1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 pToplevel = sqlite3ParseToplevel(pParse); 65 for(i=0; i<pToplevel->nTableLock; i++){ 66 p = &pToplevel->aTableLock[i]; 67 if( p->iDb==iDb && p->iTab==iTab ){ 68 p->isWriteLock = (p->isWriteLock || isWriteLock); 69 return; 70 } 71 } 72 73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 74 pToplevel->aTableLock = 75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 76 if( pToplevel->aTableLock ){ 77 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 78 p->iDb = iDb; 79 p->iTab = iTab; 80 p->isWriteLock = isWriteLock; 81 p->zLockName = zName; 82 }else{ 83 pToplevel->nTableLock = 0; 84 sqlite3OomFault(pToplevel->db); 85 } 86 } 87 88 /* 89 ** Code an OP_TableLock instruction for each table locked by the 90 ** statement (configured by calls to sqlite3TableLock()). 91 */ 92 static void codeTableLocks(Parse *pParse){ 93 int i; 94 Vdbe *pVdbe = pParse->pVdbe; 95 assert( pVdbe!=0 ); 96 97 for(i=0; i<pParse->nTableLock; i++){ 98 TableLock *p = &pParse->aTableLock[i]; 99 int p1 = p->iDb; 100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 p->zLockName, P4_STATIC); 102 } 103 } 104 #else 105 #define codeTableLocks(x) 106 #endif 107 108 /* 109 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 */ 113 #if SQLITE_MAX_ATTACHED>30 114 int sqlite3DbMaskAllZero(yDbMask m){ 115 int i; 116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 117 return 1; 118 } 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 assert( pParse->pToplevel==0 ); 136 db = pParse->db; 137 if( pParse->nested ) return; 138 if( db->mallocFailed || pParse->nErr ){ 139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 143 /* Begin by generating some termination code at the end of the 144 ** vdbe program 145 */ 146 v = sqlite3GetVdbe(pParse); 147 assert( !pParse->isMultiWrite 148 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 149 if( v ){ 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 sqlite3ErrorMsg(pParse, "user not authenticated"); 157 pParse->rc = SQLITE_AUTH_USER; 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 Schema *pSchema; 177 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 178 sqlite3VdbeUsesBtree(v, iDb); 179 pSchema = db->aDb[iDb].pSchema; 180 sqlite3VdbeAddOp4Int(v, 181 OP_Transaction, /* Opcode */ 182 iDb, /* P1 */ 183 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 184 pSchema->schema_cookie, /* P3 */ 185 pSchema->iGeneration /* P4 */ 186 ); 187 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 188 VdbeComment((v, 189 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 190 } 191 #ifndef SQLITE_OMIT_VIRTUALTABLE 192 for(i=0; i<pParse->nVtabLock; i++){ 193 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 194 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 195 } 196 pParse->nVtabLock = 0; 197 #endif 198 199 /* Once all the cookies have been verified and transactions opened, 200 ** obtain the required table-locks. This is a no-op unless the 201 ** shared-cache feature is enabled. 202 */ 203 codeTableLocks(pParse); 204 205 /* Initialize any AUTOINCREMENT data structures required. 206 */ 207 sqlite3AutoincrementBegin(pParse); 208 209 /* Code constant expressions that where factored out of inner loops. 210 ** 211 ** The pConstExpr list might also contain expressions that we simply 212 ** want to keep around until the Parse object is deleted. Such 213 ** expressions have iConstExprReg==0. Do not generate code for 214 ** those expressions, of course. 215 */ 216 if( pParse->pConstExpr ){ 217 ExprList *pEL = pParse->pConstExpr; 218 pParse->okConstFactor = 0; 219 for(i=0; i<pEL->nExpr; i++){ 220 int iReg = pEL->a[i].u.iConstExprReg; 221 if( iReg>0 ){ 222 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 223 } 224 } 225 } 226 227 /* Finally, jump back to the beginning of the executable code. */ 228 sqlite3VdbeGoto(v, 1); 229 } 230 } 231 232 233 /* Get the VDBE program ready for execution 234 */ 235 if( v && pParse->nErr==0 && !db->mallocFailed ){ 236 /* A minimum of one cursor is required if autoincrement is used 237 * See ticket [a696379c1f08866] */ 238 assert( pParse->pAinc==0 || pParse->nTab>0 ); 239 sqlite3VdbeMakeReady(v, pParse); 240 pParse->rc = SQLITE_DONE; 241 }else{ 242 pParse->rc = SQLITE_ERROR; 243 } 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 char saveBuf[PARSE_TAIL_SZ]; 264 265 if( pParse->nErr ) return; 266 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 267 va_start(ap, zFormat); 268 zSql = sqlite3VMPrintf(db, zFormat, ap); 269 va_end(ap); 270 if( zSql==0 ){ 271 /* This can result either from an OOM or because the formatted string 272 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 273 ** an error */ 274 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 275 pParse->nErr++; 276 return; 277 } 278 pParse->nested++; 279 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 280 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 281 sqlite3RunParser(pParse, zSql, &zErrMsg); 282 sqlite3DbFree(db, zErrMsg); 283 sqlite3DbFree(db, zSql); 284 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 285 pParse->nested--; 286 } 287 288 #if SQLITE_USER_AUTHENTICATION 289 /* 290 ** Return TRUE if zTable is the name of the system table that stores the 291 ** list of users and their access credentials. 292 */ 293 int sqlite3UserAuthTable(const char *zTable){ 294 return sqlite3_stricmp(zTable, "sqlite_user")==0; 295 } 296 #endif 297 298 /* 299 ** Locate the in-memory structure that describes a particular database 300 ** table given the name of that table and (optionally) the name of the 301 ** database containing the table. Return NULL if not found. 302 ** 303 ** If zDatabase is 0, all databases are searched for the table and the 304 ** first matching table is returned. (No checking for duplicate table 305 ** names is done.) The search order is TEMP first, then MAIN, then any 306 ** auxiliary databases added using the ATTACH command. 307 ** 308 ** See also sqlite3LocateTable(). 309 */ 310 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 311 Table *p = 0; 312 int i; 313 314 /* All mutexes are required for schema access. Make sure we hold them. */ 315 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 316 #if SQLITE_USER_AUTHENTICATION 317 /* Only the admin user is allowed to know that the sqlite_user table 318 ** exists */ 319 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 320 return 0; 321 } 322 #endif 323 if( zDatabase ){ 324 for(i=0; i<db->nDb; i++){ 325 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 326 } 327 if( i>=db->nDb ){ 328 /* No match against the official names. But always match "main" 329 ** to schema 0 as a legacy fallback. */ 330 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 331 i = 0; 332 }else{ 333 return 0; 334 } 335 } 336 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 337 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 338 if( i==1 ){ 339 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 340 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 341 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 342 ){ 343 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 344 DFLT_TEMP_SCHEMA_TABLE); 345 } 346 }else{ 347 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 348 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 349 DFLT_SCHEMA_TABLE); 350 } 351 } 352 } 353 }else{ 354 /* Match against TEMP first */ 355 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 356 if( p ) return p; 357 /* The main database is second */ 358 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 359 if( p ) return p; 360 /* Attached databases are in order of attachment */ 361 for(i=2; i<db->nDb; i++){ 362 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 363 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 364 if( p ) break; 365 } 366 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 367 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 368 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 369 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 370 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 371 DFLT_TEMP_SCHEMA_TABLE); 372 } 373 } 374 } 375 return p; 376 } 377 378 /* 379 ** Locate the in-memory structure that describes a particular database 380 ** table given the name of that table and (optionally) the name of the 381 ** database containing the table. Return NULL if not found. Also leave an 382 ** error message in pParse->zErrMsg. 383 ** 384 ** The difference between this routine and sqlite3FindTable() is that this 385 ** routine leaves an error message in pParse->zErrMsg where 386 ** sqlite3FindTable() does not. 387 */ 388 Table *sqlite3LocateTable( 389 Parse *pParse, /* context in which to report errors */ 390 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 391 const char *zName, /* Name of the table we are looking for */ 392 const char *zDbase /* Name of the database. Might be NULL */ 393 ){ 394 Table *p; 395 sqlite3 *db = pParse->db; 396 397 /* Read the database schema. If an error occurs, leave an error message 398 ** and code in pParse and return NULL. */ 399 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 400 && SQLITE_OK!=sqlite3ReadSchema(pParse) 401 ){ 402 return 0; 403 } 404 405 p = sqlite3FindTable(db, zName, zDbase); 406 if( p==0 ){ 407 #ifndef SQLITE_OMIT_VIRTUALTABLE 408 /* If zName is the not the name of a table in the schema created using 409 ** CREATE, then check to see if it is the name of an virtual table that 410 ** can be an eponymous virtual table. */ 411 if( pParse->disableVtab==0 ){ 412 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 413 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 414 pMod = sqlite3PragmaVtabRegister(db, zName); 415 } 416 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 417 return pMod->pEpoTab; 418 } 419 } 420 #endif 421 if( flags & LOCATE_NOERR ) return 0; 422 pParse->checkSchema = 1; 423 }else if( IsVirtual(p) && pParse->disableVtab ){ 424 p = 0; 425 } 426 427 if( p==0 ){ 428 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 429 if( zDbase ){ 430 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 431 }else{ 432 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 433 } 434 } 435 436 return p; 437 } 438 439 /* 440 ** Locate the table identified by *p. 441 ** 442 ** This is a wrapper around sqlite3LocateTable(). The difference between 443 ** sqlite3LocateTable() and this function is that this function restricts 444 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 445 ** non-NULL if it is part of a view or trigger program definition. See 446 ** sqlite3FixSrcList() for details. 447 */ 448 Table *sqlite3LocateTableItem( 449 Parse *pParse, 450 u32 flags, 451 struct SrcList_item *p 452 ){ 453 const char *zDb; 454 assert( p->pSchema==0 || p->zDatabase==0 ); 455 if( p->pSchema ){ 456 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 457 zDb = pParse->db->aDb[iDb].zDbSName; 458 }else{ 459 zDb = p->zDatabase; 460 } 461 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 462 } 463 464 /* 465 ** Locate the in-memory structure that describes 466 ** a particular index given the name of that index 467 ** and the name of the database that contains the index. 468 ** Return NULL if not found. 469 ** 470 ** If zDatabase is 0, all databases are searched for the 471 ** table and the first matching index is returned. (No checking 472 ** for duplicate index names is done.) The search order is 473 ** TEMP first, then MAIN, then any auxiliary databases added 474 ** using the ATTACH command. 475 */ 476 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 477 Index *p = 0; 478 int i; 479 /* All mutexes are required for schema access. Make sure we hold them. */ 480 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 481 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 482 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 483 Schema *pSchema = db->aDb[j].pSchema; 484 assert( pSchema ); 485 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 486 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 487 p = sqlite3HashFind(&pSchema->idxHash, zName); 488 if( p ) break; 489 } 490 return p; 491 } 492 493 /* 494 ** Reclaim the memory used by an index 495 */ 496 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 497 #ifndef SQLITE_OMIT_ANALYZE 498 sqlite3DeleteIndexSamples(db, p); 499 #endif 500 sqlite3ExprDelete(db, p->pPartIdxWhere); 501 sqlite3ExprListDelete(db, p->aColExpr); 502 sqlite3DbFree(db, p->zColAff); 503 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 504 #ifdef SQLITE_ENABLE_STAT4 505 sqlite3_free(p->aiRowEst); 506 #endif 507 sqlite3DbFree(db, p); 508 } 509 510 /* 511 ** For the index called zIdxName which is found in the database iDb, 512 ** unlike that index from its Table then remove the index from 513 ** the index hash table and free all memory structures associated 514 ** with the index. 515 */ 516 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 517 Index *pIndex; 518 Hash *pHash; 519 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 pHash = &db->aDb[iDb].pSchema->idxHash; 522 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 523 if( ALWAYS(pIndex) ){ 524 if( pIndex->pTable->pIndex==pIndex ){ 525 pIndex->pTable->pIndex = pIndex->pNext; 526 }else{ 527 Index *p; 528 /* Justification of ALWAYS(); The index must be on the list of 529 ** indices. */ 530 p = pIndex->pTable->pIndex; 531 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 532 if( ALWAYS(p && p->pNext==pIndex) ){ 533 p->pNext = pIndex->pNext; 534 } 535 } 536 sqlite3FreeIndex(db, pIndex); 537 } 538 db->mDbFlags |= DBFLAG_SchemaChange; 539 } 540 541 /* 542 ** Look through the list of open database files in db->aDb[] and if 543 ** any have been closed, remove them from the list. Reallocate the 544 ** db->aDb[] structure to a smaller size, if possible. 545 ** 546 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 547 ** are never candidates for being collapsed. 548 */ 549 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 550 int i, j; 551 for(i=j=2; i<db->nDb; i++){ 552 struct Db *pDb = &db->aDb[i]; 553 if( pDb->pBt==0 ){ 554 sqlite3DbFree(db, pDb->zDbSName); 555 pDb->zDbSName = 0; 556 continue; 557 } 558 if( j<i ){ 559 db->aDb[j] = db->aDb[i]; 560 } 561 j++; 562 } 563 db->nDb = j; 564 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 565 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 566 sqlite3DbFree(db, db->aDb); 567 db->aDb = db->aDbStatic; 568 } 569 } 570 571 /* 572 ** Reset the schema for the database at index iDb. Also reset the 573 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 574 ** Deferred resets may be run by calling with iDb<0. 575 */ 576 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 577 int i; 578 assert( iDb<db->nDb ); 579 580 if( iDb>=0 ){ 581 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 582 DbSetProperty(db, iDb, DB_ResetWanted); 583 DbSetProperty(db, 1, DB_ResetWanted); 584 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 585 } 586 587 if( db->nSchemaLock==0 ){ 588 for(i=0; i<db->nDb; i++){ 589 if( DbHasProperty(db, i, DB_ResetWanted) ){ 590 sqlite3SchemaClear(db->aDb[i].pSchema); 591 } 592 } 593 } 594 } 595 596 /* 597 ** Erase all schema information from all attached databases (including 598 ** "main" and "temp") for a single database connection. 599 */ 600 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 601 int i; 602 sqlite3BtreeEnterAll(db); 603 for(i=0; i<db->nDb; i++){ 604 Db *pDb = &db->aDb[i]; 605 if( pDb->pSchema ){ 606 if( db->nSchemaLock==0 ){ 607 sqlite3SchemaClear(pDb->pSchema); 608 }else{ 609 DbSetProperty(db, i, DB_ResetWanted); 610 } 611 } 612 } 613 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 614 sqlite3VtabUnlockList(db); 615 sqlite3BtreeLeaveAll(db); 616 if( db->nSchemaLock==0 ){ 617 sqlite3CollapseDatabaseArray(db); 618 } 619 } 620 621 /* 622 ** This routine is called when a commit occurs. 623 */ 624 void sqlite3CommitInternalChanges(sqlite3 *db){ 625 db->mDbFlags &= ~DBFLAG_SchemaChange; 626 } 627 628 /* 629 ** Delete memory allocated for the column names of a table or view (the 630 ** Table.aCol[] array). 631 */ 632 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 633 int i; 634 Column *pCol; 635 assert( pTable!=0 ); 636 if( (pCol = pTable->aCol)!=0 ){ 637 for(i=0; i<pTable->nCol; i++, pCol++){ 638 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 639 sqlite3DbFree(db, pCol->zName); 640 sqlite3ExprDelete(db, pCol->pDflt); 641 sqlite3DbFree(db, pCol->zColl); 642 } 643 sqlite3DbFree(db, pTable->aCol); 644 } 645 } 646 647 /* 648 ** Remove the memory data structures associated with the given 649 ** Table. No changes are made to disk by this routine. 650 ** 651 ** This routine just deletes the data structure. It does not unlink 652 ** the table data structure from the hash table. But it does destroy 653 ** memory structures of the indices and foreign keys associated with 654 ** the table. 655 ** 656 ** The db parameter is optional. It is needed if the Table object 657 ** contains lookaside memory. (Table objects in the schema do not use 658 ** lookaside memory, but some ephemeral Table objects do.) Or the 659 ** db parameter can be used with db->pnBytesFreed to measure the memory 660 ** used by the Table object. 661 */ 662 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 663 Index *pIndex, *pNext; 664 665 #ifdef SQLITE_DEBUG 666 /* Record the number of outstanding lookaside allocations in schema Tables 667 ** prior to doing any free() operations. Since schema Tables do not use 668 ** lookaside, this number should not change. 669 ** 670 ** If malloc has already failed, it may be that it failed while allocating 671 ** a Table object that was going to be marked ephemeral. So do not check 672 ** that no lookaside memory is used in this case either. */ 673 int nLookaside = 0; 674 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 675 nLookaside = sqlite3LookasideUsed(db, 0); 676 } 677 #endif 678 679 /* Delete all indices associated with this table. */ 680 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 681 pNext = pIndex->pNext; 682 assert( pIndex->pSchema==pTable->pSchema 683 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 684 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 685 char *zName = pIndex->zName; 686 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 687 &pIndex->pSchema->idxHash, zName, 0 688 ); 689 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 690 assert( pOld==pIndex || pOld==0 ); 691 } 692 sqlite3FreeIndex(db, pIndex); 693 } 694 695 /* Delete any foreign keys attached to this table. */ 696 sqlite3FkDelete(db, pTable); 697 698 /* Delete the Table structure itself. 699 */ 700 sqlite3DeleteColumnNames(db, pTable); 701 sqlite3DbFree(db, pTable->zName); 702 sqlite3DbFree(db, pTable->zColAff); 703 sqlite3SelectDelete(db, pTable->pSelect); 704 sqlite3ExprListDelete(db, pTable->pCheck); 705 #ifndef SQLITE_OMIT_VIRTUALTABLE 706 sqlite3VtabClear(db, pTable); 707 #endif 708 sqlite3DbFree(db, pTable); 709 710 /* Verify that no lookaside memory was used by schema tables */ 711 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 712 } 713 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 714 /* Do not delete the table until the reference count reaches zero. */ 715 if( !pTable ) return; 716 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 717 deleteTable(db, pTable); 718 } 719 720 721 /* 722 ** Unlink the given table from the hash tables and the delete the 723 ** table structure with all its indices and foreign keys. 724 */ 725 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 726 Table *p; 727 Db *pDb; 728 729 assert( db!=0 ); 730 assert( iDb>=0 && iDb<db->nDb ); 731 assert( zTabName ); 732 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 733 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 734 pDb = &db->aDb[iDb]; 735 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 736 sqlite3DeleteTable(db, p); 737 db->mDbFlags |= DBFLAG_SchemaChange; 738 } 739 740 /* 741 ** Given a token, return a string that consists of the text of that 742 ** token. Space to hold the returned string 743 ** is obtained from sqliteMalloc() and must be freed by the calling 744 ** function. 745 ** 746 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 747 ** surround the body of the token are removed. 748 ** 749 ** Tokens are often just pointers into the original SQL text and so 750 ** are not \000 terminated and are not persistent. The returned string 751 ** is \000 terminated and is persistent. 752 */ 753 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 754 char *zName; 755 if( pName ){ 756 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 757 sqlite3Dequote(zName); 758 }else{ 759 zName = 0; 760 } 761 return zName; 762 } 763 764 /* 765 ** Open the sqlite_schema table stored in database number iDb for 766 ** writing. The table is opened using cursor 0. 767 */ 768 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 769 Vdbe *v = sqlite3GetVdbe(p); 770 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 771 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 772 if( p->nTab==0 ){ 773 p->nTab = 1; 774 } 775 } 776 777 /* 778 ** Parameter zName points to a nul-terminated buffer containing the name 779 ** of a database ("main", "temp" or the name of an attached db). This 780 ** function returns the index of the named database in db->aDb[], or 781 ** -1 if the named db cannot be found. 782 */ 783 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 784 int i = -1; /* Database number */ 785 if( zName ){ 786 Db *pDb; 787 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 788 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 789 /* "main" is always an acceptable alias for the primary database 790 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 791 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 792 } 793 } 794 return i; 795 } 796 797 /* 798 ** The token *pName contains the name of a database (either "main" or 799 ** "temp" or the name of an attached db). This routine returns the 800 ** index of the named database in db->aDb[], or -1 if the named db 801 ** does not exist. 802 */ 803 int sqlite3FindDb(sqlite3 *db, Token *pName){ 804 int i; /* Database number */ 805 char *zName; /* Name we are searching for */ 806 zName = sqlite3NameFromToken(db, pName); 807 i = sqlite3FindDbName(db, zName); 808 sqlite3DbFree(db, zName); 809 return i; 810 } 811 812 /* The table or view or trigger name is passed to this routine via tokens 813 ** pName1 and pName2. If the table name was fully qualified, for example: 814 ** 815 ** CREATE TABLE xxx.yyy (...); 816 ** 817 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 818 ** the table name is not fully qualified, i.e.: 819 ** 820 ** CREATE TABLE yyy(...); 821 ** 822 ** Then pName1 is set to "yyy" and pName2 is "". 823 ** 824 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 825 ** pName2) that stores the unqualified table name. The index of the 826 ** database "xxx" is returned. 827 */ 828 int sqlite3TwoPartName( 829 Parse *pParse, /* Parsing and code generating context */ 830 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 831 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 832 Token **pUnqual /* Write the unqualified object name here */ 833 ){ 834 int iDb; /* Database holding the object */ 835 sqlite3 *db = pParse->db; 836 837 assert( pName2!=0 ); 838 if( pName2->n>0 ){ 839 if( db->init.busy ) { 840 sqlite3ErrorMsg(pParse, "corrupt database"); 841 return -1; 842 } 843 *pUnqual = pName2; 844 iDb = sqlite3FindDb(db, pName1); 845 if( iDb<0 ){ 846 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 847 return -1; 848 } 849 }else{ 850 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 851 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 852 iDb = db->init.iDb; 853 *pUnqual = pName1; 854 } 855 return iDb; 856 } 857 858 /* 859 ** True if PRAGMA writable_schema is ON 860 */ 861 int sqlite3WritableSchema(sqlite3 *db){ 862 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 863 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 864 SQLITE_WriteSchema ); 865 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 866 SQLITE_Defensive ); 867 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 868 (SQLITE_WriteSchema|SQLITE_Defensive) ); 869 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 870 } 871 872 /* 873 ** This routine is used to check if the UTF-8 string zName is a legal 874 ** unqualified name for a new schema object (table, index, view or 875 ** trigger). All names are legal except those that begin with the string 876 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 877 ** is reserved for internal use. 878 ** 879 ** When parsing the sqlite_schema table, this routine also checks to 880 ** make sure the "type", "name", and "tbl_name" columns are consistent 881 ** with the SQL. 882 */ 883 int sqlite3CheckObjectName( 884 Parse *pParse, /* Parsing context */ 885 const char *zName, /* Name of the object to check */ 886 const char *zType, /* Type of this object */ 887 const char *zTblName /* Parent table name for triggers and indexes */ 888 ){ 889 sqlite3 *db = pParse->db; 890 if( sqlite3WritableSchema(db) 891 || db->init.imposterTable 892 || !sqlite3Config.bExtraSchemaChecks 893 ){ 894 /* Skip these error checks for writable_schema=ON */ 895 return SQLITE_OK; 896 } 897 if( db->init.busy ){ 898 if( sqlite3_stricmp(zType, db->init.azInit[0]) 899 || sqlite3_stricmp(zName, db->init.azInit[1]) 900 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 901 ){ 902 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 903 return SQLITE_ERROR; 904 } 905 }else{ 906 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 907 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 908 ){ 909 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 910 zName); 911 return SQLITE_ERROR; 912 } 913 914 } 915 return SQLITE_OK; 916 } 917 918 /* 919 ** Return the PRIMARY KEY index of a table 920 */ 921 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 922 Index *p; 923 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 924 return p; 925 } 926 927 /* 928 ** Convert an table column number into a index column number. That is, 929 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 930 ** find the (first) offset of that column in index pIdx. Or return -1 931 ** if column iCol is not used in index pIdx. 932 */ 933 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 934 int i; 935 for(i=0; i<pIdx->nColumn; i++){ 936 if( iCol==pIdx->aiColumn[i] ) return i; 937 } 938 return -1; 939 } 940 941 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 942 /* Convert a storage column number into a table column number. 943 ** 944 ** The storage column number (0,1,2,....) is the index of the value 945 ** as it appears in the record on disk. The true column number 946 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 947 ** 948 ** The storage column number is less than the table column number if 949 ** and only there are VIRTUAL columns to the left. 950 ** 951 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 952 */ 953 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 954 if( pTab->tabFlags & TF_HasVirtual ){ 955 int i; 956 for(i=0; i<=iCol; i++){ 957 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 958 } 959 } 960 return iCol; 961 } 962 #endif 963 964 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 965 /* Convert a table column number into a storage column number. 966 ** 967 ** The storage column number (0,1,2,....) is the index of the value 968 ** as it appears in the record on disk. Or, if the input column is 969 ** the N-th virtual column (zero-based) then the storage number is 970 ** the number of non-virtual columns in the table plus N. 971 ** 972 ** The true column number is the index (0,1,2,...) of the column in 973 ** the CREATE TABLE statement. 974 ** 975 ** If the input column is a VIRTUAL column, then it should not appear 976 ** in storage. But the value sometimes is cached in registers that 977 ** follow the range of registers used to construct storage. This 978 ** avoids computing the same VIRTUAL column multiple times, and provides 979 ** values for use by OP_Param opcodes in triggers. Hence, if the 980 ** input column is a VIRTUAL table, put it after all the other columns. 981 ** 982 ** In the following, N means "normal column", S means STORED, and 983 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 984 ** 985 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 986 ** -- 0 1 2 3 4 5 6 7 8 987 ** 988 ** Then the mapping from this function is as follows: 989 ** 990 ** INPUTS: 0 1 2 3 4 5 6 7 8 991 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 992 ** 993 ** So, in other words, this routine shifts all the virtual columns to 994 ** the end. 995 ** 996 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 997 ** this routine is a no-op macro. If the pTab does not have any virtual 998 ** columns, then this routine is no-op that always return iCol. If iCol 999 ** is negative (indicating the ROWID column) then this routine return iCol. 1000 */ 1001 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1002 int i; 1003 i16 n; 1004 assert( iCol<pTab->nCol ); 1005 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1006 for(i=0, n=0; i<iCol; i++){ 1007 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1008 } 1009 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1010 /* iCol is a virtual column itself */ 1011 return pTab->nNVCol + i - n; 1012 }else{ 1013 /* iCol is a normal or stored column */ 1014 return n; 1015 } 1016 } 1017 #endif 1018 1019 /* 1020 ** Begin constructing a new table representation in memory. This is 1021 ** the first of several action routines that get called in response 1022 ** to a CREATE TABLE statement. In particular, this routine is called 1023 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1024 ** flag is true if the table should be stored in the auxiliary database 1025 ** file instead of in the main database file. This is normally the case 1026 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1027 ** CREATE and TABLE. 1028 ** 1029 ** The new table record is initialized and put in pParse->pNewTable. 1030 ** As more of the CREATE TABLE statement is parsed, additional action 1031 ** routines will be called to add more information to this record. 1032 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1033 ** is called to complete the construction of the new table record. 1034 */ 1035 void sqlite3StartTable( 1036 Parse *pParse, /* Parser context */ 1037 Token *pName1, /* First part of the name of the table or view */ 1038 Token *pName2, /* Second part of the name of the table or view */ 1039 int isTemp, /* True if this is a TEMP table */ 1040 int isView, /* True if this is a VIEW */ 1041 int isVirtual, /* True if this is a VIRTUAL table */ 1042 int noErr /* Do nothing if table already exists */ 1043 ){ 1044 Table *pTable; 1045 char *zName = 0; /* The name of the new table */ 1046 sqlite3 *db = pParse->db; 1047 Vdbe *v; 1048 int iDb; /* Database number to create the table in */ 1049 Token *pName; /* Unqualified name of the table to create */ 1050 1051 if( db->init.busy && db->init.newTnum==1 ){ 1052 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1053 iDb = db->init.iDb; 1054 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1055 pName = pName1; 1056 }else{ 1057 /* The common case */ 1058 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1059 if( iDb<0 ) return; 1060 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1061 /* If creating a temp table, the name may not be qualified. Unless 1062 ** the database name is "temp" anyway. */ 1063 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1064 return; 1065 } 1066 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1067 zName = sqlite3NameFromToken(db, pName); 1068 if( IN_RENAME_OBJECT ){ 1069 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1070 } 1071 } 1072 pParse->sNameToken = *pName; 1073 if( zName==0 ) return; 1074 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1075 goto begin_table_error; 1076 } 1077 if( db->init.iDb==1 ) isTemp = 1; 1078 #ifndef SQLITE_OMIT_AUTHORIZATION 1079 assert( isTemp==0 || isTemp==1 ); 1080 assert( isView==0 || isView==1 ); 1081 { 1082 static const u8 aCode[] = { 1083 SQLITE_CREATE_TABLE, 1084 SQLITE_CREATE_TEMP_TABLE, 1085 SQLITE_CREATE_VIEW, 1086 SQLITE_CREATE_TEMP_VIEW 1087 }; 1088 char *zDb = db->aDb[iDb].zDbSName; 1089 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1090 goto begin_table_error; 1091 } 1092 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1093 zName, 0, zDb) ){ 1094 goto begin_table_error; 1095 } 1096 } 1097 #endif 1098 1099 /* Make sure the new table name does not collide with an existing 1100 ** index or table name in the same database. Issue an error message if 1101 ** it does. The exception is if the statement being parsed was passed 1102 ** to an sqlite3_declare_vtab() call. In that case only the column names 1103 ** and types will be used, so there is no need to test for namespace 1104 ** collisions. 1105 */ 1106 if( !IN_SPECIAL_PARSE ){ 1107 char *zDb = db->aDb[iDb].zDbSName; 1108 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1109 goto begin_table_error; 1110 } 1111 pTable = sqlite3FindTable(db, zName, zDb); 1112 if( pTable ){ 1113 if( !noErr ){ 1114 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1115 }else{ 1116 assert( !db->init.busy || CORRUPT_DB ); 1117 sqlite3CodeVerifySchema(pParse, iDb); 1118 } 1119 goto begin_table_error; 1120 } 1121 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1122 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1123 goto begin_table_error; 1124 } 1125 } 1126 1127 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1128 if( pTable==0 ){ 1129 assert( db->mallocFailed ); 1130 pParse->rc = SQLITE_NOMEM_BKPT; 1131 pParse->nErr++; 1132 goto begin_table_error; 1133 } 1134 pTable->zName = zName; 1135 pTable->iPKey = -1; 1136 pTable->pSchema = db->aDb[iDb].pSchema; 1137 pTable->nTabRef = 1; 1138 #ifdef SQLITE_DEFAULT_ROWEST 1139 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1140 #else 1141 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1142 #endif 1143 assert( pParse->pNewTable==0 ); 1144 pParse->pNewTable = pTable; 1145 1146 /* If this is the magic sqlite_sequence table used by autoincrement, 1147 ** then record a pointer to this table in the main database structure 1148 ** so that INSERT can find the table easily. 1149 */ 1150 #ifndef SQLITE_OMIT_AUTOINCREMENT 1151 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1152 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1153 pTable->pSchema->pSeqTab = pTable; 1154 } 1155 #endif 1156 1157 /* Begin generating the code that will insert the table record into 1158 ** the schema table. Note in particular that we must go ahead 1159 ** and allocate the record number for the table entry now. Before any 1160 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1161 ** indices to be created and the table record must come before the 1162 ** indices. Hence, the record number for the table must be allocated 1163 ** now. 1164 */ 1165 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1166 int addr1; 1167 int fileFormat; 1168 int reg1, reg2, reg3; 1169 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1170 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1171 sqlite3BeginWriteOperation(pParse, 1, iDb); 1172 1173 #ifndef SQLITE_OMIT_VIRTUALTABLE 1174 if( isVirtual ){ 1175 sqlite3VdbeAddOp0(v, OP_VBegin); 1176 } 1177 #endif 1178 1179 /* If the file format and encoding in the database have not been set, 1180 ** set them now. 1181 */ 1182 reg1 = pParse->regRowid = ++pParse->nMem; 1183 reg2 = pParse->regRoot = ++pParse->nMem; 1184 reg3 = ++pParse->nMem; 1185 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1186 sqlite3VdbeUsesBtree(v, iDb); 1187 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1188 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1189 1 : SQLITE_MAX_FILE_FORMAT; 1190 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1191 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1192 sqlite3VdbeJumpHere(v, addr1); 1193 1194 /* This just creates a place-holder record in the sqlite_schema table. 1195 ** The record created does not contain anything yet. It will be replaced 1196 ** by the real entry in code generated at sqlite3EndTable(). 1197 ** 1198 ** The rowid for the new entry is left in register pParse->regRowid. 1199 ** The root page number of the new table is left in reg pParse->regRoot. 1200 ** The rowid and root page number values are needed by the code that 1201 ** sqlite3EndTable will generate. 1202 */ 1203 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1204 if( isView || isVirtual ){ 1205 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1206 }else 1207 #endif 1208 { 1209 pParse->addrCrTab = 1210 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1211 } 1212 sqlite3OpenSchemaTable(pParse, iDb); 1213 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1214 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1215 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1216 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1217 sqlite3VdbeAddOp0(v, OP_Close); 1218 } 1219 1220 /* Normal (non-error) return. */ 1221 return; 1222 1223 /* If an error occurs, we jump here */ 1224 begin_table_error: 1225 sqlite3DbFree(db, zName); 1226 return; 1227 } 1228 1229 /* Set properties of a table column based on the (magical) 1230 ** name of the column. 1231 */ 1232 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1233 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1234 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1235 pCol->colFlags |= COLFLAG_HIDDEN; 1236 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1237 pTab->tabFlags |= TF_OOOHidden; 1238 } 1239 } 1240 #endif 1241 1242 1243 /* 1244 ** Add a new column to the table currently being constructed. 1245 ** 1246 ** The parser calls this routine once for each column declaration 1247 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1248 ** first to get things going. Then this routine is called for each 1249 ** column. 1250 */ 1251 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1252 Table *p; 1253 int i; 1254 char *z; 1255 char *zType; 1256 Column *pCol; 1257 sqlite3 *db = pParse->db; 1258 if( (p = pParse->pNewTable)==0 ) return; 1259 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1260 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1261 return; 1262 } 1263 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1264 if( z==0 ) return; 1265 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1266 memcpy(z, pName->z, pName->n); 1267 z[pName->n] = 0; 1268 sqlite3Dequote(z); 1269 for(i=0; i<p->nCol; i++){ 1270 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1271 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1272 sqlite3DbFree(db, z); 1273 return; 1274 } 1275 } 1276 if( (p->nCol & 0x7)==0 ){ 1277 Column *aNew; 1278 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1279 if( aNew==0 ){ 1280 sqlite3DbFree(db, z); 1281 return; 1282 } 1283 p->aCol = aNew; 1284 } 1285 pCol = &p->aCol[p->nCol]; 1286 memset(pCol, 0, sizeof(p->aCol[0])); 1287 pCol->zName = z; 1288 pCol->hName = sqlite3StrIHash(z); 1289 sqlite3ColumnPropertiesFromName(p, pCol); 1290 1291 if( pType->n==0 ){ 1292 /* If there is no type specified, columns have the default affinity 1293 ** 'BLOB' with a default size of 4 bytes. */ 1294 pCol->affinity = SQLITE_AFF_BLOB; 1295 pCol->szEst = 1; 1296 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1297 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1298 pCol->colFlags |= COLFLAG_SORTERREF; 1299 } 1300 #endif 1301 }else{ 1302 zType = z + sqlite3Strlen30(z) + 1; 1303 memcpy(zType, pType->z, pType->n); 1304 zType[pType->n] = 0; 1305 sqlite3Dequote(zType); 1306 pCol->affinity = sqlite3AffinityType(zType, pCol); 1307 pCol->colFlags |= COLFLAG_HASTYPE; 1308 } 1309 p->nCol++; 1310 p->nNVCol++; 1311 pParse->constraintName.n = 0; 1312 } 1313 1314 /* 1315 ** This routine is called by the parser while in the middle of 1316 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1317 ** been seen on a column. This routine sets the notNull flag on 1318 ** the column currently under construction. 1319 */ 1320 void sqlite3AddNotNull(Parse *pParse, int onError){ 1321 Table *p; 1322 Column *pCol; 1323 p = pParse->pNewTable; 1324 if( p==0 || NEVER(p->nCol<1) ) return; 1325 pCol = &p->aCol[p->nCol-1]; 1326 pCol->notNull = (u8)onError; 1327 p->tabFlags |= TF_HasNotNull; 1328 1329 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1330 ** on this column. */ 1331 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1332 Index *pIdx; 1333 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1334 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1335 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1336 pIdx->uniqNotNull = 1; 1337 } 1338 } 1339 } 1340 } 1341 1342 /* 1343 ** Scan the column type name zType (length nType) and return the 1344 ** associated affinity type. 1345 ** 1346 ** This routine does a case-independent search of zType for the 1347 ** substrings in the following table. If one of the substrings is 1348 ** found, the corresponding affinity is returned. If zType contains 1349 ** more than one of the substrings, entries toward the top of 1350 ** the table take priority. For example, if zType is 'BLOBINT', 1351 ** SQLITE_AFF_INTEGER is returned. 1352 ** 1353 ** Substring | Affinity 1354 ** -------------------------------- 1355 ** 'INT' | SQLITE_AFF_INTEGER 1356 ** 'CHAR' | SQLITE_AFF_TEXT 1357 ** 'CLOB' | SQLITE_AFF_TEXT 1358 ** 'TEXT' | SQLITE_AFF_TEXT 1359 ** 'BLOB' | SQLITE_AFF_BLOB 1360 ** 'REAL' | SQLITE_AFF_REAL 1361 ** 'FLOA' | SQLITE_AFF_REAL 1362 ** 'DOUB' | SQLITE_AFF_REAL 1363 ** 1364 ** If none of the substrings in the above table are found, 1365 ** SQLITE_AFF_NUMERIC is returned. 1366 */ 1367 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1368 u32 h = 0; 1369 char aff = SQLITE_AFF_NUMERIC; 1370 const char *zChar = 0; 1371 1372 assert( zIn!=0 ); 1373 while( zIn[0] ){ 1374 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1375 zIn++; 1376 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1377 aff = SQLITE_AFF_TEXT; 1378 zChar = zIn; 1379 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1380 aff = SQLITE_AFF_TEXT; 1381 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1382 aff = SQLITE_AFF_TEXT; 1383 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1384 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1385 aff = SQLITE_AFF_BLOB; 1386 if( zIn[0]=='(' ) zChar = zIn; 1387 #ifndef SQLITE_OMIT_FLOATING_POINT 1388 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1389 && aff==SQLITE_AFF_NUMERIC ){ 1390 aff = SQLITE_AFF_REAL; 1391 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1392 && aff==SQLITE_AFF_NUMERIC ){ 1393 aff = SQLITE_AFF_REAL; 1394 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1395 && aff==SQLITE_AFF_NUMERIC ){ 1396 aff = SQLITE_AFF_REAL; 1397 #endif 1398 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1399 aff = SQLITE_AFF_INTEGER; 1400 break; 1401 } 1402 } 1403 1404 /* If pCol is not NULL, store an estimate of the field size. The 1405 ** estimate is scaled so that the size of an integer is 1. */ 1406 if( pCol ){ 1407 int v = 0; /* default size is approx 4 bytes */ 1408 if( aff<SQLITE_AFF_NUMERIC ){ 1409 if( zChar ){ 1410 while( zChar[0] ){ 1411 if( sqlite3Isdigit(zChar[0]) ){ 1412 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1413 sqlite3GetInt32(zChar, &v); 1414 break; 1415 } 1416 zChar++; 1417 } 1418 }else{ 1419 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1420 } 1421 } 1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1423 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1424 pCol->colFlags |= COLFLAG_SORTERREF; 1425 } 1426 #endif 1427 v = v/4 + 1; 1428 if( v>255 ) v = 255; 1429 pCol->szEst = v; 1430 } 1431 return aff; 1432 } 1433 1434 /* 1435 ** The expression is the default value for the most recently added column 1436 ** of the table currently under construction. 1437 ** 1438 ** Default value expressions must be constant. Raise an exception if this 1439 ** is not the case. 1440 ** 1441 ** This routine is called by the parser while in the middle of 1442 ** parsing a CREATE TABLE statement. 1443 */ 1444 void sqlite3AddDefaultValue( 1445 Parse *pParse, /* Parsing context */ 1446 Expr *pExpr, /* The parsed expression of the default value */ 1447 const char *zStart, /* Start of the default value text */ 1448 const char *zEnd /* First character past end of defaut value text */ 1449 ){ 1450 Table *p; 1451 Column *pCol; 1452 sqlite3 *db = pParse->db; 1453 p = pParse->pNewTable; 1454 if( p!=0 ){ 1455 int isInit = db->init.busy && db->init.iDb!=1; 1456 pCol = &(p->aCol[p->nCol-1]); 1457 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1458 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1459 pCol->zName); 1460 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1461 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1462 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1463 testcase( pCol->colFlags & COLFLAG_STORED ); 1464 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1465 #endif 1466 }else{ 1467 /* A copy of pExpr is used instead of the original, as pExpr contains 1468 ** tokens that point to volatile memory. 1469 */ 1470 Expr x; 1471 sqlite3ExprDelete(db, pCol->pDflt); 1472 memset(&x, 0, sizeof(x)); 1473 x.op = TK_SPAN; 1474 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1475 x.pLeft = pExpr; 1476 x.flags = EP_Skip; 1477 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1478 sqlite3DbFree(db, x.u.zToken); 1479 } 1480 } 1481 if( IN_RENAME_OBJECT ){ 1482 sqlite3RenameExprUnmap(pParse, pExpr); 1483 } 1484 sqlite3ExprDelete(db, pExpr); 1485 } 1486 1487 /* 1488 ** Backwards Compatibility Hack: 1489 ** 1490 ** Historical versions of SQLite accepted strings as column names in 1491 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1492 ** 1493 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1494 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1495 ** 1496 ** This is goofy. But to preserve backwards compatibility we continue to 1497 ** accept it. This routine does the necessary conversion. It converts 1498 ** the expression given in its argument from a TK_STRING into a TK_ID 1499 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1500 ** If the expression is anything other than TK_STRING, the expression is 1501 ** unchanged. 1502 */ 1503 static void sqlite3StringToId(Expr *p){ 1504 if( p->op==TK_STRING ){ 1505 p->op = TK_ID; 1506 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1507 p->pLeft->op = TK_ID; 1508 } 1509 } 1510 1511 /* 1512 ** Tag the given column as being part of the PRIMARY KEY 1513 */ 1514 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1515 pCol->colFlags |= COLFLAG_PRIMKEY; 1516 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1517 if( pCol->colFlags & COLFLAG_GENERATED ){ 1518 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1519 testcase( pCol->colFlags & COLFLAG_STORED ); 1520 sqlite3ErrorMsg(pParse, 1521 "generated columns cannot be part of the PRIMARY KEY"); 1522 } 1523 #endif 1524 } 1525 1526 /* 1527 ** Designate the PRIMARY KEY for the table. pList is a list of names 1528 ** of columns that form the primary key. If pList is NULL, then the 1529 ** most recently added column of the table is the primary key. 1530 ** 1531 ** A table can have at most one primary key. If the table already has 1532 ** a primary key (and this is the second primary key) then create an 1533 ** error. 1534 ** 1535 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1536 ** then we will try to use that column as the rowid. Set the Table.iPKey 1537 ** field of the table under construction to be the index of the 1538 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1539 ** no INTEGER PRIMARY KEY. 1540 ** 1541 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1542 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1543 */ 1544 void sqlite3AddPrimaryKey( 1545 Parse *pParse, /* Parsing context */ 1546 ExprList *pList, /* List of field names to be indexed */ 1547 int onError, /* What to do with a uniqueness conflict */ 1548 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1549 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1550 ){ 1551 Table *pTab = pParse->pNewTable; 1552 Column *pCol = 0; 1553 int iCol = -1, i; 1554 int nTerm; 1555 if( pTab==0 ) goto primary_key_exit; 1556 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1557 sqlite3ErrorMsg(pParse, 1558 "table \"%s\" has more than one primary key", pTab->zName); 1559 goto primary_key_exit; 1560 } 1561 pTab->tabFlags |= TF_HasPrimaryKey; 1562 if( pList==0 ){ 1563 iCol = pTab->nCol - 1; 1564 pCol = &pTab->aCol[iCol]; 1565 makeColumnPartOfPrimaryKey(pParse, pCol); 1566 nTerm = 1; 1567 }else{ 1568 nTerm = pList->nExpr; 1569 for(i=0; i<nTerm; i++){ 1570 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1571 assert( pCExpr!=0 ); 1572 sqlite3StringToId(pCExpr); 1573 if( pCExpr->op==TK_ID ){ 1574 const char *zCName = pCExpr->u.zToken; 1575 for(iCol=0; iCol<pTab->nCol; iCol++){ 1576 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1577 pCol = &pTab->aCol[iCol]; 1578 makeColumnPartOfPrimaryKey(pParse, pCol); 1579 break; 1580 } 1581 } 1582 } 1583 } 1584 } 1585 if( nTerm==1 1586 && pCol 1587 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1588 && sortOrder!=SQLITE_SO_DESC 1589 ){ 1590 if( IN_RENAME_OBJECT && pList ){ 1591 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1592 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1593 } 1594 pTab->iPKey = iCol; 1595 pTab->keyConf = (u8)onError; 1596 assert( autoInc==0 || autoInc==1 ); 1597 pTab->tabFlags |= autoInc*TF_Autoincrement; 1598 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1599 (void)sqlite3HasExplicitNulls(pParse, pList); 1600 }else if( autoInc ){ 1601 #ifndef SQLITE_OMIT_AUTOINCREMENT 1602 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1603 "INTEGER PRIMARY KEY"); 1604 #endif 1605 }else{ 1606 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1607 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1608 pList = 0; 1609 } 1610 1611 primary_key_exit: 1612 sqlite3ExprListDelete(pParse->db, pList); 1613 return; 1614 } 1615 1616 /* 1617 ** Add a new CHECK constraint to the table currently under construction. 1618 */ 1619 void sqlite3AddCheckConstraint( 1620 Parse *pParse, /* Parsing context */ 1621 Expr *pCheckExpr, /* The check expression */ 1622 const char *zStart, /* Opening "(" */ 1623 const char *zEnd /* Closing ")" */ 1624 ){ 1625 #ifndef SQLITE_OMIT_CHECK 1626 Table *pTab = pParse->pNewTable; 1627 sqlite3 *db = pParse->db; 1628 if( pTab && !IN_DECLARE_VTAB 1629 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1630 ){ 1631 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1632 if( pParse->constraintName.n ){ 1633 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1634 }else{ 1635 Token t; 1636 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1637 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1638 t.z = zStart; 1639 t.n = (int)(zEnd - t.z); 1640 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1641 } 1642 }else 1643 #endif 1644 { 1645 sqlite3ExprDelete(pParse->db, pCheckExpr); 1646 } 1647 } 1648 1649 /* 1650 ** Set the collation function of the most recently parsed table column 1651 ** to the CollSeq given. 1652 */ 1653 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1654 Table *p; 1655 int i; 1656 char *zColl; /* Dequoted name of collation sequence */ 1657 sqlite3 *db; 1658 1659 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1660 i = p->nCol-1; 1661 db = pParse->db; 1662 zColl = sqlite3NameFromToken(db, pToken); 1663 if( !zColl ) return; 1664 1665 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1666 Index *pIdx; 1667 sqlite3DbFree(db, p->aCol[i].zColl); 1668 p->aCol[i].zColl = zColl; 1669 1670 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1671 ** then an index may have been created on this column before the 1672 ** collation type was added. Correct this if it is the case. 1673 */ 1674 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1675 assert( pIdx->nKeyCol==1 ); 1676 if( pIdx->aiColumn[0]==i ){ 1677 pIdx->azColl[0] = p->aCol[i].zColl; 1678 } 1679 } 1680 }else{ 1681 sqlite3DbFree(db, zColl); 1682 } 1683 } 1684 1685 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1686 ** column. 1687 */ 1688 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1689 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1690 u8 eType = COLFLAG_VIRTUAL; 1691 Table *pTab = pParse->pNewTable; 1692 Column *pCol; 1693 if( pTab==0 ){ 1694 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1695 goto generated_done; 1696 } 1697 pCol = &(pTab->aCol[pTab->nCol-1]); 1698 if( IN_DECLARE_VTAB ){ 1699 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1700 goto generated_done; 1701 } 1702 if( pCol->pDflt ) goto generated_error; 1703 if( pType ){ 1704 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1705 /* no-op */ 1706 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1707 eType = COLFLAG_STORED; 1708 }else{ 1709 goto generated_error; 1710 } 1711 } 1712 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1713 pCol->colFlags |= eType; 1714 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1715 assert( TF_HasStored==COLFLAG_STORED ); 1716 pTab->tabFlags |= eType; 1717 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1718 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1719 } 1720 pCol->pDflt = pExpr; 1721 pExpr = 0; 1722 goto generated_done; 1723 1724 generated_error: 1725 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1726 pCol->zName); 1727 generated_done: 1728 sqlite3ExprDelete(pParse->db, pExpr); 1729 #else 1730 /* Throw and error for the GENERATED ALWAYS AS clause if the 1731 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1732 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1733 sqlite3ExprDelete(pParse->db, pExpr); 1734 #endif 1735 } 1736 1737 /* 1738 ** Generate code that will increment the schema cookie. 1739 ** 1740 ** The schema cookie is used to determine when the schema for the 1741 ** database changes. After each schema change, the cookie value 1742 ** changes. When a process first reads the schema it records the 1743 ** cookie. Thereafter, whenever it goes to access the database, 1744 ** it checks the cookie to make sure the schema has not changed 1745 ** since it was last read. 1746 ** 1747 ** This plan is not completely bullet-proof. It is possible for 1748 ** the schema to change multiple times and for the cookie to be 1749 ** set back to prior value. But schema changes are infrequent 1750 ** and the probability of hitting the same cookie value is only 1751 ** 1 chance in 2^32. So we're safe enough. 1752 ** 1753 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1754 ** the schema-version whenever the schema changes. 1755 */ 1756 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1757 sqlite3 *db = pParse->db; 1758 Vdbe *v = pParse->pVdbe; 1759 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1760 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1761 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1762 } 1763 1764 /* 1765 ** Measure the number of characters needed to output the given 1766 ** identifier. The number returned includes any quotes used 1767 ** but does not include the null terminator. 1768 ** 1769 ** The estimate is conservative. It might be larger that what is 1770 ** really needed. 1771 */ 1772 static int identLength(const char *z){ 1773 int n; 1774 for(n=0; *z; n++, z++){ 1775 if( *z=='"' ){ n++; } 1776 } 1777 return n + 2; 1778 } 1779 1780 /* 1781 ** The first parameter is a pointer to an output buffer. The second 1782 ** parameter is a pointer to an integer that contains the offset at 1783 ** which to write into the output buffer. This function copies the 1784 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1785 ** to the specified offset in the buffer and updates *pIdx to refer 1786 ** to the first byte after the last byte written before returning. 1787 ** 1788 ** If the string zSignedIdent consists entirely of alpha-numeric 1789 ** characters, does not begin with a digit and is not an SQL keyword, 1790 ** then it is copied to the output buffer exactly as it is. Otherwise, 1791 ** it is quoted using double-quotes. 1792 */ 1793 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1794 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1795 int i, j, needQuote; 1796 i = *pIdx; 1797 1798 for(j=0; zIdent[j]; j++){ 1799 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1800 } 1801 needQuote = sqlite3Isdigit(zIdent[0]) 1802 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1803 || zIdent[j]!=0 1804 || j==0; 1805 1806 if( needQuote ) z[i++] = '"'; 1807 for(j=0; zIdent[j]; j++){ 1808 z[i++] = zIdent[j]; 1809 if( zIdent[j]=='"' ) z[i++] = '"'; 1810 } 1811 if( needQuote ) z[i++] = '"'; 1812 z[i] = 0; 1813 *pIdx = i; 1814 } 1815 1816 /* 1817 ** Generate a CREATE TABLE statement appropriate for the given 1818 ** table. Memory to hold the text of the statement is obtained 1819 ** from sqliteMalloc() and must be freed by the calling function. 1820 */ 1821 static char *createTableStmt(sqlite3 *db, Table *p){ 1822 int i, k, n; 1823 char *zStmt; 1824 char *zSep, *zSep2, *zEnd; 1825 Column *pCol; 1826 n = 0; 1827 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1828 n += identLength(pCol->zName) + 5; 1829 } 1830 n += identLength(p->zName); 1831 if( n<50 ){ 1832 zSep = ""; 1833 zSep2 = ","; 1834 zEnd = ")"; 1835 }else{ 1836 zSep = "\n "; 1837 zSep2 = ",\n "; 1838 zEnd = "\n)"; 1839 } 1840 n += 35 + 6*p->nCol; 1841 zStmt = sqlite3DbMallocRaw(0, n); 1842 if( zStmt==0 ){ 1843 sqlite3OomFault(db); 1844 return 0; 1845 } 1846 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1847 k = sqlite3Strlen30(zStmt); 1848 identPut(zStmt, &k, p->zName); 1849 zStmt[k++] = '('; 1850 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1851 static const char * const azType[] = { 1852 /* SQLITE_AFF_BLOB */ "", 1853 /* SQLITE_AFF_TEXT */ " TEXT", 1854 /* SQLITE_AFF_NUMERIC */ " NUM", 1855 /* SQLITE_AFF_INTEGER */ " INT", 1856 /* SQLITE_AFF_REAL */ " REAL" 1857 }; 1858 int len; 1859 const char *zType; 1860 1861 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1862 k += sqlite3Strlen30(&zStmt[k]); 1863 zSep = zSep2; 1864 identPut(zStmt, &k, pCol->zName); 1865 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1866 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1867 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1868 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1869 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1870 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1871 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1872 1873 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1874 len = sqlite3Strlen30(zType); 1875 assert( pCol->affinity==SQLITE_AFF_BLOB 1876 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1877 memcpy(&zStmt[k], zType, len); 1878 k += len; 1879 assert( k<=n ); 1880 } 1881 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1882 return zStmt; 1883 } 1884 1885 /* 1886 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1887 ** on success and SQLITE_NOMEM on an OOM error. 1888 */ 1889 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1890 char *zExtra; 1891 int nByte; 1892 if( pIdx->nColumn>=N ) return SQLITE_OK; 1893 assert( pIdx->isResized==0 ); 1894 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 1895 zExtra = sqlite3DbMallocZero(db, nByte); 1896 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1897 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1898 pIdx->azColl = (const char**)zExtra; 1899 zExtra += sizeof(char*)*N; 1900 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 1901 pIdx->aiRowLogEst = (LogEst*)zExtra; 1902 zExtra += sizeof(LogEst)*N; 1903 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1904 pIdx->aiColumn = (i16*)zExtra; 1905 zExtra += sizeof(i16)*N; 1906 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1907 pIdx->aSortOrder = (u8*)zExtra; 1908 pIdx->nColumn = N; 1909 pIdx->isResized = 1; 1910 return SQLITE_OK; 1911 } 1912 1913 /* 1914 ** Estimate the total row width for a table. 1915 */ 1916 static void estimateTableWidth(Table *pTab){ 1917 unsigned wTable = 0; 1918 const Column *pTabCol; 1919 int i; 1920 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1921 wTable += pTabCol->szEst; 1922 } 1923 if( pTab->iPKey<0 ) wTable++; 1924 pTab->szTabRow = sqlite3LogEst(wTable*4); 1925 } 1926 1927 /* 1928 ** Estimate the average size of a row for an index. 1929 */ 1930 static void estimateIndexWidth(Index *pIdx){ 1931 unsigned wIndex = 0; 1932 int i; 1933 const Column *aCol = pIdx->pTable->aCol; 1934 for(i=0; i<pIdx->nColumn; i++){ 1935 i16 x = pIdx->aiColumn[i]; 1936 assert( x<pIdx->pTable->nCol ); 1937 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1938 } 1939 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1940 } 1941 1942 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1943 ** This is used to determine if the column number x appears in any of the 1944 ** first nCol entries of an index. 1945 */ 1946 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1947 while( nCol-- > 0 ){ 1948 assert( aiCol[0]>=0 ); 1949 if( x==*(aiCol++) ){ 1950 return 1; 1951 } 1952 } 1953 return 0; 1954 } 1955 1956 /* 1957 ** Return true if any of the first nKey entries of index pIdx exactly 1958 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1959 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1960 ** or may not be the same index as pPk. 1961 ** 1962 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1963 ** not a rowid or expression. 1964 ** 1965 ** This routine differs from hasColumn() in that both the column and the 1966 ** collating sequence must match for this routine, but for hasColumn() only 1967 ** the column name must match. 1968 */ 1969 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1970 int i, j; 1971 assert( nKey<=pIdx->nColumn ); 1972 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1973 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1974 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1975 assert( pPk->pTable==pIdx->pTable ); 1976 testcase( pPk==pIdx ); 1977 j = pPk->aiColumn[iCol]; 1978 assert( j!=XN_ROWID && j!=XN_EXPR ); 1979 for(i=0; i<nKey; i++){ 1980 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1981 if( pIdx->aiColumn[i]==j 1982 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1983 ){ 1984 return 1; 1985 } 1986 } 1987 return 0; 1988 } 1989 1990 /* Recompute the colNotIdxed field of the Index. 1991 ** 1992 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1993 ** columns that are within the first 63 columns of the table. The 1994 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1995 ** of the table have a 1. 1996 ** 1997 ** 2019-10-24: For the purpose of this computation, virtual columns are 1998 ** not considered to be covered by the index, even if they are in the 1999 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2000 ** able to find all instances of a reference to the indexed table column 2001 ** and convert them into references to the index. Hence we always want 2002 ** the actual table at hand in order to recompute the virtual column, if 2003 ** necessary. 2004 ** 2005 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2006 ** to determine if the index is covering index. 2007 */ 2008 static void recomputeColumnsNotIndexed(Index *pIdx){ 2009 Bitmask m = 0; 2010 int j; 2011 Table *pTab = pIdx->pTable; 2012 for(j=pIdx->nColumn-1; j>=0; j--){ 2013 int x = pIdx->aiColumn[j]; 2014 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2015 testcase( x==BMS-1 ); 2016 testcase( x==BMS-2 ); 2017 if( x<BMS-1 ) m |= MASKBIT(x); 2018 } 2019 } 2020 pIdx->colNotIdxed = ~m; 2021 assert( (pIdx->colNotIdxed>>63)==1 ); 2022 } 2023 2024 /* 2025 ** This routine runs at the end of parsing a CREATE TABLE statement that 2026 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2027 ** internal schema data structures and the generated VDBE code so that they 2028 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2029 ** Changes include: 2030 ** 2031 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2032 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2033 ** into BTREE_BLOBKEY. 2034 ** (3) Bypass the creation of the sqlite_schema table entry 2035 ** for the PRIMARY KEY as the primary key index is now 2036 ** identified by the sqlite_schema table entry of the table itself. 2037 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2038 ** schema to the rootpage from the main table. 2039 ** (5) Add all table columns to the PRIMARY KEY Index object 2040 ** so that the PRIMARY KEY is a covering index. The surplus 2041 ** columns are part of KeyInfo.nAllField and are not used for 2042 ** sorting or lookup or uniqueness checks. 2043 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2044 ** indices with the PRIMARY KEY columns. 2045 ** 2046 ** For virtual tables, only (1) is performed. 2047 */ 2048 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2049 Index *pIdx; 2050 Index *pPk; 2051 int nPk; 2052 int nExtra; 2053 int i, j; 2054 sqlite3 *db = pParse->db; 2055 Vdbe *v = pParse->pVdbe; 2056 2057 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2058 */ 2059 if( !db->init.imposterTable ){ 2060 for(i=0; i<pTab->nCol; i++){ 2061 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2062 pTab->aCol[i].notNull = OE_Abort; 2063 } 2064 } 2065 pTab->tabFlags |= TF_HasNotNull; 2066 } 2067 2068 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2069 ** into BTREE_BLOBKEY. 2070 */ 2071 if( pParse->addrCrTab ){ 2072 assert( v ); 2073 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 2074 } 2075 2076 /* Locate the PRIMARY KEY index. Or, if this table was originally 2077 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2078 */ 2079 if( pTab->iPKey>=0 ){ 2080 ExprList *pList; 2081 Token ipkToken; 2082 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2083 pList = sqlite3ExprListAppend(pParse, 0, 2084 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2085 if( pList==0 ) return; 2086 if( IN_RENAME_OBJECT ){ 2087 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2088 } 2089 pList->a[0].sortFlags = pParse->iPkSortOrder; 2090 assert( pParse->pNewTable==pTab ); 2091 pTab->iPKey = -1; 2092 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2093 SQLITE_IDXTYPE_PRIMARYKEY); 2094 if( db->mallocFailed || pParse->nErr ) return; 2095 pPk = sqlite3PrimaryKeyIndex(pTab); 2096 assert( pPk->nKeyCol==1 ); 2097 }else{ 2098 pPk = sqlite3PrimaryKeyIndex(pTab); 2099 assert( pPk!=0 ); 2100 2101 /* 2102 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2103 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2104 ** code assumes the PRIMARY KEY contains no repeated columns. 2105 */ 2106 for(i=j=1; i<pPk->nKeyCol; i++){ 2107 if( isDupColumn(pPk, j, pPk, i) ){ 2108 pPk->nColumn--; 2109 }else{ 2110 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2111 pPk->azColl[j] = pPk->azColl[i]; 2112 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2113 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2114 } 2115 } 2116 pPk->nKeyCol = j; 2117 } 2118 assert( pPk!=0 ); 2119 pPk->isCovering = 1; 2120 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2121 nPk = pPk->nColumn = pPk->nKeyCol; 2122 2123 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2124 ** table entry. This is only required if currently generating VDBE 2125 ** code for a CREATE TABLE (not when parsing one as part of reading 2126 ** a database schema). */ 2127 if( v && pPk->tnum>0 ){ 2128 assert( db->init.busy==0 ); 2129 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2130 } 2131 2132 /* The root page of the PRIMARY KEY is the table root page */ 2133 pPk->tnum = pTab->tnum; 2134 2135 /* Update the in-memory representation of all UNIQUE indices by converting 2136 ** the final rowid column into one or more columns of the PRIMARY KEY. 2137 */ 2138 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2139 int n; 2140 if( IsPrimaryKeyIndex(pIdx) ) continue; 2141 for(i=n=0; i<nPk; i++){ 2142 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2143 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2144 n++; 2145 } 2146 } 2147 if( n==0 ){ 2148 /* This index is a superset of the primary key */ 2149 pIdx->nColumn = pIdx->nKeyCol; 2150 continue; 2151 } 2152 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2153 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2154 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2155 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2156 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2157 pIdx->azColl[j] = pPk->azColl[i]; 2158 if( pPk->aSortOrder[i] ){ 2159 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2160 pIdx->bAscKeyBug = 1; 2161 } 2162 j++; 2163 } 2164 } 2165 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2166 assert( pIdx->nColumn>=j ); 2167 } 2168 2169 /* Add all table columns to the PRIMARY KEY index 2170 */ 2171 nExtra = 0; 2172 for(i=0; i<pTab->nCol; i++){ 2173 if( !hasColumn(pPk->aiColumn, nPk, i) 2174 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2175 } 2176 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2177 for(i=0, j=nPk; i<pTab->nCol; i++){ 2178 if( !hasColumn(pPk->aiColumn, j, i) 2179 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2180 ){ 2181 assert( j<pPk->nColumn ); 2182 pPk->aiColumn[j] = i; 2183 pPk->azColl[j] = sqlite3StrBINARY; 2184 j++; 2185 } 2186 } 2187 assert( pPk->nColumn==j ); 2188 assert( pTab->nNVCol<=j ); 2189 recomputeColumnsNotIndexed(pPk); 2190 } 2191 2192 2193 #ifndef SQLITE_OMIT_VIRTUALTABLE 2194 /* 2195 ** Return true if pTab is a virtual table and zName is a shadow table name 2196 ** for that virtual table. 2197 */ 2198 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2199 int nName; /* Length of zName */ 2200 Module *pMod; /* Module for the virtual table */ 2201 2202 if( !IsVirtual(pTab) ) return 0; 2203 nName = sqlite3Strlen30(pTab->zName); 2204 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2205 if( zName[nName]!='_' ) return 0; 2206 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2207 if( pMod==0 ) return 0; 2208 if( pMod->pModule->iVersion<3 ) return 0; 2209 if( pMod->pModule->xShadowName==0 ) return 0; 2210 return pMod->pModule->xShadowName(zName+nName+1); 2211 } 2212 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2213 2214 #ifndef SQLITE_OMIT_VIRTUALTABLE 2215 /* 2216 ** Return true if zName is a shadow table name in the current database 2217 ** connection. 2218 ** 2219 ** zName is temporarily modified while this routine is running, but is 2220 ** restored to its original value prior to this routine returning. 2221 */ 2222 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2223 char *zTail; /* Pointer to the last "_" in zName */ 2224 Table *pTab; /* Table that zName is a shadow of */ 2225 zTail = strrchr(zName, '_'); 2226 if( zTail==0 ) return 0; 2227 *zTail = 0; 2228 pTab = sqlite3FindTable(db, zName, 0); 2229 *zTail = '_'; 2230 if( pTab==0 ) return 0; 2231 if( !IsVirtual(pTab) ) return 0; 2232 return sqlite3IsShadowTableOf(db, pTab, zName); 2233 } 2234 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2235 2236 2237 #ifdef SQLITE_DEBUG 2238 /* 2239 ** Mark all nodes of an expression as EP_Immutable, indicating that 2240 ** they should not be changed. Expressions attached to a table or 2241 ** index definition are tagged this way to help ensure that we do 2242 ** not pass them into code generator routines by mistake. 2243 */ 2244 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2245 ExprSetVVAProperty(pExpr, EP_Immutable); 2246 return WRC_Continue; 2247 } 2248 static void markExprListImmutable(ExprList *pList){ 2249 if( pList ){ 2250 Walker w; 2251 memset(&w, 0, sizeof(w)); 2252 w.xExprCallback = markImmutableExprStep; 2253 w.xSelectCallback = sqlite3SelectWalkNoop; 2254 w.xSelectCallback2 = 0; 2255 sqlite3WalkExprList(&w, pList); 2256 } 2257 } 2258 #else 2259 #define markExprListImmutable(X) /* no-op */ 2260 #endif /* SQLITE_DEBUG */ 2261 2262 2263 /* 2264 ** This routine is called to report the final ")" that terminates 2265 ** a CREATE TABLE statement. 2266 ** 2267 ** The table structure that other action routines have been building 2268 ** is added to the internal hash tables, assuming no errors have 2269 ** occurred. 2270 ** 2271 ** An entry for the table is made in the schema table on disk, unless 2272 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2273 ** it means we are reading the sqlite_schema table because we just 2274 ** connected to the database or because the sqlite_schema table has 2275 ** recently changed, so the entry for this table already exists in 2276 ** the sqlite_schema table. We do not want to create it again. 2277 ** 2278 ** If the pSelect argument is not NULL, it means that this routine 2279 ** was called to create a table generated from a 2280 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2281 ** the new table will match the result set of the SELECT. 2282 */ 2283 void sqlite3EndTable( 2284 Parse *pParse, /* Parse context */ 2285 Token *pCons, /* The ',' token after the last column defn. */ 2286 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2287 u8 tabOpts, /* Extra table options. Usually 0. */ 2288 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2289 ){ 2290 Table *p; /* The new table */ 2291 sqlite3 *db = pParse->db; /* The database connection */ 2292 int iDb; /* Database in which the table lives */ 2293 Index *pIdx; /* An implied index of the table */ 2294 2295 if( pEnd==0 && pSelect==0 ){ 2296 return; 2297 } 2298 assert( !db->mallocFailed ); 2299 p = pParse->pNewTable; 2300 if( p==0 ) return; 2301 2302 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2303 p->tabFlags |= TF_Shadow; 2304 } 2305 2306 /* If the db->init.busy is 1 it means we are reading the SQL off the 2307 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2308 ** So do not write to the disk again. Extract the root page number 2309 ** for the table from the db->init.newTnum field. (The page number 2310 ** should have been put there by the sqliteOpenCb routine.) 2311 ** 2312 ** If the root page number is 1, that means this is the sqlite_schema 2313 ** table itself. So mark it read-only. 2314 */ 2315 if( db->init.busy ){ 2316 if( pSelect ){ 2317 sqlite3ErrorMsg(pParse, ""); 2318 return; 2319 } 2320 p->tnum = db->init.newTnum; 2321 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2322 } 2323 2324 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2325 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2326 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2327 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2328 2329 /* Special processing for WITHOUT ROWID Tables */ 2330 if( tabOpts & TF_WithoutRowid ){ 2331 if( (p->tabFlags & TF_Autoincrement) ){ 2332 sqlite3ErrorMsg(pParse, 2333 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2334 return; 2335 } 2336 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2337 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2338 return; 2339 } 2340 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2341 convertToWithoutRowidTable(pParse, p); 2342 } 2343 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2344 2345 #ifndef SQLITE_OMIT_CHECK 2346 /* Resolve names in all CHECK constraint expressions. 2347 */ 2348 if( p->pCheck ){ 2349 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2350 if( pParse->nErr ){ 2351 /* If errors are seen, delete the CHECK constraints now, else they might 2352 ** actually be used if PRAGMA writable_schema=ON is set. */ 2353 sqlite3ExprListDelete(db, p->pCheck); 2354 p->pCheck = 0; 2355 }else{ 2356 markExprListImmutable(p->pCheck); 2357 } 2358 } 2359 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2360 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2361 if( p->tabFlags & TF_HasGenerated ){ 2362 int ii, nNG = 0; 2363 testcase( p->tabFlags & TF_HasVirtual ); 2364 testcase( p->tabFlags & TF_HasStored ); 2365 for(ii=0; ii<p->nCol; ii++){ 2366 u32 colFlags = p->aCol[ii].colFlags; 2367 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2368 Expr *pX = p->aCol[ii].pDflt; 2369 testcase( colFlags & COLFLAG_VIRTUAL ); 2370 testcase( colFlags & COLFLAG_STORED ); 2371 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2372 /* If there are errors in resolving the expression, change the 2373 ** expression to a NULL. This prevents code generators that operate 2374 ** on the expression from inserting extra parts into the expression 2375 ** tree that have been allocated from lookaside memory, which is 2376 ** illegal in a schema and will lead to errors or heap corruption 2377 ** when the database connection closes. */ 2378 sqlite3ExprDelete(db, pX); 2379 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2380 } 2381 }else{ 2382 nNG++; 2383 } 2384 } 2385 if( nNG==0 ){ 2386 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2387 return; 2388 } 2389 } 2390 #endif 2391 2392 /* Estimate the average row size for the table and for all implied indices */ 2393 estimateTableWidth(p); 2394 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2395 estimateIndexWidth(pIdx); 2396 } 2397 2398 /* If not initializing, then create a record for the new table 2399 ** in the schema table of the database. 2400 ** 2401 ** If this is a TEMPORARY table, write the entry into the auxiliary 2402 ** file instead of into the main database file. 2403 */ 2404 if( !db->init.busy ){ 2405 int n; 2406 Vdbe *v; 2407 char *zType; /* "view" or "table" */ 2408 char *zType2; /* "VIEW" or "TABLE" */ 2409 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2410 2411 v = sqlite3GetVdbe(pParse); 2412 if( NEVER(v==0) ) return; 2413 2414 sqlite3VdbeAddOp1(v, OP_Close, 0); 2415 2416 /* 2417 ** Initialize zType for the new view or table. 2418 */ 2419 if( p->pSelect==0 ){ 2420 /* A regular table */ 2421 zType = "table"; 2422 zType2 = "TABLE"; 2423 #ifndef SQLITE_OMIT_VIEW 2424 }else{ 2425 /* A view */ 2426 zType = "view"; 2427 zType2 = "VIEW"; 2428 #endif 2429 } 2430 2431 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2432 ** statement to populate the new table. The root-page number for the 2433 ** new table is in register pParse->regRoot. 2434 ** 2435 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2436 ** suitable state to query for the column names and types to be used 2437 ** by the new table. 2438 ** 2439 ** A shared-cache write-lock is not required to write to the new table, 2440 ** as a schema-lock must have already been obtained to create it. Since 2441 ** a schema-lock excludes all other database users, the write-lock would 2442 ** be redundant. 2443 */ 2444 if( pSelect ){ 2445 SelectDest dest; /* Where the SELECT should store results */ 2446 int regYield; /* Register holding co-routine entry-point */ 2447 int addrTop; /* Top of the co-routine */ 2448 int regRec; /* A record to be insert into the new table */ 2449 int regRowid; /* Rowid of the next row to insert */ 2450 int addrInsLoop; /* Top of the loop for inserting rows */ 2451 Table *pSelTab; /* A table that describes the SELECT results */ 2452 2453 regYield = ++pParse->nMem; 2454 regRec = ++pParse->nMem; 2455 regRowid = ++pParse->nMem; 2456 assert(pParse->nTab==1); 2457 sqlite3MayAbort(pParse); 2458 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2459 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2460 pParse->nTab = 2; 2461 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2462 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2463 if( pParse->nErr ) return; 2464 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2465 if( pSelTab==0 ) return; 2466 assert( p->aCol==0 ); 2467 p->nCol = p->nNVCol = pSelTab->nCol; 2468 p->aCol = pSelTab->aCol; 2469 pSelTab->nCol = 0; 2470 pSelTab->aCol = 0; 2471 sqlite3DeleteTable(db, pSelTab); 2472 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2473 sqlite3Select(pParse, pSelect, &dest); 2474 if( pParse->nErr ) return; 2475 sqlite3VdbeEndCoroutine(v, regYield); 2476 sqlite3VdbeJumpHere(v, addrTop - 1); 2477 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2478 VdbeCoverage(v); 2479 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2480 sqlite3TableAffinity(v, p, 0); 2481 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2482 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2483 sqlite3VdbeGoto(v, addrInsLoop); 2484 sqlite3VdbeJumpHere(v, addrInsLoop); 2485 sqlite3VdbeAddOp1(v, OP_Close, 1); 2486 } 2487 2488 /* Compute the complete text of the CREATE statement */ 2489 if( pSelect ){ 2490 zStmt = createTableStmt(db, p); 2491 }else{ 2492 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2493 n = (int)(pEnd2->z - pParse->sNameToken.z); 2494 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2495 zStmt = sqlite3MPrintf(db, 2496 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2497 ); 2498 } 2499 2500 /* A slot for the record has already been allocated in the 2501 ** schema table. We just need to update that slot with all 2502 ** the information we've collected. 2503 */ 2504 sqlite3NestedParse(pParse, 2505 "UPDATE %Q." DFLT_SCHEMA_TABLE 2506 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2507 " WHERE rowid=#%d", 2508 db->aDb[iDb].zDbSName, 2509 zType, 2510 p->zName, 2511 p->zName, 2512 pParse->regRoot, 2513 zStmt, 2514 pParse->regRowid 2515 ); 2516 sqlite3DbFree(db, zStmt); 2517 sqlite3ChangeCookie(pParse, iDb); 2518 2519 #ifndef SQLITE_OMIT_AUTOINCREMENT 2520 /* Check to see if we need to create an sqlite_sequence table for 2521 ** keeping track of autoincrement keys. 2522 */ 2523 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2524 Db *pDb = &db->aDb[iDb]; 2525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2526 if( pDb->pSchema->pSeqTab==0 ){ 2527 sqlite3NestedParse(pParse, 2528 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2529 pDb->zDbSName 2530 ); 2531 } 2532 } 2533 #endif 2534 2535 /* Reparse everything to update our internal data structures */ 2536 sqlite3VdbeAddParseSchemaOp(v, iDb, 2537 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2538 } 2539 2540 /* Add the table to the in-memory representation of the database. 2541 */ 2542 if( db->init.busy ){ 2543 Table *pOld; 2544 Schema *pSchema = p->pSchema; 2545 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2546 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2547 if( pOld ){ 2548 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2549 sqlite3OomFault(db); 2550 return; 2551 } 2552 pParse->pNewTable = 0; 2553 db->mDbFlags |= DBFLAG_SchemaChange; 2554 2555 #ifndef SQLITE_OMIT_ALTERTABLE 2556 if( !p->pSelect ){ 2557 const char *zName = (const char *)pParse->sNameToken.z; 2558 int nName; 2559 assert( !pSelect && pCons && pEnd ); 2560 if( pCons->z==0 ){ 2561 pCons = pEnd; 2562 } 2563 nName = (int)((const char *)pCons->z - zName); 2564 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2565 } 2566 #endif 2567 } 2568 } 2569 2570 #ifndef SQLITE_OMIT_VIEW 2571 /* 2572 ** The parser calls this routine in order to create a new VIEW 2573 */ 2574 void sqlite3CreateView( 2575 Parse *pParse, /* The parsing context */ 2576 Token *pBegin, /* The CREATE token that begins the statement */ 2577 Token *pName1, /* The token that holds the name of the view */ 2578 Token *pName2, /* The token that holds the name of the view */ 2579 ExprList *pCNames, /* Optional list of view column names */ 2580 Select *pSelect, /* A SELECT statement that will become the new view */ 2581 int isTemp, /* TRUE for a TEMPORARY view */ 2582 int noErr /* Suppress error messages if VIEW already exists */ 2583 ){ 2584 Table *p; 2585 int n; 2586 const char *z; 2587 Token sEnd; 2588 DbFixer sFix; 2589 Token *pName = 0; 2590 int iDb; 2591 sqlite3 *db = pParse->db; 2592 2593 if( pParse->nVar>0 ){ 2594 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2595 goto create_view_fail; 2596 } 2597 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2598 p = pParse->pNewTable; 2599 if( p==0 || pParse->nErr ) goto create_view_fail; 2600 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2601 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2602 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2603 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2604 2605 /* Make a copy of the entire SELECT statement that defines the view. 2606 ** This will force all the Expr.token.z values to be dynamically 2607 ** allocated rather than point to the input string - which means that 2608 ** they will persist after the current sqlite3_exec() call returns. 2609 */ 2610 pSelect->selFlags |= SF_View; 2611 if( IN_RENAME_OBJECT ){ 2612 p->pSelect = pSelect; 2613 pSelect = 0; 2614 }else{ 2615 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2616 } 2617 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2618 if( db->mallocFailed ) goto create_view_fail; 2619 2620 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2621 ** the end. 2622 */ 2623 sEnd = pParse->sLastToken; 2624 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2625 if( sEnd.z[0]!=';' ){ 2626 sEnd.z += sEnd.n; 2627 } 2628 sEnd.n = 0; 2629 n = (int)(sEnd.z - pBegin->z); 2630 assert( n>0 ); 2631 z = pBegin->z; 2632 while( sqlite3Isspace(z[n-1]) ){ n--; } 2633 sEnd.z = &z[n-1]; 2634 sEnd.n = 1; 2635 2636 /* Use sqlite3EndTable() to add the view to the schema table */ 2637 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2638 2639 create_view_fail: 2640 sqlite3SelectDelete(db, pSelect); 2641 if( IN_RENAME_OBJECT ){ 2642 sqlite3RenameExprlistUnmap(pParse, pCNames); 2643 } 2644 sqlite3ExprListDelete(db, pCNames); 2645 return; 2646 } 2647 #endif /* SQLITE_OMIT_VIEW */ 2648 2649 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2650 /* 2651 ** The Table structure pTable is really a VIEW. Fill in the names of 2652 ** the columns of the view in the pTable structure. Return the number 2653 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2654 */ 2655 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2656 Table *pSelTab; /* A fake table from which we get the result set */ 2657 Select *pSel; /* Copy of the SELECT that implements the view */ 2658 int nErr = 0; /* Number of errors encountered */ 2659 int n; /* Temporarily holds the number of cursors assigned */ 2660 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2661 #ifndef SQLITE_OMIT_VIRTUALTABLE 2662 int rc; 2663 #endif 2664 #ifndef SQLITE_OMIT_AUTHORIZATION 2665 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2666 #endif 2667 2668 assert( pTable ); 2669 2670 #ifndef SQLITE_OMIT_VIRTUALTABLE 2671 db->nSchemaLock++; 2672 rc = sqlite3VtabCallConnect(pParse, pTable); 2673 db->nSchemaLock--; 2674 if( rc ){ 2675 return 1; 2676 } 2677 if( IsVirtual(pTable) ) return 0; 2678 #endif 2679 2680 #ifndef SQLITE_OMIT_VIEW 2681 /* A positive nCol means the columns names for this view are 2682 ** already known. 2683 */ 2684 if( pTable->nCol>0 ) return 0; 2685 2686 /* A negative nCol is a special marker meaning that we are currently 2687 ** trying to compute the column names. If we enter this routine with 2688 ** a negative nCol, it means two or more views form a loop, like this: 2689 ** 2690 ** CREATE VIEW one AS SELECT * FROM two; 2691 ** CREATE VIEW two AS SELECT * FROM one; 2692 ** 2693 ** Actually, the error above is now caught prior to reaching this point. 2694 ** But the following test is still important as it does come up 2695 ** in the following: 2696 ** 2697 ** CREATE TABLE main.ex1(a); 2698 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2699 ** SELECT * FROM temp.ex1; 2700 */ 2701 if( pTable->nCol<0 ){ 2702 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2703 return 1; 2704 } 2705 assert( pTable->nCol>=0 ); 2706 2707 /* If we get this far, it means we need to compute the table names. 2708 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2709 ** "*" elements in the results set of the view and will assign cursors 2710 ** to the elements of the FROM clause. But we do not want these changes 2711 ** to be permanent. So the computation is done on a copy of the SELECT 2712 ** statement that defines the view. 2713 */ 2714 assert( pTable->pSelect ); 2715 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2716 if( pSel ){ 2717 u8 eParseMode = pParse->eParseMode; 2718 pParse->eParseMode = PARSE_MODE_NORMAL; 2719 n = pParse->nTab; 2720 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2721 pTable->nCol = -1; 2722 DisableLookaside; 2723 #ifndef SQLITE_OMIT_AUTHORIZATION 2724 xAuth = db->xAuth; 2725 db->xAuth = 0; 2726 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2727 db->xAuth = xAuth; 2728 #else 2729 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2730 #endif 2731 pParse->nTab = n; 2732 if( pSelTab==0 ){ 2733 pTable->nCol = 0; 2734 nErr++; 2735 }else if( pTable->pCheck ){ 2736 /* CREATE VIEW name(arglist) AS ... 2737 ** The names of the columns in the table are taken from 2738 ** arglist which is stored in pTable->pCheck. The pCheck field 2739 ** normally holds CHECK constraints on an ordinary table, but for 2740 ** a VIEW it holds the list of column names. 2741 */ 2742 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2743 &pTable->nCol, &pTable->aCol); 2744 if( db->mallocFailed==0 2745 && pParse->nErr==0 2746 && pTable->nCol==pSel->pEList->nExpr 2747 ){ 2748 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2749 SQLITE_AFF_NONE); 2750 } 2751 }else{ 2752 /* CREATE VIEW name AS... without an argument list. Construct 2753 ** the column names from the SELECT statement that defines the view. 2754 */ 2755 assert( pTable->aCol==0 ); 2756 pTable->nCol = pSelTab->nCol; 2757 pTable->aCol = pSelTab->aCol; 2758 pSelTab->nCol = 0; 2759 pSelTab->aCol = 0; 2760 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2761 } 2762 pTable->nNVCol = pTable->nCol; 2763 sqlite3DeleteTable(db, pSelTab); 2764 sqlite3SelectDelete(db, pSel); 2765 EnableLookaside; 2766 pParse->eParseMode = eParseMode; 2767 } else { 2768 nErr++; 2769 } 2770 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2771 if( db->mallocFailed ){ 2772 sqlite3DeleteColumnNames(db, pTable); 2773 pTable->aCol = 0; 2774 pTable->nCol = 0; 2775 } 2776 #endif /* SQLITE_OMIT_VIEW */ 2777 return nErr; 2778 } 2779 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2780 2781 #ifndef SQLITE_OMIT_VIEW 2782 /* 2783 ** Clear the column names from every VIEW in database idx. 2784 */ 2785 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2786 HashElem *i; 2787 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2788 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2789 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2790 Table *pTab = sqliteHashData(i); 2791 if( pTab->pSelect ){ 2792 sqlite3DeleteColumnNames(db, pTab); 2793 pTab->aCol = 0; 2794 pTab->nCol = 0; 2795 } 2796 } 2797 DbClearProperty(db, idx, DB_UnresetViews); 2798 } 2799 #else 2800 # define sqliteViewResetAll(A,B) 2801 #endif /* SQLITE_OMIT_VIEW */ 2802 2803 /* 2804 ** This function is called by the VDBE to adjust the internal schema 2805 ** used by SQLite when the btree layer moves a table root page. The 2806 ** root-page of a table or index in database iDb has changed from iFrom 2807 ** to iTo. 2808 ** 2809 ** Ticket #1728: The symbol table might still contain information 2810 ** on tables and/or indices that are the process of being deleted. 2811 ** If you are unlucky, one of those deleted indices or tables might 2812 ** have the same rootpage number as the real table or index that is 2813 ** being moved. So we cannot stop searching after the first match 2814 ** because the first match might be for one of the deleted indices 2815 ** or tables and not the table/index that is actually being moved. 2816 ** We must continue looping until all tables and indices with 2817 ** rootpage==iFrom have been converted to have a rootpage of iTo 2818 ** in order to be certain that we got the right one. 2819 */ 2820 #ifndef SQLITE_OMIT_AUTOVACUUM 2821 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2822 HashElem *pElem; 2823 Hash *pHash; 2824 Db *pDb; 2825 2826 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2827 pDb = &db->aDb[iDb]; 2828 pHash = &pDb->pSchema->tblHash; 2829 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2830 Table *pTab = sqliteHashData(pElem); 2831 if( pTab->tnum==iFrom ){ 2832 pTab->tnum = iTo; 2833 } 2834 } 2835 pHash = &pDb->pSchema->idxHash; 2836 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2837 Index *pIdx = sqliteHashData(pElem); 2838 if( pIdx->tnum==iFrom ){ 2839 pIdx->tnum = iTo; 2840 } 2841 } 2842 } 2843 #endif 2844 2845 /* 2846 ** Write code to erase the table with root-page iTable from database iDb. 2847 ** Also write code to modify the sqlite_schema table and internal schema 2848 ** if a root-page of another table is moved by the btree-layer whilst 2849 ** erasing iTable (this can happen with an auto-vacuum database). 2850 */ 2851 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2852 Vdbe *v = sqlite3GetVdbe(pParse); 2853 int r1 = sqlite3GetTempReg(pParse); 2854 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2855 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2856 sqlite3MayAbort(pParse); 2857 #ifndef SQLITE_OMIT_AUTOVACUUM 2858 /* OP_Destroy stores an in integer r1. If this integer 2859 ** is non-zero, then it is the root page number of a table moved to 2860 ** location iTable. The following code modifies the sqlite_schema table to 2861 ** reflect this. 2862 ** 2863 ** The "#NNN" in the SQL is a special constant that means whatever value 2864 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2865 ** token for additional information. 2866 */ 2867 sqlite3NestedParse(pParse, 2868 "UPDATE %Q." DFLT_SCHEMA_TABLE 2869 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2870 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2871 #endif 2872 sqlite3ReleaseTempReg(pParse, r1); 2873 } 2874 2875 /* 2876 ** Write VDBE code to erase table pTab and all associated indices on disk. 2877 ** Code to update the sqlite_schema tables and internal schema definitions 2878 ** in case a root-page belonging to another table is moved by the btree layer 2879 ** is also added (this can happen with an auto-vacuum database). 2880 */ 2881 static void destroyTable(Parse *pParse, Table *pTab){ 2882 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2883 ** is not defined), then it is important to call OP_Destroy on the 2884 ** table and index root-pages in order, starting with the numerically 2885 ** largest root-page number. This guarantees that none of the root-pages 2886 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2887 ** following were coded: 2888 ** 2889 ** OP_Destroy 4 0 2890 ** ... 2891 ** OP_Destroy 5 0 2892 ** 2893 ** and root page 5 happened to be the largest root-page number in the 2894 ** database, then root page 5 would be moved to page 4 by the 2895 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2896 ** a free-list page. 2897 */ 2898 Pgno iTab = pTab->tnum; 2899 Pgno iDestroyed = 0; 2900 2901 while( 1 ){ 2902 Index *pIdx; 2903 Pgno iLargest = 0; 2904 2905 if( iDestroyed==0 || iTab<iDestroyed ){ 2906 iLargest = iTab; 2907 } 2908 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2909 Pgno iIdx = pIdx->tnum; 2910 assert( pIdx->pSchema==pTab->pSchema ); 2911 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2912 iLargest = iIdx; 2913 } 2914 } 2915 if( iLargest==0 ){ 2916 return; 2917 }else{ 2918 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2919 assert( iDb>=0 && iDb<pParse->db->nDb ); 2920 destroyRootPage(pParse, iLargest, iDb); 2921 iDestroyed = iLargest; 2922 } 2923 } 2924 } 2925 2926 /* 2927 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2928 ** after a DROP INDEX or DROP TABLE command. 2929 */ 2930 static void sqlite3ClearStatTables( 2931 Parse *pParse, /* The parsing context */ 2932 int iDb, /* The database number */ 2933 const char *zType, /* "idx" or "tbl" */ 2934 const char *zName /* Name of index or table */ 2935 ){ 2936 int i; 2937 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2938 for(i=1; i<=4; i++){ 2939 char zTab[24]; 2940 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2941 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2942 sqlite3NestedParse(pParse, 2943 "DELETE FROM %Q.%s WHERE %s=%Q", 2944 zDbName, zTab, zType, zName 2945 ); 2946 } 2947 } 2948 } 2949 2950 /* 2951 ** Generate code to drop a table. 2952 */ 2953 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2954 Vdbe *v; 2955 sqlite3 *db = pParse->db; 2956 Trigger *pTrigger; 2957 Db *pDb = &db->aDb[iDb]; 2958 2959 v = sqlite3GetVdbe(pParse); 2960 assert( v!=0 ); 2961 sqlite3BeginWriteOperation(pParse, 1, iDb); 2962 2963 #ifndef SQLITE_OMIT_VIRTUALTABLE 2964 if( IsVirtual(pTab) ){ 2965 sqlite3VdbeAddOp0(v, OP_VBegin); 2966 } 2967 #endif 2968 2969 /* Drop all triggers associated with the table being dropped. Code 2970 ** is generated to remove entries from sqlite_schema and/or 2971 ** sqlite_temp_schema if required. 2972 */ 2973 pTrigger = sqlite3TriggerList(pParse, pTab); 2974 while( pTrigger ){ 2975 assert( pTrigger->pSchema==pTab->pSchema || 2976 pTrigger->pSchema==db->aDb[1].pSchema ); 2977 sqlite3DropTriggerPtr(pParse, pTrigger); 2978 pTrigger = pTrigger->pNext; 2979 } 2980 2981 #ifndef SQLITE_OMIT_AUTOINCREMENT 2982 /* Remove any entries of the sqlite_sequence table associated with 2983 ** the table being dropped. This is done before the table is dropped 2984 ** at the btree level, in case the sqlite_sequence table needs to 2985 ** move as a result of the drop (can happen in auto-vacuum mode). 2986 */ 2987 if( pTab->tabFlags & TF_Autoincrement ){ 2988 sqlite3NestedParse(pParse, 2989 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2990 pDb->zDbSName, pTab->zName 2991 ); 2992 } 2993 #endif 2994 2995 /* Drop all entries in the schema table that refer to the 2996 ** table. The program name loops through the schema table and deletes 2997 ** every row that refers to a table of the same name as the one being 2998 ** dropped. Triggers are handled separately because a trigger can be 2999 ** created in the temp database that refers to a table in another 3000 ** database. 3001 */ 3002 sqlite3NestedParse(pParse, 3003 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3004 " WHERE tbl_name=%Q and type!='trigger'", 3005 pDb->zDbSName, pTab->zName); 3006 if( !isView && !IsVirtual(pTab) ){ 3007 destroyTable(pParse, pTab); 3008 } 3009 3010 /* Remove the table entry from SQLite's internal schema and modify 3011 ** the schema cookie. 3012 */ 3013 if( IsVirtual(pTab) ){ 3014 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3015 sqlite3MayAbort(pParse); 3016 } 3017 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3018 sqlite3ChangeCookie(pParse, iDb); 3019 sqliteViewResetAll(db, iDb); 3020 } 3021 3022 /* 3023 ** Return TRUE if shadow tables should be read-only in the current 3024 ** context. 3025 */ 3026 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3027 #ifndef SQLITE_OMIT_VIRTUALTABLE 3028 if( (db->flags & SQLITE_Defensive)!=0 3029 && db->pVtabCtx==0 3030 && db->nVdbeExec==0 3031 ){ 3032 return 1; 3033 } 3034 #endif 3035 return 0; 3036 } 3037 3038 /* 3039 ** Return true if it is not allowed to drop the given table 3040 */ 3041 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3042 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3043 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3044 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3045 return 1; 3046 } 3047 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3048 return 1; 3049 } 3050 return 0; 3051 } 3052 3053 /* 3054 ** This routine is called to do the work of a DROP TABLE statement. 3055 ** pName is the name of the table to be dropped. 3056 */ 3057 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3058 Table *pTab; 3059 Vdbe *v; 3060 sqlite3 *db = pParse->db; 3061 int iDb; 3062 3063 if( db->mallocFailed ){ 3064 goto exit_drop_table; 3065 } 3066 assert( pParse->nErr==0 ); 3067 assert( pName->nSrc==1 ); 3068 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3069 if( noErr ) db->suppressErr++; 3070 assert( isView==0 || isView==LOCATE_VIEW ); 3071 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3072 if( noErr ) db->suppressErr--; 3073 3074 if( pTab==0 ){ 3075 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3076 goto exit_drop_table; 3077 } 3078 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3079 assert( iDb>=0 && iDb<db->nDb ); 3080 3081 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3082 ** it is initialized. 3083 */ 3084 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3085 goto exit_drop_table; 3086 } 3087 #ifndef SQLITE_OMIT_AUTHORIZATION 3088 { 3089 int code; 3090 const char *zTab = SCHEMA_TABLE(iDb); 3091 const char *zDb = db->aDb[iDb].zDbSName; 3092 const char *zArg2 = 0; 3093 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3094 goto exit_drop_table; 3095 } 3096 if( isView ){ 3097 if( !OMIT_TEMPDB && iDb==1 ){ 3098 code = SQLITE_DROP_TEMP_VIEW; 3099 }else{ 3100 code = SQLITE_DROP_VIEW; 3101 } 3102 #ifndef SQLITE_OMIT_VIRTUALTABLE 3103 }else if( IsVirtual(pTab) ){ 3104 code = SQLITE_DROP_VTABLE; 3105 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3106 #endif 3107 }else{ 3108 if( !OMIT_TEMPDB && iDb==1 ){ 3109 code = SQLITE_DROP_TEMP_TABLE; 3110 }else{ 3111 code = SQLITE_DROP_TABLE; 3112 } 3113 } 3114 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3115 goto exit_drop_table; 3116 } 3117 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3118 goto exit_drop_table; 3119 } 3120 } 3121 #endif 3122 if( tableMayNotBeDropped(db, pTab) ){ 3123 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3124 goto exit_drop_table; 3125 } 3126 3127 #ifndef SQLITE_OMIT_VIEW 3128 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3129 ** on a table. 3130 */ 3131 if( isView && pTab->pSelect==0 ){ 3132 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3133 goto exit_drop_table; 3134 } 3135 if( !isView && pTab->pSelect ){ 3136 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3137 goto exit_drop_table; 3138 } 3139 #endif 3140 3141 /* Generate code to remove the table from the schema table 3142 ** on disk. 3143 */ 3144 v = sqlite3GetVdbe(pParse); 3145 if( v ){ 3146 sqlite3BeginWriteOperation(pParse, 1, iDb); 3147 if( !isView ){ 3148 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3149 sqlite3FkDropTable(pParse, pName, pTab); 3150 } 3151 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3152 } 3153 3154 exit_drop_table: 3155 sqlite3SrcListDelete(db, pName); 3156 } 3157 3158 /* 3159 ** This routine is called to create a new foreign key on the table 3160 ** currently under construction. pFromCol determines which columns 3161 ** in the current table point to the foreign key. If pFromCol==0 then 3162 ** connect the key to the last column inserted. pTo is the name of 3163 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3164 ** of tables in the parent pTo table. flags contains all 3165 ** information about the conflict resolution algorithms specified 3166 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3167 ** 3168 ** An FKey structure is created and added to the table currently 3169 ** under construction in the pParse->pNewTable field. 3170 ** 3171 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3172 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3173 */ 3174 void sqlite3CreateForeignKey( 3175 Parse *pParse, /* Parsing context */ 3176 ExprList *pFromCol, /* Columns in this table that point to other table */ 3177 Token *pTo, /* Name of the other table */ 3178 ExprList *pToCol, /* Columns in the other table */ 3179 int flags /* Conflict resolution algorithms. */ 3180 ){ 3181 sqlite3 *db = pParse->db; 3182 #ifndef SQLITE_OMIT_FOREIGN_KEY 3183 FKey *pFKey = 0; 3184 FKey *pNextTo; 3185 Table *p = pParse->pNewTable; 3186 int nByte; 3187 int i; 3188 int nCol; 3189 char *z; 3190 3191 assert( pTo!=0 ); 3192 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3193 if( pFromCol==0 ){ 3194 int iCol = p->nCol-1; 3195 if( NEVER(iCol<0) ) goto fk_end; 3196 if( pToCol && pToCol->nExpr!=1 ){ 3197 sqlite3ErrorMsg(pParse, "foreign key on %s" 3198 " should reference only one column of table %T", 3199 p->aCol[iCol].zName, pTo); 3200 goto fk_end; 3201 } 3202 nCol = 1; 3203 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3204 sqlite3ErrorMsg(pParse, 3205 "number of columns in foreign key does not match the number of " 3206 "columns in the referenced table"); 3207 goto fk_end; 3208 }else{ 3209 nCol = pFromCol->nExpr; 3210 } 3211 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3212 if( pToCol ){ 3213 for(i=0; i<pToCol->nExpr; i++){ 3214 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3215 } 3216 } 3217 pFKey = sqlite3DbMallocZero(db, nByte ); 3218 if( pFKey==0 ){ 3219 goto fk_end; 3220 } 3221 pFKey->pFrom = p; 3222 pFKey->pNextFrom = p->pFKey; 3223 z = (char*)&pFKey->aCol[nCol]; 3224 pFKey->zTo = z; 3225 if( IN_RENAME_OBJECT ){ 3226 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3227 } 3228 memcpy(z, pTo->z, pTo->n); 3229 z[pTo->n] = 0; 3230 sqlite3Dequote(z); 3231 z += pTo->n+1; 3232 pFKey->nCol = nCol; 3233 if( pFromCol==0 ){ 3234 pFKey->aCol[0].iFrom = p->nCol-1; 3235 }else{ 3236 for(i=0; i<nCol; i++){ 3237 int j; 3238 for(j=0; j<p->nCol; j++){ 3239 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3240 pFKey->aCol[i].iFrom = j; 3241 break; 3242 } 3243 } 3244 if( j>=p->nCol ){ 3245 sqlite3ErrorMsg(pParse, 3246 "unknown column \"%s\" in foreign key definition", 3247 pFromCol->a[i].zEName); 3248 goto fk_end; 3249 } 3250 if( IN_RENAME_OBJECT ){ 3251 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3252 } 3253 } 3254 } 3255 if( pToCol ){ 3256 for(i=0; i<nCol; i++){ 3257 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3258 pFKey->aCol[i].zCol = z; 3259 if( IN_RENAME_OBJECT ){ 3260 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3261 } 3262 memcpy(z, pToCol->a[i].zEName, n); 3263 z[n] = 0; 3264 z += n+1; 3265 } 3266 } 3267 pFKey->isDeferred = 0; 3268 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3269 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3270 3271 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3272 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3273 pFKey->zTo, (void *)pFKey 3274 ); 3275 if( pNextTo==pFKey ){ 3276 sqlite3OomFault(db); 3277 goto fk_end; 3278 } 3279 if( pNextTo ){ 3280 assert( pNextTo->pPrevTo==0 ); 3281 pFKey->pNextTo = pNextTo; 3282 pNextTo->pPrevTo = pFKey; 3283 } 3284 3285 /* Link the foreign key to the table as the last step. 3286 */ 3287 p->pFKey = pFKey; 3288 pFKey = 0; 3289 3290 fk_end: 3291 sqlite3DbFree(db, pFKey); 3292 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3293 sqlite3ExprListDelete(db, pFromCol); 3294 sqlite3ExprListDelete(db, pToCol); 3295 } 3296 3297 /* 3298 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3299 ** clause is seen as part of a foreign key definition. The isDeferred 3300 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3301 ** The behavior of the most recently created foreign key is adjusted 3302 ** accordingly. 3303 */ 3304 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3305 #ifndef SQLITE_OMIT_FOREIGN_KEY 3306 Table *pTab; 3307 FKey *pFKey; 3308 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3309 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3310 pFKey->isDeferred = (u8)isDeferred; 3311 #endif 3312 } 3313 3314 /* 3315 ** Generate code that will erase and refill index *pIdx. This is 3316 ** used to initialize a newly created index or to recompute the 3317 ** content of an index in response to a REINDEX command. 3318 ** 3319 ** if memRootPage is not negative, it means that the index is newly 3320 ** created. The register specified by memRootPage contains the 3321 ** root page number of the index. If memRootPage is negative, then 3322 ** the index already exists and must be cleared before being refilled and 3323 ** the root page number of the index is taken from pIndex->tnum. 3324 */ 3325 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3326 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3327 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3328 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3329 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3330 int addr1; /* Address of top of loop */ 3331 int addr2; /* Address to jump to for next iteration */ 3332 Pgno tnum; /* Root page of index */ 3333 int iPartIdxLabel; /* Jump to this label to skip a row */ 3334 Vdbe *v; /* Generate code into this virtual machine */ 3335 KeyInfo *pKey; /* KeyInfo for index */ 3336 int regRecord; /* Register holding assembled index record */ 3337 sqlite3 *db = pParse->db; /* The database connection */ 3338 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3339 3340 #ifndef SQLITE_OMIT_AUTHORIZATION 3341 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3342 db->aDb[iDb].zDbSName ) ){ 3343 return; 3344 } 3345 #endif 3346 3347 /* Require a write-lock on the table to perform this operation */ 3348 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3349 3350 v = sqlite3GetVdbe(pParse); 3351 if( v==0 ) return; 3352 if( memRootPage>=0 ){ 3353 tnum = (Pgno)memRootPage; 3354 }else{ 3355 tnum = pIndex->tnum; 3356 } 3357 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3358 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3359 3360 /* Open the sorter cursor if we are to use one. */ 3361 iSorter = pParse->nTab++; 3362 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3363 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3364 3365 /* Open the table. Loop through all rows of the table, inserting index 3366 ** records into the sorter. */ 3367 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3368 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3369 regRecord = sqlite3GetTempReg(pParse); 3370 sqlite3MultiWrite(pParse); 3371 3372 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3373 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3374 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3375 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3376 sqlite3VdbeJumpHere(v, addr1); 3377 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3378 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3379 (char *)pKey, P4_KEYINFO); 3380 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3381 3382 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3383 if( IsUniqueIndex(pIndex) ){ 3384 int j2 = sqlite3VdbeGoto(v, 1); 3385 addr2 = sqlite3VdbeCurrentAddr(v); 3386 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3387 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3388 pIndex->nKeyCol); VdbeCoverage(v); 3389 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3390 sqlite3VdbeJumpHere(v, j2); 3391 }else{ 3392 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3393 ** abort. The exception is if one of the indexed expressions contains a 3394 ** user function that throws an exception when it is evaluated. But the 3395 ** overhead of adding a statement journal to a CREATE INDEX statement is 3396 ** very small (since most of the pages written do not contain content that 3397 ** needs to be restored if the statement aborts), so we call 3398 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3399 sqlite3MayAbort(pParse); 3400 addr2 = sqlite3VdbeCurrentAddr(v); 3401 } 3402 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3403 if( !pIndex->bAscKeyBug ){ 3404 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3405 ** faster by avoiding unnecessary seeks. But the optimization does 3406 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3407 ** with DESC primary keys, since those indexes have there keys in 3408 ** a different order from the main table. 3409 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3410 */ 3411 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3412 } 3413 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3414 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3415 sqlite3ReleaseTempReg(pParse, regRecord); 3416 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3417 sqlite3VdbeJumpHere(v, addr1); 3418 3419 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3420 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3421 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3422 } 3423 3424 /* 3425 ** Allocate heap space to hold an Index object with nCol columns. 3426 ** 3427 ** Increase the allocation size to provide an extra nExtra bytes 3428 ** of 8-byte aligned space after the Index object and return a 3429 ** pointer to this extra space in *ppExtra. 3430 */ 3431 Index *sqlite3AllocateIndexObject( 3432 sqlite3 *db, /* Database connection */ 3433 i16 nCol, /* Total number of columns in the index */ 3434 int nExtra, /* Number of bytes of extra space to alloc */ 3435 char **ppExtra /* Pointer to the "extra" space */ 3436 ){ 3437 Index *p; /* Allocated index object */ 3438 int nByte; /* Bytes of space for Index object + arrays */ 3439 3440 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3441 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3442 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3443 sizeof(i16)*nCol + /* Index.aiColumn */ 3444 sizeof(u8)*nCol); /* Index.aSortOrder */ 3445 p = sqlite3DbMallocZero(db, nByte + nExtra); 3446 if( p ){ 3447 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3448 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3449 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3450 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3451 p->aSortOrder = (u8*)pExtra; 3452 p->nColumn = nCol; 3453 p->nKeyCol = nCol - 1; 3454 *ppExtra = ((char*)p) + nByte; 3455 } 3456 return p; 3457 } 3458 3459 /* 3460 ** If expression list pList contains an expression that was parsed with 3461 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3462 ** pParse and return non-zero. Otherwise, return zero. 3463 */ 3464 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3465 if( pList ){ 3466 int i; 3467 for(i=0; i<pList->nExpr; i++){ 3468 if( pList->a[i].bNulls ){ 3469 u8 sf = pList->a[i].sortFlags; 3470 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3471 (sf==0 || sf==3) ? "FIRST" : "LAST" 3472 ); 3473 return 1; 3474 } 3475 } 3476 } 3477 return 0; 3478 } 3479 3480 /* 3481 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3482 ** and pTblList is the name of the table that is to be indexed. Both will 3483 ** be NULL for a primary key or an index that is created to satisfy a 3484 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3485 ** as the table to be indexed. pParse->pNewTable is a table that is 3486 ** currently being constructed by a CREATE TABLE statement. 3487 ** 3488 ** pList is a list of columns to be indexed. pList will be NULL if this 3489 ** is a primary key or unique-constraint on the most recent column added 3490 ** to the table currently under construction. 3491 */ 3492 void sqlite3CreateIndex( 3493 Parse *pParse, /* All information about this parse */ 3494 Token *pName1, /* First part of index name. May be NULL */ 3495 Token *pName2, /* Second part of index name. May be NULL */ 3496 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3497 ExprList *pList, /* A list of columns to be indexed */ 3498 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3499 Token *pStart, /* The CREATE token that begins this statement */ 3500 Expr *pPIWhere, /* WHERE clause for partial indices */ 3501 int sortOrder, /* Sort order of primary key when pList==NULL */ 3502 int ifNotExist, /* Omit error if index already exists */ 3503 u8 idxType /* The index type */ 3504 ){ 3505 Table *pTab = 0; /* Table to be indexed */ 3506 Index *pIndex = 0; /* The index to be created */ 3507 char *zName = 0; /* Name of the index */ 3508 int nName; /* Number of characters in zName */ 3509 int i, j; 3510 DbFixer sFix; /* For assigning database names to pTable */ 3511 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3512 sqlite3 *db = pParse->db; 3513 Db *pDb; /* The specific table containing the indexed database */ 3514 int iDb; /* Index of the database that is being written */ 3515 Token *pName = 0; /* Unqualified name of the index to create */ 3516 struct ExprList_item *pListItem; /* For looping over pList */ 3517 int nExtra = 0; /* Space allocated for zExtra[] */ 3518 int nExtraCol; /* Number of extra columns needed */ 3519 char *zExtra = 0; /* Extra space after the Index object */ 3520 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3521 3522 if( db->mallocFailed || pParse->nErr>0 ){ 3523 goto exit_create_index; 3524 } 3525 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3526 goto exit_create_index; 3527 } 3528 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3529 goto exit_create_index; 3530 } 3531 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3532 goto exit_create_index; 3533 } 3534 3535 /* 3536 ** Find the table that is to be indexed. Return early if not found. 3537 */ 3538 if( pTblName!=0 ){ 3539 3540 /* Use the two-part index name to determine the database 3541 ** to search for the table. 'Fix' the table name to this db 3542 ** before looking up the table. 3543 */ 3544 assert( pName1 && pName2 ); 3545 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3546 if( iDb<0 ) goto exit_create_index; 3547 assert( pName && pName->z ); 3548 3549 #ifndef SQLITE_OMIT_TEMPDB 3550 /* If the index name was unqualified, check if the table 3551 ** is a temp table. If so, set the database to 1. Do not do this 3552 ** if initialising a database schema. 3553 */ 3554 if( !db->init.busy ){ 3555 pTab = sqlite3SrcListLookup(pParse, pTblName); 3556 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3557 iDb = 1; 3558 } 3559 } 3560 #endif 3561 3562 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3563 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3564 /* Because the parser constructs pTblName from a single identifier, 3565 ** sqlite3FixSrcList can never fail. */ 3566 assert(0); 3567 } 3568 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3569 assert( db->mallocFailed==0 || pTab==0 ); 3570 if( pTab==0 ) goto exit_create_index; 3571 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3572 sqlite3ErrorMsg(pParse, 3573 "cannot create a TEMP index on non-TEMP table \"%s\"", 3574 pTab->zName); 3575 goto exit_create_index; 3576 } 3577 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3578 }else{ 3579 assert( pName==0 ); 3580 assert( pStart==0 ); 3581 pTab = pParse->pNewTable; 3582 if( !pTab ) goto exit_create_index; 3583 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3584 } 3585 pDb = &db->aDb[iDb]; 3586 3587 assert( pTab!=0 ); 3588 assert( pParse->nErr==0 ); 3589 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3590 && db->init.busy==0 3591 && pTblName!=0 3592 #if SQLITE_USER_AUTHENTICATION 3593 && sqlite3UserAuthTable(pTab->zName)==0 3594 #endif 3595 ){ 3596 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3597 goto exit_create_index; 3598 } 3599 #ifndef SQLITE_OMIT_VIEW 3600 if( pTab->pSelect ){ 3601 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3602 goto exit_create_index; 3603 } 3604 #endif 3605 #ifndef SQLITE_OMIT_VIRTUALTABLE 3606 if( IsVirtual(pTab) ){ 3607 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3608 goto exit_create_index; 3609 } 3610 #endif 3611 3612 /* 3613 ** Find the name of the index. Make sure there is not already another 3614 ** index or table with the same name. 3615 ** 3616 ** Exception: If we are reading the names of permanent indices from the 3617 ** sqlite_schema table (because some other process changed the schema) and 3618 ** one of the index names collides with the name of a temporary table or 3619 ** index, then we will continue to process this index. 3620 ** 3621 ** If pName==0 it means that we are 3622 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3623 ** own name. 3624 */ 3625 if( pName ){ 3626 zName = sqlite3NameFromToken(db, pName); 3627 if( zName==0 ) goto exit_create_index; 3628 assert( pName->z!=0 ); 3629 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3630 goto exit_create_index; 3631 } 3632 if( !IN_RENAME_OBJECT ){ 3633 if( !db->init.busy ){ 3634 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3635 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3636 goto exit_create_index; 3637 } 3638 } 3639 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3640 if( !ifNotExist ){ 3641 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3642 }else{ 3643 assert( !db->init.busy ); 3644 sqlite3CodeVerifySchema(pParse, iDb); 3645 } 3646 goto exit_create_index; 3647 } 3648 } 3649 }else{ 3650 int n; 3651 Index *pLoop; 3652 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3653 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3654 if( zName==0 ){ 3655 goto exit_create_index; 3656 } 3657 3658 /* Automatic index names generated from within sqlite3_declare_vtab() 3659 ** must have names that are distinct from normal automatic index names. 3660 ** The following statement converts "sqlite3_autoindex..." into 3661 ** "sqlite3_butoindex..." in order to make the names distinct. 3662 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3663 if( IN_SPECIAL_PARSE ) zName[7]++; 3664 } 3665 3666 /* Check for authorization to create an index. 3667 */ 3668 #ifndef SQLITE_OMIT_AUTHORIZATION 3669 if( !IN_RENAME_OBJECT ){ 3670 const char *zDb = pDb->zDbSName; 3671 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3672 goto exit_create_index; 3673 } 3674 i = SQLITE_CREATE_INDEX; 3675 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3676 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3677 goto exit_create_index; 3678 } 3679 } 3680 #endif 3681 3682 /* If pList==0, it means this routine was called to make a primary 3683 ** key out of the last column added to the table under construction. 3684 ** So create a fake list to simulate this. 3685 */ 3686 if( pList==0 ){ 3687 Token prevCol; 3688 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3689 pCol->colFlags |= COLFLAG_UNIQUE; 3690 sqlite3TokenInit(&prevCol, pCol->zName); 3691 pList = sqlite3ExprListAppend(pParse, 0, 3692 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3693 if( pList==0 ) goto exit_create_index; 3694 assert( pList->nExpr==1 ); 3695 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3696 }else{ 3697 sqlite3ExprListCheckLength(pParse, pList, "index"); 3698 if( pParse->nErr ) goto exit_create_index; 3699 } 3700 3701 /* Figure out how many bytes of space are required to store explicitly 3702 ** specified collation sequence names. 3703 */ 3704 for(i=0; i<pList->nExpr; i++){ 3705 Expr *pExpr = pList->a[i].pExpr; 3706 assert( pExpr!=0 ); 3707 if( pExpr->op==TK_COLLATE ){ 3708 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3709 } 3710 } 3711 3712 /* 3713 ** Allocate the index structure. 3714 */ 3715 nName = sqlite3Strlen30(zName); 3716 nExtraCol = pPk ? pPk->nKeyCol : 1; 3717 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3718 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3719 nName + nExtra + 1, &zExtra); 3720 if( db->mallocFailed ){ 3721 goto exit_create_index; 3722 } 3723 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3724 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3725 pIndex->zName = zExtra; 3726 zExtra += nName + 1; 3727 memcpy(pIndex->zName, zName, nName+1); 3728 pIndex->pTable = pTab; 3729 pIndex->onError = (u8)onError; 3730 pIndex->uniqNotNull = onError!=OE_None; 3731 pIndex->idxType = idxType; 3732 pIndex->pSchema = db->aDb[iDb].pSchema; 3733 pIndex->nKeyCol = pList->nExpr; 3734 if( pPIWhere ){ 3735 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3736 pIndex->pPartIdxWhere = pPIWhere; 3737 pPIWhere = 0; 3738 } 3739 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3740 3741 /* Check to see if we should honor DESC requests on index columns 3742 */ 3743 if( pDb->pSchema->file_format>=4 ){ 3744 sortOrderMask = -1; /* Honor DESC */ 3745 }else{ 3746 sortOrderMask = 0; /* Ignore DESC */ 3747 } 3748 3749 /* Analyze the list of expressions that form the terms of the index and 3750 ** report any errors. In the common case where the expression is exactly 3751 ** a table column, store that column in aiColumn[]. For general expressions, 3752 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3753 ** 3754 ** TODO: Issue a warning if two or more columns of the index are identical. 3755 ** TODO: Issue a warning if the table primary key is used as part of the 3756 ** index key. 3757 */ 3758 pListItem = pList->a; 3759 if( IN_RENAME_OBJECT ){ 3760 pIndex->aColExpr = pList; 3761 pList = 0; 3762 } 3763 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3764 Expr *pCExpr; /* The i-th index expression */ 3765 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3766 const char *zColl; /* Collation sequence name */ 3767 3768 sqlite3StringToId(pListItem->pExpr); 3769 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3770 if( pParse->nErr ) goto exit_create_index; 3771 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3772 if( pCExpr->op!=TK_COLUMN ){ 3773 if( pTab==pParse->pNewTable ){ 3774 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3775 "UNIQUE constraints"); 3776 goto exit_create_index; 3777 } 3778 if( pIndex->aColExpr==0 ){ 3779 pIndex->aColExpr = pList; 3780 pList = 0; 3781 } 3782 j = XN_EXPR; 3783 pIndex->aiColumn[i] = XN_EXPR; 3784 pIndex->uniqNotNull = 0; 3785 }else{ 3786 j = pCExpr->iColumn; 3787 assert( j<=0x7fff ); 3788 if( j<0 ){ 3789 j = pTab->iPKey; 3790 }else{ 3791 if( pTab->aCol[j].notNull==0 ){ 3792 pIndex->uniqNotNull = 0; 3793 } 3794 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3795 pIndex->bHasVCol = 1; 3796 } 3797 } 3798 pIndex->aiColumn[i] = (i16)j; 3799 } 3800 zColl = 0; 3801 if( pListItem->pExpr->op==TK_COLLATE ){ 3802 int nColl; 3803 zColl = pListItem->pExpr->u.zToken; 3804 nColl = sqlite3Strlen30(zColl) + 1; 3805 assert( nExtra>=nColl ); 3806 memcpy(zExtra, zColl, nColl); 3807 zColl = zExtra; 3808 zExtra += nColl; 3809 nExtra -= nColl; 3810 }else if( j>=0 ){ 3811 zColl = pTab->aCol[j].zColl; 3812 } 3813 if( !zColl ) zColl = sqlite3StrBINARY; 3814 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3815 goto exit_create_index; 3816 } 3817 pIndex->azColl[i] = zColl; 3818 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3819 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3820 } 3821 3822 /* Append the table key to the end of the index. For WITHOUT ROWID 3823 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3824 ** normal tables (when pPk==0) this will be the rowid. 3825 */ 3826 if( pPk ){ 3827 for(j=0; j<pPk->nKeyCol; j++){ 3828 int x = pPk->aiColumn[j]; 3829 assert( x>=0 ); 3830 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3831 pIndex->nColumn--; 3832 }else{ 3833 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3834 pIndex->aiColumn[i] = x; 3835 pIndex->azColl[i] = pPk->azColl[j]; 3836 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3837 i++; 3838 } 3839 } 3840 assert( i==pIndex->nColumn ); 3841 }else{ 3842 pIndex->aiColumn[i] = XN_ROWID; 3843 pIndex->azColl[i] = sqlite3StrBINARY; 3844 } 3845 sqlite3DefaultRowEst(pIndex); 3846 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3847 3848 /* If this index contains every column of its table, then mark 3849 ** it as a covering index */ 3850 assert( HasRowid(pTab) 3851 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3852 recomputeColumnsNotIndexed(pIndex); 3853 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3854 pIndex->isCovering = 1; 3855 for(j=0; j<pTab->nCol; j++){ 3856 if( j==pTab->iPKey ) continue; 3857 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3858 pIndex->isCovering = 0; 3859 break; 3860 } 3861 } 3862 3863 if( pTab==pParse->pNewTable ){ 3864 /* This routine has been called to create an automatic index as a 3865 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3866 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3867 ** i.e. one of: 3868 ** 3869 ** CREATE TABLE t(x PRIMARY KEY, y); 3870 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3871 ** 3872 ** Either way, check to see if the table already has such an index. If 3873 ** so, don't bother creating this one. This only applies to 3874 ** automatically created indices. Users can do as they wish with 3875 ** explicit indices. 3876 ** 3877 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3878 ** (and thus suppressing the second one) even if they have different 3879 ** sort orders. 3880 ** 3881 ** If there are different collating sequences or if the columns of 3882 ** the constraint occur in different orders, then the constraints are 3883 ** considered distinct and both result in separate indices. 3884 */ 3885 Index *pIdx; 3886 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3887 int k; 3888 assert( IsUniqueIndex(pIdx) ); 3889 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3890 assert( IsUniqueIndex(pIndex) ); 3891 3892 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3893 for(k=0; k<pIdx->nKeyCol; k++){ 3894 const char *z1; 3895 const char *z2; 3896 assert( pIdx->aiColumn[k]>=0 ); 3897 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3898 z1 = pIdx->azColl[k]; 3899 z2 = pIndex->azColl[k]; 3900 if( sqlite3StrICmp(z1, z2) ) break; 3901 } 3902 if( k==pIdx->nKeyCol ){ 3903 if( pIdx->onError!=pIndex->onError ){ 3904 /* This constraint creates the same index as a previous 3905 ** constraint specified somewhere in the CREATE TABLE statement. 3906 ** However the ON CONFLICT clauses are different. If both this 3907 ** constraint and the previous equivalent constraint have explicit 3908 ** ON CONFLICT clauses this is an error. Otherwise, use the 3909 ** explicitly specified behavior for the index. 3910 */ 3911 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3912 sqlite3ErrorMsg(pParse, 3913 "conflicting ON CONFLICT clauses specified", 0); 3914 } 3915 if( pIdx->onError==OE_Default ){ 3916 pIdx->onError = pIndex->onError; 3917 } 3918 } 3919 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3920 if( IN_RENAME_OBJECT ){ 3921 pIndex->pNext = pParse->pNewIndex; 3922 pParse->pNewIndex = pIndex; 3923 pIndex = 0; 3924 } 3925 goto exit_create_index; 3926 } 3927 } 3928 } 3929 3930 if( !IN_RENAME_OBJECT ){ 3931 3932 /* Link the new Index structure to its table and to the other 3933 ** in-memory database structures. 3934 */ 3935 assert( pParse->nErr==0 ); 3936 if( db->init.busy ){ 3937 Index *p; 3938 assert( !IN_SPECIAL_PARSE ); 3939 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3940 if( pTblName!=0 ){ 3941 pIndex->tnum = db->init.newTnum; 3942 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3943 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3944 pParse->rc = SQLITE_CORRUPT_BKPT; 3945 goto exit_create_index; 3946 } 3947 } 3948 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3949 pIndex->zName, pIndex); 3950 if( p ){ 3951 assert( p==pIndex ); /* Malloc must have failed */ 3952 sqlite3OomFault(db); 3953 goto exit_create_index; 3954 } 3955 db->mDbFlags |= DBFLAG_SchemaChange; 3956 } 3957 3958 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3959 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3960 ** emit code to allocate the index rootpage on disk and make an entry for 3961 ** the index in the sqlite_schema table and populate the index with 3962 ** content. But, do not do this if we are simply reading the sqlite_schema 3963 ** table to parse the schema, or if this index is the PRIMARY KEY index 3964 ** of a WITHOUT ROWID table. 3965 ** 3966 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3967 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3968 ** has just been created, it contains no data and the index initialization 3969 ** step can be skipped. 3970 */ 3971 else if( HasRowid(pTab) || pTblName!=0 ){ 3972 Vdbe *v; 3973 char *zStmt; 3974 int iMem = ++pParse->nMem; 3975 3976 v = sqlite3GetVdbe(pParse); 3977 if( v==0 ) goto exit_create_index; 3978 3979 sqlite3BeginWriteOperation(pParse, 1, iDb); 3980 3981 /* Create the rootpage for the index using CreateIndex. But before 3982 ** doing so, code a Noop instruction and store its address in 3983 ** Index.tnum. This is required in case this index is actually a 3984 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3985 ** that case the convertToWithoutRowidTable() routine will replace 3986 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3987 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 3988 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3989 3990 /* Gather the complete text of the CREATE INDEX statement into 3991 ** the zStmt variable 3992 */ 3993 assert( pName!=0 || pStart==0 ); 3994 if( pStart ){ 3995 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3996 if( pName->z[n-1]==';' ) n--; 3997 /* A named index with an explicit CREATE INDEX statement */ 3998 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3999 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4000 }else{ 4001 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4002 /* zStmt = sqlite3MPrintf(""); */ 4003 zStmt = 0; 4004 } 4005 4006 /* Add an entry in sqlite_schema for this index 4007 */ 4008 sqlite3NestedParse(pParse, 4009 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4010 db->aDb[iDb].zDbSName, 4011 pIndex->zName, 4012 pTab->zName, 4013 iMem, 4014 zStmt 4015 ); 4016 sqlite3DbFree(db, zStmt); 4017 4018 /* Fill the index with data and reparse the schema. Code an OP_Expire 4019 ** to invalidate all pre-compiled statements. 4020 */ 4021 if( pTblName ){ 4022 sqlite3RefillIndex(pParse, pIndex, iMem); 4023 sqlite3ChangeCookie(pParse, iDb); 4024 sqlite3VdbeAddParseSchemaOp(v, iDb, 4025 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 4026 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4027 } 4028 4029 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4030 } 4031 } 4032 if( db->init.busy || pTblName==0 ){ 4033 pIndex->pNext = pTab->pIndex; 4034 pTab->pIndex = pIndex; 4035 pIndex = 0; 4036 } 4037 else if( IN_RENAME_OBJECT ){ 4038 assert( pParse->pNewIndex==0 ); 4039 pParse->pNewIndex = pIndex; 4040 pIndex = 0; 4041 } 4042 4043 /* Clean up before exiting */ 4044 exit_create_index: 4045 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4046 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 4047 Index **ppFrom = &pTab->pIndex; 4048 Index *pThis; 4049 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4050 Index *pNext; 4051 if( pThis->onError!=OE_Replace ) continue; 4052 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4053 *ppFrom = pNext; 4054 pThis->pNext = pNext->pNext; 4055 pNext->pNext = pThis; 4056 ppFrom = &pNext->pNext; 4057 } 4058 break; 4059 } 4060 } 4061 sqlite3ExprDelete(db, pPIWhere); 4062 sqlite3ExprListDelete(db, pList); 4063 sqlite3SrcListDelete(db, pTblName); 4064 sqlite3DbFree(db, zName); 4065 } 4066 4067 /* 4068 ** Fill the Index.aiRowEst[] array with default information - information 4069 ** to be used when we have not run the ANALYZE command. 4070 ** 4071 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4072 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4073 ** number of rows in the table that match any particular value of the 4074 ** first column of the index. aiRowEst[2] is an estimate of the number 4075 ** of rows that match any particular combination of the first 2 columns 4076 ** of the index. And so forth. It must always be the case that 4077 * 4078 ** aiRowEst[N]<=aiRowEst[N-1] 4079 ** aiRowEst[N]>=1 4080 ** 4081 ** Apart from that, we have little to go on besides intuition as to 4082 ** how aiRowEst[] should be initialized. The numbers generated here 4083 ** are based on typical values found in actual indices. 4084 */ 4085 void sqlite3DefaultRowEst(Index *pIdx){ 4086 /* 10, 9, 8, 7, 6 */ 4087 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4088 LogEst *a = pIdx->aiRowLogEst; 4089 LogEst x; 4090 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4091 int i; 4092 4093 /* Indexes with default row estimates should not have stat1 data */ 4094 assert( !pIdx->hasStat1 ); 4095 4096 /* Set the first entry (number of rows in the index) to the estimated 4097 ** number of rows in the table, or half the number of rows in the table 4098 ** for a partial index. 4099 ** 4100 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4101 ** table but other parts we are having to guess at, then do not let the 4102 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4103 ** Failure to do this can cause the indexes for which we do not have 4104 ** stat1 data to be ignored by the query planner. 4105 */ 4106 x = pIdx->pTable->nRowLogEst; 4107 assert( 99==sqlite3LogEst(1000) ); 4108 if( x<99 ){ 4109 pIdx->pTable->nRowLogEst = x = 99; 4110 } 4111 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) ); 4112 a[0] = x; 4113 4114 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4115 ** 6 and each subsequent value (if any) is 5. */ 4116 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4117 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4118 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4119 } 4120 4121 assert( 0==sqlite3LogEst(1) ); 4122 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4123 } 4124 4125 /* 4126 ** This routine will drop an existing named index. This routine 4127 ** implements the DROP INDEX statement. 4128 */ 4129 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4130 Index *pIndex; 4131 Vdbe *v; 4132 sqlite3 *db = pParse->db; 4133 int iDb; 4134 4135 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4136 if( db->mallocFailed ){ 4137 goto exit_drop_index; 4138 } 4139 assert( pName->nSrc==1 ); 4140 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4141 goto exit_drop_index; 4142 } 4143 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4144 if( pIndex==0 ){ 4145 if( !ifExists ){ 4146 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4147 }else{ 4148 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4149 } 4150 pParse->checkSchema = 1; 4151 goto exit_drop_index; 4152 } 4153 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4154 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4155 "or PRIMARY KEY constraint cannot be dropped", 0); 4156 goto exit_drop_index; 4157 } 4158 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4159 #ifndef SQLITE_OMIT_AUTHORIZATION 4160 { 4161 int code = SQLITE_DROP_INDEX; 4162 Table *pTab = pIndex->pTable; 4163 const char *zDb = db->aDb[iDb].zDbSName; 4164 const char *zTab = SCHEMA_TABLE(iDb); 4165 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4166 goto exit_drop_index; 4167 } 4168 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4169 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4170 goto exit_drop_index; 4171 } 4172 } 4173 #endif 4174 4175 /* Generate code to remove the index and from the schema table */ 4176 v = sqlite3GetVdbe(pParse); 4177 if( v ){ 4178 sqlite3BeginWriteOperation(pParse, 1, iDb); 4179 sqlite3NestedParse(pParse, 4180 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4181 db->aDb[iDb].zDbSName, pIndex->zName 4182 ); 4183 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4184 sqlite3ChangeCookie(pParse, iDb); 4185 destroyRootPage(pParse, pIndex->tnum, iDb); 4186 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4187 } 4188 4189 exit_drop_index: 4190 sqlite3SrcListDelete(db, pName); 4191 } 4192 4193 /* 4194 ** pArray is a pointer to an array of objects. Each object in the 4195 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4196 ** to extend the array so that there is space for a new object at the end. 4197 ** 4198 ** When this function is called, *pnEntry contains the current size of 4199 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4200 ** in total). 4201 ** 4202 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4203 ** space allocated for the new object is zeroed, *pnEntry updated to 4204 ** reflect the new size of the array and a pointer to the new allocation 4205 ** returned. *pIdx is set to the index of the new array entry in this case. 4206 ** 4207 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4208 ** unchanged and a copy of pArray returned. 4209 */ 4210 void *sqlite3ArrayAllocate( 4211 sqlite3 *db, /* Connection to notify of malloc failures */ 4212 void *pArray, /* Array of objects. Might be reallocated */ 4213 int szEntry, /* Size of each object in the array */ 4214 int *pnEntry, /* Number of objects currently in use */ 4215 int *pIdx /* Write the index of a new slot here */ 4216 ){ 4217 char *z; 4218 sqlite3_int64 n = *pIdx = *pnEntry; 4219 if( (n & (n-1))==0 ){ 4220 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4221 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4222 if( pNew==0 ){ 4223 *pIdx = -1; 4224 return pArray; 4225 } 4226 pArray = pNew; 4227 } 4228 z = (char*)pArray; 4229 memset(&z[n * szEntry], 0, szEntry); 4230 ++*pnEntry; 4231 return pArray; 4232 } 4233 4234 /* 4235 ** Append a new element to the given IdList. Create a new IdList if 4236 ** need be. 4237 ** 4238 ** A new IdList is returned, or NULL if malloc() fails. 4239 */ 4240 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4241 sqlite3 *db = pParse->db; 4242 int i; 4243 if( pList==0 ){ 4244 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4245 if( pList==0 ) return 0; 4246 } 4247 pList->a = sqlite3ArrayAllocate( 4248 db, 4249 pList->a, 4250 sizeof(pList->a[0]), 4251 &pList->nId, 4252 &i 4253 ); 4254 if( i<0 ){ 4255 sqlite3IdListDelete(db, pList); 4256 return 0; 4257 } 4258 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4259 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4260 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4261 } 4262 return pList; 4263 } 4264 4265 /* 4266 ** Delete an IdList. 4267 */ 4268 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4269 int i; 4270 if( pList==0 ) return; 4271 for(i=0; i<pList->nId; i++){ 4272 sqlite3DbFree(db, pList->a[i].zName); 4273 } 4274 sqlite3DbFree(db, pList->a); 4275 sqlite3DbFreeNN(db, pList); 4276 } 4277 4278 /* 4279 ** Return the index in pList of the identifier named zId. Return -1 4280 ** if not found. 4281 */ 4282 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4283 int i; 4284 if( pList==0 ) return -1; 4285 for(i=0; i<pList->nId; i++){ 4286 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4287 } 4288 return -1; 4289 } 4290 4291 /* 4292 ** Maximum size of a SrcList object. 4293 ** The SrcList object is used to represent the FROM clause of a 4294 ** SELECT statement, and the query planner cannot deal with more 4295 ** than 64 tables in a join. So any value larger than 64 here 4296 ** is sufficient for most uses. Smaller values, like say 10, are 4297 ** appropriate for small and memory-limited applications. 4298 */ 4299 #ifndef SQLITE_MAX_SRCLIST 4300 # define SQLITE_MAX_SRCLIST 200 4301 #endif 4302 4303 /* 4304 ** Expand the space allocated for the given SrcList object by 4305 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4306 ** New slots are zeroed. 4307 ** 4308 ** For example, suppose a SrcList initially contains two entries: A,B. 4309 ** To append 3 new entries onto the end, do this: 4310 ** 4311 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4312 ** 4313 ** After the call above it would contain: A, B, nil, nil, nil. 4314 ** If the iStart argument had been 1 instead of 2, then the result 4315 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4316 ** the iStart value would be 0. The result then would 4317 ** be: nil, nil, nil, A, B. 4318 ** 4319 ** If a memory allocation fails or the SrcList becomes too large, leave 4320 ** the original SrcList unchanged, return NULL, and leave an error message 4321 ** in pParse. 4322 */ 4323 SrcList *sqlite3SrcListEnlarge( 4324 Parse *pParse, /* Parsing context into which errors are reported */ 4325 SrcList *pSrc, /* The SrcList to be enlarged */ 4326 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4327 int iStart /* Index in pSrc->a[] of first new slot */ 4328 ){ 4329 int i; 4330 4331 /* Sanity checking on calling parameters */ 4332 assert( iStart>=0 ); 4333 assert( nExtra>=1 ); 4334 assert( pSrc!=0 ); 4335 assert( iStart<=pSrc->nSrc ); 4336 4337 /* Allocate additional space if needed */ 4338 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4339 SrcList *pNew; 4340 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4341 sqlite3 *db = pParse->db; 4342 4343 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4344 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4345 SQLITE_MAX_SRCLIST); 4346 return 0; 4347 } 4348 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4349 pNew = sqlite3DbRealloc(db, pSrc, 4350 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4351 if( pNew==0 ){ 4352 assert( db->mallocFailed ); 4353 return 0; 4354 } 4355 pSrc = pNew; 4356 pSrc->nAlloc = nAlloc; 4357 } 4358 4359 /* Move existing slots that come after the newly inserted slots 4360 ** out of the way */ 4361 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4362 pSrc->a[i+nExtra] = pSrc->a[i]; 4363 } 4364 pSrc->nSrc += nExtra; 4365 4366 /* Zero the newly allocated slots */ 4367 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4368 for(i=iStart; i<iStart+nExtra; i++){ 4369 pSrc->a[i].iCursor = -1; 4370 } 4371 4372 /* Return a pointer to the enlarged SrcList */ 4373 return pSrc; 4374 } 4375 4376 4377 /* 4378 ** Append a new table name to the given SrcList. Create a new SrcList if 4379 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4380 ** 4381 ** A SrcList is returned, or NULL if there is an OOM error or if the 4382 ** SrcList grows to large. The returned 4383 ** SrcList might be the same as the SrcList that was input or it might be 4384 ** a new one. If an OOM error does occurs, then the prior value of pList 4385 ** that is input to this routine is automatically freed. 4386 ** 4387 ** If pDatabase is not null, it means that the table has an optional 4388 ** database name prefix. Like this: "database.table". The pDatabase 4389 ** points to the table name and the pTable points to the database name. 4390 ** The SrcList.a[].zName field is filled with the table name which might 4391 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4392 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4393 ** or with NULL if no database is specified. 4394 ** 4395 ** In other words, if call like this: 4396 ** 4397 ** sqlite3SrcListAppend(D,A,B,0); 4398 ** 4399 ** Then B is a table name and the database name is unspecified. If called 4400 ** like this: 4401 ** 4402 ** sqlite3SrcListAppend(D,A,B,C); 4403 ** 4404 ** Then C is the table name and B is the database name. If C is defined 4405 ** then so is B. In other words, we never have a case where: 4406 ** 4407 ** sqlite3SrcListAppend(D,A,0,C); 4408 ** 4409 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4410 ** before being added to the SrcList. 4411 */ 4412 SrcList *sqlite3SrcListAppend( 4413 Parse *pParse, /* Parsing context, in which errors are reported */ 4414 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4415 Token *pTable, /* Table to append */ 4416 Token *pDatabase /* Database of the table */ 4417 ){ 4418 struct SrcList_item *pItem; 4419 sqlite3 *db; 4420 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4421 assert( pParse!=0 ); 4422 assert( pParse->db!=0 ); 4423 db = pParse->db; 4424 if( pList==0 ){ 4425 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4426 if( pList==0 ) return 0; 4427 pList->nAlloc = 1; 4428 pList->nSrc = 1; 4429 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4430 pList->a[0].iCursor = -1; 4431 }else{ 4432 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4433 if( pNew==0 ){ 4434 sqlite3SrcListDelete(db, pList); 4435 return 0; 4436 }else{ 4437 pList = pNew; 4438 } 4439 } 4440 pItem = &pList->a[pList->nSrc-1]; 4441 if( pDatabase && pDatabase->z==0 ){ 4442 pDatabase = 0; 4443 } 4444 if( pDatabase ){ 4445 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4446 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4447 }else{ 4448 pItem->zName = sqlite3NameFromToken(db, pTable); 4449 pItem->zDatabase = 0; 4450 } 4451 return pList; 4452 } 4453 4454 /* 4455 ** Assign VdbeCursor index numbers to all tables in a SrcList 4456 */ 4457 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4458 int i; 4459 struct SrcList_item *pItem; 4460 assert(pList || pParse->db->mallocFailed ); 4461 if( pList ){ 4462 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4463 if( pItem->iCursor>=0 ) continue; 4464 pItem->iCursor = pParse->nTab++; 4465 if( pItem->pSelect ){ 4466 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4467 } 4468 } 4469 } 4470 } 4471 4472 /* 4473 ** Delete an entire SrcList including all its substructure. 4474 */ 4475 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4476 int i; 4477 struct SrcList_item *pItem; 4478 if( pList==0 ) return; 4479 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4480 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4481 sqlite3DbFree(db, pItem->zName); 4482 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4483 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4484 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4485 sqlite3DeleteTable(db, pItem->pTab); 4486 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4487 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4488 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4489 } 4490 sqlite3DbFreeNN(db, pList); 4491 } 4492 4493 /* 4494 ** This routine is called by the parser to add a new term to the 4495 ** end of a growing FROM clause. The "p" parameter is the part of 4496 ** the FROM clause that has already been constructed. "p" is NULL 4497 ** if this is the first term of the FROM clause. pTable and pDatabase 4498 ** are the name of the table and database named in the FROM clause term. 4499 ** pDatabase is NULL if the database name qualifier is missing - the 4500 ** usual case. If the term has an alias, then pAlias points to the 4501 ** alias token. If the term is a subquery, then pSubquery is the 4502 ** SELECT statement that the subquery encodes. The pTable and 4503 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4504 ** parameters are the content of the ON and USING clauses. 4505 ** 4506 ** Return a new SrcList which encodes is the FROM with the new 4507 ** term added. 4508 */ 4509 SrcList *sqlite3SrcListAppendFromTerm( 4510 Parse *pParse, /* Parsing context */ 4511 SrcList *p, /* The left part of the FROM clause already seen */ 4512 Token *pTable, /* Name of the table to add to the FROM clause */ 4513 Token *pDatabase, /* Name of the database containing pTable */ 4514 Token *pAlias, /* The right-hand side of the AS subexpression */ 4515 Select *pSubquery, /* A subquery used in place of a table name */ 4516 Expr *pOn, /* The ON clause of a join */ 4517 IdList *pUsing /* The USING clause of a join */ 4518 ){ 4519 struct SrcList_item *pItem; 4520 sqlite3 *db = pParse->db; 4521 if( !p && (pOn || pUsing) ){ 4522 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4523 (pOn ? "ON" : "USING") 4524 ); 4525 goto append_from_error; 4526 } 4527 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4528 if( p==0 ){ 4529 goto append_from_error; 4530 } 4531 assert( p->nSrc>0 ); 4532 pItem = &p->a[p->nSrc-1]; 4533 assert( (pTable==0)==(pDatabase==0) ); 4534 assert( pItem->zName==0 || pDatabase!=0 ); 4535 if( IN_RENAME_OBJECT && pItem->zName ){ 4536 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4537 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4538 } 4539 assert( pAlias!=0 ); 4540 if( pAlias->n ){ 4541 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4542 } 4543 pItem->pSelect = pSubquery; 4544 pItem->pOn = pOn; 4545 pItem->pUsing = pUsing; 4546 return p; 4547 4548 append_from_error: 4549 assert( p==0 ); 4550 sqlite3ExprDelete(db, pOn); 4551 sqlite3IdListDelete(db, pUsing); 4552 sqlite3SelectDelete(db, pSubquery); 4553 return 0; 4554 } 4555 4556 /* 4557 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4558 ** element of the source-list passed as the second argument. 4559 */ 4560 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4561 assert( pIndexedBy!=0 ); 4562 if( p && pIndexedBy->n>0 ){ 4563 struct SrcList_item *pItem; 4564 assert( p->nSrc>0 ); 4565 pItem = &p->a[p->nSrc-1]; 4566 assert( pItem->fg.notIndexed==0 ); 4567 assert( pItem->fg.isIndexedBy==0 ); 4568 assert( pItem->fg.isTabFunc==0 ); 4569 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4570 /* A "NOT INDEXED" clause was supplied. See parse.y 4571 ** construct "indexed_opt" for details. */ 4572 pItem->fg.notIndexed = 1; 4573 }else{ 4574 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4575 pItem->fg.isIndexedBy = 1; 4576 } 4577 } 4578 } 4579 4580 /* 4581 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4582 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4583 ** are deleted by this function. 4584 */ 4585 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4586 assert( p1 && p1->nSrc==1 ); 4587 if( p2 ){ 4588 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4589 if( pNew==0 ){ 4590 sqlite3SrcListDelete(pParse->db, p2); 4591 }else{ 4592 p1 = pNew; 4593 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(struct SrcList_item)); 4594 sqlite3DbFree(pParse->db, p2); 4595 } 4596 } 4597 return p1; 4598 } 4599 4600 /* 4601 ** Add the list of function arguments to the SrcList entry for a 4602 ** table-valued-function. 4603 */ 4604 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4605 if( p ){ 4606 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4607 assert( pItem->fg.notIndexed==0 ); 4608 assert( pItem->fg.isIndexedBy==0 ); 4609 assert( pItem->fg.isTabFunc==0 ); 4610 pItem->u1.pFuncArg = pList; 4611 pItem->fg.isTabFunc = 1; 4612 }else{ 4613 sqlite3ExprListDelete(pParse->db, pList); 4614 } 4615 } 4616 4617 /* 4618 ** When building up a FROM clause in the parser, the join operator 4619 ** is initially attached to the left operand. But the code generator 4620 ** expects the join operator to be on the right operand. This routine 4621 ** Shifts all join operators from left to right for an entire FROM 4622 ** clause. 4623 ** 4624 ** Example: Suppose the join is like this: 4625 ** 4626 ** A natural cross join B 4627 ** 4628 ** The operator is "natural cross join". The A and B operands are stored 4629 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4630 ** operator with A. This routine shifts that operator over to B. 4631 */ 4632 void sqlite3SrcListShiftJoinType(SrcList *p){ 4633 if( p ){ 4634 int i; 4635 for(i=p->nSrc-1; i>0; i--){ 4636 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4637 } 4638 p->a[0].fg.jointype = 0; 4639 } 4640 } 4641 4642 /* 4643 ** Generate VDBE code for a BEGIN statement. 4644 */ 4645 void sqlite3BeginTransaction(Parse *pParse, int type){ 4646 sqlite3 *db; 4647 Vdbe *v; 4648 int i; 4649 4650 assert( pParse!=0 ); 4651 db = pParse->db; 4652 assert( db!=0 ); 4653 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4654 return; 4655 } 4656 v = sqlite3GetVdbe(pParse); 4657 if( !v ) return; 4658 if( type!=TK_DEFERRED ){ 4659 for(i=0; i<db->nDb; i++){ 4660 int eTxnType; 4661 Btree *pBt = db->aDb[i].pBt; 4662 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4663 eTxnType = 0; /* Read txn */ 4664 }else if( type==TK_EXCLUSIVE ){ 4665 eTxnType = 2; /* Exclusive txn */ 4666 }else{ 4667 eTxnType = 1; /* Write txn */ 4668 } 4669 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4670 sqlite3VdbeUsesBtree(v, i); 4671 } 4672 } 4673 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4674 } 4675 4676 /* 4677 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4678 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4679 ** code is generated for a COMMIT. 4680 */ 4681 void sqlite3EndTransaction(Parse *pParse, int eType){ 4682 Vdbe *v; 4683 int isRollback; 4684 4685 assert( pParse!=0 ); 4686 assert( pParse->db!=0 ); 4687 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4688 isRollback = eType==TK_ROLLBACK; 4689 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4690 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4691 return; 4692 } 4693 v = sqlite3GetVdbe(pParse); 4694 if( v ){ 4695 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4696 } 4697 } 4698 4699 /* 4700 ** This function is called by the parser when it parses a command to create, 4701 ** release or rollback an SQL savepoint. 4702 */ 4703 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4704 char *zName = sqlite3NameFromToken(pParse->db, pName); 4705 if( zName ){ 4706 Vdbe *v = sqlite3GetVdbe(pParse); 4707 #ifndef SQLITE_OMIT_AUTHORIZATION 4708 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4709 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4710 #endif 4711 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4712 sqlite3DbFree(pParse->db, zName); 4713 return; 4714 } 4715 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4716 } 4717 } 4718 4719 /* 4720 ** Make sure the TEMP database is open and available for use. Return 4721 ** the number of errors. Leave any error messages in the pParse structure. 4722 */ 4723 int sqlite3OpenTempDatabase(Parse *pParse){ 4724 sqlite3 *db = pParse->db; 4725 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4726 int rc; 4727 Btree *pBt; 4728 static const int flags = 4729 SQLITE_OPEN_READWRITE | 4730 SQLITE_OPEN_CREATE | 4731 SQLITE_OPEN_EXCLUSIVE | 4732 SQLITE_OPEN_DELETEONCLOSE | 4733 SQLITE_OPEN_TEMP_DB; 4734 4735 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4736 if( rc!=SQLITE_OK ){ 4737 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4738 "file for storing temporary tables"); 4739 pParse->rc = rc; 4740 return 1; 4741 } 4742 db->aDb[1].pBt = pBt; 4743 assert( db->aDb[1].pSchema ); 4744 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4745 sqlite3OomFault(db); 4746 return 1; 4747 } 4748 } 4749 return 0; 4750 } 4751 4752 /* 4753 ** Record the fact that the schema cookie will need to be verified 4754 ** for database iDb. The code to actually verify the schema cookie 4755 ** will occur at the end of the top-level VDBE and will be generated 4756 ** later, by sqlite3FinishCoding(). 4757 */ 4758 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4759 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4760 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4761 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4762 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4763 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4764 DbMaskSet(pToplevel->cookieMask, iDb); 4765 if( !OMIT_TEMPDB && iDb==1 ){ 4766 sqlite3OpenTempDatabase(pToplevel); 4767 } 4768 } 4769 } 4770 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4771 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4772 } 4773 4774 4775 /* 4776 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4777 ** attached database. Otherwise, invoke it for the database named zDb only. 4778 */ 4779 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4780 sqlite3 *db = pParse->db; 4781 int i; 4782 for(i=0; i<db->nDb; i++){ 4783 Db *pDb = &db->aDb[i]; 4784 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4785 sqlite3CodeVerifySchema(pParse, i); 4786 } 4787 } 4788 } 4789 4790 /* 4791 ** Generate VDBE code that prepares for doing an operation that 4792 ** might change the database. 4793 ** 4794 ** This routine starts a new transaction if we are not already within 4795 ** a transaction. If we are already within a transaction, then a checkpoint 4796 ** is set if the setStatement parameter is true. A checkpoint should 4797 ** be set for operations that might fail (due to a constraint) part of 4798 ** the way through and which will need to undo some writes without having to 4799 ** rollback the whole transaction. For operations where all constraints 4800 ** can be checked before any changes are made to the database, it is never 4801 ** necessary to undo a write and the checkpoint should not be set. 4802 */ 4803 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4804 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4805 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4806 DbMaskSet(pToplevel->writeMask, iDb); 4807 pToplevel->isMultiWrite |= setStatement; 4808 } 4809 4810 /* 4811 ** Indicate that the statement currently under construction might write 4812 ** more than one entry (example: deleting one row then inserting another, 4813 ** inserting multiple rows in a table, or inserting a row and index entries.) 4814 ** If an abort occurs after some of these writes have completed, then it will 4815 ** be necessary to undo the completed writes. 4816 */ 4817 void sqlite3MultiWrite(Parse *pParse){ 4818 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4819 pToplevel->isMultiWrite = 1; 4820 } 4821 4822 /* 4823 ** The code generator calls this routine if is discovers that it is 4824 ** possible to abort a statement prior to completion. In order to 4825 ** perform this abort without corrupting the database, we need to make 4826 ** sure that the statement is protected by a statement transaction. 4827 ** 4828 ** Technically, we only need to set the mayAbort flag if the 4829 ** isMultiWrite flag was previously set. There is a time dependency 4830 ** such that the abort must occur after the multiwrite. This makes 4831 ** some statements involving the REPLACE conflict resolution algorithm 4832 ** go a little faster. But taking advantage of this time dependency 4833 ** makes it more difficult to prove that the code is correct (in 4834 ** particular, it prevents us from writing an effective 4835 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4836 ** to take the safe route and skip the optimization. 4837 */ 4838 void sqlite3MayAbort(Parse *pParse){ 4839 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4840 pToplevel->mayAbort = 1; 4841 } 4842 4843 /* 4844 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4845 ** error. The onError parameter determines which (if any) of the statement 4846 ** and/or current transaction is rolled back. 4847 */ 4848 void sqlite3HaltConstraint( 4849 Parse *pParse, /* Parsing context */ 4850 int errCode, /* extended error code */ 4851 int onError, /* Constraint type */ 4852 char *p4, /* Error message */ 4853 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4854 u8 p5Errmsg /* P5_ErrMsg type */ 4855 ){ 4856 Vdbe *v; 4857 assert( pParse->pVdbe!=0 ); 4858 v = sqlite3GetVdbe(pParse); 4859 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4860 if( onError==OE_Abort ){ 4861 sqlite3MayAbort(pParse); 4862 } 4863 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4864 sqlite3VdbeChangeP5(v, p5Errmsg); 4865 } 4866 4867 /* 4868 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4869 */ 4870 void sqlite3UniqueConstraint( 4871 Parse *pParse, /* Parsing context */ 4872 int onError, /* Constraint type */ 4873 Index *pIdx /* The index that triggers the constraint */ 4874 ){ 4875 char *zErr; 4876 int j; 4877 StrAccum errMsg; 4878 Table *pTab = pIdx->pTable; 4879 4880 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4881 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4882 if( pIdx->aColExpr ){ 4883 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4884 }else{ 4885 for(j=0; j<pIdx->nKeyCol; j++){ 4886 char *zCol; 4887 assert( pIdx->aiColumn[j]>=0 ); 4888 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4889 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4890 sqlite3_str_appendall(&errMsg, pTab->zName); 4891 sqlite3_str_append(&errMsg, ".", 1); 4892 sqlite3_str_appendall(&errMsg, zCol); 4893 } 4894 } 4895 zErr = sqlite3StrAccumFinish(&errMsg); 4896 sqlite3HaltConstraint(pParse, 4897 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4898 : SQLITE_CONSTRAINT_UNIQUE, 4899 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4900 } 4901 4902 4903 /* 4904 ** Code an OP_Halt due to non-unique rowid. 4905 */ 4906 void sqlite3RowidConstraint( 4907 Parse *pParse, /* Parsing context */ 4908 int onError, /* Conflict resolution algorithm */ 4909 Table *pTab /* The table with the non-unique rowid */ 4910 ){ 4911 char *zMsg; 4912 int rc; 4913 if( pTab->iPKey>=0 ){ 4914 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4915 pTab->aCol[pTab->iPKey].zName); 4916 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4917 }else{ 4918 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4919 rc = SQLITE_CONSTRAINT_ROWID; 4920 } 4921 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4922 P5_ConstraintUnique); 4923 } 4924 4925 /* 4926 ** Check to see if pIndex uses the collating sequence pColl. Return 4927 ** true if it does and false if it does not. 4928 */ 4929 #ifndef SQLITE_OMIT_REINDEX 4930 static int collationMatch(const char *zColl, Index *pIndex){ 4931 int i; 4932 assert( zColl!=0 ); 4933 for(i=0; i<pIndex->nColumn; i++){ 4934 const char *z = pIndex->azColl[i]; 4935 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4936 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4937 return 1; 4938 } 4939 } 4940 return 0; 4941 } 4942 #endif 4943 4944 /* 4945 ** Recompute all indices of pTab that use the collating sequence pColl. 4946 ** If pColl==0 then recompute all indices of pTab. 4947 */ 4948 #ifndef SQLITE_OMIT_REINDEX 4949 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4950 if( !IsVirtual(pTab) ){ 4951 Index *pIndex; /* An index associated with pTab */ 4952 4953 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4954 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4955 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4956 sqlite3BeginWriteOperation(pParse, 0, iDb); 4957 sqlite3RefillIndex(pParse, pIndex, -1); 4958 } 4959 } 4960 } 4961 } 4962 #endif 4963 4964 /* 4965 ** Recompute all indices of all tables in all databases where the 4966 ** indices use the collating sequence pColl. If pColl==0 then recompute 4967 ** all indices everywhere. 4968 */ 4969 #ifndef SQLITE_OMIT_REINDEX 4970 static void reindexDatabases(Parse *pParse, char const *zColl){ 4971 Db *pDb; /* A single database */ 4972 int iDb; /* The database index number */ 4973 sqlite3 *db = pParse->db; /* The database connection */ 4974 HashElem *k; /* For looping over tables in pDb */ 4975 Table *pTab; /* A table in the database */ 4976 4977 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4978 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4979 assert( pDb!=0 ); 4980 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4981 pTab = (Table*)sqliteHashData(k); 4982 reindexTable(pParse, pTab, zColl); 4983 } 4984 } 4985 } 4986 #endif 4987 4988 /* 4989 ** Generate code for the REINDEX command. 4990 ** 4991 ** REINDEX -- 1 4992 ** REINDEX <collation> -- 2 4993 ** REINDEX ?<database>.?<tablename> -- 3 4994 ** REINDEX ?<database>.?<indexname> -- 4 4995 ** 4996 ** Form 1 causes all indices in all attached databases to be rebuilt. 4997 ** Form 2 rebuilds all indices in all databases that use the named 4998 ** collating function. Forms 3 and 4 rebuild the named index or all 4999 ** indices associated with the named table. 5000 */ 5001 #ifndef SQLITE_OMIT_REINDEX 5002 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5003 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5004 char *z; /* Name of a table or index */ 5005 const char *zDb; /* Name of the database */ 5006 Table *pTab; /* A table in the database */ 5007 Index *pIndex; /* An index associated with pTab */ 5008 int iDb; /* The database index number */ 5009 sqlite3 *db = pParse->db; /* The database connection */ 5010 Token *pObjName; /* Name of the table or index to be reindexed */ 5011 5012 /* Read the database schema. If an error occurs, leave an error message 5013 ** and code in pParse and return NULL. */ 5014 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5015 return; 5016 } 5017 5018 if( pName1==0 ){ 5019 reindexDatabases(pParse, 0); 5020 return; 5021 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5022 char *zColl; 5023 assert( pName1->z ); 5024 zColl = sqlite3NameFromToken(pParse->db, pName1); 5025 if( !zColl ) return; 5026 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5027 if( pColl ){ 5028 reindexDatabases(pParse, zColl); 5029 sqlite3DbFree(db, zColl); 5030 return; 5031 } 5032 sqlite3DbFree(db, zColl); 5033 } 5034 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5035 if( iDb<0 ) return; 5036 z = sqlite3NameFromToken(db, pObjName); 5037 if( z==0 ) return; 5038 zDb = db->aDb[iDb].zDbSName; 5039 pTab = sqlite3FindTable(db, z, zDb); 5040 if( pTab ){ 5041 reindexTable(pParse, pTab, 0); 5042 sqlite3DbFree(db, z); 5043 return; 5044 } 5045 pIndex = sqlite3FindIndex(db, z, zDb); 5046 sqlite3DbFree(db, z); 5047 if( pIndex ){ 5048 sqlite3BeginWriteOperation(pParse, 0, iDb); 5049 sqlite3RefillIndex(pParse, pIndex, -1); 5050 return; 5051 } 5052 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5053 } 5054 #endif 5055 5056 /* 5057 ** Return a KeyInfo structure that is appropriate for the given Index. 5058 ** 5059 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5060 ** when it has finished using it. 5061 */ 5062 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5063 int i; 5064 int nCol = pIdx->nColumn; 5065 int nKey = pIdx->nKeyCol; 5066 KeyInfo *pKey; 5067 if( pParse->nErr ) return 0; 5068 if( pIdx->uniqNotNull ){ 5069 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5070 }else{ 5071 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5072 } 5073 if( pKey ){ 5074 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5075 for(i=0; i<nCol; i++){ 5076 const char *zColl = pIdx->azColl[i]; 5077 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5078 sqlite3LocateCollSeq(pParse, zColl); 5079 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5080 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5081 } 5082 if( pParse->nErr ){ 5083 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5084 if( pIdx->bNoQuery==0 ){ 5085 /* Deactivate the index because it contains an unknown collating 5086 ** sequence. The only way to reactive the index is to reload the 5087 ** schema. Adding the missing collating sequence later does not 5088 ** reactive the index. The application had the chance to register 5089 ** the missing index using the collation-needed callback. For 5090 ** simplicity, SQLite will not give the application a second chance. 5091 */ 5092 pIdx->bNoQuery = 1; 5093 pParse->rc = SQLITE_ERROR_RETRY; 5094 } 5095 sqlite3KeyInfoUnref(pKey); 5096 pKey = 0; 5097 } 5098 } 5099 return pKey; 5100 } 5101 5102 #ifndef SQLITE_OMIT_CTE 5103 /* 5104 ** This routine is invoked once per CTE by the parser while parsing a 5105 ** WITH clause. 5106 */ 5107 With *sqlite3WithAdd( 5108 Parse *pParse, /* Parsing context */ 5109 With *pWith, /* Existing WITH clause, or NULL */ 5110 Token *pName, /* Name of the common-table */ 5111 ExprList *pArglist, /* Optional column name list for the table */ 5112 Select *pQuery /* Query used to initialize the table */ 5113 ){ 5114 sqlite3 *db = pParse->db; 5115 With *pNew; 5116 char *zName; 5117 5118 /* Check that the CTE name is unique within this WITH clause. If 5119 ** not, store an error in the Parse structure. */ 5120 zName = sqlite3NameFromToken(pParse->db, pName); 5121 if( zName && pWith ){ 5122 int i; 5123 for(i=0; i<pWith->nCte; i++){ 5124 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5125 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5126 } 5127 } 5128 } 5129 5130 if( pWith ){ 5131 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5132 pNew = sqlite3DbRealloc(db, pWith, nByte); 5133 }else{ 5134 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5135 } 5136 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5137 5138 if( db->mallocFailed ){ 5139 sqlite3ExprListDelete(db, pArglist); 5140 sqlite3SelectDelete(db, pQuery); 5141 sqlite3DbFree(db, zName); 5142 pNew = pWith; 5143 }else{ 5144 pNew->a[pNew->nCte].pSelect = pQuery; 5145 pNew->a[pNew->nCte].pCols = pArglist; 5146 pNew->a[pNew->nCte].zName = zName; 5147 pNew->a[pNew->nCte].zCteErr = 0; 5148 pNew->nCte++; 5149 } 5150 5151 return pNew; 5152 } 5153 5154 /* 5155 ** Free the contents of the With object passed as the second argument. 5156 */ 5157 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5158 if( pWith ){ 5159 int i; 5160 for(i=0; i<pWith->nCte; i++){ 5161 struct Cte *pCte = &pWith->a[i]; 5162 sqlite3ExprListDelete(db, pCte->pCols); 5163 sqlite3SelectDelete(db, pCte->pSelect); 5164 sqlite3DbFree(db, pCte->zName); 5165 } 5166 sqlite3DbFree(db, pWith); 5167 } 5168 } 5169 #endif /* !defined(SQLITE_OMIT_CTE) */ 5170