcList grows to large. The returned 4554 ** SrcList might be the same as the SrcList that was input or it might be 4555 ** a new one. If an OOM error does occurs, then the prior value of pList 4556 ** that is input to this routine is automatically freed. 4557 ** 4558 ** If pDatabase is not null, it means that the table has an optional 4559 ** database name prefix. Like this: "database.table". The pDatabase 4560 ** points to the table name and the pTable points to the database name. 4561 ** The SrcList.a[].zName field is filled with the table name which might 4562 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4563 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4564 ** or with NULL if no database is specified. 4565 ** 4566 ** In other words, if call like this: 4567 ** 4568 ** sqlite3SrcListAppend(D,A,B,0); 4569 ** 4570 ** Then B is a table name and the database name is unspecified. If called 4571 ** like this: 4572 ** 4573 ** sqlite3SrcListAppend(D,A,B,C); 4574 ** 4575 ** Then C is the table name and B is the database name. If C is defined 4576 ** then so is B. In other words, we never have a case where: 4577 ** 4578 ** sqlite3SrcListAppend(D,A,0,C); 4579 ** 4580 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4581 ** before being added to the SrcList. 4582 */ 4583 SrcList *sqlite3SrcListAppend( 4584 Parse *pParse, /* Parsing context, in which errors are reported */ 4585 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4586 Token *pTable, /* Table to append */ 4587 Token *pDatabase /* Database of the table */ 4588 ){ 4589 SrcItem *pItem; 4590 sqlite3 *db; 4591 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4592 assert( pParse!=0 ); 4593 assert( pParse->db!=0 ); 4594 db = pParse->db; 4595 if( pList==0 ){ 4596 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4597 if( pList==0 ) return 0; 4598 pList->nAlloc = 1; 4599 pList->nSrc = 1; 4600 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4601 pList->a[0].iCursor = -1; 4602 }else{ 4603 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4604 if( pNew==0 ){ 4605 sqlite3SrcListDelete(db, pList); 4606 return 0; 4607 }else{ 4608 pList = pNew; 4609 } 4610 } 4611 pItem = &pList->a[pList->nSrc-1]; 4612 if( pDatabase && pDatabase->z==0 ){ 4613 pDatabase = 0; 4614 } 4615 if( pDatabase ){ 4616 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4617 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4618 }else{ 4619 pItem->zName = sqlite3NameFromToken(db, pTable); 4620 pItem->zDatabase = 0; 4621 } 4622 return pList; 4623 } 4624 4625 /* 4626 ** Assign VdbeCursor index numbers to all tables in a SrcList 4627 */ 4628 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4629 int i; 4630 SrcItem *pItem; 4631 assert( pList || pParse->db->mallocFailed ); 4632 if( ALWAYS(pList) ){ 4633 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4634 if( pItem->iCursor>=0 ) continue; 4635 pItem->iCursor = pParse->nTab++; 4636 if( pItem->pSelect ){ 4637 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4638 } 4639 } 4640 } 4641 } 4642 4643 /* 4644 ** Delete an entire SrcList including all its substructure. 4645 */ 4646 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4647 int i; 4648 SrcItem *pItem; 4649 if( pList==0 ) return; 4650 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4651 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4652 sqlite3DbFree(db, pItem->zName); 4653 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4654 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4655 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4656 sqlite3DeleteTable(db, pItem->pTab); 4657 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4658 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4659 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4660 } 4661 sqlite3DbFreeNN(db, pList); 4662 } 4663 4664 /* 4665 ** This routine is called by the parser to add a new term to the 4666 ** end of a growing FROM clause. The "p" parameter is the part of 4667 ** the FROM clause that has already been constructed. "p" is NULL 4668 ** if this is the first term of the FROM clause. pTable and pDatabase 4669 ** are the name of the table and database named in the FROM clause term. 4670 ** pDatabase is NULL if the database name qualifier is missing - the 4671 ** usual case. If the term has an alias, then pAlias points to the 4672 ** alias token. If the term is a subquery, then pSubquery is the 4673 ** SELECT statement that the subquery encodes. The pTable and 4674 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4675 ** parameters are the content of the ON and USING clauses. 4676 ** 4677 ** Return a new SrcList which encodes is the FROM with the new 4678 ** term added. 4679 */ 4680 SrcList *sqlite3SrcListAppendFromTerm( 4681 Parse *pParse, /* Parsing context */ 4682 SrcList *p, /* The left part of the FROM clause already seen */ 4683 Token *pTable, /* Name of the table to add to the FROM clause */ 4684 Token *pDatabase, /* Name of the database containing pTable */ 4685 Token *pAlias, /* The right-hand side of the AS subexpression */ 4686 Select *pSubquery, /* A subquery used in place of a table name */ 4687 Expr *pOn, /* The ON clause of a join */ 4688 IdList *pUsing /* The USING clause of a join */ 4689 ){ 4690 SrcItem *pItem; 4691 sqlite3 *db = pParse->db; 4692 if( !p && (pOn || pUsing) ){ 4693 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4694 (pOn ? "ON" : "USING") 4695 ); 4696 goto append_from_error; 4697 } 4698 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4699 if( p==0 ){ 4700 goto append_from_error; 4701 } 4702 assert( p->nSrc>0 ); 4703 pItem = &p->a[p->nSrc-1]; 4704 assert( (pTable==0)==(pDatabase==0) ); 4705 assert( pItem->zName==0 || pDatabase!=0 ); 4706 if( IN_RENAME_OBJECT && pItem->zName ){ 4707 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4708 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4709 } 4710 assert( pAlias!=0 ); 4711 if( pAlias->n ){ 4712 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4713 } 4714 pItem->pSelect = pSubquery; 4715 pItem->pOn = pOn; 4716 pItem->pUsing = pUsing; 4717 return p; 4718 4719 append_from_error: 4720 assert( p==0 ); 4721 sqlite3ExprDelete(db, pOn); 4722 sqlite3IdListDelete(db, pUsing); 4723 sqlite3SelectDelete(db, pSubquery); 4724 return 0; 4725 } 4726 4727 /* 4728 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4729 ** element of the source-list passed as the second argument. 4730 */ 4731 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4732 assert( pIndexedBy!=0 ); 4733 if( p && pIndexedBy->n>0 ){ 4734 SrcItem *pItem; 4735 assert( p->nSrc>0 ); 4736 pItem = &p->a[p->nSrc-1]; 4737 assert( pItem->fg.notIndexed==0 ); 4738 assert( pItem->fg.isIndexedBy==0 ); 4739 assert( pItem->fg.isTabFunc==0 ); 4740 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4741 /* A "NOT INDEXED" clause was supplied. See parse.y 4742 ** construct "indexed_opt" for details. */ 4743 pItem->fg.notIndexed = 1; 4744 }else{ 4745 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4746 pItem->fg.isIndexedBy = 1; 4747 } 4748 } 4749 } 4750 4751 /* 4752 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4753 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4754 ** are deleted by this function. 4755 */ 4756 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4757 assert( p1 && p1->nSrc==1 ); 4758 if( p2 ){ 4759 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4760 if( pNew==0 ){ 4761 sqlite3SrcListDelete(pParse->db, p2); 4762 }else{ 4763 p1 = pNew; 4764 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4765 sqlite3DbFree(pParse->db, p2); 4766 } 4767 } 4768 return p1; 4769 } 4770 4771 /* 4772 ** Add the list of function arguments to the SrcList entry for a 4773 ** table-valued-function. 4774 */ 4775 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4776 if( p ){ 4777 SrcItem *pItem = &p->a[p->nSrc-1]; 4778 assert( pItem->fg.notIndexed==0 ); 4779 assert( pItem->fg.isIndexedBy==0 ); 4780 assert( pItem->fg.isTabFunc==0 ); 4781 pItem->u1.pFuncArg = pList; 4782 pItem->fg.isTabFunc = 1; 4783 }else{ 4784 sqlite3ExprListDelete(pParse->db, pList); 4785 } 4786 } 4787 4788 /* 4789 ** When building up a FROM clause in the parser, the join operator 4790 ** is initially attached to the left operand. But the code generator 4791 ** expects the join operator to be on the right operand. This routine 4792 ** Shifts all join operators from left to right for an entire FROM 4793 ** clause. 4794 ** 4795 ** Example: Suppose the join is like this: 4796 ** 4797 ** A natural cross join B 4798 ** 4799 ** The operator is "natural cross join". The A and B operands are stored 4800 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4801 ** operator with A. This routine shifts that operator over to B. 4802 */ 4803 void sqlite3SrcListShiftJoinType(SrcList *p){ 4804 if( p ){ 4805 int i; 4806 for(i=p->nSrc-1; i>0; i--){ 4807 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4808 } 4809 p->a[0].fg.jointype = 0; 4810 } 4811 } 4812 4813 /* 4814 ** Generate VDBE code for a BEGIN statement. 4815 */ 4816 void sqlite3BeginTransaction(Parse *pParse, int type){ 4817 sqlite3 *db; 4818 Vdbe *v; 4819 int i; 4820 4821 assert( pParse!=0 ); 4822 db = pParse->db; 4823 assert( db!=0 ); 4824 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4825 return; 4826 } 4827 v = sqlite3GetVdbe(pParse); 4828 if( !v ) return; 4829 if( type!=TK_DEFERRED ){ 4830 for(i=0; i<db->nDb; i++){ 4831 int eTxnType; 4832 Btree *pBt = db->aDb[i].pBt; 4833 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4834 eTxnType = 0; /* Read txn */ 4835 }else if( type==TK_EXCLUSIVE ){ 4836 eTxnType = 2; /* Exclusive txn */ 4837 }else{ 4838 eTxnType = 1; /* Write txn */ 4839 } 4840 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4841 sqlite3VdbeUsesBtree(v, i); 4842 } 4843 } 4844 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4845 } 4846 4847 /* 4848 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4849 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4850 ** code is generated for a COMMIT. 4851 */ 4852 void sqlite3EndTransaction(Parse *pParse, int eType){ 4853 Vdbe *v; 4854 int isRollback; 4855 4856 assert( pParse!=0 ); 4857 assert( pParse->db!=0 ); 4858 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4859 isRollback = eType==TK_ROLLBACK; 4860 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4861 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4862 return; 4863 } 4864 v = sqlite3GetVdbe(pParse); 4865 if( v ){ 4866 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4867 } 4868 } 4869 4870 /* 4871 ** This function is called by the parser when it parses a command to create, 4872 ** release or rollback an SQL savepoint. 4873 */ 4874 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4875 char *zName = sqlite3NameFromToken(pParse->db, pName); 4876 if( zName ){ 4877 Vdbe *v = sqlite3GetVdbe(pParse); 4878 #ifndef SQLITE_OMIT_AUTHORIZATION 4879 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4880 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4881 #endif 4882 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4883 sqlite3DbFree(pParse->db, zName); 4884 return; 4885 } 4886 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4887 } 4888 } 4889 4890 /* 4891 ** Make sure the TEMP database is open and available for use. Return 4892 ** the number of errors. Leave any error messages in the pParse structure. 4893 */ 4894 int sqlite3OpenTempDatabase(Parse *pParse){ 4895 sqlite3 *db = pParse->db; 4896 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4897 int rc; 4898 Btree *pBt; 4899 static const int flags = 4900 SQLITE_OPEN_READWRITE | 4901 SQLITE_OPEN_CREATE | 4902 SQLITE_OPEN_EXCLUSIVE | 4903 SQLITE_OPEN_DELETEONCLOSE | 4904 SQLITE_OPEN_TEMP_DB; 4905 4906 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4907 if( rc!=SQLITE_OK ){ 4908 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4909 "file for storing temporary tables"); 4910 pParse->rc = rc; 4911 return 1; 4912 } 4913 db->aDb[1].pBt = pBt; 4914 assert( db->aDb[1].pSchema ); 4915 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4916 sqlite3OomFault(db); 4917 return 1; 4918 } 4919 } 4920 return 0; 4921 } 4922 4923 /* 4924 ** Record the fact that the schema cookie will need to be verified 4925 ** for database iDb. The code to actually verify the schema cookie 4926 ** will occur at the end of the top-level VDBE and will be generated 4927 ** later, by sqlite3FinishCoding(). 4928 */ 4929 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4930 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4931 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4932 assert( iDb<SQLITE_MAX_DB ); 4933 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4934 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4935 DbMaskSet(pToplevel->cookieMask, iDb); 4936 if( !OMIT_TEMPDB && iDb==1 ){ 4937 sqlite3OpenTempDatabase(pToplevel); 4938 } 4939 } 4940 } 4941 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4942 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4943 } 4944 4945 4946 /* 4947 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4948 ** attached database. Otherwise, invoke it for the database named zDb only. 4949 */ 4950 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4951 sqlite3 *db = pParse->db; 4952 int i; 4953 for(i=0; i<db->nDb; i++){ 4954 Db *pDb = &db->aDb[i]; 4955 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4956 sqlite3CodeVerifySchema(pParse, i); 4957 } 4958 } 4959 } 4960 4961 /* 4962 ** Generate VDBE code that prepares for doing an operation that 4963 ** might change the database. 4964 ** 4965 ** This routine starts a new transaction if we are not already within 4966 ** a transaction. If we are already within a transaction, then a checkpoint 4967 ** is set if the setStatement parameter is true. A checkpoint should 4968 ** be set for operations that might fail (due to a constraint) part of 4969 ** the way through and which will need to undo some writes without having to 4970 ** rollback the whole transaction. For operations where all constraints 4971 ** can be checked before any changes are made to the database, it is never 4972 ** necessary to undo a write and the checkpoint should not be set. 4973 */ 4974 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4975 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4976 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4977 DbMaskSet(pToplevel->writeMask, iDb); 4978 pToplevel->isMultiWrite |= setStatement; 4979 } 4980 4981 /* 4982 ** Indicate that the statement currently under construction might write 4983 ** more than one entry (example: deleting one row then inserting another, 4984 ** inserting multiple rows in a table, or inserting a row and index entries.) 4985 ** If an abort occurs after some of these writes have completed, then it will 4986 ** be necessary to undo the completed writes. 4987 */ 4988 void sqlite3MultiWrite(Parse *pParse){ 4989 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4990 pToplevel->isMultiWrite = 1; 4991 } 4992 4993 /* 4994 ** The code generator calls this routine if is discovers that it is 4995 ** possible to abort a statement prior to completion. In order to 4996 ** perform this abort without corrupting the database, we need to make 4997 ** sure that the statement is protected by a statement transaction. 4998 ** 4999 ** Technically, we only need to set the mayAbort flag if the 5000 ** isMultiWrite flag was previously set. There is a time dependency 5001 ** such that the abort must occur after the multiwrite. This makes 5002 ** some statements involving the REPLACE conflict resolution algorithm 5003 ** go a little faster. But taking advantage of this time dependency 5004 ** makes it more difficult to prove that the code is correct (in 5005 ** particular, it prevents us from writing an effective 5006 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5007 ** to take the safe route and skip the optimization. 5008 */ 5009 void sqlite3MayAbort(Parse *pParse){ 5010 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5011 pToplevel->mayAbort = 1; 5012 } 5013 5014 /* 5015 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5016 ** error. The onError parameter determines which (if any) of the statement 5017 ** and/or current transaction is rolled back. 5018 */ 5019 void sqlite3HaltConstraint( 5020 Parse *pParse, /* Parsing context */ 5021 int errCode, /* extended error code */ 5022 int onError, /* Constraint type */ 5023 char *p4, /* Error message */ 5024 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5025 u8 p5Errmsg /* P5_ErrMsg type */ 5026 ){ 5027 Vdbe *v; 5028 assert( pParse->pVdbe!=0 ); 5029 v = sqlite3GetVdbe(pParse); 5030 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5031 if( onError==OE_Abort ){ 5032 sqlite3MayAbort(pParse); 5033 } 5034 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5035 sqlite3VdbeChangeP5(v, p5Errmsg); 5036 } 5037 5038 /* 5039 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5040 */ 5041 void sqlite3UniqueConstraint( 5042 Parse *pParse, /* Parsing context */ 5043 int onError, /* Constraint type */ 5044 Index *pIdx /* The index that triggers the constraint */ 5045 ){ 5046 char *zErr; 5047 int j; 5048 StrAccum errMsg; 5049 Table *pTab = pIdx->pTable; 5050 5051 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5052 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5053 if( pIdx->aColExpr ){ 5054 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5055 }else{ 5056 for(j=0; j<pIdx->nKeyCol; j++){ 5057 char *zCol; 5058 assert( pIdx->aiColumn[j]>=0 ); 5059 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 5060 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5061 sqlite3_str_appendall(&errMsg, pTab->zName); 5062 sqlite3_str_append(&errMsg, ".", 1); 5063 sqlite3_str_appendall(&errMsg, zCol); 5064 } 5065 } 5066 zErr = sqlite3StrAccumFinish(&errMsg); 5067 sqlite3HaltConstraint(pParse, 5068 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5069 : SQLITE_CONSTRAINT_UNIQUE, 5070 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5071 } 5072 5073 5074 /* 5075 ** Code an OP_Halt due to non-unique rowid. 5076 */ 5077 void sqlite3RowidConstraint( 5078 Parse *pParse, /* Parsing context */ 5079 int onError, /* Conflict resolution algorithm */ 5080 Table *pTab /* The table with the non-unique rowid */ 5081 ){ 5082 char *zMsg; 5083 int rc; 5084 if( pTab->iPKey>=0 ){ 5085 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5086 pTab->aCol[pTab->iPKey].zName); 5087 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5088 }else{ 5089 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5090 rc = SQLITE_CONSTRAINT_ROWID; 5091 } 5092 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5093 P5_ConstraintUnique); 5094 } 5095 5096 /* 5097 ** Check to see if pIndex uses the collating sequence pColl. Return 5098 ** true if it does and false if it does not. 5099 */ 5100 #ifndef SQLITE_OMIT_REINDEX 5101 static int collationMatch(const char *zColl, Index *pIndex){ 5102 int i; 5103 assert( zColl!=0 ); 5104 for(i=0; i<pIndex->nColumn; i++){ 5105 const char *z = pIndex->azColl[i]; 5106 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5107 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5108 return 1; 5109 } 5110 } 5111 return 0; 5112 } 5113 #endif 5114 5115 /* 5116 ** Recompute all indices of pTab that use the collating sequence pColl. 5117 ** If pColl==0 then recompute all indices of pTab. 5118 */ 5119 #ifndef SQLITE_OMIT_REINDEX 5120 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5121 if( !IsVirtual(pTab) ){ 5122 Index *pIndex; /* An index associated with pTab */ 5123 5124 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5125 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5126 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5127 sqlite3BeginWriteOperation(pParse, 0, iDb); 5128 sqlite3RefillIndex(pParse, pIndex, -1); 5129 } 5130 } 5131 } 5132 } 5133 #endif 5134 5135 /* 5136 ** Recompute all indices of all tables in all databases where the 5137 ** indices use the collating sequence pColl. If pColl==0 then recompute 5138 ** all indices everywhere. 5139 */ 5140 #ifndef SQLITE_OMIT_REINDEX 5141 static void reindexDatabases(Parse *pParse, char const *zColl){ 5142 Db *pDb; /* A single database */ 5143 int iDb; /* The database index number */ 5144 sqlite3 *db = pParse->db; /* The database connection */ 5145 HashElem *k; /* For looping over tables in pDb */ 5146 Table *pTab; /* A table in the database */ 5147 5148 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5149 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5150 assert( pDb!=0 ); 5151 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5152 pTab = (Table*)sqliteHashData(k); 5153 reindexTable(pParse, pTab, zColl); 5154 } 5155 } 5156 } 5157 #endif 5158 5159 /* 5160 ** Generate code for the REINDEX command. 5161 ** 5162 ** REINDEX -- 1 5163 ** REINDEX <collation> -- 2 5164 ** REINDEX ?<database>.?<tablename> -- 3 5165 ** REINDEX ?<database>.?<indexname> -- 4 5166 ** 5167 ** Form 1 causes all indices in all attached databases to be rebuilt. 5168 ** Form 2 rebuilds all indices in all databases that use the named 5169 ** collating function. Forms 3 and 4 rebuild the named index or all 5170 ** indices associated with the named table. 5171 */ 5172 #ifndef SQLITE_OMIT_REINDEX 5173 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5174 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5175 char *z; /* Name of a table or index */ 5176 const char *zDb; /* Name of the database */ 5177 Table *pTab; /* A table in the database */ 5178 Index *pIndex; /* An index associated with pTab */ 5179 int iDb; /* The database index number */ 5180 sqlite3 *db = pParse->db; /* The database connection */ 5181 Token *pObjName; /* Name of the table or index to be reindexed */ 5182 5183 /* Read the database schema. If an error occurs, leave an error message 5184 ** and code in pParse and return NULL. */ 5185 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5186 return; 5187 } 5188 5189 if( pName1==0 ){ 5190 reindexDatabases(pParse, 0); 5191 return; 5192 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5193 char *zColl; 5194 assert( pName1->z ); 5195 zColl = sqlite3NameFromToken(pParse->db, pName1); 5196 if( !zColl ) return; 5197 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5198 if( pColl ){ 5199 reindexDatabases(pParse, zColl); 5200 sqlite3DbFree(db, zColl); 5201 return; 5202 } 5203 sqlite3DbFree(db, zColl); 5204 } 5205 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5206 if( iDb<0 ) return; 5207 z = sqlite3NameFromToken(db, pObjName); 5208 if( z==0 ) return; 5209 zDb = db->aDb[iDb].zDbSName; 5210 pTab = sqlite3FindTable(db, z, zDb); 5211 if( pTab ){ 5212 reindexTable(pParse, pTab, 0); 5213 sqlite3DbFree(db, z); 5214 return; 5215 } 5216 pIndex = sqlite3FindIndex(db, z, zDb); 5217 sqlite3DbFree(db, z); 5218 if( pIndex ){ 5219 sqlite3BeginWriteOperation(pParse, 0, iDb); 5220 sqlite3RefillIndex(pParse, pIndex, -1); 5221 return; 5222 } 5223 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5224 } 5225 #endif 5226 5227 /* 5228 ** Return a KeyInfo structure that is appropriate for the given Index. 5229 ** 5230 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5231 ** when it has finished using it. 5232 */ 5233 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5234 int i; 5235 int nCol = pIdx->nColumn; 5236 int nKey = pIdx->nKeyCol; 5237 KeyInfo *pKey; 5238 if( pParse->nErr ) return 0; 5239 if( pIdx->uniqNotNull ){ 5240 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5241 }else{ 5242 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5243 } 5244 if( pKey ){ 5245 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5246 for(i=0; i<nCol; i++){ 5247 const char *zColl = pIdx->azColl[i]; 5248 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5249 sqlite3LocateCollSeq(pParse, zColl); 5250 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5251 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5252 } 5253 if( pParse->nErr ){ 5254 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5255 if( pIdx->bNoQuery==0 ){ 5256 /* Deactivate the index because it contains an unknown collating 5257 ** sequence. The only way to reactive the index is to reload the 5258 ** schema. Adding the missing collating sequence later does not 5259 ** reactive the index. The application had the chance to register 5260 ** the missing index using the collation-needed callback. For 5261 ** simplicity, SQLite will not give the application a second chance. 5262 */ 5263 pIdx->bNoQuery = 1; 5264 pParse->rc = SQLITE_ERROR_RETRY; 5265 } 5266 sqlite3KeyInfoUnref(pKey); 5267 pKey = 0; 5268 } 5269 } 5270 return pKey; 5271 } 5272 5273 #ifndef SQLITE_OMIT_CTE 5274 /* 5275 ** Create a new CTE object 5276 */ 5277 Cte *sqlite3CteNew( 5278 Parse *pParse, /* Parsing context */ 5279 Token *pName, /* Name of the common-table */ 5280 ExprList *pArglist, /* Optional column name list for the table */ 5281 Select *pQuery, /* Query used to initialize the table */ 5282 u8 eM10d /* The MATERIALIZED flag */ 5283 ){ 5284 Cte *pNew; 5285 sqlite3 *db = pParse->db; 5286 5287 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5288 assert( pNew!=0 || db->mallocFailed ); 5289 5290 if( db->mallocFailed ){ 5291 sqlite3ExprListDelete(db, pArglist); 5292 sqlite3SelectDelete(db, pQuery); 5293 }else{ 5294 pNew->pSelect = pQuery; 5295 pNew->pCols = pArglist; 5296 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5297 pNew->eM10d = eM10d; 5298 } 5299 return pNew; 5300 } 5301 5302 /* 5303 ** Clear information from a Cte object, but do not deallocate storage 5304 ** for the object itself. 5305 */ 5306 static void cteClear(sqlite3 *db, Cte *pCte){ 5307 assert( pCte!=0 ); 5308 sqlite3ExprListDelete(db, pCte->pCols); 5309 sqlite3SelectDelete(db, pCte->pSelect); 5310 sqlite3DbFree(db, pCte->zName); 5311 } 5312 5313 /* 5314 ** Free the contents of the CTE object passed as the second argument. 5315 */ 5316 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5317 assert( pCte!=0 ); 5318 cteClear(db, pCte); 5319 sqlite3DbFree(db, pCte); 5320 } 5321 5322 /* 5323 ** This routine is invoked once per CTE by the parser while parsing a 5324 ** WITH clause. The CTE described by teh third argument is added to 5325 ** the WITH clause of the second argument. If the second argument is 5326 ** NULL, then a new WITH argument is created. 5327 */ 5328 With *sqlite3WithAdd( 5329 Parse *pParse, /* Parsing context */ 5330 With *pWith, /* Existing WITH clause, or NULL */ 5331 Cte *pCte /* CTE to add to the WITH clause */ 5332 ){ 5333 sqlite3 *db = pParse->db; 5334 With *pNew; 5335 char *zName; 5336 5337 if( pCte==0 ){ 5338 return pWith; 5339 } 5340 5341 /* Check that the CTE name is unique within this WITH clause. If 5342 ** not, store an error in the Parse structure. */ 5343 zName = pCte->zName; 5344 if( zName && pWith ){ 5345 int i; 5346 for(i=0; i<pWith->nCte; i++){ 5347 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5348 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5349 } 5350 } 5351 } 5352 5353 if( pWith ){ 5354 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5355 pNew = sqlite3DbRealloc(db, pWith, nByte); 5356 }else{ 5357 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5358 } 5359 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5360 5361 if( db->mallocFailed ){ 5362 sqlite3CteDelete(db, pCte); 5363 pNew = pWith; 5364 }else{ 5365 pNew->a[pNew->nCte++] = *pCte; 5366 sqlite3DbFree(db, pCte); 5367 } 5368 5369 return pNew; 5370 } 5371 5372 /* 5373 ** Free the contents of the With object passed as the second argument. 5374 */ 5375 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5376 if( pWith ){ 5377 int i; 5378 for(i=0; i<pWith->nCte; i++){ 5379 cteClear(db, &pWith->a[i]); 5380 } 5381 sqlite3DbFree(db, pWith); 5382 } 5383 } 5384 #endif /* !defined(SQLITE_OMIT_CTE) */ 5385