xref: /sqlite-3.40.0/src/build.c (revision b1c034b2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   Pgno iTab;             /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 static SQLITE_NOINLINE void lockTable(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   Pgno iTab,         /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel;
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   pToplevel = sqlite3ParseToplevel(pParse);
63   for(i=0; i<pToplevel->nTableLock; i++){
64     p = &pToplevel->aTableLock[i];
65     if( p->iDb==iDb && p->iTab==iTab ){
66       p->isWriteLock = (p->isWriteLock || isWriteLock);
67       return;
68     }
69   }
70 
71   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72   pToplevel->aTableLock =
73       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74   if( pToplevel->aTableLock ){
75     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76     p->iDb = iDb;
77     p->iTab = iTab;
78     p->isWriteLock = isWriteLock;
79     p->zLockName = zName;
80   }else{
81     pToplevel->nTableLock = 0;
82     sqlite3OomFault(pToplevel->db);
83   }
84 }
85 void sqlite3TableLock(
86   Parse *pParse,     /* Parsing context */
87   int iDb,           /* Index of the database containing the table to lock */
88   Pgno iTab,         /* Root page number of the table to be locked */
89   u8 isWriteLock,    /* True for a write lock */
90   const char *zName  /* Name of the table to be locked */
91 ){
92   if( iDb==1 ) return;
93   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94   lockTable(pParse, iDb, iTab, isWriteLock, zName);
95 }
96 
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
101 static void codeTableLocks(Parse *pParse){
102   int i;
103   Vdbe *pVdbe = pParse->pVdbe;
104   assert( pVdbe!=0 );
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zLockName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 */
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124   int i;
125   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126   return 1;
127 }
128 #endif
129 
130 /*
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared.  This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
136 **
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
139 */
140 void sqlite3FinishCoding(Parse *pParse){
141   sqlite3 *db;
142   Vdbe *v;
143 
144   assert( pParse->pToplevel==0 );
145   db = pParse->db;
146   assert( db->pParse==pParse );
147   if( pParse->nested ) return;
148   if( pParse->nErr ){
149     if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
150     return;
151   }
152   assert( db->mallocFailed==0 );
153 
154   /* Begin by generating some termination code at the end of the
155   ** vdbe program
156   */
157   v = pParse->pVdbe;
158   if( v==0 ){
159     if( db->init.busy ){
160       pParse->rc = SQLITE_DONE;
161       return;
162     }
163     v = sqlite3GetVdbe(pParse);
164     if( v==0 ) pParse->rc = SQLITE_ERROR;
165   }
166   assert( !pParse->isMultiWrite
167        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
168   if( v ){
169     if( pParse->bReturning ){
170       Returning *pReturning = pParse->u1.pReturning;
171       int addrRewind;
172       int i;
173       int reg;
174 
175       if( pReturning->nRetCol ){
176         sqlite3VdbeAddOp0(v, OP_FkCheck);
177         addrRewind =
178            sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
179         VdbeCoverage(v);
180         reg = pReturning->iRetReg;
181         for(i=0; i<pReturning->nRetCol; i++){
182           sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
183         }
184         sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
185         sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
186         VdbeCoverage(v);
187         sqlite3VdbeJumpHere(v, addrRewind);
188       }
189     }
190     sqlite3VdbeAddOp0(v, OP_Halt);
191 
192 #if SQLITE_USER_AUTHENTICATION
193     if( pParse->nTableLock>0 && db->init.busy==0 ){
194       sqlite3UserAuthInit(db);
195       if( db->auth.authLevel<UAUTH_User ){
196         sqlite3ErrorMsg(pParse, "user not authenticated");
197         pParse->rc = SQLITE_AUTH_USER;
198         return;
199       }
200     }
201 #endif
202 
203     /* The cookie mask contains one bit for each database file open.
204     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
205     ** set for each database that is used.  Generate code to start a
206     ** transaction on each used database and to verify the schema cookie
207     ** on each used database.
208     */
209     if( db->mallocFailed==0
210      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
211     ){
212       int iDb, i;
213       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
214       sqlite3VdbeJumpHere(v, 0);
215       assert( db->nDb>0 );
216       iDb = 0;
217       do{
218         Schema *pSchema;
219         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
220         sqlite3VdbeUsesBtree(v, iDb);
221         pSchema = db->aDb[iDb].pSchema;
222         sqlite3VdbeAddOp4Int(v,
223           OP_Transaction,                    /* Opcode */
224           iDb,                               /* P1 */
225           DbMaskTest(pParse->writeMask,iDb), /* P2 */
226           pSchema->schema_cookie,            /* P3 */
227           pSchema->iGeneration               /* P4 */
228         );
229         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
230         VdbeComment((v,
231               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
232       }while( ++iDb<db->nDb );
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234       for(i=0; i<pParse->nVtabLock; i++){
235         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
236         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
237       }
238       pParse->nVtabLock = 0;
239 #endif
240 
241       /* Once all the cookies have been verified and transactions opened,
242       ** obtain the required table-locks. This is a no-op unless the
243       ** shared-cache feature is enabled.
244       */
245       codeTableLocks(pParse);
246 
247       /* Initialize any AUTOINCREMENT data structures required.
248       */
249       sqlite3AutoincrementBegin(pParse);
250 
251       /* Code constant expressions that where factored out of inner loops.
252       **
253       ** The pConstExpr list might also contain expressions that we simply
254       ** want to keep around until the Parse object is deleted.  Such
255       ** expressions have iConstExprReg==0.  Do not generate code for
256       ** those expressions, of course.
257       */
258       if( pParse->pConstExpr ){
259         ExprList *pEL = pParse->pConstExpr;
260         pParse->okConstFactor = 0;
261         for(i=0; i<pEL->nExpr; i++){
262           int iReg = pEL->a[i].u.iConstExprReg;
263           if( iReg>0 ){
264             sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
265           }
266         }
267       }
268 
269       if( pParse->bReturning ){
270         Returning *pRet = pParse->u1.pReturning;
271         if( pRet->nRetCol ){
272           sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
273         }
274       }
275 
276       /* Finally, jump back to the beginning of the executable code. */
277       sqlite3VdbeGoto(v, 1);
278     }
279   }
280 
281   /* Get the VDBE program ready for execution
282   */
283   assert( v!=0 || pParse->nErr );
284   assert( db->mallocFailed==0 || pParse->nErr );
285   if( pParse->nErr==0 ){
286     /* A minimum of one cursor is required if autoincrement is used
287     *  See ticket [a696379c1f08866] */
288     assert( pParse->pAinc==0 || pParse->nTab>0 );
289     sqlite3VdbeMakeReady(v, pParse);
290     pParse->rc = SQLITE_DONE;
291   }else{
292     pParse->rc = SQLITE_ERROR;
293   }
294 }
295 
296 /*
297 ** Run the parser and code generator recursively in order to generate
298 ** code for the SQL statement given onto the end of the pParse context
299 ** currently under construction.  Notes:
300 **
301 **   *  The final OP_Halt is not appended and other initialization
302 **      and finalization steps are omitted because those are handling by the
303 **      outermost parser.
304 **
305 **   *  Built-in SQL functions always take precedence over application-defined
306 **      SQL functions.  In other words, it is not possible to override a
307 **      built-in function.
308 */
309 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
310   va_list ap;
311   char *zSql;
312   sqlite3 *db = pParse->db;
313   u32 savedDbFlags = db->mDbFlags;
314   char saveBuf[PARSE_TAIL_SZ];
315 
316   if( pParse->nErr ) return;
317   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
318   va_start(ap, zFormat);
319   zSql = sqlite3VMPrintf(db, zFormat, ap);
320   va_end(ap);
321   if( zSql==0 ){
322     /* This can result either from an OOM or because the formatted string
323     ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
324     ** an error */
325     if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
326     pParse->nErr++;
327     return;
328   }
329   pParse->nested++;
330   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
331   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
332   db->mDbFlags |= DBFLAG_PreferBuiltin;
333   sqlite3RunParser(pParse, zSql);
334   db->mDbFlags = savedDbFlags;
335   sqlite3DbFree(db, zSql);
336   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
337   pParse->nested--;
338 }
339 
340 #if SQLITE_USER_AUTHENTICATION
341 /*
342 ** Return TRUE if zTable is the name of the system table that stores the
343 ** list of users and their access credentials.
344 */
345 int sqlite3UserAuthTable(const char *zTable){
346   return sqlite3_stricmp(zTable, "sqlite_user")==0;
347 }
348 #endif
349 
350 /*
351 ** Locate the in-memory structure that describes a particular database
352 ** table given the name of that table and (optionally) the name of the
353 ** database containing the table.  Return NULL if not found.
354 **
355 ** If zDatabase is 0, all databases are searched for the table and the
356 ** first matching table is returned.  (No checking for duplicate table
357 ** names is done.)  The search order is TEMP first, then MAIN, then any
358 ** auxiliary databases added using the ATTACH command.
359 **
360 ** See also sqlite3LocateTable().
361 */
362 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
363   Table *p = 0;
364   int i;
365 
366   /* All mutexes are required for schema access.  Make sure we hold them. */
367   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
368 #if SQLITE_USER_AUTHENTICATION
369   /* Only the admin user is allowed to know that the sqlite_user table
370   ** exists */
371   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
372     return 0;
373   }
374 #endif
375   if( zDatabase ){
376     for(i=0; i<db->nDb; i++){
377       if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
378     }
379     if( i>=db->nDb ){
380       /* No match against the official names.  But always match "main"
381       ** to schema 0 as a legacy fallback. */
382       if( sqlite3StrICmp(zDatabase,"main")==0 ){
383         i = 0;
384       }else{
385         return 0;
386       }
387     }
388     p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
389     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
390       if( i==1 ){
391         if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
392          || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
393          || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
394         ){
395           p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
396                               LEGACY_TEMP_SCHEMA_TABLE);
397         }
398       }else{
399         if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
400           p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
401                               LEGACY_SCHEMA_TABLE);
402         }
403       }
404     }
405   }else{
406     /* Match against TEMP first */
407     p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
408     if( p ) return p;
409     /* The main database is second */
410     p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
411     if( p ) return p;
412     /* Attached databases are in order of attachment */
413     for(i=2; i<db->nDb; i++){
414       assert( sqlite3SchemaMutexHeld(db, i, 0) );
415       p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
416       if( p ) break;
417     }
418     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
419       if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
420         p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
421       }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
422         p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
423                             LEGACY_TEMP_SCHEMA_TABLE);
424       }
425     }
426   }
427   return p;
428 }
429 
430 /*
431 ** Locate the in-memory structure that describes a particular database
432 ** table given the name of that table and (optionally) the name of the
433 ** database containing the table.  Return NULL if not found.  Also leave an
434 ** error message in pParse->zErrMsg.
435 **
436 ** The difference between this routine and sqlite3FindTable() is that this
437 ** routine leaves an error message in pParse->zErrMsg where
438 ** sqlite3FindTable() does not.
439 */
440 Table *sqlite3LocateTable(
441   Parse *pParse,         /* context in which to report errors */
442   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
443   const char *zName,     /* Name of the table we are looking for */
444   const char *zDbase     /* Name of the database.  Might be NULL */
445 ){
446   Table *p;
447   sqlite3 *db = pParse->db;
448 
449   /* Read the database schema. If an error occurs, leave an error message
450   ** and code in pParse and return NULL. */
451   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
452    && SQLITE_OK!=sqlite3ReadSchema(pParse)
453   ){
454     return 0;
455   }
456 
457   p = sqlite3FindTable(db, zName, zDbase);
458   if( p==0 ){
459 #ifndef SQLITE_OMIT_VIRTUALTABLE
460     /* If zName is the not the name of a table in the schema created using
461     ** CREATE, then check to see if it is the name of an virtual table that
462     ** can be an eponymous virtual table. */
463     if( pParse->disableVtab==0 && db->init.busy==0 ){
464       Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
465       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
466         pMod = sqlite3PragmaVtabRegister(db, zName);
467       }
468       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
469         testcase( pMod->pEpoTab==0 );
470         return pMod->pEpoTab;
471       }
472     }
473 #endif
474     if( flags & LOCATE_NOERR ) return 0;
475     pParse->checkSchema = 1;
476   }else if( IsVirtual(p) && pParse->disableVtab ){
477     p = 0;
478   }
479 
480   if( p==0 ){
481     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
482     if( zDbase ){
483       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
484     }else{
485       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
486     }
487   }else{
488     assert( HasRowid(p) || p->iPKey<0 );
489   }
490 
491   return p;
492 }
493 
494 /*
495 ** Locate the table identified by *p.
496 **
497 ** This is a wrapper around sqlite3LocateTable(). The difference between
498 ** sqlite3LocateTable() and this function is that this function restricts
499 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
500 ** non-NULL if it is part of a view or trigger program definition. See
501 ** sqlite3FixSrcList() for details.
502 */
503 Table *sqlite3LocateTableItem(
504   Parse *pParse,
505   u32 flags,
506   SrcItem *p
507 ){
508   const char *zDb;
509   assert( p->pSchema==0 || p->zDatabase==0 );
510   if( p->pSchema ){
511     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
512     zDb = pParse->db->aDb[iDb].zDbSName;
513   }else{
514     zDb = p->zDatabase;
515   }
516   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
517 }
518 
519 /*
520 ** Return the preferred table name for system tables.  Translate legacy
521 ** names into the new preferred names, as appropriate.
522 */
523 const char *sqlite3PreferredTableName(const char *zName){
524   if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
525     if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
526       return PREFERRED_SCHEMA_TABLE;
527     }
528     if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
529       return PREFERRED_TEMP_SCHEMA_TABLE;
530     }
531   }
532   return zName;
533 }
534 
535 /*
536 ** Locate the in-memory structure that describes
537 ** a particular index given the name of that index
538 ** and the name of the database that contains the index.
539 ** Return NULL if not found.
540 **
541 ** If zDatabase is 0, all databases are searched for the
542 ** table and the first matching index is returned.  (No checking
543 ** for duplicate index names is done.)  The search order is
544 ** TEMP first, then MAIN, then any auxiliary databases added
545 ** using the ATTACH command.
546 */
547 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
548   Index *p = 0;
549   int i;
550   /* All mutexes are required for schema access.  Make sure we hold them. */
551   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
552   for(i=OMIT_TEMPDB; i<db->nDb; i++){
553     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
554     Schema *pSchema = db->aDb[j].pSchema;
555     assert( pSchema );
556     if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
557     assert( sqlite3SchemaMutexHeld(db, j, 0) );
558     p = sqlite3HashFind(&pSchema->idxHash, zName);
559     if( p ) break;
560   }
561   return p;
562 }
563 
564 /*
565 ** Reclaim the memory used by an index
566 */
567 void sqlite3FreeIndex(sqlite3 *db, Index *p){
568 #ifndef SQLITE_OMIT_ANALYZE
569   sqlite3DeleteIndexSamples(db, p);
570 #endif
571   sqlite3ExprDelete(db, p->pPartIdxWhere);
572   sqlite3ExprListDelete(db, p->aColExpr);
573   sqlite3DbFree(db, p->zColAff);
574   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
575 #ifdef SQLITE_ENABLE_STAT4
576   sqlite3_free(p->aiRowEst);
577 #endif
578   sqlite3DbFree(db, p);
579 }
580 
581 /*
582 ** For the index called zIdxName which is found in the database iDb,
583 ** unlike that index from its Table then remove the index from
584 ** the index hash table and free all memory structures associated
585 ** with the index.
586 */
587 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
588   Index *pIndex;
589   Hash *pHash;
590 
591   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
592   pHash = &db->aDb[iDb].pSchema->idxHash;
593   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
594   if( ALWAYS(pIndex) ){
595     if( pIndex->pTable->pIndex==pIndex ){
596       pIndex->pTable->pIndex = pIndex->pNext;
597     }else{
598       Index *p;
599       /* Justification of ALWAYS();  The index must be on the list of
600       ** indices. */
601       p = pIndex->pTable->pIndex;
602       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
603       if( ALWAYS(p && p->pNext==pIndex) ){
604         p->pNext = pIndex->pNext;
605       }
606     }
607     sqlite3FreeIndex(db, pIndex);
608   }
609   db->mDbFlags |= DBFLAG_SchemaChange;
610 }
611 
612 /*
613 ** Look through the list of open database files in db->aDb[] and if
614 ** any have been closed, remove them from the list.  Reallocate the
615 ** db->aDb[] structure to a smaller size, if possible.
616 **
617 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
618 ** are never candidates for being collapsed.
619 */
620 void sqlite3CollapseDatabaseArray(sqlite3 *db){
621   int i, j;
622   for(i=j=2; i<db->nDb; i++){
623     struct Db *pDb = &db->aDb[i];
624     if( pDb->pBt==0 ){
625       sqlite3DbFree(db, pDb->zDbSName);
626       pDb->zDbSName = 0;
627       continue;
628     }
629     if( j<i ){
630       db->aDb[j] = db->aDb[i];
631     }
632     j++;
633   }
634   db->nDb = j;
635   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
636     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
637     sqlite3DbFree(db, db->aDb);
638     db->aDb = db->aDbStatic;
639   }
640 }
641 
642 /*
643 ** Reset the schema for the database at index iDb.  Also reset the
644 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
645 ** Deferred resets may be run by calling with iDb<0.
646 */
647 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
648   int i;
649   assert( iDb<db->nDb );
650 
651   if( iDb>=0 ){
652     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
653     DbSetProperty(db, iDb, DB_ResetWanted);
654     DbSetProperty(db, 1, DB_ResetWanted);
655     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
656   }
657 
658   if( db->nSchemaLock==0 ){
659     for(i=0; i<db->nDb; i++){
660       if( DbHasProperty(db, i, DB_ResetWanted) ){
661         sqlite3SchemaClear(db->aDb[i].pSchema);
662       }
663     }
664   }
665 }
666 
667 /*
668 ** Erase all schema information from all attached databases (including
669 ** "main" and "temp") for a single database connection.
670 */
671 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
672   int i;
673   sqlite3BtreeEnterAll(db);
674   for(i=0; i<db->nDb; i++){
675     Db *pDb = &db->aDb[i];
676     if( pDb->pSchema ){
677       if( db->nSchemaLock==0 ){
678         sqlite3SchemaClear(pDb->pSchema);
679       }else{
680         DbSetProperty(db, i, DB_ResetWanted);
681       }
682     }
683   }
684   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
685   sqlite3VtabUnlockList(db);
686   sqlite3BtreeLeaveAll(db);
687   if( db->nSchemaLock==0 ){
688     sqlite3CollapseDatabaseArray(db);
689   }
690 }
691 
692 /*
693 ** This routine is called when a commit occurs.
694 */
695 void sqlite3CommitInternalChanges(sqlite3 *db){
696   db->mDbFlags &= ~DBFLAG_SchemaChange;
697 }
698 
699 /*
700 ** Set the expression associated with a column.  This is usually
701 ** the DEFAULT value, but might also be the expression that computes
702 ** the value for a generated column.
703 */
704 void sqlite3ColumnSetExpr(
705   Parse *pParse,    /* Parsing context */
706   Table *pTab,      /* The table containing the column */
707   Column *pCol,     /* The column to receive the new DEFAULT expression */
708   Expr *pExpr       /* The new default expression */
709 ){
710   ExprList *pList;
711   assert( IsOrdinaryTable(pTab) );
712   pList = pTab->u.tab.pDfltList;
713   if( pCol->iDflt==0
714    || NEVER(pList==0)
715    || NEVER(pList->nExpr<pCol->iDflt)
716   ){
717     pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
718     pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
719   }else{
720     sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
721     pList->a[pCol->iDflt-1].pExpr = pExpr;
722   }
723 }
724 
725 /*
726 ** Return the expression associated with a column.  The expression might be
727 ** the DEFAULT clause or the AS clause of a generated column.
728 ** Return NULL if the column has no associated expression.
729 */
730 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
731   if( pCol->iDflt==0 ) return 0;
732   if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
733   if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
734   if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
735   return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
736 }
737 
738 /*
739 ** Set the collating sequence name for a column.
740 */
741 void sqlite3ColumnSetColl(
742   sqlite3 *db,
743   Column *pCol,
744   const char *zColl
745 ){
746   i64 nColl;
747   i64 n;
748   char *zNew;
749   assert( zColl!=0 );
750   n = sqlite3Strlen30(pCol->zCnName) + 1;
751   if( pCol->colFlags & COLFLAG_HASTYPE ){
752     n += sqlite3Strlen30(pCol->zCnName+n) + 1;
753   }
754   nColl = sqlite3Strlen30(zColl) + 1;
755   zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
756   if( zNew ){
757     pCol->zCnName = zNew;
758     memcpy(pCol->zCnName + n, zColl, nColl);
759     pCol->colFlags |= COLFLAG_HASCOLL;
760   }
761 }
762 
763 /*
764 ** Return the collating squence name for a column
765 */
766 const char *sqlite3ColumnColl(Column *pCol){
767   const char *z;
768   if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
769   z = pCol->zCnName;
770   while( *z ){ z++; }
771   if( pCol->colFlags & COLFLAG_HASTYPE ){
772     do{ z++; }while( *z );
773   }
774   return z+1;
775 }
776 
777 /*
778 ** Delete memory allocated for the column names of a table or view (the
779 ** Table.aCol[] array).
780 */
781 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
782   int i;
783   Column *pCol;
784   assert( pTable!=0 );
785   if( (pCol = pTable->aCol)!=0 ){
786     for(i=0; i<pTable->nCol; i++, pCol++){
787       assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
788       sqlite3DbFree(db, pCol->zCnName);
789     }
790     sqlite3DbFree(db, pTable->aCol);
791     if( IsOrdinaryTable(pTable) ){
792       sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
793     }
794     if( db==0 || db->pnBytesFreed==0 ){
795       pTable->aCol = 0;
796       pTable->nCol = 0;
797       if( IsOrdinaryTable(pTable) ){
798         pTable->u.tab.pDfltList = 0;
799       }
800     }
801   }
802 }
803 
804 /*
805 ** Remove the memory data structures associated with the given
806 ** Table.  No changes are made to disk by this routine.
807 **
808 ** This routine just deletes the data structure.  It does not unlink
809 ** the table data structure from the hash table.  But it does destroy
810 ** memory structures of the indices and foreign keys associated with
811 ** the table.
812 **
813 ** The db parameter is optional.  It is needed if the Table object
814 ** contains lookaside memory.  (Table objects in the schema do not use
815 ** lookaside memory, but some ephemeral Table objects do.)  Or the
816 ** db parameter can be used with db->pnBytesFreed to measure the memory
817 ** used by the Table object.
818 */
819 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
820   Index *pIndex, *pNext;
821 
822 #ifdef SQLITE_DEBUG
823   /* Record the number of outstanding lookaside allocations in schema Tables
824   ** prior to doing any free() operations. Since schema Tables do not use
825   ** lookaside, this number should not change.
826   **
827   ** If malloc has already failed, it may be that it failed while allocating
828   ** a Table object that was going to be marked ephemeral. So do not check
829   ** that no lookaside memory is used in this case either. */
830   int nLookaside = 0;
831   if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
832     nLookaside = sqlite3LookasideUsed(db, 0);
833   }
834 #endif
835 
836   /* Delete all indices associated with this table. */
837   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
838     pNext = pIndex->pNext;
839     assert( pIndex->pSchema==pTable->pSchema
840          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
841     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
842       char *zName = pIndex->zName;
843       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
844          &pIndex->pSchema->idxHash, zName, 0
845       );
846       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
847       assert( pOld==pIndex || pOld==0 );
848     }
849     sqlite3FreeIndex(db, pIndex);
850   }
851 
852   if( IsOrdinaryTable(pTable) ){
853     sqlite3FkDelete(db, pTable);
854   }
855 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
856   else if( IsVirtual(pTable) ){
857     sqlite3VtabClear(db, pTable);
858   }
859 #endif
860   else{
861     assert( IsView(pTable) );
862     sqlite3SelectDelete(db, pTable->u.view.pSelect);
863   }
864 
865   /* Delete the Table structure itself.
866   */
867   sqlite3DeleteColumnNames(db, pTable);
868   sqlite3DbFree(db, pTable->zName);
869   sqlite3DbFree(db, pTable->zColAff);
870   sqlite3ExprListDelete(db, pTable->pCheck);
871   sqlite3DbFree(db, pTable);
872 
873   /* Verify that no lookaside memory was used by schema tables */
874   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
875 }
876 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
877   /* Do not delete the table until the reference count reaches zero. */
878   if( !pTable ) return;
879   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
880   deleteTable(db, pTable);
881 }
882 
883 
884 /*
885 ** Unlink the given table from the hash tables and the delete the
886 ** table structure with all its indices and foreign keys.
887 */
888 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
889   Table *p;
890   Db *pDb;
891 
892   assert( db!=0 );
893   assert( iDb>=0 && iDb<db->nDb );
894   assert( zTabName );
895   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
896   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
897   pDb = &db->aDb[iDb];
898   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
899   sqlite3DeleteTable(db, p);
900   db->mDbFlags |= DBFLAG_SchemaChange;
901 }
902 
903 /*
904 ** Given a token, return a string that consists of the text of that
905 ** token.  Space to hold the returned string
906 ** is obtained from sqliteMalloc() and must be freed by the calling
907 ** function.
908 **
909 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
910 ** surround the body of the token are removed.
911 **
912 ** Tokens are often just pointers into the original SQL text and so
913 ** are not \000 terminated and are not persistent.  The returned string
914 ** is \000 terminated and is persistent.
915 */
916 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
917   char *zName;
918   if( pName ){
919     zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
920     sqlite3Dequote(zName);
921   }else{
922     zName = 0;
923   }
924   return zName;
925 }
926 
927 /*
928 ** Open the sqlite_schema table stored in database number iDb for
929 ** writing. The table is opened using cursor 0.
930 */
931 void sqlite3OpenSchemaTable(Parse *p, int iDb){
932   Vdbe *v = sqlite3GetVdbe(p);
933   sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
934   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
935   if( p->nTab==0 ){
936     p->nTab = 1;
937   }
938 }
939 
940 /*
941 ** Parameter zName points to a nul-terminated buffer containing the name
942 ** of a database ("main", "temp" or the name of an attached db). This
943 ** function returns the index of the named database in db->aDb[], or
944 ** -1 if the named db cannot be found.
945 */
946 int sqlite3FindDbName(sqlite3 *db, const char *zName){
947   int i = -1;         /* Database number */
948   if( zName ){
949     Db *pDb;
950     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
951       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
952       /* "main" is always an acceptable alias for the primary database
953       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
954       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
955     }
956   }
957   return i;
958 }
959 
960 /*
961 ** The token *pName contains the name of a database (either "main" or
962 ** "temp" or the name of an attached db). This routine returns the
963 ** index of the named database in db->aDb[], or -1 if the named db
964 ** does not exist.
965 */
966 int sqlite3FindDb(sqlite3 *db, Token *pName){
967   int i;                               /* Database number */
968   char *zName;                         /* Name we are searching for */
969   zName = sqlite3NameFromToken(db, pName);
970   i = sqlite3FindDbName(db, zName);
971   sqlite3DbFree(db, zName);
972   return i;
973 }
974 
975 /* The table or view or trigger name is passed to this routine via tokens
976 ** pName1 and pName2. If the table name was fully qualified, for example:
977 **
978 ** CREATE TABLE xxx.yyy (...);
979 **
980 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
981 ** the table name is not fully qualified, i.e.:
982 **
983 ** CREATE TABLE yyy(...);
984 **
985 ** Then pName1 is set to "yyy" and pName2 is "".
986 **
987 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
988 ** pName2) that stores the unqualified table name.  The index of the
989 ** database "xxx" is returned.
990 */
991 int sqlite3TwoPartName(
992   Parse *pParse,      /* Parsing and code generating context */
993   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
994   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
995   Token **pUnqual     /* Write the unqualified object name here */
996 ){
997   int iDb;                    /* Database holding the object */
998   sqlite3 *db = pParse->db;
999 
1000   assert( pName2!=0 );
1001   if( pName2->n>0 ){
1002     if( db->init.busy ) {
1003       sqlite3ErrorMsg(pParse, "corrupt database");
1004       return -1;
1005     }
1006     *pUnqual = pName2;
1007     iDb = sqlite3FindDb(db, pName1);
1008     if( iDb<0 ){
1009       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1010       return -1;
1011     }
1012   }else{
1013     assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1014              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1015     iDb = db->init.iDb;
1016     *pUnqual = pName1;
1017   }
1018   return iDb;
1019 }
1020 
1021 /*
1022 ** True if PRAGMA writable_schema is ON
1023 */
1024 int sqlite3WritableSchema(sqlite3 *db){
1025   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1026   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1027                SQLITE_WriteSchema );
1028   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1029                SQLITE_Defensive );
1030   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1031                (SQLITE_WriteSchema|SQLITE_Defensive) );
1032   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1033 }
1034 
1035 /*
1036 ** This routine is used to check if the UTF-8 string zName is a legal
1037 ** unqualified name for a new schema object (table, index, view or
1038 ** trigger). All names are legal except those that begin with the string
1039 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1040 ** is reserved for internal use.
1041 **
1042 ** When parsing the sqlite_schema table, this routine also checks to
1043 ** make sure the "type", "name", and "tbl_name" columns are consistent
1044 ** with the SQL.
1045 */
1046 int sqlite3CheckObjectName(
1047   Parse *pParse,            /* Parsing context */
1048   const char *zName,        /* Name of the object to check */
1049   const char *zType,        /* Type of this object */
1050   const char *zTblName      /* Parent table name for triggers and indexes */
1051 ){
1052   sqlite3 *db = pParse->db;
1053   if( sqlite3WritableSchema(db)
1054    || db->init.imposterTable
1055    || !sqlite3Config.bExtraSchemaChecks
1056   ){
1057     /* Skip these error checks for writable_schema=ON */
1058     return SQLITE_OK;
1059   }
1060   if( db->init.busy ){
1061     if( sqlite3_stricmp(zType, db->init.azInit[0])
1062      || sqlite3_stricmp(zName, db->init.azInit[1])
1063      || sqlite3_stricmp(zTblName, db->init.azInit[2])
1064     ){
1065       sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1066       return SQLITE_ERROR;
1067     }
1068   }else{
1069     if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1070      || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1071     ){
1072       sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1073                       zName);
1074       return SQLITE_ERROR;
1075     }
1076 
1077   }
1078   return SQLITE_OK;
1079 }
1080 
1081 /*
1082 ** Return the PRIMARY KEY index of a table
1083 */
1084 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1085   Index *p;
1086   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1087   return p;
1088 }
1089 
1090 /*
1091 ** Convert an table column number into a index column number.  That is,
1092 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1093 ** find the (first) offset of that column in index pIdx.  Or return -1
1094 ** if column iCol is not used in index pIdx.
1095 */
1096 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1097   int i;
1098   for(i=0; i<pIdx->nColumn; i++){
1099     if( iCol==pIdx->aiColumn[i] ) return i;
1100   }
1101   return -1;
1102 }
1103 
1104 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1105 /* Convert a storage column number into a table column number.
1106 **
1107 ** The storage column number (0,1,2,....) is the index of the value
1108 ** as it appears in the record on disk.  The true column number
1109 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1110 **
1111 ** The storage column number is less than the table column number if
1112 ** and only there are VIRTUAL columns to the left.
1113 **
1114 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1115 */
1116 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1117   if( pTab->tabFlags & TF_HasVirtual ){
1118     int i;
1119     for(i=0; i<=iCol; i++){
1120       if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1121     }
1122   }
1123   return iCol;
1124 }
1125 #endif
1126 
1127 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1128 /* Convert a table column number into a storage column number.
1129 **
1130 ** The storage column number (0,1,2,....) is the index of the value
1131 ** as it appears in the record on disk.  Or, if the input column is
1132 ** the N-th virtual column (zero-based) then the storage number is
1133 ** the number of non-virtual columns in the table plus N.
1134 **
1135 ** The true column number is the index (0,1,2,...) of the column in
1136 ** the CREATE TABLE statement.
1137 **
1138 ** If the input column is a VIRTUAL column, then it should not appear
1139 ** in storage.  But the value sometimes is cached in registers that
1140 ** follow the range of registers used to construct storage.  This
1141 ** avoids computing the same VIRTUAL column multiple times, and provides
1142 ** values for use by OP_Param opcodes in triggers.  Hence, if the
1143 ** input column is a VIRTUAL table, put it after all the other columns.
1144 **
1145 ** In the following, N means "normal column", S means STORED, and
1146 ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
1147 **
1148 **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1149 **                     -- 0 1 2 3 4 5 6 7 8
1150 **
1151 ** Then the mapping from this function is as follows:
1152 **
1153 **    INPUTS:     0 1 2 3 4 5 6 7 8
1154 **    OUTPUTS:    0 1 6 2 3 7 4 5 8
1155 **
1156 ** So, in other words, this routine shifts all the virtual columns to
1157 ** the end.
1158 **
1159 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1160 ** this routine is a no-op macro.  If the pTab does not have any virtual
1161 ** columns, then this routine is no-op that always return iCol.  If iCol
1162 ** is negative (indicating the ROWID column) then this routine return iCol.
1163 */
1164 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1165   int i;
1166   i16 n;
1167   assert( iCol<pTab->nCol );
1168   if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1169   for(i=0, n=0; i<iCol; i++){
1170     if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1171   }
1172   if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1173     /* iCol is a virtual column itself */
1174     return pTab->nNVCol + i - n;
1175   }else{
1176     /* iCol is a normal or stored column */
1177     return n;
1178   }
1179 }
1180 #endif
1181 
1182 /*
1183 ** Insert a single OP_JournalMode query opcode in order to force the
1184 ** prepared statement to return false for sqlite3_stmt_readonly().  This
1185 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1186 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1187 ** will return false for sqlite3_stmt_readonly() even if that statement
1188 ** is a read-only no-op.
1189 */
1190 static void sqlite3ForceNotReadOnly(Parse *pParse){
1191   int iReg = ++pParse->nMem;
1192   Vdbe *v = sqlite3GetVdbe(pParse);
1193   if( v ){
1194     sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1195     sqlite3VdbeUsesBtree(v, 0);
1196   }
1197 }
1198 
1199 /*
1200 ** Begin constructing a new table representation in memory.  This is
1201 ** the first of several action routines that get called in response
1202 ** to a CREATE TABLE statement.  In particular, this routine is called
1203 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1204 ** flag is true if the table should be stored in the auxiliary database
1205 ** file instead of in the main database file.  This is normally the case
1206 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1207 ** CREATE and TABLE.
1208 **
1209 ** The new table record is initialized and put in pParse->pNewTable.
1210 ** As more of the CREATE TABLE statement is parsed, additional action
1211 ** routines will be called to add more information to this record.
1212 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1213 ** is called to complete the construction of the new table record.
1214 */
1215 void sqlite3StartTable(
1216   Parse *pParse,   /* Parser context */
1217   Token *pName1,   /* First part of the name of the table or view */
1218   Token *pName2,   /* Second part of the name of the table or view */
1219   int isTemp,      /* True if this is a TEMP table */
1220   int isView,      /* True if this is a VIEW */
1221   int isVirtual,   /* True if this is a VIRTUAL table */
1222   int noErr        /* Do nothing if table already exists */
1223 ){
1224   Table *pTable;
1225   char *zName = 0; /* The name of the new table */
1226   sqlite3 *db = pParse->db;
1227   Vdbe *v;
1228   int iDb;         /* Database number to create the table in */
1229   Token *pName;    /* Unqualified name of the table to create */
1230 
1231   if( db->init.busy && db->init.newTnum==1 ){
1232     /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
1233     iDb = db->init.iDb;
1234     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1235     pName = pName1;
1236   }else{
1237     /* The common case */
1238     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1239     if( iDb<0 ) return;
1240     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1241       /* If creating a temp table, the name may not be qualified. Unless
1242       ** the database name is "temp" anyway.  */
1243       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1244       return;
1245     }
1246     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1247     zName = sqlite3NameFromToken(db, pName);
1248     if( IN_RENAME_OBJECT ){
1249       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1250     }
1251   }
1252   pParse->sNameToken = *pName;
1253   if( zName==0 ) return;
1254   if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1255     goto begin_table_error;
1256   }
1257   if( db->init.iDb==1 ) isTemp = 1;
1258 #ifndef SQLITE_OMIT_AUTHORIZATION
1259   assert( isTemp==0 || isTemp==1 );
1260   assert( isView==0 || isView==1 );
1261   {
1262     static const u8 aCode[] = {
1263        SQLITE_CREATE_TABLE,
1264        SQLITE_CREATE_TEMP_TABLE,
1265        SQLITE_CREATE_VIEW,
1266        SQLITE_CREATE_TEMP_VIEW
1267     };
1268     char *zDb = db->aDb[iDb].zDbSName;
1269     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1270       goto begin_table_error;
1271     }
1272     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1273                                        zName, 0, zDb) ){
1274       goto begin_table_error;
1275     }
1276   }
1277 #endif
1278 
1279   /* Make sure the new table name does not collide with an existing
1280   ** index or table name in the same database.  Issue an error message if
1281   ** it does. The exception is if the statement being parsed was passed
1282   ** to an sqlite3_declare_vtab() call. In that case only the column names
1283   ** and types will be used, so there is no need to test for namespace
1284   ** collisions.
1285   */
1286   if( !IN_SPECIAL_PARSE ){
1287     char *zDb = db->aDb[iDb].zDbSName;
1288     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1289       goto begin_table_error;
1290     }
1291     pTable = sqlite3FindTable(db, zName, zDb);
1292     if( pTable ){
1293       if( !noErr ){
1294         sqlite3ErrorMsg(pParse, "%s %T already exists",
1295                         (IsView(pTable)? "view" : "table"), pName);
1296       }else{
1297         assert( !db->init.busy || CORRUPT_DB );
1298         sqlite3CodeVerifySchema(pParse, iDb);
1299         sqlite3ForceNotReadOnly(pParse);
1300       }
1301       goto begin_table_error;
1302     }
1303     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1304       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1305       goto begin_table_error;
1306     }
1307   }
1308 
1309   pTable = sqlite3DbMallocZero(db, sizeof(Table));
1310   if( pTable==0 ){
1311     assert( db->mallocFailed );
1312     pParse->rc = SQLITE_NOMEM_BKPT;
1313     pParse->nErr++;
1314     goto begin_table_error;
1315   }
1316   pTable->zName = zName;
1317   pTable->iPKey = -1;
1318   pTable->pSchema = db->aDb[iDb].pSchema;
1319   pTable->nTabRef = 1;
1320 #ifdef SQLITE_DEFAULT_ROWEST
1321   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1322 #else
1323   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1324 #endif
1325   assert( pParse->pNewTable==0 );
1326   pParse->pNewTable = pTable;
1327 
1328   /* Begin generating the code that will insert the table record into
1329   ** the schema table.  Note in particular that we must go ahead
1330   ** and allocate the record number for the table entry now.  Before any
1331   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1332   ** indices to be created and the table record must come before the
1333   ** indices.  Hence, the record number for the table must be allocated
1334   ** now.
1335   */
1336   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1337     int addr1;
1338     int fileFormat;
1339     int reg1, reg2, reg3;
1340     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1341     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1342     sqlite3BeginWriteOperation(pParse, 1, iDb);
1343 
1344 #ifndef SQLITE_OMIT_VIRTUALTABLE
1345     if( isVirtual ){
1346       sqlite3VdbeAddOp0(v, OP_VBegin);
1347     }
1348 #endif
1349 
1350     /* If the file format and encoding in the database have not been set,
1351     ** set them now.
1352     */
1353     reg1 = pParse->regRowid = ++pParse->nMem;
1354     reg2 = pParse->regRoot = ++pParse->nMem;
1355     reg3 = ++pParse->nMem;
1356     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1357     sqlite3VdbeUsesBtree(v, iDb);
1358     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1359     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1360                   1 : SQLITE_MAX_FILE_FORMAT;
1361     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1362     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1363     sqlite3VdbeJumpHere(v, addr1);
1364 
1365     /* This just creates a place-holder record in the sqlite_schema table.
1366     ** The record created does not contain anything yet.  It will be replaced
1367     ** by the real entry in code generated at sqlite3EndTable().
1368     **
1369     ** The rowid for the new entry is left in register pParse->regRowid.
1370     ** The root page number of the new table is left in reg pParse->regRoot.
1371     ** The rowid and root page number values are needed by the code that
1372     ** sqlite3EndTable will generate.
1373     */
1374 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1375     if( isView || isVirtual ){
1376       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1377     }else
1378 #endif
1379     {
1380       assert( !pParse->bReturning );
1381       pParse->u1.addrCrTab =
1382          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1383     }
1384     sqlite3OpenSchemaTable(pParse, iDb);
1385     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1386     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1387     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1388     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1389     sqlite3VdbeAddOp0(v, OP_Close);
1390   }
1391 
1392   /* Normal (non-error) return. */
1393   return;
1394 
1395   /* If an error occurs, we jump here */
1396 begin_table_error:
1397   pParse->checkSchema = 1;
1398   sqlite3DbFree(db, zName);
1399   return;
1400 }
1401 
1402 /* Set properties of a table column based on the (magical)
1403 ** name of the column.
1404 */
1405 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1406 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1407   if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1408     pCol->colFlags |= COLFLAG_HIDDEN;
1409     if( pTab ) pTab->tabFlags |= TF_HasHidden;
1410   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1411     pTab->tabFlags |= TF_OOOHidden;
1412   }
1413 }
1414 #endif
1415 
1416 /*
1417 ** Name of the special TEMP trigger used to implement RETURNING.  The
1418 ** name begins with "sqlite_" so that it is guaranteed not to collide
1419 ** with any application-generated triggers.
1420 */
1421 #define RETURNING_TRIGGER_NAME  "sqlite_returning"
1422 
1423 /*
1424 ** Clean up the data structures associated with the RETURNING clause.
1425 */
1426 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1427   Hash *pHash;
1428   pHash = &(db->aDb[1].pSchema->trigHash);
1429   sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1430   sqlite3ExprListDelete(db, pRet->pReturnEL);
1431   sqlite3DbFree(db, pRet);
1432 }
1433 
1434 /*
1435 ** Add the RETURNING clause to the parse currently underway.
1436 **
1437 ** This routine creates a special TEMP trigger that will fire for each row
1438 ** of the DML statement.  That TEMP trigger contains a single SELECT
1439 ** statement with a result set that is the argument of the RETURNING clause.
1440 ** The trigger has the Trigger.bReturning flag and an opcode of
1441 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1442 ** knows to handle it specially.  The TEMP trigger is automatically
1443 ** removed at the end of the parse.
1444 **
1445 ** When this routine is called, we do not yet know if the RETURNING clause
1446 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1447 ** RETURNING trigger instead.  It will then be converted into the appropriate
1448 ** type on the first call to sqlite3TriggersExist().
1449 */
1450 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1451   Returning *pRet;
1452   Hash *pHash;
1453   sqlite3 *db = pParse->db;
1454   if( pParse->pNewTrigger ){
1455     sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1456   }else{
1457     assert( pParse->bReturning==0 );
1458   }
1459   pParse->bReturning = 1;
1460   pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1461   if( pRet==0 ){
1462     sqlite3ExprListDelete(db, pList);
1463     return;
1464   }
1465   pParse->u1.pReturning = pRet;
1466   pRet->pParse = pParse;
1467   pRet->pReturnEL = pList;
1468   sqlite3ParserAddCleanup(pParse,
1469      (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1470   testcase( pParse->earlyCleanup );
1471   if( db->mallocFailed ) return;
1472   pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1473   pRet->retTrig.op = TK_RETURNING;
1474   pRet->retTrig.tr_tm = TRIGGER_AFTER;
1475   pRet->retTrig.bReturning = 1;
1476   pRet->retTrig.pSchema = db->aDb[1].pSchema;
1477   pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1478   pRet->retTrig.step_list = &pRet->retTStep;
1479   pRet->retTStep.op = TK_RETURNING;
1480   pRet->retTStep.pTrig = &pRet->retTrig;
1481   pRet->retTStep.pExprList = pList;
1482   pHash = &(db->aDb[1].pSchema->trigHash);
1483   assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1484   if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1485           ==&pRet->retTrig ){
1486     sqlite3OomFault(db);
1487   }
1488 }
1489 
1490 /*
1491 ** Add a new column to the table currently being constructed.
1492 **
1493 ** The parser calls this routine once for each column declaration
1494 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1495 ** first to get things going.  Then this routine is called for each
1496 ** column.
1497 */
1498 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1499   Table *p;
1500   int i;
1501   char *z;
1502   char *zType;
1503   Column *pCol;
1504   sqlite3 *db = pParse->db;
1505   u8 hName;
1506   Column *aNew;
1507   u8 eType = COLTYPE_CUSTOM;
1508   u8 szEst = 1;
1509   char affinity = SQLITE_AFF_BLOB;
1510 
1511   if( (p = pParse->pNewTable)==0 ) return;
1512   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1513     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1514     return;
1515   }
1516   if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1517 
1518   /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1519   ** by the parser, we can sometimes end up with a typename that ends
1520   ** with "generated always".  Check for this case and omit the surplus
1521   ** text. */
1522   if( sType.n>=16
1523    && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1524   ){
1525     sType.n -= 6;
1526     while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1527     if( sType.n>=9
1528      && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1529     ){
1530       sType.n -= 9;
1531       while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1532     }
1533   }
1534 
1535   /* Check for standard typenames.  For standard typenames we will
1536   ** set the Column.eType field rather than storing the typename after
1537   ** the column name, in order to save space. */
1538   if( sType.n>=3 ){
1539     sqlite3DequoteToken(&sType);
1540     for(i=0; i<SQLITE_N_STDTYPE; i++){
1541        if( sType.n==sqlite3StdTypeLen[i]
1542         && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1543        ){
1544          sType.n = 0;
1545          eType = i+1;
1546          affinity = sqlite3StdTypeAffinity[i];
1547          if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1548          break;
1549        }
1550     }
1551   }
1552 
1553   z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1554   if( z==0 ) return;
1555   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1556   memcpy(z, sName.z, sName.n);
1557   z[sName.n] = 0;
1558   sqlite3Dequote(z);
1559   hName = sqlite3StrIHash(z);
1560   for(i=0; i<p->nCol; i++){
1561     if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1562       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1563       sqlite3DbFree(db, z);
1564       return;
1565     }
1566   }
1567   aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1568   if( aNew==0 ){
1569     sqlite3DbFree(db, z);
1570     return;
1571   }
1572   p->aCol = aNew;
1573   pCol = &p->aCol[p->nCol];
1574   memset(pCol, 0, sizeof(p->aCol[0]));
1575   pCol->zCnName = z;
1576   pCol->hName = hName;
1577   sqlite3ColumnPropertiesFromName(p, pCol);
1578 
1579   if( sType.n==0 ){
1580     /* If there is no type specified, columns have the default affinity
1581     ** 'BLOB' with a default size of 4 bytes. */
1582     pCol->affinity = affinity;
1583     pCol->eCType = eType;
1584     pCol->szEst = szEst;
1585 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1586     if( affinity==SQLITE_AFF_BLOB ){
1587       if( 4>=sqlite3GlobalConfig.szSorterRef ){
1588         pCol->colFlags |= COLFLAG_SORTERREF;
1589       }
1590     }
1591 #endif
1592   }else{
1593     zType = z + sqlite3Strlen30(z) + 1;
1594     memcpy(zType, sType.z, sType.n);
1595     zType[sType.n] = 0;
1596     sqlite3Dequote(zType);
1597     pCol->affinity = sqlite3AffinityType(zType, pCol);
1598     pCol->colFlags |= COLFLAG_HASTYPE;
1599   }
1600   p->nCol++;
1601   p->nNVCol++;
1602   pParse->constraintName.n = 0;
1603 }
1604 
1605 /*
1606 ** This routine is called by the parser while in the middle of
1607 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1608 ** been seen on a column.  This routine sets the notNull flag on
1609 ** the column currently under construction.
1610 */
1611 void sqlite3AddNotNull(Parse *pParse, int onError){
1612   Table *p;
1613   Column *pCol;
1614   p = pParse->pNewTable;
1615   if( p==0 || NEVER(p->nCol<1) ) return;
1616   pCol = &p->aCol[p->nCol-1];
1617   pCol->notNull = (u8)onError;
1618   p->tabFlags |= TF_HasNotNull;
1619 
1620   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1621   ** on this column.  */
1622   if( pCol->colFlags & COLFLAG_UNIQUE ){
1623     Index *pIdx;
1624     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1625       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1626       if( pIdx->aiColumn[0]==p->nCol-1 ){
1627         pIdx->uniqNotNull = 1;
1628       }
1629     }
1630   }
1631 }
1632 
1633 /*
1634 ** Scan the column type name zType (length nType) and return the
1635 ** associated affinity type.
1636 **
1637 ** This routine does a case-independent search of zType for the
1638 ** substrings in the following table. If one of the substrings is
1639 ** found, the corresponding affinity is returned. If zType contains
1640 ** more than one of the substrings, entries toward the top of
1641 ** the table take priority. For example, if zType is 'BLOBINT',
1642 ** SQLITE_AFF_INTEGER is returned.
1643 **
1644 ** Substring     | Affinity
1645 ** --------------------------------
1646 ** 'INT'         | SQLITE_AFF_INTEGER
1647 ** 'CHAR'        | SQLITE_AFF_TEXT
1648 ** 'CLOB'        | SQLITE_AFF_TEXT
1649 ** 'TEXT'        | SQLITE_AFF_TEXT
1650 ** 'BLOB'        | SQLITE_AFF_BLOB
1651 ** 'REAL'        | SQLITE_AFF_REAL
1652 ** 'FLOA'        | SQLITE_AFF_REAL
1653 ** 'DOUB'        | SQLITE_AFF_REAL
1654 **
1655 ** If none of the substrings in the above table are found,
1656 ** SQLITE_AFF_NUMERIC is returned.
1657 */
1658 char sqlite3AffinityType(const char *zIn, Column *pCol){
1659   u32 h = 0;
1660   char aff = SQLITE_AFF_NUMERIC;
1661   const char *zChar = 0;
1662 
1663   assert( zIn!=0 );
1664   while( zIn[0] ){
1665     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1666     zIn++;
1667     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1668       aff = SQLITE_AFF_TEXT;
1669       zChar = zIn;
1670     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1671       aff = SQLITE_AFF_TEXT;
1672     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1673       aff = SQLITE_AFF_TEXT;
1674     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1675         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1676       aff = SQLITE_AFF_BLOB;
1677       if( zIn[0]=='(' ) zChar = zIn;
1678 #ifndef SQLITE_OMIT_FLOATING_POINT
1679     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1680         && aff==SQLITE_AFF_NUMERIC ){
1681       aff = SQLITE_AFF_REAL;
1682     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1683         && aff==SQLITE_AFF_NUMERIC ){
1684       aff = SQLITE_AFF_REAL;
1685     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1686         && aff==SQLITE_AFF_NUMERIC ){
1687       aff = SQLITE_AFF_REAL;
1688 #endif
1689     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1690       aff = SQLITE_AFF_INTEGER;
1691       break;
1692     }
1693   }
1694 
1695   /* If pCol is not NULL, store an estimate of the field size.  The
1696   ** estimate is scaled so that the size of an integer is 1.  */
1697   if( pCol ){
1698     int v = 0;   /* default size is approx 4 bytes */
1699     if( aff<SQLITE_AFF_NUMERIC ){
1700       if( zChar ){
1701         while( zChar[0] ){
1702           if( sqlite3Isdigit(zChar[0]) ){
1703             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1704             sqlite3GetInt32(zChar, &v);
1705             break;
1706           }
1707           zChar++;
1708         }
1709       }else{
1710         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1711       }
1712     }
1713 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1714     if( v>=sqlite3GlobalConfig.szSorterRef ){
1715       pCol->colFlags |= COLFLAG_SORTERREF;
1716     }
1717 #endif
1718     v = v/4 + 1;
1719     if( v>255 ) v = 255;
1720     pCol->szEst = v;
1721   }
1722   return aff;
1723 }
1724 
1725 /*
1726 ** The expression is the default value for the most recently added column
1727 ** of the table currently under construction.
1728 **
1729 ** Default value expressions must be constant.  Raise an exception if this
1730 ** is not the case.
1731 **
1732 ** This routine is called by the parser while in the middle of
1733 ** parsing a CREATE TABLE statement.
1734 */
1735 void sqlite3AddDefaultValue(
1736   Parse *pParse,           /* Parsing context */
1737   Expr *pExpr,             /* The parsed expression of the default value */
1738   const char *zStart,      /* Start of the default value text */
1739   const char *zEnd         /* First character past end of defaut value text */
1740 ){
1741   Table *p;
1742   Column *pCol;
1743   sqlite3 *db = pParse->db;
1744   p = pParse->pNewTable;
1745   if( p!=0 ){
1746     int isInit = db->init.busy && db->init.iDb!=1;
1747     pCol = &(p->aCol[p->nCol-1]);
1748     if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1749       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1750           pCol->zCnName);
1751 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1752     }else if( pCol->colFlags & COLFLAG_GENERATED ){
1753       testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1754       testcase( pCol->colFlags & COLFLAG_STORED );
1755       sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1756 #endif
1757     }else{
1758       /* A copy of pExpr is used instead of the original, as pExpr contains
1759       ** tokens that point to volatile memory.
1760       */
1761       Expr x, *pDfltExpr;
1762       memset(&x, 0, sizeof(x));
1763       x.op = TK_SPAN;
1764       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1765       x.pLeft = pExpr;
1766       x.flags = EP_Skip;
1767       pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1768       sqlite3DbFree(db, x.u.zToken);
1769       sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1770     }
1771   }
1772   if( IN_RENAME_OBJECT ){
1773     sqlite3RenameExprUnmap(pParse, pExpr);
1774   }
1775   sqlite3ExprDelete(db, pExpr);
1776 }
1777 
1778 /*
1779 ** Backwards Compatibility Hack:
1780 **
1781 ** Historical versions of SQLite accepted strings as column names in
1782 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1783 **
1784 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1785 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1786 **
1787 ** This is goofy.  But to preserve backwards compatibility we continue to
1788 ** accept it.  This routine does the necessary conversion.  It converts
1789 ** the expression given in its argument from a TK_STRING into a TK_ID
1790 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1791 ** If the expression is anything other than TK_STRING, the expression is
1792 ** unchanged.
1793 */
1794 static void sqlite3StringToId(Expr *p){
1795   if( p->op==TK_STRING ){
1796     p->op = TK_ID;
1797   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1798     p->pLeft->op = TK_ID;
1799   }
1800 }
1801 
1802 /*
1803 ** Tag the given column as being part of the PRIMARY KEY
1804 */
1805 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1806   pCol->colFlags |= COLFLAG_PRIMKEY;
1807 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1808   if( pCol->colFlags & COLFLAG_GENERATED ){
1809     testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1810     testcase( pCol->colFlags & COLFLAG_STORED );
1811     sqlite3ErrorMsg(pParse,
1812       "generated columns cannot be part of the PRIMARY KEY");
1813   }
1814 #endif
1815 }
1816 
1817 /*
1818 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1819 ** of columns that form the primary key.  If pList is NULL, then the
1820 ** most recently added column of the table is the primary key.
1821 **
1822 ** A table can have at most one primary key.  If the table already has
1823 ** a primary key (and this is the second primary key) then create an
1824 ** error.
1825 **
1826 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1827 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1828 ** field of the table under construction to be the index of the
1829 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1830 ** no INTEGER PRIMARY KEY.
1831 **
1832 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1833 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1834 */
1835 void sqlite3AddPrimaryKey(
1836   Parse *pParse,    /* Parsing context */
1837   ExprList *pList,  /* List of field names to be indexed */
1838   int onError,      /* What to do with a uniqueness conflict */
1839   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1840   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1841 ){
1842   Table *pTab = pParse->pNewTable;
1843   Column *pCol = 0;
1844   int iCol = -1, i;
1845   int nTerm;
1846   if( pTab==0 ) goto primary_key_exit;
1847   if( pTab->tabFlags & TF_HasPrimaryKey ){
1848     sqlite3ErrorMsg(pParse,
1849       "table \"%s\" has more than one primary key", pTab->zName);
1850     goto primary_key_exit;
1851   }
1852   pTab->tabFlags |= TF_HasPrimaryKey;
1853   if( pList==0 ){
1854     iCol = pTab->nCol - 1;
1855     pCol = &pTab->aCol[iCol];
1856     makeColumnPartOfPrimaryKey(pParse, pCol);
1857     nTerm = 1;
1858   }else{
1859     nTerm = pList->nExpr;
1860     for(i=0; i<nTerm; i++){
1861       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1862       assert( pCExpr!=0 );
1863       sqlite3StringToId(pCExpr);
1864       if( pCExpr->op==TK_ID ){
1865         const char *zCName;
1866         assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1867         zCName = pCExpr->u.zToken;
1868         for(iCol=0; iCol<pTab->nCol; iCol++){
1869           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1870             pCol = &pTab->aCol[iCol];
1871             makeColumnPartOfPrimaryKey(pParse, pCol);
1872             break;
1873           }
1874         }
1875       }
1876     }
1877   }
1878   if( nTerm==1
1879    && pCol
1880    && pCol->eCType==COLTYPE_INTEGER
1881    && sortOrder!=SQLITE_SO_DESC
1882   ){
1883     if( IN_RENAME_OBJECT && pList ){
1884       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1885       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1886     }
1887     pTab->iPKey = iCol;
1888     pTab->keyConf = (u8)onError;
1889     assert( autoInc==0 || autoInc==1 );
1890     pTab->tabFlags |= autoInc*TF_Autoincrement;
1891     if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
1892     (void)sqlite3HasExplicitNulls(pParse, pList);
1893   }else if( autoInc ){
1894 #ifndef SQLITE_OMIT_AUTOINCREMENT
1895     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1896        "INTEGER PRIMARY KEY");
1897 #endif
1898   }else{
1899     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1900                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1901     pList = 0;
1902   }
1903 
1904 primary_key_exit:
1905   sqlite3ExprListDelete(pParse->db, pList);
1906   return;
1907 }
1908 
1909 /*
1910 ** Add a new CHECK constraint to the table currently under construction.
1911 */
1912 void sqlite3AddCheckConstraint(
1913   Parse *pParse,      /* Parsing context */
1914   Expr *pCheckExpr,   /* The check expression */
1915   const char *zStart, /* Opening "(" */
1916   const char *zEnd    /* Closing ")" */
1917 ){
1918 #ifndef SQLITE_OMIT_CHECK
1919   Table *pTab = pParse->pNewTable;
1920   sqlite3 *db = pParse->db;
1921   if( pTab && !IN_DECLARE_VTAB
1922    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1923   ){
1924     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1925     if( pParse->constraintName.n ){
1926       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1927     }else{
1928       Token t;
1929       for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1930       while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1931       t.z = zStart;
1932       t.n = (int)(zEnd - t.z);
1933       sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1934     }
1935   }else
1936 #endif
1937   {
1938     sqlite3ExprDelete(pParse->db, pCheckExpr);
1939   }
1940 }
1941 
1942 /*
1943 ** Set the collation function of the most recently parsed table column
1944 ** to the CollSeq given.
1945 */
1946 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1947   Table *p;
1948   int i;
1949   char *zColl;              /* Dequoted name of collation sequence */
1950   sqlite3 *db;
1951 
1952   if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1953   i = p->nCol-1;
1954   db = pParse->db;
1955   zColl = sqlite3NameFromToken(db, pToken);
1956   if( !zColl ) return;
1957 
1958   if( sqlite3LocateCollSeq(pParse, zColl) ){
1959     Index *pIdx;
1960     sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1961 
1962     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1963     ** then an index may have been created on this column before the
1964     ** collation type was added. Correct this if it is the case.
1965     */
1966     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1967       assert( pIdx->nKeyCol==1 );
1968       if( pIdx->aiColumn[0]==i ){
1969         pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1970       }
1971     }
1972   }
1973   sqlite3DbFree(db, zColl);
1974 }
1975 
1976 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1977 ** column.
1978 */
1979 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1980 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1981   u8 eType = COLFLAG_VIRTUAL;
1982   Table *pTab = pParse->pNewTable;
1983   Column *pCol;
1984   if( pTab==0 ){
1985     /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1986     goto generated_done;
1987   }
1988   pCol = &(pTab->aCol[pTab->nCol-1]);
1989   if( IN_DECLARE_VTAB ){
1990     sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1991     goto generated_done;
1992   }
1993   if( pCol->iDflt>0 ) goto generated_error;
1994   if( pType ){
1995     if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1996       /* no-op */
1997     }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1998       eType = COLFLAG_STORED;
1999     }else{
2000       goto generated_error;
2001     }
2002   }
2003   if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2004   pCol->colFlags |= eType;
2005   assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2006   assert( TF_HasStored==COLFLAG_STORED );
2007   pTab->tabFlags |= eType;
2008   if( pCol->colFlags & COLFLAG_PRIMKEY ){
2009     makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2010   }
2011   sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2012   pExpr = 0;
2013   goto generated_done;
2014 
2015 generated_error:
2016   sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2017                   pCol->zCnName);
2018 generated_done:
2019   sqlite3ExprDelete(pParse->db, pExpr);
2020 #else
2021   /* Throw and error for the GENERATED ALWAYS AS clause if the
2022   ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2023   sqlite3ErrorMsg(pParse, "generated columns not supported");
2024   sqlite3ExprDelete(pParse->db, pExpr);
2025 #endif
2026 }
2027 
2028 /*
2029 ** Generate code that will increment the schema cookie.
2030 **
2031 ** The schema cookie is used to determine when the schema for the
2032 ** database changes.  After each schema change, the cookie value
2033 ** changes.  When a process first reads the schema it records the
2034 ** cookie.  Thereafter, whenever it goes to access the database,
2035 ** it checks the cookie to make sure the schema has not changed
2036 ** since it was last read.
2037 **
2038 ** This plan is not completely bullet-proof.  It is possible for
2039 ** the schema to change multiple times and for the cookie to be
2040 ** set back to prior value.  But schema changes are infrequent
2041 ** and the probability of hitting the same cookie value is only
2042 ** 1 chance in 2^32.  So we're safe enough.
2043 **
2044 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2045 ** the schema-version whenever the schema changes.
2046 */
2047 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2048   sqlite3 *db = pParse->db;
2049   Vdbe *v = pParse->pVdbe;
2050   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2051   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2052                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2053 }
2054 
2055 /*
2056 ** Measure the number of characters needed to output the given
2057 ** identifier.  The number returned includes any quotes used
2058 ** but does not include the null terminator.
2059 **
2060 ** The estimate is conservative.  It might be larger that what is
2061 ** really needed.
2062 */
2063 static int identLength(const char *z){
2064   int n;
2065   for(n=0; *z; n++, z++){
2066     if( *z=='"' ){ n++; }
2067   }
2068   return n + 2;
2069 }
2070 
2071 /*
2072 ** The first parameter is a pointer to an output buffer. The second
2073 ** parameter is a pointer to an integer that contains the offset at
2074 ** which to write into the output buffer. This function copies the
2075 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2076 ** to the specified offset in the buffer and updates *pIdx to refer
2077 ** to the first byte after the last byte written before returning.
2078 **
2079 ** If the string zSignedIdent consists entirely of alpha-numeric
2080 ** characters, does not begin with a digit and is not an SQL keyword,
2081 ** then it is copied to the output buffer exactly as it is. Otherwise,
2082 ** it is quoted using double-quotes.
2083 */
2084 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2085   unsigned char *zIdent = (unsigned char*)zSignedIdent;
2086   int i, j, needQuote;
2087   i = *pIdx;
2088 
2089   for(j=0; zIdent[j]; j++){
2090     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2091   }
2092   needQuote = sqlite3Isdigit(zIdent[0])
2093             || sqlite3KeywordCode(zIdent, j)!=TK_ID
2094             || zIdent[j]!=0
2095             || j==0;
2096 
2097   if( needQuote ) z[i++] = '"';
2098   for(j=0; zIdent[j]; j++){
2099     z[i++] = zIdent[j];
2100     if( zIdent[j]=='"' ) z[i++] = '"';
2101   }
2102   if( needQuote ) z[i++] = '"';
2103   z[i] = 0;
2104   *pIdx = i;
2105 }
2106 
2107 /*
2108 ** Generate a CREATE TABLE statement appropriate for the given
2109 ** table.  Memory to hold the text of the statement is obtained
2110 ** from sqliteMalloc() and must be freed by the calling function.
2111 */
2112 static char *createTableStmt(sqlite3 *db, Table *p){
2113   int i, k, n;
2114   char *zStmt;
2115   char *zSep, *zSep2, *zEnd;
2116   Column *pCol;
2117   n = 0;
2118   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2119     n += identLength(pCol->zCnName) + 5;
2120   }
2121   n += identLength(p->zName);
2122   if( n<50 ){
2123     zSep = "";
2124     zSep2 = ",";
2125     zEnd = ")";
2126   }else{
2127     zSep = "\n  ";
2128     zSep2 = ",\n  ";
2129     zEnd = "\n)";
2130   }
2131   n += 35 + 6*p->nCol;
2132   zStmt = sqlite3DbMallocRaw(0, n);
2133   if( zStmt==0 ){
2134     sqlite3OomFault(db);
2135     return 0;
2136   }
2137   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2138   k = sqlite3Strlen30(zStmt);
2139   identPut(zStmt, &k, p->zName);
2140   zStmt[k++] = '(';
2141   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2142     static const char * const azType[] = {
2143         /* SQLITE_AFF_BLOB    */ "",
2144         /* SQLITE_AFF_TEXT    */ " TEXT",
2145         /* SQLITE_AFF_NUMERIC */ " NUM",
2146         /* SQLITE_AFF_INTEGER */ " INT",
2147         /* SQLITE_AFF_REAL    */ " REAL"
2148     };
2149     int len;
2150     const char *zType;
2151 
2152     sqlite3_snprintf(n-k, &zStmt[k], zSep);
2153     k += sqlite3Strlen30(&zStmt[k]);
2154     zSep = zSep2;
2155     identPut(zStmt, &k, pCol->zCnName);
2156     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2157     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2158     testcase( pCol->affinity==SQLITE_AFF_BLOB );
2159     testcase( pCol->affinity==SQLITE_AFF_TEXT );
2160     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2161     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2162     testcase( pCol->affinity==SQLITE_AFF_REAL );
2163 
2164     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2165     len = sqlite3Strlen30(zType);
2166     assert( pCol->affinity==SQLITE_AFF_BLOB
2167             || pCol->affinity==sqlite3AffinityType(zType, 0) );
2168     memcpy(&zStmt[k], zType, len);
2169     k += len;
2170     assert( k<=n );
2171   }
2172   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2173   return zStmt;
2174 }
2175 
2176 /*
2177 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
2178 ** on success and SQLITE_NOMEM on an OOM error.
2179 */
2180 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2181   char *zExtra;
2182   int nByte;
2183   if( pIdx->nColumn>=N ) return SQLITE_OK;
2184   assert( pIdx->isResized==0 );
2185   nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2186   zExtra = sqlite3DbMallocZero(db, nByte);
2187   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2188   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2189   pIdx->azColl = (const char**)zExtra;
2190   zExtra += sizeof(char*)*N;
2191   memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2192   pIdx->aiRowLogEst = (LogEst*)zExtra;
2193   zExtra += sizeof(LogEst)*N;
2194   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2195   pIdx->aiColumn = (i16*)zExtra;
2196   zExtra += sizeof(i16)*N;
2197   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2198   pIdx->aSortOrder = (u8*)zExtra;
2199   pIdx->nColumn = N;
2200   pIdx->isResized = 1;
2201   return SQLITE_OK;
2202 }
2203 
2204 /*
2205 ** Estimate the total row width for a table.
2206 */
2207 static void estimateTableWidth(Table *pTab){
2208   unsigned wTable = 0;
2209   const Column *pTabCol;
2210   int i;
2211   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2212     wTable += pTabCol->szEst;
2213   }
2214   if( pTab->iPKey<0 ) wTable++;
2215   pTab->szTabRow = sqlite3LogEst(wTable*4);
2216 }
2217 
2218 /*
2219 ** Estimate the average size of a row for an index.
2220 */
2221 static void estimateIndexWidth(Index *pIdx){
2222   unsigned wIndex = 0;
2223   int i;
2224   const Column *aCol = pIdx->pTable->aCol;
2225   for(i=0; i<pIdx->nColumn; i++){
2226     i16 x = pIdx->aiColumn[i];
2227     assert( x<pIdx->pTable->nCol );
2228     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2229   }
2230   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2231 }
2232 
2233 /* Return true if column number x is any of the first nCol entries of aiCol[].
2234 ** This is used to determine if the column number x appears in any of the
2235 ** first nCol entries of an index.
2236 */
2237 static int hasColumn(const i16 *aiCol, int nCol, int x){
2238   while( nCol-- > 0 ){
2239     if( x==*(aiCol++) ){
2240       return 1;
2241     }
2242   }
2243   return 0;
2244 }
2245 
2246 /*
2247 ** Return true if any of the first nKey entries of index pIdx exactly
2248 ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
2249 ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
2250 ** or may not be the same index as pPk.
2251 **
2252 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2253 ** not a rowid or expression.
2254 **
2255 ** This routine differs from hasColumn() in that both the column and the
2256 ** collating sequence must match for this routine, but for hasColumn() only
2257 ** the column name must match.
2258 */
2259 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2260   int i, j;
2261   assert( nKey<=pIdx->nColumn );
2262   assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2263   assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2264   assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2265   assert( pPk->pTable==pIdx->pTable );
2266   testcase( pPk==pIdx );
2267   j = pPk->aiColumn[iCol];
2268   assert( j!=XN_ROWID && j!=XN_EXPR );
2269   for(i=0; i<nKey; i++){
2270     assert( pIdx->aiColumn[i]>=0 || j>=0 );
2271     if( pIdx->aiColumn[i]==j
2272      && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2273     ){
2274       return 1;
2275     }
2276   }
2277   return 0;
2278 }
2279 
2280 /* Recompute the colNotIdxed field of the Index.
2281 **
2282 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2283 ** columns that are within the first 63 columns of the table.  The
2284 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
2285 ** of the table have a 1.
2286 **
2287 ** 2019-10-24:  For the purpose of this computation, virtual columns are
2288 ** not considered to be covered by the index, even if they are in the
2289 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2290 ** able to find all instances of a reference to the indexed table column
2291 ** and convert them into references to the index.  Hence we always want
2292 ** the actual table at hand in order to recompute the virtual column, if
2293 ** necessary.
2294 **
2295 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2296 ** to determine if the index is covering index.
2297 */
2298 static void recomputeColumnsNotIndexed(Index *pIdx){
2299   Bitmask m = 0;
2300   int j;
2301   Table *pTab = pIdx->pTable;
2302   for(j=pIdx->nColumn-1; j>=0; j--){
2303     int x = pIdx->aiColumn[j];
2304     if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2305       testcase( x==BMS-1 );
2306       testcase( x==BMS-2 );
2307       if( x<BMS-1 ) m |= MASKBIT(x);
2308     }
2309   }
2310   pIdx->colNotIdxed = ~m;
2311   assert( (pIdx->colNotIdxed>>63)==1 );
2312 }
2313 
2314 /*
2315 ** This routine runs at the end of parsing a CREATE TABLE statement that
2316 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
2317 ** internal schema data structures and the generated VDBE code so that they
2318 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2319 ** Changes include:
2320 **
2321 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2322 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2323 **          into BTREE_BLOBKEY.
2324 **     (3)  Bypass the creation of the sqlite_schema table entry
2325 **          for the PRIMARY KEY as the primary key index is now
2326 **          identified by the sqlite_schema table entry of the table itself.
2327 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
2328 **          schema to the rootpage from the main table.
2329 **     (5)  Add all table columns to the PRIMARY KEY Index object
2330 **          so that the PRIMARY KEY is a covering index.  The surplus
2331 **          columns are part of KeyInfo.nAllField and are not used for
2332 **          sorting or lookup or uniqueness checks.
2333 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
2334 **          indices with the PRIMARY KEY columns.
2335 **
2336 ** For virtual tables, only (1) is performed.
2337 */
2338 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2339   Index *pIdx;
2340   Index *pPk;
2341   int nPk;
2342   int nExtra;
2343   int i, j;
2344   sqlite3 *db = pParse->db;
2345   Vdbe *v = pParse->pVdbe;
2346 
2347   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2348   */
2349   if( !db->init.imposterTable ){
2350     for(i=0; i<pTab->nCol; i++){
2351       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2352        && (pTab->aCol[i].notNull==OE_None)
2353       ){
2354         pTab->aCol[i].notNull = OE_Abort;
2355       }
2356     }
2357     pTab->tabFlags |= TF_HasNotNull;
2358   }
2359 
2360   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2361   ** into BTREE_BLOBKEY.
2362   */
2363   assert( !pParse->bReturning );
2364   if( pParse->u1.addrCrTab ){
2365     assert( v );
2366     sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2367   }
2368 
2369   /* Locate the PRIMARY KEY index.  Or, if this table was originally
2370   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2371   */
2372   if( pTab->iPKey>=0 ){
2373     ExprList *pList;
2374     Token ipkToken;
2375     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2376     pList = sqlite3ExprListAppend(pParse, 0,
2377                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2378     if( pList==0 ){
2379       pTab->tabFlags &= ~TF_WithoutRowid;
2380       return;
2381     }
2382     if( IN_RENAME_OBJECT ){
2383       sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2384     }
2385     pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
2386     assert( pParse->pNewTable==pTab );
2387     pTab->iPKey = -1;
2388     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2389                        SQLITE_IDXTYPE_PRIMARYKEY);
2390     if( pParse->nErr ){
2391       pTab->tabFlags &= ~TF_WithoutRowid;
2392       return;
2393     }
2394     assert( db->mallocFailed==0 );
2395     pPk = sqlite3PrimaryKeyIndex(pTab);
2396     assert( pPk->nKeyCol==1 );
2397   }else{
2398     pPk = sqlite3PrimaryKeyIndex(pTab);
2399     assert( pPk!=0 );
2400 
2401     /*
2402     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
2403     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
2404     ** code assumes the PRIMARY KEY contains no repeated columns.
2405     */
2406     for(i=j=1; i<pPk->nKeyCol; i++){
2407       if( isDupColumn(pPk, j, pPk, i) ){
2408         pPk->nColumn--;
2409       }else{
2410         testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2411         pPk->azColl[j] = pPk->azColl[i];
2412         pPk->aSortOrder[j] = pPk->aSortOrder[i];
2413         pPk->aiColumn[j++] = pPk->aiColumn[i];
2414       }
2415     }
2416     pPk->nKeyCol = j;
2417   }
2418   assert( pPk!=0 );
2419   pPk->isCovering = 1;
2420   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2421   nPk = pPk->nColumn = pPk->nKeyCol;
2422 
2423   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2424   ** table entry. This is only required if currently generating VDBE
2425   ** code for a CREATE TABLE (not when parsing one as part of reading
2426   ** a database schema).  */
2427   if( v && pPk->tnum>0 ){
2428     assert( db->init.busy==0 );
2429     sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2430   }
2431 
2432   /* The root page of the PRIMARY KEY is the table root page */
2433   pPk->tnum = pTab->tnum;
2434 
2435   /* Update the in-memory representation of all UNIQUE indices by converting
2436   ** the final rowid column into one or more columns of the PRIMARY KEY.
2437   */
2438   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2439     int n;
2440     if( IsPrimaryKeyIndex(pIdx) ) continue;
2441     for(i=n=0; i<nPk; i++){
2442       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2443         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2444         n++;
2445       }
2446     }
2447     if( n==0 ){
2448       /* This index is a superset of the primary key */
2449       pIdx->nColumn = pIdx->nKeyCol;
2450       continue;
2451     }
2452     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2453     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2454       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2455         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2456         pIdx->aiColumn[j] = pPk->aiColumn[i];
2457         pIdx->azColl[j] = pPk->azColl[i];
2458         if( pPk->aSortOrder[i] ){
2459           /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2460           pIdx->bAscKeyBug = 1;
2461         }
2462         j++;
2463       }
2464     }
2465     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2466     assert( pIdx->nColumn>=j );
2467   }
2468 
2469   /* Add all table columns to the PRIMARY KEY index
2470   */
2471   nExtra = 0;
2472   for(i=0; i<pTab->nCol; i++){
2473     if( !hasColumn(pPk->aiColumn, nPk, i)
2474      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2475   }
2476   if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2477   for(i=0, j=nPk; i<pTab->nCol; i++){
2478     if( !hasColumn(pPk->aiColumn, j, i)
2479      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2480     ){
2481       assert( j<pPk->nColumn );
2482       pPk->aiColumn[j] = i;
2483       pPk->azColl[j] = sqlite3StrBINARY;
2484       j++;
2485     }
2486   }
2487   assert( pPk->nColumn==j );
2488   assert( pTab->nNVCol<=j );
2489   recomputeColumnsNotIndexed(pPk);
2490 }
2491 
2492 
2493 #ifndef SQLITE_OMIT_VIRTUALTABLE
2494 /*
2495 ** Return true if pTab is a virtual table and zName is a shadow table name
2496 ** for that virtual table.
2497 */
2498 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2499   int nName;                    /* Length of zName */
2500   Module *pMod;                 /* Module for the virtual table */
2501 
2502   if( !IsVirtual(pTab) ) return 0;
2503   nName = sqlite3Strlen30(pTab->zName);
2504   if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2505   if( zName[nName]!='_' ) return 0;
2506   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2507   if( pMod==0 ) return 0;
2508   if( pMod->pModule->iVersion<3 ) return 0;
2509   if( pMod->pModule->xShadowName==0 ) return 0;
2510   return pMod->pModule->xShadowName(zName+nName+1);
2511 }
2512 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2513 
2514 #ifndef SQLITE_OMIT_VIRTUALTABLE
2515 /*
2516 ** Table pTab is a virtual table.  If it the virtual table implementation
2517 ** exists and has an xShadowName method, then loop over all other ordinary
2518 ** tables within the same schema looking for shadow tables of pTab, and mark
2519 ** any shadow tables seen using the TF_Shadow flag.
2520 */
2521 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2522   int nName;                    /* Length of pTab->zName */
2523   Module *pMod;                 /* Module for the virtual table */
2524   HashElem *k;                  /* For looping through the symbol table */
2525 
2526   assert( IsVirtual(pTab) );
2527   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2528   if( pMod==0 ) return;
2529   if( NEVER(pMod->pModule==0) ) return;
2530   if( pMod->pModule->iVersion<3 ) return;
2531   if( pMod->pModule->xShadowName==0 ) return;
2532   assert( pTab->zName!=0 );
2533   nName = sqlite3Strlen30(pTab->zName);
2534   for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2535     Table *pOther = sqliteHashData(k);
2536     assert( pOther->zName!=0 );
2537     if( !IsOrdinaryTable(pOther) ) continue;
2538     if( pOther->tabFlags & TF_Shadow ) continue;
2539     if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2540      && pOther->zName[nName]=='_'
2541      && pMod->pModule->xShadowName(pOther->zName+nName+1)
2542     ){
2543       pOther->tabFlags |= TF_Shadow;
2544     }
2545   }
2546 }
2547 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2548 
2549 #ifndef SQLITE_OMIT_VIRTUALTABLE
2550 /*
2551 ** Return true if zName is a shadow table name in the current database
2552 ** connection.
2553 **
2554 ** zName is temporarily modified while this routine is running, but is
2555 ** restored to its original value prior to this routine returning.
2556 */
2557 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2558   char *zTail;                  /* Pointer to the last "_" in zName */
2559   Table *pTab;                  /* Table that zName is a shadow of */
2560   zTail = strrchr(zName, '_');
2561   if( zTail==0 ) return 0;
2562   *zTail = 0;
2563   pTab = sqlite3FindTable(db, zName, 0);
2564   *zTail = '_';
2565   if( pTab==0 ) return 0;
2566   if( !IsVirtual(pTab) ) return 0;
2567   return sqlite3IsShadowTableOf(db, pTab, zName);
2568 }
2569 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2570 
2571 
2572 #ifdef SQLITE_DEBUG
2573 /*
2574 ** Mark all nodes of an expression as EP_Immutable, indicating that
2575 ** they should not be changed.  Expressions attached to a table or
2576 ** index definition are tagged this way to help ensure that we do
2577 ** not pass them into code generator routines by mistake.
2578 */
2579 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2580   ExprSetVVAProperty(pExpr, EP_Immutable);
2581   return WRC_Continue;
2582 }
2583 static void markExprListImmutable(ExprList *pList){
2584   if( pList ){
2585     Walker w;
2586     memset(&w, 0, sizeof(w));
2587     w.xExprCallback = markImmutableExprStep;
2588     w.xSelectCallback = sqlite3SelectWalkNoop;
2589     w.xSelectCallback2 = 0;
2590     sqlite3WalkExprList(&w, pList);
2591   }
2592 }
2593 #else
2594 #define markExprListImmutable(X)  /* no-op */
2595 #endif /* SQLITE_DEBUG */
2596 
2597 
2598 /*
2599 ** This routine is called to report the final ")" that terminates
2600 ** a CREATE TABLE statement.
2601 **
2602 ** The table structure that other action routines have been building
2603 ** is added to the internal hash tables, assuming no errors have
2604 ** occurred.
2605 **
2606 ** An entry for the table is made in the schema table on disk, unless
2607 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
2608 ** it means we are reading the sqlite_schema table because we just
2609 ** connected to the database or because the sqlite_schema table has
2610 ** recently changed, so the entry for this table already exists in
2611 ** the sqlite_schema table.  We do not want to create it again.
2612 **
2613 ** If the pSelect argument is not NULL, it means that this routine
2614 ** was called to create a table generated from a
2615 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
2616 ** the new table will match the result set of the SELECT.
2617 */
2618 void sqlite3EndTable(
2619   Parse *pParse,          /* Parse context */
2620   Token *pCons,           /* The ',' token after the last column defn. */
2621   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
2622   u32 tabOpts,            /* Extra table options. Usually 0. */
2623   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
2624 ){
2625   Table *p;                 /* The new table */
2626   sqlite3 *db = pParse->db; /* The database connection */
2627   int iDb;                  /* Database in which the table lives */
2628   Index *pIdx;              /* An implied index of the table */
2629 
2630   if( pEnd==0 && pSelect==0 ){
2631     return;
2632   }
2633   p = pParse->pNewTable;
2634   if( p==0 ) return;
2635 
2636   if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2637     p->tabFlags |= TF_Shadow;
2638   }
2639 
2640   /* If the db->init.busy is 1 it means we are reading the SQL off the
2641   ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2642   ** So do not write to the disk again.  Extract the root page number
2643   ** for the table from the db->init.newTnum field.  (The page number
2644   ** should have been put there by the sqliteOpenCb routine.)
2645   **
2646   ** If the root page number is 1, that means this is the sqlite_schema
2647   ** table itself.  So mark it read-only.
2648   */
2649   if( db->init.busy ){
2650     if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2651       sqlite3ErrorMsg(pParse, "");
2652       return;
2653     }
2654     p->tnum = db->init.newTnum;
2655     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2656   }
2657 
2658   /* Special processing for tables that include the STRICT keyword:
2659   **
2660   **   *  Do not allow custom column datatypes.  Every column must have
2661   **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2662   **
2663   **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2664   **      then all columns of the PRIMARY KEY must have a NOT NULL
2665   **      constraint.
2666   */
2667   if( tabOpts & TF_Strict ){
2668     int ii;
2669     p->tabFlags |= TF_Strict;
2670     for(ii=0; ii<p->nCol; ii++){
2671       Column *pCol = &p->aCol[ii];
2672       if( pCol->eCType==COLTYPE_CUSTOM ){
2673         if( pCol->colFlags & COLFLAG_HASTYPE ){
2674           sqlite3ErrorMsg(pParse,
2675             "unknown datatype for %s.%s: \"%s\"",
2676             p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2677           );
2678         }else{
2679           sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2680                           p->zName, pCol->zCnName);
2681         }
2682         return;
2683       }else if( pCol->eCType==COLTYPE_ANY ){
2684         pCol->affinity = SQLITE_AFF_BLOB;
2685       }
2686       if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2687        && p->iPKey!=ii
2688        && pCol->notNull == OE_None
2689       ){
2690         pCol->notNull = OE_Abort;
2691         p->tabFlags |= TF_HasNotNull;
2692       }
2693     }
2694   }
2695 
2696   assert( (p->tabFlags & TF_HasPrimaryKey)==0
2697        || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2698   assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2699        || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2700 
2701   /* Special processing for WITHOUT ROWID Tables */
2702   if( tabOpts & TF_WithoutRowid ){
2703     if( (p->tabFlags & TF_Autoincrement) ){
2704       sqlite3ErrorMsg(pParse,
2705           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2706       return;
2707     }
2708     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2709       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2710       return;
2711     }
2712     p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2713     convertToWithoutRowidTable(pParse, p);
2714   }
2715   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2716 
2717 #ifndef SQLITE_OMIT_CHECK
2718   /* Resolve names in all CHECK constraint expressions.
2719   */
2720   if( p->pCheck ){
2721     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2722     if( pParse->nErr ){
2723       /* If errors are seen, delete the CHECK constraints now, else they might
2724       ** actually be used if PRAGMA writable_schema=ON is set. */
2725       sqlite3ExprListDelete(db, p->pCheck);
2726       p->pCheck = 0;
2727     }else{
2728       markExprListImmutable(p->pCheck);
2729     }
2730   }
2731 #endif /* !defined(SQLITE_OMIT_CHECK) */
2732 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2733   if( p->tabFlags & TF_HasGenerated ){
2734     int ii, nNG = 0;
2735     testcase( p->tabFlags & TF_HasVirtual );
2736     testcase( p->tabFlags & TF_HasStored );
2737     for(ii=0; ii<p->nCol; ii++){
2738       u32 colFlags = p->aCol[ii].colFlags;
2739       if( (colFlags & COLFLAG_GENERATED)!=0 ){
2740         Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2741         testcase( colFlags & COLFLAG_VIRTUAL );
2742         testcase( colFlags & COLFLAG_STORED );
2743         if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2744           /* If there are errors in resolving the expression, change the
2745           ** expression to a NULL.  This prevents code generators that operate
2746           ** on the expression from inserting extra parts into the expression
2747           ** tree that have been allocated from lookaside memory, which is
2748           ** illegal in a schema and will lead to errors or heap corruption
2749           ** when the database connection closes. */
2750           sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2751                sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2752         }
2753       }else{
2754         nNG++;
2755       }
2756     }
2757     if( nNG==0 ){
2758       sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2759       return;
2760     }
2761   }
2762 #endif
2763 
2764   /* Estimate the average row size for the table and for all implied indices */
2765   estimateTableWidth(p);
2766   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2767     estimateIndexWidth(pIdx);
2768   }
2769 
2770   /* If not initializing, then create a record for the new table
2771   ** in the schema table of the database.
2772   **
2773   ** If this is a TEMPORARY table, write the entry into the auxiliary
2774   ** file instead of into the main database file.
2775   */
2776   if( !db->init.busy ){
2777     int n;
2778     Vdbe *v;
2779     char *zType;    /* "view" or "table" */
2780     char *zType2;   /* "VIEW" or "TABLE" */
2781     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2782 
2783     v = sqlite3GetVdbe(pParse);
2784     if( NEVER(v==0) ) return;
2785 
2786     sqlite3VdbeAddOp1(v, OP_Close, 0);
2787 
2788     /*
2789     ** Initialize zType for the new view or table.
2790     */
2791     if( IsOrdinaryTable(p) ){
2792       /* A regular table */
2793       zType = "table";
2794       zType2 = "TABLE";
2795 #ifndef SQLITE_OMIT_VIEW
2796     }else{
2797       /* A view */
2798       zType = "view";
2799       zType2 = "VIEW";
2800 #endif
2801     }
2802 
2803     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2804     ** statement to populate the new table. The root-page number for the
2805     ** new table is in register pParse->regRoot.
2806     **
2807     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2808     ** suitable state to query for the column names and types to be used
2809     ** by the new table.
2810     **
2811     ** A shared-cache write-lock is not required to write to the new table,
2812     ** as a schema-lock must have already been obtained to create it. Since
2813     ** a schema-lock excludes all other database users, the write-lock would
2814     ** be redundant.
2815     */
2816     if( pSelect ){
2817       SelectDest dest;    /* Where the SELECT should store results */
2818       int regYield;       /* Register holding co-routine entry-point */
2819       int addrTop;        /* Top of the co-routine */
2820       int regRec;         /* A record to be insert into the new table */
2821       int regRowid;       /* Rowid of the next row to insert */
2822       int addrInsLoop;    /* Top of the loop for inserting rows */
2823       Table *pSelTab;     /* A table that describes the SELECT results */
2824 
2825       if( IN_SPECIAL_PARSE ){
2826         pParse->rc = SQLITE_ERROR;
2827         pParse->nErr++;
2828         return;
2829       }
2830       regYield = ++pParse->nMem;
2831       regRec = ++pParse->nMem;
2832       regRowid = ++pParse->nMem;
2833       assert(pParse->nTab==1);
2834       sqlite3MayAbort(pParse);
2835       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2836       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2837       pParse->nTab = 2;
2838       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2839       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2840       if( pParse->nErr ) return;
2841       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2842       if( pSelTab==0 ) return;
2843       assert( p->aCol==0 );
2844       p->nCol = p->nNVCol = pSelTab->nCol;
2845       p->aCol = pSelTab->aCol;
2846       pSelTab->nCol = 0;
2847       pSelTab->aCol = 0;
2848       sqlite3DeleteTable(db, pSelTab);
2849       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2850       sqlite3Select(pParse, pSelect, &dest);
2851       if( pParse->nErr ) return;
2852       sqlite3VdbeEndCoroutine(v, regYield);
2853       sqlite3VdbeJumpHere(v, addrTop - 1);
2854       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2855       VdbeCoverage(v);
2856       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2857       sqlite3TableAffinity(v, p, 0);
2858       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2859       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2860       sqlite3VdbeGoto(v, addrInsLoop);
2861       sqlite3VdbeJumpHere(v, addrInsLoop);
2862       sqlite3VdbeAddOp1(v, OP_Close, 1);
2863     }
2864 
2865     /* Compute the complete text of the CREATE statement */
2866     if( pSelect ){
2867       zStmt = createTableStmt(db, p);
2868     }else{
2869       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2870       n = (int)(pEnd2->z - pParse->sNameToken.z);
2871       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2872       zStmt = sqlite3MPrintf(db,
2873           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2874       );
2875     }
2876 
2877     /* A slot for the record has already been allocated in the
2878     ** schema table.  We just need to update that slot with all
2879     ** the information we've collected.
2880     */
2881     sqlite3NestedParse(pParse,
2882       "UPDATE %Q." LEGACY_SCHEMA_TABLE
2883       " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2884       " WHERE rowid=#%d",
2885       db->aDb[iDb].zDbSName,
2886       zType,
2887       p->zName,
2888       p->zName,
2889       pParse->regRoot,
2890       zStmt,
2891       pParse->regRowid
2892     );
2893     sqlite3DbFree(db, zStmt);
2894     sqlite3ChangeCookie(pParse, iDb);
2895 
2896 #ifndef SQLITE_OMIT_AUTOINCREMENT
2897     /* Check to see if we need to create an sqlite_sequence table for
2898     ** keeping track of autoincrement keys.
2899     */
2900     if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2901       Db *pDb = &db->aDb[iDb];
2902       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2903       if( pDb->pSchema->pSeqTab==0 ){
2904         sqlite3NestedParse(pParse,
2905           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2906           pDb->zDbSName
2907         );
2908       }
2909     }
2910 #endif
2911 
2912     /* Reparse everything to update our internal data structures */
2913     sqlite3VdbeAddParseSchemaOp(v, iDb,
2914            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2915   }
2916 
2917   /* Add the table to the in-memory representation of the database.
2918   */
2919   if( db->init.busy ){
2920     Table *pOld;
2921     Schema *pSchema = p->pSchema;
2922     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2923     assert( HasRowid(p) || p->iPKey<0 );
2924     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2925     if( pOld ){
2926       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2927       sqlite3OomFault(db);
2928       return;
2929     }
2930     pParse->pNewTable = 0;
2931     db->mDbFlags |= DBFLAG_SchemaChange;
2932 
2933     /* If this is the magic sqlite_sequence table used by autoincrement,
2934     ** then record a pointer to this table in the main database structure
2935     ** so that INSERT can find the table easily.  */
2936     assert( !pParse->nested );
2937 #ifndef SQLITE_OMIT_AUTOINCREMENT
2938     if( strcmp(p->zName, "sqlite_sequence")==0 ){
2939       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2940       p->pSchema->pSeqTab = p;
2941     }
2942 #endif
2943   }
2944 
2945 #ifndef SQLITE_OMIT_ALTERTABLE
2946   if( !pSelect && IsOrdinaryTable(p) ){
2947     assert( pCons && pEnd );
2948     if( pCons->z==0 ){
2949       pCons = pEnd;
2950     }
2951     p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2952   }
2953 #endif
2954 }
2955 
2956 #ifndef SQLITE_OMIT_VIEW
2957 /*
2958 ** The parser calls this routine in order to create a new VIEW
2959 */
2960 void sqlite3CreateView(
2961   Parse *pParse,     /* The parsing context */
2962   Token *pBegin,     /* The CREATE token that begins the statement */
2963   Token *pName1,     /* The token that holds the name of the view */
2964   Token *pName2,     /* The token that holds the name of the view */
2965   ExprList *pCNames, /* Optional list of view column names */
2966   Select *pSelect,   /* A SELECT statement that will become the new view */
2967   int isTemp,        /* TRUE for a TEMPORARY view */
2968   int noErr          /* Suppress error messages if VIEW already exists */
2969 ){
2970   Table *p;
2971   int n;
2972   const char *z;
2973   Token sEnd;
2974   DbFixer sFix;
2975   Token *pName = 0;
2976   int iDb;
2977   sqlite3 *db = pParse->db;
2978 
2979   if( pParse->nVar>0 ){
2980     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2981     goto create_view_fail;
2982   }
2983   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2984   p = pParse->pNewTable;
2985   if( p==0 || pParse->nErr ) goto create_view_fail;
2986 
2987   /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2988   ** on a view, even though views do not have rowids.  The following flag
2989   ** setting fixes this problem.  But the fix can be disabled by compiling
2990   ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2991   ** depend upon the old buggy behavior. */
2992 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2993   p->tabFlags |= TF_NoVisibleRowid;
2994 #endif
2995 
2996   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2997   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2998   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2999   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
3000 
3001   /* Make a copy of the entire SELECT statement that defines the view.
3002   ** This will force all the Expr.token.z values to be dynamically
3003   ** allocated rather than point to the input string - which means that
3004   ** they will persist after the current sqlite3_exec() call returns.
3005   */
3006   pSelect->selFlags |= SF_View;
3007   if( IN_RENAME_OBJECT ){
3008     p->u.view.pSelect = pSelect;
3009     pSelect = 0;
3010   }else{
3011     p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3012   }
3013   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3014   p->eTabType = TABTYP_VIEW;
3015   if( db->mallocFailed ) goto create_view_fail;
3016 
3017   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
3018   ** the end.
3019   */
3020   sEnd = pParse->sLastToken;
3021   assert( sEnd.z[0]!=0 || sEnd.n==0 );
3022   if( sEnd.z[0]!=';' ){
3023     sEnd.z += sEnd.n;
3024   }
3025   sEnd.n = 0;
3026   n = (int)(sEnd.z - pBegin->z);
3027   assert( n>0 );
3028   z = pBegin->z;
3029   while( sqlite3Isspace(z[n-1]) ){ n--; }
3030   sEnd.z = &z[n-1];
3031   sEnd.n = 1;
3032 
3033   /* Use sqlite3EndTable() to add the view to the schema table */
3034   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3035 
3036 create_view_fail:
3037   sqlite3SelectDelete(db, pSelect);
3038   if( IN_RENAME_OBJECT ){
3039     sqlite3RenameExprlistUnmap(pParse, pCNames);
3040   }
3041   sqlite3ExprListDelete(db, pCNames);
3042   return;
3043 }
3044 #endif /* SQLITE_OMIT_VIEW */
3045 
3046 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3047 /*
3048 ** The Table structure pTable is really a VIEW.  Fill in the names of
3049 ** the columns of the view in the pTable structure.  Return the number
3050 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
3051 */
3052 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3053   Table *pSelTab;   /* A fake table from which we get the result set */
3054   Select *pSel;     /* Copy of the SELECT that implements the view */
3055   int nErr = 0;     /* Number of errors encountered */
3056   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
3057 #ifndef SQLITE_OMIT_VIRTUALTABLE
3058   int rc;
3059 #endif
3060 #ifndef SQLITE_OMIT_AUTHORIZATION
3061   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
3062 #endif
3063 
3064   assert( pTable );
3065 
3066 #ifndef SQLITE_OMIT_VIRTUALTABLE
3067   if( IsVirtual(pTable) ){
3068     db->nSchemaLock++;
3069     rc = sqlite3VtabCallConnect(pParse, pTable);
3070     db->nSchemaLock--;
3071     return rc;
3072   }
3073 #endif
3074 
3075 #ifndef SQLITE_OMIT_VIEW
3076   /* A positive nCol means the columns names for this view are
3077   ** already known.
3078   */
3079   if( pTable->nCol>0 ) return 0;
3080 
3081   /* A negative nCol is a special marker meaning that we are currently
3082   ** trying to compute the column names.  If we enter this routine with
3083   ** a negative nCol, it means two or more views form a loop, like this:
3084   **
3085   **     CREATE VIEW one AS SELECT * FROM two;
3086   **     CREATE VIEW two AS SELECT * FROM one;
3087   **
3088   ** Actually, the error above is now caught prior to reaching this point.
3089   ** But the following test is still important as it does come up
3090   ** in the following:
3091   **
3092   **     CREATE TABLE main.ex1(a);
3093   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3094   **     SELECT * FROM temp.ex1;
3095   */
3096   if( pTable->nCol<0 ){
3097     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3098     return 1;
3099   }
3100   assert( pTable->nCol>=0 );
3101 
3102   /* If we get this far, it means we need to compute the table names.
3103   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3104   ** "*" elements in the results set of the view and will assign cursors
3105   ** to the elements of the FROM clause.  But we do not want these changes
3106   ** to be permanent.  So the computation is done on a copy of the SELECT
3107   ** statement that defines the view.
3108   */
3109   assert( IsView(pTable) );
3110   pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3111   if( pSel ){
3112     u8 eParseMode = pParse->eParseMode;
3113     int nTab = pParse->nTab;
3114     int nSelect = pParse->nSelect;
3115     pParse->eParseMode = PARSE_MODE_NORMAL;
3116     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3117     pTable->nCol = -1;
3118     DisableLookaside;
3119 #ifndef SQLITE_OMIT_AUTHORIZATION
3120     xAuth = db->xAuth;
3121     db->xAuth = 0;
3122     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3123     db->xAuth = xAuth;
3124 #else
3125     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3126 #endif
3127     pParse->nTab = nTab;
3128     pParse->nSelect = nSelect;
3129     if( pSelTab==0 ){
3130       pTable->nCol = 0;
3131       nErr++;
3132     }else if( pTable->pCheck ){
3133       /* CREATE VIEW name(arglist) AS ...
3134       ** The names of the columns in the table are taken from
3135       ** arglist which is stored in pTable->pCheck.  The pCheck field
3136       ** normally holds CHECK constraints on an ordinary table, but for
3137       ** a VIEW it holds the list of column names.
3138       */
3139       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3140                                  &pTable->nCol, &pTable->aCol);
3141       if( pParse->nErr==0
3142        && pTable->nCol==pSel->pEList->nExpr
3143       ){
3144         assert( db->mallocFailed==0 );
3145         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3146                                                SQLITE_AFF_NONE);
3147       }
3148     }else{
3149       /* CREATE VIEW name AS...  without an argument list.  Construct
3150       ** the column names from the SELECT statement that defines the view.
3151       */
3152       assert( pTable->aCol==0 );
3153       pTable->nCol = pSelTab->nCol;
3154       pTable->aCol = pSelTab->aCol;
3155       pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3156       pSelTab->nCol = 0;
3157       pSelTab->aCol = 0;
3158       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3159     }
3160     pTable->nNVCol = pTable->nCol;
3161     sqlite3DeleteTable(db, pSelTab);
3162     sqlite3SelectDelete(db, pSel);
3163     EnableLookaside;
3164     pParse->eParseMode = eParseMode;
3165   } else {
3166     nErr++;
3167   }
3168   pTable->pSchema->schemaFlags |= DB_UnresetViews;
3169   if( db->mallocFailed ){
3170     sqlite3DeleteColumnNames(db, pTable);
3171   }
3172 #endif /* SQLITE_OMIT_VIEW */
3173   return nErr;
3174 }
3175 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3176 
3177 #ifndef SQLITE_OMIT_VIEW
3178 /*
3179 ** Clear the column names from every VIEW in database idx.
3180 */
3181 static void sqliteViewResetAll(sqlite3 *db, int idx){
3182   HashElem *i;
3183   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3184   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3185   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3186     Table *pTab = sqliteHashData(i);
3187     if( IsView(pTab) ){
3188       sqlite3DeleteColumnNames(db, pTab);
3189     }
3190   }
3191   DbClearProperty(db, idx, DB_UnresetViews);
3192 }
3193 #else
3194 # define sqliteViewResetAll(A,B)
3195 #endif /* SQLITE_OMIT_VIEW */
3196 
3197 /*
3198 ** This function is called by the VDBE to adjust the internal schema
3199 ** used by SQLite when the btree layer moves a table root page. The
3200 ** root-page of a table or index in database iDb has changed from iFrom
3201 ** to iTo.
3202 **
3203 ** Ticket #1728:  The symbol table might still contain information
3204 ** on tables and/or indices that are the process of being deleted.
3205 ** If you are unlucky, one of those deleted indices or tables might
3206 ** have the same rootpage number as the real table or index that is
3207 ** being moved.  So we cannot stop searching after the first match
3208 ** because the first match might be for one of the deleted indices
3209 ** or tables and not the table/index that is actually being moved.
3210 ** We must continue looping until all tables and indices with
3211 ** rootpage==iFrom have been converted to have a rootpage of iTo
3212 ** in order to be certain that we got the right one.
3213 */
3214 #ifndef SQLITE_OMIT_AUTOVACUUM
3215 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3216   HashElem *pElem;
3217   Hash *pHash;
3218   Db *pDb;
3219 
3220   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3221   pDb = &db->aDb[iDb];
3222   pHash = &pDb->pSchema->tblHash;
3223   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3224     Table *pTab = sqliteHashData(pElem);
3225     if( pTab->tnum==iFrom ){
3226       pTab->tnum = iTo;
3227     }
3228   }
3229   pHash = &pDb->pSchema->idxHash;
3230   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3231     Index *pIdx = sqliteHashData(pElem);
3232     if( pIdx->tnum==iFrom ){
3233       pIdx->tnum = iTo;
3234     }
3235   }
3236 }
3237 #endif
3238 
3239 /*
3240 ** Write code to erase the table with root-page iTable from database iDb.
3241 ** Also write code to modify the sqlite_schema table and internal schema
3242 ** if a root-page of another table is moved by the btree-layer whilst
3243 ** erasing iTable (this can happen with an auto-vacuum database).
3244 */
3245 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3246   Vdbe *v = sqlite3GetVdbe(pParse);
3247   int r1 = sqlite3GetTempReg(pParse);
3248   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3249   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3250   sqlite3MayAbort(pParse);
3251 #ifndef SQLITE_OMIT_AUTOVACUUM
3252   /* OP_Destroy stores an in integer r1. If this integer
3253   ** is non-zero, then it is the root page number of a table moved to
3254   ** location iTable. The following code modifies the sqlite_schema table to
3255   ** reflect this.
3256   **
3257   ** The "#NNN" in the SQL is a special constant that means whatever value
3258   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
3259   ** token for additional information.
3260   */
3261   sqlite3NestedParse(pParse,
3262      "UPDATE %Q." LEGACY_SCHEMA_TABLE
3263      " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3264      pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3265 #endif
3266   sqlite3ReleaseTempReg(pParse, r1);
3267 }
3268 
3269 /*
3270 ** Write VDBE code to erase table pTab and all associated indices on disk.
3271 ** Code to update the sqlite_schema tables and internal schema definitions
3272 ** in case a root-page belonging to another table is moved by the btree layer
3273 ** is also added (this can happen with an auto-vacuum database).
3274 */
3275 static void destroyTable(Parse *pParse, Table *pTab){
3276   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3277   ** is not defined), then it is important to call OP_Destroy on the
3278   ** table and index root-pages in order, starting with the numerically
3279   ** largest root-page number. This guarantees that none of the root-pages
3280   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3281   ** following were coded:
3282   **
3283   ** OP_Destroy 4 0
3284   ** ...
3285   ** OP_Destroy 5 0
3286   **
3287   ** and root page 5 happened to be the largest root-page number in the
3288   ** database, then root page 5 would be moved to page 4 by the
3289   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3290   ** a free-list page.
3291   */
3292   Pgno iTab = pTab->tnum;
3293   Pgno iDestroyed = 0;
3294 
3295   while( 1 ){
3296     Index *pIdx;
3297     Pgno iLargest = 0;
3298 
3299     if( iDestroyed==0 || iTab<iDestroyed ){
3300       iLargest = iTab;
3301     }
3302     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3303       Pgno iIdx = pIdx->tnum;
3304       assert( pIdx->pSchema==pTab->pSchema );
3305       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3306         iLargest = iIdx;
3307       }
3308     }
3309     if( iLargest==0 ){
3310       return;
3311     }else{
3312       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3313       assert( iDb>=0 && iDb<pParse->db->nDb );
3314       destroyRootPage(pParse, iLargest, iDb);
3315       iDestroyed = iLargest;
3316     }
3317   }
3318 }
3319 
3320 /*
3321 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3322 ** after a DROP INDEX or DROP TABLE command.
3323 */
3324 static void sqlite3ClearStatTables(
3325   Parse *pParse,         /* The parsing context */
3326   int iDb,               /* The database number */
3327   const char *zType,     /* "idx" or "tbl" */
3328   const char *zName      /* Name of index or table */
3329 ){
3330   int i;
3331   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3332   for(i=1; i<=4; i++){
3333     char zTab[24];
3334     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3335     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3336       sqlite3NestedParse(pParse,
3337         "DELETE FROM %Q.%s WHERE %s=%Q",
3338         zDbName, zTab, zType, zName
3339       );
3340     }
3341   }
3342 }
3343 
3344 /*
3345 ** Generate code to drop a table.
3346 */
3347 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3348   Vdbe *v;
3349   sqlite3 *db = pParse->db;
3350   Trigger *pTrigger;
3351   Db *pDb = &db->aDb[iDb];
3352 
3353   v = sqlite3GetVdbe(pParse);
3354   assert( v!=0 );
3355   sqlite3BeginWriteOperation(pParse, 1, iDb);
3356 
3357 #ifndef SQLITE_OMIT_VIRTUALTABLE
3358   if( IsVirtual(pTab) ){
3359     sqlite3VdbeAddOp0(v, OP_VBegin);
3360   }
3361 #endif
3362 
3363   /* Drop all triggers associated with the table being dropped. Code
3364   ** is generated to remove entries from sqlite_schema and/or
3365   ** sqlite_temp_schema if required.
3366   */
3367   pTrigger = sqlite3TriggerList(pParse, pTab);
3368   while( pTrigger ){
3369     assert( pTrigger->pSchema==pTab->pSchema ||
3370         pTrigger->pSchema==db->aDb[1].pSchema );
3371     sqlite3DropTriggerPtr(pParse, pTrigger);
3372     pTrigger = pTrigger->pNext;
3373   }
3374 
3375 #ifndef SQLITE_OMIT_AUTOINCREMENT
3376   /* Remove any entries of the sqlite_sequence table associated with
3377   ** the table being dropped. This is done before the table is dropped
3378   ** at the btree level, in case the sqlite_sequence table needs to
3379   ** move as a result of the drop (can happen in auto-vacuum mode).
3380   */
3381   if( pTab->tabFlags & TF_Autoincrement ){
3382     sqlite3NestedParse(pParse,
3383       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3384       pDb->zDbSName, pTab->zName
3385     );
3386   }
3387 #endif
3388 
3389   /* Drop all entries in the schema table that refer to the
3390   ** table. The program name loops through the schema table and deletes
3391   ** every row that refers to a table of the same name as the one being
3392   ** dropped. Triggers are handled separately because a trigger can be
3393   ** created in the temp database that refers to a table in another
3394   ** database.
3395   */
3396   sqlite3NestedParse(pParse,
3397       "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3398       " WHERE tbl_name=%Q and type!='trigger'",
3399       pDb->zDbSName, pTab->zName);
3400   if( !isView && !IsVirtual(pTab) ){
3401     destroyTable(pParse, pTab);
3402   }
3403 
3404   /* Remove the table entry from SQLite's internal schema and modify
3405   ** the schema cookie.
3406   */
3407   if( IsVirtual(pTab) ){
3408     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3409     sqlite3MayAbort(pParse);
3410   }
3411   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3412   sqlite3ChangeCookie(pParse, iDb);
3413   sqliteViewResetAll(db, iDb);
3414 }
3415 
3416 /*
3417 ** Return TRUE if shadow tables should be read-only in the current
3418 ** context.
3419 */
3420 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3421 #ifndef SQLITE_OMIT_VIRTUALTABLE
3422   if( (db->flags & SQLITE_Defensive)!=0
3423    && db->pVtabCtx==0
3424    && db->nVdbeExec==0
3425    && !sqlite3VtabInSync(db)
3426   ){
3427     return 1;
3428   }
3429 #endif
3430   return 0;
3431 }
3432 
3433 /*
3434 ** Return true if it is not allowed to drop the given table
3435 */
3436 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3437   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3438     if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3439     if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3440     return 1;
3441   }
3442   if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3443     return 1;
3444   }
3445   if( pTab->tabFlags & TF_Eponymous ){
3446     return 1;
3447   }
3448   return 0;
3449 }
3450 
3451 /*
3452 ** This routine is called to do the work of a DROP TABLE statement.
3453 ** pName is the name of the table to be dropped.
3454 */
3455 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3456   Table *pTab;
3457   Vdbe *v;
3458   sqlite3 *db = pParse->db;
3459   int iDb;
3460 
3461   if( db->mallocFailed ){
3462     goto exit_drop_table;
3463   }
3464   assert( pParse->nErr==0 );
3465   assert( pName->nSrc==1 );
3466   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3467   if( noErr ) db->suppressErr++;
3468   assert( isView==0 || isView==LOCATE_VIEW );
3469   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3470   if( noErr ) db->suppressErr--;
3471 
3472   if( pTab==0 ){
3473     if( noErr ){
3474       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3475       sqlite3ForceNotReadOnly(pParse);
3476     }
3477     goto exit_drop_table;
3478   }
3479   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3480   assert( iDb>=0 && iDb<db->nDb );
3481 
3482   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3483   ** it is initialized.
3484   */
3485   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3486     goto exit_drop_table;
3487   }
3488 #ifndef SQLITE_OMIT_AUTHORIZATION
3489   {
3490     int code;
3491     const char *zTab = SCHEMA_TABLE(iDb);
3492     const char *zDb = db->aDb[iDb].zDbSName;
3493     const char *zArg2 = 0;
3494     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3495       goto exit_drop_table;
3496     }
3497     if( isView ){
3498       if( !OMIT_TEMPDB && iDb==1 ){
3499         code = SQLITE_DROP_TEMP_VIEW;
3500       }else{
3501         code = SQLITE_DROP_VIEW;
3502       }
3503 #ifndef SQLITE_OMIT_VIRTUALTABLE
3504     }else if( IsVirtual(pTab) ){
3505       code = SQLITE_DROP_VTABLE;
3506       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3507 #endif
3508     }else{
3509       if( !OMIT_TEMPDB && iDb==1 ){
3510         code = SQLITE_DROP_TEMP_TABLE;
3511       }else{
3512         code = SQLITE_DROP_TABLE;
3513       }
3514     }
3515     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3516       goto exit_drop_table;
3517     }
3518     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3519       goto exit_drop_table;
3520     }
3521   }
3522 #endif
3523   if( tableMayNotBeDropped(db, pTab) ){
3524     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3525     goto exit_drop_table;
3526   }
3527 
3528 #ifndef SQLITE_OMIT_VIEW
3529   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3530   ** on a table.
3531   */
3532   if( isView && !IsView(pTab) ){
3533     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3534     goto exit_drop_table;
3535   }
3536   if( !isView && IsView(pTab) ){
3537     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3538     goto exit_drop_table;
3539   }
3540 #endif
3541 
3542   /* Generate code to remove the table from the schema table
3543   ** on disk.
3544   */
3545   v = sqlite3GetVdbe(pParse);
3546   if( v ){
3547     sqlite3BeginWriteOperation(pParse, 1, iDb);
3548     if( !isView ){
3549       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3550       sqlite3FkDropTable(pParse, pName, pTab);
3551     }
3552     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3553   }
3554 
3555 exit_drop_table:
3556   sqlite3SrcListDelete(db, pName);
3557 }
3558 
3559 /*
3560 ** This routine is called to create a new foreign key on the table
3561 ** currently under construction.  pFromCol determines which columns
3562 ** in the current table point to the foreign key.  If pFromCol==0 then
3563 ** connect the key to the last column inserted.  pTo is the name of
3564 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
3565 ** of tables in the parent pTo table.  flags contains all
3566 ** information about the conflict resolution algorithms specified
3567 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3568 **
3569 ** An FKey structure is created and added to the table currently
3570 ** under construction in the pParse->pNewTable field.
3571 **
3572 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
3573 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3574 */
3575 void sqlite3CreateForeignKey(
3576   Parse *pParse,       /* Parsing context */
3577   ExprList *pFromCol,  /* Columns in this table that point to other table */
3578   Token *pTo,          /* Name of the other table */
3579   ExprList *pToCol,    /* Columns in the other table */
3580   int flags            /* Conflict resolution algorithms. */
3581 ){
3582   sqlite3 *db = pParse->db;
3583 #ifndef SQLITE_OMIT_FOREIGN_KEY
3584   FKey *pFKey = 0;
3585   FKey *pNextTo;
3586   Table *p = pParse->pNewTable;
3587   i64 nByte;
3588   int i;
3589   int nCol;
3590   char *z;
3591 
3592   assert( pTo!=0 );
3593   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3594   if( pFromCol==0 ){
3595     int iCol = p->nCol-1;
3596     if( NEVER(iCol<0) ) goto fk_end;
3597     if( pToCol && pToCol->nExpr!=1 ){
3598       sqlite3ErrorMsg(pParse, "foreign key on %s"
3599          " should reference only one column of table %T",
3600          p->aCol[iCol].zCnName, pTo);
3601       goto fk_end;
3602     }
3603     nCol = 1;
3604   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3605     sqlite3ErrorMsg(pParse,
3606         "number of columns in foreign key does not match the number of "
3607         "columns in the referenced table");
3608     goto fk_end;
3609   }else{
3610     nCol = pFromCol->nExpr;
3611   }
3612   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3613   if( pToCol ){
3614     for(i=0; i<pToCol->nExpr; i++){
3615       nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3616     }
3617   }
3618   pFKey = sqlite3DbMallocZero(db, nByte );
3619   if( pFKey==0 ){
3620     goto fk_end;
3621   }
3622   pFKey->pFrom = p;
3623   assert( IsOrdinaryTable(p) );
3624   pFKey->pNextFrom = p->u.tab.pFKey;
3625   z = (char*)&pFKey->aCol[nCol];
3626   pFKey->zTo = z;
3627   if( IN_RENAME_OBJECT ){
3628     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3629   }
3630   memcpy(z, pTo->z, pTo->n);
3631   z[pTo->n] = 0;
3632   sqlite3Dequote(z);
3633   z += pTo->n+1;
3634   pFKey->nCol = nCol;
3635   if( pFromCol==0 ){
3636     pFKey->aCol[0].iFrom = p->nCol-1;
3637   }else{
3638     for(i=0; i<nCol; i++){
3639       int j;
3640       for(j=0; j<p->nCol; j++){
3641         if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3642           pFKey->aCol[i].iFrom = j;
3643           break;
3644         }
3645       }
3646       if( j>=p->nCol ){
3647         sqlite3ErrorMsg(pParse,
3648           "unknown column \"%s\" in foreign key definition",
3649           pFromCol->a[i].zEName);
3650         goto fk_end;
3651       }
3652       if( IN_RENAME_OBJECT ){
3653         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3654       }
3655     }
3656   }
3657   if( pToCol ){
3658     for(i=0; i<nCol; i++){
3659       int n = sqlite3Strlen30(pToCol->a[i].zEName);
3660       pFKey->aCol[i].zCol = z;
3661       if( IN_RENAME_OBJECT ){
3662         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3663       }
3664       memcpy(z, pToCol->a[i].zEName, n);
3665       z[n] = 0;
3666       z += n+1;
3667     }
3668   }
3669   pFKey->isDeferred = 0;
3670   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
3671   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
3672 
3673   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3674   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3675       pFKey->zTo, (void *)pFKey
3676   );
3677   if( pNextTo==pFKey ){
3678     sqlite3OomFault(db);
3679     goto fk_end;
3680   }
3681   if( pNextTo ){
3682     assert( pNextTo->pPrevTo==0 );
3683     pFKey->pNextTo = pNextTo;
3684     pNextTo->pPrevTo = pFKey;
3685   }
3686 
3687   /* Link the foreign key to the table as the last step.
3688   */
3689   assert( IsOrdinaryTable(p) );
3690   p->u.tab.pFKey = pFKey;
3691   pFKey = 0;
3692 
3693 fk_end:
3694   sqlite3DbFree(db, pFKey);
3695 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3696   sqlite3ExprListDelete(db, pFromCol);
3697   sqlite3ExprListDelete(db, pToCol);
3698 }
3699 
3700 /*
3701 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3702 ** clause is seen as part of a foreign key definition.  The isDeferred
3703 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3704 ** The behavior of the most recently created foreign key is adjusted
3705 ** accordingly.
3706 */
3707 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3708 #ifndef SQLITE_OMIT_FOREIGN_KEY
3709   Table *pTab;
3710   FKey *pFKey;
3711   if( (pTab = pParse->pNewTable)==0 ) return;
3712   if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3713   if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3714   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3715   pFKey->isDeferred = (u8)isDeferred;
3716 #endif
3717 }
3718 
3719 /*
3720 ** Generate code that will erase and refill index *pIdx.  This is
3721 ** used to initialize a newly created index or to recompute the
3722 ** content of an index in response to a REINDEX command.
3723 **
3724 ** if memRootPage is not negative, it means that the index is newly
3725 ** created.  The register specified by memRootPage contains the
3726 ** root page number of the index.  If memRootPage is negative, then
3727 ** the index already exists and must be cleared before being refilled and
3728 ** the root page number of the index is taken from pIndex->tnum.
3729 */
3730 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3731   Table *pTab = pIndex->pTable;  /* The table that is indexed */
3732   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
3733   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
3734   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
3735   int addr1;                     /* Address of top of loop */
3736   int addr2;                     /* Address to jump to for next iteration */
3737   Pgno tnum;                     /* Root page of index */
3738   int iPartIdxLabel;             /* Jump to this label to skip a row */
3739   Vdbe *v;                       /* Generate code into this virtual machine */
3740   KeyInfo *pKey;                 /* KeyInfo for index */
3741   int regRecord;                 /* Register holding assembled index record */
3742   sqlite3 *db = pParse->db;      /* The database connection */
3743   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3744 
3745 #ifndef SQLITE_OMIT_AUTHORIZATION
3746   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3747       db->aDb[iDb].zDbSName ) ){
3748     return;
3749   }
3750 #endif
3751 
3752   /* Require a write-lock on the table to perform this operation */
3753   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3754 
3755   v = sqlite3GetVdbe(pParse);
3756   if( v==0 ) return;
3757   if( memRootPage>=0 ){
3758     tnum = (Pgno)memRootPage;
3759   }else{
3760     tnum = pIndex->tnum;
3761   }
3762   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3763   assert( pKey!=0 || pParse->nErr );
3764 
3765   /* Open the sorter cursor if we are to use one. */
3766   iSorter = pParse->nTab++;
3767   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3768                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3769 
3770   /* Open the table. Loop through all rows of the table, inserting index
3771   ** records into the sorter. */
3772   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3773   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3774   regRecord = sqlite3GetTempReg(pParse);
3775   sqlite3MultiWrite(pParse);
3776 
3777   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3778   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3779   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3780   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3781   sqlite3VdbeJumpHere(v, addr1);
3782   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3783   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3784                     (char *)pKey, P4_KEYINFO);
3785   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3786 
3787   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3788   if( IsUniqueIndex(pIndex) ){
3789     int j2 = sqlite3VdbeGoto(v, 1);
3790     addr2 = sqlite3VdbeCurrentAddr(v);
3791     sqlite3VdbeVerifyAbortable(v, OE_Abort);
3792     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3793                          pIndex->nKeyCol); VdbeCoverage(v);
3794     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3795     sqlite3VdbeJumpHere(v, j2);
3796   }else{
3797     /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3798     ** abort. The exception is if one of the indexed expressions contains a
3799     ** user function that throws an exception when it is evaluated. But the
3800     ** overhead of adding a statement journal to a CREATE INDEX statement is
3801     ** very small (since most of the pages written do not contain content that
3802     ** needs to be restored if the statement aborts), so we call
3803     ** sqlite3MayAbort() for all CREATE INDEX statements.  */
3804     sqlite3MayAbort(pParse);
3805     addr2 = sqlite3VdbeCurrentAddr(v);
3806   }
3807   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3808   if( !pIndex->bAscKeyBug ){
3809     /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3810     ** faster by avoiding unnecessary seeks.  But the optimization does
3811     ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3812     ** with DESC primary keys, since those indexes have there keys in
3813     ** a different order from the main table.
3814     ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3815     */
3816     sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3817   }
3818   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3819   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3820   sqlite3ReleaseTempReg(pParse, regRecord);
3821   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3822   sqlite3VdbeJumpHere(v, addr1);
3823 
3824   sqlite3VdbeAddOp1(v, OP_Close, iTab);
3825   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3826   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3827 }
3828 
3829 /*
3830 ** Allocate heap space to hold an Index object with nCol columns.
3831 **
3832 ** Increase the allocation size to provide an extra nExtra bytes
3833 ** of 8-byte aligned space after the Index object and return a
3834 ** pointer to this extra space in *ppExtra.
3835 */
3836 Index *sqlite3AllocateIndexObject(
3837   sqlite3 *db,         /* Database connection */
3838   i16 nCol,            /* Total number of columns in the index */
3839   int nExtra,          /* Number of bytes of extra space to alloc */
3840   char **ppExtra       /* Pointer to the "extra" space */
3841 ){
3842   Index *p;            /* Allocated index object */
3843   int nByte;           /* Bytes of space for Index object + arrays */
3844 
3845   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3846           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3847           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3848                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3849                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3850   p = sqlite3DbMallocZero(db, nByte + nExtra);
3851   if( p ){
3852     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3853     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3854     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3855     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3856     p->aSortOrder = (u8*)pExtra;
3857     p->nColumn = nCol;
3858     p->nKeyCol = nCol - 1;
3859     *ppExtra = ((char*)p) + nByte;
3860   }
3861   return p;
3862 }
3863 
3864 /*
3865 ** If expression list pList contains an expression that was parsed with
3866 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3867 ** pParse and return non-zero. Otherwise, return zero.
3868 */
3869 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3870   if( pList ){
3871     int i;
3872     for(i=0; i<pList->nExpr; i++){
3873       if( pList->a[i].fg.bNulls ){
3874         u8 sf = pList->a[i].fg.sortFlags;
3875         sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3876             (sf==0 || sf==3) ? "FIRST" : "LAST"
3877         );
3878         return 1;
3879       }
3880     }
3881   }
3882   return 0;
3883 }
3884 
3885 /*
3886 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3887 ** and pTblList is the name of the table that is to be indexed.  Both will
3888 ** be NULL for a primary key or an index that is created to satisfy a
3889 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3890 ** as the table to be indexed.  pParse->pNewTable is a table that is
3891 ** currently being constructed by a CREATE TABLE statement.
3892 **
3893 ** pList is a list of columns to be indexed.  pList will be NULL if this
3894 ** is a primary key or unique-constraint on the most recent column added
3895 ** to the table currently under construction.
3896 */
3897 void sqlite3CreateIndex(
3898   Parse *pParse,     /* All information about this parse */
3899   Token *pName1,     /* First part of index name. May be NULL */
3900   Token *pName2,     /* Second part of index name. May be NULL */
3901   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3902   ExprList *pList,   /* A list of columns to be indexed */
3903   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3904   Token *pStart,     /* The CREATE token that begins this statement */
3905   Expr *pPIWhere,    /* WHERE clause for partial indices */
3906   int sortOrder,     /* Sort order of primary key when pList==NULL */
3907   int ifNotExist,    /* Omit error if index already exists */
3908   u8 idxType         /* The index type */
3909 ){
3910   Table *pTab = 0;     /* Table to be indexed */
3911   Index *pIndex = 0;   /* The index to be created */
3912   char *zName = 0;     /* Name of the index */
3913   int nName;           /* Number of characters in zName */
3914   int i, j;
3915   DbFixer sFix;        /* For assigning database names to pTable */
3916   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3917   sqlite3 *db = pParse->db;
3918   Db *pDb;             /* The specific table containing the indexed database */
3919   int iDb;             /* Index of the database that is being written */
3920   Token *pName = 0;    /* Unqualified name of the index to create */
3921   struct ExprList_item *pListItem; /* For looping over pList */
3922   int nExtra = 0;                  /* Space allocated for zExtra[] */
3923   int nExtraCol;                   /* Number of extra columns needed */
3924   char *zExtra = 0;                /* Extra space after the Index object */
3925   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3926 
3927   assert( db->pParse==pParse );
3928   if( pParse->nErr ){
3929     goto exit_create_index;
3930   }
3931   assert( db->mallocFailed==0 );
3932   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3933     goto exit_create_index;
3934   }
3935   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3936     goto exit_create_index;
3937   }
3938   if( sqlite3HasExplicitNulls(pParse, pList) ){
3939     goto exit_create_index;
3940   }
3941 
3942   /*
3943   ** Find the table that is to be indexed.  Return early if not found.
3944   */
3945   if( pTblName!=0 ){
3946 
3947     /* Use the two-part index name to determine the database
3948     ** to search for the table. 'Fix' the table name to this db
3949     ** before looking up the table.
3950     */
3951     assert( pName1 && pName2 );
3952     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3953     if( iDb<0 ) goto exit_create_index;
3954     assert( pName && pName->z );
3955 
3956 #ifndef SQLITE_OMIT_TEMPDB
3957     /* If the index name was unqualified, check if the table
3958     ** is a temp table. If so, set the database to 1. Do not do this
3959     ** if initialising a database schema.
3960     */
3961     if( !db->init.busy ){
3962       pTab = sqlite3SrcListLookup(pParse, pTblName);
3963       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3964         iDb = 1;
3965       }
3966     }
3967 #endif
3968 
3969     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3970     if( sqlite3FixSrcList(&sFix, pTblName) ){
3971       /* Because the parser constructs pTblName from a single identifier,
3972       ** sqlite3FixSrcList can never fail. */
3973       assert(0);
3974     }
3975     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3976     assert( db->mallocFailed==0 || pTab==0 );
3977     if( pTab==0 ) goto exit_create_index;
3978     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3979       sqlite3ErrorMsg(pParse,
3980            "cannot create a TEMP index on non-TEMP table \"%s\"",
3981            pTab->zName);
3982       goto exit_create_index;
3983     }
3984     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3985   }else{
3986     assert( pName==0 );
3987     assert( pStart==0 );
3988     pTab = pParse->pNewTable;
3989     if( !pTab ) goto exit_create_index;
3990     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3991   }
3992   pDb = &db->aDb[iDb];
3993 
3994   assert( pTab!=0 );
3995   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3996        && db->init.busy==0
3997        && pTblName!=0
3998 #if SQLITE_USER_AUTHENTICATION
3999        && sqlite3UserAuthTable(pTab->zName)==0
4000 #endif
4001   ){
4002     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
4003     goto exit_create_index;
4004   }
4005 #ifndef SQLITE_OMIT_VIEW
4006   if( IsView(pTab) ){
4007     sqlite3ErrorMsg(pParse, "views may not be indexed");
4008     goto exit_create_index;
4009   }
4010 #endif
4011 #ifndef SQLITE_OMIT_VIRTUALTABLE
4012   if( IsVirtual(pTab) ){
4013     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4014     goto exit_create_index;
4015   }
4016 #endif
4017 
4018   /*
4019   ** Find the name of the index.  Make sure there is not already another
4020   ** index or table with the same name.
4021   **
4022   ** Exception:  If we are reading the names of permanent indices from the
4023   ** sqlite_schema table (because some other process changed the schema) and
4024   ** one of the index names collides with the name of a temporary table or
4025   ** index, then we will continue to process this index.
4026   **
4027   ** If pName==0 it means that we are
4028   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
4029   ** own name.
4030   */
4031   if( pName ){
4032     zName = sqlite3NameFromToken(db, pName);
4033     if( zName==0 ) goto exit_create_index;
4034     assert( pName->z!=0 );
4035     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4036       goto exit_create_index;
4037     }
4038     if( !IN_RENAME_OBJECT ){
4039       if( !db->init.busy ){
4040         if( sqlite3FindTable(db, zName, 0)!=0 ){
4041           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4042           goto exit_create_index;
4043         }
4044       }
4045       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4046         if( !ifNotExist ){
4047           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4048         }else{
4049           assert( !db->init.busy );
4050           sqlite3CodeVerifySchema(pParse, iDb);
4051           sqlite3ForceNotReadOnly(pParse);
4052         }
4053         goto exit_create_index;
4054       }
4055     }
4056   }else{
4057     int n;
4058     Index *pLoop;
4059     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4060     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4061     if( zName==0 ){
4062       goto exit_create_index;
4063     }
4064 
4065     /* Automatic index names generated from within sqlite3_declare_vtab()
4066     ** must have names that are distinct from normal automatic index names.
4067     ** The following statement converts "sqlite3_autoindex..." into
4068     ** "sqlite3_butoindex..." in order to make the names distinct.
4069     ** The "vtab_err.test" test demonstrates the need of this statement. */
4070     if( IN_SPECIAL_PARSE ) zName[7]++;
4071   }
4072 
4073   /* Check for authorization to create an index.
4074   */
4075 #ifndef SQLITE_OMIT_AUTHORIZATION
4076   if( !IN_RENAME_OBJECT ){
4077     const char *zDb = pDb->zDbSName;
4078     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4079       goto exit_create_index;
4080     }
4081     i = SQLITE_CREATE_INDEX;
4082     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4083     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4084       goto exit_create_index;
4085     }
4086   }
4087 #endif
4088 
4089   /* If pList==0, it means this routine was called to make a primary
4090   ** key out of the last column added to the table under construction.
4091   ** So create a fake list to simulate this.
4092   */
4093   if( pList==0 ){
4094     Token prevCol;
4095     Column *pCol = &pTab->aCol[pTab->nCol-1];
4096     pCol->colFlags |= COLFLAG_UNIQUE;
4097     sqlite3TokenInit(&prevCol, pCol->zCnName);
4098     pList = sqlite3ExprListAppend(pParse, 0,
4099               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4100     if( pList==0 ) goto exit_create_index;
4101     assert( pList->nExpr==1 );
4102     sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4103   }else{
4104     sqlite3ExprListCheckLength(pParse, pList, "index");
4105     if( pParse->nErr ) goto exit_create_index;
4106   }
4107 
4108   /* Figure out how many bytes of space are required to store explicitly
4109   ** specified collation sequence names.
4110   */
4111   for(i=0; i<pList->nExpr; i++){
4112     Expr *pExpr = pList->a[i].pExpr;
4113     assert( pExpr!=0 );
4114     if( pExpr->op==TK_COLLATE ){
4115       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4116       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4117     }
4118   }
4119 
4120   /*
4121   ** Allocate the index structure.
4122   */
4123   nName = sqlite3Strlen30(zName);
4124   nExtraCol = pPk ? pPk->nKeyCol : 1;
4125   assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4126   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4127                                       nName + nExtra + 1, &zExtra);
4128   if( db->mallocFailed ){
4129     goto exit_create_index;
4130   }
4131   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4132   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4133   pIndex->zName = zExtra;
4134   zExtra += nName + 1;
4135   memcpy(pIndex->zName, zName, nName+1);
4136   pIndex->pTable = pTab;
4137   pIndex->onError = (u8)onError;
4138   pIndex->uniqNotNull = onError!=OE_None;
4139   pIndex->idxType = idxType;
4140   pIndex->pSchema = db->aDb[iDb].pSchema;
4141   pIndex->nKeyCol = pList->nExpr;
4142   if( pPIWhere ){
4143     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4144     pIndex->pPartIdxWhere = pPIWhere;
4145     pPIWhere = 0;
4146   }
4147   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4148 
4149   /* Check to see if we should honor DESC requests on index columns
4150   */
4151   if( pDb->pSchema->file_format>=4 ){
4152     sortOrderMask = -1;   /* Honor DESC */
4153   }else{
4154     sortOrderMask = 0;    /* Ignore DESC */
4155   }
4156 
4157   /* Analyze the list of expressions that form the terms of the index and
4158   ** report any errors.  In the common case where the expression is exactly
4159   ** a table column, store that column in aiColumn[].  For general expressions,
4160   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4161   **
4162   ** TODO: Issue a warning if two or more columns of the index are identical.
4163   ** TODO: Issue a warning if the table primary key is used as part of the
4164   ** index key.
4165   */
4166   pListItem = pList->a;
4167   if( IN_RENAME_OBJECT ){
4168     pIndex->aColExpr = pList;
4169     pList = 0;
4170   }
4171   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4172     Expr *pCExpr;                  /* The i-th index expression */
4173     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
4174     const char *zColl;             /* Collation sequence name */
4175 
4176     sqlite3StringToId(pListItem->pExpr);
4177     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4178     if( pParse->nErr ) goto exit_create_index;
4179     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4180     if( pCExpr->op!=TK_COLUMN ){
4181       if( pTab==pParse->pNewTable ){
4182         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4183                                 "UNIQUE constraints");
4184         goto exit_create_index;
4185       }
4186       if( pIndex->aColExpr==0 ){
4187         pIndex->aColExpr = pList;
4188         pList = 0;
4189       }
4190       j = XN_EXPR;
4191       pIndex->aiColumn[i] = XN_EXPR;
4192       pIndex->uniqNotNull = 0;
4193     }else{
4194       j = pCExpr->iColumn;
4195       assert( j<=0x7fff );
4196       if( j<0 ){
4197         j = pTab->iPKey;
4198       }else{
4199         if( pTab->aCol[j].notNull==0 ){
4200           pIndex->uniqNotNull = 0;
4201         }
4202         if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4203           pIndex->bHasVCol = 1;
4204         }
4205       }
4206       pIndex->aiColumn[i] = (i16)j;
4207     }
4208     zColl = 0;
4209     if( pListItem->pExpr->op==TK_COLLATE ){
4210       int nColl;
4211       assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4212       zColl = pListItem->pExpr->u.zToken;
4213       nColl = sqlite3Strlen30(zColl) + 1;
4214       assert( nExtra>=nColl );
4215       memcpy(zExtra, zColl, nColl);
4216       zColl = zExtra;
4217       zExtra += nColl;
4218       nExtra -= nColl;
4219     }else if( j>=0 ){
4220       zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4221     }
4222     if( !zColl ) zColl = sqlite3StrBINARY;
4223     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4224       goto exit_create_index;
4225     }
4226     pIndex->azColl[i] = zColl;
4227     requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
4228     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4229   }
4230 
4231   /* Append the table key to the end of the index.  For WITHOUT ROWID
4232   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
4233   ** normal tables (when pPk==0) this will be the rowid.
4234   */
4235   if( pPk ){
4236     for(j=0; j<pPk->nKeyCol; j++){
4237       int x = pPk->aiColumn[j];
4238       assert( x>=0 );
4239       if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4240         pIndex->nColumn--;
4241       }else{
4242         testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4243         pIndex->aiColumn[i] = x;
4244         pIndex->azColl[i] = pPk->azColl[j];
4245         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4246         i++;
4247       }
4248     }
4249     assert( i==pIndex->nColumn );
4250   }else{
4251     pIndex->aiColumn[i] = XN_ROWID;
4252     pIndex->azColl[i] = sqlite3StrBINARY;
4253   }
4254   sqlite3DefaultRowEst(pIndex);
4255   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4256 
4257   /* If this index contains every column of its table, then mark
4258   ** it as a covering index */
4259   assert( HasRowid(pTab)
4260       || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4261   recomputeColumnsNotIndexed(pIndex);
4262   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4263     pIndex->isCovering = 1;
4264     for(j=0; j<pTab->nCol; j++){
4265       if( j==pTab->iPKey ) continue;
4266       if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4267       pIndex->isCovering = 0;
4268       break;
4269     }
4270   }
4271 
4272   if( pTab==pParse->pNewTable ){
4273     /* This routine has been called to create an automatic index as a
4274     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4275     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4276     ** i.e. one of:
4277     **
4278     ** CREATE TABLE t(x PRIMARY KEY, y);
4279     ** CREATE TABLE t(x, y, UNIQUE(x, y));
4280     **
4281     ** Either way, check to see if the table already has such an index. If
4282     ** so, don't bother creating this one. This only applies to
4283     ** automatically created indices. Users can do as they wish with
4284     ** explicit indices.
4285     **
4286     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4287     ** (and thus suppressing the second one) even if they have different
4288     ** sort orders.
4289     **
4290     ** If there are different collating sequences or if the columns of
4291     ** the constraint occur in different orders, then the constraints are
4292     ** considered distinct and both result in separate indices.
4293     */
4294     Index *pIdx;
4295     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4296       int k;
4297       assert( IsUniqueIndex(pIdx) );
4298       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4299       assert( IsUniqueIndex(pIndex) );
4300 
4301       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4302       for(k=0; k<pIdx->nKeyCol; k++){
4303         const char *z1;
4304         const char *z2;
4305         assert( pIdx->aiColumn[k]>=0 );
4306         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4307         z1 = pIdx->azColl[k];
4308         z2 = pIndex->azColl[k];
4309         if( sqlite3StrICmp(z1, z2) ) break;
4310       }
4311       if( k==pIdx->nKeyCol ){
4312         if( pIdx->onError!=pIndex->onError ){
4313           /* This constraint creates the same index as a previous
4314           ** constraint specified somewhere in the CREATE TABLE statement.
4315           ** However the ON CONFLICT clauses are different. If both this
4316           ** constraint and the previous equivalent constraint have explicit
4317           ** ON CONFLICT clauses this is an error. Otherwise, use the
4318           ** explicitly specified behavior for the index.
4319           */
4320           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4321             sqlite3ErrorMsg(pParse,
4322                 "conflicting ON CONFLICT clauses specified", 0);
4323           }
4324           if( pIdx->onError==OE_Default ){
4325             pIdx->onError = pIndex->onError;
4326           }
4327         }
4328         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4329         if( IN_RENAME_OBJECT ){
4330           pIndex->pNext = pParse->pNewIndex;
4331           pParse->pNewIndex = pIndex;
4332           pIndex = 0;
4333         }
4334         goto exit_create_index;
4335       }
4336     }
4337   }
4338 
4339   if( !IN_RENAME_OBJECT ){
4340 
4341     /* Link the new Index structure to its table and to the other
4342     ** in-memory database structures.
4343     */
4344     assert( pParse->nErr==0 );
4345     if( db->init.busy ){
4346       Index *p;
4347       assert( !IN_SPECIAL_PARSE );
4348       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4349       if( pTblName!=0 ){
4350         pIndex->tnum = db->init.newTnum;
4351         if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4352           sqlite3ErrorMsg(pParse, "invalid rootpage");
4353           pParse->rc = SQLITE_CORRUPT_BKPT;
4354           goto exit_create_index;
4355         }
4356       }
4357       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4358           pIndex->zName, pIndex);
4359       if( p ){
4360         assert( p==pIndex );  /* Malloc must have failed */
4361         sqlite3OomFault(db);
4362         goto exit_create_index;
4363       }
4364       db->mDbFlags |= DBFLAG_SchemaChange;
4365     }
4366 
4367     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4368     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4369     ** emit code to allocate the index rootpage on disk and make an entry for
4370     ** the index in the sqlite_schema table and populate the index with
4371     ** content.  But, do not do this if we are simply reading the sqlite_schema
4372     ** table to parse the schema, or if this index is the PRIMARY KEY index
4373     ** of a WITHOUT ROWID table.
4374     **
4375     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4376     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
4377     ** has just been created, it contains no data and the index initialization
4378     ** step can be skipped.
4379     */
4380     else if( HasRowid(pTab) || pTblName!=0 ){
4381       Vdbe *v;
4382       char *zStmt;
4383       int iMem = ++pParse->nMem;
4384 
4385       v = sqlite3GetVdbe(pParse);
4386       if( v==0 ) goto exit_create_index;
4387 
4388       sqlite3BeginWriteOperation(pParse, 1, iDb);
4389 
4390       /* Create the rootpage for the index using CreateIndex. But before
4391       ** doing so, code a Noop instruction and store its address in
4392       ** Index.tnum. This is required in case this index is actually a
4393       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4394       ** that case the convertToWithoutRowidTable() routine will replace
4395       ** the Noop with a Goto to jump over the VDBE code generated below. */
4396       pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4397       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4398 
4399       /* Gather the complete text of the CREATE INDEX statement into
4400       ** the zStmt variable
4401       */
4402       assert( pName!=0 || pStart==0 );
4403       if( pStart ){
4404         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4405         if( pName->z[n-1]==';' ) n--;
4406         /* A named index with an explicit CREATE INDEX statement */
4407         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4408             onError==OE_None ? "" : " UNIQUE", n, pName->z);
4409       }else{
4410         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4411         /* zStmt = sqlite3MPrintf(""); */
4412         zStmt = 0;
4413       }
4414 
4415       /* Add an entry in sqlite_schema for this index
4416       */
4417       sqlite3NestedParse(pParse,
4418          "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4419          db->aDb[iDb].zDbSName,
4420          pIndex->zName,
4421          pTab->zName,
4422          iMem,
4423          zStmt
4424       );
4425       sqlite3DbFree(db, zStmt);
4426 
4427       /* Fill the index with data and reparse the schema. Code an OP_Expire
4428       ** to invalidate all pre-compiled statements.
4429       */
4430       if( pTblName ){
4431         sqlite3RefillIndex(pParse, pIndex, iMem);
4432         sqlite3ChangeCookie(pParse, iDb);
4433         sqlite3VdbeAddParseSchemaOp(v, iDb,
4434             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4435         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4436       }
4437 
4438       sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4439     }
4440   }
4441   if( db->init.busy || pTblName==0 ){
4442     pIndex->pNext = pTab->pIndex;
4443     pTab->pIndex = pIndex;
4444     pIndex = 0;
4445   }
4446   else if( IN_RENAME_OBJECT ){
4447     assert( pParse->pNewIndex==0 );
4448     pParse->pNewIndex = pIndex;
4449     pIndex = 0;
4450   }
4451 
4452   /* Clean up before exiting */
4453 exit_create_index:
4454   if( pIndex ) sqlite3FreeIndex(db, pIndex);
4455   if( pTab ){
4456     /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4457     ** The list was already ordered when this routine was entered, so at this
4458     ** point at most a single index (the newly added index) will be out of
4459     ** order.  So we have to reorder at most one index. */
4460     Index **ppFrom;
4461     Index *pThis;
4462     for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4463       Index *pNext;
4464       if( pThis->onError!=OE_Replace ) continue;
4465       while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4466         *ppFrom = pNext;
4467         pThis->pNext = pNext->pNext;
4468         pNext->pNext = pThis;
4469         ppFrom = &pNext->pNext;
4470       }
4471       break;
4472     }
4473 #ifdef SQLITE_DEBUG
4474     /* Verify that all REPLACE indexes really are now at the end
4475     ** of the index list.  In other words, no other index type ever
4476     ** comes after a REPLACE index on the list. */
4477     for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4478       assert( pThis->onError!=OE_Replace
4479            || pThis->pNext==0
4480            || pThis->pNext->onError==OE_Replace );
4481     }
4482 #endif
4483   }
4484   sqlite3ExprDelete(db, pPIWhere);
4485   sqlite3ExprListDelete(db, pList);
4486   sqlite3SrcListDelete(db, pTblName);
4487   sqlite3DbFree(db, zName);
4488 }
4489 
4490 /*
4491 ** Fill the Index.aiRowEst[] array with default information - information
4492 ** to be used when we have not run the ANALYZE command.
4493 **
4494 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4495 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
4496 ** number of rows in the table that match any particular value of the
4497 ** first column of the index.  aiRowEst[2] is an estimate of the number
4498 ** of rows that match any particular combination of the first 2 columns
4499 ** of the index.  And so forth.  It must always be the case that
4500 *
4501 **           aiRowEst[N]<=aiRowEst[N-1]
4502 **           aiRowEst[N]>=1
4503 **
4504 ** Apart from that, we have little to go on besides intuition as to
4505 ** how aiRowEst[] should be initialized.  The numbers generated here
4506 ** are based on typical values found in actual indices.
4507 */
4508 void sqlite3DefaultRowEst(Index *pIdx){
4509                /*                10,  9,  8,  7,  6 */
4510   static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4511   LogEst *a = pIdx->aiRowLogEst;
4512   LogEst x;
4513   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4514   int i;
4515 
4516   /* Indexes with default row estimates should not have stat1 data */
4517   assert( !pIdx->hasStat1 );
4518 
4519   /* Set the first entry (number of rows in the index) to the estimated
4520   ** number of rows in the table, or half the number of rows in the table
4521   ** for a partial index.
4522   **
4523   ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
4524   ** table but other parts we are having to guess at, then do not let the
4525   ** estimated number of rows in the table be less than 1000 (LogEst 99).
4526   ** Failure to do this can cause the indexes for which we do not have
4527   ** stat1 data to be ignored by the query planner.
4528   */
4529   x = pIdx->pTable->nRowLogEst;
4530   assert( 99==sqlite3LogEst(1000) );
4531   if( x<99 ){
4532     pIdx->pTable->nRowLogEst = x = 99;
4533   }
4534   if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
4535   a[0] = x;
4536 
4537   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4538   ** 6 and each subsequent value (if any) is 5.  */
4539   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4540   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4541     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
4542   }
4543 
4544   assert( 0==sqlite3LogEst(1) );
4545   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4546 }
4547 
4548 /*
4549 ** This routine will drop an existing named index.  This routine
4550 ** implements the DROP INDEX statement.
4551 */
4552 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4553   Index *pIndex;
4554   Vdbe *v;
4555   sqlite3 *db = pParse->db;
4556   int iDb;
4557 
4558   if( db->mallocFailed ){
4559     goto exit_drop_index;
4560   }
4561   assert( pParse->nErr==0 );   /* Never called with prior non-OOM errors */
4562   assert( pName->nSrc==1 );
4563   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4564     goto exit_drop_index;
4565   }
4566   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4567   if( pIndex==0 ){
4568     if( !ifExists ){
4569       sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4570     }else{
4571       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4572       sqlite3ForceNotReadOnly(pParse);
4573     }
4574     pParse->checkSchema = 1;
4575     goto exit_drop_index;
4576   }
4577   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4578     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4579       "or PRIMARY KEY constraint cannot be dropped", 0);
4580     goto exit_drop_index;
4581   }
4582   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4583 #ifndef SQLITE_OMIT_AUTHORIZATION
4584   {
4585     int code = SQLITE_DROP_INDEX;
4586     Table *pTab = pIndex->pTable;
4587     const char *zDb = db->aDb[iDb].zDbSName;
4588     const char *zTab = SCHEMA_TABLE(iDb);
4589     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4590       goto exit_drop_index;
4591     }
4592     if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4593     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4594       goto exit_drop_index;
4595     }
4596   }
4597 #endif
4598 
4599   /* Generate code to remove the index and from the schema table */
4600   v = sqlite3GetVdbe(pParse);
4601   if( v ){
4602     sqlite3BeginWriteOperation(pParse, 1, iDb);
4603     sqlite3NestedParse(pParse,
4604        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4605        db->aDb[iDb].zDbSName, pIndex->zName
4606     );
4607     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4608     sqlite3ChangeCookie(pParse, iDb);
4609     destroyRootPage(pParse, pIndex->tnum, iDb);
4610     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4611   }
4612 
4613 exit_drop_index:
4614   sqlite3SrcListDelete(db, pName);
4615 }
4616 
4617 /*
4618 ** pArray is a pointer to an array of objects. Each object in the
4619 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4620 ** to extend the array so that there is space for a new object at the end.
4621 **
4622 ** When this function is called, *pnEntry contains the current size of
4623 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4624 ** in total).
4625 **
4626 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4627 ** space allocated for the new object is zeroed, *pnEntry updated to
4628 ** reflect the new size of the array and a pointer to the new allocation
4629 ** returned. *pIdx is set to the index of the new array entry in this case.
4630 **
4631 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4632 ** unchanged and a copy of pArray returned.
4633 */
4634 void *sqlite3ArrayAllocate(
4635   sqlite3 *db,      /* Connection to notify of malloc failures */
4636   void *pArray,     /* Array of objects.  Might be reallocated */
4637   int szEntry,      /* Size of each object in the array */
4638   int *pnEntry,     /* Number of objects currently in use */
4639   int *pIdx         /* Write the index of a new slot here */
4640 ){
4641   char *z;
4642   sqlite3_int64 n = *pIdx = *pnEntry;
4643   if( (n & (n-1))==0 ){
4644     sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4645     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4646     if( pNew==0 ){
4647       *pIdx = -1;
4648       return pArray;
4649     }
4650     pArray = pNew;
4651   }
4652   z = (char*)pArray;
4653   memset(&z[n * szEntry], 0, szEntry);
4654   ++*pnEntry;
4655   return pArray;
4656 }
4657 
4658 /*
4659 ** Append a new element to the given IdList.  Create a new IdList if
4660 ** need be.
4661 **
4662 ** A new IdList is returned, or NULL if malloc() fails.
4663 */
4664 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4665   sqlite3 *db = pParse->db;
4666   int i;
4667   if( pList==0 ){
4668     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4669     if( pList==0 ) return 0;
4670   }else{
4671     IdList *pNew;
4672     pNew = sqlite3DbRealloc(db, pList,
4673                  sizeof(IdList) + pList->nId*sizeof(pList->a));
4674     if( pNew==0 ){
4675       sqlite3IdListDelete(db, pList);
4676       return 0;
4677     }
4678     pList = pNew;
4679   }
4680   i = pList->nId++;
4681   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4682   if( IN_RENAME_OBJECT && pList->a[i].zName ){
4683     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4684   }
4685   return pList;
4686 }
4687 
4688 /*
4689 ** Delete an IdList.
4690 */
4691 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4692   int i;
4693   if( pList==0 ) return;
4694   assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
4695   for(i=0; i<pList->nId; i++){
4696     sqlite3DbFree(db, pList->a[i].zName);
4697   }
4698   sqlite3DbFreeNN(db, pList);
4699 }
4700 
4701 /*
4702 ** Return the index in pList of the identifier named zId.  Return -1
4703 ** if not found.
4704 */
4705 int sqlite3IdListIndex(IdList *pList, const char *zName){
4706   int i;
4707   assert( pList!=0 );
4708   for(i=0; i<pList->nId; i++){
4709     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4710   }
4711   return -1;
4712 }
4713 
4714 /*
4715 ** Maximum size of a SrcList object.
4716 ** The SrcList object is used to represent the FROM clause of a
4717 ** SELECT statement, and the query planner cannot deal with more
4718 ** than 64 tables in a join.  So any value larger than 64 here
4719 ** is sufficient for most uses.  Smaller values, like say 10, are
4720 ** appropriate for small and memory-limited applications.
4721 */
4722 #ifndef SQLITE_MAX_SRCLIST
4723 # define SQLITE_MAX_SRCLIST 200
4724 #endif
4725 
4726 /*
4727 ** Expand the space allocated for the given SrcList object by
4728 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
4729 ** New slots are zeroed.
4730 **
4731 ** For example, suppose a SrcList initially contains two entries: A,B.
4732 ** To append 3 new entries onto the end, do this:
4733 **
4734 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4735 **
4736 ** After the call above it would contain:  A, B, nil, nil, nil.
4737 ** If the iStart argument had been 1 instead of 2, then the result
4738 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
4739 ** the iStart value would be 0.  The result then would
4740 ** be: nil, nil, nil, A, B.
4741 **
4742 ** If a memory allocation fails or the SrcList becomes too large, leave
4743 ** the original SrcList unchanged, return NULL, and leave an error message
4744 ** in pParse.
4745 */
4746 SrcList *sqlite3SrcListEnlarge(
4747   Parse *pParse,     /* Parsing context into which errors are reported */
4748   SrcList *pSrc,     /* The SrcList to be enlarged */
4749   int nExtra,        /* Number of new slots to add to pSrc->a[] */
4750   int iStart         /* Index in pSrc->a[] of first new slot */
4751 ){
4752   int i;
4753 
4754   /* Sanity checking on calling parameters */
4755   assert( iStart>=0 );
4756   assert( nExtra>=1 );
4757   assert( pSrc!=0 );
4758   assert( iStart<=pSrc->nSrc );
4759 
4760   /* Allocate additional space if needed */
4761   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4762     SrcList *pNew;
4763     sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4764     sqlite3 *db = pParse->db;
4765 
4766     if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4767       sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4768                       SQLITE_MAX_SRCLIST);
4769       return 0;
4770     }
4771     if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4772     pNew = sqlite3DbRealloc(db, pSrc,
4773                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4774     if( pNew==0 ){
4775       assert( db->mallocFailed );
4776       return 0;
4777     }
4778     pSrc = pNew;
4779     pSrc->nAlloc = nAlloc;
4780   }
4781 
4782   /* Move existing slots that come after the newly inserted slots
4783   ** out of the way */
4784   for(i=pSrc->nSrc-1; i>=iStart; i--){
4785     pSrc->a[i+nExtra] = pSrc->a[i];
4786   }
4787   pSrc->nSrc += nExtra;
4788 
4789   /* Zero the newly allocated slots */
4790   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4791   for(i=iStart; i<iStart+nExtra; i++){
4792     pSrc->a[i].iCursor = -1;
4793   }
4794 
4795   /* Return a pointer to the enlarged SrcList */
4796   return pSrc;
4797 }
4798 
4799 
4800 /*
4801 ** Append a new table name to the given SrcList.  Create a new SrcList if
4802 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
4803 **
4804 ** A SrcList is returned, or NULL if there is an OOM error or if the
4805 ** SrcList grows to large.  The returned
4806 ** SrcList might be the same as the SrcList that was input or it might be
4807 ** a new one.  If an OOM error does occurs, then the prior value of pList
4808 ** that is input to this routine is automatically freed.
4809 **
4810 ** If pDatabase is not null, it means that the table has an optional
4811 ** database name prefix.  Like this:  "database.table".  The pDatabase
4812 ** points to the table name and the pTable points to the database name.
4813 ** The SrcList.a[].zName field is filled with the table name which might
4814 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4815 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4816 ** or with NULL if no database is specified.
4817 **
4818 ** In other words, if call like this:
4819 **
4820 **         sqlite3SrcListAppend(D,A,B,0);
4821 **
4822 ** Then B is a table name and the database name is unspecified.  If called
4823 ** like this:
4824 **
4825 **         sqlite3SrcListAppend(D,A,B,C);
4826 **
4827 ** Then C is the table name and B is the database name.  If C is defined
4828 ** then so is B.  In other words, we never have a case where:
4829 **
4830 **         sqlite3SrcListAppend(D,A,0,C);
4831 **
4832 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
4833 ** before being added to the SrcList.
4834 */
4835 SrcList *sqlite3SrcListAppend(
4836   Parse *pParse,      /* Parsing context, in which errors are reported */
4837   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
4838   Token *pTable,      /* Table to append */
4839   Token *pDatabase    /* Database of the table */
4840 ){
4841   SrcItem *pItem;
4842   sqlite3 *db;
4843   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
4844   assert( pParse!=0 );
4845   assert( pParse->db!=0 );
4846   db = pParse->db;
4847   if( pList==0 ){
4848     pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4849     if( pList==0 ) return 0;
4850     pList->nAlloc = 1;
4851     pList->nSrc = 1;
4852     memset(&pList->a[0], 0, sizeof(pList->a[0]));
4853     pList->a[0].iCursor = -1;
4854   }else{
4855     SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4856     if( pNew==0 ){
4857       sqlite3SrcListDelete(db, pList);
4858       return 0;
4859     }else{
4860       pList = pNew;
4861     }
4862   }
4863   pItem = &pList->a[pList->nSrc-1];
4864   if( pDatabase && pDatabase->z==0 ){
4865     pDatabase = 0;
4866   }
4867   if( pDatabase ){
4868     pItem->zName = sqlite3NameFromToken(db, pDatabase);
4869     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4870   }else{
4871     pItem->zName = sqlite3NameFromToken(db, pTable);
4872     pItem->zDatabase = 0;
4873   }
4874   return pList;
4875 }
4876 
4877 /*
4878 ** Assign VdbeCursor index numbers to all tables in a SrcList
4879 */
4880 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4881   int i;
4882   SrcItem *pItem;
4883   assert( pList || pParse->db->mallocFailed );
4884   if( ALWAYS(pList) ){
4885     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4886       if( pItem->iCursor>=0 ) continue;
4887       pItem->iCursor = pParse->nTab++;
4888       if( pItem->pSelect ){
4889         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4890       }
4891     }
4892   }
4893 }
4894 
4895 /*
4896 ** Delete an entire SrcList including all its substructure.
4897 */
4898 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4899   int i;
4900   SrcItem *pItem;
4901   if( pList==0 ) return;
4902   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4903     if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4904     sqlite3DbFree(db, pItem->zName);
4905     if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4906     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4907     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4908     sqlite3DeleteTable(db, pItem->pTab);
4909     if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4910     if( pItem->fg.isUsing ){
4911       sqlite3IdListDelete(db, pItem->u3.pUsing);
4912     }else if( pItem->u3.pOn ){
4913       sqlite3ExprDelete(db, pItem->u3.pOn);
4914     }
4915   }
4916   sqlite3DbFreeNN(db, pList);
4917 }
4918 
4919 /*
4920 ** This routine is called by the parser to add a new term to the
4921 ** end of a growing FROM clause.  The "p" parameter is the part of
4922 ** the FROM clause that has already been constructed.  "p" is NULL
4923 ** if this is the first term of the FROM clause.  pTable and pDatabase
4924 ** are the name of the table and database named in the FROM clause term.
4925 ** pDatabase is NULL if the database name qualifier is missing - the
4926 ** usual case.  If the term has an alias, then pAlias points to the
4927 ** alias token.  If the term is a subquery, then pSubquery is the
4928 ** SELECT statement that the subquery encodes.  The pTable and
4929 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4930 ** parameters are the content of the ON and USING clauses.
4931 **
4932 ** Return a new SrcList which encodes is the FROM with the new
4933 ** term added.
4934 */
4935 SrcList *sqlite3SrcListAppendFromTerm(
4936   Parse *pParse,          /* Parsing context */
4937   SrcList *p,             /* The left part of the FROM clause already seen */
4938   Token *pTable,          /* Name of the table to add to the FROM clause */
4939   Token *pDatabase,       /* Name of the database containing pTable */
4940   Token *pAlias,          /* The right-hand side of the AS subexpression */
4941   Select *pSubquery,      /* A subquery used in place of a table name */
4942   OnOrUsing *pOnUsing     /* Either the ON clause or the USING clause */
4943 ){
4944   SrcItem *pItem;
4945   sqlite3 *db = pParse->db;
4946   if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
4947     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4948       (pOnUsing->pOn ? "ON" : "USING")
4949     );
4950     goto append_from_error;
4951   }
4952   p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4953   if( p==0 ){
4954     goto append_from_error;
4955   }
4956   assert( p->nSrc>0 );
4957   pItem = &p->a[p->nSrc-1];
4958   assert( (pTable==0)==(pDatabase==0) );
4959   assert( pItem->zName==0 || pDatabase!=0 );
4960   if( IN_RENAME_OBJECT && pItem->zName ){
4961     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4962     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4963   }
4964   assert( pAlias!=0 );
4965   if( pAlias->n ){
4966     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4967   }
4968   if( pSubquery ){
4969     pItem->pSelect = pSubquery;
4970     if( pSubquery->selFlags & SF_NestedFrom ){
4971       pItem->fg.isNestedFrom = 1;
4972     }
4973   }
4974   assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
4975   assert( pItem->fg.isUsing==0 );
4976   if( pOnUsing==0 ){
4977     pItem->u3.pOn = 0;
4978   }else if( pOnUsing->pUsing ){
4979     pItem->fg.isUsing = 1;
4980     pItem->u3.pUsing = pOnUsing->pUsing;
4981   }else{
4982     pItem->u3.pOn = pOnUsing->pOn;
4983   }
4984   return p;
4985 
4986 append_from_error:
4987   assert( p==0 );
4988   sqlite3ClearOnOrUsing(db, pOnUsing);
4989   sqlite3SelectDelete(db, pSubquery);
4990   return 0;
4991 }
4992 
4993 /*
4994 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4995 ** element of the source-list passed as the second argument.
4996 */
4997 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4998   assert( pIndexedBy!=0 );
4999   if( p && pIndexedBy->n>0 ){
5000     SrcItem *pItem;
5001     assert( p->nSrc>0 );
5002     pItem = &p->a[p->nSrc-1];
5003     assert( pItem->fg.notIndexed==0 );
5004     assert( pItem->fg.isIndexedBy==0 );
5005     assert( pItem->fg.isTabFunc==0 );
5006     if( pIndexedBy->n==1 && !pIndexedBy->z ){
5007       /* A "NOT INDEXED" clause was supplied. See parse.y
5008       ** construct "indexed_opt" for details. */
5009       pItem->fg.notIndexed = 1;
5010     }else{
5011       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
5012       pItem->fg.isIndexedBy = 1;
5013       assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
5014     }
5015   }
5016 }
5017 
5018 /*
5019 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5020 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5021 ** are deleted by this function.
5022 */
5023 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5024   assert( p1 && p1->nSrc==1 );
5025   if( p2 ){
5026     SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5027     if( pNew==0 ){
5028       sqlite3SrcListDelete(pParse->db, p2);
5029     }else{
5030       p1 = pNew;
5031       memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5032       sqlite3DbFree(pParse->db, p2);
5033       p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
5034     }
5035   }
5036   return p1;
5037 }
5038 
5039 /*
5040 ** Add the list of function arguments to the SrcList entry for a
5041 ** table-valued-function.
5042 */
5043 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5044   if( p ){
5045     SrcItem *pItem = &p->a[p->nSrc-1];
5046     assert( pItem->fg.notIndexed==0 );
5047     assert( pItem->fg.isIndexedBy==0 );
5048     assert( pItem->fg.isTabFunc==0 );
5049     pItem->u1.pFuncArg = pList;
5050     pItem->fg.isTabFunc = 1;
5051   }else{
5052     sqlite3ExprListDelete(pParse->db, pList);
5053   }
5054 }
5055 
5056 /*
5057 ** When building up a FROM clause in the parser, the join operator
5058 ** is initially attached to the left operand.  But the code generator
5059 ** expects the join operator to be on the right operand.  This routine
5060 ** Shifts all join operators from left to right for an entire FROM
5061 ** clause.
5062 **
5063 ** Example: Suppose the join is like this:
5064 **
5065 **           A natural cross join B
5066 **
5067 ** The operator is "natural cross join".  The A and B operands are stored
5068 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
5069 ** operator with A.  This routine shifts that operator over to B.
5070 **
5071 ** Additional changes:
5072 **
5073 **   *   All tables to the left of the right-most RIGHT JOIN are tagged with
5074 **       JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5075 **       code generator can easily tell that the table is part of
5076 **       the left operand of at least one RIGHT JOIN.
5077 */
5078 void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
5079   (void)pParse;
5080   if( p && p->nSrc>1 ){
5081     int i = p->nSrc-1;
5082     u8 allFlags = 0;
5083     do{
5084       allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5085     }while( (--i)>0 );
5086     p->a[0].fg.jointype = 0;
5087 
5088     /* All terms to the left of a RIGHT JOIN should be tagged with the
5089     ** JT_LTORJ flags */
5090     if( allFlags & JT_RIGHT ){
5091       for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
5092       i--;
5093       assert( i>=0 );
5094       do{
5095         p->a[i].fg.jointype |= JT_LTORJ;
5096       }while( (--i)>=0 );
5097     }
5098   }
5099 }
5100 
5101 /*
5102 ** Generate VDBE code for a BEGIN statement.
5103 */
5104 void sqlite3BeginTransaction(Parse *pParse, int type){
5105   sqlite3 *db;
5106   Vdbe *v;
5107   int i;
5108 
5109   assert( pParse!=0 );
5110   db = pParse->db;
5111   assert( db!=0 );
5112   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5113     return;
5114   }
5115   v = sqlite3GetVdbe(pParse);
5116   if( !v ) return;
5117   if( type!=TK_DEFERRED ){
5118     for(i=0; i<db->nDb; i++){
5119       int eTxnType;
5120       Btree *pBt = db->aDb[i].pBt;
5121       if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5122         eTxnType = 0;  /* Read txn */
5123       }else if( type==TK_EXCLUSIVE ){
5124         eTxnType = 2;  /* Exclusive txn */
5125       }else{
5126         eTxnType = 1;  /* Write txn */
5127       }
5128       sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5129       sqlite3VdbeUsesBtree(v, i);
5130     }
5131   }
5132   sqlite3VdbeAddOp0(v, OP_AutoCommit);
5133 }
5134 
5135 /*
5136 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5137 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
5138 ** code is generated for a COMMIT.
5139 */
5140 void sqlite3EndTransaction(Parse *pParse, int eType){
5141   Vdbe *v;
5142   int isRollback;
5143 
5144   assert( pParse!=0 );
5145   assert( pParse->db!=0 );
5146   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5147   isRollback = eType==TK_ROLLBACK;
5148   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5149        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5150     return;
5151   }
5152   v = sqlite3GetVdbe(pParse);
5153   if( v ){
5154     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5155   }
5156 }
5157 
5158 /*
5159 ** This function is called by the parser when it parses a command to create,
5160 ** release or rollback an SQL savepoint.
5161 */
5162 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5163   char *zName = sqlite3NameFromToken(pParse->db, pName);
5164   if( zName ){
5165     Vdbe *v = sqlite3GetVdbe(pParse);
5166 #ifndef SQLITE_OMIT_AUTHORIZATION
5167     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5168     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5169 #endif
5170     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5171       sqlite3DbFree(pParse->db, zName);
5172       return;
5173     }
5174     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5175   }
5176 }
5177 
5178 /*
5179 ** Make sure the TEMP database is open and available for use.  Return
5180 ** the number of errors.  Leave any error messages in the pParse structure.
5181 */
5182 int sqlite3OpenTempDatabase(Parse *pParse){
5183   sqlite3 *db = pParse->db;
5184   if( db->aDb[1].pBt==0 && !pParse->explain ){
5185     int rc;
5186     Btree *pBt;
5187     static const int flags =
5188           SQLITE_OPEN_READWRITE |
5189           SQLITE_OPEN_CREATE |
5190           SQLITE_OPEN_EXCLUSIVE |
5191           SQLITE_OPEN_DELETEONCLOSE |
5192           SQLITE_OPEN_TEMP_DB;
5193 
5194     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5195     if( rc!=SQLITE_OK ){
5196       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5197         "file for storing temporary tables");
5198       pParse->rc = rc;
5199       return 1;
5200     }
5201     db->aDb[1].pBt = pBt;
5202     assert( db->aDb[1].pSchema );
5203     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5204       sqlite3OomFault(db);
5205       return 1;
5206     }
5207   }
5208   return 0;
5209 }
5210 
5211 /*
5212 ** Record the fact that the schema cookie will need to be verified
5213 ** for database iDb.  The code to actually verify the schema cookie
5214 ** will occur at the end of the top-level VDBE and will be generated
5215 ** later, by sqlite3FinishCoding().
5216 */
5217 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5218   assert( iDb>=0 && iDb<pToplevel->db->nDb );
5219   assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5220   assert( iDb<SQLITE_MAX_DB );
5221   assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5222   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5223     DbMaskSet(pToplevel->cookieMask, iDb);
5224     if( !OMIT_TEMPDB && iDb==1 ){
5225       sqlite3OpenTempDatabase(pToplevel);
5226     }
5227   }
5228 }
5229 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5230   sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5231 }
5232 
5233 
5234 /*
5235 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5236 ** attached database. Otherwise, invoke it for the database named zDb only.
5237 */
5238 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5239   sqlite3 *db = pParse->db;
5240   int i;
5241   for(i=0; i<db->nDb; i++){
5242     Db *pDb = &db->aDb[i];
5243     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5244       sqlite3CodeVerifySchema(pParse, i);
5245     }
5246   }
5247 }
5248 
5249 /*
5250 ** Generate VDBE code that prepares for doing an operation that
5251 ** might change the database.
5252 **
5253 ** This routine starts a new transaction if we are not already within
5254 ** a transaction.  If we are already within a transaction, then a checkpoint
5255 ** is set if the setStatement parameter is true.  A checkpoint should
5256 ** be set for operations that might fail (due to a constraint) part of
5257 ** the way through and which will need to undo some writes without having to
5258 ** rollback the whole transaction.  For operations where all constraints
5259 ** can be checked before any changes are made to the database, it is never
5260 ** necessary to undo a write and the checkpoint should not be set.
5261 */
5262 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5263   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5264   sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5265   DbMaskSet(pToplevel->writeMask, iDb);
5266   pToplevel->isMultiWrite |= setStatement;
5267 }
5268 
5269 /*
5270 ** Indicate that the statement currently under construction might write
5271 ** more than one entry (example: deleting one row then inserting another,
5272 ** inserting multiple rows in a table, or inserting a row and index entries.)
5273 ** If an abort occurs after some of these writes have completed, then it will
5274 ** be necessary to undo the completed writes.
5275 */
5276 void sqlite3MultiWrite(Parse *pParse){
5277   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5278   pToplevel->isMultiWrite = 1;
5279 }
5280 
5281 /*
5282 ** The code generator calls this routine if is discovers that it is
5283 ** possible to abort a statement prior to completion.  In order to
5284 ** perform this abort without corrupting the database, we need to make
5285 ** sure that the statement is protected by a statement transaction.
5286 **
5287 ** Technically, we only need to set the mayAbort flag if the
5288 ** isMultiWrite flag was previously set.  There is a time dependency
5289 ** such that the abort must occur after the multiwrite.  This makes
5290 ** some statements involving the REPLACE conflict resolution algorithm
5291 ** go a little faster.  But taking advantage of this time dependency
5292 ** makes it more difficult to prove that the code is correct (in
5293 ** particular, it prevents us from writing an effective
5294 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5295 ** to take the safe route and skip the optimization.
5296 */
5297 void sqlite3MayAbort(Parse *pParse){
5298   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5299   pToplevel->mayAbort = 1;
5300 }
5301 
5302 /*
5303 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5304 ** error. The onError parameter determines which (if any) of the statement
5305 ** and/or current transaction is rolled back.
5306 */
5307 void sqlite3HaltConstraint(
5308   Parse *pParse,    /* Parsing context */
5309   int errCode,      /* extended error code */
5310   int onError,      /* Constraint type */
5311   char *p4,         /* Error message */
5312   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
5313   u8 p5Errmsg       /* P5_ErrMsg type */
5314 ){
5315   Vdbe *v;
5316   assert( pParse->pVdbe!=0 );
5317   v = sqlite3GetVdbe(pParse);
5318   assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5319   if( onError==OE_Abort ){
5320     sqlite3MayAbort(pParse);
5321   }
5322   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5323   sqlite3VdbeChangeP5(v, p5Errmsg);
5324 }
5325 
5326 /*
5327 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5328 */
5329 void sqlite3UniqueConstraint(
5330   Parse *pParse,    /* Parsing context */
5331   int onError,      /* Constraint type */
5332   Index *pIdx       /* The index that triggers the constraint */
5333 ){
5334   char *zErr;
5335   int j;
5336   StrAccum errMsg;
5337   Table *pTab = pIdx->pTable;
5338 
5339   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5340                       pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5341   if( pIdx->aColExpr ){
5342     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5343   }else{
5344     for(j=0; j<pIdx->nKeyCol; j++){
5345       char *zCol;
5346       assert( pIdx->aiColumn[j]>=0 );
5347       zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5348       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5349       sqlite3_str_appendall(&errMsg, pTab->zName);
5350       sqlite3_str_append(&errMsg, ".", 1);
5351       sqlite3_str_appendall(&errMsg, zCol);
5352     }
5353   }
5354   zErr = sqlite3StrAccumFinish(&errMsg);
5355   sqlite3HaltConstraint(pParse,
5356     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5357                             : SQLITE_CONSTRAINT_UNIQUE,
5358     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5359 }
5360 
5361 
5362 /*
5363 ** Code an OP_Halt due to non-unique rowid.
5364 */
5365 void sqlite3RowidConstraint(
5366   Parse *pParse,    /* Parsing context */
5367   int onError,      /* Conflict resolution algorithm */
5368   Table *pTab       /* The table with the non-unique rowid */
5369 ){
5370   char *zMsg;
5371   int rc;
5372   if( pTab->iPKey>=0 ){
5373     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5374                           pTab->aCol[pTab->iPKey].zCnName);
5375     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5376   }else{
5377     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5378     rc = SQLITE_CONSTRAINT_ROWID;
5379   }
5380   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5381                         P5_ConstraintUnique);
5382 }
5383 
5384 /*
5385 ** Check to see if pIndex uses the collating sequence pColl.  Return
5386 ** true if it does and false if it does not.
5387 */
5388 #ifndef SQLITE_OMIT_REINDEX
5389 static int collationMatch(const char *zColl, Index *pIndex){
5390   int i;
5391   assert( zColl!=0 );
5392   for(i=0; i<pIndex->nColumn; i++){
5393     const char *z = pIndex->azColl[i];
5394     assert( z!=0 || pIndex->aiColumn[i]<0 );
5395     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5396       return 1;
5397     }
5398   }
5399   return 0;
5400 }
5401 #endif
5402 
5403 /*
5404 ** Recompute all indices of pTab that use the collating sequence pColl.
5405 ** If pColl==0 then recompute all indices of pTab.
5406 */
5407 #ifndef SQLITE_OMIT_REINDEX
5408 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5409   if( !IsVirtual(pTab) ){
5410     Index *pIndex;              /* An index associated with pTab */
5411 
5412     for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5413       if( zColl==0 || collationMatch(zColl, pIndex) ){
5414         int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5415         sqlite3BeginWriteOperation(pParse, 0, iDb);
5416         sqlite3RefillIndex(pParse, pIndex, -1);
5417       }
5418     }
5419   }
5420 }
5421 #endif
5422 
5423 /*
5424 ** Recompute all indices of all tables in all databases where the
5425 ** indices use the collating sequence pColl.  If pColl==0 then recompute
5426 ** all indices everywhere.
5427 */
5428 #ifndef SQLITE_OMIT_REINDEX
5429 static void reindexDatabases(Parse *pParse, char const *zColl){
5430   Db *pDb;                    /* A single database */
5431   int iDb;                    /* The database index number */
5432   sqlite3 *db = pParse->db;   /* The database connection */
5433   HashElem *k;                /* For looping over tables in pDb */
5434   Table *pTab;                /* A table in the database */
5435 
5436   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
5437   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5438     assert( pDb!=0 );
5439     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
5440       pTab = (Table*)sqliteHashData(k);
5441       reindexTable(pParse, pTab, zColl);
5442     }
5443   }
5444 }
5445 #endif
5446 
5447 /*
5448 ** Generate code for the REINDEX command.
5449 **
5450 **        REINDEX                            -- 1
5451 **        REINDEX  <collation>               -- 2
5452 **        REINDEX  ?<database>.?<tablename>  -- 3
5453 **        REINDEX  ?<database>.?<indexname>  -- 4
5454 **
5455 ** Form 1 causes all indices in all attached databases to be rebuilt.
5456 ** Form 2 rebuilds all indices in all databases that use the named
5457 ** collating function.  Forms 3 and 4 rebuild the named index or all
5458 ** indices associated with the named table.
5459 */
5460 #ifndef SQLITE_OMIT_REINDEX
5461 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5462   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
5463   char *z;                    /* Name of a table or index */
5464   const char *zDb;            /* Name of the database */
5465   Table *pTab;                /* A table in the database */
5466   Index *pIndex;              /* An index associated with pTab */
5467   int iDb;                    /* The database index number */
5468   sqlite3 *db = pParse->db;   /* The database connection */
5469   Token *pObjName;            /* Name of the table or index to be reindexed */
5470 
5471   /* Read the database schema. If an error occurs, leave an error message
5472   ** and code in pParse and return NULL. */
5473   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5474     return;
5475   }
5476 
5477   if( pName1==0 ){
5478     reindexDatabases(pParse, 0);
5479     return;
5480   }else if( NEVER(pName2==0) || pName2->z==0 ){
5481     char *zColl;
5482     assert( pName1->z );
5483     zColl = sqlite3NameFromToken(pParse->db, pName1);
5484     if( !zColl ) return;
5485     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5486     if( pColl ){
5487       reindexDatabases(pParse, zColl);
5488       sqlite3DbFree(db, zColl);
5489       return;
5490     }
5491     sqlite3DbFree(db, zColl);
5492   }
5493   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5494   if( iDb<0 ) return;
5495   z = sqlite3NameFromToken(db, pObjName);
5496   if( z==0 ) return;
5497   zDb = db->aDb[iDb].zDbSName;
5498   pTab = sqlite3FindTable(db, z, zDb);
5499   if( pTab ){
5500     reindexTable(pParse, pTab, 0);
5501     sqlite3DbFree(db, z);
5502     return;
5503   }
5504   pIndex = sqlite3FindIndex(db, z, zDb);
5505   sqlite3DbFree(db, z);
5506   if( pIndex ){
5507     sqlite3BeginWriteOperation(pParse, 0, iDb);
5508     sqlite3RefillIndex(pParse, pIndex, -1);
5509     return;
5510   }
5511   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5512 }
5513 #endif
5514 
5515 /*
5516 ** Return a KeyInfo structure that is appropriate for the given Index.
5517 **
5518 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5519 ** when it has finished using it.
5520 */
5521 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5522   int i;
5523   int nCol = pIdx->nColumn;
5524   int nKey = pIdx->nKeyCol;
5525   KeyInfo *pKey;
5526   if( pParse->nErr ) return 0;
5527   if( pIdx->uniqNotNull ){
5528     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5529   }else{
5530     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5531   }
5532   if( pKey ){
5533     assert( sqlite3KeyInfoIsWriteable(pKey) );
5534     for(i=0; i<nCol; i++){
5535       const char *zColl = pIdx->azColl[i];
5536       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5537                         sqlite3LocateCollSeq(pParse, zColl);
5538       pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5539       assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5540     }
5541     if( pParse->nErr ){
5542       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5543       if( pIdx->bNoQuery==0 ){
5544         /* Deactivate the index because it contains an unknown collating
5545         ** sequence.  The only way to reactive the index is to reload the
5546         ** schema.  Adding the missing collating sequence later does not
5547         ** reactive the index.  The application had the chance to register
5548         ** the missing index using the collation-needed callback.  For
5549         ** simplicity, SQLite will not give the application a second chance.
5550         */
5551         pIdx->bNoQuery = 1;
5552         pParse->rc = SQLITE_ERROR_RETRY;
5553       }
5554       sqlite3KeyInfoUnref(pKey);
5555       pKey = 0;
5556     }
5557   }
5558   return pKey;
5559 }
5560 
5561 #ifndef SQLITE_OMIT_CTE
5562 /*
5563 ** Create a new CTE object
5564 */
5565 Cte *sqlite3CteNew(
5566   Parse *pParse,          /* Parsing context */
5567   Token *pName,           /* Name of the common-table */
5568   ExprList *pArglist,     /* Optional column name list for the table */
5569   Select *pQuery,         /* Query used to initialize the table */
5570   u8 eM10d                /* The MATERIALIZED flag */
5571 ){
5572   Cte *pNew;
5573   sqlite3 *db = pParse->db;
5574 
5575   pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5576   assert( pNew!=0 || db->mallocFailed );
5577 
5578   if( db->mallocFailed ){
5579     sqlite3ExprListDelete(db, pArglist);
5580     sqlite3SelectDelete(db, pQuery);
5581   }else{
5582     pNew->pSelect = pQuery;
5583     pNew->pCols = pArglist;
5584     pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5585     pNew->eM10d = eM10d;
5586   }
5587   return pNew;
5588 }
5589 
5590 /*
5591 ** Clear information from a Cte object, but do not deallocate storage
5592 ** for the object itself.
5593 */
5594 static void cteClear(sqlite3 *db, Cte *pCte){
5595   assert( pCte!=0 );
5596   sqlite3ExprListDelete(db, pCte->pCols);
5597   sqlite3SelectDelete(db, pCte->pSelect);
5598   sqlite3DbFree(db, pCte->zName);
5599 }
5600 
5601 /*
5602 ** Free the contents of the CTE object passed as the second argument.
5603 */
5604 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5605   assert( pCte!=0 );
5606   cteClear(db, pCte);
5607   sqlite3DbFree(db, pCte);
5608 }
5609 
5610 /*
5611 ** This routine is invoked once per CTE by the parser while parsing a
5612 ** WITH clause.  The CTE described by teh third argument is added to
5613 ** the WITH clause of the second argument.  If the second argument is
5614 ** NULL, then a new WITH argument is created.
5615 */
5616 With *sqlite3WithAdd(
5617   Parse *pParse,          /* Parsing context */
5618   With *pWith,            /* Existing WITH clause, or NULL */
5619   Cte *pCte               /* CTE to add to the WITH clause */
5620 ){
5621   sqlite3 *db = pParse->db;
5622   With *pNew;
5623   char *zName;
5624 
5625   if( pCte==0 ){
5626     return pWith;
5627   }
5628 
5629   /* Check that the CTE name is unique within this WITH clause. If
5630   ** not, store an error in the Parse structure. */
5631   zName = pCte->zName;
5632   if( zName && pWith ){
5633     int i;
5634     for(i=0; i<pWith->nCte; i++){
5635       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5636         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5637       }
5638     }
5639   }
5640 
5641   if( pWith ){
5642     sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5643     pNew = sqlite3DbRealloc(db, pWith, nByte);
5644   }else{
5645     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5646   }
5647   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5648 
5649   if( db->mallocFailed ){
5650     sqlite3CteDelete(db, pCte);
5651     pNew = pWith;
5652   }else{
5653     pNew->a[pNew->nCte++] = *pCte;
5654     sqlite3DbFree(db, pCte);
5655   }
5656 
5657   return pNew;
5658 }
5659 
5660 /*
5661 ** Free the contents of the With object passed as the second argument.
5662 */
5663 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5664   if( pWith ){
5665     int i;
5666     for(i=0; i<pWith->nCte; i++){
5667       cteClear(db, &pWith->a[i]);
5668     }
5669     sqlite3DbFree(db, pWith);
5670   }
5671 }
5672 #endif /* !defined(SQLITE_OMIT_CTE) */
5673