1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( db->mallocFailed ) return; 146 if( pParse->nested ) return; 147 if( pParse->nErr ) return; 148 149 /* Begin by generating some termination code at the end of the 150 ** vdbe program 151 */ 152 v = sqlite3GetVdbe(pParse); 153 assert( !pParse->isMultiWrite 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 155 if( v ){ 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 157 sqlite3VdbeAddOp0(v, OP_Halt); 158 159 #if SQLITE_USER_AUTHENTICATION 160 if( pParse->nTableLock>0 && db->init.busy==0 ){ 161 sqlite3UserAuthInit(db); 162 if( db->auth.authLevel<UAUTH_User ){ 163 pParse->rc = SQLITE_AUTH_USER; 164 sqlite3ErrorMsg(pParse, "user not authenticated"); 165 return; 166 } 167 } 168 #endif 169 170 /* The cookie mask contains one bit for each database file open. 171 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 172 ** set for each database that is used. Generate code to start a 173 ** transaction on each used database and to verify the schema cookie 174 ** on each used database. 175 */ 176 if( db->mallocFailed==0 177 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 178 ){ 179 int iDb, i; 180 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 181 sqlite3VdbeJumpHere(v, 0); 182 for(iDb=0; iDb<db->nDb; iDb++){ 183 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 184 sqlite3VdbeUsesBtree(v, iDb); 185 sqlite3VdbeAddOp4Int(v, 186 OP_Transaction, /* Opcode */ 187 iDb, /* P1 */ 188 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 189 pParse->cookieValue[iDb], /* P3 */ 190 db->aDb[iDb].pSchema->iGeneration /* P4 */ 191 ); 192 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 for(i=0; i<pParse->nVtabLock; i++){ 196 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 197 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 198 } 199 pParse->nVtabLock = 0; 200 #endif 201 202 /* Once all the cookies have been verified and transactions opened, 203 ** obtain the required table-locks. This is a no-op unless the 204 ** shared-cache feature is enabled. 205 */ 206 codeTableLocks(pParse); 207 208 /* Initialize any AUTOINCREMENT data structures required. 209 */ 210 sqlite3AutoincrementBegin(pParse); 211 212 /* Code constant expressions that where factored out of inner loops */ 213 if( pParse->pConstExpr ){ 214 ExprList *pEL = pParse->pConstExpr; 215 pParse->okConstFactor = 0; 216 for(i=0; i<pEL->nExpr; i++){ 217 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 218 } 219 } 220 221 /* Finally, jump back to the beginning of the executable code. */ 222 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 223 } 224 } 225 226 227 /* Get the VDBE program ready for execution 228 */ 229 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 230 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 231 /* A minimum of one cursor is required if autoincrement is used 232 * See ticket [a696379c1f08866] */ 233 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 234 sqlite3VdbeMakeReady(v, pParse); 235 pParse->rc = SQLITE_DONE; 236 pParse->colNamesSet = 0; 237 }else{ 238 pParse->rc = SQLITE_ERROR; 239 } 240 pParse->nTab = 0; 241 pParse->nMem = 0; 242 pParse->nSet = 0; 243 pParse->nVar = 0; 244 DbMaskZero(pParse->cookieMask); 245 } 246 247 /* 248 ** Run the parser and code generator recursively in order to generate 249 ** code for the SQL statement given onto the end of the pParse context 250 ** currently under construction. When the parser is run recursively 251 ** this way, the final OP_Halt is not appended and other initialization 252 ** and finalization steps are omitted because those are handling by the 253 ** outermost parser. 254 ** 255 ** Not everything is nestable. This facility is designed to permit 256 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 257 ** care if you decide to try to use this routine for some other purposes. 258 */ 259 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 260 va_list ap; 261 char *zSql; 262 char *zErrMsg = 0; 263 sqlite3 *db = pParse->db; 264 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 265 char saveBuf[SAVE_SZ]; 266 267 if( pParse->nErr ) return; 268 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 269 va_start(ap, zFormat); 270 zSql = sqlite3VMPrintf(db, zFormat, ap); 271 va_end(ap); 272 if( zSql==0 ){ 273 return; /* A malloc must have failed */ 274 } 275 pParse->nested++; 276 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 277 memset(&pParse->nVar, 0, SAVE_SZ); 278 sqlite3RunParser(pParse, zSql, &zErrMsg); 279 sqlite3DbFree(db, zErrMsg); 280 sqlite3DbFree(db, zSql); 281 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 282 pParse->nested--; 283 } 284 285 #if SQLITE_USER_AUTHENTICATION 286 /* 287 ** Return TRUE if zTable is the name of the system table that stores the 288 ** list of users and their access credentials. 289 */ 290 int sqlite3UserAuthTable(const char *zTable){ 291 return sqlite3_stricmp(zTable, "sqlite_user")==0; 292 } 293 #endif 294 295 /* 296 ** Locate the in-memory structure that describes a particular database 297 ** table given the name of that table and (optionally) the name of the 298 ** database containing the table. Return NULL if not found. 299 ** 300 ** If zDatabase is 0, all databases are searched for the table and the 301 ** first matching table is returned. (No checking for duplicate table 302 ** names is done.) The search order is TEMP first, then MAIN, then any 303 ** auxiliary databases added using the ATTACH command. 304 ** 305 ** See also sqlite3LocateTable(). 306 */ 307 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 308 Table *p = 0; 309 int i; 310 311 #ifdef SQLITE_ENABLE_API_ARMOR 312 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return 0; 313 #endif 314 315 /* All mutexes are required for schema access. Make sure we hold them. */ 316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 317 #if SQLITE_USER_AUTHENTICATION 318 /* Only the admin user is allowed to know that the sqlite_user table 319 ** exists */ 320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 321 return 0; 322 } 323 #endif 324 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 325 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 326 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 327 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 328 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 329 if( p ) break; 330 } 331 return p; 332 } 333 334 /* 335 ** Locate the in-memory structure that describes a particular database 336 ** table given the name of that table and (optionally) the name of the 337 ** database containing the table. Return NULL if not found. Also leave an 338 ** error message in pParse->zErrMsg. 339 ** 340 ** The difference between this routine and sqlite3FindTable() is that this 341 ** routine leaves an error message in pParse->zErrMsg where 342 ** sqlite3FindTable() does not. 343 */ 344 Table *sqlite3LocateTable( 345 Parse *pParse, /* context in which to report errors */ 346 int isView, /* True if looking for a VIEW rather than a TABLE */ 347 const char *zName, /* Name of the table we are looking for */ 348 const char *zDbase /* Name of the database. Might be NULL */ 349 ){ 350 Table *p; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 355 return 0; 356 } 357 358 p = sqlite3FindTable(pParse->db, zName, zDbase); 359 if( p==0 ){ 360 const char *zMsg = isView ? "no such view" : "no such table"; 361 if( zDbase ){ 362 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 363 }else{ 364 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 365 } 366 pParse->checkSchema = 1; 367 } 368 #if SQLITE_USER_AUTHENICATION 369 else if( pParse->db->auth.authLevel<UAUTH_User ){ 370 sqlite3ErrorMsg(pParse, "user not authenticated"); 371 p = 0; 372 } 373 #endif 374 return p; 375 } 376 377 /* 378 ** Locate the table identified by *p. 379 ** 380 ** This is a wrapper around sqlite3LocateTable(). The difference between 381 ** sqlite3LocateTable() and this function is that this function restricts 382 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 383 ** non-NULL if it is part of a view or trigger program definition. See 384 ** sqlite3FixSrcList() for details. 385 */ 386 Table *sqlite3LocateTableItem( 387 Parse *pParse, 388 int isView, 389 struct SrcList_item *p 390 ){ 391 const char *zDb; 392 assert( p->pSchema==0 || p->zDatabase==0 ); 393 if( p->pSchema ){ 394 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 395 zDb = pParse->db->aDb[iDb].zName; 396 }else{ 397 zDb = p->zDatabase; 398 } 399 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 400 } 401 402 /* 403 ** Locate the in-memory structure that describes 404 ** a particular index given the name of that index 405 ** and the name of the database that contains the index. 406 ** Return NULL if not found. 407 ** 408 ** If zDatabase is 0, all databases are searched for the 409 ** table and the first matching index is returned. (No checking 410 ** for duplicate index names is done.) The search order is 411 ** TEMP first, then MAIN, then any auxiliary databases added 412 ** using the ATTACH command. 413 */ 414 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 415 Index *p = 0; 416 int i; 417 /* All mutexes are required for schema access. Make sure we hold them. */ 418 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 419 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 420 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 421 Schema *pSchema = db->aDb[j].pSchema; 422 assert( pSchema ); 423 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 424 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 425 p = sqlite3HashFind(&pSchema->idxHash, zName); 426 if( p ) break; 427 } 428 return p; 429 } 430 431 /* 432 ** Reclaim the memory used by an index 433 */ 434 static void freeIndex(sqlite3 *db, Index *p){ 435 #ifndef SQLITE_OMIT_ANALYZE 436 sqlite3DeleteIndexSamples(db, p); 437 #endif 438 sqlite3ExprDelete(db, p->pPartIdxWhere); 439 sqlite3DbFree(db, p->zColAff); 440 if( p->isResized ) sqlite3DbFree(db, p->azColl); 441 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 442 sqlite3_free(p->aiRowEst); 443 #endif 444 sqlite3DbFree(db, p); 445 } 446 447 /* 448 ** For the index called zIdxName which is found in the database iDb, 449 ** unlike that index from its Table then remove the index from 450 ** the index hash table and free all memory structures associated 451 ** with the index. 452 */ 453 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 454 Index *pIndex; 455 Hash *pHash; 456 457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 458 pHash = &db->aDb[iDb].pSchema->idxHash; 459 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 460 if( ALWAYS(pIndex) ){ 461 if( pIndex->pTable->pIndex==pIndex ){ 462 pIndex->pTable->pIndex = pIndex->pNext; 463 }else{ 464 Index *p; 465 /* Justification of ALWAYS(); The index must be on the list of 466 ** indices. */ 467 p = pIndex->pTable->pIndex; 468 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 469 if( ALWAYS(p && p->pNext==pIndex) ){ 470 p->pNext = pIndex->pNext; 471 } 472 } 473 freeIndex(db, pIndex); 474 } 475 db->flags |= SQLITE_InternChanges; 476 } 477 478 /* 479 ** Look through the list of open database files in db->aDb[] and if 480 ** any have been closed, remove them from the list. Reallocate the 481 ** db->aDb[] structure to a smaller size, if possible. 482 ** 483 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 484 ** are never candidates for being collapsed. 485 */ 486 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 487 int i, j; 488 for(i=j=2; i<db->nDb; i++){ 489 struct Db *pDb = &db->aDb[i]; 490 if( pDb->pBt==0 ){ 491 sqlite3DbFree(db, pDb->zName); 492 pDb->zName = 0; 493 continue; 494 } 495 if( j<i ){ 496 db->aDb[j] = db->aDb[i]; 497 } 498 j++; 499 } 500 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 501 db->nDb = j; 502 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 503 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 504 sqlite3DbFree(db, db->aDb); 505 db->aDb = db->aDbStatic; 506 } 507 } 508 509 /* 510 ** Reset the schema for the database at index iDb. Also reset the 511 ** TEMP schema. 512 */ 513 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 514 Db *pDb; 515 assert( iDb<db->nDb ); 516 517 /* Case 1: Reset the single schema identified by iDb */ 518 pDb = &db->aDb[iDb]; 519 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 520 assert( pDb->pSchema!=0 ); 521 sqlite3SchemaClear(pDb->pSchema); 522 523 /* If any database other than TEMP is reset, then also reset TEMP 524 ** since TEMP might be holding triggers that reference tables in the 525 ** other database. 526 */ 527 if( iDb!=1 ){ 528 pDb = &db->aDb[1]; 529 assert( pDb->pSchema!=0 ); 530 sqlite3SchemaClear(pDb->pSchema); 531 } 532 return; 533 } 534 535 /* 536 ** Erase all schema information from all attached databases (including 537 ** "main" and "temp") for a single database connection. 538 */ 539 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 540 int i; 541 sqlite3BtreeEnterAll(db); 542 for(i=0; i<db->nDb; i++){ 543 Db *pDb = &db->aDb[i]; 544 if( pDb->pSchema ){ 545 sqlite3SchemaClear(pDb->pSchema); 546 } 547 } 548 db->flags &= ~SQLITE_InternChanges; 549 sqlite3VtabUnlockList(db); 550 sqlite3BtreeLeaveAll(db); 551 sqlite3CollapseDatabaseArray(db); 552 } 553 554 /* 555 ** This routine is called when a commit occurs. 556 */ 557 void sqlite3CommitInternalChanges(sqlite3 *db){ 558 db->flags &= ~SQLITE_InternChanges; 559 } 560 561 /* 562 ** Delete memory allocated for the column names of a table or view (the 563 ** Table.aCol[] array). 564 */ 565 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 566 int i; 567 Column *pCol; 568 assert( pTable!=0 ); 569 if( (pCol = pTable->aCol)!=0 ){ 570 for(i=0; i<pTable->nCol; i++, pCol++){ 571 sqlite3DbFree(db, pCol->zName); 572 sqlite3ExprDelete(db, pCol->pDflt); 573 sqlite3DbFree(db, pCol->zDflt); 574 sqlite3DbFree(db, pCol->zType); 575 sqlite3DbFree(db, pCol->zColl); 576 } 577 sqlite3DbFree(db, pTable->aCol); 578 } 579 } 580 581 /* 582 ** Remove the memory data structures associated with the given 583 ** Table. No changes are made to disk by this routine. 584 ** 585 ** This routine just deletes the data structure. It does not unlink 586 ** the table data structure from the hash table. But it does destroy 587 ** memory structures of the indices and foreign keys associated with 588 ** the table. 589 ** 590 ** The db parameter is optional. It is needed if the Table object 591 ** contains lookaside memory. (Table objects in the schema do not use 592 ** lookaside memory, but some ephemeral Table objects do.) Or the 593 ** db parameter can be used with db->pnBytesFreed to measure the memory 594 ** used by the Table object. 595 */ 596 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 597 Index *pIndex, *pNext; 598 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 599 600 assert( !pTable || pTable->nRef>0 ); 601 602 /* Do not delete the table until the reference count reaches zero. */ 603 if( !pTable ) return; 604 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 605 606 /* Record the number of outstanding lookaside allocations in schema Tables 607 ** prior to doing any free() operations. Since schema Tables do not use 608 ** lookaside, this number should not change. */ 609 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 610 db->lookaside.nOut : 0 ); 611 612 /* Delete all indices associated with this table. */ 613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 614 pNext = pIndex->pNext; 615 assert( pIndex->pSchema==pTable->pSchema ); 616 if( !db || db->pnBytesFreed==0 ){ 617 char *zName = pIndex->zName; 618 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 619 &pIndex->pSchema->idxHash, zName, 0 620 ); 621 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 622 assert( pOld==pIndex || pOld==0 ); 623 } 624 freeIndex(db, pIndex); 625 } 626 627 /* Delete any foreign keys attached to this table. */ 628 sqlite3FkDelete(db, pTable); 629 630 /* Delete the Table structure itself. 631 */ 632 sqliteDeleteColumnNames(db, pTable); 633 sqlite3DbFree(db, pTable->zName); 634 sqlite3DbFree(db, pTable->zColAff); 635 sqlite3SelectDelete(db, pTable->pSelect); 636 #ifndef SQLITE_OMIT_CHECK 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #endif 639 #ifndef SQLITE_OMIT_VIRTUALTABLE 640 sqlite3VtabClear(db, pTable); 641 #endif 642 sqlite3DbFree(db, pTable); 643 644 /* Verify that no lookaside memory was used by schema tables */ 645 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 646 } 647 648 /* 649 ** Unlink the given table from the hash tables and the delete the 650 ** table structure with all its indices and foreign keys. 651 */ 652 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 653 Table *p; 654 Db *pDb; 655 656 assert( db!=0 ); 657 assert( iDb>=0 && iDb<db->nDb ); 658 assert( zTabName ); 659 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 660 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 661 pDb = &db->aDb[iDb]; 662 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 663 sqlite3DeleteTable(db, p); 664 db->flags |= SQLITE_InternChanges; 665 } 666 667 /* 668 ** Given a token, return a string that consists of the text of that 669 ** token. Space to hold the returned string 670 ** is obtained from sqliteMalloc() and must be freed by the calling 671 ** function. 672 ** 673 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 674 ** surround the body of the token are removed. 675 ** 676 ** Tokens are often just pointers into the original SQL text and so 677 ** are not \000 terminated and are not persistent. The returned string 678 ** is \000 terminated and is persistent. 679 */ 680 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 681 char *zName; 682 if( pName ){ 683 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 684 sqlite3Dequote(zName); 685 }else{ 686 zName = 0; 687 } 688 return zName; 689 } 690 691 /* 692 ** Open the sqlite_master table stored in database number iDb for 693 ** writing. The table is opened using cursor 0. 694 */ 695 void sqlite3OpenMasterTable(Parse *p, int iDb){ 696 Vdbe *v = sqlite3GetVdbe(p); 697 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 698 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 699 if( p->nTab==0 ){ 700 p->nTab = 1; 701 } 702 } 703 704 /* 705 ** Parameter zName points to a nul-terminated buffer containing the name 706 ** of a database ("main", "temp" or the name of an attached db). This 707 ** function returns the index of the named database in db->aDb[], or 708 ** -1 if the named db cannot be found. 709 */ 710 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 711 int i = -1; /* Database number */ 712 if( zName ){ 713 Db *pDb; 714 int n = sqlite3Strlen30(zName); 715 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 716 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 717 0==sqlite3StrICmp(pDb->zName, zName) ){ 718 break; 719 } 720 } 721 } 722 return i; 723 } 724 725 /* 726 ** The token *pName contains the name of a database (either "main" or 727 ** "temp" or the name of an attached db). This routine returns the 728 ** index of the named database in db->aDb[], or -1 if the named db 729 ** does not exist. 730 */ 731 int sqlite3FindDb(sqlite3 *db, Token *pName){ 732 int i; /* Database number */ 733 char *zName; /* Name we are searching for */ 734 zName = sqlite3NameFromToken(db, pName); 735 i = sqlite3FindDbName(db, zName); 736 sqlite3DbFree(db, zName); 737 return i; 738 } 739 740 /* The table or view or trigger name is passed to this routine via tokens 741 ** pName1 and pName2. If the table name was fully qualified, for example: 742 ** 743 ** CREATE TABLE xxx.yyy (...); 744 ** 745 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 746 ** the table name is not fully qualified, i.e.: 747 ** 748 ** CREATE TABLE yyy(...); 749 ** 750 ** Then pName1 is set to "yyy" and pName2 is "". 751 ** 752 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 753 ** pName2) that stores the unqualified table name. The index of the 754 ** database "xxx" is returned. 755 */ 756 int sqlite3TwoPartName( 757 Parse *pParse, /* Parsing and code generating context */ 758 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 759 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 760 Token **pUnqual /* Write the unqualified object name here */ 761 ){ 762 int iDb; /* Database holding the object */ 763 sqlite3 *db = pParse->db; 764 765 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 766 if( db->init.busy ) { 767 sqlite3ErrorMsg(pParse, "corrupt database"); 768 pParse->nErr++; 769 return -1; 770 } 771 *pUnqual = pName2; 772 iDb = sqlite3FindDb(db, pName1); 773 if( iDb<0 ){ 774 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 775 pParse->nErr++; 776 return -1; 777 } 778 }else{ 779 assert( db->init.iDb==0 || db->init.busy ); 780 iDb = db->init.iDb; 781 *pUnqual = pName1; 782 } 783 return iDb; 784 } 785 786 /* 787 ** This routine is used to check if the UTF-8 string zName is a legal 788 ** unqualified name for a new schema object (table, index, view or 789 ** trigger). All names are legal except those that begin with the string 790 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 791 ** is reserved for internal use. 792 */ 793 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 794 if( !pParse->db->init.busy && pParse->nested==0 795 && (pParse->db->flags & SQLITE_WriteSchema)==0 796 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 797 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 798 return SQLITE_ERROR; 799 } 800 return SQLITE_OK; 801 } 802 803 /* 804 ** Return the PRIMARY KEY index of a table 805 */ 806 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 807 Index *p; 808 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 809 return p; 810 } 811 812 /* 813 ** Return the column of index pIdx that corresponds to table 814 ** column iCol. Return -1 if not found. 815 */ 816 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 817 int i; 818 for(i=0; i<pIdx->nColumn; i++){ 819 if( iCol==pIdx->aiColumn[i] ) return i; 820 } 821 return -1; 822 } 823 824 /* 825 ** Begin constructing a new table representation in memory. This is 826 ** the first of several action routines that get called in response 827 ** to a CREATE TABLE statement. In particular, this routine is called 828 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 829 ** flag is true if the table should be stored in the auxiliary database 830 ** file instead of in the main database file. This is normally the case 831 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 832 ** CREATE and TABLE. 833 ** 834 ** The new table record is initialized and put in pParse->pNewTable. 835 ** As more of the CREATE TABLE statement is parsed, additional action 836 ** routines will be called to add more information to this record. 837 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 838 ** is called to complete the construction of the new table record. 839 */ 840 void sqlite3StartTable( 841 Parse *pParse, /* Parser context */ 842 Token *pName1, /* First part of the name of the table or view */ 843 Token *pName2, /* Second part of the name of the table or view */ 844 int isTemp, /* True if this is a TEMP table */ 845 int isView, /* True if this is a VIEW */ 846 int isVirtual, /* True if this is a VIRTUAL table */ 847 int noErr /* Do nothing if table already exists */ 848 ){ 849 Table *pTable; 850 char *zName = 0; /* The name of the new table */ 851 sqlite3 *db = pParse->db; 852 Vdbe *v; 853 int iDb; /* Database number to create the table in */ 854 Token *pName; /* Unqualified name of the table to create */ 855 856 /* The table or view name to create is passed to this routine via tokens 857 ** pName1 and pName2. If the table name was fully qualified, for example: 858 ** 859 ** CREATE TABLE xxx.yyy (...); 860 ** 861 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 862 ** the table name is not fully qualified, i.e.: 863 ** 864 ** CREATE TABLE yyy(...); 865 ** 866 ** Then pName1 is set to "yyy" and pName2 is "". 867 ** 868 ** The call below sets the pName pointer to point at the token (pName1 or 869 ** pName2) that stores the unqualified table name. The variable iDb is 870 ** set to the index of the database that the table or view is to be 871 ** created in. 872 */ 873 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 874 if( iDb<0 ) return; 875 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 876 /* If creating a temp table, the name may not be qualified. Unless 877 ** the database name is "temp" anyway. */ 878 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 879 return; 880 } 881 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 882 883 pParse->sNameToken = *pName; 884 zName = sqlite3NameFromToken(db, pName); 885 if( zName==0 ) return; 886 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 887 goto begin_table_error; 888 } 889 if( db->init.iDb==1 ) isTemp = 1; 890 #ifndef SQLITE_OMIT_AUTHORIZATION 891 assert( (isTemp & 1)==isTemp ); 892 { 893 int code; 894 char *zDb = db->aDb[iDb].zName; 895 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 896 goto begin_table_error; 897 } 898 if( isView ){ 899 if( !OMIT_TEMPDB && isTemp ){ 900 code = SQLITE_CREATE_TEMP_VIEW; 901 }else{ 902 code = SQLITE_CREATE_VIEW; 903 } 904 }else{ 905 if( !OMIT_TEMPDB && isTemp ){ 906 code = SQLITE_CREATE_TEMP_TABLE; 907 }else{ 908 code = SQLITE_CREATE_TABLE; 909 } 910 } 911 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 912 goto begin_table_error; 913 } 914 } 915 #endif 916 917 /* Make sure the new table name does not collide with an existing 918 ** index or table name in the same database. Issue an error message if 919 ** it does. The exception is if the statement being parsed was passed 920 ** to an sqlite3_declare_vtab() call. In that case only the column names 921 ** and types will be used, so there is no need to test for namespace 922 ** collisions. 923 */ 924 if( !IN_DECLARE_VTAB ){ 925 char *zDb = db->aDb[iDb].zName; 926 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 927 goto begin_table_error; 928 } 929 pTable = sqlite3FindTable(db, zName, zDb); 930 if( pTable ){ 931 if( !noErr ){ 932 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 933 }else{ 934 assert( !db->init.busy ); 935 sqlite3CodeVerifySchema(pParse, iDb); 936 } 937 goto begin_table_error; 938 } 939 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 940 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 941 goto begin_table_error; 942 } 943 } 944 945 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 946 if( pTable==0 ){ 947 db->mallocFailed = 1; 948 pParse->rc = SQLITE_NOMEM; 949 pParse->nErr++; 950 goto begin_table_error; 951 } 952 pTable->zName = zName; 953 pTable->iPKey = -1; 954 pTable->pSchema = db->aDb[iDb].pSchema; 955 pTable->nRef = 1; 956 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 957 assert( pParse->pNewTable==0 ); 958 pParse->pNewTable = pTable; 959 960 /* If this is the magic sqlite_sequence table used by autoincrement, 961 ** then record a pointer to this table in the main database structure 962 ** so that INSERT can find the table easily. 963 */ 964 #ifndef SQLITE_OMIT_AUTOINCREMENT 965 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 966 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 967 pTable->pSchema->pSeqTab = pTable; 968 } 969 #endif 970 971 /* Begin generating the code that will insert the table record into 972 ** the SQLITE_MASTER table. Note in particular that we must go ahead 973 ** and allocate the record number for the table entry now. Before any 974 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 975 ** indices to be created and the table record must come before the 976 ** indices. Hence, the record number for the table must be allocated 977 ** now. 978 */ 979 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 980 int j1; 981 int fileFormat; 982 int reg1, reg2, reg3; 983 sqlite3BeginWriteOperation(pParse, 0, iDb); 984 985 #ifndef SQLITE_OMIT_VIRTUALTABLE 986 if( isVirtual ){ 987 sqlite3VdbeAddOp0(v, OP_VBegin); 988 } 989 #endif 990 991 /* If the file format and encoding in the database have not been set, 992 ** set them now. 993 */ 994 reg1 = pParse->regRowid = ++pParse->nMem; 995 reg2 = pParse->regRoot = ++pParse->nMem; 996 reg3 = ++pParse->nMem; 997 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 998 sqlite3VdbeUsesBtree(v, iDb); 999 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1000 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1001 1 : SQLITE_MAX_FILE_FORMAT; 1002 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 1003 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1004 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1005 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1006 sqlite3VdbeJumpHere(v, j1); 1007 1008 /* This just creates a place-holder record in the sqlite_master table. 1009 ** The record created does not contain anything yet. It will be replaced 1010 ** by the real entry in code generated at sqlite3EndTable(). 1011 ** 1012 ** The rowid for the new entry is left in register pParse->regRowid. 1013 ** The root page number of the new table is left in reg pParse->regRoot. 1014 ** The rowid and root page number values are needed by the code that 1015 ** sqlite3EndTable will generate. 1016 */ 1017 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1018 if( isView || isVirtual ){ 1019 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1020 }else 1021 #endif 1022 { 1023 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1024 } 1025 sqlite3OpenMasterTable(pParse, iDb); 1026 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1027 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1028 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1029 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1030 sqlite3VdbeAddOp0(v, OP_Close); 1031 } 1032 1033 /* Normal (non-error) return. */ 1034 return; 1035 1036 /* If an error occurs, we jump here */ 1037 begin_table_error: 1038 sqlite3DbFree(db, zName); 1039 return; 1040 } 1041 1042 /* 1043 ** This macro is used to compare two strings in a case-insensitive manner. 1044 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1045 ** produces larger code. 1046 ** 1047 ** WARNING: This macro is not compatible with the strcmp() family. It 1048 ** returns true if the two strings are equal, otherwise false. 1049 */ 1050 #define STRICMP(x, y) (\ 1051 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1052 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1053 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1054 1055 /* 1056 ** Add a new column to the table currently being constructed. 1057 ** 1058 ** The parser calls this routine once for each column declaration 1059 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1060 ** first to get things going. Then this routine is called for each 1061 ** column. 1062 */ 1063 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1064 Table *p; 1065 int i; 1066 char *z; 1067 Column *pCol; 1068 sqlite3 *db = pParse->db; 1069 if( (p = pParse->pNewTable)==0 ) return; 1070 #if SQLITE_MAX_COLUMN 1071 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1072 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1073 return; 1074 } 1075 #endif 1076 z = sqlite3NameFromToken(db, pName); 1077 if( z==0 ) return; 1078 for(i=0; i<p->nCol; i++){ 1079 if( STRICMP(z, p->aCol[i].zName) ){ 1080 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1081 sqlite3DbFree(db, z); 1082 return; 1083 } 1084 } 1085 if( (p->nCol & 0x7)==0 ){ 1086 Column *aNew; 1087 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1088 if( aNew==0 ){ 1089 sqlite3DbFree(db, z); 1090 return; 1091 } 1092 p->aCol = aNew; 1093 } 1094 pCol = &p->aCol[p->nCol]; 1095 memset(pCol, 0, sizeof(p->aCol[0])); 1096 pCol->zName = z; 1097 1098 /* If there is no type specified, columns have the default affinity 1099 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1100 ** be called next to set pCol->affinity correctly. 1101 */ 1102 pCol->affinity = SQLITE_AFF_NONE; 1103 pCol->szEst = 1; 1104 p->nCol++; 1105 } 1106 1107 /* 1108 ** This routine is called by the parser while in the middle of 1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1110 ** been seen on a column. This routine sets the notNull flag on 1111 ** the column currently under construction. 1112 */ 1113 void sqlite3AddNotNull(Parse *pParse, int onError){ 1114 Table *p; 1115 p = pParse->pNewTable; 1116 if( p==0 || NEVER(p->nCol<1) ) return; 1117 p->aCol[p->nCol-1].notNull = (u8)onError; 1118 } 1119 1120 /* 1121 ** Scan the column type name zType (length nType) and return the 1122 ** associated affinity type. 1123 ** 1124 ** This routine does a case-independent search of zType for the 1125 ** substrings in the following table. If one of the substrings is 1126 ** found, the corresponding affinity is returned. If zType contains 1127 ** more than one of the substrings, entries toward the top of 1128 ** the table take priority. For example, if zType is 'BLOBINT', 1129 ** SQLITE_AFF_INTEGER is returned. 1130 ** 1131 ** Substring | Affinity 1132 ** -------------------------------- 1133 ** 'INT' | SQLITE_AFF_INTEGER 1134 ** 'CHAR' | SQLITE_AFF_TEXT 1135 ** 'CLOB' | SQLITE_AFF_TEXT 1136 ** 'TEXT' | SQLITE_AFF_TEXT 1137 ** 'BLOB' | SQLITE_AFF_NONE 1138 ** 'REAL' | SQLITE_AFF_REAL 1139 ** 'FLOA' | SQLITE_AFF_REAL 1140 ** 'DOUB' | SQLITE_AFF_REAL 1141 ** 1142 ** If none of the substrings in the above table are found, 1143 ** SQLITE_AFF_NUMERIC is returned. 1144 */ 1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1146 u32 h = 0; 1147 char aff = SQLITE_AFF_NUMERIC; 1148 const char *zChar = 0; 1149 1150 if( zIn==0 ) return aff; 1151 while( zIn[0] ){ 1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1153 zIn++; 1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1155 aff = SQLITE_AFF_TEXT; 1156 zChar = zIn; 1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1158 aff = SQLITE_AFF_TEXT; 1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1160 aff = SQLITE_AFF_TEXT; 1161 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1162 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1163 aff = SQLITE_AFF_NONE; 1164 if( zIn[0]=='(' ) zChar = zIn; 1165 #ifndef SQLITE_OMIT_FLOATING_POINT 1166 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1167 && aff==SQLITE_AFF_NUMERIC ){ 1168 aff = SQLITE_AFF_REAL; 1169 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1170 && aff==SQLITE_AFF_NUMERIC ){ 1171 aff = SQLITE_AFF_REAL; 1172 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1173 && aff==SQLITE_AFF_NUMERIC ){ 1174 aff = SQLITE_AFF_REAL; 1175 #endif 1176 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1177 aff = SQLITE_AFF_INTEGER; 1178 break; 1179 } 1180 } 1181 1182 /* If pszEst is not NULL, store an estimate of the field size. The 1183 ** estimate is scaled so that the size of an integer is 1. */ 1184 if( pszEst ){ 1185 *pszEst = 1; /* default size is approx 4 bytes */ 1186 if( aff<SQLITE_AFF_NUMERIC ){ 1187 if( zChar ){ 1188 while( zChar[0] ){ 1189 if( sqlite3Isdigit(zChar[0]) ){ 1190 int v = 0; 1191 sqlite3GetInt32(zChar, &v); 1192 v = v/4 + 1; 1193 if( v>255 ) v = 255; 1194 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1195 break; 1196 } 1197 zChar++; 1198 } 1199 }else{ 1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1201 } 1202 } 1203 } 1204 return aff; 1205 } 1206 1207 /* 1208 ** This routine is called by the parser while in the middle of 1209 ** parsing a CREATE TABLE statement. The pFirst token is the first 1210 ** token in the sequence of tokens that describe the type of the 1211 ** column currently under construction. pLast is the last token 1212 ** in the sequence. Use this information to construct a string 1213 ** that contains the typename of the column and store that string 1214 ** in zType. 1215 */ 1216 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1217 Table *p; 1218 Column *pCol; 1219 1220 p = pParse->pNewTable; 1221 if( p==0 || NEVER(p->nCol<1) ) return; 1222 pCol = &p->aCol[p->nCol-1]; 1223 assert( pCol->zType==0 ); 1224 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1225 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1226 } 1227 1228 /* 1229 ** The expression is the default value for the most recently added column 1230 ** of the table currently under construction. 1231 ** 1232 ** Default value expressions must be constant. Raise an exception if this 1233 ** is not the case. 1234 ** 1235 ** This routine is called by the parser while in the middle of 1236 ** parsing a CREATE TABLE statement. 1237 */ 1238 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1239 Table *p; 1240 Column *pCol; 1241 sqlite3 *db = pParse->db; 1242 p = pParse->pNewTable; 1243 if( p!=0 ){ 1244 pCol = &(p->aCol[p->nCol-1]); 1245 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1246 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1247 pCol->zName); 1248 }else{ 1249 /* A copy of pExpr is used instead of the original, as pExpr contains 1250 ** tokens that point to volatile memory. The 'span' of the expression 1251 ** is required by pragma table_info. 1252 */ 1253 sqlite3ExprDelete(db, pCol->pDflt); 1254 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1255 sqlite3DbFree(db, pCol->zDflt); 1256 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1257 (int)(pSpan->zEnd - pSpan->zStart)); 1258 } 1259 } 1260 sqlite3ExprDelete(db, pSpan->pExpr); 1261 } 1262 1263 /* 1264 ** Designate the PRIMARY KEY for the table. pList is a list of names 1265 ** of columns that form the primary key. If pList is NULL, then the 1266 ** most recently added column of the table is the primary key. 1267 ** 1268 ** A table can have at most one primary key. If the table already has 1269 ** a primary key (and this is the second primary key) then create an 1270 ** error. 1271 ** 1272 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1273 ** then we will try to use that column as the rowid. Set the Table.iPKey 1274 ** field of the table under construction to be the index of the 1275 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1276 ** no INTEGER PRIMARY KEY. 1277 ** 1278 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1279 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1280 */ 1281 void sqlite3AddPrimaryKey( 1282 Parse *pParse, /* Parsing context */ 1283 ExprList *pList, /* List of field names to be indexed */ 1284 int onError, /* What to do with a uniqueness conflict */ 1285 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1286 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1287 ){ 1288 Table *pTab = pParse->pNewTable; 1289 char *zType = 0; 1290 int iCol = -1, i; 1291 int nTerm; 1292 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1293 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1294 sqlite3ErrorMsg(pParse, 1295 "table \"%s\" has more than one primary key", pTab->zName); 1296 goto primary_key_exit; 1297 } 1298 pTab->tabFlags |= TF_HasPrimaryKey; 1299 if( pList==0 ){ 1300 iCol = pTab->nCol - 1; 1301 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1302 zType = pTab->aCol[iCol].zType; 1303 nTerm = 1; 1304 }else{ 1305 nTerm = pList->nExpr; 1306 for(i=0; i<nTerm; i++){ 1307 for(iCol=0; iCol<pTab->nCol; iCol++){ 1308 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1309 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1310 zType = pTab->aCol[iCol].zType; 1311 break; 1312 } 1313 } 1314 } 1315 } 1316 if( nTerm==1 1317 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1318 && sortOrder==SQLITE_SO_ASC 1319 ){ 1320 pTab->iPKey = iCol; 1321 pTab->keyConf = (u8)onError; 1322 assert( autoInc==0 || autoInc==1 ); 1323 pTab->tabFlags |= autoInc*TF_Autoincrement; 1324 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1325 }else if( autoInc ){ 1326 #ifndef SQLITE_OMIT_AUTOINCREMENT 1327 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1328 "INTEGER PRIMARY KEY"); 1329 #endif 1330 }else{ 1331 Vdbe *v = pParse->pVdbe; 1332 Index *p; 1333 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1334 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1335 0, sortOrder, 0); 1336 if( p ){ 1337 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1338 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1339 } 1340 pList = 0; 1341 } 1342 1343 primary_key_exit: 1344 sqlite3ExprListDelete(pParse->db, pList); 1345 return; 1346 } 1347 1348 /* 1349 ** Add a new CHECK constraint to the table currently under construction. 1350 */ 1351 void sqlite3AddCheckConstraint( 1352 Parse *pParse, /* Parsing context */ 1353 Expr *pCheckExpr /* The check expression */ 1354 ){ 1355 #ifndef SQLITE_OMIT_CHECK 1356 Table *pTab = pParse->pNewTable; 1357 sqlite3 *db = pParse->db; 1358 if( pTab && !IN_DECLARE_VTAB 1359 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1360 ){ 1361 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1362 if( pParse->constraintName.n ){ 1363 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1364 } 1365 }else 1366 #endif 1367 { 1368 sqlite3ExprDelete(pParse->db, pCheckExpr); 1369 } 1370 } 1371 1372 /* 1373 ** Set the collation function of the most recently parsed table column 1374 ** to the CollSeq given. 1375 */ 1376 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1377 Table *p; 1378 int i; 1379 char *zColl; /* Dequoted name of collation sequence */ 1380 sqlite3 *db; 1381 1382 if( (p = pParse->pNewTable)==0 ) return; 1383 i = p->nCol-1; 1384 db = pParse->db; 1385 zColl = sqlite3NameFromToken(db, pToken); 1386 if( !zColl ) return; 1387 1388 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1389 Index *pIdx; 1390 sqlite3DbFree(db, p->aCol[i].zColl); 1391 p->aCol[i].zColl = zColl; 1392 1393 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1394 ** then an index may have been created on this column before the 1395 ** collation type was added. Correct this if it is the case. 1396 */ 1397 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1398 assert( pIdx->nKeyCol==1 ); 1399 if( pIdx->aiColumn[0]==i ){ 1400 pIdx->azColl[0] = p->aCol[i].zColl; 1401 } 1402 } 1403 }else{ 1404 sqlite3DbFree(db, zColl); 1405 } 1406 } 1407 1408 /* 1409 ** This function returns the collation sequence for database native text 1410 ** encoding identified by the string zName, length nName. 1411 ** 1412 ** If the requested collation sequence is not available, or not available 1413 ** in the database native encoding, the collation factory is invoked to 1414 ** request it. If the collation factory does not supply such a sequence, 1415 ** and the sequence is available in another text encoding, then that is 1416 ** returned instead. 1417 ** 1418 ** If no versions of the requested collations sequence are available, or 1419 ** another error occurs, NULL is returned and an error message written into 1420 ** pParse. 1421 ** 1422 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1423 ** invokes the collation factory if the named collation cannot be found 1424 ** and generates an error message. 1425 ** 1426 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1427 */ 1428 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1429 sqlite3 *db = pParse->db; 1430 u8 enc = ENC(db); 1431 u8 initbusy = db->init.busy; 1432 CollSeq *pColl; 1433 1434 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1435 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1436 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1437 } 1438 1439 return pColl; 1440 } 1441 1442 1443 /* 1444 ** Generate code that will increment the schema cookie. 1445 ** 1446 ** The schema cookie is used to determine when the schema for the 1447 ** database changes. After each schema change, the cookie value 1448 ** changes. When a process first reads the schema it records the 1449 ** cookie. Thereafter, whenever it goes to access the database, 1450 ** it checks the cookie to make sure the schema has not changed 1451 ** since it was last read. 1452 ** 1453 ** This plan is not completely bullet-proof. It is possible for 1454 ** the schema to change multiple times and for the cookie to be 1455 ** set back to prior value. But schema changes are infrequent 1456 ** and the probability of hitting the same cookie value is only 1457 ** 1 chance in 2^32. So we're safe enough. 1458 */ 1459 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1460 int r1 = sqlite3GetTempReg(pParse); 1461 sqlite3 *db = pParse->db; 1462 Vdbe *v = pParse->pVdbe; 1463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1464 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1465 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1466 sqlite3ReleaseTempReg(pParse, r1); 1467 } 1468 1469 /* 1470 ** Measure the number of characters needed to output the given 1471 ** identifier. The number returned includes any quotes used 1472 ** but does not include the null terminator. 1473 ** 1474 ** The estimate is conservative. It might be larger that what is 1475 ** really needed. 1476 */ 1477 static int identLength(const char *z){ 1478 int n; 1479 for(n=0; *z; n++, z++){ 1480 if( *z=='"' ){ n++; } 1481 } 1482 return n + 2; 1483 } 1484 1485 /* 1486 ** The first parameter is a pointer to an output buffer. The second 1487 ** parameter is a pointer to an integer that contains the offset at 1488 ** which to write into the output buffer. This function copies the 1489 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1490 ** to the specified offset in the buffer and updates *pIdx to refer 1491 ** to the first byte after the last byte written before returning. 1492 ** 1493 ** If the string zSignedIdent consists entirely of alpha-numeric 1494 ** characters, does not begin with a digit and is not an SQL keyword, 1495 ** then it is copied to the output buffer exactly as it is. Otherwise, 1496 ** it is quoted using double-quotes. 1497 */ 1498 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1499 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1500 int i, j, needQuote; 1501 i = *pIdx; 1502 1503 for(j=0; zIdent[j]; j++){ 1504 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1505 } 1506 needQuote = sqlite3Isdigit(zIdent[0]) 1507 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1508 || zIdent[j]!=0 1509 || j==0; 1510 1511 if( needQuote ) z[i++] = '"'; 1512 for(j=0; zIdent[j]; j++){ 1513 z[i++] = zIdent[j]; 1514 if( zIdent[j]=='"' ) z[i++] = '"'; 1515 } 1516 if( needQuote ) z[i++] = '"'; 1517 z[i] = 0; 1518 *pIdx = i; 1519 } 1520 1521 /* 1522 ** Generate a CREATE TABLE statement appropriate for the given 1523 ** table. Memory to hold the text of the statement is obtained 1524 ** from sqliteMalloc() and must be freed by the calling function. 1525 */ 1526 static char *createTableStmt(sqlite3 *db, Table *p){ 1527 int i, k, n; 1528 char *zStmt; 1529 char *zSep, *zSep2, *zEnd; 1530 Column *pCol; 1531 n = 0; 1532 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1533 n += identLength(pCol->zName) + 5; 1534 } 1535 n += identLength(p->zName); 1536 if( n<50 ){ 1537 zSep = ""; 1538 zSep2 = ","; 1539 zEnd = ")"; 1540 }else{ 1541 zSep = "\n "; 1542 zSep2 = ",\n "; 1543 zEnd = "\n)"; 1544 } 1545 n += 35 + 6*p->nCol; 1546 zStmt = sqlite3DbMallocRaw(0, n); 1547 if( zStmt==0 ){ 1548 db->mallocFailed = 1; 1549 return 0; 1550 } 1551 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1552 k = sqlite3Strlen30(zStmt); 1553 identPut(zStmt, &k, p->zName); 1554 zStmt[k++] = '('; 1555 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1556 static const char * const azType[] = { 1557 /* SQLITE_AFF_NONE */ "", 1558 /* SQLITE_AFF_TEXT */ " TEXT", 1559 /* SQLITE_AFF_NUMERIC */ " NUM", 1560 /* SQLITE_AFF_INTEGER */ " INT", 1561 /* SQLITE_AFF_REAL */ " REAL" 1562 }; 1563 int len; 1564 const char *zType; 1565 1566 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1567 k += sqlite3Strlen30(&zStmt[k]); 1568 zSep = zSep2; 1569 identPut(zStmt, &k, pCol->zName); 1570 assert( pCol->affinity-SQLITE_AFF_NONE >= 0 ); 1571 assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) ); 1572 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1573 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1574 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1575 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1576 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1577 1578 zType = azType[pCol->affinity - SQLITE_AFF_NONE]; 1579 len = sqlite3Strlen30(zType); 1580 assert( pCol->affinity==SQLITE_AFF_NONE 1581 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1582 memcpy(&zStmt[k], zType, len); 1583 k += len; 1584 assert( k<=n ); 1585 } 1586 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1587 return zStmt; 1588 } 1589 1590 /* 1591 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1592 ** on success and SQLITE_NOMEM on an OOM error. 1593 */ 1594 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1595 char *zExtra; 1596 int nByte; 1597 if( pIdx->nColumn>=N ) return SQLITE_OK; 1598 assert( pIdx->isResized==0 ); 1599 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1600 zExtra = sqlite3DbMallocZero(db, nByte); 1601 if( zExtra==0 ) return SQLITE_NOMEM; 1602 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1603 pIdx->azColl = (char**)zExtra; 1604 zExtra += sizeof(char*)*N; 1605 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1606 pIdx->aiColumn = (i16*)zExtra; 1607 zExtra += sizeof(i16)*N; 1608 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1609 pIdx->aSortOrder = (u8*)zExtra; 1610 pIdx->nColumn = N; 1611 pIdx->isResized = 1; 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Estimate the total row width for a table. 1617 */ 1618 static void estimateTableWidth(Table *pTab){ 1619 unsigned wTable = 0; 1620 const Column *pTabCol; 1621 int i; 1622 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1623 wTable += pTabCol->szEst; 1624 } 1625 if( pTab->iPKey<0 ) wTable++; 1626 pTab->szTabRow = sqlite3LogEst(wTable*4); 1627 } 1628 1629 /* 1630 ** Estimate the average size of a row for an index. 1631 */ 1632 static void estimateIndexWidth(Index *pIdx){ 1633 unsigned wIndex = 0; 1634 int i; 1635 const Column *aCol = pIdx->pTable->aCol; 1636 for(i=0; i<pIdx->nColumn; i++){ 1637 i16 x = pIdx->aiColumn[i]; 1638 assert( x<pIdx->pTable->nCol ); 1639 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1640 } 1641 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1642 } 1643 1644 /* Return true if value x is found any of the first nCol entries of aiCol[] 1645 */ 1646 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1647 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1648 return 0; 1649 } 1650 1651 /* 1652 ** This routine runs at the end of parsing a CREATE TABLE statement that 1653 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1654 ** internal schema data structures and the generated VDBE code so that they 1655 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1656 ** Changes include: 1657 ** 1658 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1659 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1660 ** data storage is a covering index btree. 1661 ** (2) Bypass the creation of the sqlite_master table entry 1662 ** for the PRIMARY KEY as the primary key index is now 1663 ** identified by the sqlite_master table entry of the table itself. 1664 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1665 ** schema to the rootpage from the main table. 1666 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1667 ** (5) Add all table columns to the PRIMARY KEY Index object 1668 ** so that the PRIMARY KEY is a covering index. The surplus 1669 ** columns are part of KeyInfo.nXField and are not used for 1670 ** sorting or lookup or uniqueness checks. 1671 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1672 ** indices with the PRIMARY KEY columns. 1673 */ 1674 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1675 Index *pIdx; 1676 Index *pPk; 1677 int nPk; 1678 int i, j; 1679 sqlite3 *db = pParse->db; 1680 Vdbe *v = pParse->pVdbe; 1681 1682 /* Convert the OP_CreateTable opcode that would normally create the 1683 ** root-page for the table into an OP_CreateIndex opcode. The index 1684 ** created will become the PRIMARY KEY index. 1685 */ 1686 if( pParse->addrCrTab ){ 1687 assert( v ); 1688 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1689 } 1690 1691 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1692 ** table entry. 1693 */ 1694 if( pParse->addrSkipPK ){ 1695 assert( v ); 1696 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1697 } 1698 1699 /* Locate the PRIMARY KEY index. Or, if this table was originally 1700 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1701 */ 1702 if( pTab->iPKey>=0 ){ 1703 ExprList *pList; 1704 pList = sqlite3ExprListAppend(pParse, 0, 0); 1705 if( pList==0 ) return; 1706 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1707 pTab->aCol[pTab->iPKey].zName); 1708 pList->a[0].sortOrder = pParse->iPkSortOrder; 1709 assert( pParse->pNewTable==pTab ); 1710 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1711 if( pPk==0 ) return; 1712 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1713 pTab->iPKey = -1; 1714 }else{ 1715 pPk = sqlite3PrimaryKeyIndex(pTab); 1716 /* 1717 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1718 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1719 ** code assumes the PRIMARY KEY contains no repeated columns. 1720 */ 1721 for(i=j=1; i<pPk->nKeyCol; i++){ 1722 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1723 pPk->nColumn--; 1724 }else{ 1725 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1726 } 1727 } 1728 pPk->nKeyCol = j; 1729 } 1730 pPk->isCovering = 1; 1731 assert( pPk!=0 ); 1732 nPk = pPk->nKeyCol; 1733 1734 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1735 for(i=0; i<nPk; i++){ 1736 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1737 } 1738 pPk->uniqNotNull = 1; 1739 1740 /* The root page of the PRIMARY KEY is the table root page */ 1741 pPk->tnum = pTab->tnum; 1742 1743 /* Update the in-memory representation of all UNIQUE indices by converting 1744 ** the final rowid column into one or more columns of the PRIMARY KEY. 1745 */ 1746 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1747 int n; 1748 if( IsPrimaryKeyIndex(pIdx) ) continue; 1749 for(i=n=0; i<nPk; i++){ 1750 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1751 } 1752 if( n==0 ){ 1753 /* This index is a superset of the primary key */ 1754 pIdx->nColumn = pIdx->nKeyCol; 1755 continue; 1756 } 1757 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1758 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1759 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1760 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1761 pIdx->azColl[j] = pPk->azColl[i]; 1762 j++; 1763 } 1764 } 1765 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1766 assert( pIdx->nColumn>=j ); 1767 } 1768 1769 /* Add all table columns to the PRIMARY KEY index 1770 */ 1771 if( nPk<pTab->nCol ){ 1772 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1773 for(i=0, j=nPk; i<pTab->nCol; i++){ 1774 if( !hasColumn(pPk->aiColumn, j, i) ){ 1775 assert( j<pPk->nColumn ); 1776 pPk->aiColumn[j] = i; 1777 pPk->azColl[j] = "BINARY"; 1778 j++; 1779 } 1780 } 1781 assert( pPk->nColumn==j ); 1782 assert( pTab->nCol==j ); 1783 }else{ 1784 pPk->nColumn = pTab->nCol; 1785 } 1786 } 1787 1788 /* 1789 ** This routine is called to report the final ")" that terminates 1790 ** a CREATE TABLE statement. 1791 ** 1792 ** The table structure that other action routines have been building 1793 ** is added to the internal hash tables, assuming no errors have 1794 ** occurred. 1795 ** 1796 ** An entry for the table is made in the master table on disk, unless 1797 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1798 ** it means we are reading the sqlite_master table because we just 1799 ** connected to the database or because the sqlite_master table has 1800 ** recently changed, so the entry for this table already exists in 1801 ** the sqlite_master table. We do not want to create it again. 1802 ** 1803 ** If the pSelect argument is not NULL, it means that this routine 1804 ** was called to create a table generated from a 1805 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1806 ** the new table will match the result set of the SELECT. 1807 */ 1808 void sqlite3EndTable( 1809 Parse *pParse, /* Parse context */ 1810 Token *pCons, /* The ',' token after the last column defn. */ 1811 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1812 u8 tabOpts, /* Extra table options. Usually 0. */ 1813 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1814 ){ 1815 Table *p; /* The new table */ 1816 sqlite3 *db = pParse->db; /* The database connection */ 1817 int iDb; /* Database in which the table lives */ 1818 Index *pIdx; /* An implied index of the table */ 1819 1820 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1821 return; 1822 } 1823 p = pParse->pNewTable; 1824 if( p==0 ) return; 1825 1826 assert( !db->init.busy || !pSelect ); 1827 1828 /* If the db->init.busy is 1 it means we are reading the SQL off the 1829 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1830 ** So do not write to the disk again. Extract the root page number 1831 ** for the table from the db->init.newTnum field. (The page number 1832 ** should have been put there by the sqliteOpenCb routine.) 1833 */ 1834 if( db->init.busy ){ 1835 p->tnum = db->init.newTnum; 1836 } 1837 1838 /* Special processing for WITHOUT ROWID Tables */ 1839 if( tabOpts & TF_WithoutRowid ){ 1840 if( (p->tabFlags & TF_Autoincrement) ){ 1841 sqlite3ErrorMsg(pParse, 1842 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1843 return; 1844 } 1845 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1846 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1847 }else{ 1848 p->tabFlags |= TF_WithoutRowid; 1849 convertToWithoutRowidTable(pParse, p); 1850 } 1851 } 1852 1853 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1854 1855 #ifndef SQLITE_OMIT_CHECK 1856 /* Resolve names in all CHECK constraint expressions. 1857 */ 1858 if( p->pCheck ){ 1859 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1860 } 1861 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1862 1863 /* Estimate the average row size for the table and for all implied indices */ 1864 estimateTableWidth(p); 1865 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1866 estimateIndexWidth(pIdx); 1867 } 1868 1869 /* If not initializing, then create a record for the new table 1870 ** in the SQLITE_MASTER table of the database. 1871 ** 1872 ** If this is a TEMPORARY table, write the entry into the auxiliary 1873 ** file instead of into the main database file. 1874 */ 1875 if( !db->init.busy ){ 1876 int n; 1877 Vdbe *v; 1878 char *zType; /* "view" or "table" */ 1879 char *zType2; /* "VIEW" or "TABLE" */ 1880 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1881 1882 v = sqlite3GetVdbe(pParse); 1883 if( NEVER(v==0) ) return; 1884 1885 sqlite3VdbeAddOp1(v, OP_Close, 0); 1886 1887 /* 1888 ** Initialize zType for the new view or table. 1889 */ 1890 if( p->pSelect==0 ){ 1891 /* A regular table */ 1892 zType = "table"; 1893 zType2 = "TABLE"; 1894 #ifndef SQLITE_OMIT_VIEW 1895 }else{ 1896 /* A view */ 1897 zType = "view"; 1898 zType2 = "VIEW"; 1899 #endif 1900 } 1901 1902 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1903 ** statement to populate the new table. The root-page number for the 1904 ** new table is in register pParse->regRoot. 1905 ** 1906 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1907 ** suitable state to query for the column names and types to be used 1908 ** by the new table. 1909 ** 1910 ** A shared-cache write-lock is not required to write to the new table, 1911 ** as a schema-lock must have already been obtained to create it. Since 1912 ** a schema-lock excludes all other database users, the write-lock would 1913 ** be redundant. 1914 */ 1915 if( pSelect ){ 1916 SelectDest dest; 1917 Table *pSelTab; 1918 1919 assert(pParse->nTab==1); 1920 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1921 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1922 pParse->nTab = 2; 1923 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1924 sqlite3Select(pParse, pSelect, &dest); 1925 sqlite3VdbeAddOp1(v, OP_Close, 1); 1926 if( pParse->nErr==0 ){ 1927 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1928 if( pSelTab==0 ) return; 1929 assert( p->aCol==0 ); 1930 p->nCol = pSelTab->nCol; 1931 p->aCol = pSelTab->aCol; 1932 pSelTab->nCol = 0; 1933 pSelTab->aCol = 0; 1934 sqlite3DeleteTable(db, pSelTab); 1935 } 1936 } 1937 1938 /* Compute the complete text of the CREATE statement */ 1939 if( pSelect ){ 1940 zStmt = createTableStmt(db, p); 1941 }else{ 1942 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1943 n = (int)(pEnd2->z - pParse->sNameToken.z); 1944 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1945 zStmt = sqlite3MPrintf(db, 1946 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1947 ); 1948 } 1949 1950 /* A slot for the record has already been allocated in the 1951 ** SQLITE_MASTER table. We just need to update that slot with all 1952 ** the information we've collected. 1953 */ 1954 sqlite3NestedParse(pParse, 1955 "UPDATE %Q.%s " 1956 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1957 "WHERE rowid=#%d", 1958 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1959 zType, 1960 p->zName, 1961 p->zName, 1962 pParse->regRoot, 1963 zStmt, 1964 pParse->regRowid 1965 ); 1966 sqlite3DbFree(db, zStmt); 1967 sqlite3ChangeCookie(pParse, iDb); 1968 1969 #ifndef SQLITE_OMIT_AUTOINCREMENT 1970 /* Check to see if we need to create an sqlite_sequence table for 1971 ** keeping track of autoincrement keys. 1972 */ 1973 if( p->tabFlags & TF_Autoincrement ){ 1974 Db *pDb = &db->aDb[iDb]; 1975 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1976 if( pDb->pSchema->pSeqTab==0 ){ 1977 sqlite3NestedParse(pParse, 1978 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1979 pDb->zName 1980 ); 1981 } 1982 } 1983 #endif 1984 1985 /* Reparse everything to update our internal data structures */ 1986 sqlite3VdbeAddParseSchemaOp(v, iDb, 1987 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1988 } 1989 1990 1991 /* Add the table to the in-memory representation of the database. 1992 */ 1993 if( db->init.busy ){ 1994 Table *pOld; 1995 Schema *pSchema = p->pSchema; 1996 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1997 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 1998 if( pOld ){ 1999 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2000 db->mallocFailed = 1; 2001 return; 2002 } 2003 pParse->pNewTable = 0; 2004 db->flags |= SQLITE_InternChanges; 2005 2006 #ifndef SQLITE_OMIT_ALTERTABLE 2007 if( !p->pSelect ){ 2008 const char *zName = (const char *)pParse->sNameToken.z; 2009 int nName; 2010 assert( !pSelect && pCons && pEnd ); 2011 if( pCons->z==0 ){ 2012 pCons = pEnd; 2013 } 2014 nName = (int)((const char *)pCons->z - zName); 2015 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2016 } 2017 #endif 2018 } 2019 } 2020 2021 #ifndef SQLITE_OMIT_VIEW 2022 /* 2023 ** The parser calls this routine in order to create a new VIEW 2024 */ 2025 void sqlite3CreateView( 2026 Parse *pParse, /* The parsing context */ 2027 Token *pBegin, /* The CREATE token that begins the statement */ 2028 Token *pName1, /* The token that holds the name of the view */ 2029 Token *pName2, /* The token that holds the name of the view */ 2030 Select *pSelect, /* A SELECT statement that will become the new view */ 2031 int isTemp, /* TRUE for a TEMPORARY view */ 2032 int noErr /* Suppress error messages if VIEW already exists */ 2033 ){ 2034 Table *p; 2035 int n; 2036 const char *z; 2037 Token sEnd; 2038 DbFixer sFix; 2039 Token *pName = 0; 2040 int iDb; 2041 sqlite3 *db = pParse->db; 2042 2043 if( pParse->nVar>0 ){ 2044 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2045 sqlite3SelectDelete(db, pSelect); 2046 return; 2047 } 2048 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2049 p = pParse->pNewTable; 2050 if( p==0 || pParse->nErr ){ 2051 sqlite3SelectDelete(db, pSelect); 2052 return; 2053 } 2054 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2055 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2056 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2057 if( sqlite3FixSelect(&sFix, pSelect) ){ 2058 sqlite3SelectDelete(db, pSelect); 2059 return; 2060 } 2061 2062 /* Make a copy of the entire SELECT statement that defines the view. 2063 ** This will force all the Expr.token.z values to be dynamically 2064 ** allocated rather than point to the input string - which means that 2065 ** they will persist after the current sqlite3_exec() call returns. 2066 */ 2067 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2068 sqlite3SelectDelete(db, pSelect); 2069 if( db->mallocFailed ){ 2070 return; 2071 } 2072 if( !db->init.busy ){ 2073 sqlite3ViewGetColumnNames(pParse, p); 2074 } 2075 2076 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2077 ** the end. 2078 */ 2079 sEnd = pParse->sLastToken; 2080 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2081 sEnd.z += sEnd.n; 2082 } 2083 sEnd.n = 0; 2084 n = (int)(sEnd.z - pBegin->z); 2085 z = pBegin->z; 2086 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2087 sEnd.z = &z[n-1]; 2088 sEnd.n = 1; 2089 2090 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2091 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2092 return; 2093 } 2094 #endif /* SQLITE_OMIT_VIEW */ 2095 2096 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2097 /* 2098 ** The Table structure pTable is really a VIEW. Fill in the names of 2099 ** the columns of the view in the pTable structure. Return the number 2100 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2101 */ 2102 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2103 Table *pSelTab; /* A fake table from which we get the result set */ 2104 Select *pSel; /* Copy of the SELECT that implements the view */ 2105 int nErr = 0; /* Number of errors encountered */ 2106 int n; /* Temporarily holds the number of cursors assigned */ 2107 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2108 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2109 2110 assert( pTable ); 2111 2112 #ifndef SQLITE_OMIT_VIRTUALTABLE 2113 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2114 return SQLITE_ERROR; 2115 } 2116 if( IsVirtual(pTable) ) return 0; 2117 #endif 2118 2119 #ifndef SQLITE_OMIT_VIEW 2120 /* A positive nCol means the columns names for this view are 2121 ** already known. 2122 */ 2123 if( pTable->nCol>0 ) return 0; 2124 2125 /* A negative nCol is a special marker meaning that we are currently 2126 ** trying to compute the column names. If we enter this routine with 2127 ** a negative nCol, it means two or more views form a loop, like this: 2128 ** 2129 ** CREATE VIEW one AS SELECT * FROM two; 2130 ** CREATE VIEW two AS SELECT * FROM one; 2131 ** 2132 ** Actually, the error above is now caught prior to reaching this point. 2133 ** But the following test is still important as it does come up 2134 ** in the following: 2135 ** 2136 ** CREATE TABLE main.ex1(a); 2137 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2138 ** SELECT * FROM temp.ex1; 2139 */ 2140 if( pTable->nCol<0 ){ 2141 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2142 return 1; 2143 } 2144 assert( pTable->nCol>=0 ); 2145 2146 /* If we get this far, it means we need to compute the table names. 2147 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2148 ** "*" elements in the results set of the view and will assign cursors 2149 ** to the elements of the FROM clause. But we do not want these changes 2150 ** to be permanent. So the computation is done on a copy of the SELECT 2151 ** statement that defines the view. 2152 */ 2153 assert( pTable->pSelect ); 2154 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2155 if( pSel ){ 2156 u8 enableLookaside = db->lookaside.bEnabled; 2157 n = pParse->nTab; 2158 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2159 pTable->nCol = -1; 2160 db->lookaside.bEnabled = 0; 2161 #ifndef SQLITE_OMIT_AUTHORIZATION 2162 xAuth = db->xAuth; 2163 db->xAuth = 0; 2164 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2165 db->xAuth = xAuth; 2166 #else 2167 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2168 #endif 2169 db->lookaside.bEnabled = enableLookaside; 2170 pParse->nTab = n; 2171 if( pSelTab ){ 2172 assert( pTable->aCol==0 ); 2173 pTable->nCol = pSelTab->nCol; 2174 pTable->aCol = pSelTab->aCol; 2175 pSelTab->nCol = 0; 2176 pSelTab->aCol = 0; 2177 sqlite3DeleteTable(db, pSelTab); 2178 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2179 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2180 }else{ 2181 pTable->nCol = 0; 2182 nErr++; 2183 } 2184 sqlite3SelectDelete(db, pSel); 2185 } else { 2186 nErr++; 2187 } 2188 #endif /* SQLITE_OMIT_VIEW */ 2189 return nErr; 2190 } 2191 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2192 2193 #ifndef SQLITE_OMIT_VIEW 2194 /* 2195 ** Clear the column names from every VIEW in database idx. 2196 */ 2197 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2198 HashElem *i; 2199 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2200 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2201 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2202 Table *pTab = sqliteHashData(i); 2203 if( pTab->pSelect ){ 2204 sqliteDeleteColumnNames(db, pTab); 2205 pTab->aCol = 0; 2206 pTab->nCol = 0; 2207 } 2208 } 2209 DbClearProperty(db, idx, DB_UnresetViews); 2210 } 2211 #else 2212 # define sqliteViewResetAll(A,B) 2213 #endif /* SQLITE_OMIT_VIEW */ 2214 2215 /* 2216 ** This function is called by the VDBE to adjust the internal schema 2217 ** used by SQLite when the btree layer moves a table root page. The 2218 ** root-page of a table or index in database iDb has changed from iFrom 2219 ** to iTo. 2220 ** 2221 ** Ticket #1728: The symbol table might still contain information 2222 ** on tables and/or indices that are the process of being deleted. 2223 ** If you are unlucky, one of those deleted indices or tables might 2224 ** have the same rootpage number as the real table or index that is 2225 ** being moved. So we cannot stop searching after the first match 2226 ** because the first match might be for one of the deleted indices 2227 ** or tables and not the table/index that is actually being moved. 2228 ** We must continue looping until all tables and indices with 2229 ** rootpage==iFrom have been converted to have a rootpage of iTo 2230 ** in order to be certain that we got the right one. 2231 */ 2232 #ifndef SQLITE_OMIT_AUTOVACUUM 2233 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2234 HashElem *pElem; 2235 Hash *pHash; 2236 Db *pDb; 2237 2238 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2239 pDb = &db->aDb[iDb]; 2240 pHash = &pDb->pSchema->tblHash; 2241 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2242 Table *pTab = sqliteHashData(pElem); 2243 if( pTab->tnum==iFrom ){ 2244 pTab->tnum = iTo; 2245 } 2246 } 2247 pHash = &pDb->pSchema->idxHash; 2248 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2249 Index *pIdx = sqliteHashData(pElem); 2250 if( pIdx->tnum==iFrom ){ 2251 pIdx->tnum = iTo; 2252 } 2253 } 2254 } 2255 #endif 2256 2257 /* 2258 ** Write code to erase the table with root-page iTable from database iDb. 2259 ** Also write code to modify the sqlite_master table and internal schema 2260 ** if a root-page of another table is moved by the btree-layer whilst 2261 ** erasing iTable (this can happen with an auto-vacuum database). 2262 */ 2263 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2264 Vdbe *v = sqlite3GetVdbe(pParse); 2265 int r1 = sqlite3GetTempReg(pParse); 2266 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2267 sqlite3MayAbort(pParse); 2268 #ifndef SQLITE_OMIT_AUTOVACUUM 2269 /* OP_Destroy stores an in integer r1. If this integer 2270 ** is non-zero, then it is the root page number of a table moved to 2271 ** location iTable. The following code modifies the sqlite_master table to 2272 ** reflect this. 2273 ** 2274 ** The "#NNN" in the SQL is a special constant that means whatever value 2275 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2276 ** token for additional information. 2277 */ 2278 sqlite3NestedParse(pParse, 2279 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2280 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2281 #endif 2282 sqlite3ReleaseTempReg(pParse, r1); 2283 } 2284 2285 /* 2286 ** Write VDBE code to erase table pTab and all associated indices on disk. 2287 ** Code to update the sqlite_master tables and internal schema definitions 2288 ** in case a root-page belonging to another table is moved by the btree layer 2289 ** is also added (this can happen with an auto-vacuum database). 2290 */ 2291 static void destroyTable(Parse *pParse, Table *pTab){ 2292 #ifdef SQLITE_OMIT_AUTOVACUUM 2293 Index *pIdx; 2294 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2295 destroyRootPage(pParse, pTab->tnum, iDb); 2296 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2297 destroyRootPage(pParse, pIdx->tnum, iDb); 2298 } 2299 #else 2300 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2301 ** is not defined), then it is important to call OP_Destroy on the 2302 ** table and index root-pages in order, starting with the numerically 2303 ** largest root-page number. This guarantees that none of the root-pages 2304 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2305 ** following were coded: 2306 ** 2307 ** OP_Destroy 4 0 2308 ** ... 2309 ** OP_Destroy 5 0 2310 ** 2311 ** and root page 5 happened to be the largest root-page number in the 2312 ** database, then root page 5 would be moved to page 4 by the 2313 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2314 ** a free-list page. 2315 */ 2316 int iTab = pTab->tnum; 2317 int iDestroyed = 0; 2318 2319 while( 1 ){ 2320 Index *pIdx; 2321 int iLargest = 0; 2322 2323 if( iDestroyed==0 || iTab<iDestroyed ){ 2324 iLargest = iTab; 2325 } 2326 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2327 int iIdx = pIdx->tnum; 2328 assert( pIdx->pSchema==pTab->pSchema ); 2329 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2330 iLargest = iIdx; 2331 } 2332 } 2333 if( iLargest==0 ){ 2334 return; 2335 }else{ 2336 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2337 assert( iDb>=0 && iDb<pParse->db->nDb ); 2338 destroyRootPage(pParse, iLargest, iDb); 2339 iDestroyed = iLargest; 2340 } 2341 } 2342 #endif 2343 } 2344 2345 /* 2346 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2347 ** after a DROP INDEX or DROP TABLE command. 2348 */ 2349 static void sqlite3ClearStatTables( 2350 Parse *pParse, /* The parsing context */ 2351 int iDb, /* The database number */ 2352 const char *zType, /* "idx" or "tbl" */ 2353 const char *zName /* Name of index or table */ 2354 ){ 2355 int i; 2356 const char *zDbName = pParse->db->aDb[iDb].zName; 2357 for(i=1; i<=4; i++){ 2358 char zTab[24]; 2359 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2360 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2361 sqlite3NestedParse(pParse, 2362 "DELETE FROM %Q.%s WHERE %s=%Q", 2363 zDbName, zTab, zType, zName 2364 ); 2365 } 2366 } 2367 } 2368 2369 /* 2370 ** Generate code to drop a table. 2371 */ 2372 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2373 Vdbe *v; 2374 sqlite3 *db = pParse->db; 2375 Trigger *pTrigger; 2376 Db *pDb = &db->aDb[iDb]; 2377 2378 v = sqlite3GetVdbe(pParse); 2379 assert( v!=0 ); 2380 sqlite3BeginWriteOperation(pParse, 1, iDb); 2381 2382 #ifndef SQLITE_OMIT_VIRTUALTABLE 2383 if( IsVirtual(pTab) ){ 2384 sqlite3VdbeAddOp0(v, OP_VBegin); 2385 } 2386 #endif 2387 2388 /* Drop all triggers associated with the table being dropped. Code 2389 ** is generated to remove entries from sqlite_master and/or 2390 ** sqlite_temp_master if required. 2391 */ 2392 pTrigger = sqlite3TriggerList(pParse, pTab); 2393 while( pTrigger ){ 2394 assert( pTrigger->pSchema==pTab->pSchema || 2395 pTrigger->pSchema==db->aDb[1].pSchema ); 2396 sqlite3DropTriggerPtr(pParse, pTrigger); 2397 pTrigger = pTrigger->pNext; 2398 } 2399 2400 #ifndef SQLITE_OMIT_AUTOINCREMENT 2401 /* Remove any entries of the sqlite_sequence table associated with 2402 ** the table being dropped. This is done before the table is dropped 2403 ** at the btree level, in case the sqlite_sequence table needs to 2404 ** move as a result of the drop (can happen in auto-vacuum mode). 2405 */ 2406 if( pTab->tabFlags & TF_Autoincrement ){ 2407 sqlite3NestedParse(pParse, 2408 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2409 pDb->zName, pTab->zName 2410 ); 2411 } 2412 #endif 2413 2414 /* Drop all SQLITE_MASTER table and index entries that refer to the 2415 ** table. The program name loops through the master table and deletes 2416 ** every row that refers to a table of the same name as the one being 2417 ** dropped. Triggers are handled separately because a trigger can be 2418 ** created in the temp database that refers to a table in another 2419 ** database. 2420 */ 2421 sqlite3NestedParse(pParse, 2422 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2423 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2424 if( !isView && !IsVirtual(pTab) ){ 2425 destroyTable(pParse, pTab); 2426 } 2427 2428 /* Remove the table entry from SQLite's internal schema and modify 2429 ** the schema cookie. 2430 */ 2431 if( IsVirtual(pTab) ){ 2432 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2433 } 2434 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2435 sqlite3ChangeCookie(pParse, iDb); 2436 sqliteViewResetAll(db, iDb); 2437 } 2438 2439 /* 2440 ** This routine is called to do the work of a DROP TABLE statement. 2441 ** pName is the name of the table to be dropped. 2442 */ 2443 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2444 Table *pTab; 2445 Vdbe *v; 2446 sqlite3 *db = pParse->db; 2447 int iDb; 2448 2449 if( db->mallocFailed ){ 2450 goto exit_drop_table; 2451 } 2452 assert( pParse->nErr==0 ); 2453 assert( pName->nSrc==1 ); 2454 if( noErr ) db->suppressErr++; 2455 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2456 if( noErr ) db->suppressErr--; 2457 2458 if( pTab==0 ){ 2459 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2460 goto exit_drop_table; 2461 } 2462 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2463 assert( iDb>=0 && iDb<db->nDb ); 2464 2465 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2466 ** it is initialized. 2467 */ 2468 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2469 goto exit_drop_table; 2470 } 2471 #ifndef SQLITE_OMIT_AUTHORIZATION 2472 { 2473 int code; 2474 const char *zTab = SCHEMA_TABLE(iDb); 2475 const char *zDb = db->aDb[iDb].zName; 2476 const char *zArg2 = 0; 2477 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2478 goto exit_drop_table; 2479 } 2480 if( isView ){ 2481 if( !OMIT_TEMPDB && iDb==1 ){ 2482 code = SQLITE_DROP_TEMP_VIEW; 2483 }else{ 2484 code = SQLITE_DROP_VIEW; 2485 } 2486 #ifndef SQLITE_OMIT_VIRTUALTABLE 2487 }else if( IsVirtual(pTab) ){ 2488 code = SQLITE_DROP_VTABLE; 2489 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2490 #endif 2491 }else{ 2492 if( !OMIT_TEMPDB && iDb==1 ){ 2493 code = SQLITE_DROP_TEMP_TABLE; 2494 }else{ 2495 code = SQLITE_DROP_TABLE; 2496 } 2497 } 2498 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2499 goto exit_drop_table; 2500 } 2501 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2502 goto exit_drop_table; 2503 } 2504 } 2505 #endif 2506 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2507 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2508 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2509 goto exit_drop_table; 2510 } 2511 2512 #ifndef SQLITE_OMIT_VIEW 2513 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2514 ** on a table. 2515 */ 2516 if( isView && pTab->pSelect==0 ){ 2517 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2518 goto exit_drop_table; 2519 } 2520 if( !isView && pTab->pSelect ){ 2521 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2522 goto exit_drop_table; 2523 } 2524 #endif 2525 2526 /* Generate code to remove the table from the master table 2527 ** on disk. 2528 */ 2529 v = sqlite3GetVdbe(pParse); 2530 if( v ){ 2531 sqlite3BeginWriteOperation(pParse, 1, iDb); 2532 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2533 sqlite3FkDropTable(pParse, pName, pTab); 2534 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2535 } 2536 2537 exit_drop_table: 2538 sqlite3SrcListDelete(db, pName); 2539 } 2540 2541 /* 2542 ** This routine is called to create a new foreign key on the table 2543 ** currently under construction. pFromCol determines which columns 2544 ** in the current table point to the foreign key. If pFromCol==0 then 2545 ** connect the key to the last column inserted. pTo is the name of 2546 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2547 ** of tables in the parent pTo table. flags contains all 2548 ** information about the conflict resolution algorithms specified 2549 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2550 ** 2551 ** An FKey structure is created and added to the table currently 2552 ** under construction in the pParse->pNewTable field. 2553 ** 2554 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2555 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2556 */ 2557 void sqlite3CreateForeignKey( 2558 Parse *pParse, /* Parsing context */ 2559 ExprList *pFromCol, /* Columns in this table that point to other table */ 2560 Token *pTo, /* Name of the other table */ 2561 ExprList *pToCol, /* Columns in the other table */ 2562 int flags /* Conflict resolution algorithms. */ 2563 ){ 2564 sqlite3 *db = pParse->db; 2565 #ifndef SQLITE_OMIT_FOREIGN_KEY 2566 FKey *pFKey = 0; 2567 FKey *pNextTo; 2568 Table *p = pParse->pNewTable; 2569 int nByte; 2570 int i; 2571 int nCol; 2572 char *z; 2573 2574 assert( pTo!=0 ); 2575 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2576 if( pFromCol==0 ){ 2577 int iCol = p->nCol-1; 2578 if( NEVER(iCol<0) ) goto fk_end; 2579 if( pToCol && pToCol->nExpr!=1 ){ 2580 sqlite3ErrorMsg(pParse, "foreign key on %s" 2581 " should reference only one column of table %T", 2582 p->aCol[iCol].zName, pTo); 2583 goto fk_end; 2584 } 2585 nCol = 1; 2586 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2587 sqlite3ErrorMsg(pParse, 2588 "number of columns in foreign key does not match the number of " 2589 "columns in the referenced table"); 2590 goto fk_end; 2591 }else{ 2592 nCol = pFromCol->nExpr; 2593 } 2594 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2595 if( pToCol ){ 2596 for(i=0; i<pToCol->nExpr; i++){ 2597 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2598 } 2599 } 2600 pFKey = sqlite3DbMallocZero(db, nByte ); 2601 if( pFKey==0 ){ 2602 goto fk_end; 2603 } 2604 pFKey->pFrom = p; 2605 pFKey->pNextFrom = p->pFKey; 2606 z = (char*)&pFKey->aCol[nCol]; 2607 pFKey->zTo = z; 2608 memcpy(z, pTo->z, pTo->n); 2609 z[pTo->n] = 0; 2610 sqlite3Dequote(z); 2611 z += pTo->n+1; 2612 pFKey->nCol = nCol; 2613 if( pFromCol==0 ){ 2614 pFKey->aCol[0].iFrom = p->nCol-1; 2615 }else{ 2616 for(i=0; i<nCol; i++){ 2617 int j; 2618 for(j=0; j<p->nCol; j++){ 2619 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2620 pFKey->aCol[i].iFrom = j; 2621 break; 2622 } 2623 } 2624 if( j>=p->nCol ){ 2625 sqlite3ErrorMsg(pParse, 2626 "unknown column \"%s\" in foreign key definition", 2627 pFromCol->a[i].zName); 2628 goto fk_end; 2629 } 2630 } 2631 } 2632 if( pToCol ){ 2633 for(i=0; i<nCol; i++){ 2634 int n = sqlite3Strlen30(pToCol->a[i].zName); 2635 pFKey->aCol[i].zCol = z; 2636 memcpy(z, pToCol->a[i].zName, n); 2637 z[n] = 0; 2638 z += n+1; 2639 } 2640 } 2641 pFKey->isDeferred = 0; 2642 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2643 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2644 2645 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2646 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2647 pFKey->zTo, (void *)pFKey 2648 ); 2649 if( pNextTo==pFKey ){ 2650 db->mallocFailed = 1; 2651 goto fk_end; 2652 } 2653 if( pNextTo ){ 2654 assert( pNextTo->pPrevTo==0 ); 2655 pFKey->pNextTo = pNextTo; 2656 pNextTo->pPrevTo = pFKey; 2657 } 2658 2659 /* Link the foreign key to the table as the last step. 2660 */ 2661 p->pFKey = pFKey; 2662 pFKey = 0; 2663 2664 fk_end: 2665 sqlite3DbFree(db, pFKey); 2666 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2667 sqlite3ExprListDelete(db, pFromCol); 2668 sqlite3ExprListDelete(db, pToCol); 2669 } 2670 2671 /* 2672 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2673 ** clause is seen as part of a foreign key definition. The isDeferred 2674 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2675 ** The behavior of the most recently created foreign key is adjusted 2676 ** accordingly. 2677 */ 2678 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2679 #ifndef SQLITE_OMIT_FOREIGN_KEY 2680 Table *pTab; 2681 FKey *pFKey; 2682 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2683 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2684 pFKey->isDeferred = (u8)isDeferred; 2685 #endif 2686 } 2687 2688 /* 2689 ** Generate code that will erase and refill index *pIdx. This is 2690 ** used to initialize a newly created index or to recompute the 2691 ** content of an index in response to a REINDEX command. 2692 ** 2693 ** if memRootPage is not negative, it means that the index is newly 2694 ** created. The register specified by memRootPage contains the 2695 ** root page number of the index. If memRootPage is negative, then 2696 ** the index already exists and must be cleared before being refilled and 2697 ** the root page number of the index is taken from pIndex->tnum. 2698 */ 2699 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2700 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2701 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2702 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2703 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2704 int addr1; /* Address of top of loop */ 2705 int addr2; /* Address to jump to for next iteration */ 2706 int tnum; /* Root page of index */ 2707 int iPartIdxLabel; /* Jump to this label to skip a row */ 2708 Vdbe *v; /* Generate code into this virtual machine */ 2709 KeyInfo *pKey; /* KeyInfo for index */ 2710 int regRecord; /* Register holding assembled index record */ 2711 sqlite3 *db = pParse->db; /* The database connection */ 2712 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2713 2714 #ifndef SQLITE_OMIT_AUTHORIZATION 2715 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2716 db->aDb[iDb].zName ) ){ 2717 return; 2718 } 2719 #endif 2720 2721 /* Require a write-lock on the table to perform this operation */ 2722 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2723 2724 v = sqlite3GetVdbe(pParse); 2725 if( v==0 ) return; 2726 if( memRootPage>=0 ){ 2727 tnum = memRootPage; 2728 }else{ 2729 tnum = pIndex->tnum; 2730 } 2731 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2732 2733 /* Open the sorter cursor if we are to use one. */ 2734 iSorter = pParse->nTab++; 2735 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2736 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2737 2738 /* Open the table. Loop through all rows of the table, inserting index 2739 ** records into the sorter. */ 2740 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2741 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2742 regRecord = sqlite3GetTempReg(pParse); 2743 2744 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2745 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2746 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2747 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2748 sqlite3VdbeJumpHere(v, addr1); 2749 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2750 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2751 (char *)pKey, P4_KEYINFO); 2752 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2753 2754 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2755 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2756 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2757 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2758 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2759 addr2 = sqlite3VdbeCurrentAddr(v); 2760 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2761 pIndex->nKeyCol); VdbeCoverage(v); 2762 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2763 }else{ 2764 addr2 = sqlite3VdbeCurrentAddr(v); 2765 } 2766 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2767 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2768 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2769 sqlite3ReleaseTempReg(pParse, regRecord); 2770 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2771 sqlite3VdbeJumpHere(v, addr1); 2772 2773 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2774 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2775 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2776 } 2777 2778 /* 2779 ** Allocate heap space to hold an Index object with nCol columns. 2780 ** 2781 ** Increase the allocation size to provide an extra nExtra bytes 2782 ** of 8-byte aligned space after the Index object and return a 2783 ** pointer to this extra space in *ppExtra. 2784 */ 2785 Index *sqlite3AllocateIndexObject( 2786 sqlite3 *db, /* Database connection */ 2787 i16 nCol, /* Total number of columns in the index */ 2788 int nExtra, /* Number of bytes of extra space to alloc */ 2789 char **ppExtra /* Pointer to the "extra" space */ 2790 ){ 2791 Index *p; /* Allocated index object */ 2792 int nByte; /* Bytes of space for Index object + arrays */ 2793 2794 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2795 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2796 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2797 sizeof(i16)*nCol + /* Index.aiColumn */ 2798 sizeof(u8)*nCol); /* Index.aSortOrder */ 2799 p = sqlite3DbMallocZero(db, nByte + nExtra); 2800 if( p ){ 2801 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2802 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2803 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2804 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2805 p->aSortOrder = (u8*)pExtra; 2806 p->nColumn = nCol; 2807 p->nKeyCol = nCol - 1; 2808 *ppExtra = ((char*)p) + nByte; 2809 } 2810 return p; 2811 } 2812 2813 /* 2814 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2815 ** and pTblList is the name of the table that is to be indexed. Both will 2816 ** be NULL for a primary key or an index that is created to satisfy a 2817 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2818 ** as the table to be indexed. pParse->pNewTable is a table that is 2819 ** currently being constructed by a CREATE TABLE statement. 2820 ** 2821 ** pList is a list of columns to be indexed. pList will be NULL if this 2822 ** is a primary key or unique-constraint on the most recent column added 2823 ** to the table currently under construction. 2824 ** 2825 ** If the index is created successfully, return a pointer to the new Index 2826 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2827 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2828 */ 2829 Index *sqlite3CreateIndex( 2830 Parse *pParse, /* All information about this parse */ 2831 Token *pName1, /* First part of index name. May be NULL */ 2832 Token *pName2, /* Second part of index name. May be NULL */ 2833 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2834 ExprList *pList, /* A list of columns to be indexed */ 2835 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2836 Token *pStart, /* The CREATE token that begins this statement */ 2837 Expr *pPIWhere, /* WHERE clause for partial indices */ 2838 int sortOrder, /* Sort order of primary key when pList==NULL */ 2839 int ifNotExist /* Omit error if index already exists */ 2840 ){ 2841 Index *pRet = 0; /* Pointer to return */ 2842 Table *pTab = 0; /* Table to be indexed */ 2843 Index *pIndex = 0; /* The index to be created */ 2844 char *zName = 0; /* Name of the index */ 2845 int nName; /* Number of characters in zName */ 2846 int i, j; 2847 DbFixer sFix; /* For assigning database names to pTable */ 2848 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2849 sqlite3 *db = pParse->db; 2850 Db *pDb; /* The specific table containing the indexed database */ 2851 int iDb; /* Index of the database that is being written */ 2852 Token *pName = 0; /* Unqualified name of the index to create */ 2853 struct ExprList_item *pListItem; /* For looping over pList */ 2854 const Column *pTabCol; /* A column in the table */ 2855 int nExtra = 0; /* Space allocated for zExtra[] */ 2856 int nExtraCol; /* Number of extra columns needed */ 2857 char *zExtra = 0; /* Extra space after the Index object */ 2858 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2859 2860 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2861 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2862 goto exit_create_index; 2863 } 2864 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2865 goto exit_create_index; 2866 } 2867 2868 /* 2869 ** Find the table that is to be indexed. Return early if not found. 2870 */ 2871 if( pTblName!=0 ){ 2872 2873 /* Use the two-part index name to determine the database 2874 ** to search for the table. 'Fix' the table name to this db 2875 ** before looking up the table. 2876 */ 2877 assert( pName1 && pName2 ); 2878 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2879 if( iDb<0 ) goto exit_create_index; 2880 assert( pName && pName->z ); 2881 2882 #ifndef SQLITE_OMIT_TEMPDB 2883 /* If the index name was unqualified, check if the table 2884 ** is a temp table. If so, set the database to 1. Do not do this 2885 ** if initialising a database schema. 2886 */ 2887 if( !db->init.busy ){ 2888 pTab = sqlite3SrcListLookup(pParse, pTblName); 2889 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2890 iDb = 1; 2891 } 2892 } 2893 #endif 2894 2895 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2896 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2897 /* Because the parser constructs pTblName from a single identifier, 2898 ** sqlite3FixSrcList can never fail. */ 2899 assert(0); 2900 } 2901 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2902 assert( db->mallocFailed==0 || pTab==0 ); 2903 if( pTab==0 ) goto exit_create_index; 2904 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2905 sqlite3ErrorMsg(pParse, 2906 "cannot create a TEMP index on non-TEMP table \"%s\"", 2907 pTab->zName); 2908 goto exit_create_index; 2909 } 2910 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2911 }else{ 2912 assert( pName==0 ); 2913 assert( pStart==0 ); 2914 pTab = pParse->pNewTable; 2915 if( !pTab ) goto exit_create_index; 2916 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2917 } 2918 pDb = &db->aDb[iDb]; 2919 2920 assert( pTab!=0 ); 2921 assert( pParse->nErr==0 ); 2922 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2923 && db->init.busy==0 2924 #if SQLITE_USER_AUTHENTICATION 2925 && sqlite3UserAuthTable(pTab->zName)==0 2926 #endif 2927 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2928 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2929 goto exit_create_index; 2930 } 2931 #ifndef SQLITE_OMIT_VIEW 2932 if( pTab->pSelect ){ 2933 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2934 goto exit_create_index; 2935 } 2936 #endif 2937 #ifndef SQLITE_OMIT_VIRTUALTABLE 2938 if( IsVirtual(pTab) ){ 2939 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2940 goto exit_create_index; 2941 } 2942 #endif 2943 2944 /* 2945 ** Find the name of the index. Make sure there is not already another 2946 ** index or table with the same name. 2947 ** 2948 ** Exception: If we are reading the names of permanent indices from the 2949 ** sqlite_master table (because some other process changed the schema) and 2950 ** one of the index names collides with the name of a temporary table or 2951 ** index, then we will continue to process this index. 2952 ** 2953 ** If pName==0 it means that we are 2954 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2955 ** own name. 2956 */ 2957 if( pName ){ 2958 zName = sqlite3NameFromToken(db, pName); 2959 if( zName==0 ) goto exit_create_index; 2960 assert( pName->z!=0 ); 2961 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2962 goto exit_create_index; 2963 } 2964 if( !db->init.busy ){ 2965 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2966 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2967 goto exit_create_index; 2968 } 2969 } 2970 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2971 if( !ifNotExist ){ 2972 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2973 }else{ 2974 assert( !db->init.busy ); 2975 sqlite3CodeVerifySchema(pParse, iDb); 2976 } 2977 goto exit_create_index; 2978 } 2979 }else{ 2980 int n; 2981 Index *pLoop; 2982 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2983 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2984 if( zName==0 ){ 2985 goto exit_create_index; 2986 } 2987 } 2988 2989 /* Check for authorization to create an index. 2990 */ 2991 #ifndef SQLITE_OMIT_AUTHORIZATION 2992 { 2993 const char *zDb = pDb->zName; 2994 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2995 goto exit_create_index; 2996 } 2997 i = SQLITE_CREATE_INDEX; 2998 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2999 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3000 goto exit_create_index; 3001 } 3002 } 3003 #endif 3004 3005 /* If pList==0, it means this routine was called to make a primary 3006 ** key out of the last column added to the table under construction. 3007 ** So create a fake list to simulate this. 3008 */ 3009 if( pList==0 ){ 3010 pList = sqlite3ExprListAppend(pParse, 0, 0); 3011 if( pList==0 ) goto exit_create_index; 3012 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 3013 pTab->aCol[pTab->nCol-1].zName); 3014 pList->a[0].sortOrder = (u8)sortOrder; 3015 } 3016 3017 /* Figure out how many bytes of space are required to store explicitly 3018 ** specified collation sequence names. 3019 */ 3020 for(i=0; i<pList->nExpr; i++){ 3021 Expr *pExpr = pList->a[i].pExpr; 3022 if( pExpr ){ 3023 assert( pExpr->op==TK_COLLATE ); 3024 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3025 } 3026 } 3027 3028 /* 3029 ** Allocate the index structure. 3030 */ 3031 nName = sqlite3Strlen30(zName); 3032 nExtraCol = pPk ? pPk->nKeyCol : 1; 3033 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3034 nName + nExtra + 1, &zExtra); 3035 if( db->mallocFailed ){ 3036 goto exit_create_index; 3037 } 3038 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3039 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3040 pIndex->zName = zExtra; 3041 zExtra += nName + 1; 3042 memcpy(pIndex->zName, zName, nName+1); 3043 pIndex->pTable = pTab; 3044 pIndex->onError = (u8)onError; 3045 pIndex->uniqNotNull = onError!=OE_None; 3046 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3047 pIndex->pSchema = db->aDb[iDb].pSchema; 3048 pIndex->nKeyCol = pList->nExpr; 3049 if( pPIWhere ){ 3050 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3051 pIndex->pPartIdxWhere = pPIWhere; 3052 pPIWhere = 0; 3053 } 3054 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3055 3056 /* Check to see if we should honor DESC requests on index columns 3057 */ 3058 if( pDb->pSchema->file_format>=4 ){ 3059 sortOrderMask = -1; /* Honor DESC */ 3060 }else{ 3061 sortOrderMask = 0; /* Ignore DESC */ 3062 } 3063 3064 /* Scan the names of the columns of the table to be indexed and 3065 ** load the column indices into the Index structure. Report an error 3066 ** if any column is not found. 3067 ** 3068 ** TODO: Add a test to make sure that the same column is not named 3069 ** more than once within the same index. Only the first instance of 3070 ** the column will ever be used by the optimizer. Note that using the 3071 ** same column more than once cannot be an error because that would 3072 ** break backwards compatibility - it needs to be a warning. 3073 */ 3074 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3075 const char *zColName = pListItem->zName; 3076 int requestedSortOrder; 3077 char *zColl; /* Collation sequence name */ 3078 3079 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3080 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3081 } 3082 if( j>=pTab->nCol ){ 3083 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3084 pTab->zName, zColName); 3085 pParse->checkSchema = 1; 3086 goto exit_create_index; 3087 } 3088 assert( j<=0x7fff ); 3089 pIndex->aiColumn[i] = (i16)j; 3090 if( pListItem->pExpr ){ 3091 int nColl; 3092 assert( pListItem->pExpr->op==TK_COLLATE ); 3093 zColl = pListItem->pExpr->u.zToken; 3094 nColl = sqlite3Strlen30(zColl) + 1; 3095 assert( nExtra>=nColl ); 3096 memcpy(zExtra, zColl, nColl); 3097 zColl = zExtra; 3098 zExtra += nColl; 3099 nExtra -= nColl; 3100 }else{ 3101 zColl = pTab->aCol[j].zColl; 3102 if( !zColl ) zColl = "BINARY"; 3103 } 3104 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3105 goto exit_create_index; 3106 } 3107 pIndex->azColl[i] = zColl; 3108 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3109 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3110 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3111 } 3112 if( pPk ){ 3113 for(j=0; j<pPk->nKeyCol; j++){ 3114 int x = pPk->aiColumn[j]; 3115 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3116 pIndex->nColumn--; 3117 }else{ 3118 pIndex->aiColumn[i] = x; 3119 pIndex->azColl[i] = pPk->azColl[j]; 3120 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3121 i++; 3122 } 3123 } 3124 assert( i==pIndex->nColumn ); 3125 }else{ 3126 pIndex->aiColumn[i] = -1; 3127 pIndex->azColl[i] = "BINARY"; 3128 } 3129 sqlite3DefaultRowEst(pIndex); 3130 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3131 3132 if( pTab==pParse->pNewTable ){ 3133 /* This routine has been called to create an automatic index as a 3134 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3135 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3136 ** i.e. one of: 3137 ** 3138 ** CREATE TABLE t(x PRIMARY KEY, y); 3139 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3140 ** 3141 ** Either way, check to see if the table already has such an index. If 3142 ** so, don't bother creating this one. This only applies to 3143 ** automatically created indices. Users can do as they wish with 3144 ** explicit indices. 3145 ** 3146 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3147 ** (and thus suppressing the second one) even if they have different 3148 ** sort orders. 3149 ** 3150 ** If there are different collating sequences or if the columns of 3151 ** the constraint occur in different orders, then the constraints are 3152 ** considered distinct and both result in separate indices. 3153 */ 3154 Index *pIdx; 3155 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3156 int k; 3157 assert( IsUniqueIndex(pIdx) ); 3158 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3159 assert( IsUniqueIndex(pIndex) ); 3160 3161 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3162 for(k=0; k<pIdx->nKeyCol; k++){ 3163 const char *z1; 3164 const char *z2; 3165 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3166 z1 = pIdx->azColl[k]; 3167 z2 = pIndex->azColl[k]; 3168 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3169 } 3170 if( k==pIdx->nKeyCol ){ 3171 if( pIdx->onError!=pIndex->onError ){ 3172 /* This constraint creates the same index as a previous 3173 ** constraint specified somewhere in the CREATE TABLE statement. 3174 ** However the ON CONFLICT clauses are different. If both this 3175 ** constraint and the previous equivalent constraint have explicit 3176 ** ON CONFLICT clauses this is an error. Otherwise, use the 3177 ** explicitly specified behavior for the index. 3178 */ 3179 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3180 sqlite3ErrorMsg(pParse, 3181 "conflicting ON CONFLICT clauses specified", 0); 3182 } 3183 if( pIdx->onError==OE_Default ){ 3184 pIdx->onError = pIndex->onError; 3185 } 3186 } 3187 goto exit_create_index; 3188 } 3189 } 3190 } 3191 3192 /* Link the new Index structure to its table and to the other 3193 ** in-memory database structures. 3194 */ 3195 if( db->init.busy ){ 3196 Index *p; 3197 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3198 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3199 pIndex->zName, pIndex); 3200 if( p ){ 3201 assert( p==pIndex ); /* Malloc must have failed */ 3202 db->mallocFailed = 1; 3203 goto exit_create_index; 3204 } 3205 db->flags |= SQLITE_InternChanges; 3206 if( pTblName!=0 ){ 3207 pIndex->tnum = db->init.newTnum; 3208 } 3209 } 3210 3211 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3212 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3213 ** emit code to allocate the index rootpage on disk and make an entry for 3214 ** the index in the sqlite_master table and populate the index with 3215 ** content. But, do not do this if we are simply reading the sqlite_master 3216 ** table to parse the schema, or if this index is the PRIMARY KEY index 3217 ** of a WITHOUT ROWID table. 3218 ** 3219 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3220 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3221 ** has just been created, it contains no data and the index initialization 3222 ** step can be skipped. 3223 */ 3224 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3225 Vdbe *v; 3226 char *zStmt; 3227 int iMem = ++pParse->nMem; 3228 3229 v = sqlite3GetVdbe(pParse); 3230 if( v==0 ) goto exit_create_index; 3231 3232 3233 /* Create the rootpage for the index 3234 */ 3235 sqlite3BeginWriteOperation(pParse, 1, iDb); 3236 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3237 3238 /* Gather the complete text of the CREATE INDEX statement into 3239 ** the zStmt variable 3240 */ 3241 if( pStart ){ 3242 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3243 if( pName->z[n-1]==';' ) n--; 3244 /* A named index with an explicit CREATE INDEX statement */ 3245 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3246 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3247 }else{ 3248 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3249 /* zStmt = sqlite3MPrintf(""); */ 3250 zStmt = 0; 3251 } 3252 3253 /* Add an entry in sqlite_master for this index 3254 */ 3255 sqlite3NestedParse(pParse, 3256 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3257 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3258 pIndex->zName, 3259 pTab->zName, 3260 iMem, 3261 zStmt 3262 ); 3263 sqlite3DbFree(db, zStmt); 3264 3265 /* Fill the index with data and reparse the schema. Code an OP_Expire 3266 ** to invalidate all pre-compiled statements. 3267 */ 3268 if( pTblName ){ 3269 sqlite3RefillIndex(pParse, pIndex, iMem); 3270 sqlite3ChangeCookie(pParse, iDb); 3271 sqlite3VdbeAddParseSchemaOp(v, iDb, 3272 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3273 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3274 } 3275 } 3276 3277 /* When adding an index to the list of indices for a table, make 3278 ** sure all indices labeled OE_Replace come after all those labeled 3279 ** OE_Ignore. This is necessary for the correct constraint check 3280 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3281 ** UPDATE and INSERT statements. 3282 */ 3283 if( db->init.busy || pTblName==0 ){ 3284 if( onError!=OE_Replace || pTab->pIndex==0 3285 || pTab->pIndex->onError==OE_Replace){ 3286 pIndex->pNext = pTab->pIndex; 3287 pTab->pIndex = pIndex; 3288 }else{ 3289 Index *pOther = pTab->pIndex; 3290 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3291 pOther = pOther->pNext; 3292 } 3293 pIndex->pNext = pOther->pNext; 3294 pOther->pNext = pIndex; 3295 } 3296 pRet = pIndex; 3297 pIndex = 0; 3298 } 3299 3300 /* Clean up before exiting */ 3301 exit_create_index: 3302 if( pIndex ) freeIndex(db, pIndex); 3303 sqlite3ExprDelete(db, pPIWhere); 3304 sqlite3ExprListDelete(db, pList); 3305 sqlite3SrcListDelete(db, pTblName); 3306 sqlite3DbFree(db, zName); 3307 return pRet; 3308 } 3309 3310 /* 3311 ** Fill the Index.aiRowEst[] array with default information - information 3312 ** to be used when we have not run the ANALYZE command. 3313 ** 3314 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3315 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3316 ** number of rows in the table that match any particular value of the 3317 ** first column of the index. aiRowEst[2] is an estimate of the number 3318 ** of rows that match any particular combination of the first 2 columns 3319 ** of the index. And so forth. It must always be the case that 3320 * 3321 ** aiRowEst[N]<=aiRowEst[N-1] 3322 ** aiRowEst[N]>=1 3323 ** 3324 ** Apart from that, we have little to go on besides intuition as to 3325 ** how aiRowEst[] should be initialized. The numbers generated here 3326 ** are based on typical values found in actual indices. 3327 */ 3328 void sqlite3DefaultRowEst(Index *pIdx){ 3329 /* 10, 9, 8, 7, 6 */ 3330 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3331 LogEst *a = pIdx->aiRowLogEst; 3332 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3333 int i; 3334 3335 /* Set the first entry (number of rows in the index) to the estimated 3336 ** number of rows in the table. Or 10, if the estimated number of rows 3337 ** in the table is less than that. */ 3338 a[0] = pIdx->pTable->nRowLogEst; 3339 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3340 3341 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3342 ** 6 and each subsequent value (if any) is 5. */ 3343 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3344 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3345 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3346 } 3347 3348 assert( 0==sqlite3LogEst(1) ); 3349 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3350 } 3351 3352 /* 3353 ** This routine will drop an existing named index. This routine 3354 ** implements the DROP INDEX statement. 3355 */ 3356 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3357 Index *pIndex; 3358 Vdbe *v; 3359 sqlite3 *db = pParse->db; 3360 int iDb; 3361 3362 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3363 if( db->mallocFailed ){ 3364 goto exit_drop_index; 3365 } 3366 assert( pName->nSrc==1 ); 3367 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3368 goto exit_drop_index; 3369 } 3370 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3371 if( pIndex==0 ){ 3372 if( !ifExists ){ 3373 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3374 }else{ 3375 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3376 } 3377 pParse->checkSchema = 1; 3378 goto exit_drop_index; 3379 } 3380 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3381 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3382 "or PRIMARY KEY constraint cannot be dropped", 0); 3383 goto exit_drop_index; 3384 } 3385 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3386 #ifndef SQLITE_OMIT_AUTHORIZATION 3387 { 3388 int code = SQLITE_DROP_INDEX; 3389 Table *pTab = pIndex->pTable; 3390 const char *zDb = db->aDb[iDb].zName; 3391 const char *zTab = SCHEMA_TABLE(iDb); 3392 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3393 goto exit_drop_index; 3394 } 3395 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3396 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3397 goto exit_drop_index; 3398 } 3399 } 3400 #endif 3401 3402 /* Generate code to remove the index and from the master table */ 3403 v = sqlite3GetVdbe(pParse); 3404 if( v ){ 3405 sqlite3BeginWriteOperation(pParse, 1, iDb); 3406 sqlite3NestedParse(pParse, 3407 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3408 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3409 ); 3410 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3411 sqlite3ChangeCookie(pParse, iDb); 3412 destroyRootPage(pParse, pIndex->tnum, iDb); 3413 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3414 } 3415 3416 exit_drop_index: 3417 sqlite3SrcListDelete(db, pName); 3418 } 3419 3420 /* 3421 ** pArray is a pointer to an array of objects. Each object in the 3422 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3423 ** to extend the array so that there is space for a new object at the end. 3424 ** 3425 ** When this function is called, *pnEntry contains the current size of 3426 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3427 ** in total). 3428 ** 3429 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3430 ** space allocated for the new object is zeroed, *pnEntry updated to 3431 ** reflect the new size of the array and a pointer to the new allocation 3432 ** returned. *pIdx is set to the index of the new array entry in this case. 3433 ** 3434 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3435 ** unchanged and a copy of pArray returned. 3436 */ 3437 void *sqlite3ArrayAllocate( 3438 sqlite3 *db, /* Connection to notify of malloc failures */ 3439 void *pArray, /* Array of objects. Might be reallocated */ 3440 int szEntry, /* Size of each object in the array */ 3441 int *pnEntry, /* Number of objects currently in use */ 3442 int *pIdx /* Write the index of a new slot here */ 3443 ){ 3444 char *z; 3445 int n = *pnEntry; 3446 if( (n & (n-1))==0 ){ 3447 int sz = (n==0) ? 1 : 2*n; 3448 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3449 if( pNew==0 ){ 3450 *pIdx = -1; 3451 return pArray; 3452 } 3453 pArray = pNew; 3454 } 3455 z = (char*)pArray; 3456 memset(&z[n * szEntry], 0, szEntry); 3457 *pIdx = n; 3458 ++*pnEntry; 3459 return pArray; 3460 } 3461 3462 /* 3463 ** Append a new element to the given IdList. Create a new IdList if 3464 ** need be. 3465 ** 3466 ** A new IdList is returned, or NULL if malloc() fails. 3467 */ 3468 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3469 int i; 3470 if( pList==0 ){ 3471 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3472 if( pList==0 ) return 0; 3473 } 3474 pList->a = sqlite3ArrayAllocate( 3475 db, 3476 pList->a, 3477 sizeof(pList->a[0]), 3478 &pList->nId, 3479 &i 3480 ); 3481 if( i<0 ){ 3482 sqlite3IdListDelete(db, pList); 3483 return 0; 3484 } 3485 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3486 return pList; 3487 } 3488 3489 /* 3490 ** Delete an IdList. 3491 */ 3492 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3493 int i; 3494 if( pList==0 ) return; 3495 for(i=0; i<pList->nId; i++){ 3496 sqlite3DbFree(db, pList->a[i].zName); 3497 } 3498 sqlite3DbFree(db, pList->a); 3499 sqlite3DbFree(db, pList); 3500 } 3501 3502 /* 3503 ** Return the index in pList of the identifier named zId. Return -1 3504 ** if not found. 3505 */ 3506 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3507 int i; 3508 if( pList==0 ) return -1; 3509 for(i=0; i<pList->nId; i++){ 3510 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3511 } 3512 return -1; 3513 } 3514 3515 /* 3516 ** Expand the space allocated for the given SrcList object by 3517 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3518 ** New slots are zeroed. 3519 ** 3520 ** For example, suppose a SrcList initially contains two entries: A,B. 3521 ** To append 3 new entries onto the end, do this: 3522 ** 3523 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3524 ** 3525 ** After the call above it would contain: A, B, nil, nil, nil. 3526 ** If the iStart argument had been 1 instead of 2, then the result 3527 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3528 ** the iStart value would be 0. The result then would 3529 ** be: nil, nil, nil, A, B. 3530 ** 3531 ** If a memory allocation fails the SrcList is unchanged. The 3532 ** db->mallocFailed flag will be set to true. 3533 */ 3534 SrcList *sqlite3SrcListEnlarge( 3535 sqlite3 *db, /* Database connection to notify of OOM errors */ 3536 SrcList *pSrc, /* The SrcList to be enlarged */ 3537 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3538 int iStart /* Index in pSrc->a[] of first new slot */ 3539 ){ 3540 int i; 3541 3542 /* Sanity checking on calling parameters */ 3543 assert( iStart>=0 ); 3544 assert( nExtra>=1 ); 3545 assert( pSrc!=0 ); 3546 assert( iStart<=pSrc->nSrc ); 3547 3548 /* Allocate additional space if needed */ 3549 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3550 SrcList *pNew; 3551 int nAlloc = pSrc->nSrc+nExtra; 3552 int nGot; 3553 pNew = sqlite3DbRealloc(db, pSrc, 3554 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3555 if( pNew==0 ){ 3556 assert( db->mallocFailed ); 3557 return pSrc; 3558 } 3559 pSrc = pNew; 3560 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3561 pSrc->nAlloc = nGot; 3562 } 3563 3564 /* Move existing slots that come after the newly inserted slots 3565 ** out of the way */ 3566 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3567 pSrc->a[i+nExtra] = pSrc->a[i]; 3568 } 3569 pSrc->nSrc += nExtra; 3570 3571 /* Zero the newly allocated slots */ 3572 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3573 for(i=iStart; i<iStart+nExtra; i++){ 3574 pSrc->a[i].iCursor = -1; 3575 } 3576 3577 /* Return a pointer to the enlarged SrcList */ 3578 return pSrc; 3579 } 3580 3581 3582 /* 3583 ** Append a new table name to the given SrcList. Create a new SrcList if 3584 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3585 ** 3586 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3587 ** SrcList might be the same as the SrcList that was input or it might be 3588 ** a new one. If an OOM error does occurs, then the prior value of pList 3589 ** that is input to this routine is automatically freed. 3590 ** 3591 ** If pDatabase is not null, it means that the table has an optional 3592 ** database name prefix. Like this: "database.table". The pDatabase 3593 ** points to the table name and the pTable points to the database name. 3594 ** The SrcList.a[].zName field is filled with the table name which might 3595 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3596 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3597 ** or with NULL if no database is specified. 3598 ** 3599 ** In other words, if call like this: 3600 ** 3601 ** sqlite3SrcListAppend(D,A,B,0); 3602 ** 3603 ** Then B is a table name and the database name is unspecified. If called 3604 ** like this: 3605 ** 3606 ** sqlite3SrcListAppend(D,A,B,C); 3607 ** 3608 ** Then C is the table name and B is the database name. If C is defined 3609 ** then so is B. In other words, we never have a case where: 3610 ** 3611 ** sqlite3SrcListAppend(D,A,0,C); 3612 ** 3613 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3614 ** before being added to the SrcList. 3615 */ 3616 SrcList *sqlite3SrcListAppend( 3617 sqlite3 *db, /* Connection to notify of malloc failures */ 3618 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3619 Token *pTable, /* Table to append */ 3620 Token *pDatabase /* Database of the table */ 3621 ){ 3622 struct SrcList_item *pItem; 3623 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3624 if( pList==0 ){ 3625 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3626 if( pList==0 ) return 0; 3627 pList->nAlloc = 1; 3628 } 3629 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3630 if( db->mallocFailed ){ 3631 sqlite3SrcListDelete(db, pList); 3632 return 0; 3633 } 3634 pItem = &pList->a[pList->nSrc-1]; 3635 if( pDatabase && pDatabase->z==0 ){ 3636 pDatabase = 0; 3637 } 3638 if( pDatabase ){ 3639 Token *pTemp = pDatabase; 3640 pDatabase = pTable; 3641 pTable = pTemp; 3642 } 3643 pItem->zName = sqlite3NameFromToken(db, pTable); 3644 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3645 return pList; 3646 } 3647 3648 /* 3649 ** Assign VdbeCursor index numbers to all tables in a SrcList 3650 */ 3651 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3652 int i; 3653 struct SrcList_item *pItem; 3654 assert(pList || pParse->db->mallocFailed ); 3655 if( pList ){ 3656 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3657 if( pItem->iCursor>=0 ) break; 3658 pItem->iCursor = pParse->nTab++; 3659 if( pItem->pSelect ){ 3660 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3661 } 3662 } 3663 } 3664 } 3665 3666 /* 3667 ** Delete an entire SrcList including all its substructure. 3668 */ 3669 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3670 int i; 3671 struct SrcList_item *pItem; 3672 if( pList==0 ) return; 3673 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3674 sqlite3DbFree(db, pItem->zDatabase); 3675 sqlite3DbFree(db, pItem->zName); 3676 sqlite3DbFree(db, pItem->zAlias); 3677 sqlite3DbFree(db, pItem->zIndex); 3678 sqlite3DeleteTable(db, pItem->pTab); 3679 sqlite3SelectDelete(db, pItem->pSelect); 3680 sqlite3ExprDelete(db, pItem->pOn); 3681 sqlite3IdListDelete(db, pItem->pUsing); 3682 } 3683 sqlite3DbFree(db, pList); 3684 } 3685 3686 /* 3687 ** This routine is called by the parser to add a new term to the 3688 ** end of a growing FROM clause. The "p" parameter is the part of 3689 ** the FROM clause that has already been constructed. "p" is NULL 3690 ** if this is the first term of the FROM clause. pTable and pDatabase 3691 ** are the name of the table and database named in the FROM clause term. 3692 ** pDatabase is NULL if the database name qualifier is missing - the 3693 ** usual case. If the term has an alias, then pAlias points to the 3694 ** alias token. If the term is a subquery, then pSubquery is the 3695 ** SELECT statement that the subquery encodes. The pTable and 3696 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3697 ** parameters are the content of the ON and USING clauses. 3698 ** 3699 ** Return a new SrcList which encodes is the FROM with the new 3700 ** term added. 3701 */ 3702 SrcList *sqlite3SrcListAppendFromTerm( 3703 Parse *pParse, /* Parsing context */ 3704 SrcList *p, /* The left part of the FROM clause already seen */ 3705 Token *pTable, /* Name of the table to add to the FROM clause */ 3706 Token *pDatabase, /* Name of the database containing pTable */ 3707 Token *pAlias, /* The right-hand side of the AS subexpression */ 3708 Select *pSubquery, /* A subquery used in place of a table name */ 3709 Expr *pOn, /* The ON clause of a join */ 3710 IdList *pUsing /* The USING clause of a join */ 3711 ){ 3712 struct SrcList_item *pItem; 3713 sqlite3 *db = pParse->db; 3714 if( !p && (pOn || pUsing) ){ 3715 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3716 (pOn ? "ON" : "USING") 3717 ); 3718 goto append_from_error; 3719 } 3720 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3721 if( p==0 || NEVER(p->nSrc==0) ){ 3722 goto append_from_error; 3723 } 3724 pItem = &p->a[p->nSrc-1]; 3725 assert( pAlias!=0 ); 3726 if( pAlias->n ){ 3727 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3728 } 3729 pItem->pSelect = pSubquery; 3730 pItem->pOn = pOn; 3731 pItem->pUsing = pUsing; 3732 return p; 3733 3734 append_from_error: 3735 assert( p==0 ); 3736 sqlite3ExprDelete(db, pOn); 3737 sqlite3IdListDelete(db, pUsing); 3738 sqlite3SelectDelete(db, pSubquery); 3739 return 0; 3740 } 3741 3742 /* 3743 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3744 ** element of the source-list passed as the second argument. 3745 */ 3746 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3747 assert( pIndexedBy!=0 ); 3748 if( p && ALWAYS(p->nSrc>0) ){ 3749 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3750 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3751 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3752 /* A "NOT INDEXED" clause was supplied. See parse.y 3753 ** construct "indexed_opt" for details. */ 3754 pItem->notIndexed = 1; 3755 }else{ 3756 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3757 } 3758 } 3759 } 3760 3761 /* 3762 ** When building up a FROM clause in the parser, the join operator 3763 ** is initially attached to the left operand. But the code generator 3764 ** expects the join operator to be on the right operand. This routine 3765 ** Shifts all join operators from left to right for an entire FROM 3766 ** clause. 3767 ** 3768 ** Example: Suppose the join is like this: 3769 ** 3770 ** A natural cross join B 3771 ** 3772 ** The operator is "natural cross join". The A and B operands are stored 3773 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3774 ** operator with A. This routine shifts that operator over to B. 3775 */ 3776 void sqlite3SrcListShiftJoinType(SrcList *p){ 3777 if( p ){ 3778 int i; 3779 assert( p->a || p->nSrc==0 ); 3780 for(i=p->nSrc-1; i>0; i--){ 3781 p->a[i].jointype = p->a[i-1].jointype; 3782 } 3783 p->a[0].jointype = 0; 3784 } 3785 } 3786 3787 /* 3788 ** Begin a transaction 3789 */ 3790 void sqlite3BeginTransaction(Parse *pParse, int type){ 3791 sqlite3 *db; 3792 Vdbe *v; 3793 int i; 3794 3795 assert( pParse!=0 ); 3796 db = pParse->db; 3797 assert( db!=0 ); 3798 /* if( db->aDb[0].pBt==0 ) return; */ 3799 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3800 return; 3801 } 3802 v = sqlite3GetVdbe(pParse); 3803 if( !v ) return; 3804 if( type!=TK_DEFERRED ){ 3805 for(i=0; i<db->nDb; i++){ 3806 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3807 sqlite3VdbeUsesBtree(v, i); 3808 } 3809 } 3810 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3811 } 3812 3813 /* 3814 ** Commit a transaction 3815 */ 3816 void sqlite3CommitTransaction(Parse *pParse){ 3817 Vdbe *v; 3818 3819 assert( pParse!=0 ); 3820 assert( pParse->db!=0 ); 3821 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3822 return; 3823 } 3824 v = sqlite3GetVdbe(pParse); 3825 if( v ){ 3826 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3827 } 3828 } 3829 3830 /* 3831 ** Rollback a transaction 3832 */ 3833 void sqlite3RollbackTransaction(Parse *pParse){ 3834 Vdbe *v; 3835 3836 assert( pParse!=0 ); 3837 assert( pParse->db!=0 ); 3838 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3839 return; 3840 } 3841 v = sqlite3GetVdbe(pParse); 3842 if( v ){ 3843 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3844 } 3845 } 3846 3847 /* 3848 ** This function is called by the parser when it parses a command to create, 3849 ** release or rollback an SQL savepoint. 3850 */ 3851 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3852 char *zName = sqlite3NameFromToken(pParse->db, pName); 3853 if( zName ){ 3854 Vdbe *v = sqlite3GetVdbe(pParse); 3855 #ifndef SQLITE_OMIT_AUTHORIZATION 3856 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3857 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3858 #endif 3859 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3860 sqlite3DbFree(pParse->db, zName); 3861 return; 3862 } 3863 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3864 } 3865 } 3866 3867 /* 3868 ** Make sure the TEMP database is open and available for use. Return 3869 ** the number of errors. Leave any error messages in the pParse structure. 3870 */ 3871 int sqlite3OpenTempDatabase(Parse *pParse){ 3872 sqlite3 *db = pParse->db; 3873 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3874 int rc; 3875 Btree *pBt; 3876 static const int flags = 3877 SQLITE_OPEN_READWRITE | 3878 SQLITE_OPEN_CREATE | 3879 SQLITE_OPEN_EXCLUSIVE | 3880 SQLITE_OPEN_DELETEONCLOSE | 3881 SQLITE_OPEN_TEMP_DB; 3882 3883 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3884 if( rc!=SQLITE_OK ){ 3885 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3886 "file for storing temporary tables"); 3887 pParse->rc = rc; 3888 return 1; 3889 } 3890 db->aDb[1].pBt = pBt; 3891 assert( db->aDb[1].pSchema ); 3892 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3893 db->mallocFailed = 1; 3894 return 1; 3895 } 3896 } 3897 return 0; 3898 } 3899 3900 /* 3901 ** Record the fact that the schema cookie will need to be verified 3902 ** for database iDb. The code to actually verify the schema cookie 3903 ** will occur at the end of the top-level VDBE and will be generated 3904 ** later, by sqlite3FinishCoding(). 3905 */ 3906 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3907 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3908 sqlite3 *db = pToplevel->db; 3909 3910 assert( iDb>=0 && iDb<db->nDb ); 3911 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3912 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3913 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3914 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3915 DbMaskSet(pToplevel->cookieMask, iDb); 3916 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3917 if( !OMIT_TEMPDB && iDb==1 ){ 3918 sqlite3OpenTempDatabase(pToplevel); 3919 } 3920 } 3921 } 3922 3923 /* 3924 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3925 ** attached database. Otherwise, invoke it for the database named zDb only. 3926 */ 3927 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3928 sqlite3 *db = pParse->db; 3929 int i; 3930 for(i=0; i<db->nDb; i++){ 3931 Db *pDb = &db->aDb[i]; 3932 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3933 sqlite3CodeVerifySchema(pParse, i); 3934 } 3935 } 3936 } 3937 3938 /* 3939 ** Generate VDBE code that prepares for doing an operation that 3940 ** might change the database. 3941 ** 3942 ** This routine starts a new transaction if we are not already within 3943 ** a transaction. If we are already within a transaction, then a checkpoint 3944 ** is set if the setStatement parameter is true. A checkpoint should 3945 ** be set for operations that might fail (due to a constraint) part of 3946 ** the way through and which will need to undo some writes without having to 3947 ** rollback the whole transaction. For operations where all constraints 3948 ** can be checked before any changes are made to the database, it is never 3949 ** necessary to undo a write and the checkpoint should not be set. 3950 */ 3951 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3952 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3953 sqlite3CodeVerifySchema(pParse, iDb); 3954 DbMaskSet(pToplevel->writeMask, iDb); 3955 pToplevel->isMultiWrite |= setStatement; 3956 } 3957 3958 /* 3959 ** Indicate that the statement currently under construction might write 3960 ** more than one entry (example: deleting one row then inserting another, 3961 ** inserting multiple rows in a table, or inserting a row and index entries.) 3962 ** If an abort occurs after some of these writes have completed, then it will 3963 ** be necessary to undo the completed writes. 3964 */ 3965 void sqlite3MultiWrite(Parse *pParse){ 3966 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3967 pToplevel->isMultiWrite = 1; 3968 } 3969 3970 /* 3971 ** The code generator calls this routine if is discovers that it is 3972 ** possible to abort a statement prior to completion. In order to 3973 ** perform this abort without corrupting the database, we need to make 3974 ** sure that the statement is protected by a statement transaction. 3975 ** 3976 ** Technically, we only need to set the mayAbort flag if the 3977 ** isMultiWrite flag was previously set. There is a time dependency 3978 ** such that the abort must occur after the multiwrite. This makes 3979 ** some statements involving the REPLACE conflict resolution algorithm 3980 ** go a little faster. But taking advantage of this time dependency 3981 ** makes it more difficult to prove that the code is correct (in 3982 ** particular, it prevents us from writing an effective 3983 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3984 ** to take the safe route and skip the optimization. 3985 */ 3986 void sqlite3MayAbort(Parse *pParse){ 3987 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3988 pToplevel->mayAbort = 1; 3989 } 3990 3991 /* 3992 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3993 ** error. The onError parameter determines which (if any) of the statement 3994 ** and/or current transaction is rolled back. 3995 */ 3996 void sqlite3HaltConstraint( 3997 Parse *pParse, /* Parsing context */ 3998 int errCode, /* extended error code */ 3999 int onError, /* Constraint type */ 4000 char *p4, /* Error message */ 4001 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4002 u8 p5Errmsg /* P5_ErrMsg type */ 4003 ){ 4004 Vdbe *v = sqlite3GetVdbe(pParse); 4005 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4006 if( onError==OE_Abort ){ 4007 sqlite3MayAbort(pParse); 4008 } 4009 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4010 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4011 } 4012 4013 /* 4014 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4015 */ 4016 void sqlite3UniqueConstraint( 4017 Parse *pParse, /* Parsing context */ 4018 int onError, /* Constraint type */ 4019 Index *pIdx /* The index that triggers the constraint */ 4020 ){ 4021 char *zErr; 4022 int j; 4023 StrAccum errMsg; 4024 Table *pTab = pIdx->pTable; 4025 4026 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 4027 errMsg.db = pParse->db; 4028 for(j=0; j<pIdx->nKeyCol; j++){ 4029 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4030 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4031 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4032 sqlite3StrAccumAppend(&errMsg, ".", 1); 4033 sqlite3StrAccumAppendAll(&errMsg, zCol); 4034 } 4035 zErr = sqlite3StrAccumFinish(&errMsg); 4036 sqlite3HaltConstraint(pParse, 4037 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4038 : SQLITE_CONSTRAINT_UNIQUE, 4039 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4040 } 4041 4042 4043 /* 4044 ** Code an OP_Halt due to non-unique rowid. 4045 */ 4046 void sqlite3RowidConstraint( 4047 Parse *pParse, /* Parsing context */ 4048 int onError, /* Conflict resolution algorithm */ 4049 Table *pTab /* The table with the non-unique rowid */ 4050 ){ 4051 char *zMsg; 4052 int rc; 4053 if( pTab->iPKey>=0 ){ 4054 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4055 pTab->aCol[pTab->iPKey].zName); 4056 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4057 }else{ 4058 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4059 rc = SQLITE_CONSTRAINT_ROWID; 4060 } 4061 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4062 P5_ConstraintUnique); 4063 } 4064 4065 /* 4066 ** Check to see if pIndex uses the collating sequence pColl. Return 4067 ** true if it does and false if it does not. 4068 */ 4069 #ifndef SQLITE_OMIT_REINDEX 4070 static int collationMatch(const char *zColl, Index *pIndex){ 4071 int i; 4072 assert( zColl!=0 ); 4073 for(i=0; i<pIndex->nColumn; i++){ 4074 const char *z = pIndex->azColl[i]; 4075 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4076 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4077 return 1; 4078 } 4079 } 4080 return 0; 4081 } 4082 #endif 4083 4084 /* 4085 ** Recompute all indices of pTab that use the collating sequence pColl. 4086 ** If pColl==0 then recompute all indices of pTab. 4087 */ 4088 #ifndef SQLITE_OMIT_REINDEX 4089 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4090 Index *pIndex; /* An index associated with pTab */ 4091 4092 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4093 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4094 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4095 sqlite3BeginWriteOperation(pParse, 0, iDb); 4096 sqlite3RefillIndex(pParse, pIndex, -1); 4097 } 4098 } 4099 } 4100 #endif 4101 4102 /* 4103 ** Recompute all indices of all tables in all databases where the 4104 ** indices use the collating sequence pColl. If pColl==0 then recompute 4105 ** all indices everywhere. 4106 */ 4107 #ifndef SQLITE_OMIT_REINDEX 4108 static void reindexDatabases(Parse *pParse, char const *zColl){ 4109 Db *pDb; /* A single database */ 4110 int iDb; /* The database index number */ 4111 sqlite3 *db = pParse->db; /* The database connection */ 4112 HashElem *k; /* For looping over tables in pDb */ 4113 Table *pTab; /* A table in the database */ 4114 4115 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4116 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4117 assert( pDb!=0 ); 4118 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4119 pTab = (Table*)sqliteHashData(k); 4120 reindexTable(pParse, pTab, zColl); 4121 } 4122 } 4123 } 4124 #endif 4125 4126 /* 4127 ** Generate code for the REINDEX command. 4128 ** 4129 ** REINDEX -- 1 4130 ** REINDEX <collation> -- 2 4131 ** REINDEX ?<database>.?<tablename> -- 3 4132 ** REINDEX ?<database>.?<indexname> -- 4 4133 ** 4134 ** Form 1 causes all indices in all attached databases to be rebuilt. 4135 ** Form 2 rebuilds all indices in all databases that use the named 4136 ** collating function. Forms 3 and 4 rebuild the named index or all 4137 ** indices associated with the named table. 4138 */ 4139 #ifndef SQLITE_OMIT_REINDEX 4140 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4141 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4142 char *z; /* Name of a table or index */ 4143 const char *zDb; /* Name of the database */ 4144 Table *pTab; /* A table in the database */ 4145 Index *pIndex; /* An index associated with pTab */ 4146 int iDb; /* The database index number */ 4147 sqlite3 *db = pParse->db; /* The database connection */ 4148 Token *pObjName; /* Name of the table or index to be reindexed */ 4149 4150 /* Read the database schema. If an error occurs, leave an error message 4151 ** and code in pParse and return NULL. */ 4152 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4153 return; 4154 } 4155 4156 if( pName1==0 ){ 4157 reindexDatabases(pParse, 0); 4158 return; 4159 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4160 char *zColl; 4161 assert( pName1->z ); 4162 zColl = sqlite3NameFromToken(pParse->db, pName1); 4163 if( !zColl ) return; 4164 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4165 if( pColl ){ 4166 reindexDatabases(pParse, zColl); 4167 sqlite3DbFree(db, zColl); 4168 return; 4169 } 4170 sqlite3DbFree(db, zColl); 4171 } 4172 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4173 if( iDb<0 ) return; 4174 z = sqlite3NameFromToken(db, pObjName); 4175 if( z==0 ) return; 4176 zDb = db->aDb[iDb].zName; 4177 pTab = sqlite3FindTable(db, z, zDb); 4178 if( pTab ){ 4179 reindexTable(pParse, pTab, 0); 4180 sqlite3DbFree(db, z); 4181 return; 4182 } 4183 pIndex = sqlite3FindIndex(db, z, zDb); 4184 sqlite3DbFree(db, z); 4185 if( pIndex ){ 4186 sqlite3BeginWriteOperation(pParse, 0, iDb); 4187 sqlite3RefillIndex(pParse, pIndex, -1); 4188 return; 4189 } 4190 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4191 } 4192 #endif 4193 4194 /* 4195 ** Return a KeyInfo structure that is appropriate for the given Index. 4196 ** 4197 ** The KeyInfo structure for an index is cached in the Index object. 4198 ** So there might be multiple references to the returned pointer. The 4199 ** caller should not try to modify the KeyInfo object. 4200 ** 4201 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4202 ** when it has finished using it. 4203 */ 4204 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4205 int i; 4206 int nCol = pIdx->nColumn; 4207 int nKey = pIdx->nKeyCol; 4208 KeyInfo *pKey; 4209 if( pParse->nErr ) return 0; 4210 if( pIdx->uniqNotNull ){ 4211 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4212 }else{ 4213 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4214 } 4215 if( pKey ){ 4216 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4217 for(i=0; i<nCol; i++){ 4218 char *zColl = pIdx->azColl[i]; 4219 assert( zColl!=0 ); 4220 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4221 sqlite3LocateCollSeq(pParse, zColl); 4222 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4223 } 4224 if( pParse->nErr ){ 4225 sqlite3KeyInfoUnref(pKey); 4226 pKey = 0; 4227 } 4228 } 4229 return pKey; 4230 } 4231 4232 #ifndef SQLITE_OMIT_CTE 4233 /* 4234 ** This routine is invoked once per CTE by the parser while parsing a 4235 ** WITH clause. 4236 */ 4237 With *sqlite3WithAdd( 4238 Parse *pParse, /* Parsing context */ 4239 With *pWith, /* Existing WITH clause, or NULL */ 4240 Token *pName, /* Name of the common-table */ 4241 ExprList *pArglist, /* Optional column name list for the table */ 4242 Select *pQuery /* Query used to initialize the table */ 4243 ){ 4244 sqlite3 *db = pParse->db; 4245 With *pNew; 4246 char *zName; 4247 4248 /* Check that the CTE name is unique within this WITH clause. If 4249 ** not, store an error in the Parse structure. */ 4250 zName = sqlite3NameFromToken(pParse->db, pName); 4251 if( zName && pWith ){ 4252 int i; 4253 for(i=0; i<pWith->nCte; i++){ 4254 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4255 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4256 } 4257 } 4258 } 4259 4260 if( pWith ){ 4261 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4262 pNew = sqlite3DbRealloc(db, pWith, nByte); 4263 }else{ 4264 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4265 } 4266 assert( zName!=0 || pNew==0 ); 4267 assert( db->mallocFailed==0 || pNew==0 ); 4268 4269 if( pNew==0 ){ 4270 sqlite3ExprListDelete(db, pArglist); 4271 sqlite3SelectDelete(db, pQuery); 4272 sqlite3DbFree(db, zName); 4273 pNew = pWith; 4274 }else{ 4275 pNew->a[pNew->nCte].pSelect = pQuery; 4276 pNew->a[pNew->nCte].pCols = pArglist; 4277 pNew->a[pNew->nCte].zName = zName; 4278 pNew->a[pNew->nCte].zErr = 0; 4279 pNew->nCte++; 4280 } 4281 4282 return pNew; 4283 } 4284 4285 /* 4286 ** Free the contents of the With object passed as the second argument. 4287 */ 4288 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4289 if( pWith ){ 4290 int i; 4291 for(i=0; i<pWith->nCte; i++){ 4292 struct Cte *pCte = &pWith->a[i]; 4293 sqlite3ExprListDelete(db, pCte->pCols); 4294 sqlite3SelectDelete(db, pCte->pSelect); 4295 sqlite3DbFree(db, pCte->zName); 4296 } 4297 sqlite3DbFree(db, pWith); 4298 } 4299 } 4300 #endif /* !defined(SQLITE_OMIT_CTE) */ 4301