1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 pToplevel = sqlite3ParseToplevel(pParse); 65 for(i=0; i<pToplevel->nTableLock; i++){ 66 p = &pToplevel->aTableLock[i]; 67 if( p->iDb==iDb && p->iTab==iTab ){ 68 p->isWriteLock = (p->isWriteLock || isWriteLock); 69 return; 70 } 71 } 72 73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 74 pToplevel->aTableLock = 75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 76 if( pToplevel->aTableLock ){ 77 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 78 p->iDb = iDb; 79 p->iTab = iTab; 80 p->isWriteLock = isWriteLock; 81 p->zLockName = zName; 82 }else{ 83 pToplevel->nTableLock = 0; 84 sqlite3OomFault(pToplevel->db); 85 } 86 } 87 88 /* 89 ** Code an OP_TableLock instruction for each table locked by the 90 ** statement (configured by calls to sqlite3TableLock()). 91 */ 92 static void codeTableLocks(Parse *pParse){ 93 int i; 94 Vdbe *pVdbe = pParse->pVdbe; 95 assert( pVdbe!=0 ); 96 97 for(i=0; i<pParse->nTableLock; i++){ 98 TableLock *p = &pParse->aTableLock[i]; 99 int p1 = p->iDb; 100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 p->zLockName, P4_STATIC); 102 } 103 } 104 #else 105 #define codeTableLocks(x) 106 #endif 107 108 /* 109 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 */ 113 #if SQLITE_MAX_ATTACHED>30 114 int sqlite3DbMaskAllZero(yDbMask m){ 115 int i; 116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 117 return 1; 118 } 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 assert( pParse->pToplevel==0 ); 136 db = pParse->db; 137 if( pParse->nested ) return; 138 if( db->mallocFailed || pParse->nErr ){ 139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 143 /* Begin by generating some termination code at the end of the 144 ** vdbe program 145 */ 146 v = pParse->pVdbe; 147 if( v==0 ){ 148 if( db->init.busy ){ 149 pParse->rc = SQLITE_DONE; 150 return; 151 } 152 v = sqlite3GetVdbe(pParse); 153 if( v==0 ) pParse->rc = SQLITE_ERROR; 154 } 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 if( pParse->bReturning ){ 159 Returning *pReturning = pParse->u1.pReturning; 160 int addrRewind; 161 int i; 162 int reg; 163 164 addrRewind = 165 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 166 VdbeCoverage(v); 167 reg = pReturning->iRetReg; 168 for(i=0; i<pReturning->nRetCol; i++){ 169 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 170 } 171 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 172 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 173 VdbeCoverage(v); 174 sqlite3VdbeJumpHere(v, addrRewind); 175 } 176 sqlite3VdbeAddOp0(v, OP_Halt); 177 178 #if SQLITE_USER_AUTHENTICATION 179 if( pParse->nTableLock>0 && db->init.busy==0 ){ 180 sqlite3UserAuthInit(db); 181 if( db->auth.authLevel<UAUTH_User ){ 182 sqlite3ErrorMsg(pParse, "user not authenticated"); 183 pParse->rc = SQLITE_AUTH_USER; 184 return; 185 } 186 } 187 #endif 188 189 /* The cookie mask contains one bit for each database file open. 190 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 191 ** set for each database that is used. Generate code to start a 192 ** transaction on each used database and to verify the schema cookie 193 ** on each used database. 194 */ 195 if( db->mallocFailed==0 196 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 197 ){ 198 int iDb, i; 199 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 200 sqlite3VdbeJumpHere(v, 0); 201 for(iDb=0; iDb<db->nDb; iDb++){ 202 Schema *pSchema; 203 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 204 sqlite3VdbeUsesBtree(v, iDb); 205 pSchema = db->aDb[iDb].pSchema; 206 sqlite3VdbeAddOp4Int(v, 207 OP_Transaction, /* Opcode */ 208 iDb, /* P1 */ 209 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 210 pSchema->schema_cookie, /* P3 */ 211 pSchema->iGeneration /* P4 */ 212 ); 213 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 214 VdbeComment((v, 215 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 216 } 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 for(i=0; i<pParse->nVtabLock; i++){ 219 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 220 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 221 } 222 pParse->nVtabLock = 0; 223 #endif 224 225 /* Once all the cookies have been verified and transactions opened, 226 ** obtain the required table-locks. This is a no-op unless the 227 ** shared-cache feature is enabled. 228 */ 229 codeTableLocks(pParse); 230 231 /* Initialize any AUTOINCREMENT data structures required. 232 */ 233 sqlite3AutoincrementBegin(pParse); 234 235 /* Code constant expressions that where factored out of inner loops. 236 ** 237 ** The pConstExpr list might also contain expressions that we simply 238 ** want to keep around until the Parse object is deleted. Such 239 ** expressions have iConstExprReg==0. Do not generate code for 240 ** those expressions, of course. 241 */ 242 if( pParse->pConstExpr ){ 243 ExprList *pEL = pParse->pConstExpr; 244 pParse->okConstFactor = 0; 245 for(i=0; i<pEL->nExpr; i++){ 246 int iReg = pEL->a[i].u.iConstExprReg; 247 if( iReg>0 ){ 248 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 249 } 250 } 251 } 252 253 if( pParse->bReturning ){ 254 Returning *pRet = pParse->u1.pReturning; 255 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 256 } 257 258 /* Finally, jump back to the beginning of the executable code. */ 259 sqlite3VdbeGoto(v, 1); 260 } 261 } 262 263 /* Get the VDBE program ready for execution 264 */ 265 if( v && pParse->nErr==0 && !db->mallocFailed ){ 266 /* A minimum of one cursor is required if autoincrement is used 267 * See ticket [a696379c1f08866] */ 268 assert( pParse->pAinc==0 || pParse->nTab>0 ); 269 sqlite3VdbeMakeReady(v, pParse); 270 pParse->rc = SQLITE_DONE; 271 }else{ 272 pParse->rc = SQLITE_ERROR; 273 } 274 } 275 276 /* 277 ** Run the parser and code generator recursively in order to generate 278 ** code for the SQL statement given onto the end of the pParse context 279 ** currently under construction. When the parser is run recursively 280 ** this way, the final OP_Halt is not appended and other initialization 281 ** and finalization steps are omitted because those are handling by the 282 ** outermost parser. 283 ** 284 ** Not everything is nestable. This facility is designed to permit 285 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 286 ** care if you decide to try to use this routine for some other purposes. 287 */ 288 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 289 va_list ap; 290 char *zSql; 291 char *zErrMsg = 0; 292 sqlite3 *db = pParse->db; 293 char saveBuf[PARSE_TAIL_SZ]; 294 295 if( pParse->nErr ) return; 296 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 297 va_start(ap, zFormat); 298 zSql = sqlite3VMPrintf(db, zFormat, ap); 299 va_end(ap); 300 if( zSql==0 ){ 301 /* This can result either from an OOM or because the formatted string 302 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 303 ** an error */ 304 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 305 pParse->nErr++; 306 return; 307 } 308 pParse->nested++; 309 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 310 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 311 sqlite3RunParser(pParse, zSql, &zErrMsg); 312 sqlite3DbFree(db, zErrMsg); 313 sqlite3DbFree(db, zSql); 314 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 315 pParse->nested--; 316 } 317 318 #if SQLITE_USER_AUTHENTICATION 319 /* 320 ** Return TRUE if zTable is the name of the system table that stores the 321 ** list of users and their access credentials. 322 */ 323 int sqlite3UserAuthTable(const char *zTable){ 324 return sqlite3_stricmp(zTable, "sqlite_user")==0; 325 } 326 #endif 327 328 /* 329 ** Locate the in-memory structure that describes a particular database 330 ** table given the name of that table and (optionally) the name of the 331 ** database containing the table. Return NULL if not found. 332 ** 333 ** If zDatabase is 0, all databases are searched for the table and the 334 ** first matching table is returned. (No checking for duplicate table 335 ** names is done.) The search order is TEMP first, then MAIN, then any 336 ** auxiliary databases added using the ATTACH command. 337 ** 338 ** See also sqlite3LocateTable(). 339 */ 340 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 341 Table *p = 0; 342 int i; 343 344 /* All mutexes are required for schema access. Make sure we hold them. */ 345 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 346 #if SQLITE_USER_AUTHENTICATION 347 /* Only the admin user is allowed to know that the sqlite_user table 348 ** exists */ 349 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 350 return 0; 351 } 352 #endif 353 if( zDatabase ){ 354 for(i=0; i<db->nDb; i++){ 355 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 356 } 357 if( i>=db->nDb ){ 358 /* No match against the official names. But always match "main" 359 ** to schema 0 as a legacy fallback. */ 360 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 361 i = 0; 362 }else{ 363 return 0; 364 } 365 } 366 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 367 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 368 if( i==1 ){ 369 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 370 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 371 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 372 ){ 373 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 374 DFLT_TEMP_SCHEMA_TABLE); 375 } 376 }else{ 377 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 378 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 379 DFLT_SCHEMA_TABLE); 380 } 381 } 382 } 383 }else{ 384 /* Match against TEMP first */ 385 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 386 if( p ) return p; 387 /* The main database is second */ 388 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 389 if( p ) return p; 390 /* Attached databases are in order of attachment */ 391 for(i=2; i<db->nDb; i++){ 392 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 393 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 394 if( p ) break; 395 } 396 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 397 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 398 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 399 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 400 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 401 DFLT_TEMP_SCHEMA_TABLE); 402 } 403 } 404 } 405 return p; 406 } 407 408 /* 409 ** Locate the in-memory structure that describes a particular database 410 ** table given the name of that table and (optionally) the name of the 411 ** database containing the table. Return NULL if not found. Also leave an 412 ** error message in pParse->zErrMsg. 413 ** 414 ** The difference between this routine and sqlite3FindTable() is that this 415 ** routine leaves an error message in pParse->zErrMsg where 416 ** sqlite3FindTable() does not. 417 */ 418 Table *sqlite3LocateTable( 419 Parse *pParse, /* context in which to report errors */ 420 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 421 const char *zName, /* Name of the table we are looking for */ 422 const char *zDbase /* Name of the database. Might be NULL */ 423 ){ 424 Table *p; 425 sqlite3 *db = pParse->db; 426 427 /* Read the database schema. If an error occurs, leave an error message 428 ** and code in pParse and return NULL. */ 429 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 430 && SQLITE_OK!=sqlite3ReadSchema(pParse) 431 ){ 432 return 0; 433 } 434 435 p = sqlite3FindTable(db, zName, zDbase); 436 if( p==0 ){ 437 #ifndef SQLITE_OMIT_VIRTUALTABLE 438 /* If zName is the not the name of a table in the schema created using 439 ** CREATE, then check to see if it is the name of an virtual table that 440 ** can be an eponymous virtual table. */ 441 if( pParse->disableVtab==0 && db->init.busy==0 ){ 442 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 443 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 444 pMod = sqlite3PragmaVtabRegister(db, zName); 445 } 446 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 447 return pMod->pEpoTab; 448 } 449 } 450 #endif 451 if( flags & LOCATE_NOERR ) return 0; 452 pParse->checkSchema = 1; 453 }else if( IsVirtual(p) && pParse->disableVtab ){ 454 p = 0; 455 } 456 457 if( p==0 ){ 458 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 459 if( zDbase ){ 460 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 461 }else{ 462 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 463 } 464 }else{ 465 assert( HasRowid(p) || p->iPKey<0 ); 466 } 467 468 return p; 469 } 470 471 /* 472 ** Locate the table identified by *p. 473 ** 474 ** This is a wrapper around sqlite3LocateTable(). The difference between 475 ** sqlite3LocateTable() and this function is that this function restricts 476 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 477 ** non-NULL if it is part of a view or trigger program definition. See 478 ** sqlite3FixSrcList() for details. 479 */ 480 Table *sqlite3LocateTableItem( 481 Parse *pParse, 482 u32 flags, 483 SrcItem *p 484 ){ 485 const char *zDb; 486 assert( p->pSchema==0 || p->zDatabase==0 ); 487 if( p->pSchema ){ 488 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 489 zDb = pParse->db->aDb[iDb].zDbSName; 490 }else{ 491 zDb = p->zDatabase; 492 } 493 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 494 } 495 496 /* 497 ** Locate the in-memory structure that describes 498 ** a particular index given the name of that index 499 ** and the name of the database that contains the index. 500 ** Return NULL if not found. 501 ** 502 ** If zDatabase is 0, all databases are searched for the 503 ** table and the first matching index is returned. (No checking 504 ** for duplicate index names is done.) The search order is 505 ** TEMP first, then MAIN, then any auxiliary databases added 506 ** using the ATTACH command. 507 */ 508 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 509 Index *p = 0; 510 int i; 511 /* All mutexes are required for schema access. Make sure we hold them. */ 512 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 513 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 514 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 515 Schema *pSchema = db->aDb[j].pSchema; 516 assert( pSchema ); 517 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 518 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 519 p = sqlite3HashFind(&pSchema->idxHash, zName); 520 if( p ) break; 521 } 522 return p; 523 } 524 525 /* 526 ** Reclaim the memory used by an index 527 */ 528 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 529 #ifndef SQLITE_OMIT_ANALYZE 530 sqlite3DeleteIndexSamples(db, p); 531 #endif 532 sqlite3ExprDelete(db, p->pPartIdxWhere); 533 sqlite3ExprListDelete(db, p->aColExpr); 534 sqlite3DbFree(db, p->zColAff); 535 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 536 #ifdef SQLITE_ENABLE_STAT4 537 sqlite3_free(p->aiRowEst); 538 #endif 539 sqlite3DbFree(db, p); 540 } 541 542 /* 543 ** For the index called zIdxName which is found in the database iDb, 544 ** unlike that index from its Table then remove the index from 545 ** the index hash table and free all memory structures associated 546 ** with the index. 547 */ 548 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 549 Index *pIndex; 550 Hash *pHash; 551 552 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 553 pHash = &db->aDb[iDb].pSchema->idxHash; 554 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 555 if( ALWAYS(pIndex) ){ 556 if( pIndex->pTable->pIndex==pIndex ){ 557 pIndex->pTable->pIndex = pIndex->pNext; 558 }else{ 559 Index *p; 560 /* Justification of ALWAYS(); The index must be on the list of 561 ** indices. */ 562 p = pIndex->pTable->pIndex; 563 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 564 if( ALWAYS(p && p->pNext==pIndex) ){ 565 p->pNext = pIndex->pNext; 566 } 567 } 568 sqlite3FreeIndex(db, pIndex); 569 } 570 db->mDbFlags |= DBFLAG_SchemaChange; 571 } 572 573 /* 574 ** Look through the list of open database files in db->aDb[] and if 575 ** any have been closed, remove them from the list. Reallocate the 576 ** db->aDb[] structure to a smaller size, if possible. 577 ** 578 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 579 ** are never candidates for being collapsed. 580 */ 581 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 582 int i, j; 583 for(i=j=2; i<db->nDb; i++){ 584 struct Db *pDb = &db->aDb[i]; 585 if( pDb->pBt==0 ){ 586 sqlite3DbFree(db, pDb->zDbSName); 587 pDb->zDbSName = 0; 588 continue; 589 } 590 if( j<i ){ 591 db->aDb[j] = db->aDb[i]; 592 } 593 j++; 594 } 595 db->nDb = j; 596 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 597 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 598 sqlite3DbFree(db, db->aDb); 599 db->aDb = db->aDbStatic; 600 } 601 } 602 603 /* 604 ** Reset the schema for the database at index iDb. Also reset the 605 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 606 ** Deferred resets may be run by calling with iDb<0. 607 */ 608 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 609 int i; 610 assert( iDb<db->nDb ); 611 612 if( iDb>=0 ){ 613 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 614 DbSetProperty(db, iDb, DB_ResetWanted); 615 DbSetProperty(db, 1, DB_ResetWanted); 616 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 617 } 618 619 if( db->nSchemaLock==0 ){ 620 for(i=0; i<db->nDb; i++){ 621 if( DbHasProperty(db, i, DB_ResetWanted) ){ 622 sqlite3SchemaClear(db->aDb[i].pSchema); 623 } 624 } 625 } 626 } 627 628 /* 629 ** Erase all schema information from all attached databases (including 630 ** "main" and "temp") for a single database connection. 631 */ 632 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 633 int i; 634 sqlite3BtreeEnterAll(db); 635 for(i=0; i<db->nDb; i++){ 636 Db *pDb = &db->aDb[i]; 637 if( pDb->pSchema ){ 638 if( db->nSchemaLock==0 ){ 639 sqlite3SchemaClear(pDb->pSchema); 640 }else{ 641 DbSetProperty(db, i, DB_ResetWanted); 642 } 643 } 644 } 645 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 646 sqlite3VtabUnlockList(db); 647 sqlite3BtreeLeaveAll(db); 648 if( db->nSchemaLock==0 ){ 649 sqlite3CollapseDatabaseArray(db); 650 } 651 } 652 653 /* 654 ** This routine is called when a commit occurs. 655 */ 656 void sqlite3CommitInternalChanges(sqlite3 *db){ 657 db->mDbFlags &= ~DBFLAG_SchemaChange; 658 } 659 660 /* 661 ** Delete memory allocated for the column names of a table or view (the 662 ** Table.aCol[] array). 663 */ 664 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 665 int i; 666 Column *pCol; 667 assert( pTable!=0 ); 668 if( (pCol = pTable->aCol)!=0 ){ 669 for(i=0; i<pTable->nCol; i++, pCol++){ 670 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 671 sqlite3DbFree(db, pCol->zName); 672 sqlite3ExprDelete(db, pCol->pDflt); 673 sqlite3DbFree(db, pCol->zColl); 674 } 675 sqlite3DbFree(db, pTable->aCol); 676 } 677 } 678 679 /* 680 ** Remove the memory data structures associated with the given 681 ** Table. No changes are made to disk by this routine. 682 ** 683 ** This routine just deletes the data structure. It does not unlink 684 ** the table data structure from the hash table. But it does destroy 685 ** memory structures of the indices and foreign keys associated with 686 ** the table. 687 ** 688 ** The db parameter is optional. It is needed if the Table object 689 ** contains lookaside memory. (Table objects in the schema do not use 690 ** lookaside memory, but some ephemeral Table objects do.) Or the 691 ** db parameter can be used with db->pnBytesFreed to measure the memory 692 ** used by the Table object. 693 */ 694 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 695 Index *pIndex, *pNext; 696 697 #ifdef SQLITE_DEBUG 698 /* Record the number of outstanding lookaside allocations in schema Tables 699 ** prior to doing any free() operations. Since schema Tables do not use 700 ** lookaside, this number should not change. 701 ** 702 ** If malloc has already failed, it may be that it failed while allocating 703 ** a Table object that was going to be marked ephemeral. So do not check 704 ** that no lookaside memory is used in this case either. */ 705 int nLookaside = 0; 706 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 707 nLookaside = sqlite3LookasideUsed(db, 0); 708 } 709 #endif 710 711 /* Delete all indices associated with this table. */ 712 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 713 pNext = pIndex->pNext; 714 assert( pIndex->pSchema==pTable->pSchema 715 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 716 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 717 char *zName = pIndex->zName; 718 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 719 &pIndex->pSchema->idxHash, zName, 0 720 ); 721 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 722 assert( pOld==pIndex || pOld==0 ); 723 } 724 sqlite3FreeIndex(db, pIndex); 725 } 726 727 /* Delete any foreign keys attached to this table. */ 728 sqlite3FkDelete(db, pTable); 729 730 /* Delete the Table structure itself. 731 */ 732 sqlite3DeleteColumnNames(db, pTable); 733 sqlite3DbFree(db, pTable->zName); 734 sqlite3DbFree(db, pTable->zColAff); 735 sqlite3SelectDelete(db, pTable->pSelect); 736 sqlite3ExprListDelete(db, pTable->pCheck); 737 #ifndef SQLITE_OMIT_VIRTUALTABLE 738 sqlite3VtabClear(db, pTable); 739 #endif 740 sqlite3DbFree(db, pTable); 741 742 /* Verify that no lookaside memory was used by schema tables */ 743 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 744 } 745 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 746 /* Do not delete the table until the reference count reaches zero. */ 747 if( !pTable ) return; 748 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 749 deleteTable(db, pTable); 750 } 751 752 753 /* 754 ** Unlink the given table from the hash tables and the delete the 755 ** table structure with all its indices and foreign keys. 756 */ 757 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 758 Table *p; 759 Db *pDb; 760 761 assert( db!=0 ); 762 assert( iDb>=0 && iDb<db->nDb ); 763 assert( zTabName ); 764 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 765 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 766 pDb = &db->aDb[iDb]; 767 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 768 sqlite3DeleteTable(db, p); 769 db->mDbFlags |= DBFLAG_SchemaChange; 770 } 771 772 /* 773 ** Given a token, return a string that consists of the text of that 774 ** token. Space to hold the returned string 775 ** is obtained from sqliteMalloc() and must be freed by the calling 776 ** function. 777 ** 778 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 779 ** surround the body of the token are removed. 780 ** 781 ** Tokens are often just pointers into the original SQL text and so 782 ** are not \000 terminated and are not persistent. The returned string 783 ** is \000 terminated and is persistent. 784 */ 785 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 786 char *zName; 787 if( pName ){ 788 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 789 sqlite3Dequote(zName); 790 }else{ 791 zName = 0; 792 } 793 return zName; 794 } 795 796 /* 797 ** Open the sqlite_schema table stored in database number iDb for 798 ** writing. The table is opened using cursor 0. 799 */ 800 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 801 Vdbe *v = sqlite3GetVdbe(p); 802 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 803 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 804 if( p->nTab==0 ){ 805 p->nTab = 1; 806 } 807 } 808 809 /* 810 ** Parameter zName points to a nul-terminated buffer containing the name 811 ** of a database ("main", "temp" or the name of an attached db). This 812 ** function returns the index of the named database in db->aDb[], or 813 ** -1 if the named db cannot be found. 814 */ 815 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 816 int i = -1; /* Database number */ 817 if( zName ){ 818 Db *pDb; 819 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 820 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 821 /* "main" is always an acceptable alias for the primary database 822 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 823 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 824 } 825 } 826 return i; 827 } 828 829 /* 830 ** The token *pName contains the name of a database (either "main" or 831 ** "temp" or the name of an attached db). This routine returns the 832 ** index of the named database in db->aDb[], or -1 if the named db 833 ** does not exist. 834 */ 835 int sqlite3FindDb(sqlite3 *db, Token *pName){ 836 int i; /* Database number */ 837 char *zName; /* Name we are searching for */ 838 zName = sqlite3NameFromToken(db, pName); 839 i = sqlite3FindDbName(db, zName); 840 sqlite3DbFree(db, zName); 841 return i; 842 } 843 844 /* The table or view or trigger name is passed to this routine via tokens 845 ** pName1 and pName2. If the table name was fully qualified, for example: 846 ** 847 ** CREATE TABLE xxx.yyy (...); 848 ** 849 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 850 ** the table name is not fully qualified, i.e.: 851 ** 852 ** CREATE TABLE yyy(...); 853 ** 854 ** Then pName1 is set to "yyy" and pName2 is "". 855 ** 856 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 857 ** pName2) that stores the unqualified table name. The index of the 858 ** database "xxx" is returned. 859 */ 860 int sqlite3TwoPartName( 861 Parse *pParse, /* Parsing and code generating context */ 862 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 863 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 864 Token **pUnqual /* Write the unqualified object name here */ 865 ){ 866 int iDb; /* Database holding the object */ 867 sqlite3 *db = pParse->db; 868 869 assert( pName2!=0 ); 870 if( pName2->n>0 ){ 871 if( db->init.busy ) { 872 sqlite3ErrorMsg(pParse, "corrupt database"); 873 return -1; 874 } 875 *pUnqual = pName2; 876 iDb = sqlite3FindDb(db, pName1); 877 if( iDb<0 ){ 878 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 879 return -1; 880 } 881 }else{ 882 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 883 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 884 iDb = db->init.iDb; 885 *pUnqual = pName1; 886 } 887 return iDb; 888 } 889 890 /* 891 ** True if PRAGMA writable_schema is ON 892 */ 893 int sqlite3WritableSchema(sqlite3 *db){ 894 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 895 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 896 SQLITE_WriteSchema ); 897 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 898 SQLITE_Defensive ); 899 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 900 (SQLITE_WriteSchema|SQLITE_Defensive) ); 901 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 902 } 903 904 /* 905 ** This routine is used to check if the UTF-8 string zName is a legal 906 ** unqualified name for a new schema object (table, index, view or 907 ** trigger). All names are legal except those that begin with the string 908 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 909 ** is reserved for internal use. 910 ** 911 ** When parsing the sqlite_schema table, this routine also checks to 912 ** make sure the "type", "name", and "tbl_name" columns are consistent 913 ** with the SQL. 914 */ 915 int sqlite3CheckObjectName( 916 Parse *pParse, /* Parsing context */ 917 const char *zName, /* Name of the object to check */ 918 const char *zType, /* Type of this object */ 919 const char *zTblName /* Parent table name for triggers and indexes */ 920 ){ 921 sqlite3 *db = pParse->db; 922 if( sqlite3WritableSchema(db) 923 || db->init.imposterTable 924 || !sqlite3Config.bExtraSchemaChecks 925 ){ 926 /* Skip these error checks for writable_schema=ON */ 927 return SQLITE_OK; 928 } 929 if( db->init.busy ){ 930 if( sqlite3_stricmp(zType, db->init.azInit[0]) 931 || sqlite3_stricmp(zName, db->init.azInit[1]) 932 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 933 ){ 934 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 935 return SQLITE_ERROR; 936 } 937 }else{ 938 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 939 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 940 ){ 941 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 942 zName); 943 return SQLITE_ERROR; 944 } 945 946 } 947 return SQLITE_OK; 948 } 949 950 /* 951 ** Return the PRIMARY KEY index of a table 952 */ 953 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 954 Index *p; 955 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 956 return p; 957 } 958 959 /* 960 ** Convert an table column number into a index column number. That is, 961 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 962 ** find the (first) offset of that column in index pIdx. Or return -1 963 ** if column iCol is not used in index pIdx. 964 */ 965 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 966 int i; 967 for(i=0; i<pIdx->nColumn; i++){ 968 if( iCol==pIdx->aiColumn[i] ) return i; 969 } 970 return -1; 971 } 972 973 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 974 /* Convert a storage column number into a table column number. 975 ** 976 ** The storage column number (0,1,2,....) is the index of the value 977 ** as it appears in the record on disk. The true column number 978 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 979 ** 980 ** The storage column number is less than the table column number if 981 ** and only there are VIRTUAL columns to the left. 982 ** 983 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 984 */ 985 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 986 if( pTab->tabFlags & TF_HasVirtual ){ 987 int i; 988 for(i=0; i<=iCol; i++){ 989 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 990 } 991 } 992 return iCol; 993 } 994 #endif 995 996 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 997 /* Convert a table column number into a storage column number. 998 ** 999 ** The storage column number (0,1,2,....) is the index of the value 1000 ** as it appears in the record on disk. Or, if the input column is 1001 ** the N-th virtual column (zero-based) then the storage number is 1002 ** the number of non-virtual columns in the table plus N. 1003 ** 1004 ** The true column number is the index (0,1,2,...) of the column in 1005 ** the CREATE TABLE statement. 1006 ** 1007 ** If the input column is a VIRTUAL column, then it should not appear 1008 ** in storage. But the value sometimes is cached in registers that 1009 ** follow the range of registers used to construct storage. This 1010 ** avoids computing the same VIRTUAL column multiple times, and provides 1011 ** values for use by OP_Param opcodes in triggers. Hence, if the 1012 ** input column is a VIRTUAL table, put it after all the other columns. 1013 ** 1014 ** In the following, N means "normal column", S means STORED, and 1015 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1016 ** 1017 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1018 ** -- 0 1 2 3 4 5 6 7 8 1019 ** 1020 ** Then the mapping from this function is as follows: 1021 ** 1022 ** INPUTS: 0 1 2 3 4 5 6 7 8 1023 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1024 ** 1025 ** So, in other words, this routine shifts all the virtual columns to 1026 ** the end. 1027 ** 1028 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1029 ** this routine is a no-op macro. If the pTab does not have any virtual 1030 ** columns, then this routine is no-op that always return iCol. If iCol 1031 ** is negative (indicating the ROWID column) then this routine return iCol. 1032 */ 1033 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1034 int i; 1035 i16 n; 1036 assert( iCol<pTab->nCol ); 1037 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1038 for(i=0, n=0; i<iCol; i++){ 1039 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1040 } 1041 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1042 /* iCol is a virtual column itself */ 1043 return pTab->nNVCol + i - n; 1044 }else{ 1045 /* iCol is a normal or stored column */ 1046 return n; 1047 } 1048 } 1049 #endif 1050 1051 /* 1052 ** Begin constructing a new table representation in memory. This is 1053 ** the first of several action routines that get called in response 1054 ** to a CREATE TABLE statement. In particular, this routine is called 1055 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1056 ** flag is true if the table should be stored in the auxiliary database 1057 ** file instead of in the main database file. This is normally the case 1058 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1059 ** CREATE and TABLE. 1060 ** 1061 ** The new table record is initialized and put in pParse->pNewTable. 1062 ** As more of the CREATE TABLE statement is parsed, additional action 1063 ** routines will be called to add more information to this record. 1064 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1065 ** is called to complete the construction of the new table record. 1066 */ 1067 void sqlite3StartTable( 1068 Parse *pParse, /* Parser context */ 1069 Token *pName1, /* First part of the name of the table or view */ 1070 Token *pName2, /* Second part of the name of the table or view */ 1071 int isTemp, /* True if this is a TEMP table */ 1072 int isView, /* True if this is a VIEW */ 1073 int isVirtual, /* True if this is a VIRTUAL table */ 1074 int noErr /* Do nothing if table already exists */ 1075 ){ 1076 Table *pTable; 1077 char *zName = 0; /* The name of the new table */ 1078 sqlite3 *db = pParse->db; 1079 Vdbe *v; 1080 int iDb; /* Database number to create the table in */ 1081 Token *pName; /* Unqualified name of the table to create */ 1082 1083 if( db->init.busy && db->init.newTnum==1 ){ 1084 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1085 iDb = db->init.iDb; 1086 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1087 pName = pName1; 1088 }else{ 1089 /* The common case */ 1090 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1091 if( iDb<0 ) return; 1092 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1093 /* If creating a temp table, the name may not be qualified. Unless 1094 ** the database name is "temp" anyway. */ 1095 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1096 return; 1097 } 1098 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1099 zName = sqlite3NameFromToken(db, pName); 1100 if( IN_RENAME_OBJECT ){ 1101 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1102 } 1103 } 1104 pParse->sNameToken = *pName; 1105 if( zName==0 ) return; 1106 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1107 goto begin_table_error; 1108 } 1109 if( db->init.iDb==1 ) isTemp = 1; 1110 #ifndef SQLITE_OMIT_AUTHORIZATION 1111 assert( isTemp==0 || isTemp==1 ); 1112 assert( isView==0 || isView==1 ); 1113 { 1114 static const u8 aCode[] = { 1115 SQLITE_CREATE_TABLE, 1116 SQLITE_CREATE_TEMP_TABLE, 1117 SQLITE_CREATE_VIEW, 1118 SQLITE_CREATE_TEMP_VIEW 1119 }; 1120 char *zDb = db->aDb[iDb].zDbSName; 1121 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1122 goto begin_table_error; 1123 } 1124 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1125 zName, 0, zDb) ){ 1126 goto begin_table_error; 1127 } 1128 } 1129 #endif 1130 1131 /* Make sure the new table name does not collide with an existing 1132 ** index or table name in the same database. Issue an error message if 1133 ** it does. The exception is if the statement being parsed was passed 1134 ** to an sqlite3_declare_vtab() call. In that case only the column names 1135 ** and types will be used, so there is no need to test for namespace 1136 ** collisions. 1137 */ 1138 if( !IN_SPECIAL_PARSE ){ 1139 char *zDb = db->aDb[iDb].zDbSName; 1140 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1141 goto begin_table_error; 1142 } 1143 pTable = sqlite3FindTable(db, zName, zDb); 1144 if( pTable ){ 1145 if( !noErr ){ 1146 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1147 }else{ 1148 assert( !db->init.busy || CORRUPT_DB ); 1149 sqlite3CodeVerifySchema(pParse, iDb); 1150 } 1151 goto begin_table_error; 1152 } 1153 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1154 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1155 goto begin_table_error; 1156 } 1157 } 1158 1159 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1160 if( pTable==0 ){ 1161 assert( db->mallocFailed ); 1162 pParse->rc = SQLITE_NOMEM_BKPT; 1163 pParse->nErr++; 1164 goto begin_table_error; 1165 } 1166 pTable->zName = zName; 1167 pTable->iPKey = -1; 1168 pTable->pSchema = db->aDb[iDb].pSchema; 1169 pTable->nTabRef = 1; 1170 #ifdef SQLITE_DEFAULT_ROWEST 1171 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1172 #else 1173 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1174 #endif 1175 assert( pParse->pNewTable==0 ); 1176 pParse->pNewTable = pTable; 1177 1178 /* Begin generating the code that will insert the table record into 1179 ** the schema table. Note in particular that we must go ahead 1180 ** and allocate the record number for the table entry now. Before any 1181 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1182 ** indices to be created and the table record must come before the 1183 ** indices. Hence, the record number for the table must be allocated 1184 ** now. 1185 */ 1186 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1187 int addr1; 1188 int fileFormat; 1189 int reg1, reg2, reg3; 1190 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1191 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1192 sqlite3BeginWriteOperation(pParse, 1, iDb); 1193 1194 #ifndef SQLITE_OMIT_VIRTUALTABLE 1195 if( isVirtual ){ 1196 sqlite3VdbeAddOp0(v, OP_VBegin); 1197 } 1198 #endif 1199 1200 /* If the file format and encoding in the database have not been set, 1201 ** set them now. 1202 */ 1203 reg1 = pParse->regRowid = ++pParse->nMem; 1204 reg2 = pParse->regRoot = ++pParse->nMem; 1205 reg3 = ++pParse->nMem; 1206 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1207 sqlite3VdbeUsesBtree(v, iDb); 1208 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1209 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1210 1 : SQLITE_MAX_FILE_FORMAT; 1211 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1212 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1213 sqlite3VdbeJumpHere(v, addr1); 1214 1215 /* This just creates a place-holder record in the sqlite_schema table. 1216 ** The record created does not contain anything yet. It will be replaced 1217 ** by the real entry in code generated at sqlite3EndTable(). 1218 ** 1219 ** The rowid for the new entry is left in register pParse->regRowid. 1220 ** The root page number of the new table is left in reg pParse->regRoot. 1221 ** The rowid and root page number values are needed by the code that 1222 ** sqlite3EndTable will generate. 1223 */ 1224 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1225 if( isView || isVirtual ){ 1226 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1227 }else 1228 #endif 1229 { 1230 assert( !pParse->bReturning ); 1231 pParse->u1.addrCrTab = 1232 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1233 } 1234 sqlite3OpenSchemaTable(pParse, iDb); 1235 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1236 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1237 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1238 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1239 sqlite3VdbeAddOp0(v, OP_Close); 1240 } 1241 1242 /* Normal (non-error) return. */ 1243 return; 1244 1245 /* If an error occurs, we jump here */ 1246 begin_table_error: 1247 sqlite3DbFree(db, zName); 1248 return; 1249 } 1250 1251 /* Set properties of a table column based on the (magical) 1252 ** name of the column. 1253 */ 1254 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1255 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1256 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1257 pCol->colFlags |= COLFLAG_HIDDEN; 1258 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1259 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1260 pTab->tabFlags |= TF_OOOHidden; 1261 } 1262 } 1263 #endif 1264 1265 /* 1266 ** Name of the special TEMP trigger used to implement RETURNING. The 1267 ** name begins with "sqlite_" so that it is guaranteed not to collide 1268 ** with any application-generated triggers. 1269 */ 1270 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1271 1272 /* 1273 ** Clean up the data structures associated with the RETURNING clause. 1274 */ 1275 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1276 Hash *pHash; 1277 pHash = &(db->aDb[1].pSchema->trigHash); 1278 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1279 sqlite3ExprListDelete(db, pRet->pReturnEL); 1280 sqlite3DbFree(db, pRet); 1281 } 1282 1283 /* 1284 ** Add the RETURNING clause to the parse currently underway. 1285 ** 1286 ** This routine creates a special TEMP trigger that will fire for each row 1287 ** of the DML statement. That TEMP trigger contains a single SELECT 1288 ** statement with a result set that is the argument of the RETURNING clause. 1289 ** The trigger has the Trigger.bReturning flag and an opcode of 1290 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1291 ** knows to handle it specially. The TEMP trigger is automatically 1292 ** removed at the end of the parse. 1293 ** 1294 ** When this routine is called, we do not yet know if the RETURNING clause 1295 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1296 ** RETURNING trigger instead. It will then be converted into the appropriate 1297 ** type on the first call to sqlite3TriggersExist(). 1298 */ 1299 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1300 Returning *pRet; 1301 Hash *pHash; 1302 sqlite3 *db = pParse->db; 1303 if( pParse->pNewTrigger ){ 1304 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1305 }else{ 1306 assert( pParse->bReturning==0 ); 1307 } 1308 pParse->bReturning = 1; 1309 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1310 if( pRet==0 ){ 1311 sqlite3ExprListDelete(db, pList); 1312 return; 1313 } 1314 pParse->u1.pReturning = pRet; 1315 pRet->pParse = pParse; 1316 pRet->pReturnEL = pList; 1317 sqlite3ParserAddCleanup(pParse, 1318 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1319 testcase( pParse->earlyCleanup ); 1320 if( db->mallocFailed ) return; 1321 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1322 pRet->retTrig.op = TK_RETURNING; 1323 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1324 pRet->retTrig.bReturning = 1; 1325 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1326 pRet->retTrig.step_list = &pRet->retTStep; 1327 pRet->retTStep.op = TK_RETURNING; 1328 pRet->retTStep.pTrig = &pRet->retTrig; 1329 pRet->retTStep.pExprList = pList; 1330 pHash = &(db->aDb[1].pSchema->trigHash); 1331 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1332 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1333 ==&pRet->retTrig ){ 1334 sqlite3OomFault(db); 1335 } 1336 } 1337 1338 /* 1339 ** Add a new column to the table currently being constructed. 1340 ** 1341 ** The parser calls this routine once for each column declaration 1342 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1343 ** first to get things going. Then this routine is called for each 1344 ** column. 1345 */ 1346 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1347 Table *p; 1348 int i; 1349 char *z; 1350 char *zType; 1351 Column *pCol; 1352 sqlite3 *db = pParse->db; 1353 u8 hName; 1354 1355 if( (p = pParse->pNewTable)==0 ) return; 1356 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1357 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1358 return; 1359 } 1360 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1361 if( z==0 ) return; 1362 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1363 memcpy(z, pName->z, pName->n); 1364 z[pName->n] = 0; 1365 sqlite3Dequote(z); 1366 hName = sqlite3StrIHash(z); 1367 for(i=0; i<p->nCol; i++){ 1368 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1369 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1370 sqlite3DbFree(db, z); 1371 return; 1372 } 1373 } 1374 if( (p->nCol & 0x7)==0 ){ 1375 Column *aNew; 1376 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1377 if( aNew==0 ){ 1378 sqlite3DbFree(db, z); 1379 return; 1380 } 1381 p->aCol = aNew; 1382 } 1383 pCol = &p->aCol[p->nCol]; 1384 memset(pCol, 0, sizeof(p->aCol[0])); 1385 pCol->zName = z; 1386 pCol->hName = hName; 1387 sqlite3ColumnPropertiesFromName(p, pCol); 1388 1389 if( pType->n==0 ){ 1390 /* If there is no type specified, columns have the default affinity 1391 ** 'BLOB' with a default size of 4 bytes. */ 1392 pCol->affinity = SQLITE_AFF_BLOB; 1393 pCol->szEst = 1; 1394 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1395 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1396 pCol->colFlags |= COLFLAG_SORTERREF; 1397 } 1398 #endif 1399 }else{ 1400 zType = z + sqlite3Strlen30(z) + 1; 1401 memcpy(zType, pType->z, pType->n); 1402 zType[pType->n] = 0; 1403 sqlite3Dequote(zType); 1404 pCol->affinity = sqlite3AffinityType(zType, pCol); 1405 pCol->colFlags |= COLFLAG_HASTYPE; 1406 } 1407 p->nCol++; 1408 p->nNVCol++; 1409 pParse->constraintName.n = 0; 1410 } 1411 1412 /* 1413 ** This routine is called by the parser while in the middle of 1414 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1415 ** been seen on a column. This routine sets the notNull flag on 1416 ** the column currently under construction. 1417 */ 1418 void sqlite3AddNotNull(Parse *pParse, int onError){ 1419 Table *p; 1420 Column *pCol; 1421 p = pParse->pNewTable; 1422 if( p==0 || NEVER(p->nCol<1) ) return; 1423 pCol = &p->aCol[p->nCol-1]; 1424 pCol->notNull = (u8)onError; 1425 p->tabFlags |= TF_HasNotNull; 1426 1427 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1428 ** on this column. */ 1429 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1430 Index *pIdx; 1431 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1432 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1433 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1434 pIdx->uniqNotNull = 1; 1435 } 1436 } 1437 } 1438 } 1439 1440 /* 1441 ** Scan the column type name zType (length nType) and return the 1442 ** associated affinity type. 1443 ** 1444 ** This routine does a case-independent search of zType for the 1445 ** substrings in the following table. If one of the substrings is 1446 ** found, the corresponding affinity is returned. If zType contains 1447 ** more than one of the substrings, entries toward the top of 1448 ** the table take priority. For example, if zType is 'BLOBINT', 1449 ** SQLITE_AFF_INTEGER is returned. 1450 ** 1451 ** Substring | Affinity 1452 ** -------------------------------- 1453 ** 'INT' | SQLITE_AFF_INTEGER 1454 ** 'CHAR' | SQLITE_AFF_TEXT 1455 ** 'CLOB' | SQLITE_AFF_TEXT 1456 ** 'TEXT' | SQLITE_AFF_TEXT 1457 ** 'BLOB' | SQLITE_AFF_BLOB 1458 ** 'REAL' | SQLITE_AFF_REAL 1459 ** 'FLOA' | SQLITE_AFF_REAL 1460 ** 'DOUB' | SQLITE_AFF_REAL 1461 ** 1462 ** If none of the substrings in the above table are found, 1463 ** SQLITE_AFF_NUMERIC is returned. 1464 */ 1465 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1466 u32 h = 0; 1467 char aff = SQLITE_AFF_NUMERIC; 1468 const char *zChar = 0; 1469 1470 assert( zIn!=0 ); 1471 while( zIn[0] ){ 1472 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1473 zIn++; 1474 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1475 aff = SQLITE_AFF_TEXT; 1476 zChar = zIn; 1477 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1478 aff = SQLITE_AFF_TEXT; 1479 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1480 aff = SQLITE_AFF_TEXT; 1481 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1482 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1483 aff = SQLITE_AFF_BLOB; 1484 if( zIn[0]=='(' ) zChar = zIn; 1485 #ifndef SQLITE_OMIT_FLOATING_POINT 1486 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1487 && aff==SQLITE_AFF_NUMERIC ){ 1488 aff = SQLITE_AFF_REAL; 1489 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1490 && aff==SQLITE_AFF_NUMERIC ){ 1491 aff = SQLITE_AFF_REAL; 1492 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1493 && aff==SQLITE_AFF_NUMERIC ){ 1494 aff = SQLITE_AFF_REAL; 1495 #endif 1496 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1497 aff = SQLITE_AFF_INTEGER; 1498 break; 1499 } 1500 } 1501 1502 /* If pCol is not NULL, store an estimate of the field size. The 1503 ** estimate is scaled so that the size of an integer is 1. */ 1504 if( pCol ){ 1505 int v = 0; /* default size is approx 4 bytes */ 1506 if( aff<SQLITE_AFF_NUMERIC ){ 1507 if( zChar ){ 1508 while( zChar[0] ){ 1509 if( sqlite3Isdigit(zChar[0]) ){ 1510 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1511 sqlite3GetInt32(zChar, &v); 1512 break; 1513 } 1514 zChar++; 1515 } 1516 }else{ 1517 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1518 } 1519 } 1520 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1521 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1522 pCol->colFlags |= COLFLAG_SORTERREF; 1523 } 1524 #endif 1525 v = v/4 + 1; 1526 if( v>255 ) v = 255; 1527 pCol->szEst = v; 1528 } 1529 return aff; 1530 } 1531 1532 /* 1533 ** The expression is the default value for the most recently added column 1534 ** of the table currently under construction. 1535 ** 1536 ** Default value expressions must be constant. Raise an exception if this 1537 ** is not the case. 1538 ** 1539 ** This routine is called by the parser while in the middle of 1540 ** parsing a CREATE TABLE statement. 1541 */ 1542 void sqlite3AddDefaultValue( 1543 Parse *pParse, /* Parsing context */ 1544 Expr *pExpr, /* The parsed expression of the default value */ 1545 const char *zStart, /* Start of the default value text */ 1546 const char *zEnd /* First character past end of defaut value text */ 1547 ){ 1548 Table *p; 1549 Column *pCol; 1550 sqlite3 *db = pParse->db; 1551 p = pParse->pNewTable; 1552 if( p!=0 ){ 1553 int isInit = db->init.busy && db->init.iDb!=1; 1554 pCol = &(p->aCol[p->nCol-1]); 1555 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1556 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1557 pCol->zName); 1558 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1559 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1560 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1561 testcase( pCol->colFlags & COLFLAG_STORED ); 1562 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1563 #endif 1564 }else{ 1565 /* A copy of pExpr is used instead of the original, as pExpr contains 1566 ** tokens that point to volatile memory. 1567 */ 1568 Expr x; 1569 sqlite3ExprDelete(db, pCol->pDflt); 1570 memset(&x, 0, sizeof(x)); 1571 x.op = TK_SPAN; 1572 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1573 x.pLeft = pExpr; 1574 x.flags = EP_Skip; 1575 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1576 sqlite3DbFree(db, x.u.zToken); 1577 } 1578 } 1579 if( IN_RENAME_OBJECT ){ 1580 sqlite3RenameExprUnmap(pParse, pExpr); 1581 } 1582 sqlite3ExprDelete(db, pExpr); 1583 } 1584 1585 /* 1586 ** Backwards Compatibility Hack: 1587 ** 1588 ** Historical versions of SQLite accepted strings as column names in 1589 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1590 ** 1591 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1592 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1593 ** 1594 ** This is goofy. But to preserve backwards compatibility we continue to 1595 ** accept it. This routine does the necessary conversion. It converts 1596 ** the expression given in its argument from a TK_STRING into a TK_ID 1597 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1598 ** If the expression is anything other than TK_STRING, the expression is 1599 ** unchanged. 1600 */ 1601 static void sqlite3StringToId(Expr *p){ 1602 if( p->op==TK_STRING ){ 1603 p->op = TK_ID; 1604 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1605 p->pLeft->op = TK_ID; 1606 } 1607 } 1608 1609 /* 1610 ** Tag the given column as being part of the PRIMARY KEY 1611 */ 1612 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1613 pCol->colFlags |= COLFLAG_PRIMKEY; 1614 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1615 if( pCol->colFlags & COLFLAG_GENERATED ){ 1616 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1617 testcase( pCol->colFlags & COLFLAG_STORED ); 1618 sqlite3ErrorMsg(pParse, 1619 "generated columns cannot be part of the PRIMARY KEY"); 1620 } 1621 #endif 1622 } 1623 1624 /* 1625 ** Designate the PRIMARY KEY for the table. pList is a list of names 1626 ** of columns that form the primary key. If pList is NULL, then the 1627 ** most recently added column of the table is the primary key. 1628 ** 1629 ** A table can have at most one primary key. If the table already has 1630 ** a primary key (and this is the second primary key) then create an 1631 ** error. 1632 ** 1633 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1634 ** then we will try to use that column as the rowid. Set the Table.iPKey 1635 ** field of the table under construction to be the index of the 1636 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1637 ** no INTEGER PRIMARY KEY. 1638 ** 1639 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1640 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1641 */ 1642 void sqlite3AddPrimaryKey( 1643 Parse *pParse, /* Parsing context */ 1644 ExprList *pList, /* List of field names to be indexed */ 1645 int onError, /* What to do with a uniqueness conflict */ 1646 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1647 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1648 ){ 1649 Table *pTab = pParse->pNewTable; 1650 Column *pCol = 0; 1651 int iCol = -1, i; 1652 int nTerm; 1653 if( pTab==0 ) goto primary_key_exit; 1654 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1655 sqlite3ErrorMsg(pParse, 1656 "table \"%s\" has more than one primary key", pTab->zName); 1657 goto primary_key_exit; 1658 } 1659 pTab->tabFlags |= TF_HasPrimaryKey; 1660 if( pList==0 ){ 1661 iCol = pTab->nCol - 1; 1662 pCol = &pTab->aCol[iCol]; 1663 makeColumnPartOfPrimaryKey(pParse, pCol); 1664 nTerm = 1; 1665 }else{ 1666 nTerm = pList->nExpr; 1667 for(i=0; i<nTerm; i++){ 1668 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1669 assert( pCExpr!=0 ); 1670 sqlite3StringToId(pCExpr); 1671 if( pCExpr->op==TK_ID ){ 1672 const char *zCName = pCExpr->u.zToken; 1673 for(iCol=0; iCol<pTab->nCol; iCol++){ 1674 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1675 pCol = &pTab->aCol[iCol]; 1676 makeColumnPartOfPrimaryKey(pParse, pCol); 1677 break; 1678 } 1679 } 1680 } 1681 } 1682 } 1683 if( nTerm==1 1684 && pCol 1685 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1686 && sortOrder!=SQLITE_SO_DESC 1687 ){ 1688 if( IN_RENAME_OBJECT && pList ){ 1689 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1690 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1691 } 1692 pTab->iPKey = iCol; 1693 pTab->keyConf = (u8)onError; 1694 assert( autoInc==0 || autoInc==1 ); 1695 pTab->tabFlags |= autoInc*TF_Autoincrement; 1696 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1697 (void)sqlite3HasExplicitNulls(pParse, pList); 1698 }else if( autoInc ){ 1699 #ifndef SQLITE_OMIT_AUTOINCREMENT 1700 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1701 "INTEGER PRIMARY KEY"); 1702 #endif 1703 }else{ 1704 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1705 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1706 pList = 0; 1707 } 1708 1709 primary_key_exit: 1710 sqlite3ExprListDelete(pParse->db, pList); 1711 return; 1712 } 1713 1714 /* 1715 ** Add a new CHECK constraint to the table currently under construction. 1716 */ 1717 void sqlite3AddCheckConstraint( 1718 Parse *pParse, /* Parsing context */ 1719 Expr *pCheckExpr, /* The check expression */ 1720 const char *zStart, /* Opening "(" */ 1721 const char *zEnd /* Closing ")" */ 1722 ){ 1723 #ifndef SQLITE_OMIT_CHECK 1724 Table *pTab = pParse->pNewTable; 1725 sqlite3 *db = pParse->db; 1726 if( pTab && !IN_DECLARE_VTAB 1727 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1728 ){ 1729 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1730 if( pParse->constraintName.n ){ 1731 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1732 }else{ 1733 Token t; 1734 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1735 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1736 t.z = zStart; 1737 t.n = (int)(zEnd - t.z); 1738 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1739 } 1740 }else 1741 #endif 1742 { 1743 sqlite3ExprDelete(pParse->db, pCheckExpr); 1744 } 1745 } 1746 1747 /* 1748 ** Set the collation function of the most recently parsed table column 1749 ** to the CollSeq given. 1750 */ 1751 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1752 Table *p; 1753 int i; 1754 char *zColl; /* Dequoted name of collation sequence */ 1755 sqlite3 *db; 1756 1757 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1758 i = p->nCol-1; 1759 db = pParse->db; 1760 zColl = sqlite3NameFromToken(db, pToken); 1761 if( !zColl ) return; 1762 1763 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1764 Index *pIdx; 1765 sqlite3DbFree(db, p->aCol[i].zColl); 1766 p->aCol[i].zColl = zColl; 1767 1768 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1769 ** then an index may have been created on this column before the 1770 ** collation type was added. Correct this if it is the case. 1771 */ 1772 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1773 assert( pIdx->nKeyCol==1 ); 1774 if( pIdx->aiColumn[0]==i ){ 1775 pIdx->azColl[0] = p->aCol[i].zColl; 1776 } 1777 } 1778 }else{ 1779 sqlite3DbFree(db, zColl); 1780 } 1781 } 1782 1783 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1784 ** column. 1785 */ 1786 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1787 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1788 u8 eType = COLFLAG_VIRTUAL; 1789 Table *pTab = pParse->pNewTable; 1790 Column *pCol; 1791 if( pTab==0 ){ 1792 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1793 goto generated_done; 1794 } 1795 pCol = &(pTab->aCol[pTab->nCol-1]); 1796 if( IN_DECLARE_VTAB ){ 1797 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1798 goto generated_done; 1799 } 1800 if( pCol->pDflt ) goto generated_error; 1801 if( pType ){ 1802 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1803 /* no-op */ 1804 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1805 eType = COLFLAG_STORED; 1806 }else{ 1807 goto generated_error; 1808 } 1809 } 1810 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1811 pCol->colFlags |= eType; 1812 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1813 assert( TF_HasStored==COLFLAG_STORED ); 1814 pTab->tabFlags |= eType; 1815 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1816 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1817 } 1818 pCol->pDflt = pExpr; 1819 pExpr = 0; 1820 goto generated_done; 1821 1822 generated_error: 1823 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1824 pCol->zName); 1825 generated_done: 1826 sqlite3ExprDelete(pParse->db, pExpr); 1827 #else 1828 /* Throw and error for the GENERATED ALWAYS AS clause if the 1829 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1830 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1831 sqlite3ExprDelete(pParse->db, pExpr); 1832 #endif 1833 } 1834 1835 /* 1836 ** Generate code that will increment the schema cookie. 1837 ** 1838 ** The schema cookie is used to determine when the schema for the 1839 ** database changes. After each schema change, the cookie value 1840 ** changes. When a process first reads the schema it records the 1841 ** cookie. Thereafter, whenever it goes to access the database, 1842 ** it checks the cookie to make sure the schema has not changed 1843 ** since it was last read. 1844 ** 1845 ** This plan is not completely bullet-proof. It is possible for 1846 ** the schema to change multiple times and for the cookie to be 1847 ** set back to prior value. But schema changes are infrequent 1848 ** and the probability of hitting the same cookie value is only 1849 ** 1 chance in 2^32. So we're safe enough. 1850 ** 1851 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1852 ** the schema-version whenever the schema changes. 1853 */ 1854 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1855 sqlite3 *db = pParse->db; 1856 Vdbe *v = pParse->pVdbe; 1857 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1858 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1859 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1860 } 1861 1862 /* 1863 ** Measure the number of characters needed to output the given 1864 ** identifier. The number returned includes any quotes used 1865 ** but does not include the null terminator. 1866 ** 1867 ** The estimate is conservative. It might be larger that what is 1868 ** really needed. 1869 */ 1870 static int identLength(const char *z){ 1871 int n; 1872 for(n=0; *z; n++, z++){ 1873 if( *z=='"' ){ n++; } 1874 } 1875 return n + 2; 1876 } 1877 1878 /* 1879 ** The first parameter is a pointer to an output buffer. The second 1880 ** parameter is a pointer to an integer that contains the offset at 1881 ** which to write into the output buffer. This function copies the 1882 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1883 ** to the specified offset in the buffer and updates *pIdx to refer 1884 ** to the first byte after the last byte written before returning. 1885 ** 1886 ** If the string zSignedIdent consists entirely of alpha-numeric 1887 ** characters, does not begin with a digit and is not an SQL keyword, 1888 ** then it is copied to the output buffer exactly as it is. Otherwise, 1889 ** it is quoted using double-quotes. 1890 */ 1891 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1892 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1893 int i, j, needQuote; 1894 i = *pIdx; 1895 1896 for(j=0; zIdent[j]; j++){ 1897 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1898 } 1899 needQuote = sqlite3Isdigit(zIdent[0]) 1900 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1901 || zIdent[j]!=0 1902 || j==0; 1903 1904 if( needQuote ) z[i++] = '"'; 1905 for(j=0; zIdent[j]; j++){ 1906 z[i++] = zIdent[j]; 1907 if( zIdent[j]=='"' ) z[i++] = '"'; 1908 } 1909 if( needQuote ) z[i++] = '"'; 1910 z[i] = 0; 1911 *pIdx = i; 1912 } 1913 1914 /* 1915 ** Generate a CREATE TABLE statement appropriate for the given 1916 ** table. Memory to hold the text of the statement is obtained 1917 ** from sqliteMalloc() and must be freed by the calling function. 1918 */ 1919 static char *createTableStmt(sqlite3 *db, Table *p){ 1920 int i, k, n; 1921 char *zStmt; 1922 char *zSep, *zSep2, *zEnd; 1923 Column *pCol; 1924 n = 0; 1925 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1926 n += identLength(pCol->zName) + 5; 1927 } 1928 n += identLength(p->zName); 1929 if( n<50 ){ 1930 zSep = ""; 1931 zSep2 = ","; 1932 zEnd = ")"; 1933 }else{ 1934 zSep = "\n "; 1935 zSep2 = ",\n "; 1936 zEnd = "\n)"; 1937 } 1938 n += 35 + 6*p->nCol; 1939 zStmt = sqlite3DbMallocRaw(0, n); 1940 if( zStmt==0 ){ 1941 sqlite3OomFault(db); 1942 return 0; 1943 } 1944 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1945 k = sqlite3Strlen30(zStmt); 1946 identPut(zStmt, &k, p->zName); 1947 zStmt[k++] = '('; 1948 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1949 static const char * const azType[] = { 1950 /* SQLITE_AFF_BLOB */ "", 1951 /* SQLITE_AFF_TEXT */ " TEXT", 1952 /* SQLITE_AFF_NUMERIC */ " NUM", 1953 /* SQLITE_AFF_INTEGER */ " INT", 1954 /* SQLITE_AFF_REAL */ " REAL" 1955 }; 1956 int len; 1957 const char *zType; 1958 1959 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1960 k += sqlite3Strlen30(&zStmt[k]); 1961 zSep = zSep2; 1962 identPut(zStmt, &k, pCol->zName); 1963 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1964 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1965 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1966 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1967 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1968 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1969 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1970 1971 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1972 len = sqlite3Strlen30(zType); 1973 assert( pCol->affinity==SQLITE_AFF_BLOB 1974 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1975 memcpy(&zStmt[k], zType, len); 1976 k += len; 1977 assert( k<=n ); 1978 } 1979 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1980 return zStmt; 1981 } 1982 1983 /* 1984 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1985 ** on success and SQLITE_NOMEM on an OOM error. 1986 */ 1987 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1988 char *zExtra; 1989 int nByte; 1990 if( pIdx->nColumn>=N ) return SQLITE_OK; 1991 assert( pIdx->isResized==0 ); 1992 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 1993 zExtra = sqlite3DbMallocZero(db, nByte); 1994 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1995 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1996 pIdx->azColl = (const char**)zExtra; 1997 zExtra += sizeof(char*)*N; 1998 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 1999 pIdx->aiRowLogEst = (LogEst*)zExtra; 2000 zExtra += sizeof(LogEst)*N; 2001 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2002 pIdx->aiColumn = (i16*)zExtra; 2003 zExtra += sizeof(i16)*N; 2004 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2005 pIdx->aSortOrder = (u8*)zExtra; 2006 pIdx->nColumn = N; 2007 pIdx->isResized = 1; 2008 return SQLITE_OK; 2009 } 2010 2011 /* 2012 ** Estimate the total row width for a table. 2013 */ 2014 static void estimateTableWidth(Table *pTab){ 2015 unsigned wTable = 0; 2016 const Column *pTabCol; 2017 int i; 2018 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2019 wTable += pTabCol->szEst; 2020 } 2021 if( pTab->iPKey<0 ) wTable++; 2022 pTab->szTabRow = sqlite3LogEst(wTable*4); 2023 } 2024 2025 /* 2026 ** Estimate the average size of a row for an index. 2027 */ 2028 static void estimateIndexWidth(Index *pIdx){ 2029 unsigned wIndex = 0; 2030 int i; 2031 const Column *aCol = pIdx->pTable->aCol; 2032 for(i=0; i<pIdx->nColumn; i++){ 2033 i16 x = pIdx->aiColumn[i]; 2034 assert( x<pIdx->pTable->nCol ); 2035 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2036 } 2037 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2038 } 2039 2040 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2041 ** This is used to determine if the column number x appears in any of the 2042 ** first nCol entries of an index. 2043 */ 2044 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2045 while( nCol-- > 0 ){ 2046 assert( aiCol[0]>=0 ); 2047 if( x==*(aiCol++) ){ 2048 return 1; 2049 } 2050 } 2051 return 0; 2052 } 2053 2054 /* 2055 ** Return true if any of the first nKey entries of index pIdx exactly 2056 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2057 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2058 ** or may not be the same index as pPk. 2059 ** 2060 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2061 ** not a rowid or expression. 2062 ** 2063 ** This routine differs from hasColumn() in that both the column and the 2064 ** collating sequence must match for this routine, but for hasColumn() only 2065 ** the column name must match. 2066 */ 2067 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2068 int i, j; 2069 assert( nKey<=pIdx->nColumn ); 2070 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2071 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2072 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2073 assert( pPk->pTable==pIdx->pTable ); 2074 testcase( pPk==pIdx ); 2075 j = pPk->aiColumn[iCol]; 2076 assert( j!=XN_ROWID && j!=XN_EXPR ); 2077 for(i=0; i<nKey; i++){ 2078 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2079 if( pIdx->aiColumn[i]==j 2080 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2081 ){ 2082 return 1; 2083 } 2084 } 2085 return 0; 2086 } 2087 2088 /* Recompute the colNotIdxed field of the Index. 2089 ** 2090 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2091 ** columns that are within the first 63 columns of the table. The 2092 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2093 ** of the table have a 1. 2094 ** 2095 ** 2019-10-24: For the purpose of this computation, virtual columns are 2096 ** not considered to be covered by the index, even if they are in the 2097 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2098 ** able to find all instances of a reference to the indexed table column 2099 ** and convert them into references to the index. Hence we always want 2100 ** the actual table at hand in order to recompute the virtual column, if 2101 ** necessary. 2102 ** 2103 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2104 ** to determine if the index is covering index. 2105 */ 2106 static void recomputeColumnsNotIndexed(Index *pIdx){ 2107 Bitmask m = 0; 2108 int j; 2109 Table *pTab = pIdx->pTable; 2110 for(j=pIdx->nColumn-1; j>=0; j--){ 2111 int x = pIdx->aiColumn[j]; 2112 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2113 testcase( x==BMS-1 ); 2114 testcase( x==BMS-2 ); 2115 if( x<BMS-1 ) m |= MASKBIT(x); 2116 } 2117 } 2118 pIdx->colNotIdxed = ~m; 2119 assert( (pIdx->colNotIdxed>>63)==1 ); 2120 } 2121 2122 /* 2123 ** This routine runs at the end of parsing a CREATE TABLE statement that 2124 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2125 ** internal schema data structures and the generated VDBE code so that they 2126 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2127 ** Changes include: 2128 ** 2129 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2130 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2131 ** into BTREE_BLOBKEY. 2132 ** (3) Bypass the creation of the sqlite_schema table entry 2133 ** for the PRIMARY KEY as the primary key index is now 2134 ** identified by the sqlite_schema table entry of the table itself. 2135 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2136 ** schema to the rootpage from the main table. 2137 ** (5) Add all table columns to the PRIMARY KEY Index object 2138 ** so that the PRIMARY KEY is a covering index. The surplus 2139 ** columns are part of KeyInfo.nAllField and are not used for 2140 ** sorting or lookup or uniqueness checks. 2141 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2142 ** indices with the PRIMARY KEY columns. 2143 ** 2144 ** For virtual tables, only (1) is performed. 2145 */ 2146 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2147 Index *pIdx; 2148 Index *pPk; 2149 int nPk; 2150 int nExtra; 2151 int i, j; 2152 sqlite3 *db = pParse->db; 2153 Vdbe *v = pParse->pVdbe; 2154 2155 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2156 */ 2157 if( !db->init.imposterTable ){ 2158 for(i=0; i<pTab->nCol; i++){ 2159 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2160 pTab->aCol[i].notNull = OE_Abort; 2161 } 2162 } 2163 pTab->tabFlags |= TF_HasNotNull; 2164 } 2165 2166 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2167 ** into BTREE_BLOBKEY. 2168 */ 2169 assert( !pParse->bReturning ); 2170 if( pParse->u1.addrCrTab ){ 2171 assert( v ); 2172 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2173 } 2174 2175 /* Locate the PRIMARY KEY index. Or, if this table was originally 2176 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2177 */ 2178 if( pTab->iPKey>=0 ){ 2179 ExprList *pList; 2180 Token ipkToken; 2181 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2182 pList = sqlite3ExprListAppend(pParse, 0, 2183 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2184 if( pList==0 ){ 2185 pTab->tabFlags &= ~TF_WithoutRowid; 2186 return; 2187 } 2188 if( IN_RENAME_OBJECT ){ 2189 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2190 } 2191 pList->a[0].sortFlags = pParse->iPkSortOrder; 2192 assert( pParse->pNewTable==pTab ); 2193 pTab->iPKey = -1; 2194 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2195 SQLITE_IDXTYPE_PRIMARYKEY); 2196 if( db->mallocFailed || pParse->nErr ){ 2197 pTab->tabFlags &= ~TF_WithoutRowid; 2198 return; 2199 } 2200 pPk = sqlite3PrimaryKeyIndex(pTab); 2201 assert( pPk->nKeyCol==1 ); 2202 }else{ 2203 pPk = sqlite3PrimaryKeyIndex(pTab); 2204 assert( pPk!=0 ); 2205 2206 /* 2207 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2208 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2209 ** code assumes the PRIMARY KEY contains no repeated columns. 2210 */ 2211 for(i=j=1; i<pPk->nKeyCol; i++){ 2212 if( isDupColumn(pPk, j, pPk, i) ){ 2213 pPk->nColumn--; 2214 }else{ 2215 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2216 pPk->azColl[j] = pPk->azColl[i]; 2217 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2218 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2219 } 2220 } 2221 pPk->nKeyCol = j; 2222 } 2223 assert( pPk!=0 ); 2224 pPk->isCovering = 1; 2225 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2226 nPk = pPk->nColumn = pPk->nKeyCol; 2227 2228 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2229 ** table entry. This is only required if currently generating VDBE 2230 ** code for a CREATE TABLE (not when parsing one as part of reading 2231 ** a database schema). */ 2232 if( v && pPk->tnum>0 ){ 2233 assert( db->init.busy==0 ); 2234 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2235 } 2236 2237 /* The root page of the PRIMARY KEY is the table root page */ 2238 pPk->tnum = pTab->tnum; 2239 2240 /* Update the in-memory representation of all UNIQUE indices by converting 2241 ** the final rowid column into one or more columns of the PRIMARY KEY. 2242 */ 2243 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2244 int n; 2245 if( IsPrimaryKeyIndex(pIdx) ) continue; 2246 for(i=n=0; i<nPk; i++){ 2247 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2248 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2249 n++; 2250 } 2251 } 2252 if( n==0 ){ 2253 /* This index is a superset of the primary key */ 2254 pIdx->nColumn = pIdx->nKeyCol; 2255 continue; 2256 } 2257 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2258 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2259 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2260 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2261 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2262 pIdx->azColl[j] = pPk->azColl[i]; 2263 if( pPk->aSortOrder[i] ){ 2264 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2265 pIdx->bAscKeyBug = 1; 2266 } 2267 j++; 2268 } 2269 } 2270 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2271 assert( pIdx->nColumn>=j ); 2272 } 2273 2274 /* Add all table columns to the PRIMARY KEY index 2275 */ 2276 nExtra = 0; 2277 for(i=0; i<pTab->nCol; i++){ 2278 if( !hasColumn(pPk->aiColumn, nPk, i) 2279 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2280 } 2281 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2282 for(i=0, j=nPk; i<pTab->nCol; i++){ 2283 if( !hasColumn(pPk->aiColumn, j, i) 2284 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2285 ){ 2286 assert( j<pPk->nColumn ); 2287 pPk->aiColumn[j] = i; 2288 pPk->azColl[j] = sqlite3StrBINARY; 2289 j++; 2290 } 2291 } 2292 assert( pPk->nColumn==j ); 2293 assert( pTab->nNVCol<=j ); 2294 recomputeColumnsNotIndexed(pPk); 2295 } 2296 2297 2298 #ifndef SQLITE_OMIT_VIRTUALTABLE 2299 /* 2300 ** Return true if pTab is a virtual table and zName is a shadow table name 2301 ** for that virtual table. 2302 */ 2303 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2304 int nName; /* Length of zName */ 2305 Module *pMod; /* Module for the virtual table */ 2306 2307 if( !IsVirtual(pTab) ) return 0; 2308 nName = sqlite3Strlen30(pTab->zName); 2309 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2310 if( zName[nName]!='_' ) return 0; 2311 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2312 if( pMod==0 ) return 0; 2313 if( pMod->pModule->iVersion<3 ) return 0; 2314 if( pMod->pModule->xShadowName==0 ) return 0; 2315 return pMod->pModule->xShadowName(zName+nName+1); 2316 } 2317 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2318 2319 #ifndef SQLITE_OMIT_VIRTUALTABLE 2320 /* 2321 ** Return true if zName is a shadow table name in the current database 2322 ** connection. 2323 ** 2324 ** zName is temporarily modified while this routine is running, but is 2325 ** restored to its original value prior to this routine returning. 2326 */ 2327 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2328 char *zTail; /* Pointer to the last "_" in zName */ 2329 Table *pTab; /* Table that zName is a shadow of */ 2330 zTail = strrchr(zName, '_'); 2331 if( zTail==0 ) return 0; 2332 *zTail = 0; 2333 pTab = sqlite3FindTable(db, zName, 0); 2334 *zTail = '_'; 2335 if( pTab==0 ) return 0; 2336 if( !IsVirtual(pTab) ) return 0; 2337 return sqlite3IsShadowTableOf(db, pTab, zName); 2338 } 2339 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2340 2341 2342 #ifdef SQLITE_DEBUG 2343 /* 2344 ** Mark all nodes of an expression as EP_Immutable, indicating that 2345 ** they should not be changed. Expressions attached to a table or 2346 ** index definition are tagged this way to help ensure that we do 2347 ** not pass them into code generator routines by mistake. 2348 */ 2349 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2350 ExprSetVVAProperty(pExpr, EP_Immutable); 2351 return WRC_Continue; 2352 } 2353 static void markExprListImmutable(ExprList *pList){ 2354 if( pList ){ 2355 Walker w; 2356 memset(&w, 0, sizeof(w)); 2357 w.xExprCallback = markImmutableExprStep; 2358 w.xSelectCallback = sqlite3SelectWalkNoop; 2359 w.xSelectCallback2 = 0; 2360 sqlite3WalkExprList(&w, pList); 2361 } 2362 } 2363 #else 2364 #define markExprListImmutable(X) /* no-op */ 2365 #endif /* SQLITE_DEBUG */ 2366 2367 2368 /* 2369 ** This routine is called to report the final ")" that terminates 2370 ** a CREATE TABLE statement. 2371 ** 2372 ** The table structure that other action routines have been building 2373 ** is added to the internal hash tables, assuming no errors have 2374 ** occurred. 2375 ** 2376 ** An entry for the table is made in the schema table on disk, unless 2377 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2378 ** it means we are reading the sqlite_schema table because we just 2379 ** connected to the database or because the sqlite_schema table has 2380 ** recently changed, so the entry for this table already exists in 2381 ** the sqlite_schema table. We do not want to create it again. 2382 ** 2383 ** If the pSelect argument is not NULL, it means that this routine 2384 ** was called to create a table generated from a 2385 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2386 ** the new table will match the result set of the SELECT. 2387 */ 2388 void sqlite3EndTable( 2389 Parse *pParse, /* Parse context */ 2390 Token *pCons, /* The ',' token after the last column defn. */ 2391 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2392 u8 tabOpts, /* Extra table options. Usually 0. */ 2393 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2394 ){ 2395 Table *p; /* The new table */ 2396 sqlite3 *db = pParse->db; /* The database connection */ 2397 int iDb; /* Database in which the table lives */ 2398 Index *pIdx; /* An implied index of the table */ 2399 2400 if( pEnd==0 && pSelect==0 ){ 2401 return; 2402 } 2403 p = pParse->pNewTable; 2404 if( p==0 ) return; 2405 2406 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2407 p->tabFlags |= TF_Shadow; 2408 } 2409 2410 /* If the db->init.busy is 1 it means we are reading the SQL off the 2411 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2412 ** So do not write to the disk again. Extract the root page number 2413 ** for the table from the db->init.newTnum field. (The page number 2414 ** should have been put there by the sqliteOpenCb routine.) 2415 ** 2416 ** If the root page number is 1, that means this is the sqlite_schema 2417 ** table itself. So mark it read-only. 2418 */ 2419 if( db->init.busy ){ 2420 if( pSelect ){ 2421 sqlite3ErrorMsg(pParse, ""); 2422 return; 2423 } 2424 p->tnum = db->init.newTnum; 2425 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2426 } 2427 2428 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2429 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2430 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2431 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2432 2433 /* Special processing for WITHOUT ROWID Tables */ 2434 if( tabOpts & TF_WithoutRowid ){ 2435 if( (p->tabFlags & TF_Autoincrement) ){ 2436 sqlite3ErrorMsg(pParse, 2437 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2438 return; 2439 } 2440 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2441 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2442 return; 2443 } 2444 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2445 convertToWithoutRowidTable(pParse, p); 2446 } 2447 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2448 2449 #ifndef SQLITE_OMIT_CHECK 2450 /* Resolve names in all CHECK constraint expressions. 2451 */ 2452 if( p->pCheck ){ 2453 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2454 if( pParse->nErr ){ 2455 /* If errors are seen, delete the CHECK constraints now, else they might 2456 ** actually be used if PRAGMA writable_schema=ON is set. */ 2457 sqlite3ExprListDelete(db, p->pCheck); 2458 p->pCheck = 0; 2459 }else{ 2460 markExprListImmutable(p->pCheck); 2461 } 2462 } 2463 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2464 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2465 if( p->tabFlags & TF_HasGenerated ){ 2466 int ii, nNG = 0; 2467 testcase( p->tabFlags & TF_HasVirtual ); 2468 testcase( p->tabFlags & TF_HasStored ); 2469 for(ii=0; ii<p->nCol; ii++){ 2470 u32 colFlags = p->aCol[ii].colFlags; 2471 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2472 Expr *pX = p->aCol[ii].pDflt; 2473 testcase( colFlags & COLFLAG_VIRTUAL ); 2474 testcase( colFlags & COLFLAG_STORED ); 2475 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2476 /* If there are errors in resolving the expression, change the 2477 ** expression to a NULL. This prevents code generators that operate 2478 ** on the expression from inserting extra parts into the expression 2479 ** tree that have been allocated from lookaside memory, which is 2480 ** illegal in a schema and will lead to errors or heap corruption 2481 ** when the database connection closes. */ 2482 sqlite3ExprDelete(db, pX); 2483 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2484 } 2485 }else{ 2486 nNG++; 2487 } 2488 } 2489 if( nNG==0 ){ 2490 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2491 return; 2492 } 2493 } 2494 #endif 2495 2496 /* Estimate the average row size for the table and for all implied indices */ 2497 estimateTableWidth(p); 2498 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2499 estimateIndexWidth(pIdx); 2500 } 2501 2502 /* If not initializing, then create a record for the new table 2503 ** in the schema table of the database. 2504 ** 2505 ** If this is a TEMPORARY table, write the entry into the auxiliary 2506 ** file instead of into the main database file. 2507 */ 2508 if( !db->init.busy ){ 2509 int n; 2510 Vdbe *v; 2511 char *zType; /* "view" or "table" */ 2512 char *zType2; /* "VIEW" or "TABLE" */ 2513 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2514 2515 v = sqlite3GetVdbe(pParse); 2516 if( NEVER(v==0) ) return; 2517 2518 sqlite3VdbeAddOp1(v, OP_Close, 0); 2519 2520 /* 2521 ** Initialize zType for the new view or table. 2522 */ 2523 if( p->pSelect==0 ){ 2524 /* A regular table */ 2525 zType = "table"; 2526 zType2 = "TABLE"; 2527 #ifndef SQLITE_OMIT_VIEW 2528 }else{ 2529 /* A view */ 2530 zType = "view"; 2531 zType2 = "VIEW"; 2532 #endif 2533 } 2534 2535 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2536 ** statement to populate the new table. The root-page number for the 2537 ** new table is in register pParse->regRoot. 2538 ** 2539 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2540 ** suitable state to query for the column names and types to be used 2541 ** by the new table. 2542 ** 2543 ** A shared-cache write-lock is not required to write to the new table, 2544 ** as a schema-lock must have already been obtained to create it. Since 2545 ** a schema-lock excludes all other database users, the write-lock would 2546 ** be redundant. 2547 */ 2548 if( pSelect ){ 2549 SelectDest dest; /* Where the SELECT should store results */ 2550 int regYield; /* Register holding co-routine entry-point */ 2551 int addrTop; /* Top of the co-routine */ 2552 int regRec; /* A record to be insert into the new table */ 2553 int regRowid; /* Rowid of the next row to insert */ 2554 int addrInsLoop; /* Top of the loop for inserting rows */ 2555 Table *pSelTab; /* A table that describes the SELECT results */ 2556 2557 regYield = ++pParse->nMem; 2558 regRec = ++pParse->nMem; 2559 regRowid = ++pParse->nMem; 2560 assert(pParse->nTab==1); 2561 sqlite3MayAbort(pParse); 2562 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2563 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2564 pParse->nTab = 2; 2565 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2566 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2567 if( pParse->nErr ) return; 2568 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2569 if( pSelTab==0 ) return; 2570 assert( p->aCol==0 ); 2571 p->nCol = p->nNVCol = pSelTab->nCol; 2572 p->aCol = pSelTab->aCol; 2573 pSelTab->nCol = 0; 2574 pSelTab->aCol = 0; 2575 sqlite3DeleteTable(db, pSelTab); 2576 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2577 sqlite3Select(pParse, pSelect, &dest); 2578 if( pParse->nErr ) return; 2579 sqlite3VdbeEndCoroutine(v, regYield); 2580 sqlite3VdbeJumpHere(v, addrTop - 1); 2581 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2582 VdbeCoverage(v); 2583 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2584 sqlite3TableAffinity(v, p, 0); 2585 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2586 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2587 sqlite3VdbeGoto(v, addrInsLoop); 2588 sqlite3VdbeJumpHere(v, addrInsLoop); 2589 sqlite3VdbeAddOp1(v, OP_Close, 1); 2590 } 2591 2592 /* Compute the complete text of the CREATE statement */ 2593 if( pSelect ){ 2594 zStmt = createTableStmt(db, p); 2595 }else{ 2596 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2597 n = (int)(pEnd2->z - pParse->sNameToken.z); 2598 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2599 zStmt = sqlite3MPrintf(db, 2600 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2601 ); 2602 } 2603 2604 /* A slot for the record has already been allocated in the 2605 ** schema table. We just need to update that slot with all 2606 ** the information we've collected. 2607 */ 2608 sqlite3NestedParse(pParse, 2609 "UPDATE %Q." DFLT_SCHEMA_TABLE 2610 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2611 " WHERE rowid=#%d", 2612 db->aDb[iDb].zDbSName, 2613 zType, 2614 p->zName, 2615 p->zName, 2616 pParse->regRoot, 2617 zStmt, 2618 pParse->regRowid 2619 ); 2620 sqlite3DbFree(db, zStmt); 2621 sqlite3ChangeCookie(pParse, iDb); 2622 2623 #ifndef SQLITE_OMIT_AUTOINCREMENT 2624 /* Check to see if we need to create an sqlite_sequence table for 2625 ** keeping track of autoincrement keys. 2626 */ 2627 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2628 Db *pDb = &db->aDb[iDb]; 2629 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2630 if( pDb->pSchema->pSeqTab==0 ){ 2631 sqlite3NestedParse(pParse, 2632 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2633 pDb->zDbSName 2634 ); 2635 } 2636 } 2637 #endif 2638 2639 /* Reparse everything to update our internal data structures */ 2640 sqlite3VdbeAddParseSchemaOp(v, iDb, 2641 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2642 } 2643 2644 /* Add the table to the in-memory representation of the database. 2645 */ 2646 if( db->init.busy ){ 2647 Table *pOld; 2648 Schema *pSchema = p->pSchema; 2649 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2650 assert( HasRowid(p) || p->iPKey<0 ); 2651 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2652 if( pOld ){ 2653 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2654 sqlite3OomFault(db); 2655 return; 2656 } 2657 pParse->pNewTable = 0; 2658 db->mDbFlags |= DBFLAG_SchemaChange; 2659 2660 /* If this is the magic sqlite_sequence table used by autoincrement, 2661 ** then record a pointer to this table in the main database structure 2662 ** so that INSERT can find the table easily. */ 2663 assert( !pParse->nested ); 2664 #ifndef SQLITE_OMIT_AUTOINCREMENT 2665 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2666 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2667 p->pSchema->pSeqTab = p; 2668 } 2669 #endif 2670 } 2671 2672 #ifndef SQLITE_OMIT_ALTERTABLE 2673 if( !pSelect && !p->pSelect ){ 2674 assert( pCons && pEnd ); 2675 if( pCons->z==0 ){ 2676 pCons = pEnd; 2677 } 2678 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2679 } 2680 #endif 2681 } 2682 2683 #ifndef SQLITE_OMIT_VIEW 2684 /* 2685 ** The parser calls this routine in order to create a new VIEW 2686 */ 2687 void sqlite3CreateView( 2688 Parse *pParse, /* The parsing context */ 2689 Token *pBegin, /* The CREATE token that begins the statement */ 2690 Token *pName1, /* The token that holds the name of the view */ 2691 Token *pName2, /* The token that holds the name of the view */ 2692 ExprList *pCNames, /* Optional list of view column names */ 2693 Select *pSelect, /* A SELECT statement that will become the new view */ 2694 int isTemp, /* TRUE for a TEMPORARY view */ 2695 int noErr /* Suppress error messages if VIEW already exists */ 2696 ){ 2697 Table *p; 2698 int n; 2699 const char *z; 2700 Token sEnd; 2701 DbFixer sFix; 2702 Token *pName = 0; 2703 int iDb; 2704 sqlite3 *db = pParse->db; 2705 2706 if( pParse->nVar>0 ){ 2707 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2708 goto create_view_fail; 2709 } 2710 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2711 p = pParse->pNewTable; 2712 if( p==0 || pParse->nErr ) goto create_view_fail; 2713 2714 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2715 ** on a view, even though views do not have rowids. The following flag 2716 ** setting fixes this problem. But the fix can be disabled by compiling 2717 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2718 ** depend upon the old buggy behavior. */ 2719 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2720 p->tabFlags |= TF_NoVisibleRowid; 2721 #endif 2722 2723 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2724 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2725 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2726 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2727 2728 /* Make a copy of the entire SELECT statement that defines the view. 2729 ** This will force all the Expr.token.z values to be dynamically 2730 ** allocated rather than point to the input string - which means that 2731 ** they will persist after the current sqlite3_exec() call returns. 2732 */ 2733 pSelect->selFlags |= SF_View; 2734 if( IN_RENAME_OBJECT ){ 2735 p->pSelect = pSelect; 2736 pSelect = 0; 2737 }else{ 2738 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2739 } 2740 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2741 if( db->mallocFailed ) goto create_view_fail; 2742 2743 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2744 ** the end. 2745 */ 2746 sEnd = pParse->sLastToken; 2747 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2748 if( sEnd.z[0]!=';' ){ 2749 sEnd.z += sEnd.n; 2750 } 2751 sEnd.n = 0; 2752 n = (int)(sEnd.z - pBegin->z); 2753 assert( n>0 ); 2754 z = pBegin->z; 2755 while( sqlite3Isspace(z[n-1]) ){ n--; } 2756 sEnd.z = &z[n-1]; 2757 sEnd.n = 1; 2758 2759 /* Use sqlite3EndTable() to add the view to the schema table */ 2760 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2761 2762 create_view_fail: 2763 sqlite3SelectDelete(db, pSelect); 2764 if( IN_RENAME_OBJECT ){ 2765 sqlite3RenameExprlistUnmap(pParse, pCNames); 2766 } 2767 sqlite3ExprListDelete(db, pCNames); 2768 return; 2769 } 2770 #endif /* SQLITE_OMIT_VIEW */ 2771 2772 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2773 /* 2774 ** The Table structure pTable is really a VIEW. Fill in the names of 2775 ** the columns of the view in the pTable structure. Return the number 2776 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2777 */ 2778 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2779 Table *pSelTab; /* A fake table from which we get the result set */ 2780 Select *pSel; /* Copy of the SELECT that implements the view */ 2781 int nErr = 0; /* Number of errors encountered */ 2782 int n; /* Temporarily holds the number of cursors assigned */ 2783 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2784 #ifndef SQLITE_OMIT_VIRTUALTABLE 2785 int rc; 2786 #endif 2787 #ifndef SQLITE_OMIT_AUTHORIZATION 2788 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2789 #endif 2790 2791 assert( pTable ); 2792 2793 #ifndef SQLITE_OMIT_VIRTUALTABLE 2794 db->nSchemaLock++; 2795 rc = sqlite3VtabCallConnect(pParse, pTable); 2796 db->nSchemaLock--; 2797 if( rc ){ 2798 return 1; 2799 } 2800 if( IsVirtual(pTable) ) return 0; 2801 #endif 2802 2803 #ifndef SQLITE_OMIT_VIEW 2804 /* A positive nCol means the columns names for this view are 2805 ** already known. 2806 */ 2807 if( pTable->nCol>0 ) return 0; 2808 2809 /* A negative nCol is a special marker meaning that we are currently 2810 ** trying to compute the column names. If we enter this routine with 2811 ** a negative nCol, it means two or more views form a loop, like this: 2812 ** 2813 ** CREATE VIEW one AS SELECT * FROM two; 2814 ** CREATE VIEW two AS SELECT * FROM one; 2815 ** 2816 ** Actually, the error above is now caught prior to reaching this point. 2817 ** But the following test is still important as it does come up 2818 ** in the following: 2819 ** 2820 ** CREATE TABLE main.ex1(a); 2821 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2822 ** SELECT * FROM temp.ex1; 2823 */ 2824 if( pTable->nCol<0 ){ 2825 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2826 return 1; 2827 } 2828 assert( pTable->nCol>=0 ); 2829 2830 /* If we get this far, it means we need to compute the table names. 2831 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2832 ** "*" elements in the results set of the view and will assign cursors 2833 ** to the elements of the FROM clause. But we do not want these changes 2834 ** to be permanent. So the computation is done on a copy of the SELECT 2835 ** statement that defines the view. 2836 */ 2837 assert( pTable->pSelect ); 2838 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2839 if( pSel ){ 2840 u8 eParseMode = pParse->eParseMode; 2841 pParse->eParseMode = PARSE_MODE_NORMAL; 2842 n = pParse->nTab; 2843 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2844 pTable->nCol = -1; 2845 DisableLookaside; 2846 #ifndef SQLITE_OMIT_AUTHORIZATION 2847 xAuth = db->xAuth; 2848 db->xAuth = 0; 2849 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2850 db->xAuth = xAuth; 2851 #else 2852 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2853 #endif 2854 pParse->nTab = n; 2855 if( pSelTab==0 ){ 2856 pTable->nCol = 0; 2857 nErr++; 2858 }else if( pTable->pCheck ){ 2859 /* CREATE VIEW name(arglist) AS ... 2860 ** The names of the columns in the table are taken from 2861 ** arglist which is stored in pTable->pCheck. The pCheck field 2862 ** normally holds CHECK constraints on an ordinary table, but for 2863 ** a VIEW it holds the list of column names. 2864 */ 2865 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2866 &pTable->nCol, &pTable->aCol); 2867 if( db->mallocFailed==0 2868 && pParse->nErr==0 2869 && pTable->nCol==pSel->pEList->nExpr 2870 ){ 2871 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2872 SQLITE_AFF_NONE); 2873 } 2874 }else{ 2875 /* CREATE VIEW name AS... without an argument list. Construct 2876 ** the column names from the SELECT statement that defines the view. 2877 */ 2878 assert( pTable->aCol==0 ); 2879 pTable->nCol = pSelTab->nCol; 2880 pTable->aCol = pSelTab->aCol; 2881 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 2882 pSelTab->nCol = 0; 2883 pSelTab->aCol = 0; 2884 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2885 } 2886 pTable->nNVCol = pTable->nCol; 2887 sqlite3DeleteTable(db, pSelTab); 2888 sqlite3SelectDelete(db, pSel); 2889 EnableLookaside; 2890 pParse->eParseMode = eParseMode; 2891 } else { 2892 nErr++; 2893 } 2894 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2895 if( db->mallocFailed ){ 2896 sqlite3DeleteColumnNames(db, pTable); 2897 pTable->aCol = 0; 2898 pTable->nCol = 0; 2899 } 2900 #endif /* SQLITE_OMIT_VIEW */ 2901 return nErr; 2902 } 2903 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2904 2905 #ifndef SQLITE_OMIT_VIEW 2906 /* 2907 ** Clear the column names from every VIEW in database idx. 2908 */ 2909 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2910 HashElem *i; 2911 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2912 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2913 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2914 Table *pTab = sqliteHashData(i); 2915 if( pTab->pSelect ){ 2916 sqlite3DeleteColumnNames(db, pTab); 2917 pTab->aCol = 0; 2918 pTab->nCol = 0; 2919 } 2920 } 2921 DbClearProperty(db, idx, DB_UnresetViews); 2922 } 2923 #else 2924 # define sqliteViewResetAll(A,B) 2925 #endif /* SQLITE_OMIT_VIEW */ 2926 2927 /* 2928 ** This function is called by the VDBE to adjust the internal schema 2929 ** used by SQLite when the btree layer moves a table root page. The 2930 ** root-page of a table or index in database iDb has changed from iFrom 2931 ** to iTo. 2932 ** 2933 ** Ticket #1728: The symbol table might still contain information 2934 ** on tables and/or indices that are the process of being deleted. 2935 ** If you are unlucky, one of those deleted indices or tables might 2936 ** have the same rootpage number as the real table or index that is 2937 ** being moved. So we cannot stop searching after the first match 2938 ** because the first match might be for one of the deleted indices 2939 ** or tables and not the table/index that is actually being moved. 2940 ** We must continue looping until all tables and indices with 2941 ** rootpage==iFrom have been converted to have a rootpage of iTo 2942 ** in order to be certain that we got the right one. 2943 */ 2944 #ifndef SQLITE_OMIT_AUTOVACUUM 2945 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2946 HashElem *pElem; 2947 Hash *pHash; 2948 Db *pDb; 2949 2950 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2951 pDb = &db->aDb[iDb]; 2952 pHash = &pDb->pSchema->tblHash; 2953 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2954 Table *pTab = sqliteHashData(pElem); 2955 if( pTab->tnum==iFrom ){ 2956 pTab->tnum = iTo; 2957 } 2958 } 2959 pHash = &pDb->pSchema->idxHash; 2960 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2961 Index *pIdx = sqliteHashData(pElem); 2962 if( pIdx->tnum==iFrom ){ 2963 pIdx->tnum = iTo; 2964 } 2965 } 2966 } 2967 #endif 2968 2969 /* 2970 ** Write code to erase the table with root-page iTable from database iDb. 2971 ** Also write code to modify the sqlite_schema table and internal schema 2972 ** if a root-page of another table is moved by the btree-layer whilst 2973 ** erasing iTable (this can happen with an auto-vacuum database). 2974 */ 2975 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2976 Vdbe *v = sqlite3GetVdbe(pParse); 2977 int r1 = sqlite3GetTempReg(pParse); 2978 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2979 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2980 sqlite3MayAbort(pParse); 2981 #ifndef SQLITE_OMIT_AUTOVACUUM 2982 /* OP_Destroy stores an in integer r1. If this integer 2983 ** is non-zero, then it is the root page number of a table moved to 2984 ** location iTable. The following code modifies the sqlite_schema table to 2985 ** reflect this. 2986 ** 2987 ** The "#NNN" in the SQL is a special constant that means whatever value 2988 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2989 ** token for additional information. 2990 */ 2991 sqlite3NestedParse(pParse, 2992 "UPDATE %Q." DFLT_SCHEMA_TABLE 2993 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2994 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2995 #endif 2996 sqlite3ReleaseTempReg(pParse, r1); 2997 } 2998 2999 /* 3000 ** Write VDBE code to erase table pTab and all associated indices on disk. 3001 ** Code to update the sqlite_schema tables and internal schema definitions 3002 ** in case a root-page belonging to another table is moved by the btree layer 3003 ** is also added (this can happen with an auto-vacuum database). 3004 */ 3005 static void destroyTable(Parse *pParse, Table *pTab){ 3006 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3007 ** is not defined), then it is important to call OP_Destroy on the 3008 ** table and index root-pages in order, starting with the numerically 3009 ** largest root-page number. This guarantees that none of the root-pages 3010 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3011 ** following were coded: 3012 ** 3013 ** OP_Destroy 4 0 3014 ** ... 3015 ** OP_Destroy 5 0 3016 ** 3017 ** and root page 5 happened to be the largest root-page number in the 3018 ** database, then root page 5 would be moved to page 4 by the 3019 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3020 ** a free-list page. 3021 */ 3022 Pgno iTab = pTab->tnum; 3023 Pgno iDestroyed = 0; 3024 3025 while( 1 ){ 3026 Index *pIdx; 3027 Pgno iLargest = 0; 3028 3029 if( iDestroyed==0 || iTab<iDestroyed ){ 3030 iLargest = iTab; 3031 } 3032 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3033 Pgno iIdx = pIdx->tnum; 3034 assert( pIdx->pSchema==pTab->pSchema ); 3035 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3036 iLargest = iIdx; 3037 } 3038 } 3039 if( iLargest==0 ){ 3040 return; 3041 }else{ 3042 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3043 assert( iDb>=0 && iDb<pParse->db->nDb ); 3044 destroyRootPage(pParse, iLargest, iDb); 3045 iDestroyed = iLargest; 3046 } 3047 } 3048 } 3049 3050 /* 3051 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3052 ** after a DROP INDEX or DROP TABLE command. 3053 */ 3054 static void sqlite3ClearStatTables( 3055 Parse *pParse, /* The parsing context */ 3056 int iDb, /* The database number */ 3057 const char *zType, /* "idx" or "tbl" */ 3058 const char *zName /* Name of index or table */ 3059 ){ 3060 int i; 3061 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3062 for(i=1; i<=4; i++){ 3063 char zTab[24]; 3064 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3065 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3066 sqlite3NestedParse(pParse, 3067 "DELETE FROM %Q.%s WHERE %s=%Q", 3068 zDbName, zTab, zType, zName 3069 ); 3070 } 3071 } 3072 } 3073 3074 /* 3075 ** Generate code to drop a table. 3076 */ 3077 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3078 Vdbe *v; 3079 sqlite3 *db = pParse->db; 3080 Trigger *pTrigger; 3081 Db *pDb = &db->aDb[iDb]; 3082 3083 v = sqlite3GetVdbe(pParse); 3084 assert( v!=0 ); 3085 sqlite3BeginWriteOperation(pParse, 1, iDb); 3086 3087 #ifndef SQLITE_OMIT_VIRTUALTABLE 3088 if( IsVirtual(pTab) ){ 3089 sqlite3VdbeAddOp0(v, OP_VBegin); 3090 } 3091 #endif 3092 3093 /* Drop all triggers associated with the table being dropped. Code 3094 ** is generated to remove entries from sqlite_schema and/or 3095 ** sqlite_temp_schema if required. 3096 */ 3097 pTrigger = sqlite3TriggerList(pParse, pTab); 3098 while( pTrigger ){ 3099 assert( pTrigger->pSchema==pTab->pSchema || 3100 pTrigger->pSchema==db->aDb[1].pSchema ); 3101 sqlite3DropTriggerPtr(pParse, pTrigger); 3102 pTrigger = pTrigger->pNext; 3103 } 3104 3105 #ifndef SQLITE_OMIT_AUTOINCREMENT 3106 /* Remove any entries of the sqlite_sequence table associated with 3107 ** the table being dropped. This is done before the table is dropped 3108 ** at the btree level, in case the sqlite_sequence table needs to 3109 ** move as a result of the drop (can happen in auto-vacuum mode). 3110 */ 3111 if( pTab->tabFlags & TF_Autoincrement ){ 3112 sqlite3NestedParse(pParse, 3113 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3114 pDb->zDbSName, pTab->zName 3115 ); 3116 } 3117 #endif 3118 3119 /* Drop all entries in the schema table that refer to the 3120 ** table. The program name loops through the schema table and deletes 3121 ** every row that refers to a table of the same name as the one being 3122 ** dropped. Triggers are handled separately because a trigger can be 3123 ** created in the temp database that refers to a table in another 3124 ** database. 3125 */ 3126 sqlite3NestedParse(pParse, 3127 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3128 " WHERE tbl_name=%Q and type!='trigger'", 3129 pDb->zDbSName, pTab->zName); 3130 if( !isView && !IsVirtual(pTab) ){ 3131 destroyTable(pParse, pTab); 3132 } 3133 3134 /* Remove the table entry from SQLite's internal schema and modify 3135 ** the schema cookie. 3136 */ 3137 if( IsVirtual(pTab) ){ 3138 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3139 sqlite3MayAbort(pParse); 3140 } 3141 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3142 sqlite3ChangeCookie(pParse, iDb); 3143 sqliteViewResetAll(db, iDb); 3144 } 3145 3146 /* 3147 ** Return TRUE if shadow tables should be read-only in the current 3148 ** context. 3149 */ 3150 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3151 #ifndef SQLITE_OMIT_VIRTUALTABLE 3152 if( (db->flags & SQLITE_Defensive)!=0 3153 && db->pVtabCtx==0 3154 && db->nVdbeExec==0 3155 ){ 3156 return 1; 3157 } 3158 #endif 3159 return 0; 3160 } 3161 3162 /* 3163 ** Return true if it is not allowed to drop the given table 3164 */ 3165 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3166 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3167 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3168 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3169 return 1; 3170 } 3171 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3172 return 1; 3173 } 3174 return 0; 3175 } 3176 3177 /* 3178 ** This routine is called to do the work of a DROP TABLE statement. 3179 ** pName is the name of the table to be dropped. 3180 */ 3181 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3182 Table *pTab; 3183 Vdbe *v; 3184 sqlite3 *db = pParse->db; 3185 int iDb; 3186 3187 if( db->mallocFailed ){ 3188 goto exit_drop_table; 3189 } 3190 assert( pParse->nErr==0 ); 3191 assert( pName->nSrc==1 ); 3192 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3193 if( noErr ) db->suppressErr++; 3194 assert( isView==0 || isView==LOCATE_VIEW ); 3195 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3196 if( noErr ) db->suppressErr--; 3197 3198 if( pTab==0 ){ 3199 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3200 goto exit_drop_table; 3201 } 3202 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3203 assert( iDb>=0 && iDb<db->nDb ); 3204 3205 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3206 ** it is initialized. 3207 */ 3208 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3209 goto exit_drop_table; 3210 } 3211 #ifndef SQLITE_OMIT_AUTHORIZATION 3212 { 3213 int code; 3214 const char *zTab = SCHEMA_TABLE(iDb); 3215 const char *zDb = db->aDb[iDb].zDbSName; 3216 const char *zArg2 = 0; 3217 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3218 goto exit_drop_table; 3219 } 3220 if( isView ){ 3221 if( !OMIT_TEMPDB && iDb==1 ){ 3222 code = SQLITE_DROP_TEMP_VIEW; 3223 }else{ 3224 code = SQLITE_DROP_VIEW; 3225 } 3226 #ifndef SQLITE_OMIT_VIRTUALTABLE 3227 }else if( IsVirtual(pTab) ){ 3228 code = SQLITE_DROP_VTABLE; 3229 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3230 #endif 3231 }else{ 3232 if( !OMIT_TEMPDB && iDb==1 ){ 3233 code = SQLITE_DROP_TEMP_TABLE; 3234 }else{ 3235 code = SQLITE_DROP_TABLE; 3236 } 3237 } 3238 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3239 goto exit_drop_table; 3240 } 3241 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3242 goto exit_drop_table; 3243 } 3244 } 3245 #endif 3246 if( tableMayNotBeDropped(db, pTab) ){ 3247 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3248 goto exit_drop_table; 3249 } 3250 3251 #ifndef SQLITE_OMIT_VIEW 3252 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3253 ** on a table. 3254 */ 3255 if( isView && pTab->pSelect==0 ){ 3256 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3257 goto exit_drop_table; 3258 } 3259 if( !isView && pTab->pSelect ){ 3260 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3261 goto exit_drop_table; 3262 } 3263 #endif 3264 3265 /* Generate code to remove the table from the schema table 3266 ** on disk. 3267 */ 3268 v = sqlite3GetVdbe(pParse); 3269 if( v ){ 3270 sqlite3BeginWriteOperation(pParse, 1, iDb); 3271 if( !isView ){ 3272 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3273 sqlite3FkDropTable(pParse, pName, pTab); 3274 } 3275 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3276 } 3277 3278 exit_drop_table: 3279 sqlite3SrcListDelete(db, pName); 3280 } 3281 3282 /* 3283 ** This routine is called to create a new foreign key on the table 3284 ** currently under construction. pFromCol determines which columns 3285 ** in the current table point to the foreign key. If pFromCol==0 then 3286 ** connect the key to the last column inserted. pTo is the name of 3287 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3288 ** of tables in the parent pTo table. flags contains all 3289 ** information about the conflict resolution algorithms specified 3290 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3291 ** 3292 ** An FKey structure is created and added to the table currently 3293 ** under construction in the pParse->pNewTable field. 3294 ** 3295 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3296 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3297 */ 3298 void sqlite3CreateForeignKey( 3299 Parse *pParse, /* Parsing context */ 3300 ExprList *pFromCol, /* Columns in this table that point to other table */ 3301 Token *pTo, /* Name of the other table */ 3302 ExprList *pToCol, /* Columns in the other table */ 3303 int flags /* Conflict resolution algorithms. */ 3304 ){ 3305 sqlite3 *db = pParse->db; 3306 #ifndef SQLITE_OMIT_FOREIGN_KEY 3307 FKey *pFKey = 0; 3308 FKey *pNextTo; 3309 Table *p = pParse->pNewTable; 3310 int nByte; 3311 int i; 3312 int nCol; 3313 char *z; 3314 3315 assert( pTo!=0 ); 3316 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3317 if( pFromCol==0 ){ 3318 int iCol = p->nCol-1; 3319 if( NEVER(iCol<0) ) goto fk_end; 3320 if( pToCol && pToCol->nExpr!=1 ){ 3321 sqlite3ErrorMsg(pParse, "foreign key on %s" 3322 " should reference only one column of table %T", 3323 p->aCol[iCol].zName, pTo); 3324 goto fk_end; 3325 } 3326 nCol = 1; 3327 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3328 sqlite3ErrorMsg(pParse, 3329 "number of columns in foreign key does not match the number of " 3330 "columns in the referenced table"); 3331 goto fk_end; 3332 }else{ 3333 nCol = pFromCol->nExpr; 3334 } 3335 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3336 if( pToCol ){ 3337 for(i=0; i<pToCol->nExpr; i++){ 3338 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3339 } 3340 } 3341 pFKey = sqlite3DbMallocZero(db, nByte ); 3342 if( pFKey==0 ){ 3343 goto fk_end; 3344 } 3345 pFKey->pFrom = p; 3346 pFKey->pNextFrom = p->pFKey; 3347 z = (char*)&pFKey->aCol[nCol]; 3348 pFKey->zTo = z; 3349 if( IN_RENAME_OBJECT ){ 3350 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3351 } 3352 memcpy(z, pTo->z, pTo->n); 3353 z[pTo->n] = 0; 3354 sqlite3Dequote(z); 3355 z += pTo->n+1; 3356 pFKey->nCol = nCol; 3357 if( pFromCol==0 ){ 3358 pFKey->aCol[0].iFrom = p->nCol-1; 3359 }else{ 3360 for(i=0; i<nCol; i++){ 3361 int j; 3362 for(j=0; j<p->nCol; j++){ 3363 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3364 pFKey->aCol[i].iFrom = j; 3365 break; 3366 } 3367 } 3368 if( j>=p->nCol ){ 3369 sqlite3ErrorMsg(pParse, 3370 "unknown column \"%s\" in foreign key definition", 3371 pFromCol->a[i].zEName); 3372 goto fk_end; 3373 } 3374 if( IN_RENAME_OBJECT ){ 3375 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3376 } 3377 } 3378 } 3379 if( pToCol ){ 3380 for(i=0; i<nCol; i++){ 3381 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3382 pFKey->aCol[i].zCol = z; 3383 if( IN_RENAME_OBJECT ){ 3384 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3385 } 3386 memcpy(z, pToCol->a[i].zEName, n); 3387 z[n] = 0; 3388 z += n+1; 3389 } 3390 } 3391 pFKey->isDeferred = 0; 3392 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3393 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3394 3395 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3396 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3397 pFKey->zTo, (void *)pFKey 3398 ); 3399 if( pNextTo==pFKey ){ 3400 sqlite3OomFault(db); 3401 goto fk_end; 3402 } 3403 if( pNextTo ){ 3404 assert( pNextTo->pPrevTo==0 ); 3405 pFKey->pNextTo = pNextTo; 3406 pNextTo->pPrevTo = pFKey; 3407 } 3408 3409 /* Link the foreign key to the table as the last step. 3410 */ 3411 p->pFKey = pFKey; 3412 pFKey = 0; 3413 3414 fk_end: 3415 sqlite3DbFree(db, pFKey); 3416 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3417 sqlite3ExprListDelete(db, pFromCol); 3418 sqlite3ExprListDelete(db, pToCol); 3419 } 3420 3421 /* 3422 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3423 ** clause is seen as part of a foreign key definition. The isDeferred 3424 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3425 ** The behavior of the most recently created foreign key is adjusted 3426 ** accordingly. 3427 */ 3428 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3429 #ifndef SQLITE_OMIT_FOREIGN_KEY 3430 Table *pTab; 3431 FKey *pFKey; 3432 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3433 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3434 pFKey->isDeferred = (u8)isDeferred; 3435 #endif 3436 } 3437 3438 /* 3439 ** Generate code that will erase and refill index *pIdx. This is 3440 ** used to initialize a newly created index or to recompute the 3441 ** content of an index in response to a REINDEX command. 3442 ** 3443 ** if memRootPage is not negative, it means that the index is newly 3444 ** created. The register specified by memRootPage contains the 3445 ** root page number of the index. If memRootPage is negative, then 3446 ** the index already exists and must be cleared before being refilled and 3447 ** the root page number of the index is taken from pIndex->tnum. 3448 */ 3449 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3450 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3451 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3452 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3453 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3454 int addr1; /* Address of top of loop */ 3455 int addr2; /* Address to jump to for next iteration */ 3456 Pgno tnum; /* Root page of index */ 3457 int iPartIdxLabel; /* Jump to this label to skip a row */ 3458 Vdbe *v; /* Generate code into this virtual machine */ 3459 KeyInfo *pKey; /* KeyInfo for index */ 3460 int regRecord; /* Register holding assembled index record */ 3461 sqlite3 *db = pParse->db; /* The database connection */ 3462 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3463 3464 #ifndef SQLITE_OMIT_AUTHORIZATION 3465 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3466 db->aDb[iDb].zDbSName ) ){ 3467 return; 3468 } 3469 #endif 3470 3471 /* Require a write-lock on the table to perform this operation */ 3472 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3473 3474 v = sqlite3GetVdbe(pParse); 3475 if( v==0 ) return; 3476 if( memRootPage>=0 ){ 3477 tnum = (Pgno)memRootPage; 3478 }else{ 3479 tnum = pIndex->tnum; 3480 } 3481 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3482 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3483 3484 /* Open the sorter cursor if we are to use one. */ 3485 iSorter = pParse->nTab++; 3486 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3487 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3488 3489 /* Open the table. Loop through all rows of the table, inserting index 3490 ** records into the sorter. */ 3491 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3492 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3493 regRecord = sqlite3GetTempReg(pParse); 3494 sqlite3MultiWrite(pParse); 3495 3496 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3497 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3498 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3499 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3500 sqlite3VdbeJumpHere(v, addr1); 3501 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3502 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3503 (char *)pKey, P4_KEYINFO); 3504 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3505 3506 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3507 if( IsUniqueIndex(pIndex) ){ 3508 int j2 = sqlite3VdbeGoto(v, 1); 3509 addr2 = sqlite3VdbeCurrentAddr(v); 3510 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3511 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3512 pIndex->nKeyCol); VdbeCoverage(v); 3513 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3514 sqlite3VdbeJumpHere(v, j2); 3515 }else{ 3516 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3517 ** abort. The exception is if one of the indexed expressions contains a 3518 ** user function that throws an exception when it is evaluated. But the 3519 ** overhead of adding a statement journal to a CREATE INDEX statement is 3520 ** very small (since most of the pages written do not contain content that 3521 ** needs to be restored if the statement aborts), so we call 3522 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3523 sqlite3MayAbort(pParse); 3524 addr2 = sqlite3VdbeCurrentAddr(v); 3525 } 3526 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3527 if( !pIndex->bAscKeyBug ){ 3528 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3529 ** faster by avoiding unnecessary seeks. But the optimization does 3530 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3531 ** with DESC primary keys, since those indexes have there keys in 3532 ** a different order from the main table. 3533 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3534 */ 3535 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3536 } 3537 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3538 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3539 sqlite3ReleaseTempReg(pParse, regRecord); 3540 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3541 sqlite3VdbeJumpHere(v, addr1); 3542 3543 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3544 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3545 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3546 } 3547 3548 /* 3549 ** Allocate heap space to hold an Index object with nCol columns. 3550 ** 3551 ** Increase the allocation size to provide an extra nExtra bytes 3552 ** of 8-byte aligned space after the Index object and return a 3553 ** pointer to this extra space in *ppExtra. 3554 */ 3555 Index *sqlite3AllocateIndexObject( 3556 sqlite3 *db, /* Database connection */ 3557 i16 nCol, /* Total number of columns in the index */ 3558 int nExtra, /* Number of bytes of extra space to alloc */ 3559 char **ppExtra /* Pointer to the "extra" space */ 3560 ){ 3561 Index *p; /* Allocated index object */ 3562 int nByte; /* Bytes of space for Index object + arrays */ 3563 3564 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3565 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3566 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3567 sizeof(i16)*nCol + /* Index.aiColumn */ 3568 sizeof(u8)*nCol); /* Index.aSortOrder */ 3569 p = sqlite3DbMallocZero(db, nByte + nExtra); 3570 if( p ){ 3571 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3572 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3573 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3574 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3575 p->aSortOrder = (u8*)pExtra; 3576 p->nColumn = nCol; 3577 p->nKeyCol = nCol - 1; 3578 *ppExtra = ((char*)p) + nByte; 3579 } 3580 return p; 3581 } 3582 3583 /* 3584 ** If expression list pList contains an expression that was parsed with 3585 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3586 ** pParse and return non-zero. Otherwise, return zero. 3587 */ 3588 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3589 if( pList ){ 3590 int i; 3591 for(i=0; i<pList->nExpr; i++){ 3592 if( pList->a[i].bNulls ){ 3593 u8 sf = pList->a[i].sortFlags; 3594 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3595 (sf==0 || sf==3) ? "FIRST" : "LAST" 3596 ); 3597 return 1; 3598 } 3599 } 3600 } 3601 return 0; 3602 } 3603 3604 /* 3605 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3606 ** and pTblList is the name of the table that is to be indexed. Both will 3607 ** be NULL for a primary key or an index that is created to satisfy a 3608 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3609 ** as the table to be indexed. pParse->pNewTable is a table that is 3610 ** currently being constructed by a CREATE TABLE statement. 3611 ** 3612 ** pList is a list of columns to be indexed. pList will be NULL if this 3613 ** is a primary key or unique-constraint on the most recent column added 3614 ** to the table currently under construction. 3615 */ 3616 void sqlite3CreateIndex( 3617 Parse *pParse, /* All information about this parse */ 3618 Token *pName1, /* First part of index name. May be NULL */ 3619 Token *pName2, /* Second part of index name. May be NULL */ 3620 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3621 ExprList *pList, /* A list of columns to be indexed */ 3622 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3623 Token *pStart, /* The CREATE token that begins this statement */ 3624 Expr *pPIWhere, /* WHERE clause for partial indices */ 3625 int sortOrder, /* Sort order of primary key when pList==NULL */ 3626 int ifNotExist, /* Omit error if index already exists */ 3627 u8 idxType /* The index type */ 3628 ){ 3629 Table *pTab = 0; /* Table to be indexed */ 3630 Index *pIndex = 0; /* The index to be created */ 3631 char *zName = 0; /* Name of the index */ 3632 int nName; /* Number of characters in zName */ 3633 int i, j; 3634 DbFixer sFix; /* For assigning database names to pTable */ 3635 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3636 sqlite3 *db = pParse->db; 3637 Db *pDb; /* The specific table containing the indexed database */ 3638 int iDb; /* Index of the database that is being written */ 3639 Token *pName = 0; /* Unqualified name of the index to create */ 3640 struct ExprList_item *pListItem; /* For looping over pList */ 3641 int nExtra = 0; /* Space allocated for zExtra[] */ 3642 int nExtraCol; /* Number of extra columns needed */ 3643 char *zExtra = 0; /* Extra space after the Index object */ 3644 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3645 3646 if( db->mallocFailed || pParse->nErr>0 ){ 3647 goto exit_create_index; 3648 } 3649 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3650 goto exit_create_index; 3651 } 3652 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3653 goto exit_create_index; 3654 } 3655 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3656 goto exit_create_index; 3657 } 3658 3659 /* 3660 ** Find the table that is to be indexed. Return early if not found. 3661 */ 3662 if( pTblName!=0 ){ 3663 3664 /* Use the two-part index name to determine the database 3665 ** to search for the table. 'Fix' the table name to this db 3666 ** before looking up the table. 3667 */ 3668 assert( pName1 && pName2 ); 3669 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3670 if( iDb<0 ) goto exit_create_index; 3671 assert( pName && pName->z ); 3672 3673 #ifndef SQLITE_OMIT_TEMPDB 3674 /* If the index name was unqualified, check if the table 3675 ** is a temp table. If so, set the database to 1. Do not do this 3676 ** if initialising a database schema. 3677 */ 3678 if( !db->init.busy ){ 3679 pTab = sqlite3SrcListLookup(pParse, pTblName); 3680 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3681 iDb = 1; 3682 } 3683 } 3684 #endif 3685 3686 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3687 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3688 /* Because the parser constructs pTblName from a single identifier, 3689 ** sqlite3FixSrcList can never fail. */ 3690 assert(0); 3691 } 3692 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3693 assert( db->mallocFailed==0 || pTab==0 ); 3694 if( pTab==0 ) goto exit_create_index; 3695 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3696 sqlite3ErrorMsg(pParse, 3697 "cannot create a TEMP index on non-TEMP table \"%s\"", 3698 pTab->zName); 3699 goto exit_create_index; 3700 } 3701 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3702 }else{ 3703 assert( pName==0 ); 3704 assert( pStart==0 ); 3705 pTab = pParse->pNewTable; 3706 if( !pTab ) goto exit_create_index; 3707 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3708 } 3709 pDb = &db->aDb[iDb]; 3710 3711 assert( pTab!=0 ); 3712 assert( pParse->nErr==0 ); 3713 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3714 && db->init.busy==0 3715 && pTblName!=0 3716 #if SQLITE_USER_AUTHENTICATION 3717 && sqlite3UserAuthTable(pTab->zName)==0 3718 #endif 3719 ){ 3720 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3721 goto exit_create_index; 3722 } 3723 #ifndef SQLITE_OMIT_VIEW 3724 if( pTab->pSelect ){ 3725 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3726 goto exit_create_index; 3727 } 3728 #endif 3729 #ifndef SQLITE_OMIT_VIRTUALTABLE 3730 if( IsVirtual(pTab) ){ 3731 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3732 goto exit_create_index; 3733 } 3734 #endif 3735 3736 /* 3737 ** Find the name of the index. Make sure there is not already another 3738 ** index or table with the same name. 3739 ** 3740 ** Exception: If we are reading the names of permanent indices from the 3741 ** sqlite_schema table (because some other process changed the schema) and 3742 ** one of the index names collides with the name of a temporary table or 3743 ** index, then we will continue to process this index. 3744 ** 3745 ** If pName==0 it means that we are 3746 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3747 ** own name. 3748 */ 3749 if( pName ){ 3750 zName = sqlite3NameFromToken(db, pName); 3751 if( zName==0 ) goto exit_create_index; 3752 assert( pName->z!=0 ); 3753 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3754 goto exit_create_index; 3755 } 3756 if( !IN_RENAME_OBJECT ){ 3757 if( !db->init.busy ){ 3758 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3759 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3760 goto exit_create_index; 3761 } 3762 } 3763 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3764 if( !ifNotExist ){ 3765 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3766 }else{ 3767 assert( !db->init.busy ); 3768 sqlite3CodeVerifySchema(pParse, iDb); 3769 } 3770 goto exit_create_index; 3771 } 3772 } 3773 }else{ 3774 int n; 3775 Index *pLoop; 3776 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3777 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3778 if( zName==0 ){ 3779 goto exit_create_index; 3780 } 3781 3782 /* Automatic index names generated from within sqlite3_declare_vtab() 3783 ** must have names that are distinct from normal automatic index names. 3784 ** The following statement converts "sqlite3_autoindex..." into 3785 ** "sqlite3_butoindex..." in order to make the names distinct. 3786 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3787 if( IN_SPECIAL_PARSE ) zName[7]++; 3788 } 3789 3790 /* Check for authorization to create an index. 3791 */ 3792 #ifndef SQLITE_OMIT_AUTHORIZATION 3793 if( !IN_RENAME_OBJECT ){ 3794 const char *zDb = pDb->zDbSName; 3795 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3796 goto exit_create_index; 3797 } 3798 i = SQLITE_CREATE_INDEX; 3799 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3800 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3801 goto exit_create_index; 3802 } 3803 } 3804 #endif 3805 3806 /* If pList==0, it means this routine was called to make a primary 3807 ** key out of the last column added to the table under construction. 3808 ** So create a fake list to simulate this. 3809 */ 3810 if( pList==0 ){ 3811 Token prevCol; 3812 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3813 pCol->colFlags |= COLFLAG_UNIQUE; 3814 sqlite3TokenInit(&prevCol, pCol->zName); 3815 pList = sqlite3ExprListAppend(pParse, 0, 3816 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3817 if( pList==0 ) goto exit_create_index; 3818 assert( pList->nExpr==1 ); 3819 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3820 }else{ 3821 sqlite3ExprListCheckLength(pParse, pList, "index"); 3822 if( pParse->nErr ) goto exit_create_index; 3823 } 3824 3825 /* Figure out how many bytes of space are required to store explicitly 3826 ** specified collation sequence names. 3827 */ 3828 for(i=0; i<pList->nExpr; i++){ 3829 Expr *pExpr = pList->a[i].pExpr; 3830 assert( pExpr!=0 ); 3831 if( pExpr->op==TK_COLLATE ){ 3832 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3833 } 3834 } 3835 3836 /* 3837 ** Allocate the index structure. 3838 */ 3839 nName = sqlite3Strlen30(zName); 3840 nExtraCol = pPk ? pPk->nKeyCol : 1; 3841 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3842 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3843 nName + nExtra + 1, &zExtra); 3844 if( db->mallocFailed ){ 3845 goto exit_create_index; 3846 } 3847 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3848 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3849 pIndex->zName = zExtra; 3850 zExtra += nName + 1; 3851 memcpy(pIndex->zName, zName, nName+1); 3852 pIndex->pTable = pTab; 3853 pIndex->onError = (u8)onError; 3854 pIndex->uniqNotNull = onError!=OE_None; 3855 pIndex->idxType = idxType; 3856 pIndex->pSchema = db->aDb[iDb].pSchema; 3857 pIndex->nKeyCol = pList->nExpr; 3858 if( pPIWhere ){ 3859 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3860 pIndex->pPartIdxWhere = pPIWhere; 3861 pPIWhere = 0; 3862 } 3863 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3864 3865 /* Check to see if we should honor DESC requests on index columns 3866 */ 3867 if( pDb->pSchema->file_format>=4 ){ 3868 sortOrderMask = -1; /* Honor DESC */ 3869 }else{ 3870 sortOrderMask = 0; /* Ignore DESC */ 3871 } 3872 3873 /* Analyze the list of expressions that form the terms of the index and 3874 ** report any errors. In the common case where the expression is exactly 3875 ** a table column, store that column in aiColumn[]. For general expressions, 3876 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3877 ** 3878 ** TODO: Issue a warning if two or more columns of the index are identical. 3879 ** TODO: Issue a warning if the table primary key is used as part of the 3880 ** index key. 3881 */ 3882 pListItem = pList->a; 3883 if( IN_RENAME_OBJECT ){ 3884 pIndex->aColExpr = pList; 3885 pList = 0; 3886 } 3887 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3888 Expr *pCExpr; /* The i-th index expression */ 3889 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3890 const char *zColl; /* Collation sequence name */ 3891 3892 sqlite3StringToId(pListItem->pExpr); 3893 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3894 if( pParse->nErr ) goto exit_create_index; 3895 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3896 if( pCExpr->op!=TK_COLUMN ){ 3897 if( pTab==pParse->pNewTable ){ 3898 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3899 "UNIQUE constraints"); 3900 goto exit_create_index; 3901 } 3902 if( pIndex->aColExpr==0 ){ 3903 pIndex->aColExpr = pList; 3904 pList = 0; 3905 } 3906 j = XN_EXPR; 3907 pIndex->aiColumn[i] = XN_EXPR; 3908 pIndex->uniqNotNull = 0; 3909 }else{ 3910 j = pCExpr->iColumn; 3911 assert( j<=0x7fff ); 3912 if( j<0 ){ 3913 j = pTab->iPKey; 3914 }else{ 3915 if( pTab->aCol[j].notNull==0 ){ 3916 pIndex->uniqNotNull = 0; 3917 } 3918 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3919 pIndex->bHasVCol = 1; 3920 } 3921 } 3922 pIndex->aiColumn[i] = (i16)j; 3923 } 3924 zColl = 0; 3925 if( pListItem->pExpr->op==TK_COLLATE ){ 3926 int nColl; 3927 zColl = pListItem->pExpr->u.zToken; 3928 nColl = sqlite3Strlen30(zColl) + 1; 3929 assert( nExtra>=nColl ); 3930 memcpy(zExtra, zColl, nColl); 3931 zColl = zExtra; 3932 zExtra += nColl; 3933 nExtra -= nColl; 3934 }else if( j>=0 ){ 3935 zColl = pTab->aCol[j].zColl; 3936 } 3937 if( !zColl ) zColl = sqlite3StrBINARY; 3938 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3939 goto exit_create_index; 3940 } 3941 pIndex->azColl[i] = zColl; 3942 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3943 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3944 } 3945 3946 /* Append the table key to the end of the index. For WITHOUT ROWID 3947 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3948 ** normal tables (when pPk==0) this will be the rowid. 3949 */ 3950 if( pPk ){ 3951 for(j=0; j<pPk->nKeyCol; j++){ 3952 int x = pPk->aiColumn[j]; 3953 assert( x>=0 ); 3954 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3955 pIndex->nColumn--; 3956 }else{ 3957 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3958 pIndex->aiColumn[i] = x; 3959 pIndex->azColl[i] = pPk->azColl[j]; 3960 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3961 i++; 3962 } 3963 } 3964 assert( i==pIndex->nColumn ); 3965 }else{ 3966 pIndex->aiColumn[i] = XN_ROWID; 3967 pIndex->azColl[i] = sqlite3StrBINARY; 3968 } 3969 sqlite3DefaultRowEst(pIndex); 3970 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3971 3972 /* If this index contains every column of its table, then mark 3973 ** it as a covering index */ 3974 assert( HasRowid(pTab) 3975 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3976 recomputeColumnsNotIndexed(pIndex); 3977 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3978 pIndex->isCovering = 1; 3979 for(j=0; j<pTab->nCol; j++){ 3980 if( j==pTab->iPKey ) continue; 3981 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3982 pIndex->isCovering = 0; 3983 break; 3984 } 3985 } 3986 3987 if( pTab==pParse->pNewTable ){ 3988 /* This routine has been called to create an automatic index as a 3989 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3990 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3991 ** i.e. one of: 3992 ** 3993 ** CREATE TABLE t(x PRIMARY KEY, y); 3994 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3995 ** 3996 ** Either way, check to see if the table already has such an index. If 3997 ** so, don't bother creating this one. This only applies to 3998 ** automatically created indices. Users can do as they wish with 3999 ** explicit indices. 4000 ** 4001 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4002 ** (and thus suppressing the second one) even if they have different 4003 ** sort orders. 4004 ** 4005 ** If there are different collating sequences or if the columns of 4006 ** the constraint occur in different orders, then the constraints are 4007 ** considered distinct and both result in separate indices. 4008 */ 4009 Index *pIdx; 4010 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4011 int k; 4012 assert( IsUniqueIndex(pIdx) ); 4013 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4014 assert( IsUniqueIndex(pIndex) ); 4015 4016 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4017 for(k=0; k<pIdx->nKeyCol; k++){ 4018 const char *z1; 4019 const char *z2; 4020 assert( pIdx->aiColumn[k]>=0 ); 4021 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4022 z1 = pIdx->azColl[k]; 4023 z2 = pIndex->azColl[k]; 4024 if( sqlite3StrICmp(z1, z2) ) break; 4025 } 4026 if( k==pIdx->nKeyCol ){ 4027 if( pIdx->onError!=pIndex->onError ){ 4028 /* This constraint creates the same index as a previous 4029 ** constraint specified somewhere in the CREATE TABLE statement. 4030 ** However the ON CONFLICT clauses are different. If both this 4031 ** constraint and the previous equivalent constraint have explicit 4032 ** ON CONFLICT clauses this is an error. Otherwise, use the 4033 ** explicitly specified behavior for the index. 4034 */ 4035 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4036 sqlite3ErrorMsg(pParse, 4037 "conflicting ON CONFLICT clauses specified", 0); 4038 } 4039 if( pIdx->onError==OE_Default ){ 4040 pIdx->onError = pIndex->onError; 4041 } 4042 } 4043 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4044 if( IN_RENAME_OBJECT ){ 4045 pIndex->pNext = pParse->pNewIndex; 4046 pParse->pNewIndex = pIndex; 4047 pIndex = 0; 4048 } 4049 goto exit_create_index; 4050 } 4051 } 4052 } 4053 4054 if( !IN_RENAME_OBJECT ){ 4055 4056 /* Link the new Index structure to its table and to the other 4057 ** in-memory database structures. 4058 */ 4059 assert( pParse->nErr==0 ); 4060 if( db->init.busy ){ 4061 Index *p; 4062 assert( !IN_SPECIAL_PARSE ); 4063 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4064 if( pTblName!=0 ){ 4065 pIndex->tnum = db->init.newTnum; 4066 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4067 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4068 pParse->rc = SQLITE_CORRUPT_BKPT; 4069 goto exit_create_index; 4070 } 4071 } 4072 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4073 pIndex->zName, pIndex); 4074 if( p ){ 4075 assert( p==pIndex ); /* Malloc must have failed */ 4076 sqlite3OomFault(db); 4077 goto exit_create_index; 4078 } 4079 db->mDbFlags |= DBFLAG_SchemaChange; 4080 } 4081 4082 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4083 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4084 ** emit code to allocate the index rootpage on disk and make an entry for 4085 ** the index in the sqlite_schema table and populate the index with 4086 ** content. But, do not do this if we are simply reading the sqlite_schema 4087 ** table to parse the schema, or if this index is the PRIMARY KEY index 4088 ** of a WITHOUT ROWID table. 4089 ** 4090 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4091 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4092 ** has just been created, it contains no data and the index initialization 4093 ** step can be skipped. 4094 */ 4095 else if( HasRowid(pTab) || pTblName!=0 ){ 4096 Vdbe *v; 4097 char *zStmt; 4098 int iMem = ++pParse->nMem; 4099 4100 v = sqlite3GetVdbe(pParse); 4101 if( v==0 ) goto exit_create_index; 4102 4103 sqlite3BeginWriteOperation(pParse, 1, iDb); 4104 4105 /* Create the rootpage for the index using CreateIndex. But before 4106 ** doing so, code a Noop instruction and store its address in 4107 ** Index.tnum. This is required in case this index is actually a 4108 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4109 ** that case the convertToWithoutRowidTable() routine will replace 4110 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4111 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4112 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4113 4114 /* Gather the complete text of the CREATE INDEX statement into 4115 ** the zStmt variable 4116 */ 4117 assert( pName!=0 || pStart==0 ); 4118 if( pStart ){ 4119 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4120 if( pName->z[n-1]==';' ) n--; 4121 /* A named index with an explicit CREATE INDEX statement */ 4122 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4123 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4124 }else{ 4125 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4126 /* zStmt = sqlite3MPrintf(""); */ 4127 zStmt = 0; 4128 } 4129 4130 /* Add an entry in sqlite_schema for this index 4131 */ 4132 sqlite3NestedParse(pParse, 4133 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4134 db->aDb[iDb].zDbSName, 4135 pIndex->zName, 4136 pTab->zName, 4137 iMem, 4138 zStmt 4139 ); 4140 sqlite3DbFree(db, zStmt); 4141 4142 /* Fill the index with data and reparse the schema. Code an OP_Expire 4143 ** to invalidate all pre-compiled statements. 4144 */ 4145 if( pTblName ){ 4146 sqlite3RefillIndex(pParse, pIndex, iMem); 4147 sqlite3ChangeCookie(pParse, iDb); 4148 sqlite3VdbeAddParseSchemaOp(v, iDb, 4149 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4150 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4151 } 4152 4153 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4154 } 4155 } 4156 if( db->init.busy || pTblName==0 ){ 4157 pIndex->pNext = pTab->pIndex; 4158 pTab->pIndex = pIndex; 4159 pIndex = 0; 4160 } 4161 else if( IN_RENAME_OBJECT ){ 4162 assert( pParse->pNewIndex==0 ); 4163 pParse->pNewIndex = pIndex; 4164 pIndex = 0; 4165 } 4166 4167 /* Clean up before exiting */ 4168 exit_create_index: 4169 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4170 if( pTab ){ 4171 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4172 ** The list was already ordered when this routine was entered, so at this 4173 ** point at most a single index (the newly added index) will be out of 4174 ** order. So we have to reorder at most one index. */ 4175 Index **ppFrom = &pTab->pIndex; 4176 Index *pThis; 4177 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4178 Index *pNext; 4179 if( pThis->onError!=OE_Replace ) continue; 4180 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4181 *ppFrom = pNext; 4182 pThis->pNext = pNext->pNext; 4183 pNext->pNext = pThis; 4184 ppFrom = &pNext->pNext; 4185 } 4186 break; 4187 } 4188 #ifdef SQLITE_DEBUG 4189 /* Verify that all REPLACE indexes really are now at the end 4190 ** of the index list. In other words, no other index type ever 4191 ** comes after a REPLACE index on the list. */ 4192 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4193 assert( pThis->onError!=OE_Replace 4194 || pThis->pNext==0 4195 || pThis->pNext->onError==OE_Replace ); 4196 } 4197 #endif 4198 } 4199 sqlite3ExprDelete(db, pPIWhere); 4200 sqlite3ExprListDelete(db, pList); 4201 sqlite3SrcListDelete(db, pTblName); 4202 sqlite3DbFree(db, zName); 4203 } 4204 4205 /* 4206 ** Fill the Index.aiRowEst[] array with default information - information 4207 ** to be used when we have not run the ANALYZE command. 4208 ** 4209 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4210 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4211 ** number of rows in the table that match any particular value of the 4212 ** first column of the index. aiRowEst[2] is an estimate of the number 4213 ** of rows that match any particular combination of the first 2 columns 4214 ** of the index. And so forth. It must always be the case that 4215 * 4216 ** aiRowEst[N]<=aiRowEst[N-1] 4217 ** aiRowEst[N]>=1 4218 ** 4219 ** Apart from that, we have little to go on besides intuition as to 4220 ** how aiRowEst[] should be initialized. The numbers generated here 4221 ** are based on typical values found in actual indices. 4222 */ 4223 void sqlite3DefaultRowEst(Index *pIdx){ 4224 /* 10, 9, 8, 7, 6 */ 4225 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4226 LogEst *a = pIdx->aiRowLogEst; 4227 LogEst x; 4228 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4229 int i; 4230 4231 /* Indexes with default row estimates should not have stat1 data */ 4232 assert( !pIdx->hasStat1 ); 4233 4234 /* Set the first entry (number of rows in the index) to the estimated 4235 ** number of rows in the table, or half the number of rows in the table 4236 ** for a partial index. 4237 ** 4238 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4239 ** table but other parts we are having to guess at, then do not let the 4240 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4241 ** Failure to do this can cause the indexes for which we do not have 4242 ** stat1 data to be ignored by the query planner. 4243 */ 4244 x = pIdx->pTable->nRowLogEst; 4245 assert( 99==sqlite3LogEst(1000) ); 4246 if( x<99 ){ 4247 pIdx->pTable->nRowLogEst = x = 99; 4248 } 4249 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) ); 4250 a[0] = x; 4251 4252 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4253 ** 6 and each subsequent value (if any) is 5. */ 4254 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4255 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4256 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4257 } 4258 4259 assert( 0==sqlite3LogEst(1) ); 4260 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4261 } 4262 4263 /* 4264 ** This routine will drop an existing named index. This routine 4265 ** implements the DROP INDEX statement. 4266 */ 4267 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4268 Index *pIndex; 4269 Vdbe *v; 4270 sqlite3 *db = pParse->db; 4271 int iDb; 4272 4273 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4274 if( db->mallocFailed ){ 4275 goto exit_drop_index; 4276 } 4277 assert( pName->nSrc==1 ); 4278 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4279 goto exit_drop_index; 4280 } 4281 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4282 if( pIndex==0 ){ 4283 if( !ifExists ){ 4284 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4285 }else{ 4286 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4287 } 4288 pParse->checkSchema = 1; 4289 goto exit_drop_index; 4290 } 4291 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4292 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4293 "or PRIMARY KEY constraint cannot be dropped", 0); 4294 goto exit_drop_index; 4295 } 4296 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4297 #ifndef SQLITE_OMIT_AUTHORIZATION 4298 { 4299 int code = SQLITE_DROP_INDEX; 4300 Table *pTab = pIndex->pTable; 4301 const char *zDb = db->aDb[iDb].zDbSName; 4302 const char *zTab = SCHEMA_TABLE(iDb); 4303 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4304 goto exit_drop_index; 4305 } 4306 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4307 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4308 goto exit_drop_index; 4309 } 4310 } 4311 #endif 4312 4313 /* Generate code to remove the index and from the schema table */ 4314 v = sqlite3GetVdbe(pParse); 4315 if( v ){ 4316 sqlite3BeginWriteOperation(pParse, 1, iDb); 4317 sqlite3NestedParse(pParse, 4318 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4319 db->aDb[iDb].zDbSName, pIndex->zName 4320 ); 4321 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4322 sqlite3ChangeCookie(pParse, iDb); 4323 destroyRootPage(pParse, pIndex->tnum, iDb); 4324 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4325 } 4326 4327 exit_drop_index: 4328 sqlite3SrcListDelete(db, pName); 4329 } 4330 4331 /* 4332 ** pArray is a pointer to an array of objects. Each object in the 4333 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4334 ** to extend the array so that there is space for a new object at the end. 4335 ** 4336 ** When this function is called, *pnEntry contains the current size of 4337 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4338 ** in total). 4339 ** 4340 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4341 ** space allocated for the new object is zeroed, *pnEntry updated to 4342 ** reflect the new size of the array and a pointer to the new allocation 4343 ** returned. *pIdx is set to the index of the new array entry in this case. 4344 ** 4345 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4346 ** unchanged and a copy of pArray returned. 4347 */ 4348 void *sqlite3ArrayAllocate( 4349 sqlite3 *db, /* Connection to notify of malloc failures */ 4350 void *pArray, /* Array of objects. Might be reallocated */ 4351 int szEntry, /* Size of each object in the array */ 4352 int *pnEntry, /* Number of objects currently in use */ 4353 int *pIdx /* Write the index of a new slot here */ 4354 ){ 4355 char *z; 4356 sqlite3_int64 n = *pIdx = *pnEntry; 4357 if( (n & (n-1))==0 ){ 4358 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4359 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4360 if( pNew==0 ){ 4361 *pIdx = -1; 4362 return pArray; 4363 } 4364 pArray = pNew; 4365 } 4366 z = (char*)pArray; 4367 memset(&z[n * szEntry], 0, szEntry); 4368 ++*pnEntry; 4369 return pArray; 4370 } 4371 4372 /* 4373 ** Append a new element to the given IdList. Create a new IdList if 4374 ** need be. 4375 ** 4376 ** A new IdList is returned, or NULL if malloc() fails. 4377 */ 4378 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4379 sqlite3 *db = pParse->db; 4380 int i; 4381 if( pList==0 ){ 4382 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4383 if( pList==0 ) return 0; 4384 } 4385 pList->a = sqlite3ArrayAllocate( 4386 db, 4387 pList->a, 4388 sizeof(pList->a[0]), 4389 &pList->nId, 4390 &i 4391 ); 4392 if( i<0 ){ 4393 sqlite3IdListDelete(db, pList); 4394 return 0; 4395 } 4396 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4397 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4398 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4399 } 4400 return pList; 4401 } 4402 4403 /* 4404 ** Delete an IdList. 4405 */ 4406 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4407 int i; 4408 if( pList==0 ) return; 4409 for(i=0; i<pList->nId; i++){ 4410 sqlite3DbFree(db, pList->a[i].zName); 4411 } 4412 sqlite3DbFree(db, pList->a); 4413 sqlite3DbFreeNN(db, pList); 4414 } 4415 4416 /* 4417 ** Return the index in pList of the identifier named zId. Return -1 4418 ** if not found. 4419 */ 4420 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4421 int i; 4422 if( pList==0 ) return -1; 4423 for(i=0; i<pList->nId; i++){ 4424 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4425 } 4426 return -1; 4427 } 4428 4429 /* 4430 ** Maximum size of a SrcList object. 4431 ** The SrcList object is used to represent the FROM clause of a 4432 ** SELECT statement, and the query planner cannot deal with more 4433 ** than 64 tables in a join. So any value larger than 64 here 4434 ** is sufficient for most uses. Smaller values, like say 10, are 4435 ** appropriate for small and memory-limited applications. 4436 */ 4437 #ifndef SQLITE_MAX_SRCLIST 4438 # define SQLITE_MAX_SRCLIST 200 4439 #endif 4440 4441 /* 4442 ** Expand the space allocated for the given SrcList object by 4443 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4444 ** New slots are zeroed. 4445 ** 4446 ** For example, suppose a SrcList initially contains two entries: A,B. 4447 ** To append 3 new entries onto the end, do this: 4448 ** 4449 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4450 ** 4451 ** After the call above it would contain: A, B, nil, nil, nil. 4452 ** If the iStart argument had been 1 instead of 2, then the result 4453 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4454 ** the iStart value would be 0. The result then would 4455 ** be: nil, nil, nil, A, B. 4456 ** 4457 ** If a memory allocation fails or the SrcList becomes too large, leave 4458 ** the original SrcList unchanged, return NULL, and leave an error message 4459 ** in pParse. 4460 */ 4461 SrcList *sqlite3SrcListEnlarge( 4462 Parse *pParse, /* Parsing context into which errors are reported */ 4463 SrcList *pSrc, /* The SrcList to be enlarged */ 4464 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4465 int iStart /* Index in pSrc->a[] of first new slot */ 4466 ){ 4467 int i; 4468 4469 /* Sanity checking on calling parameters */ 4470 assert( iStart>=0 ); 4471 assert( nExtra>=1 ); 4472 assert( pSrc!=0 ); 4473 assert( iStart<=pSrc->nSrc ); 4474 4475 /* Allocate additional space if needed */ 4476 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4477 SrcList *pNew; 4478 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4479 sqlite3 *db = pParse->db; 4480 4481 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4482 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4483 SQLITE_MAX_SRCLIST); 4484 return 0; 4485 } 4486 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4487 pNew = sqlite3DbRealloc(db, pSrc, 4488 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4489 if( pNew==0 ){ 4490 assert( db->mallocFailed ); 4491 return 0; 4492 } 4493 pSrc = pNew; 4494 pSrc->nAlloc = nAlloc; 4495 } 4496 4497 /* Move existing slots that come after the newly inserted slots 4498 ** out of the way */ 4499 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4500 pSrc->a[i+nExtra] = pSrc->a[i]; 4501 } 4502 pSrc->nSrc += nExtra; 4503 4504 /* Zero the newly allocated slots */ 4505 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4506 for(i=iStart; i<iStart+nExtra; i++){ 4507 pSrc->a[i].iCursor = -1; 4508 } 4509 4510 /* Return a pointer to the enlarged SrcList */ 4511 return pSrc; 4512 } 4513 4514 4515 /* 4516 ** Append a new table name to the given SrcList. Create a new SrcList if 4517 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4518 ** 4519 ** A SrcList is returned, or NULL if there is an OOM error or if the 4520 ** SrcList grows to large. The returned 4521 ** SrcList might be the same as the SrcList that was input or it might be 4522 ** a new one. If an OOM error does occurs, then the prior value of pList 4523 ** that is input to this routine is automatically freed. 4524 ** 4525 ** If pDatabase is not null, it means that the table has an optional 4526 ** database name prefix. Like this: "database.table". The pDatabase 4527 ** points to the table name and the pTable points to the database name. 4528 ** The SrcList.a[].zName field is filled with the table name which might 4529 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4530 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4531 ** or with NULL if no database is specified. 4532 ** 4533 ** In other words, if call like this: 4534 ** 4535 ** sqlite3SrcListAppend(D,A,B,0); 4536 ** 4537 ** Then B is a table name and the database name is unspecified. If called 4538 ** like this: 4539 ** 4540 ** sqlite3SrcListAppend(D,A,B,C); 4541 ** 4542 ** Then C is the table name and B is the database name. If C is defined 4543 ** then so is B. In other words, we never have a case where: 4544 ** 4545 ** sqlite3SrcListAppend(D,A,0,C); 4546 ** 4547 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4548 ** before being added to the SrcList. 4549 */ 4550 SrcList *sqlite3SrcListAppend( 4551 Parse *pParse, /* Parsing context, in which errors are reported */ 4552 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4553 Token *pTable, /* Table to append */ 4554 Token *pDatabase /* Database of the table */ 4555 ){ 4556 SrcItem *pItem; 4557 sqlite3 *db; 4558 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4559 assert( pParse!=0 ); 4560 assert( pParse->db!=0 ); 4561 db = pParse->db; 4562 if( pList==0 ){ 4563 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4564 if( pList==0 ) return 0; 4565 pList->nAlloc = 1; 4566 pList->nSrc = 1; 4567 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4568 pList->a[0].iCursor = -1; 4569 }else{ 4570 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4571 if( pNew==0 ){ 4572 sqlite3SrcListDelete(db, pList); 4573 return 0; 4574 }else{ 4575 pList = pNew; 4576 } 4577 } 4578 pItem = &pList->a[pList->nSrc-1]; 4579 if( pDatabase && pDatabase->z==0 ){ 4580 pDatabase = 0; 4581 } 4582 if( pDatabase ){ 4583 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4584 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4585 }else{ 4586 pItem->zName = sqlite3NameFromToken(db, pTable); 4587 pItem->zDatabase = 0; 4588 } 4589 return pList; 4590 } 4591 4592 /* 4593 ** Assign VdbeCursor index numbers to all tables in a SrcList 4594 */ 4595 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4596 int i; 4597 SrcItem *pItem; 4598 assert( pList || pParse->db->mallocFailed ); 4599 if( ALWAYS(pList) ){ 4600 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4601 if( pItem->iCursor>=0 ) continue; 4602 pItem->iCursor = pParse->nTab++; 4603 if( pItem->pSelect ){ 4604 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4605 } 4606 } 4607 } 4608 } 4609 4610 /* 4611 ** Delete an entire SrcList including all its substructure. 4612 */ 4613 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4614 int i; 4615 SrcItem *pItem; 4616 if( pList==0 ) return; 4617 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4618 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4619 sqlite3DbFree(db, pItem->zName); 4620 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4621 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4622 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4623 sqlite3DeleteTable(db, pItem->pTab); 4624 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4625 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4626 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4627 } 4628 sqlite3DbFreeNN(db, pList); 4629 } 4630 4631 /* 4632 ** This routine is called by the parser to add a new term to the 4633 ** end of a growing FROM clause. The "p" parameter is the part of 4634 ** the FROM clause that has already been constructed. "p" is NULL 4635 ** if this is the first term of the FROM clause. pTable and pDatabase 4636 ** are the name of the table and database named in the FROM clause term. 4637 ** pDatabase is NULL if the database name qualifier is missing - the 4638 ** usual case. If the term has an alias, then pAlias points to the 4639 ** alias token. If the term is a subquery, then pSubquery is the 4640 ** SELECT statement that the subquery encodes. The pTable and 4641 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4642 ** parameters are the content of the ON and USING clauses. 4643 ** 4644 ** Return a new SrcList which encodes is the FROM with the new 4645 ** term added. 4646 */ 4647 SrcList *sqlite3SrcListAppendFromTerm( 4648 Parse *pParse, /* Parsing context */ 4649 SrcList *p, /* The left part of the FROM clause already seen */ 4650 Token *pTable, /* Name of the table to add to the FROM clause */ 4651 Token *pDatabase, /* Name of the database containing pTable */ 4652 Token *pAlias, /* The right-hand side of the AS subexpression */ 4653 Select *pSubquery, /* A subquery used in place of a table name */ 4654 Expr *pOn, /* The ON clause of a join */ 4655 IdList *pUsing /* The USING clause of a join */ 4656 ){ 4657 SrcItem *pItem; 4658 sqlite3 *db = pParse->db; 4659 if( !p && (pOn || pUsing) ){ 4660 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4661 (pOn ? "ON" : "USING") 4662 ); 4663 goto append_from_error; 4664 } 4665 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4666 if( p==0 ){ 4667 goto append_from_error; 4668 } 4669 assert( p->nSrc>0 ); 4670 pItem = &p->a[p->nSrc-1]; 4671 assert( (pTable==0)==(pDatabase==0) ); 4672 assert( pItem->zName==0 || pDatabase!=0 ); 4673 if( IN_RENAME_OBJECT && pItem->zName ){ 4674 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4675 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4676 } 4677 assert( pAlias!=0 ); 4678 if( pAlias->n ){ 4679 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4680 } 4681 pItem->pSelect = pSubquery; 4682 pItem->pOn = pOn; 4683 pItem->pUsing = pUsing; 4684 return p; 4685 4686 append_from_error: 4687 assert( p==0 ); 4688 sqlite3ExprDelete(db, pOn); 4689 sqlite3IdListDelete(db, pUsing); 4690 sqlite3SelectDelete(db, pSubquery); 4691 return 0; 4692 } 4693 4694 /* 4695 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4696 ** element of the source-list passed as the second argument. 4697 */ 4698 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4699 assert( pIndexedBy!=0 ); 4700 if( p && pIndexedBy->n>0 ){ 4701 SrcItem *pItem; 4702 assert( p->nSrc>0 ); 4703 pItem = &p->a[p->nSrc-1]; 4704 assert( pItem->fg.notIndexed==0 ); 4705 assert( pItem->fg.isIndexedBy==0 ); 4706 assert( pItem->fg.isTabFunc==0 ); 4707 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4708 /* A "NOT INDEXED" clause was supplied. See parse.y 4709 ** construct "indexed_opt" for details. */ 4710 pItem->fg.notIndexed = 1; 4711 }else{ 4712 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4713 pItem->fg.isIndexedBy = 1; 4714 } 4715 } 4716 } 4717 4718 /* 4719 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4720 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4721 ** are deleted by this function. 4722 */ 4723 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4724 assert( p1 && p1->nSrc==1 ); 4725 if( p2 ){ 4726 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4727 if( pNew==0 ){ 4728 sqlite3SrcListDelete(pParse->db, p2); 4729 }else{ 4730 p1 = pNew; 4731 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4732 sqlite3DbFree(pParse->db, p2); 4733 } 4734 } 4735 return p1; 4736 } 4737 4738 /* 4739 ** Add the list of function arguments to the SrcList entry for a 4740 ** table-valued-function. 4741 */ 4742 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4743 if( p ){ 4744 SrcItem *pItem = &p->a[p->nSrc-1]; 4745 assert( pItem->fg.notIndexed==0 ); 4746 assert( pItem->fg.isIndexedBy==0 ); 4747 assert( pItem->fg.isTabFunc==0 ); 4748 pItem->u1.pFuncArg = pList; 4749 pItem->fg.isTabFunc = 1; 4750 }else{ 4751 sqlite3ExprListDelete(pParse->db, pList); 4752 } 4753 } 4754 4755 /* 4756 ** When building up a FROM clause in the parser, the join operator 4757 ** is initially attached to the left operand. But the code generator 4758 ** expects the join operator to be on the right operand. This routine 4759 ** Shifts all join operators from left to right for an entire FROM 4760 ** clause. 4761 ** 4762 ** Example: Suppose the join is like this: 4763 ** 4764 ** A natural cross join B 4765 ** 4766 ** The operator is "natural cross join". The A and B operands are stored 4767 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4768 ** operator with A. This routine shifts that operator over to B. 4769 */ 4770 void sqlite3SrcListShiftJoinType(SrcList *p){ 4771 if( p ){ 4772 int i; 4773 for(i=p->nSrc-1; i>0; i--){ 4774 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4775 } 4776 p->a[0].fg.jointype = 0; 4777 } 4778 } 4779 4780 /* 4781 ** Generate VDBE code for a BEGIN statement. 4782 */ 4783 void sqlite3BeginTransaction(Parse *pParse, int type){ 4784 sqlite3 *db; 4785 Vdbe *v; 4786 int i; 4787 4788 assert( pParse!=0 ); 4789 db = pParse->db; 4790 assert( db!=0 ); 4791 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4792 return; 4793 } 4794 v = sqlite3GetVdbe(pParse); 4795 if( !v ) return; 4796 if( type!=TK_DEFERRED ){ 4797 for(i=0; i<db->nDb; i++){ 4798 int eTxnType; 4799 Btree *pBt = db->aDb[i].pBt; 4800 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4801 eTxnType = 0; /* Read txn */ 4802 }else if( type==TK_EXCLUSIVE ){ 4803 eTxnType = 2; /* Exclusive txn */ 4804 }else{ 4805 eTxnType = 1; /* Write txn */ 4806 } 4807 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4808 sqlite3VdbeUsesBtree(v, i); 4809 } 4810 } 4811 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4812 } 4813 4814 /* 4815 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4816 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4817 ** code is generated for a COMMIT. 4818 */ 4819 void sqlite3EndTransaction(Parse *pParse, int eType){ 4820 Vdbe *v; 4821 int isRollback; 4822 4823 assert( pParse!=0 ); 4824 assert( pParse->db!=0 ); 4825 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4826 isRollback = eType==TK_ROLLBACK; 4827 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4828 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4829 return; 4830 } 4831 v = sqlite3GetVdbe(pParse); 4832 if( v ){ 4833 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4834 } 4835 } 4836 4837 /* 4838 ** This function is called by the parser when it parses a command to create, 4839 ** release or rollback an SQL savepoint. 4840 */ 4841 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4842 char *zName = sqlite3NameFromToken(pParse->db, pName); 4843 if( zName ){ 4844 Vdbe *v = sqlite3GetVdbe(pParse); 4845 #ifndef SQLITE_OMIT_AUTHORIZATION 4846 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4847 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4848 #endif 4849 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4850 sqlite3DbFree(pParse->db, zName); 4851 return; 4852 } 4853 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4854 } 4855 } 4856 4857 /* 4858 ** Make sure the TEMP database is open and available for use. Return 4859 ** the number of errors. Leave any error messages in the pParse structure. 4860 */ 4861 int sqlite3OpenTempDatabase(Parse *pParse){ 4862 sqlite3 *db = pParse->db; 4863 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4864 int rc; 4865 Btree *pBt; 4866 static const int flags = 4867 SQLITE_OPEN_READWRITE | 4868 SQLITE_OPEN_CREATE | 4869 SQLITE_OPEN_EXCLUSIVE | 4870 SQLITE_OPEN_DELETEONCLOSE | 4871 SQLITE_OPEN_TEMP_DB; 4872 4873 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4874 if( rc!=SQLITE_OK ){ 4875 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4876 "file for storing temporary tables"); 4877 pParse->rc = rc; 4878 return 1; 4879 } 4880 db->aDb[1].pBt = pBt; 4881 assert( db->aDb[1].pSchema ); 4882 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4883 sqlite3OomFault(db); 4884 return 1; 4885 } 4886 } 4887 return 0; 4888 } 4889 4890 /* 4891 ** Record the fact that the schema cookie will need to be verified 4892 ** for database iDb. The code to actually verify the schema cookie 4893 ** will occur at the end of the top-level VDBE and will be generated 4894 ** later, by sqlite3FinishCoding(). 4895 */ 4896 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4897 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4898 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4899 assert( iDb<SQLITE_MAX_DB ); 4900 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4901 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4902 DbMaskSet(pToplevel->cookieMask, iDb); 4903 if( !OMIT_TEMPDB && iDb==1 ){ 4904 sqlite3OpenTempDatabase(pToplevel); 4905 } 4906 } 4907 } 4908 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4909 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4910 } 4911 4912 4913 /* 4914 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4915 ** attached database. Otherwise, invoke it for the database named zDb only. 4916 */ 4917 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4918 sqlite3 *db = pParse->db; 4919 int i; 4920 for(i=0; i<db->nDb; i++){ 4921 Db *pDb = &db->aDb[i]; 4922 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4923 sqlite3CodeVerifySchema(pParse, i); 4924 } 4925 } 4926 } 4927 4928 /* 4929 ** Generate VDBE code that prepares for doing an operation that 4930 ** might change the database. 4931 ** 4932 ** This routine starts a new transaction if we are not already within 4933 ** a transaction. If we are already within a transaction, then a checkpoint 4934 ** is set if the setStatement parameter is true. A checkpoint should 4935 ** be set for operations that might fail (due to a constraint) part of 4936 ** the way through and which will need to undo some writes without having to 4937 ** rollback the whole transaction. For operations where all constraints 4938 ** can be checked before any changes are made to the database, it is never 4939 ** necessary to undo a write and the checkpoint should not be set. 4940 */ 4941 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4942 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4943 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4944 DbMaskSet(pToplevel->writeMask, iDb); 4945 pToplevel->isMultiWrite |= setStatement; 4946 } 4947 4948 /* 4949 ** Indicate that the statement currently under construction might write 4950 ** more than one entry (example: deleting one row then inserting another, 4951 ** inserting multiple rows in a table, or inserting a row and index entries.) 4952 ** If an abort occurs after some of these writes have completed, then it will 4953 ** be necessary to undo the completed writes. 4954 */ 4955 void sqlite3MultiWrite(Parse *pParse){ 4956 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4957 pToplevel->isMultiWrite = 1; 4958 } 4959 4960 /* 4961 ** The code generator calls this routine if is discovers that it is 4962 ** possible to abort a statement prior to completion. In order to 4963 ** perform this abort without corrupting the database, we need to make 4964 ** sure that the statement is protected by a statement transaction. 4965 ** 4966 ** Technically, we only need to set the mayAbort flag if the 4967 ** isMultiWrite flag was previously set. There is a time dependency 4968 ** such that the abort must occur after the multiwrite. This makes 4969 ** some statements involving the REPLACE conflict resolution algorithm 4970 ** go a little faster. But taking advantage of this time dependency 4971 ** makes it more difficult to prove that the code is correct (in 4972 ** particular, it prevents us from writing an effective 4973 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4974 ** to take the safe route and skip the optimization. 4975 */ 4976 void sqlite3MayAbort(Parse *pParse){ 4977 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4978 pToplevel->mayAbort = 1; 4979 } 4980 4981 /* 4982 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4983 ** error. The onError parameter determines which (if any) of the statement 4984 ** and/or current transaction is rolled back. 4985 */ 4986 void sqlite3HaltConstraint( 4987 Parse *pParse, /* Parsing context */ 4988 int errCode, /* extended error code */ 4989 int onError, /* Constraint type */ 4990 char *p4, /* Error message */ 4991 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4992 u8 p5Errmsg /* P5_ErrMsg type */ 4993 ){ 4994 Vdbe *v; 4995 assert( pParse->pVdbe!=0 ); 4996 v = sqlite3GetVdbe(pParse); 4997 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4998 if( onError==OE_Abort ){ 4999 sqlite3MayAbort(pParse); 5000 } 5001 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5002 sqlite3VdbeChangeP5(v, p5Errmsg); 5003 } 5004 5005 /* 5006 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5007 */ 5008 void sqlite3UniqueConstraint( 5009 Parse *pParse, /* Parsing context */ 5010 int onError, /* Constraint type */ 5011 Index *pIdx /* The index that triggers the constraint */ 5012 ){ 5013 char *zErr; 5014 int j; 5015 StrAccum errMsg; 5016 Table *pTab = pIdx->pTable; 5017 5018 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5019 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5020 if( pIdx->aColExpr ){ 5021 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5022 }else{ 5023 for(j=0; j<pIdx->nKeyCol; j++){ 5024 char *zCol; 5025 assert( pIdx->aiColumn[j]>=0 ); 5026 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 5027 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5028 sqlite3_str_appendall(&errMsg, pTab->zName); 5029 sqlite3_str_append(&errMsg, ".", 1); 5030 sqlite3_str_appendall(&errMsg, zCol); 5031 } 5032 } 5033 zErr = sqlite3StrAccumFinish(&errMsg); 5034 sqlite3HaltConstraint(pParse, 5035 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5036 : SQLITE_CONSTRAINT_UNIQUE, 5037 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5038 } 5039 5040 5041 /* 5042 ** Code an OP_Halt due to non-unique rowid. 5043 */ 5044 void sqlite3RowidConstraint( 5045 Parse *pParse, /* Parsing context */ 5046 int onError, /* Conflict resolution algorithm */ 5047 Table *pTab /* The table with the non-unique rowid */ 5048 ){ 5049 char *zMsg; 5050 int rc; 5051 if( pTab->iPKey>=0 ){ 5052 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5053 pTab->aCol[pTab->iPKey].zName); 5054 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5055 }else{ 5056 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5057 rc = SQLITE_CONSTRAINT_ROWID; 5058 } 5059 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5060 P5_ConstraintUnique); 5061 } 5062 5063 /* 5064 ** Check to see if pIndex uses the collating sequence pColl. Return 5065 ** true if it does and false if it does not. 5066 */ 5067 #ifndef SQLITE_OMIT_REINDEX 5068 static int collationMatch(const char *zColl, Index *pIndex){ 5069 int i; 5070 assert( zColl!=0 ); 5071 for(i=0; i<pIndex->nColumn; i++){ 5072 const char *z = pIndex->azColl[i]; 5073 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5074 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5075 return 1; 5076 } 5077 } 5078 return 0; 5079 } 5080 #endif 5081 5082 /* 5083 ** Recompute all indices of pTab that use the collating sequence pColl. 5084 ** If pColl==0 then recompute all indices of pTab. 5085 */ 5086 #ifndef SQLITE_OMIT_REINDEX 5087 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5088 if( !IsVirtual(pTab) ){ 5089 Index *pIndex; /* An index associated with pTab */ 5090 5091 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5092 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5093 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5094 sqlite3BeginWriteOperation(pParse, 0, iDb); 5095 sqlite3RefillIndex(pParse, pIndex, -1); 5096 } 5097 } 5098 } 5099 } 5100 #endif 5101 5102 /* 5103 ** Recompute all indices of all tables in all databases where the 5104 ** indices use the collating sequence pColl. If pColl==0 then recompute 5105 ** all indices everywhere. 5106 */ 5107 #ifndef SQLITE_OMIT_REINDEX 5108 static void reindexDatabases(Parse *pParse, char const *zColl){ 5109 Db *pDb; /* A single database */ 5110 int iDb; /* The database index number */ 5111 sqlite3 *db = pParse->db; /* The database connection */ 5112 HashElem *k; /* For looping over tables in pDb */ 5113 Table *pTab; /* A table in the database */ 5114 5115 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5116 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5117 assert( pDb!=0 ); 5118 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5119 pTab = (Table*)sqliteHashData(k); 5120 reindexTable(pParse, pTab, zColl); 5121 } 5122 } 5123 } 5124 #endif 5125 5126 /* 5127 ** Generate code for the REINDEX command. 5128 ** 5129 ** REINDEX -- 1 5130 ** REINDEX <collation> -- 2 5131 ** REINDEX ?<database>.?<tablename> -- 3 5132 ** REINDEX ?<database>.?<indexname> -- 4 5133 ** 5134 ** Form 1 causes all indices in all attached databases to be rebuilt. 5135 ** Form 2 rebuilds all indices in all databases that use the named 5136 ** collating function. Forms 3 and 4 rebuild the named index or all 5137 ** indices associated with the named table. 5138 */ 5139 #ifndef SQLITE_OMIT_REINDEX 5140 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5141 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5142 char *z; /* Name of a table or index */ 5143 const char *zDb; /* Name of the database */ 5144 Table *pTab; /* A table in the database */ 5145 Index *pIndex; /* An index associated with pTab */ 5146 int iDb; /* The database index number */ 5147 sqlite3 *db = pParse->db; /* The database connection */ 5148 Token *pObjName; /* Name of the table or index to be reindexed */ 5149 5150 /* Read the database schema. If an error occurs, leave an error message 5151 ** and code in pParse and return NULL. */ 5152 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5153 return; 5154 } 5155 5156 if( pName1==0 ){ 5157 reindexDatabases(pParse, 0); 5158 return; 5159 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5160 char *zColl; 5161 assert( pName1->z ); 5162 zColl = sqlite3NameFromToken(pParse->db, pName1); 5163 if( !zColl ) return; 5164 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5165 if( pColl ){ 5166 reindexDatabases(pParse, zColl); 5167 sqlite3DbFree(db, zColl); 5168 return; 5169 } 5170 sqlite3DbFree(db, zColl); 5171 } 5172 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5173 if( iDb<0 ) return; 5174 z = sqlite3NameFromToken(db, pObjName); 5175 if( z==0 ) return; 5176 zDb = db->aDb[iDb].zDbSName; 5177 pTab = sqlite3FindTable(db, z, zDb); 5178 if( pTab ){ 5179 reindexTable(pParse, pTab, 0); 5180 sqlite3DbFree(db, z); 5181 return; 5182 } 5183 pIndex = sqlite3FindIndex(db, z, zDb); 5184 sqlite3DbFree(db, z); 5185 if( pIndex ){ 5186 sqlite3BeginWriteOperation(pParse, 0, iDb); 5187 sqlite3RefillIndex(pParse, pIndex, -1); 5188 return; 5189 } 5190 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5191 } 5192 #endif 5193 5194 /* 5195 ** Return a KeyInfo structure that is appropriate for the given Index. 5196 ** 5197 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5198 ** when it has finished using it. 5199 */ 5200 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5201 int i; 5202 int nCol = pIdx->nColumn; 5203 int nKey = pIdx->nKeyCol; 5204 KeyInfo *pKey; 5205 if( pParse->nErr ) return 0; 5206 if( pIdx->uniqNotNull ){ 5207 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5208 }else{ 5209 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5210 } 5211 if( pKey ){ 5212 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5213 for(i=0; i<nCol; i++){ 5214 const char *zColl = pIdx->azColl[i]; 5215 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5216 sqlite3LocateCollSeq(pParse, zColl); 5217 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5218 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5219 } 5220 if( pParse->nErr ){ 5221 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5222 if( pIdx->bNoQuery==0 ){ 5223 /* Deactivate the index because it contains an unknown collating 5224 ** sequence. The only way to reactive the index is to reload the 5225 ** schema. Adding the missing collating sequence later does not 5226 ** reactive the index. The application had the chance to register 5227 ** the missing index using the collation-needed callback. For 5228 ** simplicity, SQLite will not give the application a second chance. 5229 */ 5230 pIdx->bNoQuery = 1; 5231 pParse->rc = SQLITE_ERROR_RETRY; 5232 } 5233 sqlite3KeyInfoUnref(pKey); 5234 pKey = 0; 5235 } 5236 } 5237 return pKey; 5238 } 5239 5240 #ifndef SQLITE_OMIT_CTE 5241 /* 5242 ** Create a new CTE object 5243 */ 5244 Cte *sqlite3CteNew( 5245 Parse *pParse, /* Parsing context */ 5246 Token *pName, /* Name of the common-table */ 5247 ExprList *pArglist, /* Optional column name list for the table */ 5248 Select *pQuery, /* Query used to initialize the table */ 5249 u8 eM10d /* The MATERIALIZED flag */ 5250 ){ 5251 Cte *pNew; 5252 sqlite3 *db = pParse->db; 5253 5254 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5255 assert( pNew!=0 || db->mallocFailed ); 5256 5257 if( db->mallocFailed ){ 5258 sqlite3ExprListDelete(db, pArglist); 5259 sqlite3SelectDelete(db, pQuery); 5260 }else{ 5261 pNew->pSelect = pQuery; 5262 pNew->pCols = pArglist; 5263 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5264 pNew->eM10d = eM10d; 5265 } 5266 return pNew; 5267 } 5268 5269 /* 5270 ** Clear information from a Cte object, but do not deallocate storage 5271 ** for the object itself. 5272 */ 5273 static void cteClear(sqlite3 *db, Cte *pCte){ 5274 assert( pCte!=0 ); 5275 sqlite3ExprListDelete(db, pCte->pCols); 5276 sqlite3SelectDelete(db, pCte->pSelect); 5277 sqlite3DbFree(db, pCte->zName); 5278 } 5279 5280 /* 5281 ** Free the contents of the CTE object passed as the second argument. 5282 */ 5283 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5284 assert( pCte!=0 ); 5285 cteClear(db, pCte); 5286 sqlite3DbFree(db, pCte); 5287 } 5288 5289 /* 5290 ** This routine is invoked once per CTE by the parser while parsing a 5291 ** WITH clause. The CTE described by teh third argument is added to 5292 ** the WITH clause of the second argument. If the second argument is 5293 ** NULL, then a new WITH argument is created. 5294 */ 5295 With *sqlite3WithAdd( 5296 Parse *pParse, /* Parsing context */ 5297 With *pWith, /* Existing WITH clause, or NULL */ 5298 Cte *pCte /* CTE to add to the WITH clause */ 5299 ){ 5300 sqlite3 *db = pParse->db; 5301 With *pNew; 5302 char *zName; 5303 5304 if( pCte==0 ){ 5305 return pWith; 5306 } 5307 5308 /* Check that the CTE name is unique within this WITH clause. If 5309 ** not, store an error in the Parse structure. */ 5310 zName = pCte->zName; 5311 if( zName && pWith ){ 5312 int i; 5313 for(i=0; i<pWith->nCte; i++){ 5314 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5315 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5316 } 5317 } 5318 } 5319 5320 if( pWith ){ 5321 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5322 pNew = sqlite3DbRealloc(db, pWith, nByte); 5323 }else{ 5324 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5325 } 5326 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5327 5328 if( db->mallocFailed ){ 5329 sqlite3CteDelete(db, pCte); 5330 pNew = pWith; 5331 }else{ 5332 pNew->a[pNew->nCte++] = *pCte; 5333 sqlite3DbFree(db, pCte); 5334 } 5335 5336 return pNew; 5337 } 5338 5339 /* 5340 ** Free the contents of the With object passed as the second argument. 5341 */ 5342 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5343 if( pWith ){ 5344 int i; 5345 for(i=0; i<pWith->nCte; i++){ 5346 cteClear(db, &pWith->a[i]); 5347 } 5348 sqlite3DbFree(db, pWith); 5349 } 5350 } 5351 #endif /* !defined(SQLITE_OMIT_CTE) */ 5352