1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 pParse->nErr++; 268 return; 269 } 270 pParse->nested++; 271 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 272 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 273 sqlite3RunParser(pParse, zSql, &zErrMsg); 274 sqlite3DbFree(db, zErrMsg); 275 sqlite3DbFree(db, zSql); 276 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 277 pParse->nested--; 278 } 279 280 #if SQLITE_USER_AUTHENTICATION 281 /* 282 ** Return TRUE if zTable is the name of the system table that stores the 283 ** list of users and their access credentials. 284 */ 285 int sqlite3UserAuthTable(const char *zTable){ 286 return sqlite3_stricmp(zTable, "sqlite_user")==0; 287 } 288 #endif 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. 294 ** 295 ** If zDatabase is 0, all databases are searched for the table and the 296 ** first matching table is returned. (No checking for duplicate table 297 ** names is done.) The search order is TEMP first, then MAIN, then any 298 ** auxiliary databases added using the ATTACH command. 299 ** 300 ** See also sqlite3LocateTable(). 301 */ 302 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 303 Table *p = 0; 304 int i; 305 306 /* All mutexes are required for schema access. Make sure we hold them. */ 307 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 308 #if SQLITE_USER_AUTHENTICATION 309 /* Only the admin user is allowed to know that the sqlite_user table 310 ** exists */ 311 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 312 return 0; 313 } 314 #endif 315 while(1){ 316 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 317 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 318 if( zDatabase==0 || sqlite3DbIsNamed(db, j, zDatabase) ){ 319 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 320 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 321 if( p ) return p; 322 } 323 } 324 /* Not found. If the name we were looking for was temp.sqlite_master 325 ** then change the name to sqlite_temp_master and try again. */ 326 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 327 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 328 zName = TEMP_MASTER_NAME; 329 } 330 return 0; 331 } 332 333 /* 334 ** Locate the in-memory structure that describes a particular database 335 ** table given the name of that table and (optionally) the name of the 336 ** database containing the table. Return NULL if not found. Also leave an 337 ** error message in pParse->zErrMsg. 338 ** 339 ** The difference between this routine and sqlite3FindTable() is that this 340 ** routine leaves an error message in pParse->zErrMsg where 341 ** sqlite3FindTable() does not. 342 */ 343 Table *sqlite3LocateTable( 344 Parse *pParse, /* context in which to report errors */ 345 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 346 const char *zName, /* Name of the table we are looking for */ 347 const char *zDbase /* Name of the database. Might be NULL */ 348 ){ 349 Table *p; 350 sqlite3 *db = pParse->db; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 355 && SQLITE_OK!=sqlite3ReadSchema(pParse) 356 ){ 357 return 0; 358 } 359 360 p = sqlite3FindTable(db, zName, zDbase); 361 if( p==0 ){ 362 #ifndef SQLITE_OMIT_VIRTUALTABLE 363 /* If zName is the not the name of a table in the schema created using 364 ** CREATE, then check to see if it is the name of an virtual table that 365 ** can be an eponymous virtual table. */ 366 if( pParse->disableVtab==0 ){ 367 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 368 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 369 pMod = sqlite3PragmaVtabRegister(db, zName); 370 } 371 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 372 return pMod->pEpoTab; 373 } 374 } 375 #endif 376 if( flags & LOCATE_NOERR ) return 0; 377 pParse->checkSchema = 1; 378 }else if( IsVirtual(p) && pParse->disableVtab ){ 379 p = 0; 380 } 381 382 if( p==0 ){ 383 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 384 if( zDbase ){ 385 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 386 }else{ 387 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 388 } 389 } 390 391 return p; 392 } 393 394 /* 395 ** Locate the table identified by *p. 396 ** 397 ** This is a wrapper around sqlite3LocateTable(). The difference between 398 ** sqlite3LocateTable() and this function is that this function restricts 399 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 400 ** non-NULL if it is part of a view or trigger program definition. See 401 ** sqlite3FixSrcList() for details. 402 */ 403 Table *sqlite3LocateTableItem( 404 Parse *pParse, 405 u32 flags, 406 struct SrcList_item *p 407 ){ 408 const char *zDb; 409 assert( p->pSchema==0 || p->zDatabase==0 ); 410 if( p->pSchema ){ 411 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 412 zDb = pParse->db->aDb[iDb].zDbSName; 413 }else{ 414 zDb = p->zDatabase; 415 } 416 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 417 } 418 419 /* 420 ** Locate the in-memory structure that describes 421 ** a particular index given the name of that index 422 ** and the name of the database that contains the index. 423 ** Return NULL if not found. 424 ** 425 ** If zDatabase is 0, all databases are searched for the 426 ** table and the first matching index is returned. (No checking 427 ** for duplicate index names is done.) The search order is 428 ** TEMP first, then MAIN, then any auxiliary databases added 429 ** using the ATTACH command. 430 */ 431 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 432 Index *p = 0; 433 int i; 434 /* All mutexes are required for schema access. Make sure we hold them. */ 435 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 436 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 437 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 438 Schema *pSchema = db->aDb[j].pSchema; 439 assert( pSchema ); 440 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 441 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 442 p = sqlite3HashFind(&pSchema->idxHash, zName); 443 if( p ) break; 444 } 445 return p; 446 } 447 448 /* 449 ** Reclaim the memory used by an index 450 */ 451 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 452 #ifndef SQLITE_OMIT_ANALYZE 453 sqlite3DeleteIndexSamples(db, p); 454 #endif 455 sqlite3ExprDelete(db, p->pPartIdxWhere); 456 sqlite3ExprListDelete(db, p->aColExpr); 457 sqlite3DbFree(db, p->zColAff); 458 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 459 #ifdef SQLITE_ENABLE_STAT4 460 sqlite3_free(p->aiRowEst); 461 #endif 462 sqlite3DbFree(db, p); 463 } 464 465 /* 466 ** For the index called zIdxName which is found in the database iDb, 467 ** unlike that index from its Table then remove the index from 468 ** the index hash table and free all memory structures associated 469 ** with the index. 470 */ 471 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 472 Index *pIndex; 473 Hash *pHash; 474 475 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 476 pHash = &db->aDb[iDb].pSchema->idxHash; 477 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 478 if( ALWAYS(pIndex) ){ 479 if( pIndex->pTable->pIndex==pIndex ){ 480 pIndex->pTable->pIndex = pIndex->pNext; 481 }else{ 482 Index *p; 483 /* Justification of ALWAYS(); The index must be on the list of 484 ** indices. */ 485 p = pIndex->pTable->pIndex; 486 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 487 if( ALWAYS(p && p->pNext==pIndex) ){ 488 p->pNext = pIndex->pNext; 489 } 490 } 491 sqlite3FreeIndex(db, pIndex); 492 } 493 db->mDbFlags |= DBFLAG_SchemaChange; 494 } 495 496 /* 497 ** Look through the list of open database files in db->aDb[] and if 498 ** any have been closed, remove them from the list. Reallocate the 499 ** db->aDb[] structure to a smaller size, if possible. 500 ** 501 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 502 ** are never candidates for being collapsed. 503 */ 504 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 505 int i, j; 506 for(i=j=2; i<db->nDb; i++){ 507 struct Db *pDb = &db->aDb[i]; 508 if( pDb->pBt==0 ){ 509 sqlite3DbFree(db, pDb->zDbSName); 510 pDb->zDbSName = 0; 511 continue; 512 } 513 if( j<i ){ 514 db->aDb[j] = db->aDb[i]; 515 } 516 j++; 517 } 518 db->nDb = j; 519 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 520 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 521 sqlite3DbFree(db, db->aDb); 522 db->aDb = db->aDbStatic; 523 } 524 } 525 526 /* 527 ** Reset the schema for the database at index iDb. Also reset the 528 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 529 ** Deferred resets may be run by calling with iDb<0. 530 */ 531 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 532 int i; 533 assert( iDb<db->nDb ); 534 535 if( iDb>=0 ){ 536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 537 DbSetProperty(db, iDb, DB_ResetWanted); 538 DbSetProperty(db, 1, DB_ResetWanted); 539 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 540 } 541 542 if( db->nSchemaLock==0 ){ 543 for(i=0; i<db->nDb; i++){ 544 if( DbHasProperty(db, i, DB_ResetWanted) ){ 545 sqlite3SchemaClear(db->aDb[i].pSchema); 546 } 547 } 548 } 549 } 550 551 /* 552 ** Erase all schema information from all attached databases (including 553 ** "main" and "temp") for a single database connection. 554 */ 555 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 556 int i; 557 sqlite3BtreeEnterAll(db); 558 for(i=0; i<db->nDb; i++){ 559 Db *pDb = &db->aDb[i]; 560 if( pDb->pSchema ){ 561 if( db->nSchemaLock==0 ){ 562 sqlite3SchemaClear(pDb->pSchema); 563 }else{ 564 DbSetProperty(db, i, DB_ResetWanted); 565 } 566 } 567 } 568 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 569 sqlite3VtabUnlockList(db); 570 sqlite3BtreeLeaveAll(db); 571 if( db->nSchemaLock==0 ){ 572 sqlite3CollapseDatabaseArray(db); 573 } 574 } 575 576 /* 577 ** This routine is called when a commit occurs. 578 */ 579 void sqlite3CommitInternalChanges(sqlite3 *db){ 580 db->mDbFlags &= ~DBFLAG_SchemaChange; 581 } 582 583 /* 584 ** Delete memory allocated for the column names of a table or view (the 585 ** Table.aCol[] array). 586 */ 587 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 588 int i; 589 Column *pCol; 590 assert( pTable!=0 ); 591 if( (pCol = pTable->aCol)!=0 ){ 592 for(i=0; i<pTable->nCol; i++, pCol++){ 593 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 594 sqlite3DbFree(db, pCol->zName); 595 sqlite3ExprDelete(db, pCol->pDflt); 596 sqlite3DbFree(db, pCol->zColl); 597 } 598 sqlite3DbFree(db, pTable->aCol); 599 } 600 } 601 602 /* 603 ** Remove the memory data structures associated with the given 604 ** Table. No changes are made to disk by this routine. 605 ** 606 ** This routine just deletes the data structure. It does not unlink 607 ** the table data structure from the hash table. But it does destroy 608 ** memory structures of the indices and foreign keys associated with 609 ** the table. 610 ** 611 ** The db parameter is optional. It is needed if the Table object 612 ** contains lookaside memory. (Table objects in the schema do not use 613 ** lookaside memory, but some ephemeral Table objects do.) Or the 614 ** db parameter can be used with db->pnBytesFreed to measure the memory 615 ** used by the Table object. 616 */ 617 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 618 Index *pIndex, *pNext; 619 620 #ifdef SQLITE_DEBUG 621 /* Record the number of outstanding lookaside allocations in schema Tables 622 ** prior to doing any free() operations. Since schema Tables do not use 623 ** lookaside, this number should not change. 624 ** 625 ** If malloc has already failed, it may be that it failed while allocating 626 ** a Table object that was going to be marked ephemeral. So do not check 627 ** that no lookaside memory is used in this case either. */ 628 int nLookaside = 0; 629 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 630 nLookaside = sqlite3LookasideUsed(db, 0); 631 } 632 #endif 633 634 /* Delete all indices associated with this table. */ 635 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 636 pNext = pIndex->pNext; 637 assert( pIndex->pSchema==pTable->pSchema 638 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 639 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 640 char *zName = pIndex->zName; 641 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 642 &pIndex->pSchema->idxHash, zName, 0 643 ); 644 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 645 assert( pOld==pIndex || pOld==0 ); 646 } 647 sqlite3FreeIndex(db, pIndex); 648 } 649 650 /* Delete any foreign keys attached to this table. */ 651 sqlite3FkDelete(db, pTable); 652 653 /* Delete the Table structure itself. 654 */ 655 sqlite3DeleteColumnNames(db, pTable); 656 sqlite3DbFree(db, pTable->zName); 657 sqlite3DbFree(db, pTable->zColAff); 658 sqlite3SelectDelete(db, pTable->pSelect); 659 sqlite3ExprListDelete(db, pTable->pCheck); 660 #ifndef SQLITE_OMIT_VIRTUALTABLE 661 sqlite3VtabClear(db, pTable); 662 #endif 663 sqlite3DbFree(db, pTable); 664 665 /* Verify that no lookaside memory was used by schema tables */ 666 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 667 } 668 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 669 /* Do not delete the table until the reference count reaches zero. */ 670 if( !pTable ) return; 671 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 672 deleteTable(db, pTable); 673 } 674 675 676 /* 677 ** Unlink the given table from the hash tables and the delete the 678 ** table structure with all its indices and foreign keys. 679 */ 680 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 681 Table *p; 682 Db *pDb; 683 684 assert( db!=0 ); 685 assert( iDb>=0 && iDb<db->nDb ); 686 assert( zTabName ); 687 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 688 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 689 pDb = &db->aDb[iDb]; 690 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 691 sqlite3DeleteTable(db, p); 692 db->mDbFlags |= DBFLAG_SchemaChange; 693 } 694 695 /* 696 ** Given a token, return a string that consists of the text of that 697 ** token. Space to hold the returned string 698 ** is obtained from sqliteMalloc() and must be freed by the calling 699 ** function. 700 ** 701 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 702 ** surround the body of the token are removed. 703 ** 704 ** Tokens are often just pointers into the original SQL text and so 705 ** are not \000 terminated and are not persistent. The returned string 706 ** is \000 terminated and is persistent. 707 */ 708 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 709 char *zName; 710 if( pName ){ 711 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 712 sqlite3Dequote(zName); 713 }else{ 714 zName = 0; 715 } 716 return zName; 717 } 718 719 /* 720 ** Open the sqlite_master table stored in database number iDb for 721 ** writing. The table is opened using cursor 0. 722 */ 723 void sqlite3OpenMasterTable(Parse *p, int iDb){ 724 Vdbe *v = sqlite3GetVdbe(p); 725 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 726 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 727 if( p->nTab==0 ){ 728 p->nTab = 1; 729 } 730 } 731 732 /* 733 ** Parameter zName points to a nul-terminated buffer containing the name 734 ** of a database ("main", "temp" or the name of an attached db). This 735 ** function returns the index of the named database in db->aDb[], or 736 ** -1 if the named db cannot be found. 737 */ 738 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 739 int i = -1; /* Database number */ 740 if( zName ){ 741 Db *pDb; 742 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 743 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 744 /* "main" is always an acceptable alias for the primary database 745 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 746 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 747 } 748 } 749 return i; 750 } 751 752 /* 753 ** The token *pName contains the name of a database (either "main" or 754 ** "temp" or the name of an attached db). This routine returns the 755 ** index of the named database in db->aDb[], or -1 if the named db 756 ** does not exist. 757 */ 758 int sqlite3FindDb(sqlite3 *db, Token *pName){ 759 int i; /* Database number */ 760 char *zName; /* Name we are searching for */ 761 zName = sqlite3NameFromToken(db, pName); 762 i = sqlite3FindDbName(db, zName); 763 sqlite3DbFree(db, zName); 764 return i; 765 } 766 767 /* The table or view or trigger name is passed to this routine via tokens 768 ** pName1 and pName2. If the table name was fully qualified, for example: 769 ** 770 ** CREATE TABLE xxx.yyy (...); 771 ** 772 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 773 ** the table name is not fully qualified, i.e.: 774 ** 775 ** CREATE TABLE yyy(...); 776 ** 777 ** Then pName1 is set to "yyy" and pName2 is "". 778 ** 779 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 780 ** pName2) that stores the unqualified table name. The index of the 781 ** database "xxx" is returned. 782 */ 783 int sqlite3TwoPartName( 784 Parse *pParse, /* Parsing and code generating context */ 785 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 786 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 787 Token **pUnqual /* Write the unqualified object name here */ 788 ){ 789 int iDb; /* Database holding the object */ 790 sqlite3 *db = pParse->db; 791 792 assert( pName2!=0 ); 793 if( pName2->n>0 ){ 794 if( db->init.busy ) { 795 sqlite3ErrorMsg(pParse, "corrupt database"); 796 return -1; 797 } 798 *pUnqual = pName2; 799 iDb = sqlite3FindDb(db, pName1); 800 if( iDb<0 ){ 801 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 802 return -1; 803 } 804 }else{ 805 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 806 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 807 iDb = db->init.iDb; 808 *pUnqual = pName1; 809 } 810 return iDb; 811 } 812 813 /* 814 ** True if PRAGMA writable_schema is ON 815 */ 816 int sqlite3WritableSchema(sqlite3 *db){ 817 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 818 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 819 SQLITE_WriteSchema ); 820 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 821 SQLITE_Defensive ); 822 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 823 (SQLITE_WriteSchema|SQLITE_Defensive) ); 824 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 825 } 826 827 /* 828 ** This routine is used to check if the UTF-8 string zName is a legal 829 ** unqualified name for a new schema object (table, index, view or 830 ** trigger). All names are legal except those that begin with the string 831 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 832 ** is reserved for internal use. 833 ** 834 ** When parsing the sqlite_master table, this routine also checks to 835 ** make sure the "type", "name", and "tbl_name" columns are consistent 836 ** with the SQL. 837 */ 838 int sqlite3CheckObjectName( 839 Parse *pParse, /* Parsing context */ 840 const char *zName, /* Name of the object to check */ 841 const char *zType, /* Type of this object */ 842 const char *zTblName /* Parent table name for triggers and indexes */ 843 ){ 844 sqlite3 *db = pParse->db; 845 if( sqlite3WritableSchema(db) || db->init.imposterTable ){ 846 /* Skip these error checks for writable_schema=ON */ 847 return SQLITE_OK; 848 } 849 if( db->init.busy ){ 850 if( sqlite3_stricmp(zType, db->init.azInit[0]) 851 || sqlite3_stricmp(zName, db->init.azInit[1]) 852 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 853 ){ 854 if( sqlite3Config.bExtraSchemaChecks ){ 855 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 856 return SQLITE_ERROR; 857 } 858 } 859 }else{ 860 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 861 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 862 ){ 863 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 864 zName); 865 return SQLITE_ERROR; 866 } 867 868 } 869 return SQLITE_OK; 870 } 871 872 /* 873 ** Return the PRIMARY KEY index of a table 874 */ 875 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 876 Index *p; 877 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 878 return p; 879 } 880 881 /* 882 ** Convert an table column number into a index column number. That is, 883 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 884 ** find the (first) offset of that column in index pIdx. Or return -1 885 ** if column iCol is not used in index pIdx. 886 */ 887 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 888 int i; 889 for(i=0; i<pIdx->nColumn; i++){ 890 if( iCol==pIdx->aiColumn[i] ) return i; 891 } 892 return -1; 893 } 894 895 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 896 /* Convert a storage column number into a table column number. 897 ** 898 ** The storage column number (0,1,2,....) is the index of the value 899 ** as it appears in the record on disk. The true column number 900 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 901 ** 902 ** The storage column number is less than the table column number if 903 ** and only there are VIRTUAL columns to the left. 904 ** 905 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 906 */ 907 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 908 if( pTab->tabFlags & TF_HasVirtual ){ 909 int i; 910 for(i=0; i<=iCol; i++){ 911 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 912 } 913 } 914 return iCol; 915 } 916 #endif 917 918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 919 /* Convert a table column number into a storage column number. 920 ** 921 ** The storage column number (0,1,2,....) is the index of the value 922 ** as it appears in the record on disk. Or, if the input column is 923 ** the N-th virtual column (zero-based) then the storage number is 924 ** the number of non-virtual columns in the table plus N. 925 ** 926 ** The true column number is the index (0,1,2,...) of the column in 927 ** the CREATE TABLE statement. 928 ** 929 ** If the input column is a VIRTUAL column, then it should not appear 930 ** in storage. But the value sometimes is cached in registers that 931 ** follow the range of registers used to construct storage. This 932 ** avoids computing the same VIRTUAL column multiple times, and provides 933 ** values for use by OP_Param opcodes in triggers. Hence, if the 934 ** input column is a VIRTUAL table, put it after all the other columns. 935 ** 936 ** In the following, N means "normal column", S means STORED, and 937 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 938 ** 939 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 940 ** -- 0 1 2 3 4 5 6 7 8 941 ** 942 ** Then the mapping from this function is as follows: 943 ** 944 ** INPUTS: 0 1 2 3 4 5 6 7 8 945 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 946 ** 947 ** So, in other words, this routine shifts all the virtual columns to 948 ** the end. 949 ** 950 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 951 ** this routine is a no-op macro. If the pTab does not have any virtual 952 ** columns, then this routine is no-op that always return iCol. If iCol 953 ** is negative (indicating the ROWID column) then this routine return iCol. 954 */ 955 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 956 int i; 957 i16 n; 958 assert( iCol<pTab->nCol ); 959 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 960 for(i=0, n=0; i<iCol; i++){ 961 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 962 } 963 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 964 /* iCol is a virtual column itself */ 965 return pTab->nNVCol + i - n; 966 }else{ 967 /* iCol is a normal or stored column */ 968 return n; 969 } 970 } 971 #endif 972 973 /* 974 ** Begin constructing a new table representation in memory. This is 975 ** the first of several action routines that get called in response 976 ** to a CREATE TABLE statement. In particular, this routine is called 977 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 978 ** flag is true if the table should be stored in the auxiliary database 979 ** file instead of in the main database file. This is normally the case 980 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 981 ** CREATE and TABLE. 982 ** 983 ** The new table record is initialized and put in pParse->pNewTable. 984 ** As more of the CREATE TABLE statement is parsed, additional action 985 ** routines will be called to add more information to this record. 986 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 987 ** is called to complete the construction of the new table record. 988 */ 989 void sqlite3StartTable( 990 Parse *pParse, /* Parser context */ 991 Token *pName1, /* First part of the name of the table or view */ 992 Token *pName2, /* Second part of the name of the table or view */ 993 int isTemp, /* True if this is a TEMP table */ 994 int isView, /* True if this is a VIEW */ 995 int isVirtual, /* True if this is a VIRTUAL table */ 996 int noErr /* Do nothing if table already exists */ 997 ){ 998 Table *pTable; 999 char *zName = 0; /* The name of the new table */ 1000 sqlite3 *db = pParse->db; 1001 Vdbe *v; 1002 int iDb; /* Database number to create the table in */ 1003 Token *pName; /* Unqualified name of the table to create */ 1004 1005 if( db->init.busy && db->init.newTnum==1 ){ 1006 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 1007 iDb = db->init.iDb; 1008 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1009 pName = pName1; 1010 }else{ 1011 /* The common case */ 1012 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1013 if( iDb<0 ) return; 1014 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1015 /* If creating a temp table, the name may not be qualified. Unless 1016 ** the database name is "temp" anyway. */ 1017 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1018 return; 1019 } 1020 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1021 zName = sqlite3NameFromToken(db, pName); 1022 if( IN_RENAME_OBJECT ){ 1023 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1024 } 1025 } 1026 pParse->sNameToken = *pName; 1027 if( zName==0 ) return; 1028 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1029 goto begin_table_error; 1030 } 1031 if( db->init.iDb==1 ) isTemp = 1; 1032 #ifndef SQLITE_OMIT_AUTHORIZATION 1033 assert( isTemp==0 || isTemp==1 ); 1034 assert( isView==0 || isView==1 ); 1035 { 1036 static const u8 aCode[] = { 1037 SQLITE_CREATE_TABLE, 1038 SQLITE_CREATE_TEMP_TABLE, 1039 SQLITE_CREATE_VIEW, 1040 SQLITE_CREATE_TEMP_VIEW 1041 }; 1042 char *zDb = db->aDb[iDb].zDbSName; 1043 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1044 goto begin_table_error; 1045 } 1046 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1047 zName, 0, zDb) ){ 1048 goto begin_table_error; 1049 } 1050 } 1051 #endif 1052 1053 /* Make sure the new table name does not collide with an existing 1054 ** index or table name in the same database. Issue an error message if 1055 ** it does. The exception is if the statement being parsed was passed 1056 ** to an sqlite3_declare_vtab() call. In that case only the column names 1057 ** and types will be used, so there is no need to test for namespace 1058 ** collisions. 1059 */ 1060 if( !IN_SPECIAL_PARSE ){ 1061 char *zDb = db->aDb[iDb].zDbSName; 1062 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1063 goto begin_table_error; 1064 } 1065 pTable = sqlite3FindTable(db, zName, zDb); 1066 if( pTable ){ 1067 if( !noErr ){ 1068 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1069 }else{ 1070 assert( !db->init.busy || CORRUPT_DB ); 1071 sqlite3CodeVerifySchema(pParse, iDb); 1072 } 1073 goto begin_table_error; 1074 } 1075 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1076 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1077 goto begin_table_error; 1078 } 1079 } 1080 1081 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1082 if( pTable==0 ){ 1083 assert( db->mallocFailed ); 1084 pParse->rc = SQLITE_NOMEM_BKPT; 1085 pParse->nErr++; 1086 goto begin_table_error; 1087 } 1088 pTable->zName = zName; 1089 pTable->iPKey = -1; 1090 pTable->pSchema = db->aDb[iDb].pSchema; 1091 pTable->nTabRef = 1; 1092 #ifdef SQLITE_DEFAULT_ROWEST 1093 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1094 #else 1095 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1096 #endif 1097 assert( pParse->pNewTable==0 ); 1098 pParse->pNewTable = pTable; 1099 1100 /* If this is the magic sqlite_sequence table used by autoincrement, 1101 ** then record a pointer to this table in the main database structure 1102 ** so that INSERT can find the table easily. 1103 */ 1104 #ifndef SQLITE_OMIT_AUTOINCREMENT 1105 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1106 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1107 pTable->pSchema->pSeqTab = pTable; 1108 } 1109 #endif 1110 1111 /* Begin generating the code that will insert the table record into 1112 ** the SQLITE_MASTER table. Note in particular that we must go ahead 1113 ** and allocate the record number for the table entry now. Before any 1114 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1115 ** indices to be created and the table record must come before the 1116 ** indices. Hence, the record number for the table must be allocated 1117 ** now. 1118 */ 1119 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1120 int addr1; 1121 int fileFormat; 1122 int reg1, reg2, reg3; 1123 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1124 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1125 sqlite3BeginWriteOperation(pParse, 1, iDb); 1126 1127 #ifndef SQLITE_OMIT_VIRTUALTABLE 1128 if( isVirtual ){ 1129 sqlite3VdbeAddOp0(v, OP_VBegin); 1130 } 1131 #endif 1132 1133 /* If the file format and encoding in the database have not been set, 1134 ** set them now. 1135 */ 1136 reg1 = pParse->regRowid = ++pParse->nMem; 1137 reg2 = pParse->regRoot = ++pParse->nMem; 1138 reg3 = ++pParse->nMem; 1139 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1140 sqlite3VdbeUsesBtree(v, iDb); 1141 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1142 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1143 1 : SQLITE_MAX_FILE_FORMAT; 1144 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1145 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1146 sqlite3VdbeJumpHere(v, addr1); 1147 1148 /* This just creates a place-holder record in the sqlite_master table. 1149 ** The record created does not contain anything yet. It will be replaced 1150 ** by the real entry in code generated at sqlite3EndTable(). 1151 ** 1152 ** The rowid for the new entry is left in register pParse->regRowid. 1153 ** The root page number of the new table is left in reg pParse->regRoot. 1154 ** The rowid and root page number values are needed by the code that 1155 ** sqlite3EndTable will generate. 1156 */ 1157 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1158 if( isView || isVirtual ){ 1159 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1160 }else 1161 #endif 1162 { 1163 pParse->addrCrTab = 1164 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1165 } 1166 sqlite3OpenMasterTable(pParse, iDb); 1167 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1168 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1169 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1170 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1171 sqlite3VdbeAddOp0(v, OP_Close); 1172 } 1173 1174 /* Normal (non-error) return. */ 1175 return; 1176 1177 /* If an error occurs, we jump here */ 1178 begin_table_error: 1179 sqlite3DbFree(db, zName); 1180 return; 1181 } 1182 1183 /* Set properties of a table column based on the (magical) 1184 ** name of the column. 1185 */ 1186 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1187 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1188 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1189 pCol->colFlags |= COLFLAG_HIDDEN; 1190 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1191 pTab->tabFlags |= TF_OOOHidden; 1192 } 1193 } 1194 #endif 1195 1196 1197 /* 1198 ** Add a new column to the table currently being constructed. 1199 ** 1200 ** The parser calls this routine once for each column declaration 1201 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1202 ** first to get things going. Then this routine is called for each 1203 ** column. 1204 */ 1205 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1206 Table *p; 1207 int i; 1208 char *z; 1209 char *zType; 1210 Column *pCol; 1211 sqlite3 *db = pParse->db; 1212 if( (p = pParse->pNewTable)==0 ) return; 1213 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1214 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1215 return; 1216 } 1217 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1218 if( z==0 ) return; 1219 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1220 memcpy(z, pName->z, pName->n); 1221 z[pName->n] = 0; 1222 sqlite3Dequote(z); 1223 for(i=0; i<p->nCol; i++){ 1224 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1225 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1226 sqlite3DbFree(db, z); 1227 return; 1228 } 1229 } 1230 if( (p->nCol & 0x7)==0 ){ 1231 Column *aNew; 1232 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1233 if( aNew==0 ){ 1234 sqlite3DbFree(db, z); 1235 return; 1236 } 1237 p->aCol = aNew; 1238 } 1239 pCol = &p->aCol[p->nCol]; 1240 memset(pCol, 0, sizeof(p->aCol[0])); 1241 pCol->zName = z; 1242 pCol->hName = sqlite3StrIHash(z); 1243 sqlite3ColumnPropertiesFromName(p, pCol); 1244 1245 if( pType->n==0 ){ 1246 /* If there is no type specified, columns have the default affinity 1247 ** 'BLOB' with a default size of 4 bytes. */ 1248 pCol->affinity = SQLITE_AFF_BLOB; 1249 pCol->szEst = 1; 1250 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1251 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1252 pCol->colFlags |= COLFLAG_SORTERREF; 1253 } 1254 #endif 1255 }else{ 1256 zType = z + sqlite3Strlen30(z) + 1; 1257 memcpy(zType, pType->z, pType->n); 1258 zType[pType->n] = 0; 1259 sqlite3Dequote(zType); 1260 pCol->affinity = sqlite3AffinityType(zType, pCol); 1261 pCol->colFlags |= COLFLAG_HASTYPE; 1262 } 1263 p->nCol++; 1264 p->nNVCol++; 1265 pParse->constraintName.n = 0; 1266 } 1267 1268 /* 1269 ** This routine is called by the parser while in the middle of 1270 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1271 ** been seen on a column. This routine sets the notNull flag on 1272 ** the column currently under construction. 1273 */ 1274 void sqlite3AddNotNull(Parse *pParse, int onError){ 1275 Table *p; 1276 Column *pCol; 1277 p = pParse->pNewTable; 1278 if( p==0 || NEVER(p->nCol<1) ) return; 1279 pCol = &p->aCol[p->nCol-1]; 1280 pCol->notNull = (u8)onError; 1281 p->tabFlags |= TF_HasNotNull; 1282 1283 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1284 ** on this column. */ 1285 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1286 Index *pIdx; 1287 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1288 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1289 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1290 pIdx->uniqNotNull = 1; 1291 } 1292 } 1293 } 1294 } 1295 1296 /* 1297 ** Scan the column type name zType (length nType) and return the 1298 ** associated affinity type. 1299 ** 1300 ** This routine does a case-independent search of zType for the 1301 ** substrings in the following table. If one of the substrings is 1302 ** found, the corresponding affinity is returned. If zType contains 1303 ** more than one of the substrings, entries toward the top of 1304 ** the table take priority. For example, if zType is 'BLOBINT', 1305 ** SQLITE_AFF_INTEGER is returned. 1306 ** 1307 ** Substring | Affinity 1308 ** -------------------------------- 1309 ** 'INT' | SQLITE_AFF_INTEGER 1310 ** 'CHAR' | SQLITE_AFF_TEXT 1311 ** 'CLOB' | SQLITE_AFF_TEXT 1312 ** 'TEXT' | SQLITE_AFF_TEXT 1313 ** 'BLOB' | SQLITE_AFF_BLOB 1314 ** 'REAL' | SQLITE_AFF_REAL 1315 ** 'FLOA' | SQLITE_AFF_REAL 1316 ** 'DOUB' | SQLITE_AFF_REAL 1317 ** 1318 ** If none of the substrings in the above table are found, 1319 ** SQLITE_AFF_NUMERIC is returned. 1320 */ 1321 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1322 u32 h = 0; 1323 char aff = SQLITE_AFF_NUMERIC; 1324 const char *zChar = 0; 1325 1326 assert( zIn!=0 ); 1327 while( zIn[0] ){ 1328 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1329 zIn++; 1330 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1331 aff = SQLITE_AFF_TEXT; 1332 zChar = zIn; 1333 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1334 aff = SQLITE_AFF_TEXT; 1335 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1336 aff = SQLITE_AFF_TEXT; 1337 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1338 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1339 aff = SQLITE_AFF_BLOB; 1340 if( zIn[0]=='(' ) zChar = zIn; 1341 #ifndef SQLITE_OMIT_FLOATING_POINT 1342 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1343 && aff==SQLITE_AFF_NUMERIC ){ 1344 aff = SQLITE_AFF_REAL; 1345 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1346 && aff==SQLITE_AFF_NUMERIC ){ 1347 aff = SQLITE_AFF_REAL; 1348 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1349 && aff==SQLITE_AFF_NUMERIC ){ 1350 aff = SQLITE_AFF_REAL; 1351 #endif 1352 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1353 aff = SQLITE_AFF_INTEGER; 1354 break; 1355 } 1356 } 1357 1358 /* If pCol is not NULL, store an estimate of the field size. The 1359 ** estimate is scaled so that the size of an integer is 1. */ 1360 if( pCol ){ 1361 int v = 0; /* default size is approx 4 bytes */ 1362 if( aff<SQLITE_AFF_NUMERIC ){ 1363 if( zChar ){ 1364 while( zChar[0] ){ 1365 if( sqlite3Isdigit(zChar[0]) ){ 1366 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1367 sqlite3GetInt32(zChar, &v); 1368 break; 1369 } 1370 zChar++; 1371 } 1372 }else{ 1373 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1374 } 1375 } 1376 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1377 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1378 pCol->colFlags |= COLFLAG_SORTERREF; 1379 } 1380 #endif 1381 v = v/4 + 1; 1382 if( v>255 ) v = 255; 1383 pCol->szEst = v; 1384 } 1385 return aff; 1386 } 1387 1388 /* 1389 ** The expression is the default value for the most recently added column 1390 ** of the table currently under construction. 1391 ** 1392 ** Default value expressions must be constant. Raise an exception if this 1393 ** is not the case. 1394 ** 1395 ** This routine is called by the parser while in the middle of 1396 ** parsing a CREATE TABLE statement. 1397 */ 1398 void sqlite3AddDefaultValue( 1399 Parse *pParse, /* Parsing context */ 1400 Expr *pExpr, /* The parsed expression of the default value */ 1401 const char *zStart, /* Start of the default value text */ 1402 const char *zEnd /* First character past end of defaut value text */ 1403 ){ 1404 Table *p; 1405 Column *pCol; 1406 sqlite3 *db = pParse->db; 1407 p = pParse->pNewTable; 1408 if( p!=0 ){ 1409 int isInit = db->init.busy && db->init.iDb!=1; 1410 pCol = &(p->aCol[p->nCol-1]); 1411 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1412 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1413 pCol->zName); 1414 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1415 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1416 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1417 testcase( pCol->colFlags & COLFLAG_STORED ); 1418 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1419 #endif 1420 }else{ 1421 /* A copy of pExpr is used instead of the original, as pExpr contains 1422 ** tokens that point to volatile memory. 1423 */ 1424 Expr x; 1425 sqlite3ExprDelete(db, pCol->pDflt); 1426 memset(&x, 0, sizeof(x)); 1427 x.op = TK_SPAN; 1428 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1429 x.pLeft = pExpr; 1430 x.flags = EP_Skip; 1431 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1432 sqlite3DbFree(db, x.u.zToken); 1433 } 1434 } 1435 if( IN_RENAME_OBJECT ){ 1436 sqlite3RenameExprUnmap(pParse, pExpr); 1437 } 1438 sqlite3ExprDelete(db, pExpr); 1439 } 1440 1441 /* 1442 ** Backwards Compatibility Hack: 1443 ** 1444 ** Historical versions of SQLite accepted strings as column names in 1445 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1446 ** 1447 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1448 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1449 ** 1450 ** This is goofy. But to preserve backwards compatibility we continue to 1451 ** accept it. This routine does the necessary conversion. It converts 1452 ** the expression given in its argument from a TK_STRING into a TK_ID 1453 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1454 ** If the expression is anything other than TK_STRING, the expression is 1455 ** unchanged. 1456 */ 1457 static void sqlite3StringToId(Expr *p){ 1458 if( p->op==TK_STRING ){ 1459 p->op = TK_ID; 1460 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1461 p->pLeft->op = TK_ID; 1462 } 1463 } 1464 1465 /* 1466 ** Tag the given column as being part of the PRIMARY KEY 1467 */ 1468 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1469 pCol->colFlags |= COLFLAG_PRIMKEY; 1470 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1471 if( pCol->colFlags & COLFLAG_GENERATED ){ 1472 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1473 testcase( pCol->colFlags & COLFLAG_STORED ); 1474 sqlite3ErrorMsg(pParse, 1475 "generated columns cannot be part of the PRIMARY KEY"); 1476 } 1477 #endif 1478 } 1479 1480 /* 1481 ** Designate the PRIMARY KEY for the table. pList is a list of names 1482 ** of columns that form the primary key. If pList is NULL, then the 1483 ** most recently added column of the table is the primary key. 1484 ** 1485 ** A table can have at most one primary key. If the table already has 1486 ** a primary key (and this is the second primary key) then create an 1487 ** error. 1488 ** 1489 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1490 ** then we will try to use that column as the rowid. Set the Table.iPKey 1491 ** field of the table under construction to be the index of the 1492 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1493 ** no INTEGER PRIMARY KEY. 1494 ** 1495 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1496 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1497 */ 1498 void sqlite3AddPrimaryKey( 1499 Parse *pParse, /* Parsing context */ 1500 ExprList *pList, /* List of field names to be indexed */ 1501 int onError, /* What to do with a uniqueness conflict */ 1502 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1503 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1504 ){ 1505 Table *pTab = pParse->pNewTable; 1506 Column *pCol = 0; 1507 int iCol = -1, i; 1508 int nTerm; 1509 if( pTab==0 ) goto primary_key_exit; 1510 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1511 sqlite3ErrorMsg(pParse, 1512 "table \"%s\" has more than one primary key", pTab->zName); 1513 goto primary_key_exit; 1514 } 1515 pTab->tabFlags |= TF_HasPrimaryKey; 1516 if( pList==0 ){ 1517 iCol = pTab->nCol - 1; 1518 pCol = &pTab->aCol[iCol]; 1519 makeColumnPartOfPrimaryKey(pParse, pCol); 1520 nTerm = 1; 1521 }else{ 1522 nTerm = pList->nExpr; 1523 for(i=0; i<nTerm; i++){ 1524 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1525 assert( pCExpr!=0 ); 1526 sqlite3StringToId(pCExpr); 1527 if( pCExpr->op==TK_ID ){ 1528 const char *zCName = pCExpr->u.zToken; 1529 for(iCol=0; iCol<pTab->nCol; iCol++){ 1530 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1531 pCol = &pTab->aCol[iCol]; 1532 makeColumnPartOfPrimaryKey(pParse, pCol); 1533 break; 1534 } 1535 } 1536 } 1537 } 1538 } 1539 if( nTerm==1 1540 && pCol 1541 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1542 && sortOrder!=SQLITE_SO_DESC 1543 ){ 1544 if( IN_RENAME_OBJECT && pList ){ 1545 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1546 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1547 } 1548 pTab->iPKey = iCol; 1549 pTab->keyConf = (u8)onError; 1550 assert( autoInc==0 || autoInc==1 ); 1551 pTab->tabFlags |= autoInc*TF_Autoincrement; 1552 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1553 (void)sqlite3HasExplicitNulls(pParse, pList); 1554 }else if( autoInc ){ 1555 #ifndef SQLITE_OMIT_AUTOINCREMENT 1556 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1557 "INTEGER PRIMARY KEY"); 1558 #endif 1559 }else{ 1560 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1561 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1562 pList = 0; 1563 } 1564 1565 primary_key_exit: 1566 sqlite3ExprListDelete(pParse->db, pList); 1567 return; 1568 } 1569 1570 /* 1571 ** Add a new CHECK constraint to the table currently under construction. 1572 */ 1573 void sqlite3AddCheckConstraint( 1574 Parse *pParse, /* Parsing context */ 1575 Expr *pCheckExpr /* The check expression */ 1576 ){ 1577 #ifndef SQLITE_OMIT_CHECK 1578 Table *pTab = pParse->pNewTable; 1579 sqlite3 *db = pParse->db; 1580 if( pTab && !IN_DECLARE_VTAB 1581 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1582 ){ 1583 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1584 if( pParse->constraintName.n ){ 1585 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1586 } 1587 }else 1588 #endif 1589 { 1590 sqlite3ExprDelete(pParse->db, pCheckExpr); 1591 } 1592 } 1593 1594 /* 1595 ** Set the collation function of the most recently parsed table column 1596 ** to the CollSeq given. 1597 */ 1598 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1599 Table *p; 1600 int i; 1601 char *zColl; /* Dequoted name of collation sequence */ 1602 sqlite3 *db; 1603 1604 if( (p = pParse->pNewTable)==0 ) return; 1605 i = p->nCol-1; 1606 db = pParse->db; 1607 zColl = sqlite3NameFromToken(db, pToken); 1608 if( !zColl ) return; 1609 1610 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1611 Index *pIdx; 1612 sqlite3DbFree(db, p->aCol[i].zColl); 1613 p->aCol[i].zColl = zColl; 1614 1615 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1616 ** then an index may have been created on this column before the 1617 ** collation type was added. Correct this if it is the case. 1618 */ 1619 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1620 assert( pIdx->nKeyCol==1 ); 1621 if( pIdx->aiColumn[0]==i ){ 1622 pIdx->azColl[0] = p->aCol[i].zColl; 1623 } 1624 } 1625 }else{ 1626 sqlite3DbFree(db, zColl); 1627 } 1628 } 1629 1630 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1631 ** column. 1632 */ 1633 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1634 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1635 u8 eType = COLFLAG_VIRTUAL; 1636 Table *pTab = pParse->pNewTable; 1637 Column *pCol; 1638 if( pTab==0 ){ 1639 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1640 goto generated_done; 1641 } 1642 pCol = &(pTab->aCol[pTab->nCol-1]); 1643 if( IN_DECLARE_VTAB ){ 1644 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1645 goto generated_done; 1646 } 1647 if( pCol->pDflt ) goto generated_error; 1648 if( pType ){ 1649 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1650 /* no-op */ 1651 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1652 eType = COLFLAG_STORED; 1653 }else{ 1654 goto generated_error; 1655 } 1656 } 1657 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1658 pCol->colFlags |= eType; 1659 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1660 assert( TF_HasStored==COLFLAG_STORED ); 1661 pTab->tabFlags |= eType; 1662 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1663 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1664 } 1665 pCol->pDflt = pExpr; 1666 pExpr = 0; 1667 goto generated_done; 1668 1669 generated_error: 1670 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1671 pCol->zName); 1672 generated_done: 1673 sqlite3ExprDelete(pParse->db, pExpr); 1674 #else 1675 /* Throw and error for the GENERATED ALWAYS AS clause if the 1676 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1677 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1678 sqlite3ExprDelete(pParse->db, pExpr); 1679 #endif 1680 } 1681 1682 /* 1683 ** Generate code that will increment the schema cookie. 1684 ** 1685 ** The schema cookie is used to determine when the schema for the 1686 ** database changes. After each schema change, the cookie value 1687 ** changes. When a process first reads the schema it records the 1688 ** cookie. Thereafter, whenever it goes to access the database, 1689 ** it checks the cookie to make sure the schema has not changed 1690 ** since it was last read. 1691 ** 1692 ** This plan is not completely bullet-proof. It is possible for 1693 ** the schema to change multiple times and for the cookie to be 1694 ** set back to prior value. But schema changes are infrequent 1695 ** and the probability of hitting the same cookie value is only 1696 ** 1 chance in 2^32. So we're safe enough. 1697 ** 1698 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1699 ** the schema-version whenever the schema changes. 1700 */ 1701 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1702 sqlite3 *db = pParse->db; 1703 Vdbe *v = pParse->pVdbe; 1704 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1705 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1706 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1707 } 1708 1709 /* 1710 ** Measure the number of characters needed to output the given 1711 ** identifier. The number returned includes any quotes used 1712 ** but does not include the null terminator. 1713 ** 1714 ** The estimate is conservative. It might be larger that what is 1715 ** really needed. 1716 */ 1717 static int identLength(const char *z){ 1718 int n; 1719 for(n=0; *z; n++, z++){ 1720 if( *z=='"' ){ n++; } 1721 } 1722 return n + 2; 1723 } 1724 1725 /* 1726 ** The first parameter is a pointer to an output buffer. The second 1727 ** parameter is a pointer to an integer that contains the offset at 1728 ** which to write into the output buffer. This function copies the 1729 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1730 ** to the specified offset in the buffer and updates *pIdx to refer 1731 ** to the first byte after the last byte written before returning. 1732 ** 1733 ** If the string zSignedIdent consists entirely of alpha-numeric 1734 ** characters, does not begin with a digit and is not an SQL keyword, 1735 ** then it is copied to the output buffer exactly as it is. Otherwise, 1736 ** it is quoted using double-quotes. 1737 */ 1738 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1739 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1740 int i, j, needQuote; 1741 i = *pIdx; 1742 1743 for(j=0; zIdent[j]; j++){ 1744 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1745 } 1746 needQuote = sqlite3Isdigit(zIdent[0]) 1747 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1748 || zIdent[j]!=0 1749 || j==0; 1750 1751 if( needQuote ) z[i++] = '"'; 1752 for(j=0; zIdent[j]; j++){ 1753 z[i++] = zIdent[j]; 1754 if( zIdent[j]=='"' ) z[i++] = '"'; 1755 } 1756 if( needQuote ) z[i++] = '"'; 1757 z[i] = 0; 1758 *pIdx = i; 1759 } 1760 1761 /* 1762 ** Generate a CREATE TABLE statement appropriate for the given 1763 ** table. Memory to hold the text of the statement is obtained 1764 ** from sqliteMalloc() and must be freed by the calling function. 1765 */ 1766 static char *createTableStmt(sqlite3 *db, Table *p){ 1767 int i, k, n; 1768 char *zStmt; 1769 char *zSep, *zSep2, *zEnd; 1770 Column *pCol; 1771 n = 0; 1772 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1773 n += identLength(pCol->zName) + 5; 1774 } 1775 n += identLength(p->zName); 1776 if( n<50 ){ 1777 zSep = ""; 1778 zSep2 = ","; 1779 zEnd = ")"; 1780 }else{ 1781 zSep = "\n "; 1782 zSep2 = ",\n "; 1783 zEnd = "\n)"; 1784 } 1785 n += 35 + 6*p->nCol; 1786 zStmt = sqlite3DbMallocRaw(0, n); 1787 if( zStmt==0 ){ 1788 sqlite3OomFault(db); 1789 return 0; 1790 } 1791 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1792 k = sqlite3Strlen30(zStmt); 1793 identPut(zStmt, &k, p->zName); 1794 zStmt[k++] = '('; 1795 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1796 static const char * const azType[] = { 1797 /* SQLITE_AFF_BLOB */ "", 1798 /* SQLITE_AFF_TEXT */ " TEXT", 1799 /* SQLITE_AFF_NUMERIC */ " NUM", 1800 /* SQLITE_AFF_INTEGER */ " INT", 1801 /* SQLITE_AFF_REAL */ " REAL" 1802 }; 1803 int len; 1804 const char *zType; 1805 1806 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1807 k += sqlite3Strlen30(&zStmt[k]); 1808 zSep = zSep2; 1809 identPut(zStmt, &k, pCol->zName); 1810 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1811 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1812 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1813 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1814 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1815 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1816 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1817 1818 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1819 len = sqlite3Strlen30(zType); 1820 assert( pCol->affinity==SQLITE_AFF_BLOB 1821 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1822 memcpy(&zStmt[k], zType, len); 1823 k += len; 1824 assert( k<=n ); 1825 } 1826 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1827 return zStmt; 1828 } 1829 1830 /* 1831 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1832 ** on success and SQLITE_NOMEM on an OOM error. 1833 */ 1834 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1835 char *zExtra; 1836 int nByte; 1837 if( pIdx->nColumn>=N ) return SQLITE_OK; 1838 assert( pIdx->isResized==0 ); 1839 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1840 zExtra = sqlite3DbMallocZero(db, nByte); 1841 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1842 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1843 pIdx->azColl = (const char**)zExtra; 1844 zExtra += sizeof(char*)*N; 1845 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1846 pIdx->aiColumn = (i16*)zExtra; 1847 zExtra += sizeof(i16)*N; 1848 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1849 pIdx->aSortOrder = (u8*)zExtra; 1850 pIdx->nColumn = N; 1851 pIdx->isResized = 1; 1852 return SQLITE_OK; 1853 } 1854 1855 /* 1856 ** Estimate the total row width for a table. 1857 */ 1858 static void estimateTableWidth(Table *pTab){ 1859 unsigned wTable = 0; 1860 const Column *pTabCol; 1861 int i; 1862 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1863 wTable += pTabCol->szEst; 1864 } 1865 if( pTab->iPKey<0 ) wTable++; 1866 pTab->szTabRow = sqlite3LogEst(wTable*4); 1867 } 1868 1869 /* 1870 ** Estimate the average size of a row for an index. 1871 */ 1872 static void estimateIndexWidth(Index *pIdx){ 1873 unsigned wIndex = 0; 1874 int i; 1875 const Column *aCol = pIdx->pTable->aCol; 1876 for(i=0; i<pIdx->nColumn; i++){ 1877 i16 x = pIdx->aiColumn[i]; 1878 assert( x<pIdx->pTable->nCol ); 1879 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1880 } 1881 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1882 } 1883 1884 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1885 ** This is used to determine if the column number x appears in any of the 1886 ** first nCol entries of an index. 1887 */ 1888 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1889 while( nCol-- > 0 ){ 1890 assert( aiCol[0]>=0 ); 1891 if( x==*(aiCol++) ){ 1892 return 1; 1893 } 1894 } 1895 return 0; 1896 } 1897 1898 /* 1899 ** Return true if any of the first nKey entries of index pIdx exactly 1900 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1901 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1902 ** or may not be the same index as pPk. 1903 ** 1904 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1905 ** not a rowid or expression. 1906 ** 1907 ** This routine differs from hasColumn() in that both the column and the 1908 ** collating sequence must match for this routine, but for hasColumn() only 1909 ** the column name must match. 1910 */ 1911 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1912 int i, j; 1913 assert( nKey<=pIdx->nColumn ); 1914 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1915 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1916 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1917 assert( pPk->pTable==pIdx->pTable ); 1918 testcase( pPk==pIdx ); 1919 j = pPk->aiColumn[iCol]; 1920 assert( j!=XN_ROWID && j!=XN_EXPR ); 1921 for(i=0; i<nKey; i++){ 1922 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1923 if( pIdx->aiColumn[i]==j 1924 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1925 ){ 1926 return 1; 1927 } 1928 } 1929 return 0; 1930 } 1931 1932 /* Recompute the colNotIdxed field of the Index. 1933 ** 1934 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1935 ** columns that are within the first 63 columns of the table. The 1936 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1937 ** of the table have a 1. 1938 ** 1939 ** 2019-10-24: For the purpose of this computation, virtual columns are 1940 ** not considered to be covered by the index, even if they are in the 1941 ** index, because we do not trust the logic in whereIndexExprTrans() to be 1942 ** able to find all instances of a reference to the indexed table column 1943 ** and convert them into references to the index. Hence we always want 1944 ** the actual table at hand in order to recompute the virtual column, if 1945 ** necessary. 1946 ** 1947 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1948 ** to determine if the index is covering index. 1949 */ 1950 static void recomputeColumnsNotIndexed(Index *pIdx){ 1951 Bitmask m = 0; 1952 int j; 1953 Table *pTab = pIdx->pTable; 1954 for(j=pIdx->nColumn-1; j>=0; j--){ 1955 int x = pIdx->aiColumn[j]; 1956 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 1957 testcase( x==BMS-1 ); 1958 testcase( x==BMS-2 ); 1959 if( x<BMS-1 ) m |= MASKBIT(x); 1960 } 1961 } 1962 pIdx->colNotIdxed = ~m; 1963 assert( (pIdx->colNotIdxed>>63)==1 ); 1964 } 1965 1966 /* 1967 ** This routine runs at the end of parsing a CREATE TABLE statement that 1968 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1969 ** internal schema data structures and the generated VDBE code so that they 1970 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1971 ** Changes include: 1972 ** 1973 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1974 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1975 ** into BTREE_BLOBKEY. 1976 ** (3) Bypass the creation of the sqlite_master table entry 1977 ** for the PRIMARY KEY as the primary key index is now 1978 ** identified by the sqlite_master table entry of the table itself. 1979 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1980 ** schema to the rootpage from the main table. 1981 ** (5) Add all table columns to the PRIMARY KEY Index object 1982 ** so that the PRIMARY KEY is a covering index. The surplus 1983 ** columns are part of KeyInfo.nAllField and are not used for 1984 ** sorting or lookup or uniqueness checks. 1985 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1986 ** indices with the PRIMARY KEY columns. 1987 ** 1988 ** For virtual tables, only (1) is performed. 1989 */ 1990 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1991 Index *pIdx; 1992 Index *pPk; 1993 int nPk; 1994 int nExtra; 1995 int i, j; 1996 sqlite3 *db = pParse->db; 1997 Vdbe *v = pParse->pVdbe; 1998 1999 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2000 */ 2001 if( !db->init.imposterTable ){ 2002 for(i=0; i<pTab->nCol; i++){ 2003 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2004 pTab->aCol[i].notNull = OE_Abort; 2005 } 2006 } 2007 pTab->tabFlags |= TF_HasNotNull; 2008 } 2009 2010 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2011 ** into BTREE_BLOBKEY. 2012 */ 2013 if( pParse->addrCrTab ){ 2014 assert( v ); 2015 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 2016 } 2017 2018 /* Locate the PRIMARY KEY index. Or, if this table was originally 2019 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2020 */ 2021 if( pTab->iPKey>=0 ){ 2022 ExprList *pList; 2023 Token ipkToken; 2024 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2025 pList = sqlite3ExprListAppend(pParse, 0, 2026 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2027 if( pList==0 ) return; 2028 if( IN_RENAME_OBJECT ){ 2029 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2030 } 2031 pList->a[0].sortFlags = pParse->iPkSortOrder; 2032 assert( pParse->pNewTable==pTab ); 2033 pTab->iPKey = -1; 2034 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2035 SQLITE_IDXTYPE_PRIMARYKEY); 2036 if( db->mallocFailed || pParse->nErr ) return; 2037 pPk = sqlite3PrimaryKeyIndex(pTab); 2038 assert( pPk->nKeyCol==1 ); 2039 }else{ 2040 pPk = sqlite3PrimaryKeyIndex(pTab); 2041 assert( pPk!=0 ); 2042 2043 /* 2044 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2045 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2046 ** code assumes the PRIMARY KEY contains no repeated columns. 2047 */ 2048 for(i=j=1; i<pPk->nKeyCol; i++){ 2049 if( isDupColumn(pPk, j, pPk, i) ){ 2050 pPk->nColumn--; 2051 }else{ 2052 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2053 pPk->azColl[j] = pPk->azColl[i]; 2054 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2055 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2056 } 2057 } 2058 pPk->nKeyCol = j; 2059 } 2060 assert( pPk!=0 ); 2061 pPk->isCovering = 1; 2062 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2063 nPk = pPk->nColumn = pPk->nKeyCol; 2064 2065 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 2066 ** table entry. This is only required if currently generating VDBE 2067 ** code for a CREATE TABLE (not when parsing one as part of reading 2068 ** a database schema). */ 2069 if( v && pPk->tnum>0 ){ 2070 assert( db->init.busy==0 ); 2071 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 2072 } 2073 2074 /* The root page of the PRIMARY KEY is the table root page */ 2075 pPk->tnum = pTab->tnum; 2076 2077 /* Update the in-memory representation of all UNIQUE indices by converting 2078 ** the final rowid column into one or more columns of the PRIMARY KEY. 2079 */ 2080 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2081 int n; 2082 if( IsPrimaryKeyIndex(pIdx) ) continue; 2083 for(i=n=0; i<nPk; i++){ 2084 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2085 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2086 n++; 2087 } 2088 } 2089 if( n==0 ){ 2090 /* This index is a superset of the primary key */ 2091 pIdx->nColumn = pIdx->nKeyCol; 2092 continue; 2093 } 2094 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2095 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2096 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2097 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2098 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2099 pIdx->azColl[j] = pPk->azColl[i]; 2100 if( pPk->aSortOrder[i] ){ 2101 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2102 pIdx->bAscKeyBug = 1; 2103 } 2104 j++; 2105 } 2106 } 2107 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2108 assert( pIdx->nColumn>=j ); 2109 } 2110 2111 /* Add all table columns to the PRIMARY KEY index 2112 */ 2113 nExtra = 0; 2114 for(i=0; i<pTab->nCol; i++){ 2115 if( !hasColumn(pPk->aiColumn, nPk, i) 2116 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2117 } 2118 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2119 for(i=0, j=nPk; i<pTab->nCol; i++){ 2120 if( !hasColumn(pPk->aiColumn, j, i) 2121 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2122 ){ 2123 assert( j<pPk->nColumn ); 2124 pPk->aiColumn[j] = i; 2125 pPk->azColl[j] = sqlite3StrBINARY; 2126 j++; 2127 } 2128 } 2129 assert( pPk->nColumn==j ); 2130 assert( pTab->nNVCol<=j ); 2131 recomputeColumnsNotIndexed(pPk); 2132 } 2133 2134 2135 #ifndef SQLITE_OMIT_VIRTUALTABLE 2136 /* 2137 ** Return true if pTab is a virtual table and zName is a shadow table name 2138 ** for that virtual table. 2139 */ 2140 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2141 int nName; /* Length of zName */ 2142 Module *pMod; /* Module for the virtual table */ 2143 2144 if( !IsVirtual(pTab) ) return 0; 2145 nName = sqlite3Strlen30(pTab->zName); 2146 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2147 if( zName[nName]!='_' ) return 0; 2148 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2149 if( pMod==0 ) return 0; 2150 if( pMod->pModule->iVersion<3 ) return 0; 2151 if( pMod->pModule->xShadowName==0 ) return 0; 2152 return pMod->pModule->xShadowName(zName+nName+1); 2153 } 2154 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2155 2156 #ifndef SQLITE_OMIT_VIRTUALTABLE 2157 /* 2158 ** Return true if zName is a shadow table name in the current database 2159 ** connection. 2160 ** 2161 ** zName is temporarily modified while this routine is running, but is 2162 ** restored to its original value prior to this routine returning. 2163 */ 2164 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2165 char *zTail; /* Pointer to the last "_" in zName */ 2166 Table *pTab; /* Table that zName is a shadow of */ 2167 zTail = strrchr(zName, '_'); 2168 if( zTail==0 ) return 0; 2169 *zTail = 0; 2170 pTab = sqlite3FindTable(db, zName, 0); 2171 *zTail = '_'; 2172 if( pTab==0 ) return 0; 2173 if( !IsVirtual(pTab) ) return 0; 2174 return sqlite3IsShadowTableOf(db, pTab, zName); 2175 } 2176 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2177 2178 2179 #ifdef SQLITE_DEBUG 2180 /* 2181 ** Mark all nodes of an expression as EP_Immutable, indicating that 2182 ** they should not be changed. Expressions attached to a table or 2183 ** index definition are tagged this way to help ensure that we do 2184 ** not pass them into code generator routines by mistake. 2185 */ 2186 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2187 ExprSetVVAProperty(pExpr, EP_Immutable); 2188 return WRC_Continue; 2189 } 2190 static void markExprListImmutable(ExprList *pList){ 2191 if( pList ){ 2192 Walker w; 2193 memset(&w, 0, sizeof(w)); 2194 w.xExprCallback = markImmutableExprStep; 2195 w.xSelectCallback = sqlite3SelectWalkNoop; 2196 w.xSelectCallback2 = 0; 2197 sqlite3WalkExprList(&w, pList); 2198 } 2199 } 2200 #else 2201 #define markExprListImmutable(X) /* no-op */ 2202 #endif /* SQLITE_DEBUG */ 2203 2204 2205 /* 2206 ** This routine is called to report the final ")" that terminates 2207 ** a CREATE TABLE statement. 2208 ** 2209 ** The table structure that other action routines have been building 2210 ** is added to the internal hash tables, assuming no errors have 2211 ** occurred. 2212 ** 2213 ** An entry for the table is made in the master table on disk, unless 2214 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2215 ** it means we are reading the sqlite_master table because we just 2216 ** connected to the database or because the sqlite_master table has 2217 ** recently changed, so the entry for this table already exists in 2218 ** the sqlite_master table. We do not want to create it again. 2219 ** 2220 ** If the pSelect argument is not NULL, it means that this routine 2221 ** was called to create a table generated from a 2222 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2223 ** the new table will match the result set of the SELECT. 2224 */ 2225 void sqlite3EndTable( 2226 Parse *pParse, /* Parse context */ 2227 Token *pCons, /* The ',' token after the last column defn. */ 2228 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2229 u8 tabOpts, /* Extra table options. Usually 0. */ 2230 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2231 ){ 2232 Table *p; /* The new table */ 2233 sqlite3 *db = pParse->db; /* The database connection */ 2234 int iDb; /* Database in which the table lives */ 2235 Index *pIdx; /* An implied index of the table */ 2236 2237 if( pEnd==0 && pSelect==0 ){ 2238 return; 2239 } 2240 assert( !db->mallocFailed ); 2241 p = pParse->pNewTable; 2242 if( p==0 ) return; 2243 2244 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2245 p->tabFlags |= TF_Shadow; 2246 } 2247 2248 /* If the db->init.busy is 1 it means we are reading the SQL off the 2249 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2250 ** So do not write to the disk again. Extract the root page number 2251 ** for the table from the db->init.newTnum field. (The page number 2252 ** should have been put there by the sqliteOpenCb routine.) 2253 ** 2254 ** If the root page number is 1, that means this is the sqlite_master 2255 ** table itself. So mark it read-only. 2256 */ 2257 if( db->init.busy ){ 2258 if( pSelect ){ 2259 sqlite3ErrorMsg(pParse, ""); 2260 return; 2261 } 2262 p->tnum = db->init.newTnum; 2263 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2264 } 2265 2266 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2267 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2268 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2269 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2270 2271 /* Special processing for WITHOUT ROWID Tables */ 2272 if( tabOpts & TF_WithoutRowid ){ 2273 if( (p->tabFlags & TF_Autoincrement) ){ 2274 sqlite3ErrorMsg(pParse, 2275 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2276 return; 2277 } 2278 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2279 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2280 return; 2281 } 2282 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2283 convertToWithoutRowidTable(pParse, p); 2284 } 2285 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2286 2287 #ifndef SQLITE_OMIT_CHECK 2288 /* Resolve names in all CHECK constraint expressions. 2289 */ 2290 if( p->pCheck ){ 2291 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2292 if( pParse->nErr ){ 2293 /* If errors are seen, delete the CHECK constraints now, else they might 2294 ** actually be used if PRAGMA writable_schema=ON is set. */ 2295 sqlite3ExprListDelete(db, p->pCheck); 2296 p->pCheck = 0; 2297 }else{ 2298 markExprListImmutable(p->pCheck); 2299 } 2300 } 2301 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2302 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2303 if( p->tabFlags & TF_HasGenerated ){ 2304 int ii, nNG = 0; 2305 testcase( p->tabFlags & TF_HasVirtual ); 2306 testcase( p->tabFlags & TF_HasStored ); 2307 for(ii=0; ii<p->nCol; ii++){ 2308 u32 colFlags = p->aCol[ii].colFlags; 2309 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2310 Expr *pX = p->aCol[ii].pDflt; 2311 testcase( colFlags & COLFLAG_VIRTUAL ); 2312 testcase( colFlags & COLFLAG_STORED ); 2313 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2314 /* If there are errors in resolving the expression, change the 2315 ** expression to a NULL. This prevents code generators that operate 2316 ** on the expression from inserting extra parts into the expression 2317 ** tree that have been allocated from lookaside memory, which is 2318 ** illegal in a schema and will lead to errors or heap corruption 2319 ** when the database connection closes. */ 2320 sqlite3ExprDelete(db, pX); 2321 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2322 } 2323 }else{ 2324 nNG++; 2325 } 2326 } 2327 if( nNG==0 ){ 2328 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2329 return; 2330 } 2331 } 2332 #endif 2333 2334 /* Estimate the average row size for the table and for all implied indices */ 2335 estimateTableWidth(p); 2336 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2337 estimateIndexWidth(pIdx); 2338 } 2339 2340 /* If not initializing, then create a record for the new table 2341 ** in the SQLITE_MASTER table of the database. 2342 ** 2343 ** If this is a TEMPORARY table, write the entry into the auxiliary 2344 ** file instead of into the main database file. 2345 */ 2346 if( !db->init.busy ){ 2347 int n; 2348 Vdbe *v; 2349 char *zType; /* "view" or "table" */ 2350 char *zType2; /* "VIEW" or "TABLE" */ 2351 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2352 2353 v = sqlite3GetVdbe(pParse); 2354 if( NEVER(v==0) ) return; 2355 2356 sqlite3VdbeAddOp1(v, OP_Close, 0); 2357 2358 /* 2359 ** Initialize zType for the new view or table. 2360 */ 2361 if( p->pSelect==0 ){ 2362 /* A regular table */ 2363 zType = "table"; 2364 zType2 = "TABLE"; 2365 #ifndef SQLITE_OMIT_VIEW 2366 }else{ 2367 /* A view */ 2368 zType = "view"; 2369 zType2 = "VIEW"; 2370 #endif 2371 } 2372 2373 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2374 ** statement to populate the new table. The root-page number for the 2375 ** new table is in register pParse->regRoot. 2376 ** 2377 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2378 ** suitable state to query for the column names and types to be used 2379 ** by the new table. 2380 ** 2381 ** A shared-cache write-lock is not required to write to the new table, 2382 ** as a schema-lock must have already been obtained to create it. Since 2383 ** a schema-lock excludes all other database users, the write-lock would 2384 ** be redundant. 2385 */ 2386 if( pSelect ){ 2387 SelectDest dest; /* Where the SELECT should store results */ 2388 int regYield; /* Register holding co-routine entry-point */ 2389 int addrTop; /* Top of the co-routine */ 2390 int regRec; /* A record to be insert into the new table */ 2391 int regRowid; /* Rowid of the next row to insert */ 2392 int addrInsLoop; /* Top of the loop for inserting rows */ 2393 Table *pSelTab; /* A table that describes the SELECT results */ 2394 2395 regYield = ++pParse->nMem; 2396 regRec = ++pParse->nMem; 2397 regRowid = ++pParse->nMem; 2398 assert(pParse->nTab==1); 2399 sqlite3MayAbort(pParse); 2400 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2401 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2402 pParse->nTab = 2; 2403 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2404 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2405 if( pParse->nErr ) return; 2406 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2407 if( pSelTab==0 ) return; 2408 assert( p->aCol==0 ); 2409 p->nCol = p->nNVCol = pSelTab->nCol; 2410 p->aCol = pSelTab->aCol; 2411 pSelTab->nCol = 0; 2412 pSelTab->aCol = 0; 2413 sqlite3DeleteTable(db, pSelTab); 2414 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2415 sqlite3Select(pParse, pSelect, &dest); 2416 if( pParse->nErr ) return; 2417 sqlite3VdbeEndCoroutine(v, regYield); 2418 sqlite3VdbeJumpHere(v, addrTop - 1); 2419 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2420 VdbeCoverage(v); 2421 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2422 sqlite3TableAffinity(v, p, 0); 2423 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2424 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2425 sqlite3VdbeGoto(v, addrInsLoop); 2426 sqlite3VdbeJumpHere(v, addrInsLoop); 2427 sqlite3VdbeAddOp1(v, OP_Close, 1); 2428 } 2429 2430 /* Compute the complete text of the CREATE statement */ 2431 if( pSelect ){ 2432 zStmt = createTableStmt(db, p); 2433 }else{ 2434 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2435 n = (int)(pEnd2->z - pParse->sNameToken.z); 2436 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2437 zStmt = sqlite3MPrintf(db, 2438 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2439 ); 2440 } 2441 2442 /* A slot for the record has already been allocated in the 2443 ** SQLITE_MASTER table. We just need to update that slot with all 2444 ** the information we've collected. 2445 */ 2446 sqlite3NestedParse(pParse, 2447 "UPDATE %Q.%s " 2448 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2449 "WHERE rowid=#%d", 2450 db->aDb[iDb].zDbSName, MASTER_NAME, 2451 zType, 2452 p->zName, 2453 p->zName, 2454 pParse->regRoot, 2455 zStmt, 2456 pParse->regRowid 2457 ); 2458 sqlite3DbFree(db, zStmt); 2459 sqlite3ChangeCookie(pParse, iDb); 2460 2461 #ifndef SQLITE_OMIT_AUTOINCREMENT 2462 /* Check to see if we need to create an sqlite_sequence table for 2463 ** keeping track of autoincrement keys. 2464 */ 2465 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2466 Db *pDb = &db->aDb[iDb]; 2467 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2468 if( pDb->pSchema->pSeqTab==0 ){ 2469 sqlite3NestedParse(pParse, 2470 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2471 pDb->zDbSName 2472 ); 2473 } 2474 } 2475 #endif 2476 2477 /* Reparse everything to update our internal data structures */ 2478 sqlite3VdbeAddParseSchemaOp(v, iDb, 2479 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2480 } 2481 2482 /* Add the table to the in-memory representation of the database. 2483 */ 2484 if( db->init.busy ){ 2485 Table *pOld; 2486 Schema *pSchema = p->pSchema; 2487 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2488 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2489 if( pOld ){ 2490 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2491 sqlite3OomFault(db); 2492 return; 2493 } 2494 pParse->pNewTable = 0; 2495 db->mDbFlags |= DBFLAG_SchemaChange; 2496 2497 #ifndef SQLITE_OMIT_ALTERTABLE 2498 if( !p->pSelect ){ 2499 const char *zName = (const char *)pParse->sNameToken.z; 2500 int nName; 2501 assert( !pSelect && pCons && pEnd ); 2502 if( pCons->z==0 ){ 2503 pCons = pEnd; 2504 } 2505 nName = (int)((const char *)pCons->z - zName); 2506 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2507 } 2508 #endif 2509 } 2510 } 2511 2512 #ifndef SQLITE_OMIT_VIEW 2513 /* 2514 ** The parser calls this routine in order to create a new VIEW 2515 */ 2516 void sqlite3CreateView( 2517 Parse *pParse, /* The parsing context */ 2518 Token *pBegin, /* The CREATE token that begins the statement */ 2519 Token *pName1, /* The token that holds the name of the view */ 2520 Token *pName2, /* The token that holds the name of the view */ 2521 ExprList *pCNames, /* Optional list of view column names */ 2522 Select *pSelect, /* A SELECT statement that will become the new view */ 2523 int isTemp, /* TRUE for a TEMPORARY view */ 2524 int noErr /* Suppress error messages if VIEW already exists */ 2525 ){ 2526 Table *p; 2527 int n; 2528 const char *z; 2529 Token sEnd; 2530 DbFixer sFix; 2531 Token *pName = 0; 2532 int iDb; 2533 sqlite3 *db = pParse->db; 2534 2535 if( pParse->nVar>0 ){ 2536 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2537 goto create_view_fail; 2538 } 2539 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2540 p = pParse->pNewTable; 2541 if( p==0 || pParse->nErr ) goto create_view_fail; 2542 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2543 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2544 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2545 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2546 2547 /* Make a copy of the entire SELECT statement that defines the view. 2548 ** This will force all the Expr.token.z values to be dynamically 2549 ** allocated rather than point to the input string - which means that 2550 ** they will persist after the current sqlite3_exec() call returns. 2551 */ 2552 pSelect->selFlags |= SF_View; 2553 if( IN_RENAME_OBJECT ){ 2554 p->pSelect = pSelect; 2555 pSelect = 0; 2556 }else{ 2557 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2558 } 2559 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2560 if( db->mallocFailed ) goto create_view_fail; 2561 2562 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2563 ** the end. 2564 */ 2565 sEnd = pParse->sLastToken; 2566 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2567 if( sEnd.z[0]!=';' ){ 2568 sEnd.z += sEnd.n; 2569 } 2570 sEnd.n = 0; 2571 n = (int)(sEnd.z - pBegin->z); 2572 assert( n>0 ); 2573 z = pBegin->z; 2574 while( sqlite3Isspace(z[n-1]) ){ n--; } 2575 sEnd.z = &z[n-1]; 2576 sEnd.n = 1; 2577 2578 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2579 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2580 2581 create_view_fail: 2582 sqlite3SelectDelete(db, pSelect); 2583 if( IN_RENAME_OBJECT ){ 2584 sqlite3RenameExprlistUnmap(pParse, pCNames); 2585 } 2586 sqlite3ExprListDelete(db, pCNames); 2587 return; 2588 } 2589 #endif /* SQLITE_OMIT_VIEW */ 2590 2591 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2592 /* 2593 ** The Table structure pTable is really a VIEW. Fill in the names of 2594 ** the columns of the view in the pTable structure. Return the number 2595 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2596 */ 2597 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2598 Table *pSelTab; /* A fake table from which we get the result set */ 2599 Select *pSel; /* Copy of the SELECT that implements the view */ 2600 int nErr = 0; /* Number of errors encountered */ 2601 int n; /* Temporarily holds the number of cursors assigned */ 2602 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2603 #ifndef SQLITE_OMIT_VIRTUALTABLE 2604 int rc; 2605 #endif 2606 #ifndef SQLITE_OMIT_AUTHORIZATION 2607 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2608 #endif 2609 2610 assert( pTable ); 2611 2612 #ifndef SQLITE_OMIT_VIRTUALTABLE 2613 db->nSchemaLock++; 2614 rc = sqlite3VtabCallConnect(pParse, pTable); 2615 db->nSchemaLock--; 2616 if( rc ){ 2617 return 1; 2618 } 2619 if( IsVirtual(pTable) ) return 0; 2620 #endif 2621 2622 #ifndef SQLITE_OMIT_VIEW 2623 /* A positive nCol means the columns names for this view are 2624 ** already known. 2625 */ 2626 if( pTable->nCol>0 ) return 0; 2627 2628 /* A negative nCol is a special marker meaning that we are currently 2629 ** trying to compute the column names. If we enter this routine with 2630 ** a negative nCol, it means two or more views form a loop, like this: 2631 ** 2632 ** CREATE VIEW one AS SELECT * FROM two; 2633 ** CREATE VIEW two AS SELECT * FROM one; 2634 ** 2635 ** Actually, the error above is now caught prior to reaching this point. 2636 ** But the following test is still important as it does come up 2637 ** in the following: 2638 ** 2639 ** CREATE TABLE main.ex1(a); 2640 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2641 ** SELECT * FROM temp.ex1; 2642 */ 2643 if( pTable->nCol<0 ){ 2644 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2645 return 1; 2646 } 2647 assert( pTable->nCol>=0 ); 2648 2649 /* If we get this far, it means we need to compute the table names. 2650 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2651 ** "*" elements in the results set of the view and will assign cursors 2652 ** to the elements of the FROM clause. But we do not want these changes 2653 ** to be permanent. So the computation is done on a copy of the SELECT 2654 ** statement that defines the view. 2655 */ 2656 assert( pTable->pSelect ); 2657 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2658 if( pSel ){ 2659 #ifndef SQLITE_OMIT_ALTERTABLE 2660 u8 eParseMode = pParse->eParseMode; 2661 pParse->eParseMode = PARSE_MODE_NORMAL; 2662 #endif 2663 n = pParse->nTab; 2664 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2665 pTable->nCol = -1; 2666 DisableLookaside; 2667 #ifndef SQLITE_OMIT_AUTHORIZATION 2668 xAuth = db->xAuth; 2669 db->xAuth = 0; 2670 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2671 db->xAuth = xAuth; 2672 #else 2673 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2674 #endif 2675 pParse->nTab = n; 2676 if( pSelTab==0 ){ 2677 pTable->nCol = 0; 2678 nErr++; 2679 }else if( pTable->pCheck ){ 2680 /* CREATE VIEW name(arglist) AS ... 2681 ** The names of the columns in the table are taken from 2682 ** arglist which is stored in pTable->pCheck. The pCheck field 2683 ** normally holds CHECK constraints on an ordinary table, but for 2684 ** a VIEW it holds the list of column names. 2685 */ 2686 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2687 &pTable->nCol, &pTable->aCol); 2688 if( db->mallocFailed==0 2689 && pParse->nErr==0 2690 && pTable->nCol==pSel->pEList->nExpr 2691 ){ 2692 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2693 SQLITE_AFF_NONE); 2694 } 2695 }else{ 2696 /* CREATE VIEW name AS... without an argument list. Construct 2697 ** the column names from the SELECT statement that defines the view. 2698 */ 2699 assert( pTable->aCol==0 ); 2700 pTable->nCol = pSelTab->nCol; 2701 pTable->aCol = pSelTab->aCol; 2702 pSelTab->nCol = 0; 2703 pSelTab->aCol = 0; 2704 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2705 } 2706 pTable->nNVCol = pTable->nCol; 2707 sqlite3DeleteTable(db, pSelTab); 2708 sqlite3SelectDelete(db, pSel); 2709 EnableLookaside; 2710 #ifndef SQLITE_OMIT_ALTERTABLE 2711 pParse->eParseMode = eParseMode; 2712 #endif 2713 } else { 2714 nErr++; 2715 } 2716 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2717 if( db->mallocFailed ){ 2718 sqlite3DeleteColumnNames(db, pTable); 2719 pTable->aCol = 0; 2720 pTable->nCol = 0; 2721 } 2722 #endif /* SQLITE_OMIT_VIEW */ 2723 return nErr; 2724 } 2725 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2726 2727 #ifndef SQLITE_OMIT_VIEW 2728 /* 2729 ** Clear the column names from every VIEW in database idx. 2730 */ 2731 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2732 HashElem *i; 2733 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2734 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2735 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2736 Table *pTab = sqliteHashData(i); 2737 if( pTab->pSelect ){ 2738 sqlite3DeleteColumnNames(db, pTab); 2739 pTab->aCol = 0; 2740 pTab->nCol = 0; 2741 } 2742 } 2743 DbClearProperty(db, idx, DB_UnresetViews); 2744 } 2745 #else 2746 # define sqliteViewResetAll(A,B) 2747 #endif /* SQLITE_OMIT_VIEW */ 2748 2749 /* 2750 ** This function is called by the VDBE to adjust the internal schema 2751 ** used by SQLite when the btree layer moves a table root page. The 2752 ** root-page of a table or index in database iDb has changed from iFrom 2753 ** to iTo. 2754 ** 2755 ** Ticket #1728: The symbol table might still contain information 2756 ** on tables and/or indices that are the process of being deleted. 2757 ** If you are unlucky, one of those deleted indices or tables might 2758 ** have the same rootpage number as the real table or index that is 2759 ** being moved. So we cannot stop searching after the first match 2760 ** because the first match might be for one of the deleted indices 2761 ** or tables and not the table/index that is actually being moved. 2762 ** We must continue looping until all tables and indices with 2763 ** rootpage==iFrom have been converted to have a rootpage of iTo 2764 ** in order to be certain that we got the right one. 2765 */ 2766 #ifndef SQLITE_OMIT_AUTOVACUUM 2767 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2768 HashElem *pElem; 2769 Hash *pHash; 2770 Db *pDb; 2771 2772 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2773 pDb = &db->aDb[iDb]; 2774 pHash = &pDb->pSchema->tblHash; 2775 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2776 Table *pTab = sqliteHashData(pElem); 2777 if( pTab->tnum==iFrom ){ 2778 pTab->tnum = iTo; 2779 } 2780 } 2781 pHash = &pDb->pSchema->idxHash; 2782 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2783 Index *pIdx = sqliteHashData(pElem); 2784 if( pIdx->tnum==iFrom ){ 2785 pIdx->tnum = iTo; 2786 } 2787 } 2788 } 2789 #endif 2790 2791 /* 2792 ** Write code to erase the table with root-page iTable from database iDb. 2793 ** Also write code to modify the sqlite_master table and internal schema 2794 ** if a root-page of another table is moved by the btree-layer whilst 2795 ** erasing iTable (this can happen with an auto-vacuum database). 2796 */ 2797 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2798 Vdbe *v = sqlite3GetVdbe(pParse); 2799 int r1 = sqlite3GetTempReg(pParse); 2800 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2801 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2802 sqlite3MayAbort(pParse); 2803 #ifndef SQLITE_OMIT_AUTOVACUUM 2804 /* OP_Destroy stores an in integer r1. If this integer 2805 ** is non-zero, then it is the root page number of a table moved to 2806 ** location iTable. The following code modifies the sqlite_master table to 2807 ** reflect this. 2808 ** 2809 ** The "#NNN" in the SQL is a special constant that means whatever value 2810 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2811 ** token for additional information. 2812 */ 2813 sqlite3NestedParse(pParse, 2814 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2815 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2816 #endif 2817 sqlite3ReleaseTempReg(pParse, r1); 2818 } 2819 2820 /* 2821 ** Write VDBE code to erase table pTab and all associated indices on disk. 2822 ** Code to update the sqlite_master tables and internal schema definitions 2823 ** in case a root-page belonging to another table is moved by the btree layer 2824 ** is also added (this can happen with an auto-vacuum database). 2825 */ 2826 static void destroyTable(Parse *pParse, Table *pTab){ 2827 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2828 ** is not defined), then it is important to call OP_Destroy on the 2829 ** table and index root-pages in order, starting with the numerically 2830 ** largest root-page number. This guarantees that none of the root-pages 2831 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2832 ** following were coded: 2833 ** 2834 ** OP_Destroy 4 0 2835 ** ... 2836 ** OP_Destroy 5 0 2837 ** 2838 ** and root page 5 happened to be the largest root-page number in the 2839 ** database, then root page 5 would be moved to page 4 by the 2840 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2841 ** a free-list page. 2842 */ 2843 int iTab = pTab->tnum; 2844 int iDestroyed = 0; 2845 2846 while( 1 ){ 2847 Index *pIdx; 2848 int iLargest = 0; 2849 2850 if( iDestroyed==0 || iTab<iDestroyed ){ 2851 iLargest = iTab; 2852 } 2853 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2854 int iIdx = pIdx->tnum; 2855 assert( pIdx->pSchema==pTab->pSchema ); 2856 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2857 iLargest = iIdx; 2858 } 2859 } 2860 if( iLargest==0 ){ 2861 return; 2862 }else{ 2863 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2864 assert( iDb>=0 && iDb<pParse->db->nDb ); 2865 destroyRootPage(pParse, iLargest, iDb); 2866 iDestroyed = iLargest; 2867 } 2868 } 2869 } 2870 2871 /* 2872 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2873 ** after a DROP INDEX or DROP TABLE command. 2874 */ 2875 static void sqlite3ClearStatTables( 2876 Parse *pParse, /* The parsing context */ 2877 int iDb, /* The database number */ 2878 const char *zType, /* "idx" or "tbl" */ 2879 const char *zName /* Name of index or table */ 2880 ){ 2881 int i; 2882 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2883 for(i=1; i<=4; i++){ 2884 char zTab[24]; 2885 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2886 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2887 sqlite3NestedParse(pParse, 2888 "DELETE FROM %Q.%s WHERE %s=%Q", 2889 zDbName, zTab, zType, zName 2890 ); 2891 } 2892 } 2893 } 2894 2895 /* 2896 ** Generate code to drop a table. 2897 */ 2898 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2899 Vdbe *v; 2900 sqlite3 *db = pParse->db; 2901 Trigger *pTrigger; 2902 Db *pDb = &db->aDb[iDb]; 2903 2904 v = sqlite3GetVdbe(pParse); 2905 assert( v!=0 ); 2906 sqlite3BeginWriteOperation(pParse, 1, iDb); 2907 2908 #ifndef SQLITE_OMIT_VIRTUALTABLE 2909 if( IsVirtual(pTab) ){ 2910 sqlite3VdbeAddOp0(v, OP_VBegin); 2911 } 2912 #endif 2913 2914 /* Drop all triggers associated with the table being dropped. Code 2915 ** is generated to remove entries from sqlite_master and/or 2916 ** sqlite_temp_master if required. 2917 */ 2918 pTrigger = sqlite3TriggerList(pParse, pTab); 2919 while( pTrigger ){ 2920 assert( pTrigger->pSchema==pTab->pSchema || 2921 pTrigger->pSchema==db->aDb[1].pSchema ); 2922 sqlite3DropTriggerPtr(pParse, pTrigger); 2923 pTrigger = pTrigger->pNext; 2924 } 2925 2926 #ifndef SQLITE_OMIT_AUTOINCREMENT 2927 /* Remove any entries of the sqlite_sequence table associated with 2928 ** the table being dropped. This is done before the table is dropped 2929 ** at the btree level, in case the sqlite_sequence table needs to 2930 ** move as a result of the drop (can happen in auto-vacuum mode). 2931 */ 2932 if( pTab->tabFlags & TF_Autoincrement ){ 2933 sqlite3NestedParse(pParse, 2934 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2935 pDb->zDbSName, pTab->zName 2936 ); 2937 } 2938 #endif 2939 2940 /* Drop all SQLITE_MASTER table and index entries that refer to the 2941 ** table. The program name loops through the master table and deletes 2942 ** every row that refers to a table of the same name as the one being 2943 ** dropped. Triggers are handled separately because a trigger can be 2944 ** created in the temp database that refers to a table in another 2945 ** database. 2946 */ 2947 sqlite3NestedParse(pParse, 2948 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2949 pDb->zDbSName, MASTER_NAME, pTab->zName); 2950 if( !isView && !IsVirtual(pTab) ){ 2951 destroyTable(pParse, pTab); 2952 } 2953 2954 /* Remove the table entry from SQLite's internal schema and modify 2955 ** the schema cookie. 2956 */ 2957 if( IsVirtual(pTab) ){ 2958 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2959 sqlite3MayAbort(pParse); 2960 } 2961 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2962 sqlite3ChangeCookie(pParse, iDb); 2963 sqliteViewResetAll(db, iDb); 2964 } 2965 2966 /* 2967 ** Return TRUE if shadow tables should be read-only in the current 2968 ** context. 2969 */ 2970 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 2971 #ifndef SQLITE_OMIT_VIRTUALTABLE 2972 if( (db->flags & SQLITE_Defensive)!=0 2973 && db->pVtabCtx==0 2974 && db->nVdbeExec==0 2975 ){ 2976 return 1; 2977 } 2978 #endif 2979 return 0; 2980 } 2981 2982 /* 2983 ** Return true if it is not allowed to drop the given table 2984 */ 2985 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 2986 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2987 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 2988 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 2989 return 1; 2990 } 2991 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 2992 return 1; 2993 } 2994 return 0; 2995 } 2996 2997 /* 2998 ** This routine is called to do the work of a DROP TABLE statement. 2999 ** pName is the name of the table to be dropped. 3000 */ 3001 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3002 Table *pTab; 3003 Vdbe *v; 3004 sqlite3 *db = pParse->db; 3005 int iDb; 3006 3007 if( db->mallocFailed ){ 3008 goto exit_drop_table; 3009 } 3010 assert( pParse->nErr==0 ); 3011 assert( pName->nSrc==1 ); 3012 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3013 if( noErr ) db->suppressErr++; 3014 assert( isView==0 || isView==LOCATE_VIEW ); 3015 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3016 if( noErr ) db->suppressErr--; 3017 3018 if( pTab==0 ){ 3019 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3020 goto exit_drop_table; 3021 } 3022 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3023 assert( iDb>=0 && iDb<db->nDb ); 3024 3025 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3026 ** it is initialized. 3027 */ 3028 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3029 goto exit_drop_table; 3030 } 3031 #ifndef SQLITE_OMIT_AUTHORIZATION 3032 { 3033 int code; 3034 const char *zTab = SCHEMA_TABLE(iDb); 3035 const char *zDb = db->aDb[iDb].zDbSName; 3036 const char *zArg2 = 0; 3037 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3038 goto exit_drop_table; 3039 } 3040 if( isView ){ 3041 if( !OMIT_TEMPDB && iDb==1 ){ 3042 code = SQLITE_DROP_TEMP_VIEW; 3043 }else{ 3044 code = SQLITE_DROP_VIEW; 3045 } 3046 #ifndef SQLITE_OMIT_VIRTUALTABLE 3047 }else if( IsVirtual(pTab) ){ 3048 code = SQLITE_DROP_VTABLE; 3049 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3050 #endif 3051 }else{ 3052 if( !OMIT_TEMPDB && iDb==1 ){ 3053 code = SQLITE_DROP_TEMP_TABLE; 3054 }else{ 3055 code = SQLITE_DROP_TABLE; 3056 } 3057 } 3058 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3059 goto exit_drop_table; 3060 } 3061 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3062 goto exit_drop_table; 3063 } 3064 } 3065 #endif 3066 if( tableMayNotBeDropped(db, pTab) ){ 3067 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3068 goto exit_drop_table; 3069 } 3070 3071 #ifndef SQLITE_OMIT_VIEW 3072 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3073 ** on a table. 3074 */ 3075 if( isView && pTab->pSelect==0 ){ 3076 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3077 goto exit_drop_table; 3078 } 3079 if( !isView && pTab->pSelect ){ 3080 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3081 goto exit_drop_table; 3082 } 3083 #endif 3084 3085 /* Generate code to remove the table from the master table 3086 ** on disk. 3087 */ 3088 v = sqlite3GetVdbe(pParse); 3089 if( v ){ 3090 sqlite3BeginWriteOperation(pParse, 1, iDb); 3091 if( !isView ){ 3092 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3093 sqlite3FkDropTable(pParse, pName, pTab); 3094 } 3095 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3096 } 3097 3098 exit_drop_table: 3099 sqlite3SrcListDelete(db, pName); 3100 } 3101 3102 /* 3103 ** This routine is called to create a new foreign key on the table 3104 ** currently under construction. pFromCol determines which columns 3105 ** in the current table point to the foreign key. If pFromCol==0 then 3106 ** connect the key to the last column inserted. pTo is the name of 3107 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3108 ** of tables in the parent pTo table. flags contains all 3109 ** information about the conflict resolution algorithms specified 3110 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3111 ** 3112 ** An FKey structure is created and added to the table currently 3113 ** under construction in the pParse->pNewTable field. 3114 ** 3115 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3116 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3117 */ 3118 void sqlite3CreateForeignKey( 3119 Parse *pParse, /* Parsing context */ 3120 ExprList *pFromCol, /* Columns in this table that point to other table */ 3121 Token *pTo, /* Name of the other table */ 3122 ExprList *pToCol, /* Columns in the other table */ 3123 int flags /* Conflict resolution algorithms. */ 3124 ){ 3125 sqlite3 *db = pParse->db; 3126 #ifndef SQLITE_OMIT_FOREIGN_KEY 3127 FKey *pFKey = 0; 3128 FKey *pNextTo; 3129 Table *p = pParse->pNewTable; 3130 int nByte; 3131 int i; 3132 int nCol; 3133 char *z; 3134 3135 assert( pTo!=0 ); 3136 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3137 if( pFromCol==0 ){ 3138 int iCol = p->nCol-1; 3139 if( NEVER(iCol<0) ) goto fk_end; 3140 if( pToCol && pToCol->nExpr!=1 ){ 3141 sqlite3ErrorMsg(pParse, "foreign key on %s" 3142 " should reference only one column of table %T", 3143 p->aCol[iCol].zName, pTo); 3144 goto fk_end; 3145 } 3146 nCol = 1; 3147 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3148 sqlite3ErrorMsg(pParse, 3149 "number of columns in foreign key does not match the number of " 3150 "columns in the referenced table"); 3151 goto fk_end; 3152 }else{ 3153 nCol = pFromCol->nExpr; 3154 } 3155 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3156 if( pToCol ){ 3157 for(i=0; i<pToCol->nExpr; i++){ 3158 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3159 } 3160 } 3161 pFKey = sqlite3DbMallocZero(db, nByte ); 3162 if( pFKey==0 ){ 3163 goto fk_end; 3164 } 3165 pFKey->pFrom = p; 3166 pFKey->pNextFrom = p->pFKey; 3167 z = (char*)&pFKey->aCol[nCol]; 3168 pFKey->zTo = z; 3169 if( IN_RENAME_OBJECT ){ 3170 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3171 } 3172 memcpy(z, pTo->z, pTo->n); 3173 z[pTo->n] = 0; 3174 sqlite3Dequote(z); 3175 z += pTo->n+1; 3176 pFKey->nCol = nCol; 3177 if( pFromCol==0 ){ 3178 pFKey->aCol[0].iFrom = p->nCol-1; 3179 }else{ 3180 for(i=0; i<nCol; i++){ 3181 int j; 3182 for(j=0; j<p->nCol; j++){ 3183 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3184 pFKey->aCol[i].iFrom = j; 3185 break; 3186 } 3187 } 3188 if( j>=p->nCol ){ 3189 sqlite3ErrorMsg(pParse, 3190 "unknown column \"%s\" in foreign key definition", 3191 pFromCol->a[i].zEName); 3192 goto fk_end; 3193 } 3194 if( IN_RENAME_OBJECT ){ 3195 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3196 } 3197 } 3198 } 3199 if( pToCol ){ 3200 for(i=0; i<nCol; i++){ 3201 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3202 pFKey->aCol[i].zCol = z; 3203 if( IN_RENAME_OBJECT ){ 3204 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3205 } 3206 memcpy(z, pToCol->a[i].zEName, n); 3207 z[n] = 0; 3208 z += n+1; 3209 } 3210 } 3211 pFKey->isDeferred = 0; 3212 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3213 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3214 3215 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3216 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3217 pFKey->zTo, (void *)pFKey 3218 ); 3219 if( pNextTo==pFKey ){ 3220 sqlite3OomFault(db); 3221 goto fk_end; 3222 } 3223 if( pNextTo ){ 3224 assert( pNextTo->pPrevTo==0 ); 3225 pFKey->pNextTo = pNextTo; 3226 pNextTo->pPrevTo = pFKey; 3227 } 3228 3229 /* Link the foreign key to the table as the last step. 3230 */ 3231 p->pFKey = pFKey; 3232 pFKey = 0; 3233 3234 fk_end: 3235 sqlite3DbFree(db, pFKey); 3236 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3237 sqlite3ExprListDelete(db, pFromCol); 3238 sqlite3ExprListDelete(db, pToCol); 3239 } 3240 3241 /* 3242 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3243 ** clause is seen as part of a foreign key definition. The isDeferred 3244 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3245 ** The behavior of the most recently created foreign key is adjusted 3246 ** accordingly. 3247 */ 3248 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3249 #ifndef SQLITE_OMIT_FOREIGN_KEY 3250 Table *pTab; 3251 FKey *pFKey; 3252 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3253 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3254 pFKey->isDeferred = (u8)isDeferred; 3255 #endif 3256 } 3257 3258 /* 3259 ** Generate code that will erase and refill index *pIdx. This is 3260 ** used to initialize a newly created index or to recompute the 3261 ** content of an index in response to a REINDEX command. 3262 ** 3263 ** if memRootPage is not negative, it means that the index is newly 3264 ** created. The register specified by memRootPage contains the 3265 ** root page number of the index. If memRootPage is negative, then 3266 ** the index already exists and must be cleared before being refilled and 3267 ** the root page number of the index is taken from pIndex->tnum. 3268 */ 3269 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3270 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3271 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3272 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3273 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3274 int addr1; /* Address of top of loop */ 3275 int addr2; /* Address to jump to for next iteration */ 3276 int tnum; /* Root page of index */ 3277 int iPartIdxLabel; /* Jump to this label to skip a row */ 3278 Vdbe *v; /* Generate code into this virtual machine */ 3279 KeyInfo *pKey; /* KeyInfo for index */ 3280 int regRecord; /* Register holding assembled index record */ 3281 sqlite3 *db = pParse->db; /* The database connection */ 3282 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3283 3284 #ifndef SQLITE_OMIT_AUTHORIZATION 3285 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3286 db->aDb[iDb].zDbSName ) ){ 3287 return; 3288 } 3289 #endif 3290 3291 /* Require a write-lock on the table to perform this operation */ 3292 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3293 3294 v = sqlite3GetVdbe(pParse); 3295 if( v==0 ) return; 3296 if( memRootPage>=0 ){ 3297 tnum = memRootPage; 3298 }else{ 3299 tnum = pIndex->tnum; 3300 } 3301 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3302 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3303 3304 /* Open the sorter cursor if we are to use one. */ 3305 iSorter = pParse->nTab++; 3306 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3307 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3308 3309 /* Open the table. Loop through all rows of the table, inserting index 3310 ** records into the sorter. */ 3311 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3312 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3313 regRecord = sqlite3GetTempReg(pParse); 3314 sqlite3MultiWrite(pParse); 3315 3316 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3317 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3318 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3319 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3320 sqlite3VdbeJumpHere(v, addr1); 3321 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3322 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3323 (char *)pKey, P4_KEYINFO); 3324 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3325 3326 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3327 if( IsUniqueIndex(pIndex) ){ 3328 int j2 = sqlite3VdbeGoto(v, 1); 3329 addr2 = sqlite3VdbeCurrentAddr(v); 3330 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3331 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3332 pIndex->nKeyCol); VdbeCoverage(v); 3333 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3334 sqlite3VdbeJumpHere(v, j2); 3335 }else{ 3336 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3337 ** abort. The exception is if one of the indexed expressions contains a 3338 ** user function that throws an exception when it is evaluated. But the 3339 ** overhead of adding a statement journal to a CREATE INDEX statement is 3340 ** very small (since most of the pages written do not contain content that 3341 ** needs to be restored if the statement aborts), so we call 3342 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3343 sqlite3MayAbort(pParse); 3344 addr2 = sqlite3VdbeCurrentAddr(v); 3345 } 3346 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3347 if( !pIndex->bAscKeyBug ){ 3348 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3349 ** faster by avoiding unnecessary seeks. But the optimization does 3350 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3351 ** with DESC primary keys, since those indexes have there keys in 3352 ** a different order from the main table. 3353 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3354 */ 3355 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3356 } 3357 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3358 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3359 sqlite3ReleaseTempReg(pParse, regRecord); 3360 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3361 sqlite3VdbeJumpHere(v, addr1); 3362 3363 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3364 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3365 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3366 } 3367 3368 /* 3369 ** Allocate heap space to hold an Index object with nCol columns. 3370 ** 3371 ** Increase the allocation size to provide an extra nExtra bytes 3372 ** of 8-byte aligned space after the Index object and return a 3373 ** pointer to this extra space in *ppExtra. 3374 */ 3375 Index *sqlite3AllocateIndexObject( 3376 sqlite3 *db, /* Database connection */ 3377 i16 nCol, /* Total number of columns in the index */ 3378 int nExtra, /* Number of bytes of extra space to alloc */ 3379 char **ppExtra /* Pointer to the "extra" space */ 3380 ){ 3381 Index *p; /* Allocated index object */ 3382 int nByte; /* Bytes of space for Index object + arrays */ 3383 3384 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3385 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3386 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3387 sizeof(i16)*nCol + /* Index.aiColumn */ 3388 sizeof(u8)*nCol); /* Index.aSortOrder */ 3389 p = sqlite3DbMallocZero(db, nByte + nExtra); 3390 if( p ){ 3391 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3392 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3393 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3394 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3395 p->aSortOrder = (u8*)pExtra; 3396 p->nColumn = nCol; 3397 p->nKeyCol = nCol - 1; 3398 *ppExtra = ((char*)p) + nByte; 3399 } 3400 return p; 3401 } 3402 3403 /* 3404 ** If expression list pList contains an expression that was parsed with 3405 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3406 ** pParse and return non-zero. Otherwise, return zero. 3407 */ 3408 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3409 if( pList ){ 3410 int i; 3411 for(i=0; i<pList->nExpr; i++){ 3412 if( pList->a[i].bNulls ){ 3413 u8 sf = pList->a[i].sortFlags; 3414 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3415 (sf==0 || sf==3) ? "FIRST" : "LAST" 3416 ); 3417 return 1; 3418 } 3419 } 3420 } 3421 return 0; 3422 } 3423 3424 /* 3425 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3426 ** and pTblList is the name of the table that is to be indexed. Both will 3427 ** be NULL for a primary key or an index that is created to satisfy a 3428 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3429 ** as the table to be indexed. pParse->pNewTable is a table that is 3430 ** currently being constructed by a CREATE TABLE statement. 3431 ** 3432 ** pList is a list of columns to be indexed. pList will be NULL if this 3433 ** is a primary key or unique-constraint on the most recent column added 3434 ** to the table currently under construction. 3435 */ 3436 void sqlite3CreateIndex( 3437 Parse *pParse, /* All information about this parse */ 3438 Token *pName1, /* First part of index name. May be NULL */ 3439 Token *pName2, /* Second part of index name. May be NULL */ 3440 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3441 ExprList *pList, /* A list of columns to be indexed */ 3442 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3443 Token *pStart, /* The CREATE token that begins this statement */ 3444 Expr *pPIWhere, /* WHERE clause for partial indices */ 3445 int sortOrder, /* Sort order of primary key when pList==NULL */ 3446 int ifNotExist, /* Omit error if index already exists */ 3447 u8 idxType /* The index type */ 3448 ){ 3449 Table *pTab = 0; /* Table to be indexed */ 3450 Index *pIndex = 0; /* The index to be created */ 3451 char *zName = 0; /* Name of the index */ 3452 int nName; /* Number of characters in zName */ 3453 int i, j; 3454 DbFixer sFix; /* For assigning database names to pTable */ 3455 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3456 sqlite3 *db = pParse->db; 3457 Db *pDb; /* The specific table containing the indexed database */ 3458 int iDb; /* Index of the database that is being written */ 3459 Token *pName = 0; /* Unqualified name of the index to create */ 3460 struct ExprList_item *pListItem; /* For looping over pList */ 3461 int nExtra = 0; /* Space allocated for zExtra[] */ 3462 int nExtraCol; /* Number of extra columns needed */ 3463 char *zExtra = 0; /* Extra space after the Index object */ 3464 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3465 3466 if( db->mallocFailed || pParse->nErr>0 ){ 3467 goto exit_create_index; 3468 } 3469 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3470 goto exit_create_index; 3471 } 3472 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3473 goto exit_create_index; 3474 } 3475 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3476 goto exit_create_index; 3477 } 3478 3479 /* 3480 ** Find the table that is to be indexed. Return early if not found. 3481 */ 3482 if( pTblName!=0 ){ 3483 3484 /* Use the two-part index name to determine the database 3485 ** to search for the table. 'Fix' the table name to this db 3486 ** before looking up the table. 3487 */ 3488 assert( pName1 && pName2 ); 3489 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3490 if( iDb<0 ) goto exit_create_index; 3491 assert( pName && pName->z ); 3492 3493 #ifndef SQLITE_OMIT_TEMPDB 3494 /* If the index name was unqualified, check if the table 3495 ** is a temp table. If so, set the database to 1. Do not do this 3496 ** if initialising a database schema. 3497 */ 3498 if( !db->init.busy ){ 3499 pTab = sqlite3SrcListLookup(pParse, pTblName); 3500 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3501 iDb = 1; 3502 } 3503 } 3504 #endif 3505 3506 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3507 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3508 /* Because the parser constructs pTblName from a single identifier, 3509 ** sqlite3FixSrcList can never fail. */ 3510 assert(0); 3511 } 3512 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3513 assert( db->mallocFailed==0 || pTab==0 ); 3514 if( pTab==0 ) goto exit_create_index; 3515 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3516 sqlite3ErrorMsg(pParse, 3517 "cannot create a TEMP index on non-TEMP table \"%s\"", 3518 pTab->zName); 3519 goto exit_create_index; 3520 } 3521 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3522 }else{ 3523 assert( pName==0 ); 3524 assert( pStart==0 ); 3525 pTab = pParse->pNewTable; 3526 if( !pTab ) goto exit_create_index; 3527 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3528 } 3529 pDb = &db->aDb[iDb]; 3530 3531 assert( pTab!=0 ); 3532 assert( pParse->nErr==0 ); 3533 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3534 && db->init.busy==0 3535 && pTblName!=0 3536 #if SQLITE_USER_AUTHENTICATION 3537 && sqlite3UserAuthTable(pTab->zName)==0 3538 #endif 3539 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3540 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3541 #endif 3542 ){ 3543 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3544 goto exit_create_index; 3545 } 3546 #ifndef SQLITE_OMIT_VIEW 3547 if( pTab->pSelect ){ 3548 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3549 goto exit_create_index; 3550 } 3551 #endif 3552 #ifndef SQLITE_OMIT_VIRTUALTABLE 3553 if( IsVirtual(pTab) ){ 3554 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3555 goto exit_create_index; 3556 } 3557 #endif 3558 3559 /* 3560 ** Find the name of the index. Make sure there is not already another 3561 ** index or table with the same name. 3562 ** 3563 ** Exception: If we are reading the names of permanent indices from the 3564 ** sqlite_master table (because some other process changed the schema) and 3565 ** one of the index names collides with the name of a temporary table or 3566 ** index, then we will continue to process this index. 3567 ** 3568 ** If pName==0 it means that we are 3569 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3570 ** own name. 3571 */ 3572 if( pName ){ 3573 zName = sqlite3NameFromToken(db, pName); 3574 if( zName==0 ) goto exit_create_index; 3575 assert( pName->z!=0 ); 3576 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3577 goto exit_create_index; 3578 } 3579 if( !IN_RENAME_OBJECT ){ 3580 if( !db->init.busy ){ 3581 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3582 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3583 goto exit_create_index; 3584 } 3585 } 3586 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3587 if( !ifNotExist ){ 3588 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3589 }else{ 3590 assert( !db->init.busy ); 3591 sqlite3CodeVerifySchema(pParse, iDb); 3592 } 3593 goto exit_create_index; 3594 } 3595 } 3596 }else{ 3597 int n; 3598 Index *pLoop; 3599 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3600 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3601 if( zName==0 ){ 3602 goto exit_create_index; 3603 } 3604 3605 /* Automatic index names generated from within sqlite3_declare_vtab() 3606 ** must have names that are distinct from normal automatic index names. 3607 ** The following statement converts "sqlite3_autoindex..." into 3608 ** "sqlite3_butoindex..." in order to make the names distinct. 3609 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3610 if( IN_SPECIAL_PARSE ) zName[7]++; 3611 } 3612 3613 /* Check for authorization to create an index. 3614 */ 3615 #ifndef SQLITE_OMIT_AUTHORIZATION 3616 if( !IN_RENAME_OBJECT ){ 3617 const char *zDb = pDb->zDbSName; 3618 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3619 goto exit_create_index; 3620 } 3621 i = SQLITE_CREATE_INDEX; 3622 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3623 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3624 goto exit_create_index; 3625 } 3626 } 3627 #endif 3628 3629 /* If pList==0, it means this routine was called to make a primary 3630 ** key out of the last column added to the table under construction. 3631 ** So create a fake list to simulate this. 3632 */ 3633 if( pList==0 ){ 3634 Token prevCol; 3635 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3636 pCol->colFlags |= COLFLAG_UNIQUE; 3637 sqlite3TokenInit(&prevCol, pCol->zName); 3638 pList = sqlite3ExprListAppend(pParse, 0, 3639 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3640 if( pList==0 ) goto exit_create_index; 3641 assert( pList->nExpr==1 ); 3642 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3643 }else{ 3644 sqlite3ExprListCheckLength(pParse, pList, "index"); 3645 if( pParse->nErr ) goto exit_create_index; 3646 } 3647 3648 /* Figure out how many bytes of space are required to store explicitly 3649 ** specified collation sequence names. 3650 */ 3651 for(i=0; i<pList->nExpr; i++){ 3652 Expr *pExpr = pList->a[i].pExpr; 3653 assert( pExpr!=0 ); 3654 if( pExpr->op==TK_COLLATE ){ 3655 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3656 } 3657 } 3658 3659 /* 3660 ** Allocate the index structure. 3661 */ 3662 nName = sqlite3Strlen30(zName); 3663 nExtraCol = pPk ? pPk->nKeyCol : 1; 3664 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3665 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3666 nName + nExtra + 1, &zExtra); 3667 if( db->mallocFailed ){ 3668 goto exit_create_index; 3669 } 3670 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3671 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3672 pIndex->zName = zExtra; 3673 zExtra += nName + 1; 3674 memcpy(pIndex->zName, zName, nName+1); 3675 pIndex->pTable = pTab; 3676 pIndex->onError = (u8)onError; 3677 pIndex->uniqNotNull = onError!=OE_None; 3678 pIndex->idxType = idxType; 3679 pIndex->pSchema = db->aDb[iDb].pSchema; 3680 pIndex->nKeyCol = pList->nExpr; 3681 if( pPIWhere ){ 3682 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3683 pIndex->pPartIdxWhere = pPIWhere; 3684 pPIWhere = 0; 3685 } 3686 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3687 3688 /* Check to see if we should honor DESC requests on index columns 3689 */ 3690 if( pDb->pSchema->file_format>=4 ){ 3691 sortOrderMask = -1; /* Honor DESC */ 3692 }else{ 3693 sortOrderMask = 0; /* Ignore DESC */ 3694 } 3695 3696 /* Analyze the list of expressions that form the terms of the index and 3697 ** report any errors. In the common case where the expression is exactly 3698 ** a table column, store that column in aiColumn[]. For general expressions, 3699 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3700 ** 3701 ** TODO: Issue a warning if two or more columns of the index are identical. 3702 ** TODO: Issue a warning if the table primary key is used as part of the 3703 ** index key. 3704 */ 3705 pListItem = pList->a; 3706 if( IN_RENAME_OBJECT ){ 3707 pIndex->aColExpr = pList; 3708 pList = 0; 3709 } 3710 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3711 Expr *pCExpr; /* The i-th index expression */ 3712 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3713 const char *zColl; /* Collation sequence name */ 3714 3715 sqlite3StringToId(pListItem->pExpr); 3716 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3717 if( pParse->nErr ) goto exit_create_index; 3718 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3719 if( pCExpr->op!=TK_COLUMN ){ 3720 if( pTab==pParse->pNewTable ){ 3721 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3722 "UNIQUE constraints"); 3723 goto exit_create_index; 3724 } 3725 if( pIndex->aColExpr==0 ){ 3726 pIndex->aColExpr = pList; 3727 pList = 0; 3728 } 3729 j = XN_EXPR; 3730 pIndex->aiColumn[i] = XN_EXPR; 3731 pIndex->uniqNotNull = 0; 3732 }else{ 3733 j = pCExpr->iColumn; 3734 assert( j<=0x7fff ); 3735 if( j<0 ){ 3736 j = pTab->iPKey; 3737 }else{ 3738 if( pTab->aCol[j].notNull==0 ){ 3739 pIndex->uniqNotNull = 0; 3740 } 3741 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3742 pIndex->bHasVCol = 1; 3743 } 3744 } 3745 pIndex->aiColumn[i] = (i16)j; 3746 } 3747 zColl = 0; 3748 if( pListItem->pExpr->op==TK_COLLATE ){ 3749 int nColl; 3750 zColl = pListItem->pExpr->u.zToken; 3751 nColl = sqlite3Strlen30(zColl) + 1; 3752 assert( nExtra>=nColl ); 3753 memcpy(zExtra, zColl, nColl); 3754 zColl = zExtra; 3755 zExtra += nColl; 3756 nExtra -= nColl; 3757 }else if( j>=0 ){ 3758 zColl = pTab->aCol[j].zColl; 3759 } 3760 if( !zColl ) zColl = sqlite3StrBINARY; 3761 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3762 goto exit_create_index; 3763 } 3764 pIndex->azColl[i] = zColl; 3765 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3766 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3767 } 3768 3769 /* Append the table key to the end of the index. For WITHOUT ROWID 3770 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3771 ** normal tables (when pPk==0) this will be the rowid. 3772 */ 3773 if( pPk ){ 3774 for(j=0; j<pPk->nKeyCol; j++){ 3775 int x = pPk->aiColumn[j]; 3776 assert( x>=0 ); 3777 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3778 pIndex->nColumn--; 3779 }else{ 3780 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3781 pIndex->aiColumn[i] = x; 3782 pIndex->azColl[i] = pPk->azColl[j]; 3783 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3784 i++; 3785 } 3786 } 3787 assert( i==pIndex->nColumn ); 3788 }else{ 3789 pIndex->aiColumn[i] = XN_ROWID; 3790 pIndex->azColl[i] = sqlite3StrBINARY; 3791 } 3792 sqlite3DefaultRowEst(pIndex); 3793 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3794 3795 /* If this index contains every column of its table, then mark 3796 ** it as a covering index */ 3797 assert( HasRowid(pTab) 3798 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3799 recomputeColumnsNotIndexed(pIndex); 3800 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3801 pIndex->isCovering = 1; 3802 for(j=0; j<pTab->nCol; j++){ 3803 if( j==pTab->iPKey ) continue; 3804 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3805 pIndex->isCovering = 0; 3806 break; 3807 } 3808 } 3809 3810 if( pTab==pParse->pNewTable ){ 3811 /* This routine has been called to create an automatic index as a 3812 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3813 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3814 ** i.e. one of: 3815 ** 3816 ** CREATE TABLE t(x PRIMARY KEY, y); 3817 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3818 ** 3819 ** Either way, check to see if the table already has such an index. If 3820 ** so, don't bother creating this one. This only applies to 3821 ** automatically created indices. Users can do as they wish with 3822 ** explicit indices. 3823 ** 3824 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3825 ** (and thus suppressing the second one) even if they have different 3826 ** sort orders. 3827 ** 3828 ** If there are different collating sequences or if the columns of 3829 ** the constraint occur in different orders, then the constraints are 3830 ** considered distinct and both result in separate indices. 3831 */ 3832 Index *pIdx; 3833 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3834 int k; 3835 assert( IsUniqueIndex(pIdx) ); 3836 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3837 assert( IsUniqueIndex(pIndex) ); 3838 3839 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3840 for(k=0; k<pIdx->nKeyCol; k++){ 3841 const char *z1; 3842 const char *z2; 3843 assert( pIdx->aiColumn[k]>=0 ); 3844 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3845 z1 = pIdx->azColl[k]; 3846 z2 = pIndex->azColl[k]; 3847 if( sqlite3StrICmp(z1, z2) ) break; 3848 } 3849 if( k==pIdx->nKeyCol ){ 3850 if( pIdx->onError!=pIndex->onError ){ 3851 /* This constraint creates the same index as a previous 3852 ** constraint specified somewhere in the CREATE TABLE statement. 3853 ** However the ON CONFLICT clauses are different. If both this 3854 ** constraint and the previous equivalent constraint have explicit 3855 ** ON CONFLICT clauses this is an error. Otherwise, use the 3856 ** explicitly specified behavior for the index. 3857 */ 3858 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3859 sqlite3ErrorMsg(pParse, 3860 "conflicting ON CONFLICT clauses specified", 0); 3861 } 3862 if( pIdx->onError==OE_Default ){ 3863 pIdx->onError = pIndex->onError; 3864 } 3865 } 3866 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3867 if( IN_RENAME_OBJECT ){ 3868 pIndex->pNext = pParse->pNewIndex; 3869 pParse->pNewIndex = pIndex; 3870 pIndex = 0; 3871 } 3872 goto exit_create_index; 3873 } 3874 } 3875 } 3876 3877 if( !IN_RENAME_OBJECT ){ 3878 3879 /* Link the new Index structure to its table and to the other 3880 ** in-memory database structures. 3881 */ 3882 assert( pParse->nErr==0 ); 3883 if( db->init.busy ){ 3884 Index *p; 3885 assert( !IN_SPECIAL_PARSE ); 3886 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3887 if( pTblName!=0 ){ 3888 pIndex->tnum = db->init.newTnum; 3889 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3890 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3891 pParse->rc = SQLITE_CORRUPT_BKPT; 3892 goto exit_create_index; 3893 } 3894 } 3895 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3896 pIndex->zName, pIndex); 3897 if( p ){ 3898 assert( p==pIndex ); /* Malloc must have failed */ 3899 sqlite3OomFault(db); 3900 goto exit_create_index; 3901 } 3902 db->mDbFlags |= DBFLAG_SchemaChange; 3903 } 3904 3905 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3906 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3907 ** emit code to allocate the index rootpage on disk and make an entry for 3908 ** the index in the sqlite_master table and populate the index with 3909 ** content. But, do not do this if we are simply reading the sqlite_master 3910 ** table to parse the schema, or if this index is the PRIMARY KEY index 3911 ** of a WITHOUT ROWID table. 3912 ** 3913 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3914 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3915 ** has just been created, it contains no data and the index initialization 3916 ** step can be skipped. 3917 */ 3918 else if( HasRowid(pTab) || pTblName!=0 ){ 3919 Vdbe *v; 3920 char *zStmt; 3921 int iMem = ++pParse->nMem; 3922 3923 v = sqlite3GetVdbe(pParse); 3924 if( v==0 ) goto exit_create_index; 3925 3926 sqlite3BeginWriteOperation(pParse, 1, iDb); 3927 3928 /* Create the rootpage for the index using CreateIndex. But before 3929 ** doing so, code a Noop instruction and store its address in 3930 ** Index.tnum. This is required in case this index is actually a 3931 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3932 ** that case the convertToWithoutRowidTable() routine will replace 3933 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3934 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3935 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3936 3937 /* Gather the complete text of the CREATE INDEX statement into 3938 ** the zStmt variable 3939 */ 3940 assert( pName!=0 || pStart==0 ); 3941 if( pStart ){ 3942 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3943 if( pName->z[n-1]==';' ) n--; 3944 /* A named index with an explicit CREATE INDEX statement */ 3945 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3946 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3947 }else{ 3948 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3949 /* zStmt = sqlite3MPrintf(""); */ 3950 zStmt = 0; 3951 } 3952 3953 /* Add an entry in sqlite_master for this index 3954 */ 3955 sqlite3NestedParse(pParse, 3956 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3957 db->aDb[iDb].zDbSName, MASTER_NAME, 3958 pIndex->zName, 3959 pTab->zName, 3960 iMem, 3961 zStmt 3962 ); 3963 sqlite3DbFree(db, zStmt); 3964 3965 /* Fill the index with data and reparse the schema. Code an OP_Expire 3966 ** to invalidate all pre-compiled statements. 3967 */ 3968 if( pTblName ){ 3969 sqlite3RefillIndex(pParse, pIndex, iMem); 3970 sqlite3ChangeCookie(pParse, iDb); 3971 sqlite3VdbeAddParseSchemaOp(v, iDb, 3972 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3973 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3974 } 3975 3976 sqlite3VdbeJumpHere(v, pIndex->tnum); 3977 } 3978 } 3979 if( db->init.busy || pTblName==0 ){ 3980 pIndex->pNext = pTab->pIndex; 3981 pTab->pIndex = pIndex; 3982 pIndex = 0; 3983 } 3984 else if( IN_RENAME_OBJECT ){ 3985 assert( pParse->pNewIndex==0 ); 3986 pParse->pNewIndex = pIndex; 3987 pIndex = 0; 3988 } 3989 3990 /* Clean up before exiting */ 3991 exit_create_index: 3992 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3993 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 3994 Index **ppFrom = &pTab->pIndex; 3995 Index *pThis; 3996 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 3997 Index *pNext; 3998 if( pThis->onError!=OE_Replace ) continue; 3999 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4000 *ppFrom = pNext; 4001 pThis->pNext = pNext->pNext; 4002 pNext->pNext = pThis; 4003 ppFrom = &pNext->pNext; 4004 } 4005 break; 4006 } 4007 } 4008 sqlite3ExprDelete(db, pPIWhere); 4009 sqlite3ExprListDelete(db, pList); 4010 sqlite3SrcListDelete(db, pTblName); 4011 sqlite3DbFree(db, zName); 4012 } 4013 4014 /* 4015 ** Fill the Index.aiRowEst[] array with default information - information 4016 ** to be used when we have not run the ANALYZE command. 4017 ** 4018 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4019 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4020 ** number of rows in the table that match any particular value of the 4021 ** first column of the index. aiRowEst[2] is an estimate of the number 4022 ** of rows that match any particular combination of the first 2 columns 4023 ** of the index. And so forth. It must always be the case that 4024 * 4025 ** aiRowEst[N]<=aiRowEst[N-1] 4026 ** aiRowEst[N]>=1 4027 ** 4028 ** Apart from that, we have little to go on besides intuition as to 4029 ** how aiRowEst[] should be initialized. The numbers generated here 4030 ** are based on typical values found in actual indices. 4031 */ 4032 void sqlite3DefaultRowEst(Index *pIdx){ 4033 /* 10, 9, 8, 7, 6 */ 4034 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4035 LogEst *a = pIdx->aiRowLogEst; 4036 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4037 int i; 4038 4039 /* Indexes with default row estimates should not have stat1 data */ 4040 assert( !pIdx->hasStat1 ); 4041 4042 /* Set the first entry (number of rows in the index) to the estimated 4043 ** number of rows in the table, or half the number of rows in the table 4044 ** for a partial index. But do not let the estimate drop below 10. */ 4045 a[0] = pIdx->pTable->nRowLogEst; 4046 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 4047 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 4048 4049 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4050 ** 6 and each subsequent value (if any) is 5. */ 4051 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4052 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4053 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4054 } 4055 4056 assert( 0==sqlite3LogEst(1) ); 4057 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4058 } 4059 4060 /* 4061 ** This routine will drop an existing named index. This routine 4062 ** implements the DROP INDEX statement. 4063 */ 4064 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4065 Index *pIndex; 4066 Vdbe *v; 4067 sqlite3 *db = pParse->db; 4068 int iDb; 4069 4070 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4071 if( db->mallocFailed ){ 4072 goto exit_drop_index; 4073 } 4074 assert( pName->nSrc==1 ); 4075 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4076 goto exit_drop_index; 4077 } 4078 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4079 if( pIndex==0 ){ 4080 if( !ifExists ){ 4081 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4082 }else{ 4083 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4084 } 4085 pParse->checkSchema = 1; 4086 goto exit_drop_index; 4087 } 4088 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4089 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4090 "or PRIMARY KEY constraint cannot be dropped", 0); 4091 goto exit_drop_index; 4092 } 4093 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4094 #ifndef SQLITE_OMIT_AUTHORIZATION 4095 { 4096 int code = SQLITE_DROP_INDEX; 4097 Table *pTab = pIndex->pTable; 4098 const char *zDb = db->aDb[iDb].zDbSName; 4099 const char *zTab = SCHEMA_TABLE(iDb); 4100 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4101 goto exit_drop_index; 4102 } 4103 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4104 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4105 goto exit_drop_index; 4106 } 4107 } 4108 #endif 4109 4110 /* Generate code to remove the index and from the master table */ 4111 v = sqlite3GetVdbe(pParse); 4112 if( v ){ 4113 sqlite3BeginWriteOperation(pParse, 1, iDb); 4114 sqlite3NestedParse(pParse, 4115 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 4116 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 4117 ); 4118 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4119 sqlite3ChangeCookie(pParse, iDb); 4120 destroyRootPage(pParse, pIndex->tnum, iDb); 4121 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4122 } 4123 4124 exit_drop_index: 4125 sqlite3SrcListDelete(db, pName); 4126 } 4127 4128 /* 4129 ** pArray is a pointer to an array of objects. Each object in the 4130 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4131 ** to extend the array so that there is space for a new object at the end. 4132 ** 4133 ** When this function is called, *pnEntry contains the current size of 4134 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4135 ** in total). 4136 ** 4137 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4138 ** space allocated for the new object is zeroed, *pnEntry updated to 4139 ** reflect the new size of the array and a pointer to the new allocation 4140 ** returned. *pIdx is set to the index of the new array entry in this case. 4141 ** 4142 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4143 ** unchanged and a copy of pArray returned. 4144 */ 4145 void *sqlite3ArrayAllocate( 4146 sqlite3 *db, /* Connection to notify of malloc failures */ 4147 void *pArray, /* Array of objects. Might be reallocated */ 4148 int szEntry, /* Size of each object in the array */ 4149 int *pnEntry, /* Number of objects currently in use */ 4150 int *pIdx /* Write the index of a new slot here */ 4151 ){ 4152 char *z; 4153 sqlite3_int64 n = *pIdx = *pnEntry; 4154 if( (n & (n-1))==0 ){ 4155 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4156 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4157 if( pNew==0 ){ 4158 *pIdx = -1; 4159 return pArray; 4160 } 4161 pArray = pNew; 4162 } 4163 z = (char*)pArray; 4164 memset(&z[n * szEntry], 0, szEntry); 4165 ++*pnEntry; 4166 return pArray; 4167 } 4168 4169 /* 4170 ** Append a new element to the given IdList. Create a new IdList if 4171 ** need be. 4172 ** 4173 ** A new IdList is returned, or NULL if malloc() fails. 4174 */ 4175 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4176 sqlite3 *db = pParse->db; 4177 int i; 4178 if( pList==0 ){ 4179 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4180 if( pList==0 ) return 0; 4181 } 4182 pList->a = sqlite3ArrayAllocate( 4183 db, 4184 pList->a, 4185 sizeof(pList->a[0]), 4186 &pList->nId, 4187 &i 4188 ); 4189 if( i<0 ){ 4190 sqlite3IdListDelete(db, pList); 4191 return 0; 4192 } 4193 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4194 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4195 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4196 } 4197 return pList; 4198 } 4199 4200 /* 4201 ** Delete an IdList. 4202 */ 4203 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4204 int i; 4205 if( pList==0 ) return; 4206 for(i=0; i<pList->nId; i++){ 4207 sqlite3DbFree(db, pList->a[i].zName); 4208 } 4209 sqlite3DbFree(db, pList->a); 4210 sqlite3DbFreeNN(db, pList); 4211 } 4212 4213 /* 4214 ** Return the index in pList of the identifier named zId. Return -1 4215 ** if not found. 4216 */ 4217 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4218 int i; 4219 if( pList==0 ) return -1; 4220 for(i=0; i<pList->nId; i++){ 4221 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4222 } 4223 return -1; 4224 } 4225 4226 /* 4227 ** Maximum size of a SrcList object. 4228 ** The SrcList object is used to represent the FROM clause of a 4229 ** SELECT statement, and the query planner cannot deal with more 4230 ** than 64 tables in a join. So any value larger than 64 here 4231 ** is sufficient for most uses. Smaller values, like say 10, are 4232 ** appropriate for small and memory-limited applications. 4233 */ 4234 #ifndef SQLITE_MAX_SRCLIST 4235 # define SQLITE_MAX_SRCLIST 200 4236 #endif 4237 4238 /* 4239 ** Expand the space allocated for the given SrcList object by 4240 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4241 ** New slots are zeroed. 4242 ** 4243 ** For example, suppose a SrcList initially contains two entries: A,B. 4244 ** To append 3 new entries onto the end, do this: 4245 ** 4246 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4247 ** 4248 ** After the call above it would contain: A, B, nil, nil, nil. 4249 ** If the iStart argument had been 1 instead of 2, then the result 4250 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4251 ** the iStart value would be 0. The result then would 4252 ** be: nil, nil, nil, A, B. 4253 ** 4254 ** If a memory allocation fails or the SrcList becomes too large, leave 4255 ** the original SrcList unchanged, return NULL, and leave an error message 4256 ** in pParse. 4257 */ 4258 SrcList *sqlite3SrcListEnlarge( 4259 Parse *pParse, /* Parsing context into which errors are reported */ 4260 SrcList *pSrc, /* The SrcList to be enlarged */ 4261 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4262 int iStart /* Index in pSrc->a[] of first new slot */ 4263 ){ 4264 int i; 4265 4266 /* Sanity checking on calling parameters */ 4267 assert( iStart>=0 ); 4268 assert( nExtra>=1 ); 4269 assert( pSrc!=0 ); 4270 assert( iStart<=pSrc->nSrc ); 4271 4272 /* Allocate additional space if needed */ 4273 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4274 SrcList *pNew; 4275 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4276 sqlite3 *db = pParse->db; 4277 4278 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4279 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4280 SQLITE_MAX_SRCLIST); 4281 return 0; 4282 } 4283 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4284 pNew = sqlite3DbRealloc(db, pSrc, 4285 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4286 if( pNew==0 ){ 4287 assert( db->mallocFailed ); 4288 return 0; 4289 } 4290 pSrc = pNew; 4291 pSrc->nAlloc = nAlloc; 4292 } 4293 4294 /* Move existing slots that come after the newly inserted slots 4295 ** out of the way */ 4296 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4297 pSrc->a[i+nExtra] = pSrc->a[i]; 4298 } 4299 pSrc->nSrc += nExtra; 4300 4301 /* Zero the newly allocated slots */ 4302 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4303 for(i=iStart; i<iStart+nExtra; i++){ 4304 pSrc->a[i].iCursor = -1; 4305 } 4306 4307 /* Return a pointer to the enlarged SrcList */ 4308 return pSrc; 4309 } 4310 4311 4312 /* 4313 ** Append a new table name to the given SrcList. Create a new SrcList if 4314 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4315 ** 4316 ** A SrcList is returned, or NULL if there is an OOM error or if the 4317 ** SrcList grows to large. The returned 4318 ** SrcList might be the same as the SrcList that was input or it might be 4319 ** a new one. If an OOM error does occurs, then the prior value of pList 4320 ** that is input to this routine is automatically freed. 4321 ** 4322 ** If pDatabase is not null, it means that the table has an optional 4323 ** database name prefix. Like this: "database.table". The pDatabase 4324 ** points to the table name and the pTable points to the database name. 4325 ** The SrcList.a[].zName field is filled with the table name which might 4326 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4327 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4328 ** or with NULL if no database is specified. 4329 ** 4330 ** In other words, if call like this: 4331 ** 4332 ** sqlite3SrcListAppend(D,A,B,0); 4333 ** 4334 ** Then B is a table name and the database name is unspecified. If called 4335 ** like this: 4336 ** 4337 ** sqlite3SrcListAppend(D,A,B,C); 4338 ** 4339 ** Then C is the table name and B is the database name. If C is defined 4340 ** then so is B. In other words, we never have a case where: 4341 ** 4342 ** sqlite3SrcListAppend(D,A,0,C); 4343 ** 4344 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4345 ** before being added to the SrcList. 4346 */ 4347 SrcList *sqlite3SrcListAppend( 4348 Parse *pParse, /* Parsing context, in which errors are reported */ 4349 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4350 Token *pTable, /* Table to append */ 4351 Token *pDatabase /* Database of the table */ 4352 ){ 4353 struct SrcList_item *pItem; 4354 sqlite3 *db; 4355 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4356 assert( pParse!=0 ); 4357 assert( pParse->db!=0 ); 4358 db = pParse->db; 4359 if( pList==0 ){ 4360 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4361 if( pList==0 ) return 0; 4362 pList->nAlloc = 1; 4363 pList->nSrc = 1; 4364 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4365 pList->a[0].iCursor = -1; 4366 }else{ 4367 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4368 if( pNew==0 ){ 4369 sqlite3SrcListDelete(db, pList); 4370 return 0; 4371 }else{ 4372 pList = pNew; 4373 } 4374 } 4375 pItem = &pList->a[pList->nSrc-1]; 4376 if( pDatabase && pDatabase->z==0 ){ 4377 pDatabase = 0; 4378 } 4379 if( pDatabase ){ 4380 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4381 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4382 }else{ 4383 pItem->zName = sqlite3NameFromToken(db, pTable); 4384 pItem->zDatabase = 0; 4385 } 4386 return pList; 4387 } 4388 4389 /* 4390 ** Assign VdbeCursor index numbers to all tables in a SrcList 4391 */ 4392 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4393 int i; 4394 struct SrcList_item *pItem; 4395 assert(pList || pParse->db->mallocFailed ); 4396 if( pList ){ 4397 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4398 if( pItem->iCursor>=0 ) break; 4399 pItem->iCursor = pParse->nTab++; 4400 if( pItem->pSelect ){ 4401 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4402 } 4403 } 4404 } 4405 } 4406 4407 /* 4408 ** Delete an entire SrcList including all its substructure. 4409 */ 4410 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4411 int i; 4412 struct SrcList_item *pItem; 4413 if( pList==0 ) return; 4414 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4415 sqlite3DbFree(db, pItem->zDatabase); 4416 sqlite3DbFree(db, pItem->zName); 4417 sqlite3DbFree(db, pItem->zAlias); 4418 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4419 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4420 sqlite3DeleteTable(db, pItem->pTab); 4421 sqlite3SelectDelete(db, pItem->pSelect); 4422 sqlite3ExprDelete(db, pItem->pOn); 4423 sqlite3IdListDelete(db, pItem->pUsing); 4424 } 4425 sqlite3DbFreeNN(db, pList); 4426 } 4427 4428 /* 4429 ** This routine is called by the parser to add a new term to the 4430 ** end of a growing FROM clause. The "p" parameter is the part of 4431 ** the FROM clause that has already been constructed. "p" is NULL 4432 ** if this is the first term of the FROM clause. pTable and pDatabase 4433 ** are the name of the table and database named in the FROM clause term. 4434 ** pDatabase is NULL if the database name qualifier is missing - the 4435 ** usual case. If the term has an alias, then pAlias points to the 4436 ** alias token. If the term is a subquery, then pSubquery is the 4437 ** SELECT statement that the subquery encodes. The pTable and 4438 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4439 ** parameters are the content of the ON and USING clauses. 4440 ** 4441 ** Return a new SrcList which encodes is the FROM with the new 4442 ** term added. 4443 */ 4444 SrcList *sqlite3SrcListAppendFromTerm( 4445 Parse *pParse, /* Parsing context */ 4446 SrcList *p, /* The left part of the FROM clause already seen */ 4447 Token *pTable, /* Name of the table to add to the FROM clause */ 4448 Token *pDatabase, /* Name of the database containing pTable */ 4449 Token *pAlias, /* The right-hand side of the AS subexpression */ 4450 Select *pSubquery, /* A subquery used in place of a table name */ 4451 Expr *pOn, /* The ON clause of a join */ 4452 IdList *pUsing /* The USING clause of a join */ 4453 ){ 4454 struct SrcList_item *pItem; 4455 sqlite3 *db = pParse->db; 4456 if( !p && (pOn || pUsing) ){ 4457 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4458 (pOn ? "ON" : "USING") 4459 ); 4460 goto append_from_error; 4461 } 4462 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4463 if( p==0 ){ 4464 goto append_from_error; 4465 } 4466 assert( p->nSrc>0 ); 4467 pItem = &p->a[p->nSrc-1]; 4468 assert( (pTable==0)==(pDatabase==0) ); 4469 assert( pItem->zName==0 || pDatabase!=0 ); 4470 if( IN_RENAME_OBJECT && pItem->zName ){ 4471 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4472 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4473 } 4474 assert( pAlias!=0 ); 4475 if( pAlias->n ){ 4476 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4477 } 4478 pItem->pSelect = pSubquery; 4479 pItem->pOn = pOn; 4480 pItem->pUsing = pUsing; 4481 return p; 4482 4483 append_from_error: 4484 assert( p==0 ); 4485 sqlite3ExprDelete(db, pOn); 4486 sqlite3IdListDelete(db, pUsing); 4487 sqlite3SelectDelete(db, pSubquery); 4488 return 0; 4489 } 4490 4491 /* 4492 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4493 ** element of the source-list passed as the second argument. 4494 */ 4495 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4496 assert( pIndexedBy!=0 ); 4497 if( p && pIndexedBy->n>0 ){ 4498 struct SrcList_item *pItem; 4499 assert( p->nSrc>0 ); 4500 pItem = &p->a[p->nSrc-1]; 4501 assert( pItem->fg.notIndexed==0 ); 4502 assert( pItem->fg.isIndexedBy==0 ); 4503 assert( pItem->fg.isTabFunc==0 ); 4504 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4505 /* A "NOT INDEXED" clause was supplied. See parse.y 4506 ** construct "indexed_opt" for details. */ 4507 pItem->fg.notIndexed = 1; 4508 }else{ 4509 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4510 pItem->fg.isIndexedBy = 1; 4511 } 4512 } 4513 } 4514 4515 /* 4516 ** Add the list of function arguments to the SrcList entry for a 4517 ** table-valued-function. 4518 */ 4519 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4520 if( p ){ 4521 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4522 assert( pItem->fg.notIndexed==0 ); 4523 assert( pItem->fg.isIndexedBy==0 ); 4524 assert( pItem->fg.isTabFunc==0 ); 4525 pItem->u1.pFuncArg = pList; 4526 pItem->fg.isTabFunc = 1; 4527 }else{ 4528 sqlite3ExprListDelete(pParse->db, pList); 4529 } 4530 } 4531 4532 /* 4533 ** When building up a FROM clause in the parser, the join operator 4534 ** is initially attached to the left operand. But the code generator 4535 ** expects the join operator to be on the right operand. This routine 4536 ** Shifts all join operators from left to right for an entire FROM 4537 ** clause. 4538 ** 4539 ** Example: Suppose the join is like this: 4540 ** 4541 ** A natural cross join B 4542 ** 4543 ** The operator is "natural cross join". The A and B operands are stored 4544 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4545 ** operator with A. This routine shifts that operator over to B. 4546 */ 4547 void sqlite3SrcListShiftJoinType(SrcList *p){ 4548 if( p ){ 4549 int i; 4550 for(i=p->nSrc-1; i>0; i--){ 4551 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4552 } 4553 p->a[0].fg.jointype = 0; 4554 } 4555 } 4556 4557 /* 4558 ** Generate VDBE code for a BEGIN statement. 4559 */ 4560 void sqlite3BeginTransaction(Parse *pParse, int type){ 4561 sqlite3 *db; 4562 Vdbe *v; 4563 int i; 4564 4565 assert( pParse!=0 ); 4566 db = pParse->db; 4567 assert( db!=0 ); 4568 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4569 return; 4570 } 4571 v = sqlite3GetVdbe(pParse); 4572 if( !v ) return; 4573 if( type!=TK_DEFERRED ){ 4574 for(i=0; i<db->nDb; i++){ 4575 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4576 sqlite3VdbeUsesBtree(v, i); 4577 } 4578 } 4579 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4580 } 4581 4582 /* 4583 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4584 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4585 ** code is generated for a COMMIT. 4586 */ 4587 void sqlite3EndTransaction(Parse *pParse, int eType){ 4588 Vdbe *v; 4589 int isRollback; 4590 4591 assert( pParse!=0 ); 4592 assert( pParse->db!=0 ); 4593 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4594 isRollback = eType==TK_ROLLBACK; 4595 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4596 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4597 return; 4598 } 4599 v = sqlite3GetVdbe(pParse); 4600 if( v ){ 4601 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4602 } 4603 } 4604 4605 /* 4606 ** This function is called by the parser when it parses a command to create, 4607 ** release or rollback an SQL savepoint. 4608 */ 4609 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4610 char *zName = sqlite3NameFromToken(pParse->db, pName); 4611 if( zName ){ 4612 Vdbe *v = sqlite3GetVdbe(pParse); 4613 #ifndef SQLITE_OMIT_AUTHORIZATION 4614 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4615 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4616 #endif 4617 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4618 sqlite3DbFree(pParse->db, zName); 4619 return; 4620 } 4621 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4622 } 4623 } 4624 4625 /* 4626 ** Make sure the TEMP database is open and available for use. Return 4627 ** the number of errors. Leave any error messages in the pParse structure. 4628 */ 4629 int sqlite3OpenTempDatabase(Parse *pParse){ 4630 sqlite3 *db = pParse->db; 4631 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4632 int rc; 4633 Btree *pBt; 4634 static const int flags = 4635 SQLITE_OPEN_READWRITE | 4636 SQLITE_OPEN_CREATE | 4637 SQLITE_OPEN_EXCLUSIVE | 4638 SQLITE_OPEN_DELETEONCLOSE | 4639 SQLITE_OPEN_TEMP_DB; 4640 4641 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4642 if( rc!=SQLITE_OK ){ 4643 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4644 "file for storing temporary tables"); 4645 pParse->rc = rc; 4646 return 1; 4647 } 4648 db->aDb[1].pBt = pBt; 4649 assert( db->aDb[1].pSchema ); 4650 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4651 sqlite3OomFault(db); 4652 return 1; 4653 } 4654 } 4655 return 0; 4656 } 4657 4658 /* 4659 ** Record the fact that the schema cookie will need to be verified 4660 ** for database iDb. The code to actually verify the schema cookie 4661 ** will occur at the end of the top-level VDBE and will be generated 4662 ** later, by sqlite3FinishCoding(). 4663 */ 4664 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4665 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4666 4667 assert( iDb>=0 && iDb<pParse->db->nDb ); 4668 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4669 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4670 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4671 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4672 DbMaskSet(pToplevel->cookieMask, iDb); 4673 if( !OMIT_TEMPDB && iDb==1 ){ 4674 sqlite3OpenTempDatabase(pToplevel); 4675 } 4676 } 4677 } 4678 4679 /* 4680 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4681 ** attached database. Otherwise, invoke it for the database named zDb only. 4682 */ 4683 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4684 sqlite3 *db = pParse->db; 4685 int i; 4686 for(i=0; i<db->nDb; i++){ 4687 Db *pDb = &db->aDb[i]; 4688 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4689 sqlite3CodeVerifySchema(pParse, i); 4690 } 4691 } 4692 } 4693 4694 /* 4695 ** Generate VDBE code that prepares for doing an operation that 4696 ** might change the database. 4697 ** 4698 ** This routine starts a new transaction if we are not already within 4699 ** a transaction. If we are already within a transaction, then a checkpoint 4700 ** is set if the setStatement parameter is true. A checkpoint should 4701 ** be set for operations that might fail (due to a constraint) part of 4702 ** the way through and which will need to undo some writes without having to 4703 ** rollback the whole transaction. For operations where all constraints 4704 ** can be checked before any changes are made to the database, it is never 4705 ** necessary to undo a write and the checkpoint should not be set. 4706 */ 4707 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4708 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4709 sqlite3CodeVerifySchema(pParse, iDb); 4710 DbMaskSet(pToplevel->writeMask, iDb); 4711 pToplevel->isMultiWrite |= setStatement; 4712 } 4713 4714 /* 4715 ** Indicate that the statement currently under construction might write 4716 ** more than one entry (example: deleting one row then inserting another, 4717 ** inserting multiple rows in a table, or inserting a row and index entries.) 4718 ** If an abort occurs after some of these writes have completed, then it will 4719 ** be necessary to undo the completed writes. 4720 */ 4721 void sqlite3MultiWrite(Parse *pParse){ 4722 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4723 pToplevel->isMultiWrite = 1; 4724 } 4725 4726 /* 4727 ** The code generator calls this routine if is discovers that it is 4728 ** possible to abort a statement prior to completion. In order to 4729 ** perform this abort without corrupting the database, we need to make 4730 ** sure that the statement is protected by a statement transaction. 4731 ** 4732 ** Technically, we only need to set the mayAbort flag if the 4733 ** isMultiWrite flag was previously set. There is a time dependency 4734 ** such that the abort must occur after the multiwrite. This makes 4735 ** some statements involving the REPLACE conflict resolution algorithm 4736 ** go a little faster. But taking advantage of this time dependency 4737 ** makes it more difficult to prove that the code is correct (in 4738 ** particular, it prevents us from writing an effective 4739 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4740 ** to take the safe route and skip the optimization. 4741 */ 4742 void sqlite3MayAbort(Parse *pParse){ 4743 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4744 pToplevel->mayAbort = 1; 4745 } 4746 4747 /* 4748 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4749 ** error. The onError parameter determines which (if any) of the statement 4750 ** and/or current transaction is rolled back. 4751 */ 4752 void sqlite3HaltConstraint( 4753 Parse *pParse, /* Parsing context */ 4754 int errCode, /* extended error code */ 4755 int onError, /* Constraint type */ 4756 char *p4, /* Error message */ 4757 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4758 u8 p5Errmsg /* P5_ErrMsg type */ 4759 ){ 4760 Vdbe *v = sqlite3GetVdbe(pParse); 4761 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4762 if( onError==OE_Abort ){ 4763 sqlite3MayAbort(pParse); 4764 } 4765 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4766 sqlite3VdbeChangeP5(v, p5Errmsg); 4767 } 4768 4769 /* 4770 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4771 */ 4772 void sqlite3UniqueConstraint( 4773 Parse *pParse, /* Parsing context */ 4774 int onError, /* Constraint type */ 4775 Index *pIdx /* The index that triggers the constraint */ 4776 ){ 4777 char *zErr; 4778 int j; 4779 StrAccum errMsg; 4780 Table *pTab = pIdx->pTable; 4781 4782 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4783 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4784 if( pIdx->aColExpr ){ 4785 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4786 }else{ 4787 for(j=0; j<pIdx->nKeyCol; j++){ 4788 char *zCol; 4789 assert( pIdx->aiColumn[j]>=0 ); 4790 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4791 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4792 sqlite3_str_appendall(&errMsg, pTab->zName); 4793 sqlite3_str_append(&errMsg, ".", 1); 4794 sqlite3_str_appendall(&errMsg, zCol); 4795 } 4796 } 4797 zErr = sqlite3StrAccumFinish(&errMsg); 4798 sqlite3HaltConstraint(pParse, 4799 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4800 : SQLITE_CONSTRAINT_UNIQUE, 4801 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4802 } 4803 4804 4805 /* 4806 ** Code an OP_Halt due to non-unique rowid. 4807 */ 4808 void sqlite3RowidConstraint( 4809 Parse *pParse, /* Parsing context */ 4810 int onError, /* Conflict resolution algorithm */ 4811 Table *pTab /* The table with the non-unique rowid */ 4812 ){ 4813 char *zMsg; 4814 int rc; 4815 if( pTab->iPKey>=0 ){ 4816 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4817 pTab->aCol[pTab->iPKey].zName); 4818 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4819 }else{ 4820 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4821 rc = SQLITE_CONSTRAINT_ROWID; 4822 } 4823 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4824 P5_ConstraintUnique); 4825 } 4826 4827 /* 4828 ** Check to see if pIndex uses the collating sequence pColl. Return 4829 ** true if it does and false if it does not. 4830 */ 4831 #ifndef SQLITE_OMIT_REINDEX 4832 static int collationMatch(const char *zColl, Index *pIndex){ 4833 int i; 4834 assert( zColl!=0 ); 4835 for(i=0; i<pIndex->nColumn; i++){ 4836 const char *z = pIndex->azColl[i]; 4837 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4838 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4839 return 1; 4840 } 4841 } 4842 return 0; 4843 } 4844 #endif 4845 4846 /* 4847 ** Recompute all indices of pTab that use the collating sequence pColl. 4848 ** If pColl==0 then recompute all indices of pTab. 4849 */ 4850 #ifndef SQLITE_OMIT_REINDEX 4851 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4852 if( !IsVirtual(pTab) ){ 4853 Index *pIndex; /* An index associated with pTab */ 4854 4855 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4856 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4857 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4858 sqlite3BeginWriteOperation(pParse, 0, iDb); 4859 sqlite3RefillIndex(pParse, pIndex, -1); 4860 } 4861 } 4862 } 4863 } 4864 #endif 4865 4866 /* 4867 ** Recompute all indices of all tables in all databases where the 4868 ** indices use the collating sequence pColl. If pColl==0 then recompute 4869 ** all indices everywhere. 4870 */ 4871 #ifndef SQLITE_OMIT_REINDEX 4872 static void reindexDatabases(Parse *pParse, char const *zColl){ 4873 Db *pDb; /* A single database */ 4874 int iDb; /* The database index number */ 4875 sqlite3 *db = pParse->db; /* The database connection */ 4876 HashElem *k; /* For looping over tables in pDb */ 4877 Table *pTab; /* A table in the database */ 4878 4879 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4880 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4881 assert( pDb!=0 ); 4882 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4883 pTab = (Table*)sqliteHashData(k); 4884 reindexTable(pParse, pTab, zColl); 4885 } 4886 } 4887 } 4888 #endif 4889 4890 /* 4891 ** Generate code for the REINDEX command. 4892 ** 4893 ** REINDEX -- 1 4894 ** REINDEX <collation> -- 2 4895 ** REINDEX ?<database>.?<tablename> -- 3 4896 ** REINDEX ?<database>.?<indexname> -- 4 4897 ** 4898 ** Form 1 causes all indices in all attached databases to be rebuilt. 4899 ** Form 2 rebuilds all indices in all databases that use the named 4900 ** collating function. Forms 3 and 4 rebuild the named index or all 4901 ** indices associated with the named table. 4902 */ 4903 #ifndef SQLITE_OMIT_REINDEX 4904 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4905 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4906 char *z; /* Name of a table or index */ 4907 const char *zDb; /* Name of the database */ 4908 Table *pTab; /* A table in the database */ 4909 Index *pIndex; /* An index associated with pTab */ 4910 int iDb; /* The database index number */ 4911 sqlite3 *db = pParse->db; /* The database connection */ 4912 Token *pObjName; /* Name of the table or index to be reindexed */ 4913 4914 /* Read the database schema. If an error occurs, leave an error message 4915 ** and code in pParse and return NULL. */ 4916 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4917 return; 4918 } 4919 4920 if( pName1==0 ){ 4921 reindexDatabases(pParse, 0); 4922 return; 4923 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4924 char *zColl; 4925 assert( pName1->z ); 4926 zColl = sqlite3NameFromToken(pParse->db, pName1); 4927 if( !zColl ) return; 4928 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4929 if( pColl ){ 4930 reindexDatabases(pParse, zColl); 4931 sqlite3DbFree(db, zColl); 4932 return; 4933 } 4934 sqlite3DbFree(db, zColl); 4935 } 4936 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4937 if( iDb<0 ) return; 4938 z = sqlite3NameFromToken(db, pObjName); 4939 if( z==0 ) return; 4940 zDb = db->aDb[iDb].zDbSName; 4941 pTab = sqlite3FindTable(db, z, zDb); 4942 if( pTab ){ 4943 reindexTable(pParse, pTab, 0); 4944 sqlite3DbFree(db, z); 4945 return; 4946 } 4947 pIndex = sqlite3FindIndex(db, z, zDb); 4948 sqlite3DbFree(db, z); 4949 if( pIndex ){ 4950 sqlite3BeginWriteOperation(pParse, 0, iDb); 4951 sqlite3RefillIndex(pParse, pIndex, -1); 4952 return; 4953 } 4954 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4955 } 4956 #endif 4957 4958 /* 4959 ** Return a KeyInfo structure that is appropriate for the given Index. 4960 ** 4961 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4962 ** when it has finished using it. 4963 */ 4964 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4965 int i; 4966 int nCol = pIdx->nColumn; 4967 int nKey = pIdx->nKeyCol; 4968 KeyInfo *pKey; 4969 if( pParse->nErr ) return 0; 4970 if( pIdx->uniqNotNull ){ 4971 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4972 }else{ 4973 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4974 } 4975 if( pKey ){ 4976 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4977 for(i=0; i<nCol; i++){ 4978 const char *zColl = pIdx->azColl[i]; 4979 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4980 sqlite3LocateCollSeq(pParse, zColl); 4981 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 4982 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 4983 } 4984 if( pParse->nErr ){ 4985 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4986 if( pIdx->bNoQuery==0 ){ 4987 /* Deactivate the index because it contains an unknown collating 4988 ** sequence. The only way to reactive the index is to reload the 4989 ** schema. Adding the missing collating sequence later does not 4990 ** reactive the index. The application had the chance to register 4991 ** the missing index using the collation-needed callback. For 4992 ** simplicity, SQLite will not give the application a second chance. 4993 */ 4994 pIdx->bNoQuery = 1; 4995 pParse->rc = SQLITE_ERROR_RETRY; 4996 } 4997 sqlite3KeyInfoUnref(pKey); 4998 pKey = 0; 4999 } 5000 } 5001 return pKey; 5002 } 5003 5004 #ifndef SQLITE_OMIT_CTE 5005 /* 5006 ** This routine is invoked once per CTE by the parser while parsing a 5007 ** WITH clause. 5008 */ 5009 With *sqlite3WithAdd( 5010 Parse *pParse, /* Parsing context */ 5011 With *pWith, /* Existing WITH clause, or NULL */ 5012 Token *pName, /* Name of the common-table */ 5013 ExprList *pArglist, /* Optional column name list for the table */ 5014 Select *pQuery /* Query used to initialize the table */ 5015 ){ 5016 sqlite3 *db = pParse->db; 5017 With *pNew; 5018 char *zName; 5019 5020 /* Check that the CTE name is unique within this WITH clause. If 5021 ** not, store an error in the Parse structure. */ 5022 zName = sqlite3NameFromToken(pParse->db, pName); 5023 if( zName && pWith ){ 5024 int i; 5025 for(i=0; i<pWith->nCte; i++){ 5026 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5027 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5028 } 5029 } 5030 } 5031 5032 if( pWith ){ 5033 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5034 pNew = sqlite3DbRealloc(db, pWith, nByte); 5035 }else{ 5036 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5037 } 5038 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5039 5040 if( db->mallocFailed ){ 5041 sqlite3ExprListDelete(db, pArglist); 5042 sqlite3SelectDelete(db, pQuery); 5043 sqlite3DbFree(db, zName); 5044 pNew = pWith; 5045 }else{ 5046 pNew->a[pNew->nCte].pSelect = pQuery; 5047 pNew->a[pNew->nCte].pCols = pArglist; 5048 pNew->a[pNew->nCte].zName = zName; 5049 pNew->a[pNew->nCte].zCteErr = 0; 5050 pNew->nCte++; 5051 } 5052 5053 return pNew; 5054 } 5055 5056 /* 5057 ** Free the contents of the With object passed as the second argument. 5058 */ 5059 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5060 if( pWith ){ 5061 int i; 5062 for(i=0; i<pWith->nCte; i++){ 5063 struct Cte *pCte = &pWith->a[i]; 5064 sqlite3ExprListDelete(db, pCte->pCols); 5065 sqlite3SelectDelete(db, pCte->pSelect); 5066 sqlite3DbFree(db, pCte->zName); 5067 } 5068 sqlite3DbFree(db, pWith); 5069 } 5070 } 5071 #endif /* !defined(SQLITE_OMIT_CTE) */ 5072