1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.511 2008/12/30 06:24:58 danielk1977 Exp $ 26 */ 27 #include "sqliteInt.h" 28 #include <ctype.h> 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = (u8)explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 int i; 69 int nBytes; 70 TableLock *p; 71 72 if( iDb<0 ){ 73 return; 74 } 75 76 for(i=0; i<pParse->nTableLock; i++){ 77 p = &pParse->aTableLock[i]; 78 if( p->iDb==iDb && p->iTab==iTab ){ 79 p->isWriteLock = (p->isWriteLock || isWriteLock); 80 return; 81 } 82 } 83 84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 85 pParse->aTableLock = 86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); 87 if( pParse->aTableLock ){ 88 p = &pParse->aTableLock[pParse->nTableLock++]; 89 p->iDb = iDb; 90 p->iTab = iTab; 91 p->isWriteLock = isWriteLock; 92 p->zName = zName; 93 }else{ 94 pParse->nTableLock = 0; 95 pParse->db->mallocFailed = 1; 96 } 97 } 98 99 /* 100 ** Code an OP_TableLock instruction for each table locked by the 101 ** statement (configured by calls to sqlite3TableLock()). 102 */ 103 static void codeTableLocks(Parse *pParse){ 104 int i; 105 Vdbe *pVdbe; 106 107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 108 return; 109 } 110 111 for(i=0; i<pParse->nTableLock; i++){ 112 TableLock *p = &pParse->aTableLock[i]; 113 int p1 = p->iDb; 114 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 115 p->zName, P4_STATIC); 116 } 117 } 118 #else 119 #define codeTableLocks(x) 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 db = pParse->db; 137 if( db->mallocFailed ) return; 138 if( pParse->nested ) return; 139 if( pParse->nErr ) return; 140 141 /* Begin by generating some termination code at the end of the 142 ** vdbe program 143 */ 144 v = sqlite3GetVdbe(pParse); 145 if( v ){ 146 sqlite3VdbeAddOp0(v, OP_Halt); 147 148 /* The cookie mask contains one bit for each database file open. 149 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 150 ** set for each database that is used. Generate code to start a 151 ** transaction on each used database and to verify the schema cookie 152 ** on each used database. 153 */ 154 if( pParse->cookieGoto>0 ){ 155 u32 mask; 156 int iDb; 157 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 158 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 159 if( (mask & pParse->cookieMask)==0 ) continue; 160 sqlite3VdbeUsesBtree(v, iDb); 161 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 162 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 163 } 164 #ifndef SQLITE_OMIT_VIRTUALTABLE 165 { 166 int i; 167 for(i=0; i<pParse->nVtabLock; i++){ 168 char *vtab = (char *)pParse->apVtabLock[i]->pVtab; 169 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 170 } 171 pParse->nVtabLock = 0; 172 } 173 #endif 174 175 /* Once all the cookies have been verified and transactions opened, 176 ** obtain the required table-locks. This is a no-op unless the 177 ** shared-cache feature is enabled. 178 */ 179 codeTableLocks(pParse); 180 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 181 } 182 183 #ifndef SQLITE_OMIT_TRACE 184 if( !db->init.busy ){ 185 /* Change the P4 argument of the first opcode (which will always be 186 ** an OP_Trace) to be the complete text of the current SQL statement. 187 */ 188 VdbeOp *pOp = sqlite3VdbeGetOp(v, 0); 189 if( pOp && pOp->opcode==OP_Trace ){ 190 sqlite3VdbeChangeP4(v, 0, pParse->zSql, 191 (int)(pParse->zTail - pParse->zSql)); 192 } 193 } 194 #endif /* SQLITE_OMIT_TRACE */ 195 } 196 197 198 /* Get the VDBE program ready for execution 199 */ 200 if( v && pParse->nErr==0 && !db->mallocFailed ){ 201 #ifdef SQLITE_DEBUG 202 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 203 sqlite3VdbeTrace(v, trace); 204 #endif 205 assert( pParse->disableColCache==0 ); /* Disables and re-enables match */ 206 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, 207 pParse->nTab+3, pParse->explain); 208 pParse->rc = SQLITE_DONE; 209 pParse->colNamesSet = 0; 210 }else if( pParse->rc==SQLITE_OK ){ 211 pParse->rc = SQLITE_ERROR; 212 } 213 pParse->nTab = 0; 214 pParse->nMem = 0; 215 pParse->nSet = 0; 216 pParse->nVar = 0; 217 pParse->cookieMask = 0; 218 pParse->cookieGoto = 0; 219 } 220 221 /* 222 ** Run the parser and code generator recursively in order to generate 223 ** code for the SQL statement given onto the end of the pParse context 224 ** currently under construction. When the parser is run recursively 225 ** this way, the final OP_Halt is not appended and other initialization 226 ** and finalization steps are omitted because those are handling by the 227 ** outermost parser. 228 ** 229 ** Not everything is nestable. This facility is designed to permit 230 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 231 ** care if you decide to try to use this routine for some other purposes. 232 */ 233 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 234 va_list ap; 235 char *zSql; 236 char *zErrMsg = 0; 237 sqlite3 *db = pParse->db; 238 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 239 char saveBuf[SAVE_SZ]; 240 241 if( pParse->nErr ) return; 242 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 243 va_start(ap, zFormat); 244 zSql = sqlite3VMPrintf(db, zFormat, ap); 245 va_end(ap); 246 if( zSql==0 ){ 247 return; /* A malloc must have failed */ 248 } 249 pParse->nested++; 250 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 251 memset(&pParse->nVar, 0, SAVE_SZ); 252 sqlite3RunParser(pParse, zSql, &zErrMsg); 253 sqlite3DbFree(db, zErrMsg); 254 sqlite3DbFree(db, zSql); 255 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 256 pParse->nested--; 257 } 258 259 /* 260 ** Locate the in-memory structure that describes a particular database 261 ** table given the name of that table and (optionally) the name of the 262 ** database containing the table. Return NULL if not found. 263 ** 264 ** If zDatabase is 0, all databases are searched for the table and the 265 ** first matching table is returned. (No checking for duplicate table 266 ** names is done.) The search order is TEMP first, then MAIN, then any 267 ** auxiliary databases added using the ATTACH command. 268 ** 269 ** See also sqlite3LocateTable(). 270 */ 271 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 272 Table *p = 0; 273 int i; 274 int nName; 275 assert( zName!=0 ); 276 nName = sqlite3Strlen(db, zName) + 1; 277 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 280 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 281 if( p ) break; 282 } 283 return p; 284 } 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. Also leave an 290 ** error message in pParse->zErrMsg. 291 ** 292 ** The difference between this routine and sqlite3FindTable() is that this 293 ** routine leaves an error message in pParse->zErrMsg where 294 ** sqlite3FindTable() does not. 295 */ 296 Table *sqlite3LocateTable( 297 Parse *pParse, /* context in which to report errors */ 298 int isView, /* True if looking for a VIEW rather than a TABLE */ 299 const char *zName, /* Name of the table we are looking for */ 300 const char *zDbase /* Name of the database. Might be NULL */ 301 ){ 302 Table *p; 303 304 /* Read the database schema. If an error occurs, leave an error message 305 ** and code in pParse and return NULL. */ 306 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 307 return 0; 308 } 309 310 p = sqlite3FindTable(pParse->db, zName, zDbase); 311 if( p==0 ){ 312 const char *zMsg = isView ? "no such view" : "no such table"; 313 if( zDbase ){ 314 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 315 }else{ 316 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 317 } 318 pParse->checkSchema = 1; 319 } 320 return p; 321 } 322 323 /* 324 ** Locate the in-memory structure that describes 325 ** a particular index given the name of that index 326 ** and the name of the database that contains the index. 327 ** Return NULL if not found. 328 ** 329 ** If zDatabase is 0, all databases are searched for the 330 ** table and the first matching index is returned. (No checking 331 ** for duplicate index names is done.) The search order is 332 ** TEMP first, then MAIN, then any auxiliary databases added 333 ** using the ATTACH command. 334 */ 335 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 336 Index *p = 0; 337 int i; 338 int nName = sqlite3Strlen(db, zName)+1; 339 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 340 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 341 Schema *pSchema = db->aDb[j].pSchema; 342 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 343 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 344 if( pSchema ){ 345 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 346 } 347 if( p ) break; 348 } 349 return p; 350 } 351 352 /* 353 ** Reclaim the memory used by an index 354 */ 355 static void freeIndex(Index *p){ 356 sqlite3 *db = p->pTable->db; 357 sqlite3DbFree(db, p->zColAff); 358 sqlite3DbFree(db, p); 359 } 360 361 /* 362 ** Remove the given index from the index hash table, and free 363 ** its memory structures. 364 ** 365 ** The index is removed from the database hash tables but 366 ** it is not unlinked from the Table that it indexes. 367 ** Unlinking from the Table must be done by the calling function. 368 */ 369 static void sqliteDeleteIndex(Index *p){ 370 Index *pOld; 371 const char *zName = p->zName; 372 373 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, 374 sqlite3Strlen30(zName)+1, 0); 375 assert( pOld==0 || pOld==p ); 376 freeIndex(p); 377 } 378 379 /* 380 ** For the index called zIdxName which is found in the database iDb, 381 ** unlike that index from its Table then remove the index from 382 ** the index hash table and free all memory structures associated 383 ** with the index. 384 */ 385 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 386 Index *pIndex; 387 int len; 388 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 389 390 len = sqlite3Strlen(db, zIdxName); 391 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 392 if( pIndex ){ 393 if( pIndex->pTable->pIndex==pIndex ){ 394 pIndex->pTable->pIndex = pIndex->pNext; 395 }else{ 396 Index *p; 397 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 398 if( p && p->pNext==pIndex ){ 399 p->pNext = pIndex->pNext; 400 } 401 } 402 freeIndex(pIndex); 403 } 404 db->flags |= SQLITE_InternChanges; 405 } 406 407 /* 408 ** Erase all schema information from the in-memory hash tables of 409 ** a single database. This routine is called to reclaim memory 410 ** before the database closes. It is also called during a rollback 411 ** if there were schema changes during the transaction or if a 412 ** schema-cookie mismatch occurs. 413 ** 414 ** If iDb<=0 then reset the internal schema tables for all database 415 ** files. If iDb>=2 then reset the internal schema for only the 416 ** single file indicated. 417 */ 418 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 419 int i, j; 420 assert( iDb>=0 && iDb<db->nDb ); 421 422 if( iDb==0 ){ 423 sqlite3BtreeEnterAll(db); 424 } 425 for(i=iDb; i<db->nDb; i++){ 426 Db *pDb = &db->aDb[i]; 427 if( pDb->pSchema ){ 428 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); 429 sqlite3SchemaFree(pDb->pSchema); 430 } 431 if( iDb>0 ) return; 432 } 433 assert( iDb==0 ); 434 db->flags &= ~SQLITE_InternChanges; 435 sqlite3BtreeLeaveAll(db); 436 437 /* If one or more of the auxiliary database files has been closed, 438 ** then remove them from the auxiliary database list. We take the 439 ** opportunity to do this here since we have just deleted all of the 440 ** schema hash tables and therefore do not have to make any changes 441 ** to any of those tables. 442 */ 443 for(i=0; i<db->nDb; i++){ 444 struct Db *pDb = &db->aDb[i]; 445 if( pDb->pBt==0 ){ 446 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 447 pDb->pAux = 0; 448 } 449 } 450 for(i=j=2; i<db->nDb; i++){ 451 struct Db *pDb = &db->aDb[i]; 452 if( pDb->pBt==0 ){ 453 sqlite3DbFree(db, pDb->zName); 454 pDb->zName = 0; 455 continue; 456 } 457 if( j<i ){ 458 db->aDb[j] = db->aDb[i]; 459 } 460 j++; 461 } 462 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 463 db->nDb = j; 464 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 465 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 466 sqlite3DbFree(db, db->aDb); 467 db->aDb = db->aDbStatic; 468 } 469 } 470 471 /* 472 ** This routine is called when a commit occurs. 473 */ 474 void sqlite3CommitInternalChanges(sqlite3 *db){ 475 db->flags &= ~SQLITE_InternChanges; 476 } 477 478 /* 479 ** Clear the column names from a table or view. 480 */ 481 static void sqliteResetColumnNames(Table *pTable){ 482 int i; 483 Column *pCol; 484 sqlite3 *db = pTable->db; 485 assert( pTable!=0 ); 486 if( (pCol = pTable->aCol)!=0 ){ 487 for(i=0; i<pTable->nCol; i++, pCol++){ 488 sqlite3DbFree(db, pCol->zName); 489 sqlite3ExprDelete(db, pCol->pDflt); 490 sqlite3DbFree(db, pCol->zType); 491 sqlite3DbFree(db, pCol->zColl); 492 } 493 sqlite3DbFree(db, pTable->aCol); 494 } 495 pTable->aCol = 0; 496 pTable->nCol = 0; 497 } 498 499 /* 500 ** Remove the memory data structures associated with the given 501 ** Table. No changes are made to disk by this routine. 502 ** 503 ** This routine just deletes the data structure. It does not unlink 504 ** the table data structure from the hash table. Nor does it remove 505 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 506 ** memory structures of the indices and foreign keys associated with 507 ** the table. 508 */ 509 void sqlite3DeleteTable(Table *pTable){ 510 Index *pIndex, *pNext; 511 FKey *pFKey, *pNextFKey; 512 sqlite3 *db; 513 514 if( pTable==0 ) return; 515 db = pTable->db; 516 517 /* Do not delete the table until the reference count reaches zero. */ 518 pTable->nRef--; 519 if( pTable->nRef>0 ){ 520 return; 521 } 522 assert( pTable->nRef==0 ); 523 524 /* Delete all indices associated with this table 525 */ 526 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 527 pNext = pIndex->pNext; 528 assert( pIndex->pSchema==pTable->pSchema ); 529 sqliteDeleteIndex(pIndex); 530 } 531 532 #ifndef SQLITE_OMIT_FOREIGN_KEY 533 /* Delete all foreign keys associated with this table. The keys 534 ** should have already been unlinked from the pSchema->aFKey hash table 535 */ 536 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 537 pNextFKey = pFKey->pNextFrom; 538 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 539 pFKey->zTo, sqlite3Strlen30(pFKey->zTo)+1)!=pFKey ); 540 sqlite3DbFree(db, pFKey); 541 } 542 #endif 543 544 /* Delete the Table structure itself. 545 */ 546 sqliteResetColumnNames(pTable); 547 sqlite3DbFree(db, pTable->zName); 548 sqlite3DbFree(db, pTable->zColAff); 549 sqlite3SelectDelete(db, pTable->pSelect); 550 #ifndef SQLITE_OMIT_CHECK 551 sqlite3ExprDelete(db, pTable->pCheck); 552 #endif 553 sqlite3VtabClear(pTable); 554 sqlite3DbFree(db, pTable); 555 } 556 557 /* 558 ** Unlink the given table from the hash tables and the delete the 559 ** table structure with all its indices and foreign keys. 560 */ 561 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 562 Table *p; 563 FKey *pF1, *pF2; 564 Db *pDb; 565 566 assert( db!=0 ); 567 assert( iDb>=0 && iDb<db->nDb ); 568 assert( zTabName && zTabName[0] ); 569 pDb = &db->aDb[iDb]; 570 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 571 sqlite3Strlen30(zTabName)+1,0); 572 if( p ){ 573 #ifndef SQLITE_OMIT_FOREIGN_KEY 574 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 575 int nTo = sqlite3Strlen30(pF1->zTo) + 1; 576 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 577 if( pF2==pF1 ){ 578 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 579 }else{ 580 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 581 if( pF2 ){ 582 pF2->pNextTo = pF1->pNextTo; 583 } 584 } 585 } 586 #endif 587 sqlite3DeleteTable(p); 588 } 589 db->flags |= SQLITE_InternChanges; 590 } 591 592 /* 593 ** Given a token, return a string that consists of the text of that 594 ** token with any quotations removed. Space to hold the returned string 595 ** is obtained from sqliteMalloc() and must be freed by the calling 596 ** function. 597 ** 598 ** Tokens are often just pointers into the original SQL text and so 599 ** are not \000 terminated and are not persistent. The returned string 600 ** is \000 terminated and is persistent. 601 */ 602 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 603 char *zName; 604 if( pName ){ 605 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 606 sqlite3Dequote(zName); 607 }else{ 608 zName = 0; 609 } 610 return zName; 611 } 612 613 /* 614 ** Open the sqlite_master table stored in database number iDb for 615 ** writing. The table is opened using cursor 0. 616 */ 617 void sqlite3OpenMasterTable(Parse *p, int iDb){ 618 Vdbe *v = sqlite3GetVdbe(p); 619 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 620 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */ 621 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 622 } 623 624 /* 625 ** The token *pName contains the name of a database (either "main" or 626 ** "temp" or the name of an attached db). This routine returns the 627 ** index of the named database in db->aDb[], or -1 if the named db 628 ** does not exist. 629 */ 630 int sqlite3FindDb(sqlite3 *db, Token *pName){ 631 int i = -1; /* Database number */ 632 int n; /* Number of characters in the name */ 633 Db *pDb; /* A database whose name space is being searched */ 634 char *zName; /* Name we are searching for */ 635 636 zName = sqlite3NameFromToken(db, pName); 637 if( zName ){ 638 n = sqlite3Strlen30(zName); 639 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 640 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 641 0==sqlite3StrICmp(pDb->zName, zName) ){ 642 break; 643 } 644 } 645 sqlite3DbFree(db, zName); 646 } 647 return i; 648 } 649 650 /* The table or view or trigger name is passed to this routine via tokens 651 ** pName1 and pName2. If the table name was fully qualified, for example: 652 ** 653 ** CREATE TABLE xxx.yyy (...); 654 ** 655 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 656 ** the table name is not fully qualified, i.e.: 657 ** 658 ** CREATE TABLE yyy(...); 659 ** 660 ** Then pName1 is set to "yyy" and pName2 is "". 661 ** 662 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 663 ** pName2) that stores the unqualified table name. The index of the 664 ** database "xxx" is returned. 665 */ 666 int sqlite3TwoPartName( 667 Parse *pParse, /* Parsing and code generating context */ 668 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 669 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 670 Token **pUnqual /* Write the unqualified object name here */ 671 ){ 672 int iDb; /* Database holding the object */ 673 sqlite3 *db = pParse->db; 674 675 if( pName2 && pName2->n>0 ){ 676 if( db->init.busy ) { 677 sqlite3ErrorMsg(pParse, "corrupt database"); 678 pParse->nErr++; 679 return -1; 680 } 681 *pUnqual = pName2; 682 iDb = sqlite3FindDb(db, pName1); 683 if( iDb<0 ){ 684 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 685 pParse->nErr++; 686 return -1; 687 } 688 }else{ 689 assert( db->init.iDb==0 || db->init.busy ); 690 iDb = db->init.iDb; 691 *pUnqual = pName1; 692 } 693 return iDb; 694 } 695 696 /* 697 ** This routine is used to check if the UTF-8 string zName is a legal 698 ** unqualified name for a new schema object (table, index, view or 699 ** trigger). All names are legal except those that begin with the string 700 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 701 ** is reserved for internal use. 702 */ 703 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 704 if( !pParse->db->init.busy && pParse->nested==0 705 && (pParse->db->flags & SQLITE_WriteSchema)==0 706 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 707 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 708 return SQLITE_ERROR; 709 } 710 return SQLITE_OK; 711 } 712 713 /* 714 ** Begin constructing a new table representation in memory. This is 715 ** the first of several action routines that get called in response 716 ** to a CREATE TABLE statement. In particular, this routine is called 717 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 718 ** flag is true if the table should be stored in the auxiliary database 719 ** file instead of in the main database file. This is normally the case 720 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 721 ** CREATE and TABLE. 722 ** 723 ** The new table record is initialized and put in pParse->pNewTable. 724 ** As more of the CREATE TABLE statement is parsed, additional action 725 ** routines will be called to add more information to this record. 726 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 727 ** is called to complete the construction of the new table record. 728 */ 729 void sqlite3StartTable( 730 Parse *pParse, /* Parser context */ 731 Token *pName1, /* First part of the name of the table or view */ 732 Token *pName2, /* Second part of the name of the table or view */ 733 int isTemp, /* True if this is a TEMP table */ 734 int isView, /* True if this is a VIEW */ 735 int isVirtual, /* True if this is a VIRTUAL table */ 736 int noErr /* Do nothing if table already exists */ 737 ){ 738 Table *pTable; 739 char *zName = 0; /* The name of the new table */ 740 sqlite3 *db = pParse->db; 741 Vdbe *v; 742 int iDb; /* Database number to create the table in */ 743 Token *pName; /* Unqualified name of the table to create */ 744 745 /* The table or view name to create is passed to this routine via tokens 746 ** pName1 and pName2. If the table name was fully qualified, for example: 747 ** 748 ** CREATE TABLE xxx.yyy (...); 749 ** 750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 751 ** the table name is not fully qualified, i.e.: 752 ** 753 ** CREATE TABLE yyy(...); 754 ** 755 ** Then pName1 is set to "yyy" and pName2 is "". 756 ** 757 ** The call below sets the pName pointer to point at the token (pName1 or 758 ** pName2) that stores the unqualified table name. The variable iDb is 759 ** set to the index of the database that the table or view is to be 760 ** created in. 761 */ 762 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 763 if( iDb<0 ) return; 764 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 765 /* If creating a temp table, the name may not be qualified */ 766 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 767 return; 768 } 769 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 770 771 pParse->sNameToken = *pName; 772 zName = sqlite3NameFromToken(db, pName); 773 if( zName==0 ) return; 774 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 775 goto begin_table_error; 776 } 777 if( db->init.iDb==1 ) isTemp = 1; 778 #ifndef SQLITE_OMIT_AUTHORIZATION 779 assert( (isTemp & 1)==isTemp ); 780 { 781 int code; 782 char *zDb = db->aDb[iDb].zName; 783 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 784 goto begin_table_error; 785 } 786 if( isView ){ 787 if( !OMIT_TEMPDB && isTemp ){ 788 code = SQLITE_CREATE_TEMP_VIEW; 789 }else{ 790 code = SQLITE_CREATE_VIEW; 791 } 792 }else{ 793 if( !OMIT_TEMPDB && isTemp ){ 794 code = SQLITE_CREATE_TEMP_TABLE; 795 }else{ 796 code = SQLITE_CREATE_TABLE; 797 } 798 } 799 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 800 goto begin_table_error; 801 } 802 } 803 #endif 804 805 /* Make sure the new table name does not collide with an existing 806 ** index or table name in the same database. Issue an error message if 807 ** it does. The exception is if the statement being parsed was passed 808 ** to an sqlite3_declare_vtab() call. In that case only the column names 809 ** and types will be used, so there is no need to test for namespace 810 ** collisions. 811 */ 812 if( !IN_DECLARE_VTAB ){ 813 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 814 goto begin_table_error; 815 } 816 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 817 if( pTable ){ 818 if( !noErr ){ 819 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 820 } 821 goto begin_table_error; 822 } 823 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 824 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 825 goto begin_table_error; 826 } 827 } 828 829 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 830 if( pTable==0 ){ 831 db->mallocFailed = 1; 832 pParse->rc = SQLITE_NOMEM; 833 pParse->nErr++; 834 goto begin_table_error; 835 } 836 pTable->zName = zName; 837 pTable->iPKey = -1; 838 pTable->pSchema = db->aDb[iDb].pSchema; 839 pTable->nRef = 1; 840 pTable->db = db; 841 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); 842 pParse->pNewTable = pTable; 843 844 /* If this is the magic sqlite_sequence table used by autoincrement, 845 ** then record a pointer to this table in the main database structure 846 ** so that INSERT can find the table easily. 847 */ 848 #ifndef SQLITE_OMIT_AUTOINCREMENT 849 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 850 pTable->pSchema->pSeqTab = pTable; 851 } 852 #endif 853 854 /* Begin generating the code that will insert the table record into 855 ** the SQLITE_MASTER table. Note in particular that we must go ahead 856 ** and allocate the record number for the table entry now. Before any 857 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 858 ** indices to be created and the table record must come before the 859 ** indices. Hence, the record number for the table must be allocated 860 ** now. 861 */ 862 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 863 int j1; 864 int fileFormat; 865 int reg1, reg2, reg3; 866 sqlite3BeginWriteOperation(pParse, 0, iDb); 867 868 #ifndef SQLITE_OMIT_VIRTUALTABLE 869 if( isVirtual ){ 870 sqlite3VdbeAddOp0(v, OP_VBegin); 871 } 872 #endif 873 874 /* If the file format and encoding in the database have not been set, 875 ** set them now. 876 */ 877 reg1 = pParse->regRowid = ++pParse->nMem; 878 reg2 = pParse->regRoot = ++pParse->nMem; 879 reg3 = ++pParse->nMem; 880 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ 881 sqlite3VdbeUsesBtree(v, iDb); 882 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 883 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 884 1 : SQLITE_MAX_FILE_FORMAT; 885 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); 887 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); 889 sqlite3VdbeJumpHere(v, j1); 890 891 /* This just creates a place-holder record in the sqlite_master table. 892 ** The record created does not contain anything yet. It will be replaced 893 ** by the real entry in code generated at sqlite3EndTable(). 894 ** 895 ** The rowid for the new entry is left on the top of the stack. 896 ** The rowid value is needed by the code that sqlite3EndTable will 897 ** generate. 898 */ 899 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 900 if( isView || isVirtual ){ 901 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 902 }else 903 #endif 904 { 905 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 906 } 907 sqlite3OpenMasterTable(pParse, iDb); 908 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 909 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 910 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 911 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 912 sqlite3VdbeAddOp0(v, OP_Close); 913 } 914 915 /* Normal (non-error) return. */ 916 return; 917 918 /* If an error occurs, we jump here */ 919 begin_table_error: 920 sqlite3DbFree(db, zName); 921 return; 922 } 923 924 /* 925 ** This macro is used to compare two strings in a case-insensitive manner. 926 ** It is slightly faster than calling sqlite3StrICmp() directly, but 927 ** produces larger code. 928 ** 929 ** WARNING: This macro is not compatible with the strcmp() family. It 930 ** returns true if the two strings are equal, otherwise false. 931 */ 932 #define STRICMP(x, y) (\ 933 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 934 sqlite3UpperToLower[*(unsigned char *)(y)] \ 935 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 936 937 /* 938 ** Add a new column to the table currently being constructed. 939 ** 940 ** The parser calls this routine once for each column declaration 941 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 942 ** first to get things going. Then this routine is called for each 943 ** column. 944 */ 945 void sqlite3AddColumn(Parse *pParse, Token *pName){ 946 Table *p; 947 int i; 948 char *z; 949 Column *pCol; 950 sqlite3 *db = pParse->db; 951 if( (p = pParse->pNewTable)==0 ) return; 952 #if SQLITE_MAX_COLUMN 953 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 954 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 955 return; 956 } 957 #endif 958 z = sqlite3NameFromToken(db, pName); 959 if( z==0 ) return; 960 for(i=0; i<p->nCol; i++){ 961 if( STRICMP(z, p->aCol[i].zName) ){ 962 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 963 sqlite3DbFree(db, z); 964 return; 965 } 966 } 967 if( (p->nCol & 0x7)==0 ){ 968 Column *aNew; 969 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 970 if( aNew==0 ){ 971 sqlite3DbFree(db, z); 972 return; 973 } 974 p->aCol = aNew; 975 } 976 pCol = &p->aCol[p->nCol]; 977 memset(pCol, 0, sizeof(p->aCol[0])); 978 pCol->zName = z; 979 980 /* If there is no type specified, columns have the default affinity 981 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 982 ** be called next to set pCol->affinity correctly. 983 */ 984 pCol->affinity = SQLITE_AFF_NONE; 985 p->nCol++; 986 } 987 988 /* 989 ** This routine is called by the parser while in the middle of 990 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 991 ** been seen on a column. This routine sets the notNull flag on 992 ** the column currently under construction. 993 */ 994 void sqlite3AddNotNull(Parse *pParse, int onError){ 995 Table *p; 996 int i; 997 if( (p = pParse->pNewTable)==0 ) return; 998 i = p->nCol-1; 999 if( i>=0 ) p->aCol[i].notNull = (u8)onError; 1000 } 1001 1002 /* 1003 ** Scan the column type name zType (length nType) and return the 1004 ** associated affinity type. 1005 ** 1006 ** This routine does a case-independent search of zType for the 1007 ** substrings in the following table. If one of the substrings is 1008 ** found, the corresponding affinity is returned. If zType contains 1009 ** more than one of the substrings, entries toward the top of 1010 ** the table take priority. For example, if zType is 'BLOBINT', 1011 ** SQLITE_AFF_INTEGER is returned. 1012 ** 1013 ** Substring | Affinity 1014 ** -------------------------------- 1015 ** 'INT' | SQLITE_AFF_INTEGER 1016 ** 'CHAR' | SQLITE_AFF_TEXT 1017 ** 'CLOB' | SQLITE_AFF_TEXT 1018 ** 'TEXT' | SQLITE_AFF_TEXT 1019 ** 'BLOB' | SQLITE_AFF_NONE 1020 ** 'REAL' | SQLITE_AFF_REAL 1021 ** 'FLOA' | SQLITE_AFF_REAL 1022 ** 'DOUB' | SQLITE_AFF_REAL 1023 ** 1024 ** If none of the substrings in the above table are found, 1025 ** SQLITE_AFF_NUMERIC is returned. 1026 */ 1027 char sqlite3AffinityType(const Token *pType){ 1028 u32 h = 0; 1029 char aff = SQLITE_AFF_NUMERIC; 1030 const unsigned char *zIn = pType->z; 1031 const unsigned char *zEnd = &pType->z[pType->n]; 1032 1033 while( zIn!=zEnd ){ 1034 h = (h<<8) + sqlite3UpperToLower[*zIn]; 1035 zIn++; 1036 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1037 aff = SQLITE_AFF_TEXT; 1038 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1039 aff = SQLITE_AFF_TEXT; 1040 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1041 aff = SQLITE_AFF_TEXT; 1042 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1043 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1044 aff = SQLITE_AFF_NONE; 1045 #ifndef SQLITE_OMIT_FLOATING_POINT 1046 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1047 && aff==SQLITE_AFF_NUMERIC ){ 1048 aff = SQLITE_AFF_REAL; 1049 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1050 && aff==SQLITE_AFF_NUMERIC ){ 1051 aff = SQLITE_AFF_REAL; 1052 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1053 && aff==SQLITE_AFF_NUMERIC ){ 1054 aff = SQLITE_AFF_REAL; 1055 #endif 1056 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1057 aff = SQLITE_AFF_INTEGER; 1058 break; 1059 } 1060 } 1061 1062 return aff; 1063 } 1064 1065 /* 1066 ** This routine is called by the parser while in the middle of 1067 ** parsing a CREATE TABLE statement. The pFirst token is the first 1068 ** token in the sequence of tokens that describe the type of the 1069 ** column currently under construction. pLast is the last token 1070 ** in the sequence. Use this information to construct a string 1071 ** that contains the typename of the column and store that string 1072 ** in zType. 1073 */ 1074 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1075 Table *p; 1076 int i; 1077 Column *pCol; 1078 sqlite3 *db; 1079 1080 if( (p = pParse->pNewTable)==0 ) return; 1081 i = p->nCol-1; 1082 if( i<0 ) return; 1083 pCol = &p->aCol[i]; 1084 db = pParse->db; 1085 sqlite3DbFree(db, pCol->zType); 1086 pCol->zType = sqlite3NameFromToken(db, pType); 1087 pCol->affinity = sqlite3AffinityType(pType); 1088 } 1089 1090 /* 1091 ** The expression is the default value for the most recently added column 1092 ** of the table currently under construction. 1093 ** 1094 ** Default value expressions must be constant. Raise an exception if this 1095 ** is not the case. 1096 ** 1097 ** This routine is called by the parser while in the middle of 1098 ** parsing a CREATE TABLE statement. 1099 */ 1100 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1101 Table *p; 1102 Column *pCol; 1103 sqlite3 *db = pParse->db; 1104 if( (p = pParse->pNewTable)!=0 ){ 1105 pCol = &(p->aCol[p->nCol-1]); 1106 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1107 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1108 pCol->zName); 1109 }else{ 1110 Expr *pCopy; 1111 sqlite3ExprDelete(db, pCol->pDflt); 1112 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); 1113 if( pCopy ){ 1114 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); 1115 } 1116 } 1117 } 1118 sqlite3ExprDelete(db, pExpr); 1119 } 1120 1121 /* 1122 ** Designate the PRIMARY KEY for the table. pList is a list of names 1123 ** of columns that form the primary key. If pList is NULL, then the 1124 ** most recently added column of the table is the primary key. 1125 ** 1126 ** A table can have at most one primary key. If the table already has 1127 ** a primary key (and this is the second primary key) then create an 1128 ** error. 1129 ** 1130 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1131 ** then we will try to use that column as the rowid. Set the Table.iPKey 1132 ** field of the table under construction to be the index of the 1133 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1134 ** no INTEGER PRIMARY KEY. 1135 ** 1136 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1137 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1138 */ 1139 void sqlite3AddPrimaryKey( 1140 Parse *pParse, /* Parsing context */ 1141 ExprList *pList, /* List of field names to be indexed */ 1142 int onError, /* What to do with a uniqueness conflict */ 1143 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1144 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1145 ){ 1146 Table *pTab = pParse->pNewTable; 1147 char *zType = 0; 1148 int iCol = -1, i; 1149 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1150 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1151 sqlite3ErrorMsg(pParse, 1152 "table \"%s\" has more than one primary key", pTab->zName); 1153 goto primary_key_exit; 1154 } 1155 pTab->tabFlags |= TF_HasPrimaryKey; 1156 if( pList==0 ){ 1157 iCol = pTab->nCol - 1; 1158 pTab->aCol[iCol].isPrimKey = 1; 1159 }else{ 1160 for(i=0; i<pList->nExpr; i++){ 1161 for(iCol=0; iCol<pTab->nCol; iCol++){ 1162 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1163 break; 1164 } 1165 } 1166 if( iCol<pTab->nCol ){ 1167 pTab->aCol[iCol].isPrimKey = 1; 1168 } 1169 } 1170 if( pList->nExpr>1 ) iCol = -1; 1171 } 1172 if( iCol>=0 && iCol<pTab->nCol ){ 1173 zType = pTab->aCol[iCol].zType; 1174 } 1175 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1176 && sortOrder==SQLITE_SO_ASC ){ 1177 pTab->iPKey = iCol; 1178 pTab->keyConf = (u8)onError; 1179 assert( autoInc==0 || autoInc==1 ); 1180 pTab->tabFlags |= autoInc*TF_Autoincrement; 1181 }else if( autoInc ){ 1182 #ifndef SQLITE_OMIT_AUTOINCREMENT 1183 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1184 "INTEGER PRIMARY KEY"); 1185 #endif 1186 }else{ 1187 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1188 pList = 0; 1189 } 1190 1191 primary_key_exit: 1192 sqlite3ExprListDelete(pParse->db, pList); 1193 return; 1194 } 1195 1196 /* 1197 ** Add a new CHECK constraint to the table currently under construction. 1198 */ 1199 void sqlite3AddCheckConstraint( 1200 Parse *pParse, /* Parsing context */ 1201 Expr *pCheckExpr /* The check expression */ 1202 ){ 1203 sqlite3 *db = pParse->db; 1204 #ifndef SQLITE_OMIT_CHECK 1205 Table *pTab = pParse->pNewTable; 1206 if( pTab && !IN_DECLARE_VTAB ){ 1207 /* The CHECK expression must be duplicated so that tokens refer 1208 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1209 ** statement */ 1210 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 1211 sqlite3ExprDup(db, pCheckExpr)); 1212 } 1213 #endif 1214 sqlite3ExprDelete(db, pCheckExpr); 1215 } 1216 1217 /* 1218 ** Set the collation function of the most recently parsed table column 1219 ** to the CollSeq given. 1220 */ 1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1222 Table *p; 1223 int i; 1224 char *zColl; /* Dequoted name of collation sequence */ 1225 sqlite3 *db; 1226 1227 if( (p = pParse->pNewTable)==0 ) return; 1228 i = p->nCol-1; 1229 db = pParse->db; 1230 zColl = sqlite3NameFromToken(db, pToken); 1231 if( !zColl ) return; 1232 1233 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ 1234 Index *pIdx; 1235 p->aCol[i].zColl = zColl; 1236 1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1238 ** then an index may have been created on this column before the 1239 ** collation type was added. Correct this if it is the case. 1240 */ 1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1242 assert( pIdx->nColumn==1 ); 1243 if( pIdx->aiColumn[0]==i ){ 1244 pIdx->azColl[0] = p->aCol[i].zColl; 1245 } 1246 } 1247 }else{ 1248 sqlite3DbFree(db, zColl); 1249 } 1250 } 1251 1252 /* 1253 ** This function returns the collation sequence for database native text 1254 ** encoding identified by the string zName, length nName. 1255 ** 1256 ** If the requested collation sequence is not available, or not available 1257 ** in the database native encoding, the collation factory is invoked to 1258 ** request it. If the collation factory does not supply such a sequence, 1259 ** and the sequence is available in another text encoding, then that is 1260 ** returned instead. 1261 ** 1262 ** If no versions of the requested collations sequence are available, or 1263 ** another error occurs, NULL is returned and an error message written into 1264 ** pParse. 1265 ** 1266 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1267 ** invokes the collation factory if the named collation cannot be found 1268 ** and generates an error message. 1269 */ 1270 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1271 sqlite3 *db = pParse->db; 1272 u8 enc = ENC(db); 1273 u8 initbusy = db->init.busy; 1274 CollSeq *pColl; 1275 1276 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1277 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1278 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1279 if( !pColl ){ 1280 if( nName<0 ){ 1281 nName = sqlite3Strlen(db, zName); 1282 } 1283 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1284 pColl = 0; 1285 } 1286 } 1287 1288 return pColl; 1289 } 1290 1291 1292 /* 1293 ** Generate code that will increment the schema cookie. 1294 ** 1295 ** The schema cookie is used to determine when the schema for the 1296 ** database changes. After each schema change, the cookie value 1297 ** changes. When a process first reads the schema it records the 1298 ** cookie. Thereafter, whenever it goes to access the database, 1299 ** it checks the cookie to make sure the schema has not changed 1300 ** since it was last read. 1301 ** 1302 ** This plan is not completely bullet-proof. It is possible for 1303 ** the schema to change multiple times and for the cookie to be 1304 ** set back to prior value. But schema changes are infrequent 1305 ** and the probability of hitting the same cookie value is only 1306 ** 1 chance in 2^32. So we're safe enough. 1307 */ 1308 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1309 int r1 = sqlite3GetTempReg(pParse); 1310 sqlite3 *db = pParse->db; 1311 Vdbe *v = pParse->pVdbe; 1312 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1313 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); 1314 sqlite3ReleaseTempReg(pParse, r1); 1315 } 1316 1317 /* 1318 ** Measure the number of characters needed to output the given 1319 ** identifier. The number returned includes any quotes used 1320 ** but does not include the null terminator. 1321 ** 1322 ** The estimate is conservative. It might be larger that what is 1323 ** really needed. 1324 */ 1325 static int identLength(const char *z){ 1326 int n; 1327 for(n=0; *z; n++, z++){ 1328 if( *z=='"' ){ n++; } 1329 } 1330 return n + 2; 1331 } 1332 1333 /* 1334 ** Write an identifier onto the end of the given string. Add 1335 ** quote characters as needed. 1336 */ 1337 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1338 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1339 int i, j, needQuote; 1340 i = *pIdx; 1341 for(j=0; zIdent[j]; j++){ 1342 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1343 } 1344 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 1345 || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1346 if( needQuote ) z[i++] = '"'; 1347 for(j=0; zIdent[j]; j++){ 1348 z[i++] = zIdent[j]; 1349 if( zIdent[j]=='"' ) z[i++] = '"'; 1350 } 1351 if( needQuote ) z[i++] = '"'; 1352 z[i] = 0; 1353 *pIdx = i; 1354 } 1355 1356 /* 1357 ** Generate a CREATE TABLE statement appropriate for the given 1358 ** table. Memory to hold the text of the statement is obtained 1359 ** from sqliteMalloc() and must be freed by the calling function. 1360 */ 1361 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){ 1362 int i, k, n; 1363 char *zStmt; 1364 char *zSep, *zSep2, *zEnd, *z; 1365 Column *pCol; 1366 n = 0; 1367 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1368 n += identLength(pCol->zName); 1369 z = pCol->zType; 1370 if( z ){ 1371 n += (sqlite3Strlen30(z) + 1); 1372 } 1373 } 1374 n += identLength(p->zName); 1375 if( n<50 ){ 1376 zSep = ""; 1377 zSep2 = ","; 1378 zEnd = ")"; 1379 }else{ 1380 zSep = "\n "; 1381 zSep2 = ",\n "; 1382 zEnd = "\n)"; 1383 } 1384 n += 35 + 6*p->nCol; 1385 zStmt = sqlite3Malloc( n ); 1386 if( zStmt==0 ){ 1387 db->mallocFailed = 1; 1388 return 0; 1389 } 1390 sqlite3_snprintf(n, zStmt, 1391 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); 1392 k = sqlite3Strlen30(zStmt); 1393 identPut(zStmt, &k, p->zName); 1394 zStmt[k++] = '('; 1395 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1396 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1397 k += sqlite3Strlen30(&zStmt[k]); 1398 zSep = zSep2; 1399 identPut(zStmt, &k, pCol->zName); 1400 if( (z = pCol->zType)!=0 ){ 1401 zStmt[k++] = ' '; 1402 assert( (int)(sqlite3Strlen30(z)+k+1)<=n ); 1403 sqlite3_snprintf(n-k, &zStmt[k], "%s", z); 1404 k += sqlite3Strlen30(z); 1405 } 1406 } 1407 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1408 return zStmt; 1409 } 1410 1411 /* 1412 ** This routine is called to report the final ")" that terminates 1413 ** a CREATE TABLE statement. 1414 ** 1415 ** The table structure that other action routines have been building 1416 ** is added to the internal hash tables, assuming no errors have 1417 ** occurred. 1418 ** 1419 ** An entry for the table is made in the master table on disk, unless 1420 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1421 ** it means we are reading the sqlite_master table because we just 1422 ** connected to the database or because the sqlite_master table has 1423 ** recently changed, so the entry for this table already exists in 1424 ** the sqlite_master table. We do not want to create it again. 1425 ** 1426 ** If the pSelect argument is not NULL, it means that this routine 1427 ** was called to create a table generated from a 1428 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1429 ** the new table will match the result set of the SELECT. 1430 */ 1431 void sqlite3EndTable( 1432 Parse *pParse, /* Parse context */ 1433 Token *pCons, /* The ',' token after the last column defn. */ 1434 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1435 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1436 ){ 1437 Table *p; 1438 sqlite3 *db = pParse->db; 1439 int iDb; 1440 1441 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { 1442 return; 1443 } 1444 p = pParse->pNewTable; 1445 if( p==0 ) return; 1446 1447 assert( !db->init.busy || !pSelect ); 1448 1449 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1450 1451 #ifndef SQLITE_OMIT_CHECK 1452 /* Resolve names in all CHECK constraint expressions. 1453 */ 1454 if( p->pCheck ){ 1455 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1456 NameContext sNC; /* Name context for pParse->pNewTable */ 1457 1458 memset(&sNC, 0, sizeof(sNC)); 1459 memset(&sSrc, 0, sizeof(sSrc)); 1460 sSrc.nSrc = 1; 1461 sSrc.a[0].zName = p->zName; 1462 sSrc.a[0].pTab = p; 1463 sSrc.a[0].iCursor = -1; 1464 sNC.pParse = pParse; 1465 sNC.pSrcList = &sSrc; 1466 sNC.isCheck = 1; 1467 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1468 return; 1469 } 1470 } 1471 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1472 1473 /* If the db->init.busy is 1 it means we are reading the SQL off the 1474 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1475 ** So do not write to the disk again. Extract the root page number 1476 ** for the table from the db->init.newTnum field. (The page number 1477 ** should have been put there by the sqliteOpenCb routine.) 1478 */ 1479 if( db->init.busy ){ 1480 p->tnum = db->init.newTnum; 1481 } 1482 1483 /* If not initializing, then create a record for the new table 1484 ** in the SQLITE_MASTER table of the database. The record number 1485 ** for the new table entry should already be on the stack. 1486 ** 1487 ** If this is a TEMPORARY table, write the entry into the auxiliary 1488 ** file instead of into the main database file. 1489 */ 1490 if( !db->init.busy ){ 1491 int n; 1492 Vdbe *v; 1493 char *zType; /* "view" or "table" */ 1494 char *zType2; /* "VIEW" or "TABLE" */ 1495 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1496 1497 v = sqlite3GetVdbe(pParse); 1498 if( v==0 ) return; 1499 1500 sqlite3VdbeAddOp1(v, OP_Close, 0); 1501 1502 /* Create the rootpage for the new table and push it onto the stack. 1503 ** A view has no rootpage, so just push a zero onto the stack for 1504 ** views. Initialize zType at the same time. 1505 */ 1506 if( p->pSelect==0 ){ 1507 /* A regular table */ 1508 zType = "table"; 1509 zType2 = "TABLE"; 1510 #ifndef SQLITE_OMIT_VIEW 1511 }else{ 1512 /* A view */ 1513 zType = "view"; 1514 zType2 = "VIEW"; 1515 #endif 1516 } 1517 1518 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1519 ** statement to populate the new table. The root-page number for the 1520 ** new table is on the top of the vdbe stack. 1521 ** 1522 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1523 ** suitable state to query for the column names and types to be used 1524 ** by the new table. 1525 ** 1526 ** A shared-cache write-lock is not required to write to the new table, 1527 ** as a schema-lock must have already been obtained to create it. Since 1528 ** a schema-lock excludes all other database users, the write-lock would 1529 ** be redundant. 1530 */ 1531 if( pSelect ){ 1532 SelectDest dest; 1533 Table *pSelTab; 1534 1535 assert(pParse->nTab==0); 1536 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1537 sqlite3VdbeChangeP5(v, 1); 1538 pParse->nTab = 2; 1539 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1540 sqlite3Select(pParse, pSelect, &dest); 1541 sqlite3VdbeAddOp1(v, OP_Close, 1); 1542 if( pParse->nErr==0 ){ 1543 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1544 if( pSelTab==0 ) return; 1545 assert( p->aCol==0 ); 1546 p->nCol = pSelTab->nCol; 1547 p->aCol = pSelTab->aCol; 1548 pSelTab->nCol = 0; 1549 pSelTab->aCol = 0; 1550 sqlite3DeleteTable(pSelTab); 1551 } 1552 } 1553 1554 /* Compute the complete text of the CREATE statement */ 1555 if( pSelect ){ 1556 zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema); 1557 }else{ 1558 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1559 zStmt = sqlite3MPrintf(db, 1560 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1561 ); 1562 } 1563 1564 /* A slot for the record has already been allocated in the 1565 ** SQLITE_MASTER table. We just need to update that slot with all 1566 ** the information we've collected. The rowid for the preallocated 1567 ** slot is the 2nd item on the stack. The top of the stack is the 1568 ** root page for the new table (or a 0 if this is a view). 1569 */ 1570 sqlite3NestedParse(pParse, 1571 "UPDATE %Q.%s " 1572 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1573 "WHERE rowid=#%d", 1574 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1575 zType, 1576 p->zName, 1577 p->zName, 1578 pParse->regRoot, 1579 zStmt, 1580 pParse->regRowid 1581 ); 1582 sqlite3DbFree(db, zStmt); 1583 sqlite3ChangeCookie(pParse, iDb); 1584 1585 #ifndef SQLITE_OMIT_AUTOINCREMENT 1586 /* Check to see if we need to create an sqlite_sequence table for 1587 ** keeping track of autoincrement keys. 1588 */ 1589 if( p->tabFlags & TF_Autoincrement ){ 1590 Db *pDb = &db->aDb[iDb]; 1591 if( pDb->pSchema->pSeqTab==0 ){ 1592 sqlite3NestedParse(pParse, 1593 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1594 pDb->zName 1595 ); 1596 } 1597 } 1598 #endif 1599 1600 /* Reparse everything to update our internal data structures */ 1601 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1602 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1603 } 1604 1605 1606 /* Add the table to the in-memory representation of the database. 1607 */ 1608 if( db->init.busy && pParse->nErr==0 ){ 1609 Table *pOld; 1610 FKey *pFKey; 1611 Schema *pSchema = p->pSchema; 1612 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1613 sqlite3Strlen30(p->zName)+1,p); 1614 if( pOld ){ 1615 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1616 db->mallocFailed = 1; 1617 return; 1618 } 1619 #ifndef SQLITE_OMIT_FOREIGN_KEY 1620 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1621 void *data; 1622 int nTo = sqlite3Strlen30(pFKey->zTo) + 1; 1623 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1624 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1625 if( data==(void *)pFKey ){ 1626 db->mallocFailed = 1; 1627 } 1628 } 1629 #endif 1630 pParse->pNewTable = 0; 1631 db->nTable++; 1632 db->flags |= SQLITE_InternChanges; 1633 1634 #ifndef SQLITE_OMIT_ALTERTABLE 1635 if( !p->pSelect ){ 1636 const char *zName = (const char *)pParse->sNameToken.z; 1637 int nName; 1638 assert( !pSelect && pCons && pEnd ); 1639 if( pCons->z==0 ){ 1640 pCons = pEnd; 1641 } 1642 nName = (int)((const char *)pCons->z - zName); 1643 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1644 } 1645 #endif 1646 } 1647 } 1648 1649 #ifndef SQLITE_OMIT_VIEW 1650 /* 1651 ** The parser calls this routine in order to create a new VIEW 1652 */ 1653 void sqlite3CreateView( 1654 Parse *pParse, /* The parsing context */ 1655 Token *pBegin, /* The CREATE token that begins the statement */ 1656 Token *pName1, /* The token that holds the name of the view */ 1657 Token *pName2, /* The token that holds the name of the view */ 1658 Select *pSelect, /* A SELECT statement that will become the new view */ 1659 int isTemp, /* TRUE for a TEMPORARY view */ 1660 int noErr /* Suppress error messages if VIEW already exists */ 1661 ){ 1662 Table *p; 1663 int n; 1664 const unsigned char *z; 1665 Token sEnd; 1666 DbFixer sFix; 1667 Token *pName; 1668 int iDb; 1669 sqlite3 *db = pParse->db; 1670 1671 if( pParse->nVar>0 ){ 1672 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1673 sqlite3SelectDelete(db, pSelect); 1674 return; 1675 } 1676 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1677 p = pParse->pNewTable; 1678 if( p==0 || pParse->nErr ){ 1679 sqlite3SelectDelete(db, pSelect); 1680 return; 1681 } 1682 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1683 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1684 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1685 && sqlite3FixSelect(&sFix, pSelect) 1686 ){ 1687 sqlite3SelectDelete(db, pSelect); 1688 return; 1689 } 1690 1691 /* Make a copy of the entire SELECT statement that defines the view. 1692 ** This will force all the Expr.token.z values to be dynamically 1693 ** allocated rather than point to the input string - which means that 1694 ** they will persist after the current sqlite3_exec() call returns. 1695 */ 1696 p->pSelect = sqlite3SelectDup(db, pSelect); 1697 sqlite3SelectDelete(db, pSelect); 1698 if( db->mallocFailed ){ 1699 return; 1700 } 1701 if( !db->init.busy ){ 1702 sqlite3ViewGetColumnNames(pParse, p); 1703 } 1704 1705 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1706 ** the end. 1707 */ 1708 sEnd = pParse->sLastToken; 1709 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1710 sEnd.z += sEnd.n; 1711 } 1712 sEnd.n = 0; 1713 n = (int)(sEnd.z - pBegin->z); 1714 z = (const unsigned char*)pBegin->z; 1715 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1716 sEnd.z = &z[n-1]; 1717 sEnd.n = 1; 1718 1719 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1720 sqlite3EndTable(pParse, 0, &sEnd, 0); 1721 return; 1722 } 1723 #endif /* SQLITE_OMIT_VIEW */ 1724 1725 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1726 /* 1727 ** The Table structure pTable is really a VIEW. Fill in the names of 1728 ** the columns of the view in the pTable structure. Return the number 1729 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1730 */ 1731 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1732 Table *pSelTab; /* A fake table from which we get the result set */ 1733 Select *pSel; /* Copy of the SELECT that implements the view */ 1734 int nErr = 0; /* Number of errors encountered */ 1735 int n; /* Temporarily holds the number of cursors assigned */ 1736 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1737 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1738 1739 assert( pTable ); 1740 1741 #ifndef SQLITE_OMIT_VIRTUALTABLE 1742 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1743 return SQLITE_ERROR; 1744 } 1745 if( IsVirtual(pTable) ) return 0; 1746 #endif 1747 1748 #ifndef SQLITE_OMIT_VIEW 1749 /* A positive nCol means the columns names for this view are 1750 ** already known. 1751 */ 1752 if( pTable->nCol>0 ) return 0; 1753 1754 /* A negative nCol is a special marker meaning that we are currently 1755 ** trying to compute the column names. If we enter this routine with 1756 ** a negative nCol, it means two or more views form a loop, like this: 1757 ** 1758 ** CREATE VIEW one AS SELECT * FROM two; 1759 ** CREATE VIEW two AS SELECT * FROM one; 1760 ** 1761 ** Actually, this error is caught previously and so the following test 1762 ** should always fail. But we will leave it in place just to be safe. 1763 */ 1764 if( pTable->nCol<0 ){ 1765 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1766 return 1; 1767 } 1768 assert( pTable->nCol>=0 ); 1769 1770 /* If we get this far, it means we need to compute the table names. 1771 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1772 ** "*" elements in the results set of the view and will assign cursors 1773 ** to the elements of the FROM clause. But we do not want these changes 1774 ** to be permanent. So the computation is done on a copy of the SELECT 1775 ** statement that defines the view. 1776 */ 1777 assert( pTable->pSelect ); 1778 pSel = sqlite3SelectDup(db, pTable->pSelect); 1779 if( pSel ){ 1780 n = pParse->nTab; 1781 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1782 pTable->nCol = -1; 1783 #ifndef SQLITE_OMIT_AUTHORIZATION 1784 xAuth = db->xAuth; 1785 db->xAuth = 0; 1786 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1787 db->xAuth = xAuth; 1788 #else 1789 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1790 #endif 1791 pParse->nTab = n; 1792 if( pSelTab ){ 1793 assert( pTable->aCol==0 ); 1794 pTable->nCol = pSelTab->nCol; 1795 pTable->aCol = pSelTab->aCol; 1796 pSelTab->nCol = 0; 1797 pSelTab->aCol = 0; 1798 sqlite3DeleteTable(pSelTab); 1799 pTable->pSchema->flags |= DB_UnresetViews; 1800 }else{ 1801 pTable->nCol = 0; 1802 nErr++; 1803 } 1804 sqlite3SelectDelete(db, pSel); 1805 } else { 1806 nErr++; 1807 } 1808 #endif /* SQLITE_OMIT_VIEW */ 1809 return nErr; 1810 } 1811 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1812 1813 #ifndef SQLITE_OMIT_VIEW 1814 /* 1815 ** Clear the column names from every VIEW in database idx. 1816 */ 1817 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1818 HashElem *i; 1819 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1820 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1821 Table *pTab = sqliteHashData(i); 1822 if( pTab->pSelect ){ 1823 sqliteResetColumnNames(pTab); 1824 } 1825 } 1826 DbClearProperty(db, idx, DB_UnresetViews); 1827 } 1828 #else 1829 # define sqliteViewResetAll(A,B) 1830 #endif /* SQLITE_OMIT_VIEW */ 1831 1832 /* 1833 ** This function is called by the VDBE to adjust the internal schema 1834 ** used by SQLite when the btree layer moves a table root page. The 1835 ** root-page of a table or index in database iDb has changed from iFrom 1836 ** to iTo. 1837 ** 1838 ** Ticket #1728: The symbol table might still contain information 1839 ** on tables and/or indices that are the process of being deleted. 1840 ** If you are unlucky, one of those deleted indices or tables might 1841 ** have the same rootpage number as the real table or index that is 1842 ** being moved. So we cannot stop searching after the first match 1843 ** because the first match might be for one of the deleted indices 1844 ** or tables and not the table/index that is actually being moved. 1845 ** We must continue looping until all tables and indices with 1846 ** rootpage==iFrom have been converted to have a rootpage of iTo 1847 ** in order to be certain that we got the right one. 1848 */ 1849 #ifndef SQLITE_OMIT_AUTOVACUUM 1850 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1851 HashElem *pElem; 1852 Hash *pHash; 1853 1854 pHash = &pDb->pSchema->tblHash; 1855 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1856 Table *pTab = sqliteHashData(pElem); 1857 if( pTab->tnum==iFrom ){ 1858 pTab->tnum = iTo; 1859 } 1860 } 1861 pHash = &pDb->pSchema->idxHash; 1862 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1863 Index *pIdx = sqliteHashData(pElem); 1864 if( pIdx->tnum==iFrom ){ 1865 pIdx->tnum = iTo; 1866 } 1867 } 1868 } 1869 #endif 1870 1871 /* 1872 ** Write code to erase the table with root-page iTable from database iDb. 1873 ** Also write code to modify the sqlite_master table and internal schema 1874 ** if a root-page of another table is moved by the btree-layer whilst 1875 ** erasing iTable (this can happen with an auto-vacuum database). 1876 */ 1877 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1878 Vdbe *v = sqlite3GetVdbe(pParse); 1879 int r1 = sqlite3GetTempReg(pParse); 1880 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1881 #ifndef SQLITE_OMIT_AUTOVACUUM 1882 /* OP_Destroy stores an in integer r1. If this integer 1883 ** is non-zero, then it is the root page number of a table moved to 1884 ** location iTable. The following code modifies the sqlite_master table to 1885 ** reflect this. 1886 ** 1887 ** The "#%d" in the SQL is a special constant that means whatever value 1888 ** is on the top of the stack. See sqlite3RegisterExpr(). 1889 */ 1890 sqlite3NestedParse(pParse, 1891 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1892 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1893 #endif 1894 sqlite3ReleaseTempReg(pParse, r1); 1895 } 1896 1897 /* 1898 ** Write VDBE code to erase table pTab and all associated indices on disk. 1899 ** Code to update the sqlite_master tables and internal schema definitions 1900 ** in case a root-page belonging to another table is moved by the btree layer 1901 ** is also added (this can happen with an auto-vacuum database). 1902 */ 1903 static void destroyTable(Parse *pParse, Table *pTab){ 1904 #ifdef SQLITE_OMIT_AUTOVACUUM 1905 Index *pIdx; 1906 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1907 destroyRootPage(pParse, pTab->tnum, iDb); 1908 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1909 destroyRootPage(pParse, pIdx->tnum, iDb); 1910 } 1911 #else 1912 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1913 ** is not defined), then it is important to call OP_Destroy on the 1914 ** table and index root-pages in order, starting with the numerically 1915 ** largest root-page number. This guarantees that none of the root-pages 1916 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1917 ** following were coded: 1918 ** 1919 ** OP_Destroy 4 0 1920 ** ... 1921 ** OP_Destroy 5 0 1922 ** 1923 ** and root page 5 happened to be the largest root-page number in the 1924 ** database, then root page 5 would be moved to page 4 by the 1925 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1926 ** a free-list page. 1927 */ 1928 int iTab = pTab->tnum; 1929 int iDestroyed = 0; 1930 1931 while( 1 ){ 1932 Index *pIdx; 1933 int iLargest = 0; 1934 1935 if( iDestroyed==0 || iTab<iDestroyed ){ 1936 iLargest = iTab; 1937 } 1938 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1939 int iIdx = pIdx->tnum; 1940 assert( pIdx->pSchema==pTab->pSchema ); 1941 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1942 iLargest = iIdx; 1943 } 1944 } 1945 if( iLargest==0 ){ 1946 return; 1947 }else{ 1948 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1949 destroyRootPage(pParse, iLargest, iDb); 1950 iDestroyed = iLargest; 1951 } 1952 } 1953 #endif 1954 } 1955 1956 /* 1957 ** This routine is called to do the work of a DROP TABLE statement. 1958 ** pName is the name of the table to be dropped. 1959 */ 1960 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1961 Table *pTab; 1962 Vdbe *v; 1963 sqlite3 *db = pParse->db; 1964 int iDb; 1965 1966 if( pParse->nErr || db->mallocFailed ){ 1967 goto exit_drop_table; 1968 } 1969 assert( pName->nSrc==1 ); 1970 pTab = sqlite3LocateTable(pParse, isView, 1971 pName->a[0].zName, pName->a[0].zDatabase); 1972 1973 if( pTab==0 ){ 1974 if( noErr ){ 1975 sqlite3ErrorClear(pParse); 1976 } 1977 goto exit_drop_table; 1978 } 1979 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1980 assert( iDb>=0 && iDb<db->nDb ); 1981 1982 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 1983 ** it is initialized. 1984 */ 1985 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 1986 goto exit_drop_table; 1987 } 1988 #ifndef SQLITE_OMIT_AUTHORIZATION 1989 { 1990 int code; 1991 const char *zTab = SCHEMA_TABLE(iDb); 1992 const char *zDb = db->aDb[iDb].zName; 1993 const char *zArg2 = 0; 1994 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1995 goto exit_drop_table; 1996 } 1997 if( isView ){ 1998 if( !OMIT_TEMPDB && iDb==1 ){ 1999 code = SQLITE_DROP_TEMP_VIEW; 2000 }else{ 2001 code = SQLITE_DROP_VIEW; 2002 } 2003 #ifndef SQLITE_OMIT_VIRTUALTABLE 2004 }else if( IsVirtual(pTab) ){ 2005 code = SQLITE_DROP_VTABLE; 2006 zArg2 = pTab->pMod->zName; 2007 #endif 2008 }else{ 2009 if( !OMIT_TEMPDB && iDb==1 ){ 2010 code = SQLITE_DROP_TEMP_TABLE; 2011 }else{ 2012 code = SQLITE_DROP_TABLE; 2013 } 2014 } 2015 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2016 goto exit_drop_table; 2017 } 2018 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2019 goto exit_drop_table; 2020 } 2021 } 2022 #endif 2023 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2024 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2025 goto exit_drop_table; 2026 } 2027 2028 #ifndef SQLITE_OMIT_VIEW 2029 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2030 ** on a table. 2031 */ 2032 if( isView && pTab->pSelect==0 ){ 2033 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2034 goto exit_drop_table; 2035 } 2036 if( !isView && pTab->pSelect ){ 2037 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2038 goto exit_drop_table; 2039 } 2040 #endif 2041 2042 /* Generate code to remove the table from the master table 2043 ** on disk. 2044 */ 2045 v = sqlite3GetVdbe(pParse); 2046 if( v ){ 2047 Trigger *pTrigger; 2048 Db *pDb = &db->aDb[iDb]; 2049 sqlite3BeginWriteOperation(pParse, 1, iDb); 2050 2051 #ifndef SQLITE_OMIT_VIRTUALTABLE 2052 if( IsVirtual(pTab) ){ 2053 if( v ){ 2054 sqlite3VdbeAddOp0(v, OP_VBegin); 2055 } 2056 } 2057 #endif 2058 2059 /* Drop all triggers associated with the table being dropped. Code 2060 ** is generated to remove entries from sqlite_master and/or 2061 ** sqlite_temp_master if required. 2062 */ 2063 pTrigger = pTab->pTrigger; 2064 while( pTrigger ){ 2065 assert( pTrigger->pSchema==pTab->pSchema || 2066 pTrigger->pSchema==db->aDb[1].pSchema ); 2067 sqlite3DropTriggerPtr(pParse, pTrigger); 2068 pTrigger = pTrigger->pNext; 2069 } 2070 2071 #ifndef SQLITE_OMIT_AUTOINCREMENT 2072 /* Remove any entries of the sqlite_sequence table associated with 2073 ** the table being dropped. This is done before the table is dropped 2074 ** at the btree level, in case the sqlite_sequence table needs to 2075 ** move as a result of the drop (can happen in auto-vacuum mode). 2076 */ 2077 if( pTab->tabFlags & TF_Autoincrement ){ 2078 sqlite3NestedParse(pParse, 2079 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2080 pDb->zName, pTab->zName 2081 ); 2082 } 2083 #endif 2084 2085 /* Drop all SQLITE_MASTER table and index entries that refer to the 2086 ** table. The program name loops through the master table and deletes 2087 ** every row that refers to a table of the same name as the one being 2088 ** dropped. Triggers are handled seperately because a trigger can be 2089 ** created in the temp database that refers to a table in another 2090 ** database. 2091 */ 2092 sqlite3NestedParse(pParse, 2093 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2094 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2095 2096 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2097 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2098 sqlite3NestedParse(pParse, 2099 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2100 ); 2101 } 2102 2103 if( !isView && !IsVirtual(pTab) ){ 2104 destroyTable(pParse, pTab); 2105 } 2106 2107 /* Remove the table entry from SQLite's internal schema and modify 2108 ** the schema cookie. 2109 */ 2110 if( IsVirtual(pTab) ){ 2111 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2112 } 2113 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2114 sqlite3ChangeCookie(pParse, iDb); 2115 } 2116 sqliteViewResetAll(db, iDb); 2117 2118 exit_drop_table: 2119 sqlite3SrcListDelete(db, pName); 2120 } 2121 2122 /* 2123 ** This routine is called to create a new foreign key on the table 2124 ** currently under construction. pFromCol determines which columns 2125 ** in the current table point to the foreign key. If pFromCol==0 then 2126 ** connect the key to the last column inserted. pTo is the name of 2127 ** the table referred to. pToCol is a list of tables in the other 2128 ** pTo table that the foreign key points to. flags contains all 2129 ** information about the conflict resolution algorithms specified 2130 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2131 ** 2132 ** An FKey structure is created and added to the table currently 2133 ** under construction in the pParse->pNewTable field. The new FKey 2134 ** is not linked into db->aFKey at this point - that does not happen 2135 ** until sqlite3EndTable(). 2136 ** 2137 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2138 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2139 */ 2140 void sqlite3CreateForeignKey( 2141 Parse *pParse, /* Parsing context */ 2142 ExprList *pFromCol, /* Columns in this table that point to other table */ 2143 Token *pTo, /* Name of the other table */ 2144 ExprList *pToCol, /* Columns in the other table */ 2145 int flags /* Conflict resolution algorithms. */ 2146 ){ 2147 sqlite3 *db = pParse->db; 2148 #ifndef SQLITE_OMIT_FOREIGN_KEY 2149 FKey *pFKey = 0; 2150 Table *p = pParse->pNewTable; 2151 int nByte; 2152 int i; 2153 int nCol; 2154 char *z; 2155 2156 assert( pTo!=0 ); 2157 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2158 if( pFromCol==0 ){ 2159 int iCol = p->nCol-1; 2160 if( iCol<0 ) goto fk_end; 2161 if( pToCol && pToCol->nExpr!=1 ){ 2162 sqlite3ErrorMsg(pParse, "foreign key on %s" 2163 " should reference only one column of table %T", 2164 p->aCol[iCol].zName, pTo); 2165 goto fk_end; 2166 } 2167 nCol = 1; 2168 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2169 sqlite3ErrorMsg(pParse, 2170 "number of columns in foreign key does not match the number of " 2171 "columns in the referenced table"); 2172 goto fk_end; 2173 }else{ 2174 nCol = pFromCol->nExpr; 2175 } 2176 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2177 if( pToCol ){ 2178 for(i=0; i<pToCol->nExpr; i++){ 2179 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2180 } 2181 } 2182 pFKey = sqlite3DbMallocZero(db, nByte ); 2183 if( pFKey==0 ){ 2184 goto fk_end; 2185 } 2186 pFKey->pFrom = p; 2187 pFKey->pNextFrom = p->pFKey; 2188 z = (char*)&pFKey[1]; 2189 pFKey->aCol = (struct sColMap*)z; 2190 z += sizeof(struct sColMap)*nCol; 2191 pFKey->zTo = z; 2192 memcpy(z, pTo->z, pTo->n); 2193 z[pTo->n] = 0; 2194 z += pTo->n+1; 2195 pFKey->pNextTo = 0; 2196 pFKey->nCol = nCol; 2197 if( pFromCol==0 ){ 2198 pFKey->aCol[0].iFrom = p->nCol-1; 2199 }else{ 2200 for(i=0; i<nCol; i++){ 2201 int j; 2202 for(j=0; j<p->nCol; j++){ 2203 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2204 pFKey->aCol[i].iFrom = j; 2205 break; 2206 } 2207 } 2208 if( j>=p->nCol ){ 2209 sqlite3ErrorMsg(pParse, 2210 "unknown column \"%s\" in foreign key definition", 2211 pFromCol->a[i].zName); 2212 goto fk_end; 2213 } 2214 } 2215 } 2216 if( pToCol ){ 2217 for(i=0; i<nCol; i++){ 2218 int n = sqlite3Strlen30(pToCol->a[i].zName); 2219 pFKey->aCol[i].zCol = z; 2220 memcpy(z, pToCol->a[i].zName, n); 2221 z[n] = 0; 2222 z += n+1; 2223 } 2224 } 2225 pFKey->isDeferred = 0; 2226 pFKey->deleteConf = (u8)(flags & 0xff); 2227 pFKey->updateConf = (u8)((flags >> 8 ) & 0xff); 2228 pFKey->insertConf = (u8)((flags >> 16 ) & 0xff); 2229 2230 /* Link the foreign key to the table as the last step. 2231 */ 2232 p->pFKey = pFKey; 2233 pFKey = 0; 2234 2235 fk_end: 2236 sqlite3DbFree(db, pFKey); 2237 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2238 sqlite3ExprListDelete(db, pFromCol); 2239 sqlite3ExprListDelete(db, pToCol); 2240 } 2241 2242 /* 2243 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2244 ** clause is seen as part of a foreign key definition. The isDeferred 2245 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2246 ** The behavior of the most recently created foreign key is adjusted 2247 ** accordingly. 2248 */ 2249 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2250 #ifndef SQLITE_OMIT_FOREIGN_KEY 2251 Table *pTab; 2252 FKey *pFKey; 2253 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2254 assert( isDeferred==0 || isDeferred==1 ); 2255 pFKey->isDeferred = (u8)isDeferred; 2256 #endif 2257 } 2258 2259 /* 2260 ** Generate code that will erase and refill index *pIdx. This is 2261 ** used to initialize a newly created index or to recompute the 2262 ** content of an index in response to a REINDEX command. 2263 ** 2264 ** if memRootPage is not negative, it means that the index is newly 2265 ** created. The register specified by memRootPage contains the 2266 ** root page number of the index. If memRootPage is negative, then 2267 ** the index already exists and must be cleared before being refilled and 2268 ** the root page number of the index is taken from pIndex->tnum. 2269 */ 2270 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2271 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2272 int iTab = pParse->nTab; /* Btree cursor used for pTab */ 2273 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ 2274 int addr1; /* Address of top of loop */ 2275 int tnum; /* Root page of index */ 2276 Vdbe *v; /* Generate code into this virtual machine */ 2277 KeyInfo *pKey; /* KeyInfo for index */ 2278 int regIdxKey; /* Registers containing the index key */ 2279 int regRecord; /* Register holding assemblied index record */ 2280 sqlite3 *db = pParse->db; /* The database connection */ 2281 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2282 2283 #ifndef SQLITE_OMIT_AUTHORIZATION 2284 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2285 db->aDb[iDb].zName ) ){ 2286 return; 2287 } 2288 #endif 2289 2290 /* Require a write-lock on the table to perform this operation */ 2291 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2292 2293 v = sqlite3GetVdbe(pParse); 2294 if( v==0 ) return; 2295 if( memRootPage>=0 ){ 2296 tnum = memRootPage; 2297 }else{ 2298 tnum = pIndex->tnum; 2299 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2300 } 2301 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2302 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2303 (char *)pKey, P4_KEYINFO_HANDOFF); 2304 if( memRootPage>=0 ){ 2305 sqlite3VdbeChangeP5(v, 1); 2306 } 2307 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2308 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2309 regRecord = sqlite3GetTempReg(pParse); 2310 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2311 if( pIndex->onError!=OE_None ){ 2312 int j1, j2; 2313 int regRowid; 2314 2315 regRowid = regIdxKey + pIndex->nColumn; 2316 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); 2317 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, 2318 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32); 2319 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, 2320 "indexed columns are not unique", P4_STATIC); 2321 sqlite3VdbeJumpHere(v, j1); 2322 sqlite3VdbeJumpHere(v, j2); 2323 } 2324 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2325 sqlite3ReleaseTempReg(pParse, regRecord); 2326 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2327 sqlite3VdbeJumpHere(v, addr1); 2328 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2329 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2330 } 2331 2332 /* 2333 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2334 ** and pTblList is the name of the table that is to be indexed. Both will 2335 ** be NULL for a primary key or an index that is created to satisfy a 2336 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2337 ** as the table to be indexed. pParse->pNewTable is a table that is 2338 ** currently being constructed by a CREATE TABLE statement. 2339 ** 2340 ** pList is a list of columns to be indexed. pList will be NULL if this 2341 ** is a primary key or unique-constraint on the most recent column added 2342 ** to the table currently under construction. 2343 */ 2344 void sqlite3CreateIndex( 2345 Parse *pParse, /* All information about this parse */ 2346 Token *pName1, /* First part of index name. May be NULL */ 2347 Token *pName2, /* Second part of index name. May be NULL */ 2348 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2349 ExprList *pList, /* A list of columns to be indexed */ 2350 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2351 Token *pStart, /* The CREATE token that begins this statement */ 2352 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2353 int sortOrder, /* Sort order of primary key when pList==NULL */ 2354 int ifNotExist /* Omit error if index already exists */ 2355 ){ 2356 Table *pTab = 0; /* Table to be indexed */ 2357 Index *pIndex = 0; /* The index to be created */ 2358 char *zName = 0; /* Name of the index */ 2359 int nName; /* Number of characters in zName */ 2360 int i, j; 2361 Token nullId; /* Fake token for an empty ID list */ 2362 DbFixer sFix; /* For assigning database names to pTable */ 2363 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2364 sqlite3 *db = pParse->db; 2365 Db *pDb; /* The specific table containing the indexed database */ 2366 int iDb; /* Index of the database that is being written */ 2367 Token *pName = 0; /* Unqualified name of the index to create */ 2368 struct ExprList_item *pListItem; /* For looping over pList */ 2369 int nCol; 2370 int nExtra = 0; 2371 char *zExtra; 2372 2373 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ 2374 goto exit_create_index; 2375 } 2376 2377 /* 2378 ** Find the table that is to be indexed. Return early if not found. 2379 */ 2380 if( pTblName!=0 ){ 2381 2382 /* Use the two-part index name to determine the database 2383 ** to search for the table. 'Fix' the table name to this db 2384 ** before looking up the table. 2385 */ 2386 assert( pName1 && pName2 ); 2387 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2388 if( iDb<0 ) goto exit_create_index; 2389 2390 #ifndef SQLITE_OMIT_TEMPDB 2391 /* If the index name was unqualified, check if the the table 2392 ** is a temp table. If so, set the database to 1. Do not do this 2393 ** if initialising a database schema. 2394 */ 2395 if( !db->init.busy ){ 2396 pTab = sqlite3SrcListLookup(pParse, pTblName); 2397 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2398 iDb = 1; 2399 } 2400 } 2401 #endif 2402 2403 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2404 sqlite3FixSrcList(&sFix, pTblName) 2405 ){ 2406 /* Because the parser constructs pTblName from a single identifier, 2407 ** sqlite3FixSrcList can never fail. */ 2408 assert(0); 2409 } 2410 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2411 pTblName->a[0].zDatabase); 2412 if( !pTab || db->mallocFailed ) goto exit_create_index; 2413 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2414 }else{ 2415 assert( pName==0 ); 2416 pTab = pParse->pNewTable; 2417 if( !pTab ) goto exit_create_index; 2418 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2419 } 2420 pDb = &db->aDb[iDb]; 2421 2422 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2423 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2424 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2425 goto exit_create_index; 2426 } 2427 #ifndef SQLITE_OMIT_VIEW 2428 if( pTab->pSelect ){ 2429 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2430 goto exit_create_index; 2431 } 2432 #endif 2433 #ifndef SQLITE_OMIT_VIRTUALTABLE 2434 if( IsVirtual(pTab) ){ 2435 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2436 goto exit_create_index; 2437 } 2438 #endif 2439 2440 /* 2441 ** Find the name of the index. Make sure there is not already another 2442 ** index or table with the same name. 2443 ** 2444 ** Exception: If we are reading the names of permanent indices from the 2445 ** sqlite_master table (because some other process changed the schema) and 2446 ** one of the index names collides with the name of a temporary table or 2447 ** index, then we will continue to process this index. 2448 ** 2449 ** If pName==0 it means that we are 2450 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2451 ** own name. 2452 */ 2453 if( pName ){ 2454 zName = sqlite3NameFromToken(db, pName); 2455 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2456 if( zName==0 ) goto exit_create_index; 2457 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2458 goto exit_create_index; 2459 } 2460 if( !db->init.busy ){ 2461 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2462 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2463 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2464 goto exit_create_index; 2465 } 2466 } 2467 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2468 if( !ifNotExist ){ 2469 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2470 } 2471 goto exit_create_index; 2472 } 2473 }else{ 2474 int n; 2475 Index *pLoop; 2476 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2477 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2478 if( zName==0 ){ 2479 goto exit_create_index; 2480 } 2481 } 2482 2483 /* Check for authorization to create an index. 2484 */ 2485 #ifndef SQLITE_OMIT_AUTHORIZATION 2486 { 2487 const char *zDb = pDb->zName; 2488 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2489 goto exit_create_index; 2490 } 2491 i = SQLITE_CREATE_INDEX; 2492 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2493 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2494 goto exit_create_index; 2495 } 2496 } 2497 #endif 2498 2499 /* If pList==0, it means this routine was called to make a primary 2500 ** key out of the last column added to the table under construction. 2501 ** So create a fake list to simulate this. 2502 */ 2503 if( pList==0 ){ 2504 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2505 nullId.n = sqlite3Strlen30((char*)nullId.z); 2506 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); 2507 if( pList==0 ) goto exit_create_index; 2508 pList->a[0].sortOrder = (u8)sortOrder; 2509 } 2510 2511 /* Figure out how many bytes of space are required to store explicitly 2512 ** specified collation sequence names. 2513 */ 2514 for(i=0; i<pList->nExpr; i++){ 2515 Expr *pExpr; 2516 CollSeq *pColl; 2517 if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){ 2518 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2519 } 2520 } 2521 2522 /* 2523 ** Allocate the index structure. 2524 */ 2525 nName = sqlite3Strlen30(zName); 2526 nCol = pList->nExpr; 2527 pIndex = sqlite3DbMallocZero(db, 2528 sizeof(Index) + /* Index structure */ 2529 sizeof(int)*nCol + /* Index.aiColumn */ 2530 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2531 sizeof(char *)*nCol + /* Index.azColl */ 2532 sizeof(u8)*nCol + /* Index.aSortOrder */ 2533 nName + 1 + /* Index.zName */ 2534 nExtra /* Collation sequence names */ 2535 ); 2536 if( db->mallocFailed ){ 2537 goto exit_create_index; 2538 } 2539 pIndex->azColl = (char**)(&pIndex[1]); 2540 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2541 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2542 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2543 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2544 zExtra = (char *)(&pIndex->zName[nName+1]); 2545 memcpy(pIndex->zName, zName, nName+1); 2546 pIndex->pTable = pTab; 2547 pIndex->nColumn = pList->nExpr; 2548 pIndex->onError = (u8)onError; 2549 pIndex->autoIndex = (u8)(pName==0); 2550 pIndex->pSchema = db->aDb[iDb].pSchema; 2551 2552 /* Check to see if we should honor DESC requests on index columns 2553 */ 2554 if( pDb->pSchema->file_format>=4 ){ 2555 sortOrderMask = -1; /* Honor DESC */ 2556 }else{ 2557 sortOrderMask = 0; /* Ignore DESC */ 2558 } 2559 2560 /* Scan the names of the columns of the table to be indexed and 2561 ** load the column indices into the Index structure. Report an error 2562 ** if any column is not found. 2563 */ 2564 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2565 const char *zColName = pListItem->zName; 2566 Column *pTabCol; 2567 int requestedSortOrder; 2568 char *zColl; /* Collation sequence name */ 2569 2570 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2571 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2572 } 2573 if( j>=pTab->nCol ){ 2574 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2575 pTab->zName, zColName); 2576 goto exit_create_index; 2577 } 2578 /* TODO: Add a test to make sure that the same column is not named 2579 ** more than once within the same index. Only the first instance of 2580 ** the column will ever be used by the optimizer. Note that using the 2581 ** same column more than once cannot be an error because that would 2582 ** break backwards compatibility - it needs to be a warning. 2583 */ 2584 pIndex->aiColumn[i] = j; 2585 if( pListItem->pExpr && pListItem->pExpr->pColl ){ 2586 assert( pListItem->pExpr->pColl ); 2587 zColl = zExtra; 2588 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); 2589 zExtra += (sqlite3Strlen30(zColl) + 1); 2590 }else{ 2591 zColl = pTab->aCol[j].zColl; 2592 if( !zColl ){ 2593 zColl = db->pDfltColl->zName; 2594 } 2595 } 2596 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2597 goto exit_create_index; 2598 } 2599 pIndex->azColl[i] = zColl; 2600 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2601 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2602 } 2603 sqlite3DefaultRowEst(pIndex); 2604 2605 if( pTab==pParse->pNewTable ){ 2606 /* This routine has been called to create an automatic index as a 2607 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2608 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2609 ** i.e. one of: 2610 ** 2611 ** CREATE TABLE t(x PRIMARY KEY, y); 2612 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2613 ** 2614 ** Either way, check to see if the table already has such an index. If 2615 ** so, don't bother creating this one. This only applies to 2616 ** automatically created indices. Users can do as they wish with 2617 ** explicit indices. 2618 */ 2619 Index *pIdx; 2620 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2621 int k; 2622 assert( pIdx->onError!=OE_None ); 2623 assert( pIdx->autoIndex ); 2624 assert( pIndex->onError!=OE_None ); 2625 2626 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2627 for(k=0; k<pIdx->nColumn; k++){ 2628 const char *z1 = pIdx->azColl[k]; 2629 const char *z2 = pIndex->azColl[k]; 2630 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2631 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2632 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2633 } 2634 if( k==pIdx->nColumn ){ 2635 if( pIdx->onError!=pIndex->onError ){ 2636 /* This constraint creates the same index as a previous 2637 ** constraint specified somewhere in the CREATE TABLE statement. 2638 ** However the ON CONFLICT clauses are different. If both this 2639 ** constraint and the previous equivalent constraint have explicit 2640 ** ON CONFLICT clauses this is an error. Otherwise, use the 2641 ** explicitly specified behaviour for the index. 2642 */ 2643 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2644 sqlite3ErrorMsg(pParse, 2645 "conflicting ON CONFLICT clauses specified", 0); 2646 } 2647 if( pIdx->onError==OE_Default ){ 2648 pIdx->onError = pIndex->onError; 2649 } 2650 } 2651 goto exit_create_index; 2652 } 2653 } 2654 } 2655 2656 /* Link the new Index structure to its table and to the other 2657 ** in-memory database structures. 2658 */ 2659 if( db->init.busy ){ 2660 Index *p; 2661 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2662 pIndex->zName, sqlite3Strlen30(pIndex->zName)+1, 2663 pIndex); 2664 if( p ){ 2665 assert( p==pIndex ); /* Malloc must have failed */ 2666 db->mallocFailed = 1; 2667 goto exit_create_index; 2668 } 2669 db->flags |= SQLITE_InternChanges; 2670 if( pTblName!=0 ){ 2671 pIndex->tnum = db->init.newTnum; 2672 } 2673 } 2674 2675 /* If the db->init.busy is 0 then create the index on disk. This 2676 ** involves writing the index into the master table and filling in the 2677 ** index with the current table contents. 2678 ** 2679 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2680 ** command. db->init.busy is 1 when a database is opened and 2681 ** CREATE INDEX statements are read out of the master table. In 2682 ** the latter case the index already exists on disk, which is why 2683 ** we don't want to recreate it. 2684 ** 2685 ** If pTblName==0 it means this index is generated as a primary key 2686 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2687 ** has just been created, it contains no data and the index initialization 2688 ** step can be skipped. 2689 */ 2690 else if( db->init.busy==0 ){ 2691 Vdbe *v; 2692 char *zStmt; 2693 int iMem = ++pParse->nMem; 2694 2695 v = sqlite3GetVdbe(pParse); 2696 if( v==0 ) goto exit_create_index; 2697 2698 2699 /* Create the rootpage for the index 2700 */ 2701 sqlite3BeginWriteOperation(pParse, 1, iDb); 2702 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2703 2704 /* Gather the complete text of the CREATE INDEX statement into 2705 ** the zStmt variable 2706 */ 2707 if( pStart && pEnd ){ 2708 /* A named index with an explicit CREATE INDEX statement */ 2709 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2710 onError==OE_None ? "" : " UNIQUE", 2711 pEnd->z - pName->z + 1, 2712 pName->z); 2713 }else{ 2714 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2715 /* zStmt = sqlite3MPrintf(""); */ 2716 zStmt = 0; 2717 } 2718 2719 /* Add an entry in sqlite_master for this index 2720 */ 2721 sqlite3NestedParse(pParse, 2722 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2723 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2724 pIndex->zName, 2725 pTab->zName, 2726 iMem, 2727 zStmt 2728 ); 2729 sqlite3DbFree(db, zStmt); 2730 2731 /* Fill the index with data and reparse the schema. Code an OP_Expire 2732 ** to invalidate all pre-compiled statements. 2733 */ 2734 if( pTblName ){ 2735 sqlite3RefillIndex(pParse, pIndex, iMem); 2736 sqlite3ChangeCookie(pParse, iDb); 2737 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2738 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); 2739 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2740 } 2741 } 2742 2743 /* When adding an index to the list of indices for a table, make 2744 ** sure all indices labeled OE_Replace come after all those labeled 2745 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2746 ** and INSERT. 2747 */ 2748 if( db->init.busy || pTblName==0 ){ 2749 if( onError!=OE_Replace || pTab->pIndex==0 2750 || pTab->pIndex->onError==OE_Replace){ 2751 pIndex->pNext = pTab->pIndex; 2752 pTab->pIndex = pIndex; 2753 }else{ 2754 Index *pOther = pTab->pIndex; 2755 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2756 pOther = pOther->pNext; 2757 } 2758 pIndex->pNext = pOther->pNext; 2759 pOther->pNext = pIndex; 2760 } 2761 pIndex = 0; 2762 } 2763 2764 /* Clean up before exiting */ 2765 exit_create_index: 2766 if( pIndex ){ 2767 freeIndex(pIndex); 2768 } 2769 sqlite3ExprListDelete(db, pList); 2770 sqlite3SrcListDelete(db, pTblName); 2771 sqlite3DbFree(db, zName); 2772 return; 2773 } 2774 2775 /* 2776 ** Generate code to make sure the file format number is at least minFormat. 2777 ** The generated code will increase the file format number if necessary. 2778 */ 2779 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2780 Vdbe *v; 2781 v = sqlite3GetVdbe(pParse); 2782 if( v ){ 2783 int r1 = sqlite3GetTempReg(pParse); 2784 int r2 = sqlite3GetTempReg(pParse); 2785 int j1; 2786 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); 2787 sqlite3VdbeUsesBtree(v, iDb); 2788 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); 2789 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); 2790 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); 2791 sqlite3VdbeJumpHere(v, j1); 2792 sqlite3ReleaseTempReg(pParse, r1); 2793 sqlite3ReleaseTempReg(pParse, r2); 2794 } 2795 } 2796 2797 /* 2798 ** Fill the Index.aiRowEst[] array with default information - information 2799 ** to be used when we have not run the ANALYZE command. 2800 ** 2801 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2802 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2803 ** number of rows in the table that match any particular value of the 2804 ** first column of the index. aiRowEst[2] is an estimate of the number 2805 ** of rows that match any particular combiniation of the first 2 columns 2806 ** of the index. And so forth. It must always be the case that 2807 * 2808 ** aiRowEst[N]<=aiRowEst[N-1] 2809 ** aiRowEst[N]>=1 2810 ** 2811 ** Apart from that, we have little to go on besides intuition as to 2812 ** how aiRowEst[] should be initialized. The numbers generated here 2813 ** are based on typical values found in actual indices. 2814 */ 2815 void sqlite3DefaultRowEst(Index *pIdx){ 2816 unsigned *a = pIdx->aiRowEst; 2817 int i; 2818 assert( a!=0 ); 2819 a[0] = 1000000; 2820 for(i=pIdx->nColumn; i>=5; i--){ 2821 a[i] = 5; 2822 } 2823 while( i>=1 ){ 2824 a[i] = 11 - i; 2825 i--; 2826 } 2827 if( pIdx->onError!=OE_None ){ 2828 a[pIdx->nColumn] = 1; 2829 } 2830 } 2831 2832 /* 2833 ** This routine will drop an existing named index. This routine 2834 ** implements the DROP INDEX statement. 2835 */ 2836 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2837 Index *pIndex; 2838 Vdbe *v; 2839 sqlite3 *db = pParse->db; 2840 int iDb; 2841 2842 if( pParse->nErr || db->mallocFailed ){ 2843 goto exit_drop_index; 2844 } 2845 assert( pName->nSrc==1 ); 2846 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2847 goto exit_drop_index; 2848 } 2849 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2850 if( pIndex==0 ){ 2851 if( !ifExists ){ 2852 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2853 } 2854 pParse->checkSchema = 1; 2855 goto exit_drop_index; 2856 } 2857 if( pIndex->autoIndex ){ 2858 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2859 "or PRIMARY KEY constraint cannot be dropped", 0); 2860 goto exit_drop_index; 2861 } 2862 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2863 #ifndef SQLITE_OMIT_AUTHORIZATION 2864 { 2865 int code = SQLITE_DROP_INDEX; 2866 Table *pTab = pIndex->pTable; 2867 const char *zDb = db->aDb[iDb].zName; 2868 const char *zTab = SCHEMA_TABLE(iDb); 2869 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2870 goto exit_drop_index; 2871 } 2872 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2873 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2874 goto exit_drop_index; 2875 } 2876 } 2877 #endif 2878 2879 /* Generate code to remove the index and from the master table */ 2880 v = sqlite3GetVdbe(pParse); 2881 if( v ){ 2882 sqlite3BeginWriteOperation(pParse, 1, iDb); 2883 sqlite3NestedParse(pParse, 2884 "DELETE FROM %Q.%s WHERE name=%Q", 2885 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2886 pIndex->zName 2887 ); 2888 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2889 sqlite3NestedParse(pParse, 2890 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2891 db->aDb[iDb].zName, pIndex->zName 2892 ); 2893 } 2894 sqlite3ChangeCookie(pParse, iDb); 2895 destroyRootPage(pParse, pIndex->tnum, iDb); 2896 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2897 } 2898 2899 exit_drop_index: 2900 sqlite3SrcListDelete(db, pName); 2901 } 2902 2903 /* 2904 ** pArray is a pointer to an array of objects. Each object in the 2905 ** array is szEntry bytes in size. This routine allocates a new 2906 ** object on the end of the array. 2907 ** 2908 ** *pnEntry is the number of entries already in use. *pnAlloc is 2909 ** the previously allocated size of the array. initSize is the 2910 ** suggested initial array size allocation. 2911 ** 2912 ** The index of the new entry is returned in *pIdx. 2913 ** 2914 ** This routine returns a pointer to the array of objects. This 2915 ** might be the same as the pArray parameter or it might be a different 2916 ** pointer if the array was resized. 2917 */ 2918 void *sqlite3ArrayAllocate( 2919 sqlite3 *db, /* Connection to notify of malloc failures */ 2920 void *pArray, /* Array of objects. Might be reallocated */ 2921 int szEntry, /* Size of each object in the array */ 2922 int initSize, /* Suggested initial allocation, in elements */ 2923 int *pnEntry, /* Number of objects currently in use */ 2924 int *pnAlloc, /* Current size of the allocation, in elements */ 2925 int *pIdx /* Write the index of a new slot here */ 2926 ){ 2927 char *z; 2928 if( *pnEntry >= *pnAlloc ){ 2929 void *pNew; 2930 int newSize; 2931 newSize = (*pnAlloc)*2 + initSize; 2932 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 2933 if( pNew==0 ){ 2934 *pIdx = -1; 2935 return pArray; 2936 } 2937 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 2938 pArray = pNew; 2939 } 2940 z = (char*)pArray; 2941 memset(&z[*pnEntry * szEntry], 0, szEntry); 2942 *pIdx = *pnEntry; 2943 ++*pnEntry; 2944 return pArray; 2945 } 2946 2947 /* 2948 ** Append a new element to the given IdList. Create a new IdList if 2949 ** need be. 2950 ** 2951 ** A new IdList is returned, or NULL if malloc() fails. 2952 */ 2953 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 2954 int i; 2955 if( pList==0 ){ 2956 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 2957 if( pList==0 ) return 0; 2958 pList->nAlloc = 0; 2959 } 2960 pList->a = sqlite3ArrayAllocate( 2961 db, 2962 pList->a, 2963 sizeof(pList->a[0]), 2964 5, 2965 &pList->nId, 2966 &pList->nAlloc, 2967 &i 2968 ); 2969 if( i<0 ){ 2970 sqlite3IdListDelete(db, pList); 2971 return 0; 2972 } 2973 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 2974 return pList; 2975 } 2976 2977 /* 2978 ** Delete an IdList. 2979 */ 2980 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 2981 int i; 2982 if( pList==0 ) return; 2983 for(i=0; i<pList->nId; i++){ 2984 sqlite3DbFree(db, pList->a[i].zName); 2985 } 2986 sqlite3DbFree(db, pList->a); 2987 sqlite3DbFree(db, pList); 2988 } 2989 2990 /* 2991 ** Return the index in pList of the identifier named zId. Return -1 2992 ** if not found. 2993 */ 2994 int sqlite3IdListIndex(IdList *pList, const char *zName){ 2995 int i; 2996 if( pList==0 ) return -1; 2997 for(i=0; i<pList->nId; i++){ 2998 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 2999 } 3000 return -1; 3001 } 3002 3003 /* 3004 ** Expand the space allocated for the given SrcList object by 3005 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3006 ** New slots are zeroed. 3007 ** 3008 ** For example, suppose a SrcList initially contains two entries: A,B. 3009 ** To append 3 new entries onto the end, do this: 3010 ** 3011 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3012 ** 3013 ** After the call above it would contain: A, B, nil, nil, nil. 3014 ** If the iStart argument had been 1 instead of 2, then the result 3015 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3016 ** the iStart value would be 0. The result then would 3017 ** be: nil, nil, nil, A, B. 3018 ** 3019 ** If a memory allocation fails the SrcList is unchanged. The 3020 ** db->mallocFailed flag will be set to true. 3021 */ 3022 SrcList *sqlite3SrcListEnlarge( 3023 sqlite3 *db, /* Database connection to notify of OOM errors */ 3024 SrcList *pSrc, /* The SrcList to be enlarged */ 3025 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3026 int iStart /* Index in pSrc->a[] of first new slot */ 3027 ){ 3028 int i; 3029 3030 /* Sanity checking on calling parameters */ 3031 assert( iStart>=0 ); 3032 assert( nExtra>=1 ); 3033 if( pSrc==0 || iStart>pSrc->nSrc ){ 3034 assert( db->mallocFailed ); 3035 return pSrc; 3036 } 3037 3038 /* Allocate additional space if needed */ 3039 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3040 SrcList *pNew; 3041 int nAlloc = pSrc->nSrc+nExtra; 3042 int nGot; 3043 pNew = sqlite3DbRealloc(db, pSrc, 3044 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3045 if( pNew==0 ){ 3046 assert( db->mallocFailed ); 3047 return pSrc; 3048 } 3049 pSrc = pNew; 3050 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3051 pSrc->nAlloc = (u16)nGot; 3052 } 3053 3054 /* Move existing slots that come after the newly inserted slots 3055 ** out of the way */ 3056 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3057 pSrc->a[i+nExtra] = pSrc->a[i]; 3058 } 3059 pSrc->nSrc += (i16)nExtra; 3060 3061 /* Zero the newly allocated slots */ 3062 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3063 for(i=iStart; i<iStart+nExtra; i++){ 3064 pSrc->a[i].iCursor = -1; 3065 } 3066 3067 /* Return a pointer to the enlarged SrcList */ 3068 return pSrc; 3069 } 3070 3071 3072 /* 3073 ** Append a new table name to the given SrcList. Create a new SrcList if 3074 ** need be. A new entry is created in the SrcList even if pToken is NULL. 3075 ** 3076 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3077 ** SrcList might be the same as the SrcList that was input or it might be 3078 ** a new one. If an OOM error does occurs, then the prior value of pList 3079 ** that is input to this routine is automatically freed. 3080 ** 3081 ** If pDatabase is not null, it means that the table has an optional 3082 ** database name prefix. Like this: "database.table". The pDatabase 3083 ** points to the table name and the pTable points to the database name. 3084 ** The SrcList.a[].zName field is filled with the table name which might 3085 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3086 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3087 ** or with NULL if no database is specified. 3088 ** 3089 ** In other words, if call like this: 3090 ** 3091 ** sqlite3SrcListAppend(D,A,B,0); 3092 ** 3093 ** Then B is a table name and the database name is unspecified. If called 3094 ** like this: 3095 ** 3096 ** sqlite3SrcListAppend(D,A,B,C); 3097 ** 3098 ** Then C is the table name and B is the database name. 3099 */ 3100 SrcList *sqlite3SrcListAppend( 3101 sqlite3 *db, /* Connection to notify of malloc failures */ 3102 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3103 Token *pTable, /* Table to append */ 3104 Token *pDatabase /* Database of the table */ 3105 ){ 3106 struct SrcList_item *pItem; 3107 if( pList==0 ){ 3108 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3109 if( pList==0 ) return 0; 3110 pList->nAlloc = 1; 3111 } 3112 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3113 if( db->mallocFailed ){ 3114 sqlite3SrcListDelete(db, pList); 3115 return 0; 3116 } 3117 pItem = &pList->a[pList->nSrc-1]; 3118 if( pDatabase && pDatabase->z==0 ){ 3119 pDatabase = 0; 3120 } 3121 if( pDatabase && pTable ){ 3122 Token *pTemp = pDatabase; 3123 pDatabase = pTable; 3124 pTable = pTemp; 3125 } 3126 pItem->zName = sqlite3NameFromToken(db, pTable); 3127 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3128 return pList; 3129 } 3130 3131 /* 3132 ** Assign VdbeCursor index numbers to all tables in a SrcList 3133 */ 3134 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3135 int i; 3136 struct SrcList_item *pItem; 3137 assert(pList || pParse->db->mallocFailed ); 3138 if( pList ){ 3139 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3140 if( pItem->iCursor>=0 ) break; 3141 pItem->iCursor = pParse->nTab++; 3142 if( pItem->pSelect ){ 3143 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3144 } 3145 } 3146 } 3147 } 3148 3149 /* 3150 ** Delete an entire SrcList including all its substructure. 3151 */ 3152 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3153 int i; 3154 struct SrcList_item *pItem; 3155 if( pList==0 ) return; 3156 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3157 sqlite3DbFree(db, pItem->zDatabase); 3158 sqlite3DbFree(db, pItem->zName); 3159 sqlite3DbFree(db, pItem->zAlias); 3160 sqlite3DbFree(db, pItem->zIndex); 3161 sqlite3DeleteTable(pItem->pTab); 3162 sqlite3SelectDelete(db, pItem->pSelect); 3163 sqlite3ExprDelete(db, pItem->pOn); 3164 sqlite3IdListDelete(db, pItem->pUsing); 3165 } 3166 sqlite3DbFree(db, pList); 3167 } 3168 3169 /* 3170 ** This routine is called by the parser to add a new term to the 3171 ** end of a growing FROM clause. The "p" parameter is the part of 3172 ** the FROM clause that has already been constructed. "p" is NULL 3173 ** if this is the first term of the FROM clause. pTable and pDatabase 3174 ** are the name of the table and database named in the FROM clause term. 3175 ** pDatabase is NULL if the database name qualifier is missing - the 3176 ** usual case. If the term has a alias, then pAlias points to the 3177 ** alias token. If the term is a subquery, then pSubquery is the 3178 ** SELECT statement that the subquery encodes. The pTable and 3179 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3180 ** parameters are the content of the ON and USING clauses. 3181 ** 3182 ** Return a new SrcList which encodes is the FROM with the new 3183 ** term added. 3184 */ 3185 SrcList *sqlite3SrcListAppendFromTerm( 3186 Parse *pParse, /* Parsing context */ 3187 SrcList *p, /* The left part of the FROM clause already seen */ 3188 Token *pTable, /* Name of the table to add to the FROM clause */ 3189 Token *pDatabase, /* Name of the database containing pTable */ 3190 Token *pAlias, /* The right-hand side of the AS subexpression */ 3191 Select *pSubquery, /* A subquery used in place of a table name */ 3192 Expr *pOn, /* The ON clause of a join */ 3193 IdList *pUsing /* The USING clause of a join */ 3194 ){ 3195 struct SrcList_item *pItem; 3196 sqlite3 *db = pParse->db; 3197 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3198 if( p==0 || p->nSrc==0 ){ 3199 sqlite3ExprDelete(db, pOn); 3200 sqlite3IdListDelete(db, pUsing); 3201 sqlite3SelectDelete(db, pSubquery); 3202 return p; 3203 } 3204 pItem = &p->a[p->nSrc-1]; 3205 if( pAlias && pAlias->n ){ 3206 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3207 } 3208 pItem->pSelect = pSubquery; 3209 pItem->pOn = pOn; 3210 pItem->pUsing = pUsing; 3211 return p; 3212 } 3213 3214 /* 3215 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3216 ** element of the source-list passed as the second argument. 3217 */ 3218 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3219 if( pIndexedBy && p && p->nSrc>0 ){ 3220 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3221 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3222 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3223 /* A "NOT INDEXED" clause was supplied. See parse.y 3224 ** construct "indexed_opt" for details. */ 3225 pItem->notIndexed = 1; 3226 }else{ 3227 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3228 } 3229 } 3230 } 3231 3232 /* 3233 ** When building up a FROM clause in the parser, the join operator 3234 ** is initially attached to the left operand. But the code generator 3235 ** expects the join operator to be on the right operand. This routine 3236 ** Shifts all join operators from left to right for an entire FROM 3237 ** clause. 3238 ** 3239 ** Example: Suppose the join is like this: 3240 ** 3241 ** A natural cross join B 3242 ** 3243 ** The operator is "natural cross join". The A and B operands are stored 3244 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3245 ** operator with A. This routine shifts that operator over to B. 3246 */ 3247 void sqlite3SrcListShiftJoinType(SrcList *p){ 3248 if( p && p->a ){ 3249 int i; 3250 for(i=p->nSrc-1; i>0; i--){ 3251 p->a[i].jointype = p->a[i-1].jointype; 3252 } 3253 p->a[0].jointype = 0; 3254 } 3255 } 3256 3257 /* 3258 ** Begin a transaction 3259 */ 3260 void sqlite3BeginTransaction(Parse *pParse, int type){ 3261 sqlite3 *db; 3262 Vdbe *v; 3263 int i; 3264 3265 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3266 if( pParse->nErr || db->mallocFailed ) return; 3267 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3268 3269 v = sqlite3GetVdbe(pParse); 3270 if( !v ) return; 3271 if( type!=TK_DEFERRED ){ 3272 for(i=0; i<db->nDb; i++){ 3273 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3274 sqlite3VdbeUsesBtree(v, i); 3275 } 3276 } 3277 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3278 } 3279 3280 /* 3281 ** Commit a transaction 3282 */ 3283 void sqlite3CommitTransaction(Parse *pParse){ 3284 sqlite3 *db; 3285 Vdbe *v; 3286 3287 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3288 if( pParse->nErr || db->mallocFailed ) return; 3289 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3290 3291 v = sqlite3GetVdbe(pParse); 3292 if( v ){ 3293 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3294 } 3295 } 3296 3297 /* 3298 ** Rollback a transaction 3299 */ 3300 void sqlite3RollbackTransaction(Parse *pParse){ 3301 sqlite3 *db; 3302 Vdbe *v; 3303 3304 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3305 if( pParse->nErr || db->mallocFailed ) return; 3306 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3307 3308 v = sqlite3GetVdbe(pParse); 3309 if( v ){ 3310 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3311 } 3312 } 3313 3314 /* 3315 ** This function is called by the parser when it parses a command to create, 3316 ** release or rollback an SQL savepoint. 3317 */ 3318 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3319 char *zName = sqlite3NameFromToken(pParse->db, pName); 3320 if( zName ){ 3321 Vdbe *v = sqlite3GetVdbe(pParse); 3322 #ifndef SQLITE_OMIT_AUTHORIZATION 3323 static const char *az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3324 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3325 #endif 3326 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3327 sqlite3DbFree(pParse->db, zName); 3328 return; 3329 } 3330 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3331 } 3332 } 3333 3334 /* 3335 ** Make sure the TEMP database is open and available for use. Return 3336 ** the number of errors. Leave any error messages in the pParse structure. 3337 */ 3338 int sqlite3OpenTempDatabase(Parse *pParse){ 3339 sqlite3 *db = pParse->db; 3340 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3341 int rc; 3342 static const int flags = 3343 SQLITE_OPEN_READWRITE | 3344 SQLITE_OPEN_CREATE | 3345 SQLITE_OPEN_EXCLUSIVE | 3346 SQLITE_OPEN_DELETEONCLOSE | 3347 SQLITE_OPEN_TEMP_DB; 3348 3349 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, 3350 &db->aDb[1].pBt); 3351 if( rc!=SQLITE_OK ){ 3352 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3353 "file for storing temporary tables"); 3354 pParse->rc = rc; 3355 return 1; 3356 } 3357 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); 3358 assert( db->aDb[1].pSchema ); 3359 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), 3360 db->dfltJournalMode); 3361 } 3362 return 0; 3363 } 3364 3365 /* 3366 ** Generate VDBE code that will verify the schema cookie and start 3367 ** a read-transaction for all named database files. 3368 ** 3369 ** It is important that all schema cookies be verified and all 3370 ** read transactions be started before anything else happens in 3371 ** the VDBE program. But this routine can be called after much other 3372 ** code has been generated. So here is what we do: 3373 ** 3374 ** The first time this routine is called, we code an OP_Goto that 3375 ** will jump to a subroutine at the end of the program. Then we 3376 ** record every database that needs its schema verified in the 3377 ** pParse->cookieMask field. Later, after all other code has been 3378 ** generated, the subroutine that does the cookie verifications and 3379 ** starts the transactions will be coded and the OP_Goto P2 value 3380 ** will be made to point to that subroutine. The generation of the 3381 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3382 ** 3383 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3384 ** schema on any databases. This can be used to position the OP_Goto 3385 ** early in the code, before we know if any database tables will be used. 3386 */ 3387 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3388 sqlite3 *db; 3389 Vdbe *v; 3390 int mask; 3391 3392 v = sqlite3GetVdbe(pParse); 3393 if( v==0 ) return; /* This only happens if there was a prior error */ 3394 db = pParse->db; 3395 if( pParse->cookieGoto==0 ){ 3396 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3397 } 3398 if( iDb>=0 ){ 3399 assert( iDb<db->nDb ); 3400 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3401 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3402 mask = 1<<iDb; 3403 if( (pParse->cookieMask & mask)==0 ){ 3404 pParse->cookieMask |= mask; 3405 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3406 if( !OMIT_TEMPDB && iDb==1 ){ 3407 sqlite3OpenTempDatabase(pParse); 3408 } 3409 } 3410 } 3411 } 3412 3413 /* 3414 ** Generate VDBE code that prepares for doing an operation that 3415 ** might change the database. 3416 ** 3417 ** This routine starts a new transaction if we are not already within 3418 ** a transaction. If we are already within a transaction, then a checkpoint 3419 ** is set if the setStatement parameter is true. A checkpoint should 3420 ** be set for operations that might fail (due to a constraint) part of 3421 ** the way through and which will need to undo some writes without having to 3422 ** rollback the whole transaction. For operations where all constraints 3423 ** can be checked before any changes are made to the database, it is never 3424 ** necessary to undo a write and the checkpoint should not be set. 3425 ** 3426 ** Only database iDb and the temp database are made writable by this call. 3427 ** If iDb==0, then the main and temp databases are made writable. If 3428 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 3429 ** specified auxiliary database and the temp database are made writable. 3430 */ 3431 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3432 Vdbe *v = sqlite3GetVdbe(pParse); 3433 if( v==0 ) return; 3434 sqlite3CodeVerifySchema(pParse, iDb); 3435 pParse->writeMask |= 1<<iDb; 3436 if( setStatement && pParse->nested==0 ){ 3437 sqlite3VdbeAddOp1(v, OP_Statement, iDb); 3438 } 3439 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ 3440 sqlite3BeginWriteOperation(pParse, setStatement, 1); 3441 } 3442 } 3443 3444 /* 3445 ** Check to see if pIndex uses the collating sequence pColl. Return 3446 ** true if it does and false if it does not. 3447 */ 3448 #ifndef SQLITE_OMIT_REINDEX 3449 static int collationMatch(const char *zColl, Index *pIndex){ 3450 int i; 3451 for(i=0; i<pIndex->nColumn; i++){ 3452 const char *z = pIndex->azColl[i]; 3453 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3454 return 1; 3455 } 3456 } 3457 return 0; 3458 } 3459 #endif 3460 3461 /* 3462 ** Recompute all indices of pTab that use the collating sequence pColl. 3463 ** If pColl==0 then recompute all indices of pTab. 3464 */ 3465 #ifndef SQLITE_OMIT_REINDEX 3466 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3467 Index *pIndex; /* An index associated with pTab */ 3468 3469 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3470 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3471 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3472 sqlite3BeginWriteOperation(pParse, 0, iDb); 3473 sqlite3RefillIndex(pParse, pIndex, -1); 3474 } 3475 } 3476 } 3477 #endif 3478 3479 /* 3480 ** Recompute all indices of all tables in all databases where the 3481 ** indices use the collating sequence pColl. If pColl==0 then recompute 3482 ** all indices everywhere. 3483 */ 3484 #ifndef SQLITE_OMIT_REINDEX 3485 static void reindexDatabases(Parse *pParse, char const *zColl){ 3486 Db *pDb; /* A single database */ 3487 int iDb; /* The database index number */ 3488 sqlite3 *db = pParse->db; /* The database connection */ 3489 HashElem *k; /* For looping over tables in pDb */ 3490 Table *pTab; /* A table in the database */ 3491 3492 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3493 assert( pDb!=0 ); 3494 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3495 pTab = (Table*)sqliteHashData(k); 3496 reindexTable(pParse, pTab, zColl); 3497 } 3498 } 3499 } 3500 #endif 3501 3502 /* 3503 ** Generate code for the REINDEX command. 3504 ** 3505 ** REINDEX -- 1 3506 ** REINDEX <collation> -- 2 3507 ** REINDEX ?<database>.?<tablename> -- 3 3508 ** REINDEX ?<database>.?<indexname> -- 4 3509 ** 3510 ** Form 1 causes all indices in all attached databases to be rebuilt. 3511 ** Form 2 rebuilds all indices in all databases that use the named 3512 ** collating function. Forms 3 and 4 rebuild the named index or all 3513 ** indices associated with the named table. 3514 */ 3515 #ifndef SQLITE_OMIT_REINDEX 3516 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3517 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3518 char *z; /* Name of a table or index */ 3519 const char *zDb; /* Name of the database */ 3520 Table *pTab; /* A table in the database */ 3521 Index *pIndex; /* An index associated with pTab */ 3522 int iDb; /* The database index number */ 3523 sqlite3 *db = pParse->db; /* The database connection */ 3524 Token *pObjName; /* Name of the table or index to be reindexed */ 3525 3526 /* Read the database schema. If an error occurs, leave an error message 3527 ** and code in pParse and return NULL. */ 3528 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3529 return; 3530 } 3531 3532 if( pName1==0 || pName1->z==0 ){ 3533 reindexDatabases(pParse, 0); 3534 return; 3535 }else if( pName2==0 || pName2->z==0 ){ 3536 char *zColl; 3537 assert( pName1->z ); 3538 zColl = sqlite3NameFromToken(pParse->db, pName1); 3539 if( !zColl ) return; 3540 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); 3541 if( pColl ){ 3542 if( zColl ){ 3543 reindexDatabases(pParse, zColl); 3544 sqlite3DbFree(db, zColl); 3545 } 3546 return; 3547 } 3548 sqlite3DbFree(db, zColl); 3549 } 3550 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3551 if( iDb<0 ) return; 3552 z = sqlite3NameFromToken(db, pObjName); 3553 if( z==0 ) return; 3554 zDb = db->aDb[iDb].zName; 3555 pTab = sqlite3FindTable(db, z, zDb); 3556 if( pTab ){ 3557 reindexTable(pParse, pTab, 0); 3558 sqlite3DbFree(db, z); 3559 return; 3560 } 3561 pIndex = sqlite3FindIndex(db, z, zDb); 3562 sqlite3DbFree(db, z); 3563 if( pIndex ){ 3564 sqlite3BeginWriteOperation(pParse, 0, iDb); 3565 sqlite3RefillIndex(pParse, pIndex, -1); 3566 return; 3567 } 3568 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3569 } 3570 #endif 3571 3572 /* 3573 ** Return a dynamicly allocated KeyInfo structure that can be used 3574 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3575 ** 3576 ** If successful, a pointer to the new structure is returned. In this case 3577 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3578 ** pointer. If an error occurs (out of memory or missing collation 3579 ** sequence), NULL is returned and the state of pParse updated to reflect 3580 ** the error. 3581 */ 3582 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3583 int i; 3584 int nCol = pIdx->nColumn; 3585 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3586 sqlite3 *db = pParse->db; 3587 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3588 3589 if( pKey ){ 3590 pKey->db = pParse->db; 3591 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3592 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3593 for(i=0; i<nCol; i++){ 3594 char *zColl = pIdx->azColl[i]; 3595 assert( zColl ); 3596 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3597 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3598 } 3599 pKey->nField = (u16)nCol; 3600 } 3601 3602 if( pParse->nErr ){ 3603 sqlite3DbFree(db, pKey); 3604 pKey = 0; 3605 } 3606 return pKey; 3607 } 3608