1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 sqlite3 *db = pParse->db; 347 348 /* Read the database schema. If an error occurs, leave an error message 349 ** and code in pParse and return NULL. */ 350 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 351 && SQLITE_OK!=sqlite3ReadSchema(pParse) 352 ){ 353 return 0; 354 } 355 356 p = sqlite3FindTable(db, zName, zDbase); 357 if( p==0 ){ 358 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 359 #ifndef SQLITE_OMIT_VIRTUALTABLE 360 if( sqlite3FindDbName(db, zDbase)<1 ){ 361 /* If zName is the not the name of a table in the schema created using 362 ** CREATE, then check to see if it is the name of an virtual table that 363 ** can be an eponymous virtual table. */ 364 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 365 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 366 pMod = sqlite3PragmaVtabRegister(db, zName); 367 } 368 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 369 return pMod->pEpoTab; 370 } 371 } 372 #endif 373 if( (flags & LOCATE_NOERR)==0 ){ 374 if( zDbase ){ 375 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 376 }else{ 377 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 378 } 379 pParse->checkSchema = 1; 380 } 381 } 382 383 return p; 384 } 385 386 /* 387 ** Locate the table identified by *p. 388 ** 389 ** This is a wrapper around sqlite3LocateTable(). The difference between 390 ** sqlite3LocateTable() and this function is that this function restricts 391 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 392 ** non-NULL if it is part of a view or trigger program definition. See 393 ** sqlite3FixSrcList() for details. 394 */ 395 Table *sqlite3LocateTableItem( 396 Parse *pParse, 397 u32 flags, 398 struct SrcList_item *p 399 ){ 400 const char *zDb; 401 assert( p->pSchema==0 || p->zDatabase==0 ); 402 if( p->pSchema ){ 403 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 404 zDb = pParse->db->aDb[iDb].zDbSName; 405 }else{ 406 zDb = p->zDatabase; 407 } 408 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 409 } 410 411 /* 412 ** Locate the in-memory structure that describes 413 ** a particular index given the name of that index 414 ** and the name of the database that contains the index. 415 ** Return NULL if not found. 416 ** 417 ** If zDatabase is 0, all databases are searched for the 418 ** table and the first matching index is returned. (No checking 419 ** for duplicate index names is done.) The search order is 420 ** TEMP first, then MAIN, then any auxiliary databases added 421 ** using the ATTACH command. 422 */ 423 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 424 Index *p = 0; 425 int i; 426 /* All mutexes are required for schema access. Make sure we hold them. */ 427 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 428 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 429 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 430 Schema *pSchema = db->aDb[j].pSchema; 431 assert( pSchema ); 432 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 433 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 434 p = sqlite3HashFind(&pSchema->idxHash, zName); 435 if( p ) break; 436 } 437 return p; 438 } 439 440 /* 441 ** Reclaim the memory used by an index 442 */ 443 static void freeIndex(sqlite3 *db, Index *p){ 444 #ifndef SQLITE_OMIT_ANALYZE 445 sqlite3DeleteIndexSamples(db, p); 446 #endif 447 sqlite3ExprDelete(db, p->pPartIdxWhere); 448 sqlite3ExprListDelete(db, p->aColExpr); 449 sqlite3DbFree(db, p->zColAff); 450 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 451 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 452 sqlite3_free(p->aiRowEst); 453 #endif 454 sqlite3DbFree(db, p); 455 } 456 457 /* 458 ** For the index called zIdxName which is found in the database iDb, 459 ** unlike that index from its Table then remove the index from 460 ** the index hash table and free all memory structures associated 461 ** with the index. 462 */ 463 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 464 Index *pIndex; 465 Hash *pHash; 466 467 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 468 pHash = &db->aDb[iDb].pSchema->idxHash; 469 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 470 if( ALWAYS(pIndex) ){ 471 if( pIndex->pTable->pIndex==pIndex ){ 472 pIndex->pTable->pIndex = pIndex->pNext; 473 }else{ 474 Index *p; 475 /* Justification of ALWAYS(); The index must be on the list of 476 ** indices. */ 477 p = pIndex->pTable->pIndex; 478 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 479 if( ALWAYS(p && p->pNext==pIndex) ){ 480 p->pNext = pIndex->pNext; 481 } 482 } 483 freeIndex(db, pIndex); 484 } 485 db->mDbFlags |= DBFLAG_SchemaChange; 486 } 487 488 /* 489 ** Look through the list of open database files in db->aDb[] and if 490 ** any have been closed, remove them from the list. Reallocate the 491 ** db->aDb[] structure to a smaller size, if possible. 492 ** 493 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 494 ** are never candidates for being collapsed. 495 */ 496 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 497 int i, j; 498 for(i=j=2; i<db->nDb; i++){ 499 struct Db *pDb = &db->aDb[i]; 500 if( pDb->pBt==0 ){ 501 sqlite3DbFree(db, pDb->zDbSName); 502 pDb->zDbSName = 0; 503 continue; 504 } 505 if( j<i ){ 506 db->aDb[j] = db->aDb[i]; 507 } 508 j++; 509 } 510 db->nDb = j; 511 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 512 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 513 sqlite3DbFree(db, db->aDb); 514 db->aDb = db->aDbStatic; 515 } 516 } 517 518 /* 519 ** Reset the schema for the database at index iDb. Also reset the 520 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 521 ** Deferred resets may be run by calling with iDb<0. 522 */ 523 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 524 int i; 525 assert( iDb<db->nDb ); 526 527 if( iDb>=0 ){ 528 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 529 DbSetProperty(db, iDb, DB_ResetWanted); 530 DbSetProperty(db, 1, DB_ResetWanted); 531 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 532 } 533 534 if( db->nSchemaLock==0 ){ 535 for(i=0; i<db->nDb; i++){ 536 if( DbHasProperty(db, i, DB_ResetWanted) ){ 537 sqlite3SchemaClear(db->aDb[i].pSchema); 538 } 539 } 540 } 541 } 542 543 /* 544 ** Erase all schema information from all attached databases (including 545 ** "main" and "temp") for a single database connection. 546 */ 547 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 548 int i; 549 sqlite3BtreeEnterAll(db); 550 assert( db->nSchemaLock==0 ); 551 for(i=0; i<db->nDb; i++){ 552 Db *pDb = &db->aDb[i]; 553 if( pDb->pSchema ){ 554 sqlite3SchemaClear(pDb->pSchema); 555 } 556 } 557 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 558 sqlite3VtabUnlockList(db); 559 sqlite3BtreeLeaveAll(db); 560 sqlite3CollapseDatabaseArray(db); 561 } 562 563 /* 564 ** This routine is called when a commit occurs. 565 */ 566 void sqlite3CommitInternalChanges(sqlite3 *db){ 567 db->mDbFlags &= ~DBFLAG_SchemaChange; 568 } 569 570 /* 571 ** Delete memory allocated for the column names of a table or view (the 572 ** Table.aCol[] array). 573 */ 574 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 575 int i; 576 Column *pCol; 577 assert( pTable!=0 ); 578 if( (pCol = pTable->aCol)!=0 ){ 579 for(i=0; i<pTable->nCol; i++, pCol++){ 580 sqlite3DbFree(db, pCol->zName); 581 sqlite3ExprDelete(db, pCol->pDflt); 582 sqlite3DbFree(db, pCol->zColl); 583 } 584 sqlite3DbFree(db, pTable->aCol); 585 } 586 } 587 588 /* 589 ** Remove the memory data structures associated with the given 590 ** Table. No changes are made to disk by this routine. 591 ** 592 ** This routine just deletes the data structure. It does not unlink 593 ** the table data structure from the hash table. But it does destroy 594 ** memory structures of the indices and foreign keys associated with 595 ** the table. 596 ** 597 ** The db parameter is optional. It is needed if the Table object 598 ** contains lookaside memory. (Table objects in the schema do not use 599 ** lookaside memory, but some ephemeral Table objects do.) Or the 600 ** db parameter can be used with db->pnBytesFreed to measure the memory 601 ** used by the Table object. 602 */ 603 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 604 Index *pIndex, *pNext; 605 606 #ifdef SQLITE_DEBUG 607 /* Record the number of outstanding lookaside allocations in schema Tables 608 ** prior to doing any free() operations. Since schema Tables do not use 609 ** lookaside, this number should not change. */ 610 int nLookaside = 0; 611 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){ 612 nLookaside = sqlite3LookasideUsed(db, 0); 613 } 614 #endif 615 616 /* Delete all indices associated with this table. */ 617 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 618 pNext = pIndex->pNext; 619 assert( pIndex->pSchema==pTable->pSchema 620 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 621 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 622 char *zName = pIndex->zName; 623 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 624 &pIndex->pSchema->idxHash, zName, 0 625 ); 626 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 627 assert( pOld==pIndex || pOld==0 ); 628 } 629 freeIndex(db, pIndex); 630 } 631 632 /* Delete any foreign keys attached to this table. */ 633 sqlite3FkDelete(db, pTable); 634 635 /* Delete the Table structure itself. 636 */ 637 sqlite3DeleteColumnNames(db, pTable); 638 sqlite3DbFree(db, pTable->zName); 639 sqlite3DbFree(db, pTable->zColAff); 640 sqlite3SelectDelete(db, pTable->pSelect); 641 sqlite3ExprListDelete(db, pTable->pCheck); 642 #ifndef SQLITE_OMIT_VIRTUALTABLE 643 sqlite3VtabClear(db, pTable); 644 #endif 645 sqlite3DbFree(db, pTable); 646 647 /* Verify that no lookaside memory was used by schema tables */ 648 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 649 } 650 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 651 /* Do not delete the table until the reference count reaches zero. */ 652 if( !pTable ) return; 653 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 654 deleteTable(db, pTable); 655 } 656 657 658 /* 659 ** Unlink the given table from the hash tables and the delete the 660 ** table structure with all its indices and foreign keys. 661 */ 662 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 663 Table *p; 664 Db *pDb; 665 666 assert( db!=0 ); 667 assert( iDb>=0 && iDb<db->nDb ); 668 assert( zTabName ); 669 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 670 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 671 pDb = &db->aDb[iDb]; 672 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 673 sqlite3DeleteTable(db, p); 674 db->mDbFlags |= DBFLAG_SchemaChange; 675 } 676 677 /* 678 ** Given a token, return a string that consists of the text of that 679 ** token. Space to hold the returned string 680 ** is obtained from sqliteMalloc() and must be freed by the calling 681 ** function. 682 ** 683 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 684 ** surround the body of the token are removed. 685 ** 686 ** Tokens are often just pointers into the original SQL text and so 687 ** are not \000 terminated and are not persistent. The returned string 688 ** is \000 terminated and is persistent. 689 */ 690 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 691 char *zName; 692 if( pName ){ 693 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 694 sqlite3Dequote(zName); 695 }else{ 696 zName = 0; 697 } 698 return zName; 699 } 700 701 /* 702 ** Open the sqlite_master table stored in database number iDb for 703 ** writing. The table is opened using cursor 0. 704 */ 705 void sqlite3OpenMasterTable(Parse *p, int iDb){ 706 Vdbe *v = sqlite3GetVdbe(p); 707 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 708 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 709 if( p->nTab==0 ){ 710 p->nTab = 1; 711 } 712 } 713 714 /* 715 ** Parameter zName points to a nul-terminated buffer containing the name 716 ** of a database ("main", "temp" or the name of an attached db). This 717 ** function returns the index of the named database in db->aDb[], or 718 ** -1 if the named db cannot be found. 719 */ 720 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 721 int i = -1; /* Database number */ 722 if( zName ){ 723 Db *pDb; 724 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 725 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 726 /* "main" is always an acceptable alias for the primary database 727 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 728 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 729 } 730 } 731 return i; 732 } 733 734 /* 735 ** The token *pName contains the name of a database (either "main" or 736 ** "temp" or the name of an attached db). This routine returns the 737 ** index of the named database in db->aDb[], or -1 if the named db 738 ** does not exist. 739 */ 740 int sqlite3FindDb(sqlite3 *db, Token *pName){ 741 int i; /* Database number */ 742 char *zName; /* Name we are searching for */ 743 zName = sqlite3NameFromToken(db, pName); 744 i = sqlite3FindDbName(db, zName); 745 sqlite3DbFree(db, zName); 746 return i; 747 } 748 749 /* The table or view or trigger name is passed to this routine via tokens 750 ** pName1 and pName2. If the table name was fully qualified, for example: 751 ** 752 ** CREATE TABLE xxx.yyy (...); 753 ** 754 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 755 ** the table name is not fully qualified, i.e.: 756 ** 757 ** CREATE TABLE yyy(...); 758 ** 759 ** Then pName1 is set to "yyy" and pName2 is "". 760 ** 761 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 762 ** pName2) that stores the unqualified table name. The index of the 763 ** database "xxx" is returned. 764 */ 765 int sqlite3TwoPartName( 766 Parse *pParse, /* Parsing and code generating context */ 767 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 768 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 769 Token **pUnqual /* Write the unqualified object name here */ 770 ){ 771 int iDb; /* Database holding the object */ 772 sqlite3 *db = pParse->db; 773 774 assert( pName2!=0 ); 775 if( pName2->n>0 ){ 776 if( db->init.busy ) { 777 sqlite3ErrorMsg(pParse, "corrupt database"); 778 return -1; 779 } 780 *pUnqual = pName2; 781 iDb = sqlite3FindDb(db, pName1); 782 if( iDb<0 ){ 783 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 784 return -1; 785 } 786 }else{ 787 assert( db->init.iDb==0 || db->init.busy 788 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 789 iDb = db->init.iDb; 790 *pUnqual = pName1; 791 } 792 return iDb; 793 } 794 795 /* 796 ** This routine is used to check if the UTF-8 string zName is a legal 797 ** unqualified name for a new schema object (table, index, view or 798 ** trigger). All names are legal except those that begin with the string 799 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 800 ** is reserved for internal use. 801 */ 802 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 803 if( !pParse->db->init.busy && pParse->nested==0 804 && (pParse->db->flags & SQLITE_WriteSchema)==0 805 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 806 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 807 return SQLITE_ERROR; 808 } 809 return SQLITE_OK; 810 } 811 812 /* 813 ** Return the PRIMARY KEY index of a table 814 */ 815 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 816 Index *p; 817 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 818 return p; 819 } 820 821 /* 822 ** Return the column of index pIdx that corresponds to table 823 ** column iCol. Return -1 if not found. 824 */ 825 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 826 int i; 827 for(i=0; i<pIdx->nColumn; i++){ 828 if( iCol==pIdx->aiColumn[i] ) return i; 829 } 830 return -1; 831 } 832 833 /* 834 ** Begin constructing a new table representation in memory. This is 835 ** the first of several action routines that get called in response 836 ** to a CREATE TABLE statement. In particular, this routine is called 837 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 838 ** flag is true if the table should be stored in the auxiliary database 839 ** file instead of in the main database file. This is normally the case 840 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 841 ** CREATE and TABLE. 842 ** 843 ** The new table record is initialized and put in pParse->pNewTable. 844 ** As more of the CREATE TABLE statement is parsed, additional action 845 ** routines will be called to add more information to this record. 846 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 847 ** is called to complete the construction of the new table record. 848 */ 849 void sqlite3StartTable( 850 Parse *pParse, /* Parser context */ 851 Token *pName1, /* First part of the name of the table or view */ 852 Token *pName2, /* Second part of the name of the table or view */ 853 int isTemp, /* True if this is a TEMP table */ 854 int isView, /* True if this is a VIEW */ 855 int isVirtual, /* True if this is a VIRTUAL table */ 856 int noErr /* Do nothing if table already exists */ 857 ){ 858 Table *pTable; 859 char *zName = 0; /* The name of the new table */ 860 sqlite3 *db = pParse->db; 861 Vdbe *v; 862 int iDb; /* Database number to create the table in */ 863 Token *pName; /* Unqualified name of the table to create */ 864 865 if( db->init.busy && db->init.newTnum==1 ){ 866 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 867 iDb = db->init.iDb; 868 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 869 pName = pName1; 870 }else{ 871 /* The common case */ 872 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 873 if( iDb<0 ) return; 874 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 875 /* If creating a temp table, the name may not be qualified. Unless 876 ** the database name is "temp" anyway. */ 877 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 878 return; 879 } 880 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 881 zName = sqlite3NameFromToken(db, pName); 882 } 883 pParse->sNameToken = *pName; 884 if( zName==0 ) return; 885 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 886 goto begin_table_error; 887 } 888 if( db->init.iDb==1 ) isTemp = 1; 889 #ifndef SQLITE_OMIT_AUTHORIZATION 890 assert( isTemp==0 || isTemp==1 ); 891 assert( isView==0 || isView==1 ); 892 { 893 static const u8 aCode[] = { 894 SQLITE_CREATE_TABLE, 895 SQLITE_CREATE_TEMP_TABLE, 896 SQLITE_CREATE_VIEW, 897 SQLITE_CREATE_TEMP_VIEW 898 }; 899 char *zDb = db->aDb[iDb].zDbSName; 900 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 901 goto begin_table_error; 902 } 903 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 904 zName, 0, zDb) ){ 905 goto begin_table_error; 906 } 907 } 908 #endif 909 910 /* Make sure the new table name does not collide with an existing 911 ** index or table name in the same database. Issue an error message if 912 ** it does. The exception is if the statement being parsed was passed 913 ** to an sqlite3_declare_vtab() call. In that case only the column names 914 ** and types will be used, so there is no need to test for namespace 915 ** collisions. 916 */ 917 if( !IN_DECLARE_VTAB ){ 918 char *zDb = db->aDb[iDb].zDbSName; 919 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 920 goto begin_table_error; 921 } 922 pTable = sqlite3FindTable(db, zName, zDb); 923 if( pTable ){ 924 if( !noErr ){ 925 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 926 }else{ 927 assert( !db->init.busy || CORRUPT_DB ); 928 sqlite3CodeVerifySchema(pParse, iDb); 929 } 930 goto begin_table_error; 931 } 932 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 933 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 934 goto begin_table_error; 935 } 936 } 937 938 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 939 if( pTable==0 ){ 940 assert( db->mallocFailed ); 941 pParse->rc = SQLITE_NOMEM_BKPT; 942 pParse->nErr++; 943 goto begin_table_error; 944 } 945 pTable->zName = zName; 946 pTable->iPKey = -1; 947 pTable->pSchema = db->aDb[iDb].pSchema; 948 pTable->nTabRef = 1; 949 #ifdef SQLITE_DEFAULT_ROWEST 950 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 951 #else 952 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 953 #endif 954 assert( pParse->pNewTable==0 ); 955 pParse->pNewTable = pTable; 956 957 /* If this is the magic sqlite_sequence table used by autoincrement, 958 ** then record a pointer to this table in the main database structure 959 ** so that INSERT can find the table easily. 960 */ 961 #ifndef SQLITE_OMIT_AUTOINCREMENT 962 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 963 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 964 pTable->pSchema->pSeqTab = pTable; 965 } 966 #endif 967 968 /* Begin generating the code that will insert the table record into 969 ** the SQLITE_MASTER table. Note in particular that we must go ahead 970 ** and allocate the record number for the table entry now. Before any 971 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 972 ** indices to be created and the table record must come before the 973 ** indices. Hence, the record number for the table must be allocated 974 ** now. 975 */ 976 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 977 int addr1; 978 int fileFormat; 979 int reg1, reg2, reg3; 980 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 981 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 982 sqlite3BeginWriteOperation(pParse, 1, iDb); 983 984 #ifndef SQLITE_OMIT_VIRTUALTABLE 985 if( isVirtual ){ 986 sqlite3VdbeAddOp0(v, OP_VBegin); 987 } 988 #endif 989 990 /* If the file format and encoding in the database have not been set, 991 ** set them now. 992 */ 993 reg1 = pParse->regRowid = ++pParse->nMem; 994 reg2 = pParse->regRoot = ++pParse->nMem; 995 reg3 = ++pParse->nMem; 996 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 997 sqlite3VdbeUsesBtree(v, iDb); 998 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 999 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1000 1 : SQLITE_MAX_FILE_FORMAT; 1001 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1002 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1003 sqlite3VdbeJumpHere(v, addr1); 1004 1005 /* This just creates a place-holder record in the sqlite_master table. 1006 ** The record created does not contain anything yet. It will be replaced 1007 ** by the real entry in code generated at sqlite3EndTable(). 1008 ** 1009 ** The rowid for the new entry is left in register pParse->regRowid. 1010 ** The root page number of the new table is left in reg pParse->regRoot. 1011 ** The rowid and root page number values are needed by the code that 1012 ** sqlite3EndTable will generate. 1013 */ 1014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1015 if( isView || isVirtual ){ 1016 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1017 }else 1018 #endif 1019 { 1020 pParse->addrCrTab = 1021 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1022 } 1023 sqlite3OpenMasterTable(pParse, iDb); 1024 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1025 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1026 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1027 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1028 sqlite3VdbeAddOp0(v, OP_Close); 1029 } 1030 1031 /* Normal (non-error) return. */ 1032 return; 1033 1034 /* If an error occurs, we jump here */ 1035 begin_table_error: 1036 sqlite3DbFree(db, zName); 1037 return; 1038 } 1039 1040 /* Set properties of a table column based on the (magical) 1041 ** name of the column. 1042 */ 1043 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1044 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1045 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1046 pCol->colFlags |= COLFLAG_HIDDEN; 1047 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1048 pTab->tabFlags |= TF_OOOHidden; 1049 } 1050 } 1051 #endif 1052 1053 1054 /* 1055 ** Add a new column to the table currently being constructed. 1056 ** 1057 ** The parser calls this routine once for each column declaration 1058 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1059 ** first to get things going. Then this routine is called for each 1060 ** column. 1061 */ 1062 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1063 Table *p; 1064 int i; 1065 char *z; 1066 char *zType; 1067 Column *pCol; 1068 sqlite3 *db = pParse->db; 1069 if( (p = pParse->pNewTable)==0 ) return; 1070 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1071 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1072 return; 1073 } 1074 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1075 if( z==0 ) return; 1076 memcpy(z, pName->z, pName->n); 1077 z[pName->n] = 0; 1078 sqlite3Dequote(z); 1079 for(i=0; i<p->nCol; i++){ 1080 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1081 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1082 sqlite3DbFree(db, z); 1083 return; 1084 } 1085 } 1086 if( (p->nCol & 0x7)==0 ){ 1087 Column *aNew; 1088 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1089 if( aNew==0 ){ 1090 sqlite3DbFree(db, z); 1091 return; 1092 } 1093 p->aCol = aNew; 1094 } 1095 pCol = &p->aCol[p->nCol]; 1096 memset(pCol, 0, sizeof(p->aCol[0])); 1097 pCol->zName = z; 1098 sqlite3ColumnPropertiesFromName(p, pCol); 1099 1100 if( pType->n==0 ){ 1101 /* If there is no type specified, columns have the default affinity 1102 ** 'BLOB' with a default size of 4 bytes. */ 1103 pCol->affinity = SQLITE_AFF_BLOB; 1104 pCol->szEst = 1; 1105 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1106 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1107 pCol->colFlags |= COLFLAG_SORTERREF; 1108 } 1109 #endif 1110 }else{ 1111 zType = z + sqlite3Strlen30(z) + 1; 1112 memcpy(zType, pType->z, pType->n); 1113 zType[pType->n] = 0; 1114 sqlite3Dequote(zType); 1115 pCol->affinity = sqlite3AffinityType(zType, pCol); 1116 pCol->colFlags |= COLFLAG_HASTYPE; 1117 } 1118 p->nCol++; 1119 pParse->constraintName.n = 0; 1120 } 1121 1122 /* 1123 ** This routine is called by the parser while in the middle of 1124 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1125 ** been seen on a column. This routine sets the notNull flag on 1126 ** the column currently under construction. 1127 */ 1128 void sqlite3AddNotNull(Parse *pParse, int onError){ 1129 Table *p; 1130 Column *pCol; 1131 p = pParse->pNewTable; 1132 if( p==0 || NEVER(p->nCol<1) ) return; 1133 pCol = &p->aCol[p->nCol-1]; 1134 pCol->notNull = (u8)onError; 1135 p->tabFlags |= TF_HasNotNull; 1136 1137 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1138 ** on this column. */ 1139 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1140 Index *pIdx; 1141 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1142 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1143 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1144 pIdx->uniqNotNull = 1; 1145 } 1146 } 1147 } 1148 } 1149 1150 /* 1151 ** Scan the column type name zType (length nType) and return the 1152 ** associated affinity type. 1153 ** 1154 ** This routine does a case-independent search of zType for the 1155 ** substrings in the following table. If one of the substrings is 1156 ** found, the corresponding affinity is returned. If zType contains 1157 ** more than one of the substrings, entries toward the top of 1158 ** the table take priority. For example, if zType is 'BLOBINT', 1159 ** SQLITE_AFF_INTEGER is returned. 1160 ** 1161 ** Substring | Affinity 1162 ** -------------------------------- 1163 ** 'INT' | SQLITE_AFF_INTEGER 1164 ** 'CHAR' | SQLITE_AFF_TEXT 1165 ** 'CLOB' | SQLITE_AFF_TEXT 1166 ** 'TEXT' | SQLITE_AFF_TEXT 1167 ** 'BLOB' | SQLITE_AFF_BLOB 1168 ** 'REAL' | SQLITE_AFF_REAL 1169 ** 'FLOA' | SQLITE_AFF_REAL 1170 ** 'DOUB' | SQLITE_AFF_REAL 1171 ** 1172 ** If none of the substrings in the above table are found, 1173 ** SQLITE_AFF_NUMERIC is returned. 1174 */ 1175 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1176 u32 h = 0; 1177 char aff = SQLITE_AFF_NUMERIC; 1178 const char *zChar = 0; 1179 1180 assert( zIn!=0 ); 1181 while( zIn[0] ){ 1182 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1183 zIn++; 1184 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1185 aff = SQLITE_AFF_TEXT; 1186 zChar = zIn; 1187 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1188 aff = SQLITE_AFF_TEXT; 1189 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1190 aff = SQLITE_AFF_TEXT; 1191 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1192 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1193 aff = SQLITE_AFF_BLOB; 1194 if( zIn[0]=='(' ) zChar = zIn; 1195 #ifndef SQLITE_OMIT_FLOATING_POINT 1196 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1197 && aff==SQLITE_AFF_NUMERIC ){ 1198 aff = SQLITE_AFF_REAL; 1199 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1200 && aff==SQLITE_AFF_NUMERIC ){ 1201 aff = SQLITE_AFF_REAL; 1202 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1203 && aff==SQLITE_AFF_NUMERIC ){ 1204 aff = SQLITE_AFF_REAL; 1205 #endif 1206 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1207 aff = SQLITE_AFF_INTEGER; 1208 break; 1209 } 1210 } 1211 1212 /* If pCol is not NULL, store an estimate of the field size. The 1213 ** estimate is scaled so that the size of an integer is 1. */ 1214 if( pCol ){ 1215 int v = 0; /* default size is approx 4 bytes */ 1216 if( aff<SQLITE_AFF_NUMERIC ){ 1217 if( zChar ){ 1218 while( zChar[0] ){ 1219 if( sqlite3Isdigit(zChar[0]) ){ 1220 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1221 sqlite3GetInt32(zChar, &v); 1222 break; 1223 } 1224 zChar++; 1225 } 1226 }else{ 1227 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1228 } 1229 } 1230 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1231 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1232 pCol->colFlags |= COLFLAG_SORTERREF; 1233 } 1234 #endif 1235 v = v/4 + 1; 1236 if( v>255 ) v = 255; 1237 pCol->szEst = v; 1238 } 1239 return aff; 1240 } 1241 1242 /* 1243 ** The expression is the default value for the most recently added column 1244 ** of the table currently under construction. 1245 ** 1246 ** Default value expressions must be constant. Raise an exception if this 1247 ** is not the case. 1248 ** 1249 ** This routine is called by the parser while in the middle of 1250 ** parsing a CREATE TABLE statement. 1251 */ 1252 void sqlite3AddDefaultValue( 1253 Parse *pParse, /* Parsing context */ 1254 Expr *pExpr, /* The parsed expression of the default value */ 1255 const char *zStart, /* Start of the default value text */ 1256 const char *zEnd /* First character past end of defaut value text */ 1257 ){ 1258 Table *p; 1259 Column *pCol; 1260 sqlite3 *db = pParse->db; 1261 p = pParse->pNewTable; 1262 if( p!=0 ){ 1263 pCol = &(p->aCol[p->nCol-1]); 1264 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1265 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1266 pCol->zName); 1267 }else{ 1268 /* A copy of pExpr is used instead of the original, as pExpr contains 1269 ** tokens that point to volatile memory. 1270 */ 1271 Expr x; 1272 sqlite3ExprDelete(db, pCol->pDflt); 1273 memset(&x, 0, sizeof(x)); 1274 x.op = TK_SPAN; 1275 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1276 x.pLeft = pExpr; 1277 x.flags = EP_Skip; 1278 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1279 sqlite3DbFree(db, x.u.zToken); 1280 } 1281 } 1282 sqlite3ExprDelete(db, pExpr); 1283 } 1284 1285 /* 1286 ** Backwards Compatibility Hack: 1287 ** 1288 ** Historical versions of SQLite accepted strings as column names in 1289 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1290 ** 1291 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1292 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1293 ** 1294 ** This is goofy. But to preserve backwards compatibility we continue to 1295 ** accept it. This routine does the necessary conversion. It converts 1296 ** the expression given in its argument from a TK_STRING into a TK_ID 1297 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1298 ** If the epxression is anything other than TK_STRING, the expression is 1299 ** unchanged. 1300 */ 1301 static void sqlite3StringToId(Expr *p){ 1302 if( p->op==TK_STRING ){ 1303 p->op = TK_ID; 1304 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1305 p->pLeft->op = TK_ID; 1306 } 1307 } 1308 1309 /* 1310 ** Designate the PRIMARY KEY for the table. pList is a list of names 1311 ** of columns that form the primary key. If pList is NULL, then the 1312 ** most recently added column of the table is the primary key. 1313 ** 1314 ** A table can have at most one primary key. If the table already has 1315 ** a primary key (and this is the second primary key) then create an 1316 ** error. 1317 ** 1318 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1319 ** then we will try to use that column as the rowid. Set the Table.iPKey 1320 ** field of the table under construction to be the index of the 1321 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1322 ** no INTEGER PRIMARY KEY. 1323 ** 1324 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1325 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1326 */ 1327 void sqlite3AddPrimaryKey( 1328 Parse *pParse, /* Parsing context */ 1329 ExprList *pList, /* List of field names to be indexed */ 1330 int onError, /* What to do with a uniqueness conflict */ 1331 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1332 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1333 ){ 1334 Table *pTab = pParse->pNewTable; 1335 Column *pCol = 0; 1336 int iCol = -1, i; 1337 int nTerm; 1338 if( pTab==0 ) goto primary_key_exit; 1339 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1340 sqlite3ErrorMsg(pParse, 1341 "table \"%s\" has more than one primary key", pTab->zName); 1342 goto primary_key_exit; 1343 } 1344 pTab->tabFlags |= TF_HasPrimaryKey; 1345 if( pList==0 ){ 1346 iCol = pTab->nCol - 1; 1347 pCol = &pTab->aCol[iCol]; 1348 pCol->colFlags |= COLFLAG_PRIMKEY; 1349 nTerm = 1; 1350 }else{ 1351 nTerm = pList->nExpr; 1352 for(i=0; i<nTerm; i++){ 1353 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1354 assert( pCExpr!=0 ); 1355 sqlite3StringToId(pCExpr); 1356 if( pCExpr->op==TK_ID ){ 1357 const char *zCName = pCExpr->u.zToken; 1358 for(iCol=0; iCol<pTab->nCol; iCol++){ 1359 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1360 pCol = &pTab->aCol[iCol]; 1361 pCol->colFlags |= COLFLAG_PRIMKEY; 1362 break; 1363 } 1364 } 1365 } 1366 } 1367 } 1368 if( nTerm==1 1369 && pCol 1370 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1371 && sortOrder!=SQLITE_SO_DESC 1372 ){ 1373 pTab->iPKey = iCol; 1374 pTab->keyConf = (u8)onError; 1375 assert( autoInc==0 || autoInc==1 ); 1376 pTab->tabFlags |= autoInc*TF_Autoincrement; 1377 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1378 }else if( autoInc ){ 1379 #ifndef SQLITE_OMIT_AUTOINCREMENT 1380 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1381 "INTEGER PRIMARY KEY"); 1382 #endif 1383 }else{ 1384 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1385 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1386 pList = 0; 1387 } 1388 1389 primary_key_exit: 1390 sqlite3ExprListDelete(pParse->db, pList); 1391 return; 1392 } 1393 1394 /* 1395 ** Add a new CHECK constraint to the table currently under construction. 1396 */ 1397 void sqlite3AddCheckConstraint( 1398 Parse *pParse, /* Parsing context */ 1399 Expr *pCheckExpr /* The check expression */ 1400 ){ 1401 #ifndef SQLITE_OMIT_CHECK 1402 Table *pTab = pParse->pNewTable; 1403 sqlite3 *db = pParse->db; 1404 if( pTab && !IN_DECLARE_VTAB 1405 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1406 ){ 1407 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1408 if( pParse->constraintName.n ){ 1409 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1410 } 1411 }else 1412 #endif 1413 { 1414 sqlite3ExprDelete(pParse->db, pCheckExpr); 1415 } 1416 } 1417 1418 /* 1419 ** Set the collation function of the most recently parsed table column 1420 ** to the CollSeq given. 1421 */ 1422 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1423 Table *p; 1424 int i; 1425 char *zColl; /* Dequoted name of collation sequence */ 1426 sqlite3 *db; 1427 1428 if( (p = pParse->pNewTable)==0 ) return; 1429 i = p->nCol-1; 1430 db = pParse->db; 1431 zColl = sqlite3NameFromToken(db, pToken); 1432 if( !zColl ) return; 1433 1434 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1435 Index *pIdx; 1436 sqlite3DbFree(db, p->aCol[i].zColl); 1437 p->aCol[i].zColl = zColl; 1438 1439 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1440 ** then an index may have been created on this column before the 1441 ** collation type was added. Correct this if it is the case. 1442 */ 1443 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1444 assert( pIdx->nKeyCol==1 ); 1445 if( pIdx->aiColumn[0]==i ){ 1446 pIdx->azColl[0] = p->aCol[i].zColl; 1447 } 1448 } 1449 }else{ 1450 sqlite3DbFree(db, zColl); 1451 } 1452 } 1453 1454 /* 1455 ** This function returns the collation sequence for database native text 1456 ** encoding identified by the string zName, length nName. 1457 ** 1458 ** If the requested collation sequence is not available, or not available 1459 ** in the database native encoding, the collation factory is invoked to 1460 ** request it. If the collation factory does not supply such a sequence, 1461 ** and the sequence is available in another text encoding, then that is 1462 ** returned instead. 1463 ** 1464 ** If no versions of the requested collations sequence are available, or 1465 ** another error occurs, NULL is returned and an error message written into 1466 ** pParse. 1467 ** 1468 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1469 ** invokes the collation factory if the named collation cannot be found 1470 ** and generates an error message. 1471 ** 1472 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1473 */ 1474 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1475 sqlite3 *db = pParse->db; 1476 u8 enc = ENC(db); 1477 u8 initbusy = db->init.busy; 1478 CollSeq *pColl; 1479 1480 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1481 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1482 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1483 } 1484 1485 return pColl; 1486 } 1487 1488 1489 /* 1490 ** Generate code that will increment the schema cookie. 1491 ** 1492 ** The schema cookie is used to determine when the schema for the 1493 ** database changes. After each schema change, the cookie value 1494 ** changes. When a process first reads the schema it records the 1495 ** cookie. Thereafter, whenever it goes to access the database, 1496 ** it checks the cookie to make sure the schema has not changed 1497 ** since it was last read. 1498 ** 1499 ** This plan is not completely bullet-proof. It is possible for 1500 ** the schema to change multiple times and for the cookie to be 1501 ** set back to prior value. But schema changes are infrequent 1502 ** and the probability of hitting the same cookie value is only 1503 ** 1 chance in 2^32. So we're safe enough. 1504 ** 1505 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1506 ** the schema-version whenever the schema changes. 1507 */ 1508 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1509 sqlite3 *db = pParse->db; 1510 Vdbe *v = pParse->pVdbe; 1511 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1512 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1513 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1514 } 1515 1516 /* 1517 ** Measure the number of characters needed to output the given 1518 ** identifier. The number returned includes any quotes used 1519 ** but does not include the null terminator. 1520 ** 1521 ** The estimate is conservative. It might be larger that what is 1522 ** really needed. 1523 */ 1524 static int identLength(const char *z){ 1525 int n; 1526 for(n=0; *z; n++, z++){ 1527 if( *z=='"' ){ n++; } 1528 } 1529 return n + 2; 1530 } 1531 1532 /* 1533 ** The first parameter is a pointer to an output buffer. The second 1534 ** parameter is a pointer to an integer that contains the offset at 1535 ** which to write into the output buffer. This function copies the 1536 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1537 ** to the specified offset in the buffer and updates *pIdx to refer 1538 ** to the first byte after the last byte written before returning. 1539 ** 1540 ** If the string zSignedIdent consists entirely of alpha-numeric 1541 ** characters, does not begin with a digit and is not an SQL keyword, 1542 ** then it is copied to the output buffer exactly as it is. Otherwise, 1543 ** it is quoted using double-quotes. 1544 */ 1545 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1546 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1547 int i, j, needQuote; 1548 i = *pIdx; 1549 1550 for(j=0; zIdent[j]; j++){ 1551 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1552 } 1553 needQuote = sqlite3Isdigit(zIdent[0]) 1554 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1555 || zIdent[j]!=0 1556 || j==0; 1557 1558 if( needQuote ) z[i++] = '"'; 1559 for(j=0; zIdent[j]; j++){ 1560 z[i++] = zIdent[j]; 1561 if( zIdent[j]=='"' ) z[i++] = '"'; 1562 } 1563 if( needQuote ) z[i++] = '"'; 1564 z[i] = 0; 1565 *pIdx = i; 1566 } 1567 1568 /* 1569 ** Generate a CREATE TABLE statement appropriate for the given 1570 ** table. Memory to hold the text of the statement is obtained 1571 ** from sqliteMalloc() and must be freed by the calling function. 1572 */ 1573 static char *createTableStmt(sqlite3 *db, Table *p){ 1574 int i, k, n; 1575 char *zStmt; 1576 char *zSep, *zSep2, *zEnd; 1577 Column *pCol; 1578 n = 0; 1579 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1580 n += identLength(pCol->zName) + 5; 1581 } 1582 n += identLength(p->zName); 1583 if( n<50 ){ 1584 zSep = ""; 1585 zSep2 = ","; 1586 zEnd = ")"; 1587 }else{ 1588 zSep = "\n "; 1589 zSep2 = ",\n "; 1590 zEnd = "\n)"; 1591 } 1592 n += 35 + 6*p->nCol; 1593 zStmt = sqlite3DbMallocRaw(0, n); 1594 if( zStmt==0 ){ 1595 sqlite3OomFault(db); 1596 return 0; 1597 } 1598 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1599 k = sqlite3Strlen30(zStmt); 1600 identPut(zStmt, &k, p->zName); 1601 zStmt[k++] = '('; 1602 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1603 static const char * const azType[] = { 1604 /* SQLITE_AFF_BLOB */ "", 1605 /* SQLITE_AFF_TEXT */ " TEXT", 1606 /* SQLITE_AFF_NUMERIC */ " NUM", 1607 /* SQLITE_AFF_INTEGER */ " INT", 1608 /* SQLITE_AFF_REAL */ " REAL" 1609 }; 1610 int len; 1611 const char *zType; 1612 1613 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1614 k += sqlite3Strlen30(&zStmt[k]); 1615 zSep = zSep2; 1616 identPut(zStmt, &k, pCol->zName); 1617 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1618 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1619 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1620 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1621 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1622 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1623 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1624 1625 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1626 len = sqlite3Strlen30(zType); 1627 assert( pCol->affinity==SQLITE_AFF_BLOB 1628 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1629 memcpy(&zStmt[k], zType, len); 1630 k += len; 1631 assert( k<=n ); 1632 } 1633 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1634 return zStmt; 1635 } 1636 1637 /* 1638 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1639 ** on success and SQLITE_NOMEM on an OOM error. 1640 */ 1641 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1642 char *zExtra; 1643 int nByte; 1644 if( pIdx->nColumn>=N ) return SQLITE_OK; 1645 assert( pIdx->isResized==0 ); 1646 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1647 zExtra = sqlite3DbMallocZero(db, nByte); 1648 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1649 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1650 pIdx->azColl = (const char**)zExtra; 1651 zExtra += sizeof(char*)*N; 1652 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1653 pIdx->aiColumn = (i16*)zExtra; 1654 zExtra += sizeof(i16)*N; 1655 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1656 pIdx->aSortOrder = (u8*)zExtra; 1657 pIdx->nColumn = N; 1658 pIdx->isResized = 1; 1659 return SQLITE_OK; 1660 } 1661 1662 /* 1663 ** Estimate the total row width for a table. 1664 */ 1665 static void estimateTableWidth(Table *pTab){ 1666 unsigned wTable = 0; 1667 const Column *pTabCol; 1668 int i; 1669 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1670 wTable += pTabCol->szEst; 1671 } 1672 if( pTab->iPKey<0 ) wTable++; 1673 pTab->szTabRow = sqlite3LogEst(wTable*4); 1674 } 1675 1676 /* 1677 ** Estimate the average size of a row for an index. 1678 */ 1679 static void estimateIndexWidth(Index *pIdx){ 1680 unsigned wIndex = 0; 1681 int i; 1682 const Column *aCol = pIdx->pTable->aCol; 1683 for(i=0; i<pIdx->nColumn; i++){ 1684 i16 x = pIdx->aiColumn[i]; 1685 assert( x<pIdx->pTable->nCol ); 1686 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1687 } 1688 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1689 } 1690 1691 /* Return true if value x is found any of the first nCol entries of aiCol[] 1692 */ 1693 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1694 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1695 return 0; 1696 } 1697 1698 /* Recompute the colNotIdxed field of the Index. 1699 ** 1700 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1701 ** columns that are within the first 63 columns of the table. The 1702 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1703 ** of the table have a 1. 1704 ** 1705 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1706 ** to determine if the index is covering index. 1707 */ 1708 static void recomputeColumnsNotIndexed(Index *pIdx){ 1709 Bitmask m = 0; 1710 int j; 1711 for(j=pIdx->nColumn-1; j>=0; j--){ 1712 int x = pIdx->aiColumn[j]; 1713 if( x>=0 ){ 1714 testcase( x==BMS-1 ); 1715 testcase( x==BMS-2 ); 1716 if( x<BMS-1 ) m |= MASKBIT(x); 1717 } 1718 } 1719 pIdx->colNotIdxed = ~m; 1720 assert( (pIdx->colNotIdxed>>63)==1 ); 1721 } 1722 1723 /* 1724 ** This routine runs at the end of parsing a CREATE TABLE statement that 1725 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1726 ** internal schema data structures and the generated VDBE code so that they 1727 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1728 ** Changes include: 1729 ** 1730 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1731 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1732 ** into BTREE_BLOBKEY. 1733 ** (3) Bypass the creation of the sqlite_master table entry 1734 ** for the PRIMARY KEY as the primary key index is now 1735 ** identified by the sqlite_master table entry of the table itself. 1736 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1737 ** schema to the rootpage from the main table. 1738 ** (5) Add all table columns to the PRIMARY KEY Index object 1739 ** so that the PRIMARY KEY is a covering index. The surplus 1740 ** columns are part of KeyInfo.nAllField and are not used for 1741 ** sorting or lookup or uniqueness checks. 1742 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1743 ** indices with the PRIMARY KEY columns. 1744 ** 1745 ** For virtual tables, only (1) is performed. 1746 */ 1747 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1748 Index *pIdx; 1749 Index *pPk; 1750 int nPk; 1751 int i, j; 1752 sqlite3 *db = pParse->db; 1753 Vdbe *v = pParse->pVdbe; 1754 1755 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1756 */ 1757 if( !db->init.imposterTable ){ 1758 for(i=0; i<pTab->nCol; i++){ 1759 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1760 pTab->aCol[i].notNull = OE_Abort; 1761 } 1762 } 1763 } 1764 1765 /* The remaining transformations only apply to b-tree tables, not to 1766 ** virtual tables */ 1767 if( IN_DECLARE_VTAB ) return; 1768 1769 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1770 ** into BTREE_BLOBKEY. 1771 */ 1772 if( pParse->addrCrTab ){ 1773 assert( v ); 1774 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1775 } 1776 1777 /* Locate the PRIMARY KEY index. Or, if this table was originally 1778 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1779 */ 1780 if( pTab->iPKey>=0 ){ 1781 ExprList *pList; 1782 Token ipkToken; 1783 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1784 pList = sqlite3ExprListAppend(pParse, 0, 1785 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1786 if( pList==0 ) return; 1787 pList->a[0].sortOrder = pParse->iPkSortOrder; 1788 assert( pParse->pNewTable==pTab ); 1789 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1790 SQLITE_IDXTYPE_PRIMARYKEY); 1791 if( db->mallocFailed || pParse->nErr ) return; 1792 pPk = sqlite3PrimaryKeyIndex(pTab); 1793 pTab->iPKey = -1; 1794 }else{ 1795 pPk = sqlite3PrimaryKeyIndex(pTab); 1796 1797 /* 1798 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1799 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1800 ** code assumes the PRIMARY KEY contains no repeated columns. 1801 */ 1802 for(i=j=1; i<pPk->nKeyCol; i++){ 1803 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1804 pPk->nColumn--; 1805 }else{ 1806 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1807 } 1808 } 1809 pPk->nKeyCol = j; 1810 } 1811 assert( pPk!=0 ); 1812 pPk->isCovering = 1; 1813 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1814 nPk = pPk->nKeyCol; 1815 1816 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1817 ** table entry. This is only required if currently generating VDBE 1818 ** code for a CREATE TABLE (not when parsing one as part of reading 1819 ** a database schema). */ 1820 if( v && pPk->tnum>0 ){ 1821 assert( db->init.busy==0 ); 1822 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1823 } 1824 1825 /* The root page of the PRIMARY KEY is the table root page */ 1826 pPk->tnum = pTab->tnum; 1827 1828 /* Update the in-memory representation of all UNIQUE indices by converting 1829 ** the final rowid column into one or more columns of the PRIMARY KEY. 1830 */ 1831 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1832 int n; 1833 if( IsPrimaryKeyIndex(pIdx) ) continue; 1834 for(i=n=0; i<nPk; i++){ 1835 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1836 } 1837 if( n==0 ){ 1838 /* This index is a superset of the primary key */ 1839 pIdx->nColumn = pIdx->nKeyCol; 1840 continue; 1841 } 1842 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1843 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1844 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1845 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1846 pIdx->azColl[j] = pPk->azColl[i]; 1847 j++; 1848 } 1849 } 1850 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1851 assert( pIdx->nColumn>=j ); 1852 } 1853 1854 /* Add all table columns to the PRIMARY KEY index 1855 */ 1856 if( nPk<pTab->nCol ){ 1857 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1858 for(i=0, j=nPk; i<pTab->nCol; i++){ 1859 if( !hasColumn(pPk->aiColumn, j, i) ){ 1860 assert( j<pPk->nColumn ); 1861 pPk->aiColumn[j] = i; 1862 pPk->azColl[j] = sqlite3StrBINARY; 1863 j++; 1864 } 1865 } 1866 assert( pPk->nColumn==j ); 1867 assert( pTab->nCol==j ); 1868 }else{ 1869 pPk->nColumn = pTab->nCol; 1870 } 1871 recomputeColumnsNotIndexed(pPk); 1872 } 1873 1874 /* 1875 ** This routine is called to report the final ")" that terminates 1876 ** a CREATE TABLE statement. 1877 ** 1878 ** The table structure that other action routines have been building 1879 ** is added to the internal hash tables, assuming no errors have 1880 ** occurred. 1881 ** 1882 ** An entry for the table is made in the master table on disk, unless 1883 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1884 ** it means we are reading the sqlite_master table because we just 1885 ** connected to the database or because the sqlite_master table has 1886 ** recently changed, so the entry for this table already exists in 1887 ** the sqlite_master table. We do not want to create it again. 1888 ** 1889 ** If the pSelect argument is not NULL, it means that this routine 1890 ** was called to create a table generated from a 1891 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1892 ** the new table will match the result set of the SELECT. 1893 */ 1894 void sqlite3EndTable( 1895 Parse *pParse, /* Parse context */ 1896 Token *pCons, /* The ',' token after the last column defn. */ 1897 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1898 u8 tabOpts, /* Extra table options. Usually 0. */ 1899 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1900 ){ 1901 Table *p; /* The new table */ 1902 sqlite3 *db = pParse->db; /* The database connection */ 1903 int iDb; /* Database in which the table lives */ 1904 Index *pIdx; /* An implied index of the table */ 1905 1906 if( pEnd==0 && pSelect==0 ){ 1907 return; 1908 } 1909 assert( !db->mallocFailed ); 1910 p = pParse->pNewTable; 1911 if( p==0 ) return; 1912 1913 /* If the db->init.busy is 1 it means we are reading the SQL off the 1914 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1915 ** So do not write to the disk again. Extract the root page number 1916 ** for the table from the db->init.newTnum field. (The page number 1917 ** should have been put there by the sqliteOpenCb routine.) 1918 ** 1919 ** If the root page number is 1, that means this is the sqlite_master 1920 ** table itself. So mark it read-only. 1921 */ 1922 if( db->init.busy ){ 1923 if( pSelect ){ 1924 sqlite3ErrorMsg(pParse, ""); 1925 return; 1926 } 1927 p->tnum = db->init.newTnum; 1928 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1929 } 1930 1931 /* Special processing for WITHOUT ROWID Tables */ 1932 if( tabOpts & TF_WithoutRowid ){ 1933 if( (p->tabFlags & TF_Autoincrement) ){ 1934 sqlite3ErrorMsg(pParse, 1935 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1936 return; 1937 } 1938 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1939 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1940 }else{ 1941 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1942 convertToWithoutRowidTable(pParse, p); 1943 } 1944 } 1945 1946 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1947 1948 #ifndef SQLITE_OMIT_CHECK 1949 /* Resolve names in all CHECK constraint expressions. 1950 */ 1951 if( p->pCheck ){ 1952 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1953 } 1954 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1955 1956 /* Estimate the average row size for the table and for all implied indices */ 1957 estimateTableWidth(p); 1958 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1959 estimateIndexWidth(pIdx); 1960 } 1961 1962 /* If not initializing, then create a record for the new table 1963 ** in the SQLITE_MASTER table of the database. 1964 ** 1965 ** If this is a TEMPORARY table, write the entry into the auxiliary 1966 ** file instead of into the main database file. 1967 */ 1968 if( !db->init.busy ){ 1969 int n; 1970 Vdbe *v; 1971 char *zType; /* "view" or "table" */ 1972 char *zType2; /* "VIEW" or "TABLE" */ 1973 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1974 1975 v = sqlite3GetVdbe(pParse); 1976 if( NEVER(v==0) ) return; 1977 1978 sqlite3VdbeAddOp1(v, OP_Close, 0); 1979 1980 /* 1981 ** Initialize zType for the new view or table. 1982 */ 1983 if( p->pSelect==0 ){ 1984 /* A regular table */ 1985 zType = "table"; 1986 zType2 = "TABLE"; 1987 #ifndef SQLITE_OMIT_VIEW 1988 }else{ 1989 /* A view */ 1990 zType = "view"; 1991 zType2 = "VIEW"; 1992 #endif 1993 } 1994 1995 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1996 ** statement to populate the new table. The root-page number for the 1997 ** new table is in register pParse->regRoot. 1998 ** 1999 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2000 ** suitable state to query for the column names and types to be used 2001 ** by the new table. 2002 ** 2003 ** A shared-cache write-lock is not required to write to the new table, 2004 ** as a schema-lock must have already been obtained to create it. Since 2005 ** a schema-lock excludes all other database users, the write-lock would 2006 ** be redundant. 2007 */ 2008 if( pSelect ){ 2009 SelectDest dest; /* Where the SELECT should store results */ 2010 int regYield; /* Register holding co-routine entry-point */ 2011 int addrTop; /* Top of the co-routine */ 2012 int regRec; /* A record to be insert into the new table */ 2013 int regRowid; /* Rowid of the next row to insert */ 2014 int addrInsLoop; /* Top of the loop for inserting rows */ 2015 Table *pSelTab; /* A table that describes the SELECT results */ 2016 2017 regYield = ++pParse->nMem; 2018 regRec = ++pParse->nMem; 2019 regRowid = ++pParse->nMem; 2020 assert(pParse->nTab==1); 2021 sqlite3MayAbort(pParse); 2022 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2023 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2024 pParse->nTab = 2; 2025 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2026 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2027 if( pParse->nErr ) return; 2028 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 2029 if( pSelTab==0 ) return; 2030 assert( p->aCol==0 ); 2031 p->nCol = pSelTab->nCol; 2032 p->aCol = pSelTab->aCol; 2033 pSelTab->nCol = 0; 2034 pSelTab->aCol = 0; 2035 sqlite3DeleteTable(db, pSelTab); 2036 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2037 sqlite3Select(pParse, pSelect, &dest); 2038 if( pParse->nErr ) return; 2039 sqlite3VdbeEndCoroutine(v, regYield); 2040 sqlite3VdbeJumpHere(v, addrTop - 1); 2041 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2042 VdbeCoverage(v); 2043 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2044 sqlite3TableAffinity(v, p, 0); 2045 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2046 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2047 sqlite3VdbeGoto(v, addrInsLoop); 2048 sqlite3VdbeJumpHere(v, addrInsLoop); 2049 sqlite3VdbeAddOp1(v, OP_Close, 1); 2050 } 2051 2052 /* Compute the complete text of the CREATE statement */ 2053 if( pSelect ){ 2054 zStmt = createTableStmt(db, p); 2055 }else{ 2056 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2057 n = (int)(pEnd2->z - pParse->sNameToken.z); 2058 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2059 zStmt = sqlite3MPrintf(db, 2060 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2061 ); 2062 } 2063 2064 /* A slot for the record has already been allocated in the 2065 ** SQLITE_MASTER table. We just need to update that slot with all 2066 ** the information we've collected. 2067 */ 2068 sqlite3NestedParse(pParse, 2069 "UPDATE %Q.%s " 2070 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2071 "WHERE rowid=#%d", 2072 db->aDb[iDb].zDbSName, MASTER_NAME, 2073 zType, 2074 p->zName, 2075 p->zName, 2076 pParse->regRoot, 2077 zStmt, 2078 pParse->regRowid 2079 ); 2080 sqlite3DbFree(db, zStmt); 2081 sqlite3ChangeCookie(pParse, iDb); 2082 2083 #ifndef SQLITE_OMIT_AUTOINCREMENT 2084 /* Check to see if we need to create an sqlite_sequence table for 2085 ** keeping track of autoincrement keys. 2086 */ 2087 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2088 Db *pDb = &db->aDb[iDb]; 2089 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2090 if( pDb->pSchema->pSeqTab==0 ){ 2091 sqlite3NestedParse(pParse, 2092 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2093 pDb->zDbSName 2094 ); 2095 } 2096 } 2097 #endif 2098 2099 /* Reparse everything to update our internal data structures */ 2100 sqlite3VdbeAddParseSchemaOp(v, iDb, 2101 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2102 } 2103 2104 2105 /* Add the table to the in-memory representation of the database. 2106 */ 2107 if( db->init.busy ){ 2108 Table *pOld; 2109 Schema *pSchema = p->pSchema; 2110 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2111 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2112 if( pOld ){ 2113 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2114 sqlite3OomFault(db); 2115 return; 2116 } 2117 pParse->pNewTable = 0; 2118 db->mDbFlags |= DBFLAG_SchemaChange; 2119 2120 #ifndef SQLITE_OMIT_ALTERTABLE 2121 if( !p->pSelect ){ 2122 const char *zName = (const char *)pParse->sNameToken.z; 2123 int nName; 2124 assert( !pSelect && pCons && pEnd ); 2125 if( pCons->z==0 ){ 2126 pCons = pEnd; 2127 } 2128 nName = (int)((const char *)pCons->z - zName); 2129 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2130 } 2131 #endif 2132 } 2133 } 2134 2135 #ifndef SQLITE_OMIT_VIEW 2136 /* 2137 ** The parser calls this routine in order to create a new VIEW 2138 */ 2139 void sqlite3CreateView( 2140 Parse *pParse, /* The parsing context */ 2141 Token *pBegin, /* The CREATE token that begins the statement */ 2142 Token *pName1, /* The token that holds the name of the view */ 2143 Token *pName2, /* The token that holds the name of the view */ 2144 ExprList *pCNames, /* Optional list of view column names */ 2145 Select *pSelect, /* A SELECT statement that will become the new view */ 2146 int isTemp, /* TRUE for a TEMPORARY view */ 2147 int noErr /* Suppress error messages if VIEW already exists */ 2148 ){ 2149 Table *p; 2150 int n; 2151 const char *z; 2152 Token sEnd; 2153 DbFixer sFix; 2154 Token *pName = 0; 2155 int iDb; 2156 sqlite3 *db = pParse->db; 2157 2158 if( pParse->nVar>0 ){ 2159 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2160 goto create_view_fail; 2161 } 2162 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2163 p = pParse->pNewTable; 2164 if( p==0 || pParse->nErr ) goto create_view_fail; 2165 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2166 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2167 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2168 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2169 2170 /* Make a copy of the entire SELECT statement that defines the view. 2171 ** This will force all the Expr.token.z values to be dynamically 2172 ** allocated rather than point to the input string - which means that 2173 ** they will persist after the current sqlite3_exec() call returns. 2174 */ 2175 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2176 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2177 if( db->mallocFailed ) goto create_view_fail; 2178 2179 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2180 ** the end. 2181 */ 2182 sEnd = pParse->sLastToken; 2183 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2184 if( sEnd.z[0]!=';' ){ 2185 sEnd.z += sEnd.n; 2186 } 2187 sEnd.n = 0; 2188 n = (int)(sEnd.z - pBegin->z); 2189 assert( n>0 ); 2190 z = pBegin->z; 2191 while( sqlite3Isspace(z[n-1]) ){ n--; } 2192 sEnd.z = &z[n-1]; 2193 sEnd.n = 1; 2194 2195 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2196 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2197 2198 create_view_fail: 2199 sqlite3SelectDelete(db, pSelect); 2200 sqlite3ExprListDelete(db, pCNames); 2201 return; 2202 } 2203 #endif /* SQLITE_OMIT_VIEW */ 2204 2205 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2206 /* 2207 ** The Table structure pTable is really a VIEW. Fill in the names of 2208 ** the columns of the view in the pTable structure. Return the number 2209 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2210 */ 2211 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2212 Table *pSelTab; /* A fake table from which we get the result set */ 2213 Select *pSel; /* Copy of the SELECT that implements the view */ 2214 int nErr = 0; /* Number of errors encountered */ 2215 int n; /* Temporarily holds the number of cursors assigned */ 2216 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2217 #ifndef SQLITE_OMIT_VIRTUALTABLE 2218 int rc; 2219 #endif 2220 #ifndef SQLITE_OMIT_AUTHORIZATION 2221 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2222 #endif 2223 2224 assert( pTable ); 2225 2226 #ifndef SQLITE_OMIT_VIRTUALTABLE 2227 db->nSchemaLock++; 2228 rc = sqlite3VtabCallConnect(pParse, pTable); 2229 db->nSchemaLock--; 2230 if( rc ){ 2231 return 1; 2232 } 2233 if( IsVirtual(pTable) ) return 0; 2234 #endif 2235 2236 #ifndef SQLITE_OMIT_VIEW 2237 /* A positive nCol means the columns names for this view are 2238 ** already known. 2239 */ 2240 if( pTable->nCol>0 ) return 0; 2241 2242 /* A negative nCol is a special marker meaning that we are currently 2243 ** trying to compute the column names. If we enter this routine with 2244 ** a negative nCol, it means two or more views form a loop, like this: 2245 ** 2246 ** CREATE VIEW one AS SELECT * FROM two; 2247 ** CREATE VIEW two AS SELECT * FROM one; 2248 ** 2249 ** Actually, the error above is now caught prior to reaching this point. 2250 ** But the following test is still important as it does come up 2251 ** in the following: 2252 ** 2253 ** CREATE TABLE main.ex1(a); 2254 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2255 ** SELECT * FROM temp.ex1; 2256 */ 2257 if( pTable->nCol<0 ){ 2258 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2259 return 1; 2260 } 2261 assert( pTable->nCol>=0 ); 2262 2263 /* If we get this far, it means we need to compute the table names. 2264 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2265 ** "*" elements in the results set of the view and will assign cursors 2266 ** to the elements of the FROM clause. But we do not want these changes 2267 ** to be permanent. So the computation is done on a copy of the SELECT 2268 ** statement that defines the view. 2269 */ 2270 assert( pTable->pSelect ); 2271 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2272 if( pSel ){ 2273 n = pParse->nTab; 2274 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2275 pTable->nCol = -1; 2276 db->lookaside.bDisable++; 2277 #ifndef SQLITE_OMIT_AUTHORIZATION 2278 xAuth = db->xAuth; 2279 db->xAuth = 0; 2280 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2281 db->xAuth = xAuth; 2282 #else 2283 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2284 #endif 2285 pParse->nTab = n; 2286 if( pTable->pCheck ){ 2287 /* CREATE VIEW name(arglist) AS ... 2288 ** The names of the columns in the table are taken from 2289 ** arglist which is stored in pTable->pCheck. The pCheck field 2290 ** normally holds CHECK constraints on an ordinary table, but for 2291 ** a VIEW it holds the list of column names. 2292 */ 2293 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2294 &pTable->nCol, &pTable->aCol); 2295 if( db->mallocFailed==0 2296 && pParse->nErr==0 2297 && pTable->nCol==pSel->pEList->nExpr 2298 ){ 2299 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2300 } 2301 }else if( pSelTab ){ 2302 /* CREATE VIEW name AS... without an argument list. Construct 2303 ** the column names from the SELECT statement that defines the view. 2304 */ 2305 assert( pTable->aCol==0 ); 2306 pTable->nCol = pSelTab->nCol; 2307 pTable->aCol = pSelTab->aCol; 2308 pSelTab->nCol = 0; 2309 pSelTab->aCol = 0; 2310 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2311 }else{ 2312 pTable->nCol = 0; 2313 nErr++; 2314 } 2315 sqlite3DeleteTable(db, pSelTab); 2316 sqlite3SelectDelete(db, pSel); 2317 db->lookaside.bDisable--; 2318 } else { 2319 nErr++; 2320 } 2321 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2322 if( db->mallocFailed ){ 2323 sqlite3DeleteColumnNames(db, pTable); 2324 pTable->aCol = 0; 2325 pTable->nCol = 0; 2326 } 2327 #endif /* SQLITE_OMIT_VIEW */ 2328 return nErr; 2329 } 2330 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2331 2332 #ifndef SQLITE_OMIT_VIEW 2333 /* 2334 ** Clear the column names from every VIEW in database idx. 2335 */ 2336 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2337 HashElem *i; 2338 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2339 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2340 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2341 Table *pTab = sqliteHashData(i); 2342 if( pTab->pSelect ){ 2343 sqlite3DeleteColumnNames(db, pTab); 2344 pTab->aCol = 0; 2345 pTab->nCol = 0; 2346 } 2347 } 2348 DbClearProperty(db, idx, DB_UnresetViews); 2349 } 2350 #else 2351 # define sqliteViewResetAll(A,B) 2352 #endif /* SQLITE_OMIT_VIEW */ 2353 2354 /* 2355 ** This function is called by the VDBE to adjust the internal schema 2356 ** used by SQLite when the btree layer moves a table root page. The 2357 ** root-page of a table or index in database iDb has changed from iFrom 2358 ** to iTo. 2359 ** 2360 ** Ticket #1728: The symbol table might still contain information 2361 ** on tables and/or indices that are the process of being deleted. 2362 ** If you are unlucky, one of those deleted indices or tables might 2363 ** have the same rootpage number as the real table or index that is 2364 ** being moved. So we cannot stop searching after the first match 2365 ** because the first match might be for one of the deleted indices 2366 ** or tables and not the table/index that is actually being moved. 2367 ** We must continue looping until all tables and indices with 2368 ** rootpage==iFrom have been converted to have a rootpage of iTo 2369 ** in order to be certain that we got the right one. 2370 */ 2371 #ifndef SQLITE_OMIT_AUTOVACUUM 2372 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2373 HashElem *pElem; 2374 Hash *pHash; 2375 Db *pDb; 2376 2377 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2378 pDb = &db->aDb[iDb]; 2379 pHash = &pDb->pSchema->tblHash; 2380 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2381 Table *pTab = sqliteHashData(pElem); 2382 if( pTab->tnum==iFrom ){ 2383 pTab->tnum = iTo; 2384 } 2385 } 2386 pHash = &pDb->pSchema->idxHash; 2387 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2388 Index *pIdx = sqliteHashData(pElem); 2389 if( pIdx->tnum==iFrom ){ 2390 pIdx->tnum = iTo; 2391 } 2392 } 2393 } 2394 #endif 2395 2396 /* 2397 ** Write code to erase the table with root-page iTable from database iDb. 2398 ** Also write code to modify the sqlite_master table and internal schema 2399 ** if a root-page of another table is moved by the btree-layer whilst 2400 ** erasing iTable (this can happen with an auto-vacuum database). 2401 */ 2402 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2403 Vdbe *v = sqlite3GetVdbe(pParse); 2404 int r1 = sqlite3GetTempReg(pParse); 2405 assert( iTable>1 ); 2406 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2407 sqlite3MayAbort(pParse); 2408 #ifndef SQLITE_OMIT_AUTOVACUUM 2409 /* OP_Destroy stores an in integer r1. If this integer 2410 ** is non-zero, then it is the root page number of a table moved to 2411 ** location iTable. The following code modifies the sqlite_master table to 2412 ** reflect this. 2413 ** 2414 ** The "#NNN" in the SQL is a special constant that means whatever value 2415 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2416 ** token for additional information. 2417 */ 2418 sqlite3NestedParse(pParse, 2419 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2420 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2421 #endif 2422 sqlite3ReleaseTempReg(pParse, r1); 2423 } 2424 2425 /* 2426 ** Write VDBE code to erase table pTab and all associated indices on disk. 2427 ** Code to update the sqlite_master tables and internal schema definitions 2428 ** in case a root-page belonging to another table is moved by the btree layer 2429 ** is also added (this can happen with an auto-vacuum database). 2430 */ 2431 static void destroyTable(Parse *pParse, Table *pTab){ 2432 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2433 ** is not defined), then it is important to call OP_Destroy on the 2434 ** table and index root-pages in order, starting with the numerically 2435 ** largest root-page number. This guarantees that none of the root-pages 2436 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2437 ** following were coded: 2438 ** 2439 ** OP_Destroy 4 0 2440 ** ... 2441 ** OP_Destroy 5 0 2442 ** 2443 ** and root page 5 happened to be the largest root-page number in the 2444 ** database, then root page 5 would be moved to page 4 by the 2445 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2446 ** a free-list page. 2447 */ 2448 int iTab = pTab->tnum; 2449 int iDestroyed = 0; 2450 2451 while( 1 ){ 2452 Index *pIdx; 2453 int iLargest = 0; 2454 2455 if( iDestroyed==0 || iTab<iDestroyed ){ 2456 iLargest = iTab; 2457 } 2458 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2459 int iIdx = pIdx->tnum; 2460 assert( pIdx->pSchema==pTab->pSchema ); 2461 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2462 iLargest = iIdx; 2463 } 2464 } 2465 if( iLargest==0 ){ 2466 return; 2467 }else{ 2468 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2469 assert( iDb>=0 && iDb<pParse->db->nDb ); 2470 destroyRootPage(pParse, iLargest, iDb); 2471 iDestroyed = iLargest; 2472 } 2473 } 2474 } 2475 2476 /* 2477 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2478 ** after a DROP INDEX or DROP TABLE command. 2479 */ 2480 static void sqlite3ClearStatTables( 2481 Parse *pParse, /* The parsing context */ 2482 int iDb, /* The database number */ 2483 const char *zType, /* "idx" or "tbl" */ 2484 const char *zName /* Name of index or table */ 2485 ){ 2486 int i; 2487 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2488 for(i=1; i<=4; i++){ 2489 char zTab[24]; 2490 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2491 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2492 sqlite3NestedParse(pParse, 2493 "DELETE FROM %Q.%s WHERE %s=%Q", 2494 zDbName, zTab, zType, zName 2495 ); 2496 } 2497 } 2498 } 2499 2500 /* 2501 ** Generate code to drop a table. 2502 */ 2503 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2504 Vdbe *v; 2505 sqlite3 *db = pParse->db; 2506 Trigger *pTrigger; 2507 Db *pDb = &db->aDb[iDb]; 2508 2509 v = sqlite3GetVdbe(pParse); 2510 assert( v!=0 ); 2511 sqlite3BeginWriteOperation(pParse, 1, iDb); 2512 2513 #ifndef SQLITE_OMIT_VIRTUALTABLE 2514 if( IsVirtual(pTab) ){ 2515 sqlite3VdbeAddOp0(v, OP_VBegin); 2516 } 2517 #endif 2518 2519 /* Drop all triggers associated with the table being dropped. Code 2520 ** is generated to remove entries from sqlite_master and/or 2521 ** sqlite_temp_master if required. 2522 */ 2523 pTrigger = sqlite3TriggerList(pParse, pTab); 2524 while( pTrigger ){ 2525 assert( pTrigger->pSchema==pTab->pSchema || 2526 pTrigger->pSchema==db->aDb[1].pSchema ); 2527 sqlite3DropTriggerPtr(pParse, pTrigger); 2528 pTrigger = pTrigger->pNext; 2529 } 2530 2531 #ifndef SQLITE_OMIT_AUTOINCREMENT 2532 /* Remove any entries of the sqlite_sequence table associated with 2533 ** the table being dropped. This is done before the table is dropped 2534 ** at the btree level, in case the sqlite_sequence table needs to 2535 ** move as a result of the drop (can happen in auto-vacuum mode). 2536 */ 2537 if( pTab->tabFlags & TF_Autoincrement ){ 2538 sqlite3NestedParse(pParse, 2539 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2540 pDb->zDbSName, pTab->zName 2541 ); 2542 } 2543 #endif 2544 2545 /* Drop all SQLITE_MASTER table and index entries that refer to the 2546 ** table. The program name loops through the master table and deletes 2547 ** every row that refers to a table of the same name as the one being 2548 ** dropped. Triggers are handled separately because a trigger can be 2549 ** created in the temp database that refers to a table in another 2550 ** database. 2551 */ 2552 sqlite3NestedParse(pParse, 2553 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2554 pDb->zDbSName, MASTER_NAME, pTab->zName); 2555 if( !isView && !IsVirtual(pTab) ){ 2556 destroyTable(pParse, pTab); 2557 } 2558 2559 /* Remove the table entry from SQLite's internal schema and modify 2560 ** the schema cookie. 2561 */ 2562 if( IsVirtual(pTab) ){ 2563 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2564 } 2565 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2566 sqlite3ChangeCookie(pParse, iDb); 2567 sqliteViewResetAll(db, iDb); 2568 } 2569 2570 /* 2571 ** This routine is called to do the work of a DROP TABLE statement. 2572 ** pName is the name of the table to be dropped. 2573 */ 2574 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2575 Table *pTab; 2576 Vdbe *v; 2577 sqlite3 *db = pParse->db; 2578 int iDb; 2579 2580 if( db->mallocFailed ){ 2581 goto exit_drop_table; 2582 } 2583 assert( pParse->nErr==0 ); 2584 assert( pName->nSrc==1 ); 2585 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2586 if( noErr ) db->suppressErr++; 2587 assert( isView==0 || isView==LOCATE_VIEW ); 2588 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2589 if( noErr ) db->suppressErr--; 2590 2591 if( pTab==0 ){ 2592 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2593 goto exit_drop_table; 2594 } 2595 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2596 assert( iDb>=0 && iDb<db->nDb ); 2597 2598 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2599 ** it is initialized. 2600 */ 2601 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2602 goto exit_drop_table; 2603 } 2604 #ifndef SQLITE_OMIT_AUTHORIZATION 2605 { 2606 int code; 2607 const char *zTab = SCHEMA_TABLE(iDb); 2608 const char *zDb = db->aDb[iDb].zDbSName; 2609 const char *zArg2 = 0; 2610 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2611 goto exit_drop_table; 2612 } 2613 if( isView ){ 2614 if( !OMIT_TEMPDB && iDb==1 ){ 2615 code = SQLITE_DROP_TEMP_VIEW; 2616 }else{ 2617 code = SQLITE_DROP_VIEW; 2618 } 2619 #ifndef SQLITE_OMIT_VIRTUALTABLE 2620 }else if( IsVirtual(pTab) ){ 2621 code = SQLITE_DROP_VTABLE; 2622 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2623 #endif 2624 }else{ 2625 if( !OMIT_TEMPDB && iDb==1 ){ 2626 code = SQLITE_DROP_TEMP_TABLE; 2627 }else{ 2628 code = SQLITE_DROP_TABLE; 2629 } 2630 } 2631 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2632 goto exit_drop_table; 2633 } 2634 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2635 goto exit_drop_table; 2636 } 2637 } 2638 #endif 2639 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2640 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2641 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2642 goto exit_drop_table; 2643 } 2644 2645 #ifndef SQLITE_OMIT_VIEW 2646 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2647 ** on a table. 2648 */ 2649 if( isView && pTab->pSelect==0 ){ 2650 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2651 goto exit_drop_table; 2652 } 2653 if( !isView && pTab->pSelect ){ 2654 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2655 goto exit_drop_table; 2656 } 2657 #endif 2658 2659 /* Generate code to remove the table from the master table 2660 ** on disk. 2661 */ 2662 v = sqlite3GetVdbe(pParse); 2663 if( v ){ 2664 sqlite3BeginWriteOperation(pParse, 1, iDb); 2665 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2666 sqlite3FkDropTable(pParse, pName, pTab); 2667 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2668 } 2669 2670 exit_drop_table: 2671 sqlite3SrcListDelete(db, pName); 2672 } 2673 2674 /* 2675 ** This routine is called to create a new foreign key on the table 2676 ** currently under construction. pFromCol determines which columns 2677 ** in the current table point to the foreign key. If pFromCol==0 then 2678 ** connect the key to the last column inserted. pTo is the name of 2679 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2680 ** of tables in the parent pTo table. flags contains all 2681 ** information about the conflict resolution algorithms specified 2682 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2683 ** 2684 ** An FKey structure is created and added to the table currently 2685 ** under construction in the pParse->pNewTable field. 2686 ** 2687 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2688 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2689 */ 2690 void sqlite3CreateForeignKey( 2691 Parse *pParse, /* Parsing context */ 2692 ExprList *pFromCol, /* Columns in this table that point to other table */ 2693 Token *pTo, /* Name of the other table */ 2694 ExprList *pToCol, /* Columns in the other table */ 2695 int flags /* Conflict resolution algorithms. */ 2696 ){ 2697 sqlite3 *db = pParse->db; 2698 #ifndef SQLITE_OMIT_FOREIGN_KEY 2699 FKey *pFKey = 0; 2700 FKey *pNextTo; 2701 Table *p = pParse->pNewTable; 2702 int nByte; 2703 int i; 2704 int nCol; 2705 char *z; 2706 2707 assert( pTo!=0 ); 2708 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2709 if( pFromCol==0 ){ 2710 int iCol = p->nCol-1; 2711 if( NEVER(iCol<0) ) goto fk_end; 2712 if( pToCol && pToCol->nExpr!=1 ){ 2713 sqlite3ErrorMsg(pParse, "foreign key on %s" 2714 " should reference only one column of table %T", 2715 p->aCol[iCol].zName, pTo); 2716 goto fk_end; 2717 } 2718 nCol = 1; 2719 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2720 sqlite3ErrorMsg(pParse, 2721 "number of columns in foreign key does not match the number of " 2722 "columns in the referenced table"); 2723 goto fk_end; 2724 }else{ 2725 nCol = pFromCol->nExpr; 2726 } 2727 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2728 if( pToCol ){ 2729 for(i=0; i<pToCol->nExpr; i++){ 2730 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2731 } 2732 } 2733 pFKey = sqlite3DbMallocZero(db, nByte ); 2734 if( pFKey==0 ){ 2735 goto fk_end; 2736 } 2737 pFKey->pFrom = p; 2738 pFKey->pNextFrom = p->pFKey; 2739 z = (char*)&pFKey->aCol[nCol]; 2740 pFKey->zTo = z; 2741 memcpy(z, pTo->z, pTo->n); 2742 z[pTo->n] = 0; 2743 sqlite3Dequote(z); 2744 z += pTo->n+1; 2745 pFKey->nCol = nCol; 2746 if( pFromCol==0 ){ 2747 pFKey->aCol[0].iFrom = p->nCol-1; 2748 }else{ 2749 for(i=0; i<nCol; i++){ 2750 int j; 2751 for(j=0; j<p->nCol; j++){ 2752 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2753 pFKey->aCol[i].iFrom = j; 2754 break; 2755 } 2756 } 2757 if( j>=p->nCol ){ 2758 sqlite3ErrorMsg(pParse, 2759 "unknown column \"%s\" in foreign key definition", 2760 pFromCol->a[i].zName); 2761 goto fk_end; 2762 } 2763 } 2764 } 2765 if( pToCol ){ 2766 for(i=0; i<nCol; i++){ 2767 int n = sqlite3Strlen30(pToCol->a[i].zName); 2768 pFKey->aCol[i].zCol = z; 2769 memcpy(z, pToCol->a[i].zName, n); 2770 z[n] = 0; 2771 z += n+1; 2772 } 2773 } 2774 pFKey->isDeferred = 0; 2775 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2776 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2777 2778 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2779 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2780 pFKey->zTo, (void *)pFKey 2781 ); 2782 if( pNextTo==pFKey ){ 2783 sqlite3OomFault(db); 2784 goto fk_end; 2785 } 2786 if( pNextTo ){ 2787 assert( pNextTo->pPrevTo==0 ); 2788 pFKey->pNextTo = pNextTo; 2789 pNextTo->pPrevTo = pFKey; 2790 } 2791 2792 /* Link the foreign key to the table as the last step. 2793 */ 2794 p->pFKey = pFKey; 2795 pFKey = 0; 2796 2797 fk_end: 2798 sqlite3DbFree(db, pFKey); 2799 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2800 sqlite3ExprListDelete(db, pFromCol); 2801 sqlite3ExprListDelete(db, pToCol); 2802 } 2803 2804 /* 2805 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2806 ** clause is seen as part of a foreign key definition. The isDeferred 2807 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2808 ** The behavior of the most recently created foreign key is adjusted 2809 ** accordingly. 2810 */ 2811 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2812 #ifndef SQLITE_OMIT_FOREIGN_KEY 2813 Table *pTab; 2814 FKey *pFKey; 2815 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2816 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2817 pFKey->isDeferred = (u8)isDeferred; 2818 #endif 2819 } 2820 2821 /* 2822 ** Generate code that will erase and refill index *pIdx. This is 2823 ** used to initialize a newly created index or to recompute the 2824 ** content of an index in response to a REINDEX command. 2825 ** 2826 ** if memRootPage is not negative, it means that the index is newly 2827 ** created. The register specified by memRootPage contains the 2828 ** root page number of the index. If memRootPage is negative, then 2829 ** the index already exists and must be cleared before being refilled and 2830 ** the root page number of the index is taken from pIndex->tnum. 2831 */ 2832 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2833 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2834 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2835 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2836 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2837 int addr1; /* Address of top of loop */ 2838 int addr2; /* Address to jump to for next iteration */ 2839 int tnum; /* Root page of index */ 2840 int iPartIdxLabel; /* Jump to this label to skip a row */ 2841 Vdbe *v; /* Generate code into this virtual machine */ 2842 KeyInfo *pKey; /* KeyInfo for index */ 2843 int regRecord; /* Register holding assembled index record */ 2844 sqlite3 *db = pParse->db; /* The database connection */ 2845 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2846 2847 #ifndef SQLITE_OMIT_AUTHORIZATION 2848 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2849 db->aDb[iDb].zDbSName ) ){ 2850 return; 2851 } 2852 #endif 2853 2854 /* Require a write-lock on the table to perform this operation */ 2855 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2856 2857 v = sqlite3GetVdbe(pParse); 2858 if( v==0 ) return; 2859 if( memRootPage>=0 ){ 2860 tnum = memRootPage; 2861 }else{ 2862 tnum = pIndex->tnum; 2863 } 2864 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2865 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2866 2867 /* Open the sorter cursor if we are to use one. */ 2868 iSorter = pParse->nTab++; 2869 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2870 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2871 2872 /* Open the table. Loop through all rows of the table, inserting index 2873 ** records into the sorter. */ 2874 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2875 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2876 regRecord = sqlite3GetTempReg(pParse); 2877 sqlite3MultiWrite(pParse); 2878 2879 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2880 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2881 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2882 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2883 sqlite3VdbeJumpHere(v, addr1); 2884 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2885 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2886 (char *)pKey, P4_KEYINFO); 2887 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2888 2889 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2890 if( IsUniqueIndex(pIndex) ){ 2891 int j2 = sqlite3VdbeGoto(v, 1); 2892 addr2 = sqlite3VdbeCurrentAddr(v); 2893 sqlite3VdbeVerifyAbortable(v, OE_Abort); 2894 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2895 pIndex->nKeyCol); VdbeCoverage(v); 2896 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2897 sqlite3VdbeJumpHere(v, j2); 2898 }else{ 2899 addr2 = sqlite3VdbeCurrentAddr(v); 2900 } 2901 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2902 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 2903 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2904 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2905 sqlite3ReleaseTempReg(pParse, regRecord); 2906 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2907 sqlite3VdbeJumpHere(v, addr1); 2908 2909 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2910 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2911 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2912 } 2913 2914 /* 2915 ** Allocate heap space to hold an Index object with nCol columns. 2916 ** 2917 ** Increase the allocation size to provide an extra nExtra bytes 2918 ** of 8-byte aligned space after the Index object and return a 2919 ** pointer to this extra space in *ppExtra. 2920 */ 2921 Index *sqlite3AllocateIndexObject( 2922 sqlite3 *db, /* Database connection */ 2923 i16 nCol, /* Total number of columns in the index */ 2924 int nExtra, /* Number of bytes of extra space to alloc */ 2925 char **ppExtra /* Pointer to the "extra" space */ 2926 ){ 2927 Index *p; /* Allocated index object */ 2928 int nByte; /* Bytes of space for Index object + arrays */ 2929 2930 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2931 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2932 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2933 sizeof(i16)*nCol + /* Index.aiColumn */ 2934 sizeof(u8)*nCol); /* Index.aSortOrder */ 2935 p = sqlite3DbMallocZero(db, nByte + nExtra); 2936 if( p ){ 2937 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2938 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2939 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2940 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2941 p->aSortOrder = (u8*)pExtra; 2942 p->nColumn = nCol; 2943 p->nKeyCol = nCol - 1; 2944 *ppExtra = ((char*)p) + nByte; 2945 } 2946 return p; 2947 } 2948 2949 /* 2950 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2951 ** and pTblList is the name of the table that is to be indexed. Both will 2952 ** be NULL for a primary key or an index that is created to satisfy a 2953 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2954 ** as the table to be indexed. pParse->pNewTable is a table that is 2955 ** currently being constructed by a CREATE TABLE statement. 2956 ** 2957 ** pList is a list of columns to be indexed. pList will be NULL if this 2958 ** is a primary key or unique-constraint on the most recent column added 2959 ** to the table currently under construction. 2960 */ 2961 void sqlite3CreateIndex( 2962 Parse *pParse, /* All information about this parse */ 2963 Token *pName1, /* First part of index name. May be NULL */ 2964 Token *pName2, /* Second part of index name. May be NULL */ 2965 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2966 ExprList *pList, /* A list of columns to be indexed */ 2967 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2968 Token *pStart, /* The CREATE token that begins this statement */ 2969 Expr *pPIWhere, /* WHERE clause for partial indices */ 2970 int sortOrder, /* Sort order of primary key when pList==NULL */ 2971 int ifNotExist, /* Omit error if index already exists */ 2972 u8 idxType /* The index type */ 2973 ){ 2974 Table *pTab = 0; /* Table to be indexed */ 2975 Index *pIndex = 0; /* The index to be created */ 2976 char *zName = 0; /* Name of the index */ 2977 int nName; /* Number of characters in zName */ 2978 int i, j; 2979 DbFixer sFix; /* For assigning database names to pTable */ 2980 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2981 sqlite3 *db = pParse->db; 2982 Db *pDb; /* The specific table containing the indexed database */ 2983 int iDb; /* Index of the database that is being written */ 2984 Token *pName = 0; /* Unqualified name of the index to create */ 2985 struct ExprList_item *pListItem; /* For looping over pList */ 2986 int nExtra = 0; /* Space allocated for zExtra[] */ 2987 int nExtraCol; /* Number of extra columns needed */ 2988 char *zExtra = 0; /* Extra space after the Index object */ 2989 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2990 2991 if( db->mallocFailed || pParse->nErr>0 ){ 2992 goto exit_create_index; 2993 } 2994 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2995 goto exit_create_index; 2996 } 2997 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2998 goto exit_create_index; 2999 } 3000 3001 /* 3002 ** Find the table that is to be indexed. Return early if not found. 3003 */ 3004 if( pTblName!=0 ){ 3005 3006 /* Use the two-part index name to determine the database 3007 ** to search for the table. 'Fix' the table name to this db 3008 ** before looking up the table. 3009 */ 3010 assert( pName1 && pName2 ); 3011 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3012 if( iDb<0 ) goto exit_create_index; 3013 assert( pName && pName->z ); 3014 3015 #ifndef SQLITE_OMIT_TEMPDB 3016 /* If the index name was unqualified, check if the table 3017 ** is a temp table. If so, set the database to 1. Do not do this 3018 ** if initialising a database schema. 3019 */ 3020 if( !db->init.busy ){ 3021 pTab = sqlite3SrcListLookup(pParse, pTblName); 3022 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3023 iDb = 1; 3024 } 3025 } 3026 #endif 3027 3028 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3029 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3030 /* Because the parser constructs pTblName from a single identifier, 3031 ** sqlite3FixSrcList can never fail. */ 3032 assert(0); 3033 } 3034 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3035 assert( db->mallocFailed==0 || pTab==0 ); 3036 if( pTab==0 ) goto exit_create_index; 3037 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3038 sqlite3ErrorMsg(pParse, 3039 "cannot create a TEMP index on non-TEMP table \"%s\"", 3040 pTab->zName); 3041 goto exit_create_index; 3042 } 3043 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3044 }else{ 3045 assert( pName==0 ); 3046 assert( pStart==0 ); 3047 pTab = pParse->pNewTable; 3048 if( !pTab ) goto exit_create_index; 3049 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3050 } 3051 pDb = &db->aDb[iDb]; 3052 3053 assert( pTab!=0 ); 3054 assert( pParse->nErr==0 ); 3055 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3056 && db->init.busy==0 3057 #if SQLITE_USER_AUTHENTICATION 3058 && sqlite3UserAuthTable(pTab->zName)==0 3059 #endif 3060 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3061 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3062 #endif 3063 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 3064 ){ 3065 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3066 goto exit_create_index; 3067 } 3068 #ifndef SQLITE_OMIT_VIEW 3069 if( pTab->pSelect ){ 3070 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3071 goto exit_create_index; 3072 } 3073 #endif 3074 #ifndef SQLITE_OMIT_VIRTUALTABLE 3075 if( IsVirtual(pTab) ){ 3076 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3077 goto exit_create_index; 3078 } 3079 #endif 3080 3081 /* 3082 ** Find the name of the index. Make sure there is not already another 3083 ** index or table with the same name. 3084 ** 3085 ** Exception: If we are reading the names of permanent indices from the 3086 ** sqlite_master table (because some other process changed the schema) and 3087 ** one of the index names collides with the name of a temporary table or 3088 ** index, then we will continue to process this index. 3089 ** 3090 ** If pName==0 it means that we are 3091 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3092 ** own name. 3093 */ 3094 if( pName ){ 3095 zName = sqlite3NameFromToken(db, pName); 3096 if( zName==0 ) goto exit_create_index; 3097 assert( pName->z!=0 ); 3098 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3099 goto exit_create_index; 3100 } 3101 if( !db->init.busy ){ 3102 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3103 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3104 goto exit_create_index; 3105 } 3106 } 3107 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3108 if( !ifNotExist ){ 3109 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3110 }else{ 3111 assert( !db->init.busy ); 3112 sqlite3CodeVerifySchema(pParse, iDb); 3113 } 3114 goto exit_create_index; 3115 } 3116 }else{ 3117 int n; 3118 Index *pLoop; 3119 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3120 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3121 if( zName==0 ){ 3122 goto exit_create_index; 3123 } 3124 3125 /* Automatic index names generated from within sqlite3_declare_vtab() 3126 ** must have names that are distinct from normal automatic index names. 3127 ** The following statement converts "sqlite3_autoindex..." into 3128 ** "sqlite3_butoindex..." in order to make the names distinct. 3129 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3130 if( IN_DECLARE_VTAB ) zName[7]++; 3131 } 3132 3133 /* Check for authorization to create an index. 3134 */ 3135 #ifndef SQLITE_OMIT_AUTHORIZATION 3136 { 3137 const char *zDb = pDb->zDbSName; 3138 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3139 goto exit_create_index; 3140 } 3141 i = SQLITE_CREATE_INDEX; 3142 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3143 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3144 goto exit_create_index; 3145 } 3146 } 3147 #endif 3148 3149 /* If pList==0, it means this routine was called to make a primary 3150 ** key out of the last column added to the table under construction. 3151 ** So create a fake list to simulate this. 3152 */ 3153 if( pList==0 ){ 3154 Token prevCol; 3155 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3156 pCol->colFlags |= COLFLAG_UNIQUE; 3157 sqlite3TokenInit(&prevCol, pCol->zName); 3158 pList = sqlite3ExprListAppend(pParse, 0, 3159 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3160 if( pList==0 ) goto exit_create_index; 3161 assert( pList->nExpr==1 ); 3162 sqlite3ExprListSetSortOrder(pList, sortOrder); 3163 }else{ 3164 sqlite3ExprListCheckLength(pParse, pList, "index"); 3165 } 3166 3167 /* Figure out how many bytes of space are required to store explicitly 3168 ** specified collation sequence names. 3169 */ 3170 for(i=0; i<pList->nExpr; i++){ 3171 Expr *pExpr = pList->a[i].pExpr; 3172 assert( pExpr!=0 ); 3173 if( pExpr->op==TK_COLLATE ){ 3174 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3175 } 3176 } 3177 3178 /* 3179 ** Allocate the index structure. 3180 */ 3181 nName = sqlite3Strlen30(zName); 3182 nExtraCol = pPk ? pPk->nKeyCol : 1; 3183 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3184 nName + nExtra + 1, &zExtra); 3185 if( db->mallocFailed ){ 3186 goto exit_create_index; 3187 } 3188 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3189 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3190 pIndex->zName = zExtra; 3191 zExtra += nName + 1; 3192 memcpy(pIndex->zName, zName, nName+1); 3193 pIndex->pTable = pTab; 3194 pIndex->onError = (u8)onError; 3195 pIndex->uniqNotNull = onError!=OE_None; 3196 pIndex->idxType = idxType; 3197 pIndex->pSchema = db->aDb[iDb].pSchema; 3198 pIndex->nKeyCol = pList->nExpr; 3199 if( pPIWhere ){ 3200 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3201 pIndex->pPartIdxWhere = pPIWhere; 3202 pPIWhere = 0; 3203 } 3204 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3205 3206 /* Check to see if we should honor DESC requests on index columns 3207 */ 3208 if( pDb->pSchema->file_format>=4 ){ 3209 sortOrderMask = -1; /* Honor DESC */ 3210 }else{ 3211 sortOrderMask = 0; /* Ignore DESC */ 3212 } 3213 3214 /* Analyze the list of expressions that form the terms of the index and 3215 ** report any errors. In the common case where the expression is exactly 3216 ** a table column, store that column in aiColumn[]. For general expressions, 3217 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3218 ** 3219 ** TODO: Issue a warning if two or more columns of the index are identical. 3220 ** TODO: Issue a warning if the table primary key is used as part of the 3221 ** index key. 3222 */ 3223 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3224 Expr *pCExpr; /* The i-th index expression */ 3225 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3226 const char *zColl; /* Collation sequence name */ 3227 3228 sqlite3StringToId(pListItem->pExpr); 3229 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3230 if( pParse->nErr ) goto exit_create_index; 3231 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3232 if( pCExpr->op!=TK_COLUMN ){ 3233 if( pTab==pParse->pNewTable ){ 3234 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3235 "UNIQUE constraints"); 3236 goto exit_create_index; 3237 } 3238 if( pIndex->aColExpr==0 ){ 3239 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3240 pIndex->aColExpr = pCopy; 3241 if( !db->mallocFailed ){ 3242 assert( pCopy!=0 ); 3243 pListItem = &pCopy->a[i]; 3244 } 3245 } 3246 j = XN_EXPR; 3247 pIndex->aiColumn[i] = XN_EXPR; 3248 pIndex->uniqNotNull = 0; 3249 }else{ 3250 j = pCExpr->iColumn; 3251 assert( j<=0x7fff ); 3252 if( j<0 ){ 3253 j = pTab->iPKey; 3254 }else if( pTab->aCol[j].notNull==0 ){ 3255 pIndex->uniqNotNull = 0; 3256 } 3257 pIndex->aiColumn[i] = (i16)j; 3258 } 3259 zColl = 0; 3260 if( pListItem->pExpr->op==TK_COLLATE ){ 3261 int nColl; 3262 zColl = pListItem->pExpr->u.zToken; 3263 nColl = sqlite3Strlen30(zColl) + 1; 3264 assert( nExtra>=nColl ); 3265 memcpy(zExtra, zColl, nColl); 3266 zColl = zExtra; 3267 zExtra += nColl; 3268 nExtra -= nColl; 3269 }else if( j>=0 ){ 3270 zColl = pTab->aCol[j].zColl; 3271 } 3272 if( !zColl ) zColl = sqlite3StrBINARY; 3273 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3274 goto exit_create_index; 3275 } 3276 pIndex->azColl[i] = zColl; 3277 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3278 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3279 } 3280 3281 /* Append the table key to the end of the index. For WITHOUT ROWID 3282 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3283 ** normal tables (when pPk==0) this will be the rowid. 3284 */ 3285 if( pPk ){ 3286 for(j=0; j<pPk->nKeyCol; j++){ 3287 int x = pPk->aiColumn[j]; 3288 assert( x>=0 ); 3289 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3290 pIndex->nColumn--; 3291 }else{ 3292 pIndex->aiColumn[i] = x; 3293 pIndex->azColl[i] = pPk->azColl[j]; 3294 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3295 i++; 3296 } 3297 } 3298 assert( i==pIndex->nColumn ); 3299 }else{ 3300 pIndex->aiColumn[i] = XN_ROWID; 3301 pIndex->azColl[i] = sqlite3StrBINARY; 3302 } 3303 sqlite3DefaultRowEst(pIndex); 3304 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3305 3306 /* If this index contains every column of its table, then mark 3307 ** it as a covering index */ 3308 assert( HasRowid(pTab) 3309 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3310 recomputeColumnsNotIndexed(pIndex); 3311 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3312 pIndex->isCovering = 1; 3313 for(j=0; j<pTab->nCol; j++){ 3314 if( j==pTab->iPKey ) continue; 3315 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3316 pIndex->isCovering = 0; 3317 break; 3318 } 3319 } 3320 3321 if( pTab==pParse->pNewTable ){ 3322 /* This routine has been called to create an automatic index as a 3323 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3324 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3325 ** i.e. one of: 3326 ** 3327 ** CREATE TABLE t(x PRIMARY KEY, y); 3328 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3329 ** 3330 ** Either way, check to see if the table already has such an index. If 3331 ** so, don't bother creating this one. This only applies to 3332 ** automatically created indices. Users can do as they wish with 3333 ** explicit indices. 3334 ** 3335 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3336 ** (and thus suppressing the second one) even if they have different 3337 ** sort orders. 3338 ** 3339 ** If there are different collating sequences or if the columns of 3340 ** the constraint occur in different orders, then the constraints are 3341 ** considered distinct and both result in separate indices. 3342 */ 3343 Index *pIdx; 3344 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3345 int k; 3346 assert( IsUniqueIndex(pIdx) ); 3347 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3348 assert( IsUniqueIndex(pIndex) ); 3349 3350 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3351 for(k=0; k<pIdx->nKeyCol; k++){ 3352 const char *z1; 3353 const char *z2; 3354 assert( pIdx->aiColumn[k]>=0 ); 3355 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3356 z1 = pIdx->azColl[k]; 3357 z2 = pIndex->azColl[k]; 3358 if( sqlite3StrICmp(z1, z2) ) break; 3359 } 3360 if( k==pIdx->nKeyCol ){ 3361 if( pIdx->onError!=pIndex->onError ){ 3362 /* This constraint creates the same index as a previous 3363 ** constraint specified somewhere in the CREATE TABLE statement. 3364 ** However the ON CONFLICT clauses are different. If both this 3365 ** constraint and the previous equivalent constraint have explicit 3366 ** ON CONFLICT clauses this is an error. Otherwise, use the 3367 ** explicitly specified behavior for the index. 3368 */ 3369 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3370 sqlite3ErrorMsg(pParse, 3371 "conflicting ON CONFLICT clauses specified", 0); 3372 } 3373 if( pIdx->onError==OE_Default ){ 3374 pIdx->onError = pIndex->onError; 3375 } 3376 } 3377 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3378 goto exit_create_index; 3379 } 3380 } 3381 } 3382 3383 /* Link the new Index structure to its table and to the other 3384 ** in-memory database structures. 3385 */ 3386 assert( pParse->nErr==0 ); 3387 if( db->init.busy ){ 3388 Index *p; 3389 assert( !IN_DECLARE_VTAB ); 3390 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3391 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3392 pIndex->zName, pIndex); 3393 if( p ){ 3394 assert( p==pIndex ); /* Malloc must have failed */ 3395 sqlite3OomFault(db); 3396 goto exit_create_index; 3397 } 3398 db->mDbFlags |= DBFLAG_SchemaChange; 3399 if( pTblName!=0 ){ 3400 pIndex->tnum = db->init.newTnum; 3401 } 3402 } 3403 3404 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3405 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3406 ** emit code to allocate the index rootpage on disk and make an entry for 3407 ** the index in the sqlite_master table and populate the index with 3408 ** content. But, do not do this if we are simply reading the sqlite_master 3409 ** table to parse the schema, or if this index is the PRIMARY KEY index 3410 ** of a WITHOUT ROWID table. 3411 ** 3412 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3413 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3414 ** has just been created, it contains no data and the index initialization 3415 ** step can be skipped. 3416 */ 3417 else if( HasRowid(pTab) || pTblName!=0 ){ 3418 Vdbe *v; 3419 char *zStmt; 3420 int iMem = ++pParse->nMem; 3421 3422 v = sqlite3GetVdbe(pParse); 3423 if( v==0 ) goto exit_create_index; 3424 3425 sqlite3BeginWriteOperation(pParse, 1, iDb); 3426 3427 /* Create the rootpage for the index using CreateIndex. But before 3428 ** doing so, code a Noop instruction and store its address in 3429 ** Index.tnum. This is required in case this index is actually a 3430 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3431 ** that case the convertToWithoutRowidTable() routine will replace 3432 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3433 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3434 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3435 3436 /* Gather the complete text of the CREATE INDEX statement into 3437 ** the zStmt variable 3438 */ 3439 if( pStart ){ 3440 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3441 if( pName->z[n-1]==';' ) n--; 3442 /* A named index with an explicit CREATE INDEX statement */ 3443 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3444 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3445 }else{ 3446 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3447 /* zStmt = sqlite3MPrintf(""); */ 3448 zStmt = 0; 3449 } 3450 3451 /* Add an entry in sqlite_master for this index 3452 */ 3453 sqlite3NestedParse(pParse, 3454 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3455 db->aDb[iDb].zDbSName, MASTER_NAME, 3456 pIndex->zName, 3457 pTab->zName, 3458 iMem, 3459 zStmt 3460 ); 3461 sqlite3DbFree(db, zStmt); 3462 3463 /* Fill the index with data and reparse the schema. Code an OP_Expire 3464 ** to invalidate all pre-compiled statements. 3465 */ 3466 if( pTblName ){ 3467 sqlite3RefillIndex(pParse, pIndex, iMem); 3468 sqlite3ChangeCookie(pParse, iDb); 3469 sqlite3VdbeAddParseSchemaOp(v, iDb, 3470 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3471 sqlite3VdbeAddOp0(v, OP_Expire); 3472 } 3473 3474 sqlite3VdbeJumpHere(v, pIndex->tnum); 3475 } 3476 3477 /* When adding an index to the list of indices for a table, make 3478 ** sure all indices labeled OE_Replace come after all those labeled 3479 ** OE_Ignore. This is necessary for the correct constraint check 3480 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3481 ** UPDATE and INSERT statements. 3482 */ 3483 if( db->init.busy || pTblName==0 ){ 3484 if( onError!=OE_Replace || pTab->pIndex==0 3485 || pTab->pIndex->onError==OE_Replace){ 3486 pIndex->pNext = pTab->pIndex; 3487 pTab->pIndex = pIndex; 3488 }else{ 3489 Index *pOther = pTab->pIndex; 3490 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3491 pOther = pOther->pNext; 3492 } 3493 pIndex->pNext = pOther->pNext; 3494 pOther->pNext = pIndex; 3495 } 3496 pIndex = 0; 3497 } 3498 3499 /* Clean up before exiting */ 3500 exit_create_index: 3501 if( pIndex ) freeIndex(db, pIndex); 3502 sqlite3ExprDelete(db, pPIWhere); 3503 sqlite3ExprListDelete(db, pList); 3504 sqlite3SrcListDelete(db, pTblName); 3505 sqlite3DbFree(db, zName); 3506 } 3507 3508 /* 3509 ** Fill the Index.aiRowEst[] array with default information - information 3510 ** to be used when we have not run the ANALYZE command. 3511 ** 3512 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3513 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3514 ** number of rows in the table that match any particular value of the 3515 ** first column of the index. aiRowEst[2] is an estimate of the number 3516 ** of rows that match any particular combination of the first 2 columns 3517 ** of the index. And so forth. It must always be the case that 3518 * 3519 ** aiRowEst[N]<=aiRowEst[N-1] 3520 ** aiRowEst[N]>=1 3521 ** 3522 ** Apart from that, we have little to go on besides intuition as to 3523 ** how aiRowEst[] should be initialized. The numbers generated here 3524 ** are based on typical values found in actual indices. 3525 */ 3526 void sqlite3DefaultRowEst(Index *pIdx){ 3527 /* 10, 9, 8, 7, 6 */ 3528 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3529 LogEst *a = pIdx->aiRowLogEst; 3530 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3531 int i; 3532 3533 /* Indexes with default row estimates should not have stat1 data */ 3534 assert( !pIdx->hasStat1 ); 3535 3536 /* Set the first entry (number of rows in the index) to the estimated 3537 ** number of rows in the table, or half the number of rows in the table 3538 ** for a partial index. But do not let the estimate drop below 10. */ 3539 a[0] = pIdx->pTable->nRowLogEst; 3540 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3541 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3542 3543 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3544 ** 6 and each subsequent value (if any) is 5. */ 3545 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3546 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3547 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3548 } 3549 3550 assert( 0==sqlite3LogEst(1) ); 3551 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3552 } 3553 3554 /* 3555 ** This routine will drop an existing named index. This routine 3556 ** implements the DROP INDEX statement. 3557 */ 3558 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3559 Index *pIndex; 3560 Vdbe *v; 3561 sqlite3 *db = pParse->db; 3562 int iDb; 3563 3564 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3565 if( db->mallocFailed ){ 3566 goto exit_drop_index; 3567 } 3568 assert( pName->nSrc==1 ); 3569 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3570 goto exit_drop_index; 3571 } 3572 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3573 if( pIndex==0 ){ 3574 if( !ifExists ){ 3575 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3576 }else{ 3577 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3578 } 3579 pParse->checkSchema = 1; 3580 goto exit_drop_index; 3581 } 3582 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3583 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3584 "or PRIMARY KEY constraint cannot be dropped", 0); 3585 goto exit_drop_index; 3586 } 3587 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3588 #ifndef SQLITE_OMIT_AUTHORIZATION 3589 { 3590 int code = SQLITE_DROP_INDEX; 3591 Table *pTab = pIndex->pTable; 3592 const char *zDb = db->aDb[iDb].zDbSName; 3593 const char *zTab = SCHEMA_TABLE(iDb); 3594 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3595 goto exit_drop_index; 3596 } 3597 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3598 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3599 goto exit_drop_index; 3600 } 3601 } 3602 #endif 3603 3604 /* Generate code to remove the index and from the master table */ 3605 v = sqlite3GetVdbe(pParse); 3606 if( v ){ 3607 sqlite3BeginWriteOperation(pParse, 1, iDb); 3608 sqlite3NestedParse(pParse, 3609 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3610 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3611 ); 3612 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3613 sqlite3ChangeCookie(pParse, iDb); 3614 destroyRootPage(pParse, pIndex->tnum, iDb); 3615 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3616 } 3617 3618 exit_drop_index: 3619 sqlite3SrcListDelete(db, pName); 3620 } 3621 3622 /* 3623 ** pArray is a pointer to an array of objects. Each object in the 3624 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3625 ** to extend the array so that there is space for a new object at the end. 3626 ** 3627 ** When this function is called, *pnEntry contains the current size of 3628 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3629 ** in total). 3630 ** 3631 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3632 ** space allocated for the new object is zeroed, *pnEntry updated to 3633 ** reflect the new size of the array and a pointer to the new allocation 3634 ** returned. *pIdx is set to the index of the new array entry in this case. 3635 ** 3636 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3637 ** unchanged and a copy of pArray returned. 3638 */ 3639 void *sqlite3ArrayAllocate( 3640 sqlite3 *db, /* Connection to notify of malloc failures */ 3641 void *pArray, /* Array of objects. Might be reallocated */ 3642 int szEntry, /* Size of each object in the array */ 3643 int *pnEntry, /* Number of objects currently in use */ 3644 int *pIdx /* Write the index of a new slot here */ 3645 ){ 3646 char *z; 3647 int n = *pnEntry; 3648 if( (n & (n-1))==0 ){ 3649 int sz = (n==0) ? 1 : 2*n; 3650 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3651 if( pNew==0 ){ 3652 *pIdx = -1; 3653 return pArray; 3654 } 3655 pArray = pNew; 3656 } 3657 z = (char*)pArray; 3658 memset(&z[n * szEntry], 0, szEntry); 3659 *pIdx = n; 3660 ++*pnEntry; 3661 return pArray; 3662 } 3663 3664 /* 3665 ** Append a new element to the given IdList. Create a new IdList if 3666 ** need be. 3667 ** 3668 ** A new IdList is returned, or NULL if malloc() fails. 3669 */ 3670 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3671 int i; 3672 if( pList==0 ){ 3673 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3674 if( pList==0 ) return 0; 3675 } 3676 pList->a = sqlite3ArrayAllocate( 3677 db, 3678 pList->a, 3679 sizeof(pList->a[0]), 3680 &pList->nId, 3681 &i 3682 ); 3683 if( i<0 ){ 3684 sqlite3IdListDelete(db, pList); 3685 return 0; 3686 } 3687 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3688 return pList; 3689 } 3690 3691 /* 3692 ** Delete an IdList. 3693 */ 3694 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3695 int i; 3696 if( pList==0 ) return; 3697 for(i=0; i<pList->nId; i++){ 3698 sqlite3DbFree(db, pList->a[i].zName); 3699 } 3700 sqlite3DbFree(db, pList->a); 3701 sqlite3DbFreeNN(db, pList); 3702 } 3703 3704 /* 3705 ** Return the index in pList of the identifier named zId. Return -1 3706 ** if not found. 3707 */ 3708 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3709 int i; 3710 if( pList==0 ) return -1; 3711 for(i=0; i<pList->nId; i++){ 3712 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3713 } 3714 return -1; 3715 } 3716 3717 /* 3718 ** Expand the space allocated for the given SrcList object by 3719 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3720 ** New slots are zeroed. 3721 ** 3722 ** For example, suppose a SrcList initially contains two entries: A,B. 3723 ** To append 3 new entries onto the end, do this: 3724 ** 3725 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3726 ** 3727 ** After the call above it would contain: A, B, nil, nil, nil. 3728 ** If the iStart argument had been 1 instead of 2, then the result 3729 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3730 ** the iStart value would be 0. The result then would 3731 ** be: nil, nil, nil, A, B. 3732 ** 3733 ** If a memory allocation fails the SrcList is unchanged. The 3734 ** db->mallocFailed flag will be set to true. 3735 */ 3736 SrcList *sqlite3SrcListEnlarge( 3737 sqlite3 *db, /* Database connection to notify of OOM errors */ 3738 SrcList *pSrc, /* The SrcList to be enlarged */ 3739 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3740 int iStart /* Index in pSrc->a[] of first new slot */ 3741 ){ 3742 int i; 3743 3744 /* Sanity checking on calling parameters */ 3745 assert( iStart>=0 ); 3746 assert( nExtra>=1 ); 3747 assert( pSrc!=0 ); 3748 assert( iStart<=pSrc->nSrc ); 3749 3750 /* Allocate additional space if needed */ 3751 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3752 SrcList *pNew; 3753 int nAlloc = pSrc->nSrc*2+nExtra; 3754 int nGot; 3755 pNew = sqlite3DbRealloc(db, pSrc, 3756 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3757 if( pNew==0 ){ 3758 assert( db->mallocFailed ); 3759 return pSrc; 3760 } 3761 pSrc = pNew; 3762 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3763 pSrc->nAlloc = nGot; 3764 } 3765 3766 /* Move existing slots that come after the newly inserted slots 3767 ** out of the way */ 3768 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3769 pSrc->a[i+nExtra] = pSrc->a[i]; 3770 } 3771 pSrc->nSrc += nExtra; 3772 3773 /* Zero the newly allocated slots */ 3774 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3775 for(i=iStart; i<iStart+nExtra; i++){ 3776 pSrc->a[i].iCursor = -1; 3777 } 3778 3779 /* Return a pointer to the enlarged SrcList */ 3780 return pSrc; 3781 } 3782 3783 3784 /* 3785 ** Append a new table name to the given SrcList. Create a new SrcList if 3786 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3787 ** 3788 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3789 ** SrcList might be the same as the SrcList that was input or it might be 3790 ** a new one. If an OOM error does occurs, then the prior value of pList 3791 ** that is input to this routine is automatically freed. 3792 ** 3793 ** If pDatabase is not null, it means that the table has an optional 3794 ** database name prefix. Like this: "database.table". The pDatabase 3795 ** points to the table name and the pTable points to the database name. 3796 ** The SrcList.a[].zName field is filled with the table name which might 3797 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3798 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3799 ** or with NULL if no database is specified. 3800 ** 3801 ** In other words, if call like this: 3802 ** 3803 ** sqlite3SrcListAppend(D,A,B,0); 3804 ** 3805 ** Then B is a table name and the database name is unspecified. If called 3806 ** like this: 3807 ** 3808 ** sqlite3SrcListAppend(D,A,B,C); 3809 ** 3810 ** Then C is the table name and B is the database name. If C is defined 3811 ** then so is B. In other words, we never have a case where: 3812 ** 3813 ** sqlite3SrcListAppend(D,A,0,C); 3814 ** 3815 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3816 ** before being added to the SrcList. 3817 */ 3818 SrcList *sqlite3SrcListAppend( 3819 sqlite3 *db, /* Connection to notify of malloc failures */ 3820 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3821 Token *pTable, /* Table to append */ 3822 Token *pDatabase /* Database of the table */ 3823 ){ 3824 struct SrcList_item *pItem; 3825 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3826 assert( db!=0 ); 3827 if( pList==0 ){ 3828 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3829 if( pList==0 ) return 0; 3830 pList->nAlloc = 1; 3831 pList->nSrc = 1; 3832 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3833 pList->a[0].iCursor = -1; 3834 }else{ 3835 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3836 } 3837 if( db->mallocFailed ){ 3838 sqlite3SrcListDelete(db, pList); 3839 return 0; 3840 } 3841 pItem = &pList->a[pList->nSrc-1]; 3842 if( pDatabase && pDatabase->z==0 ){ 3843 pDatabase = 0; 3844 } 3845 if( pDatabase ){ 3846 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3847 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3848 }else{ 3849 pItem->zName = sqlite3NameFromToken(db, pTable); 3850 pItem->zDatabase = 0; 3851 } 3852 return pList; 3853 } 3854 3855 /* 3856 ** Assign VdbeCursor index numbers to all tables in a SrcList 3857 */ 3858 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3859 int i; 3860 struct SrcList_item *pItem; 3861 assert(pList || pParse->db->mallocFailed ); 3862 if( pList ){ 3863 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3864 if( pItem->iCursor>=0 ) break; 3865 pItem->iCursor = pParse->nTab++; 3866 if( pItem->pSelect ){ 3867 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3868 } 3869 } 3870 } 3871 } 3872 3873 /* 3874 ** Delete an entire SrcList including all its substructure. 3875 */ 3876 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3877 int i; 3878 struct SrcList_item *pItem; 3879 if( pList==0 ) return; 3880 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3881 sqlite3DbFree(db, pItem->zDatabase); 3882 sqlite3DbFree(db, pItem->zName); 3883 sqlite3DbFree(db, pItem->zAlias); 3884 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3885 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3886 sqlite3DeleteTable(db, pItem->pTab); 3887 sqlite3SelectDelete(db, pItem->pSelect); 3888 sqlite3ExprDelete(db, pItem->pOn); 3889 sqlite3IdListDelete(db, pItem->pUsing); 3890 } 3891 sqlite3DbFreeNN(db, pList); 3892 } 3893 3894 /* 3895 ** This routine is called by the parser to add a new term to the 3896 ** end of a growing FROM clause. The "p" parameter is the part of 3897 ** the FROM clause that has already been constructed. "p" is NULL 3898 ** if this is the first term of the FROM clause. pTable and pDatabase 3899 ** are the name of the table and database named in the FROM clause term. 3900 ** pDatabase is NULL if the database name qualifier is missing - the 3901 ** usual case. If the term has an alias, then pAlias points to the 3902 ** alias token. If the term is a subquery, then pSubquery is the 3903 ** SELECT statement that the subquery encodes. The pTable and 3904 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3905 ** parameters are the content of the ON and USING clauses. 3906 ** 3907 ** Return a new SrcList which encodes is the FROM with the new 3908 ** term added. 3909 */ 3910 SrcList *sqlite3SrcListAppendFromTerm( 3911 Parse *pParse, /* Parsing context */ 3912 SrcList *p, /* The left part of the FROM clause already seen */ 3913 Token *pTable, /* Name of the table to add to the FROM clause */ 3914 Token *pDatabase, /* Name of the database containing pTable */ 3915 Token *pAlias, /* The right-hand side of the AS subexpression */ 3916 Select *pSubquery, /* A subquery used in place of a table name */ 3917 Expr *pOn, /* The ON clause of a join */ 3918 IdList *pUsing /* The USING clause of a join */ 3919 ){ 3920 struct SrcList_item *pItem; 3921 sqlite3 *db = pParse->db; 3922 if( !p && (pOn || pUsing) ){ 3923 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3924 (pOn ? "ON" : "USING") 3925 ); 3926 goto append_from_error; 3927 } 3928 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3929 if( p==0 ){ 3930 goto append_from_error; 3931 } 3932 assert( p->nSrc>0 ); 3933 pItem = &p->a[p->nSrc-1]; 3934 assert( pAlias!=0 ); 3935 if( pAlias->n ){ 3936 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3937 } 3938 pItem->pSelect = pSubquery; 3939 pItem->pOn = pOn; 3940 pItem->pUsing = pUsing; 3941 return p; 3942 3943 append_from_error: 3944 assert( p==0 ); 3945 sqlite3ExprDelete(db, pOn); 3946 sqlite3IdListDelete(db, pUsing); 3947 sqlite3SelectDelete(db, pSubquery); 3948 return 0; 3949 } 3950 3951 /* 3952 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3953 ** element of the source-list passed as the second argument. 3954 */ 3955 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3956 assert( pIndexedBy!=0 ); 3957 if( p && pIndexedBy->n>0 ){ 3958 struct SrcList_item *pItem; 3959 assert( p->nSrc>0 ); 3960 pItem = &p->a[p->nSrc-1]; 3961 assert( pItem->fg.notIndexed==0 ); 3962 assert( pItem->fg.isIndexedBy==0 ); 3963 assert( pItem->fg.isTabFunc==0 ); 3964 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3965 /* A "NOT INDEXED" clause was supplied. See parse.y 3966 ** construct "indexed_opt" for details. */ 3967 pItem->fg.notIndexed = 1; 3968 }else{ 3969 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3970 pItem->fg.isIndexedBy = 1; 3971 } 3972 } 3973 } 3974 3975 /* 3976 ** Add the list of function arguments to the SrcList entry for a 3977 ** table-valued-function. 3978 */ 3979 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3980 if( p ){ 3981 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3982 assert( pItem->fg.notIndexed==0 ); 3983 assert( pItem->fg.isIndexedBy==0 ); 3984 assert( pItem->fg.isTabFunc==0 ); 3985 pItem->u1.pFuncArg = pList; 3986 pItem->fg.isTabFunc = 1; 3987 }else{ 3988 sqlite3ExprListDelete(pParse->db, pList); 3989 } 3990 } 3991 3992 /* 3993 ** When building up a FROM clause in the parser, the join operator 3994 ** is initially attached to the left operand. But the code generator 3995 ** expects the join operator to be on the right operand. This routine 3996 ** Shifts all join operators from left to right for an entire FROM 3997 ** clause. 3998 ** 3999 ** Example: Suppose the join is like this: 4000 ** 4001 ** A natural cross join B 4002 ** 4003 ** The operator is "natural cross join". The A and B operands are stored 4004 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4005 ** operator with A. This routine shifts that operator over to B. 4006 */ 4007 void sqlite3SrcListShiftJoinType(SrcList *p){ 4008 if( p ){ 4009 int i; 4010 for(i=p->nSrc-1; i>0; i--){ 4011 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4012 } 4013 p->a[0].fg.jointype = 0; 4014 } 4015 } 4016 4017 /* 4018 ** Generate VDBE code for a BEGIN statement. 4019 */ 4020 void sqlite3BeginTransaction(Parse *pParse, int type){ 4021 sqlite3 *db; 4022 Vdbe *v; 4023 int i; 4024 4025 assert( pParse!=0 ); 4026 db = pParse->db; 4027 assert( db!=0 ); 4028 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4029 return; 4030 } 4031 v = sqlite3GetVdbe(pParse); 4032 if( !v ) return; 4033 if( type!=TK_DEFERRED ){ 4034 for(i=0; i<db->nDb; i++){ 4035 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4036 sqlite3VdbeUsesBtree(v, i); 4037 } 4038 } 4039 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4040 } 4041 4042 /* 4043 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4044 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4045 ** code is generated for a COMMIT. 4046 */ 4047 void sqlite3EndTransaction(Parse *pParse, int eType){ 4048 Vdbe *v; 4049 int isRollback; 4050 4051 assert( pParse!=0 ); 4052 assert( pParse->db!=0 ); 4053 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4054 isRollback = eType==TK_ROLLBACK; 4055 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4056 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4057 return; 4058 } 4059 v = sqlite3GetVdbe(pParse); 4060 if( v ){ 4061 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4062 } 4063 } 4064 4065 /* 4066 ** This function is called by the parser when it parses a command to create, 4067 ** release or rollback an SQL savepoint. 4068 */ 4069 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4070 char *zName = sqlite3NameFromToken(pParse->db, pName); 4071 if( zName ){ 4072 Vdbe *v = sqlite3GetVdbe(pParse); 4073 #ifndef SQLITE_OMIT_AUTHORIZATION 4074 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4075 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4076 #endif 4077 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4078 sqlite3DbFree(pParse->db, zName); 4079 return; 4080 } 4081 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4082 } 4083 } 4084 4085 /* 4086 ** Make sure the TEMP database is open and available for use. Return 4087 ** the number of errors. Leave any error messages in the pParse structure. 4088 */ 4089 int sqlite3OpenTempDatabase(Parse *pParse){ 4090 sqlite3 *db = pParse->db; 4091 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4092 int rc; 4093 Btree *pBt; 4094 static const int flags = 4095 SQLITE_OPEN_READWRITE | 4096 SQLITE_OPEN_CREATE | 4097 SQLITE_OPEN_EXCLUSIVE | 4098 SQLITE_OPEN_DELETEONCLOSE | 4099 SQLITE_OPEN_TEMP_DB; 4100 4101 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4102 if( rc!=SQLITE_OK ){ 4103 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4104 "file for storing temporary tables"); 4105 pParse->rc = rc; 4106 return 1; 4107 } 4108 db->aDb[1].pBt = pBt; 4109 assert( db->aDb[1].pSchema ); 4110 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4111 sqlite3OomFault(db); 4112 return 1; 4113 } 4114 } 4115 return 0; 4116 } 4117 4118 /* 4119 ** Record the fact that the schema cookie will need to be verified 4120 ** for database iDb. The code to actually verify the schema cookie 4121 ** will occur at the end of the top-level VDBE and will be generated 4122 ** later, by sqlite3FinishCoding(). 4123 */ 4124 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4125 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4126 4127 assert( iDb>=0 && iDb<pParse->db->nDb ); 4128 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4129 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4130 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4131 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4132 DbMaskSet(pToplevel->cookieMask, iDb); 4133 if( !OMIT_TEMPDB && iDb==1 ){ 4134 sqlite3OpenTempDatabase(pToplevel); 4135 } 4136 } 4137 } 4138 4139 /* 4140 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4141 ** attached database. Otherwise, invoke it for the database named zDb only. 4142 */ 4143 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4144 sqlite3 *db = pParse->db; 4145 int i; 4146 for(i=0; i<db->nDb; i++){ 4147 Db *pDb = &db->aDb[i]; 4148 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4149 sqlite3CodeVerifySchema(pParse, i); 4150 } 4151 } 4152 } 4153 4154 /* 4155 ** Generate VDBE code that prepares for doing an operation that 4156 ** might change the database. 4157 ** 4158 ** This routine starts a new transaction if we are not already within 4159 ** a transaction. If we are already within a transaction, then a checkpoint 4160 ** is set if the setStatement parameter is true. A checkpoint should 4161 ** be set for operations that might fail (due to a constraint) part of 4162 ** the way through and which will need to undo some writes without having to 4163 ** rollback the whole transaction. For operations where all constraints 4164 ** can be checked before any changes are made to the database, it is never 4165 ** necessary to undo a write and the checkpoint should not be set. 4166 */ 4167 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4168 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4169 sqlite3CodeVerifySchema(pParse, iDb); 4170 DbMaskSet(pToplevel->writeMask, iDb); 4171 pToplevel->isMultiWrite |= setStatement; 4172 } 4173 4174 /* 4175 ** Indicate that the statement currently under construction might write 4176 ** more than one entry (example: deleting one row then inserting another, 4177 ** inserting multiple rows in a table, or inserting a row and index entries.) 4178 ** If an abort occurs after some of these writes have completed, then it will 4179 ** be necessary to undo the completed writes. 4180 */ 4181 void sqlite3MultiWrite(Parse *pParse){ 4182 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4183 pToplevel->isMultiWrite = 1; 4184 } 4185 4186 /* 4187 ** The code generator calls this routine if is discovers that it is 4188 ** possible to abort a statement prior to completion. In order to 4189 ** perform this abort without corrupting the database, we need to make 4190 ** sure that the statement is protected by a statement transaction. 4191 ** 4192 ** Technically, we only need to set the mayAbort flag if the 4193 ** isMultiWrite flag was previously set. There is a time dependency 4194 ** such that the abort must occur after the multiwrite. This makes 4195 ** some statements involving the REPLACE conflict resolution algorithm 4196 ** go a little faster. But taking advantage of this time dependency 4197 ** makes it more difficult to prove that the code is correct (in 4198 ** particular, it prevents us from writing an effective 4199 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4200 ** to take the safe route and skip the optimization. 4201 */ 4202 void sqlite3MayAbort(Parse *pParse){ 4203 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4204 pToplevel->mayAbort = 1; 4205 } 4206 4207 /* 4208 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4209 ** error. The onError parameter determines which (if any) of the statement 4210 ** and/or current transaction is rolled back. 4211 */ 4212 void sqlite3HaltConstraint( 4213 Parse *pParse, /* Parsing context */ 4214 int errCode, /* extended error code */ 4215 int onError, /* Constraint type */ 4216 char *p4, /* Error message */ 4217 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4218 u8 p5Errmsg /* P5_ErrMsg type */ 4219 ){ 4220 Vdbe *v = sqlite3GetVdbe(pParse); 4221 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4222 if( onError==OE_Abort ){ 4223 sqlite3MayAbort(pParse); 4224 } 4225 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4226 sqlite3VdbeChangeP5(v, p5Errmsg); 4227 } 4228 4229 /* 4230 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4231 */ 4232 void sqlite3UniqueConstraint( 4233 Parse *pParse, /* Parsing context */ 4234 int onError, /* Constraint type */ 4235 Index *pIdx /* The index that triggers the constraint */ 4236 ){ 4237 char *zErr; 4238 int j; 4239 StrAccum errMsg; 4240 Table *pTab = pIdx->pTable; 4241 4242 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4243 if( pIdx->aColExpr ){ 4244 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4245 }else{ 4246 for(j=0; j<pIdx->nKeyCol; j++){ 4247 char *zCol; 4248 assert( pIdx->aiColumn[j]>=0 ); 4249 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4250 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4251 sqlite3_str_appendall(&errMsg, pTab->zName); 4252 sqlite3_str_append(&errMsg, ".", 1); 4253 sqlite3_str_appendall(&errMsg, zCol); 4254 } 4255 } 4256 zErr = sqlite3StrAccumFinish(&errMsg); 4257 sqlite3HaltConstraint(pParse, 4258 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4259 : SQLITE_CONSTRAINT_UNIQUE, 4260 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4261 } 4262 4263 4264 /* 4265 ** Code an OP_Halt due to non-unique rowid. 4266 */ 4267 void sqlite3RowidConstraint( 4268 Parse *pParse, /* Parsing context */ 4269 int onError, /* Conflict resolution algorithm */ 4270 Table *pTab /* The table with the non-unique rowid */ 4271 ){ 4272 char *zMsg; 4273 int rc; 4274 if( pTab->iPKey>=0 ){ 4275 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4276 pTab->aCol[pTab->iPKey].zName); 4277 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4278 }else{ 4279 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4280 rc = SQLITE_CONSTRAINT_ROWID; 4281 } 4282 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4283 P5_ConstraintUnique); 4284 } 4285 4286 /* 4287 ** Check to see if pIndex uses the collating sequence pColl. Return 4288 ** true if it does and false if it does not. 4289 */ 4290 #ifndef SQLITE_OMIT_REINDEX 4291 static int collationMatch(const char *zColl, Index *pIndex){ 4292 int i; 4293 assert( zColl!=0 ); 4294 for(i=0; i<pIndex->nColumn; i++){ 4295 const char *z = pIndex->azColl[i]; 4296 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4297 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4298 return 1; 4299 } 4300 } 4301 return 0; 4302 } 4303 #endif 4304 4305 /* 4306 ** Recompute all indices of pTab that use the collating sequence pColl. 4307 ** If pColl==0 then recompute all indices of pTab. 4308 */ 4309 #ifndef SQLITE_OMIT_REINDEX 4310 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4311 Index *pIndex; /* An index associated with pTab */ 4312 4313 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4314 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4315 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4316 sqlite3BeginWriteOperation(pParse, 0, iDb); 4317 sqlite3RefillIndex(pParse, pIndex, -1); 4318 } 4319 } 4320 } 4321 #endif 4322 4323 /* 4324 ** Recompute all indices of all tables in all databases where the 4325 ** indices use the collating sequence pColl. If pColl==0 then recompute 4326 ** all indices everywhere. 4327 */ 4328 #ifndef SQLITE_OMIT_REINDEX 4329 static void reindexDatabases(Parse *pParse, char const *zColl){ 4330 Db *pDb; /* A single database */ 4331 int iDb; /* The database index number */ 4332 sqlite3 *db = pParse->db; /* The database connection */ 4333 HashElem *k; /* For looping over tables in pDb */ 4334 Table *pTab; /* A table in the database */ 4335 4336 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4337 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4338 assert( pDb!=0 ); 4339 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4340 pTab = (Table*)sqliteHashData(k); 4341 reindexTable(pParse, pTab, zColl); 4342 } 4343 } 4344 } 4345 #endif 4346 4347 /* 4348 ** Generate code for the REINDEX command. 4349 ** 4350 ** REINDEX -- 1 4351 ** REINDEX <collation> -- 2 4352 ** REINDEX ?<database>.?<tablename> -- 3 4353 ** REINDEX ?<database>.?<indexname> -- 4 4354 ** 4355 ** Form 1 causes all indices in all attached databases to be rebuilt. 4356 ** Form 2 rebuilds all indices in all databases that use the named 4357 ** collating function. Forms 3 and 4 rebuild the named index or all 4358 ** indices associated with the named table. 4359 */ 4360 #ifndef SQLITE_OMIT_REINDEX 4361 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4362 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4363 char *z; /* Name of a table or index */ 4364 const char *zDb; /* Name of the database */ 4365 Table *pTab; /* A table in the database */ 4366 Index *pIndex; /* An index associated with pTab */ 4367 int iDb; /* The database index number */ 4368 sqlite3 *db = pParse->db; /* The database connection */ 4369 Token *pObjName; /* Name of the table or index to be reindexed */ 4370 4371 /* Read the database schema. If an error occurs, leave an error message 4372 ** and code in pParse and return NULL. */ 4373 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4374 return; 4375 } 4376 4377 if( pName1==0 ){ 4378 reindexDatabases(pParse, 0); 4379 return; 4380 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4381 char *zColl; 4382 assert( pName1->z ); 4383 zColl = sqlite3NameFromToken(pParse->db, pName1); 4384 if( !zColl ) return; 4385 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4386 if( pColl ){ 4387 reindexDatabases(pParse, zColl); 4388 sqlite3DbFree(db, zColl); 4389 return; 4390 } 4391 sqlite3DbFree(db, zColl); 4392 } 4393 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4394 if( iDb<0 ) return; 4395 z = sqlite3NameFromToken(db, pObjName); 4396 if( z==0 ) return; 4397 zDb = db->aDb[iDb].zDbSName; 4398 pTab = sqlite3FindTable(db, z, zDb); 4399 if( pTab ){ 4400 reindexTable(pParse, pTab, 0); 4401 sqlite3DbFree(db, z); 4402 return; 4403 } 4404 pIndex = sqlite3FindIndex(db, z, zDb); 4405 sqlite3DbFree(db, z); 4406 if( pIndex ){ 4407 sqlite3BeginWriteOperation(pParse, 0, iDb); 4408 sqlite3RefillIndex(pParse, pIndex, -1); 4409 return; 4410 } 4411 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4412 } 4413 #endif 4414 4415 /* 4416 ** Return a KeyInfo structure that is appropriate for the given Index. 4417 ** 4418 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4419 ** when it has finished using it. 4420 */ 4421 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4422 int i; 4423 int nCol = pIdx->nColumn; 4424 int nKey = pIdx->nKeyCol; 4425 KeyInfo *pKey; 4426 if( pParse->nErr ) return 0; 4427 if( pIdx->uniqNotNull ){ 4428 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4429 }else{ 4430 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4431 } 4432 if( pKey ){ 4433 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4434 for(i=0; i<nCol; i++){ 4435 const char *zColl = pIdx->azColl[i]; 4436 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4437 sqlite3LocateCollSeq(pParse, zColl); 4438 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4439 } 4440 if( pParse->nErr ){ 4441 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4442 if( pIdx->bNoQuery==0 ){ 4443 /* Deactivate the index because it contains an unknown collating 4444 ** sequence. The only way to reactive the index is to reload the 4445 ** schema. Adding the missing collating sequence later does not 4446 ** reactive the index. The application had the chance to register 4447 ** the missing index using the collation-needed callback. For 4448 ** simplicity, SQLite will not give the application a second chance. 4449 */ 4450 pIdx->bNoQuery = 1; 4451 pParse->rc = SQLITE_ERROR_RETRY; 4452 } 4453 sqlite3KeyInfoUnref(pKey); 4454 pKey = 0; 4455 } 4456 } 4457 return pKey; 4458 } 4459 4460 #ifndef SQLITE_OMIT_CTE 4461 /* 4462 ** This routine is invoked once per CTE by the parser while parsing a 4463 ** WITH clause. 4464 */ 4465 With *sqlite3WithAdd( 4466 Parse *pParse, /* Parsing context */ 4467 With *pWith, /* Existing WITH clause, or NULL */ 4468 Token *pName, /* Name of the common-table */ 4469 ExprList *pArglist, /* Optional column name list for the table */ 4470 Select *pQuery /* Query used to initialize the table */ 4471 ){ 4472 sqlite3 *db = pParse->db; 4473 With *pNew; 4474 char *zName; 4475 4476 /* Check that the CTE name is unique within this WITH clause. If 4477 ** not, store an error in the Parse structure. */ 4478 zName = sqlite3NameFromToken(pParse->db, pName); 4479 if( zName && pWith ){ 4480 int i; 4481 for(i=0; i<pWith->nCte; i++){ 4482 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4483 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4484 } 4485 } 4486 } 4487 4488 if( pWith ){ 4489 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4490 pNew = sqlite3DbRealloc(db, pWith, nByte); 4491 }else{ 4492 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4493 } 4494 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4495 4496 if( db->mallocFailed ){ 4497 sqlite3ExprListDelete(db, pArglist); 4498 sqlite3SelectDelete(db, pQuery); 4499 sqlite3DbFree(db, zName); 4500 pNew = pWith; 4501 }else{ 4502 pNew->a[pNew->nCte].pSelect = pQuery; 4503 pNew->a[pNew->nCte].pCols = pArglist; 4504 pNew->a[pNew->nCte].zName = zName; 4505 pNew->a[pNew->nCte].zCteErr = 0; 4506 pNew->nCte++; 4507 } 4508 4509 return pNew; 4510 } 4511 4512 /* 4513 ** Free the contents of the With object passed as the second argument. 4514 */ 4515 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4516 if( pWith ){ 4517 int i; 4518 for(i=0; i<pWith->nCte; i++){ 4519 struct Cte *pCte = &pWith->a[i]; 4520 sqlite3ExprListDelete(db, pCte->pCols); 4521 sqlite3SelectDelete(db, pCte->pSelect); 4522 sqlite3DbFree(db, pCte->zName); 4523 } 4524 sqlite3DbFree(db, pWith); 4525 } 4526 } 4527 #endif /* !defined(SQLITE_OMIT_CTE) */ 4528