1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 assert( pParse->pToplevel==0 ); 131 db = pParse->db; 132 if( db->mallocFailed ) return; 133 if( pParse->nested ) return; 134 if( pParse->nErr ) return; 135 136 /* Begin by generating some termination code at the end of the 137 ** vdbe program 138 */ 139 v = sqlite3GetVdbe(pParse); 140 assert( !pParse->isMultiWrite 141 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 142 if( v ){ 143 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 144 sqlite3VdbeAddOp0(v, OP_Halt); 145 146 /* The cookie mask contains one bit for each database file open. 147 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 148 ** set for each database that is used. Generate code to start a 149 ** transaction on each used database and to verify the schema cookie 150 ** on each used database. 151 */ 152 if( pParse->cookieGoto>0 ){ 153 yDbMask mask; 154 int iDb, i, addr; 155 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 156 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 157 if( (mask & pParse->cookieMask)==0 ) continue; 158 sqlite3VdbeUsesBtree(v, iDb); 159 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 160 if( db->init.busy==0 ){ 161 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 162 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 163 iDb, pParse->cookieValue[iDb], 164 db->aDb[iDb].pSchema->iGeneration); 165 } 166 } 167 #ifndef SQLITE_OMIT_VIRTUALTABLE 168 for(i=0; i<pParse->nVtabLock; i++){ 169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 171 } 172 pParse->nVtabLock = 0; 173 #endif 174 175 /* Once all the cookies have been verified and transactions opened, 176 ** obtain the required table-locks. This is a no-op unless the 177 ** shared-cache feature is enabled. 178 */ 179 codeTableLocks(pParse); 180 181 /* Initialize any AUTOINCREMENT data structures required. 182 */ 183 sqlite3AutoincrementBegin(pParse); 184 185 /* Code constant expressions that where factored out of inner loops */ 186 addr = pParse->cookieGoto; 187 if( pParse->pConstExpr ){ 188 ExprList *pEL = pParse->pConstExpr; 189 pParse->cookieGoto = 0; 190 for(i=0; i<pEL->nExpr; i++){ 191 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 192 } 193 } 194 195 /* Finally, jump back to the beginning of the executable code. */ 196 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 197 } 198 } 199 200 201 /* Get the VDBE program ready for execution 202 */ 203 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 204 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 205 /* A minimum of one cursor is required if autoincrement is used 206 * See ticket [a696379c1f08866] */ 207 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 208 sqlite3VdbeMakeReady(v, pParse); 209 pParse->rc = SQLITE_DONE; 210 pParse->colNamesSet = 0; 211 }else{ 212 pParse->rc = SQLITE_ERROR; 213 } 214 pParse->nTab = 0; 215 pParse->nMem = 0; 216 pParse->nSet = 0; 217 pParse->nVar = 0; 218 pParse->cookieMask = 0; 219 pParse->cookieGoto = 0; 220 } 221 222 /* 223 ** Run the parser and code generator recursively in order to generate 224 ** code for the SQL statement given onto the end of the pParse context 225 ** currently under construction. When the parser is run recursively 226 ** this way, the final OP_Halt is not appended and other initialization 227 ** and finalization steps are omitted because those are handling by the 228 ** outermost parser. 229 ** 230 ** Not everything is nestable. This facility is designed to permit 231 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 232 ** care if you decide to try to use this routine for some other purposes. 233 */ 234 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 235 va_list ap; 236 char *zSql; 237 char *zErrMsg = 0; 238 sqlite3 *db = pParse->db; 239 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 240 char saveBuf[SAVE_SZ]; 241 242 if( pParse->nErr ) return; 243 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 244 va_start(ap, zFormat); 245 zSql = sqlite3VMPrintf(db, zFormat, ap); 246 va_end(ap); 247 if( zSql==0 ){ 248 return; /* A malloc must have failed */ 249 } 250 pParse->nested++; 251 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 252 memset(&pParse->nVar, 0, SAVE_SZ); 253 sqlite3RunParser(pParse, zSql, &zErrMsg); 254 sqlite3DbFree(db, zErrMsg); 255 sqlite3DbFree(db, zSql); 256 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 257 pParse->nested--; 258 } 259 260 /* 261 ** Locate the in-memory structure that describes a particular database 262 ** table given the name of that table and (optionally) the name of the 263 ** database containing the table. Return NULL if not found. 264 ** 265 ** If zDatabase is 0, all databases are searched for the table and the 266 ** first matching table is returned. (No checking for duplicate table 267 ** names is done.) The search order is TEMP first, then MAIN, then any 268 ** auxiliary databases added using the ATTACH command. 269 ** 270 ** See also sqlite3LocateTable(). 271 */ 272 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 273 Table *p = 0; 274 int i; 275 int nName; 276 assert( zName!=0 ); 277 nName = sqlite3Strlen30(zName); 278 /* All mutexes are required for schema access. Make sure we hold them. */ 279 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 280 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 281 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 282 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 283 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 284 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 285 if( p ) break; 286 } 287 return p; 288 } 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. Also leave an 294 ** error message in pParse->zErrMsg. 295 ** 296 ** The difference between this routine and sqlite3FindTable() is that this 297 ** routine leaves an error message in pParse->zErrMsg where 298 ** sqlite3FindTable() does not. 299 */ 300 Table *sqlite3LocateTable( 301 Parse *pParse, /* context in which to report errors */ 302 int isView, /* True if looking for a VIEW rather than a TABLE */ 303 const char *zName, /* Name of the table we are looking for */ 304 const char *zDbase /* Name of the database. Might be NULL */ 305 ){ 306 Table *p; 307 308 /* Read the database schema. If an error occurs, leave an error message 309 ** and code in pParse and return NULL. */ 310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 311 return 0; 312 } 313 314 p = sqlite3FindTable(pParse->db, zName, zDbase); 315 if( p==0 ){ 316 const char *zMsg = isView ? "no such view" : "no such table"; 317 if( zDbase ){ 318 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 319 }else{ 320 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 321 } 322 pParse->checkSchema = 1; 323 } 324 return p; 325 } 326 327 /* 328 ** Locate the table identified by *p. 329 ** 330 ** This is a wrapper around sqlite3LocateTable(). The difference between 331 ** sqlite3LocateTable() and this function is that this function restricts 332 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 333 ** non-NULL if it is part of a view or trigger program definition. See 334 ** sqlite3FixSrcList() for details. 335 */ 336 Table *sqlite3LocateTableItem( 337 Parse *pParse, 338 int isView, 339 struct SrcList_item *p 340 ){ 341 const char *zDb; 342 assert( p->pSchema==0 || p->zDatabase==0 ); 343 if( p->pSchema ){ 344 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 345 zDb = pParse->db->aDb[iDb].zName; 346 }else{ 347 zDb = p->zDatabase; 348 } 349 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 350 } 351 352 /* 353 ** Locate the in-memory structure that describes 354 ** a particular index given the name of that index 355 ** and the name of the database that contains the index. 356 ** Return NULL if not found. 357 ** 358 ** If zDatabase is 0, all databases are searched for the 359 ** table and the first matching index is returned. (No checking 360 ** for duplicate index names is done.) The search order is 361 ** TEMP first, then MAIN, then any auxiliary databases added 362 ** using the ATTACH command. 363 */ 364 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 365 Index *p = 0; 366 int i; 367 int nName = sqlite3Strlen30(zName); 368 /* All mutexes are required for schema access. Make sure we hold them. */ 369 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 370 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 371 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 372 Schema *pSchema = db->aDb[j].pSchema; 373 assert( pSchema ); 374 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 375 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 376 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 377 if( p ) break; 378 } 379 return p; 380 } 381 382 /* 383 ** Reclaim the memory used by an index 384 */ 385 static void freeIndex(sqlite3 *db, Index *p){ 386 #ifndef SQLITE_OMIT_ANALYZE 387 sqlite3DeleteIndexSamples(db, p); 388 #endif 389 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); 390 sqlite3ExprDelete(db, p->pPartIdxWhere); 391 sqlite3DbFree(db, p->zColAff); 392 if( p->isResized ) sqlite3DbFree(db, p->azColl); 393 sqlite3DbFree(db, p); 394 } 395 396 /* 397 ** For the index called zIdxName which is found in the database iDb, 398 ** unlike that index from its Table then remove the index from 399 ** the index hash table and free all memory structures associated 400 ** with the index. 401 */ 402 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 403 Index *pIndex; 404 int len; 405 Hash *pHash; 406 407 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 408 pHash = &db->aDb[iDb].pSchema->idxHash; 409 len = sqlite3Strlen30(zIdxName); 410 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 411 if( ALWAYS(pIndex) ){ 412 if( pIndex->pTable->pIndex==pIndex ){ 413 pIndex->pTable->pIndex = pIndex->pNext; 414 }else{ 415 Index *p; 416 /* Justification of ALWAYS(); The index must be on the list of 417 ** indices. */ 418 p = pIndex->pTable->pIndex; 419 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 420 if( ALWAYS(p && p->pNext==pIndex) ){ 421 p->pNext = pIndex->pNext; 422 } 423 } 424 freeIndex(db, pIndex); 425 } 426 db->flags |= SQLITE_InternChanges; 427 } 428 429 /* 430 ** Look through the list of open database files in db->aDb[] and if 431 ** any have been closed, remove them from the list. Reallocate the 432 ** db->aDb[] structure to a smaller size, if possible. 433 ** 434 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 435 ** are never candidates for being collapsed. 436 */ 437 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 438 int i, j; 439 for(i=j=2; i<db->nDb; i++){ 440 struct Db *pDb = &db->aDb[i]; 441 if( pDb->pBt==0 ){ 442 sqlite3DbFree(db, pDb->zName); 443 pDb->zName = 0; 444 continue; 445 } 446 if( j<i ){ 447 db->aDb[j] = db->aDb[i]; 448 } 449 j++; 450 } 451 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 452 db->nDb = j; 453 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 454 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 455 sqlite3DbFree(db, db->aDb); 456 db->aDb = db->aDbStatic; 457 } 458 } 459 460 /* 461 ** Reset the schema for the database at index iDb. Also reset the 462 ** TEMP schema. 463 */ 464 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 465 Db *pDb; 466 assert( iDb<db->nDb ); 467 468 /* Case 1: Reset the single schema identified by iDb */ 469 pDb = &db->aDb[iDb]; 470 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 471 assert( pDb->pSchema!=0 ); 472 sqlite3SchemaClear(pDb->pSchema); 473 474 /* If any database other than TEMP is reset, then also reset TEMP 475 ** since TEMP might be holding triggers that reference tables in the 476 ** other database. 477 */ 478 if( iDb!=1 ){ 479 pDb = &db->aDb[1]; 480 assert( pDb->pSchema!=0 ); 481 sqlite3SchemaClear(pDb->pSchema); 482 } 483 return; 484 } 485 486 /* 487 ** Erase all schema information from all attached databases (including 488 ** "main" and "temp") for a single database connection. 489 */ 490 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 491 int i; 492 sqlite3BtreeEnterAll(db); 493 for(i=0; i<db->nDb; i++){ 494 Db *pDb = &db->aDb[i]; 495 if( pDb->pSchema ){ 496 sqlite3SchemaClear(pDb->pSchema); 497 } 498 } 499 db->flags &= ~SQLITE_InternChanges; 500 sqlite3VtabUnlockList(db); 501 sqlite3BtreeLeaveAll(db); 502 sqlite3CollapseDatabaseArray(db); 503 } 504 505 /* 506 ** This routine is called when a commit occurs. 507 */ 508 void sqlite3CommitInternalChanges(sqlite3 *db){ 509 db->flags &= ~SQLITE_InternChanges; 510 } 511 512 /* 513 ** Delete memory allocated for the column names of a table or view (the 514 ** Table.aCol[] array). 515 */ 516 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 517 int i; 518 Column *pCol; 519 assert( pTable!=0 ); 520 if( (pCol = pTable->aCol)!=0 ){ 521 for(i=0; i<pTable->nCol; i++, pCol++){ 522 sqlite3DbFree(db, pCol->zName); 523 sqlite3ExprDelete(db, pCol->pDflt); 524 sqlite3DbFree(db, pCol->zDflt); 525 sqlite3DbFree(db, pCol->zType); 526 sqlite3DbFree(db, pCol->zColl); 527 } 528 sqlite3DbFree(db, pTable->aCol); 529 } 530 } 531 532 /* 533 ** Remove the memory data structures associated with the given 534 ** Table. No changes are made to disk by this routine. 535 ** 536 ** This routine just deletes the data structure. It does not unlink 537 ** the table data structure from the hash table. But it does destroy 538 ** memory structures of the indices and foreign keys associated with 539 ** the table. 540 ** 541 ** The db parameter is optional. It is needed if the Table object 542 ** contains lookaside memory. (Table objects in the schema do not use 543 ** lookaside memory, but some ephemeral Table objects do.) Or the 544 ** db parameter can be used with db->pnBytesFreed to measure the memory 545 ** used by the Table object. 546 */ 547 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 548 Index *pIndex, *pNext; 549 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 550 551 assert( !pTable || pTable->nRef>0 ); 552 553 /* Do not delete the table until the reference count reaches zero. */ 554 if( !pTable ) return; 555 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 556 557 /* Record the number of outstanding lookaside allocations in schema Tables 558 ** prior to doing any free() operations. Since schema Tables do not use 559 ** lookaside, this number should not change. */ 560 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 561 db->lookaside.nOut : 0 ); 562 563 /* Delete all indices associated with this table. */ 564 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 565 pNext = pIndex->pNext; 566 assert( pIndex->pSchema==pTable->pSchema ); 567 if( !db || db->pnBytesFreed==0 ){ 568 char *zName = pIndex->zName; 569 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 570 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 571 ); 572 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 573 assert( pOld==pIndex || pOld==0 ); 574 } 575 freeIndex(db, pIndex); 576 } 577 578 /* Delete any foreign keys attached to this table. */ 579 sqlite3FkDelete(db, pTable); 580 581 /* Delete the Table structure itself. 582 */ 583 sqliteDeleteColumnNames(db, pTable); 584 sqlite3DbFree(db, pTable->zName); 585 sqlite3DbFree(db, pTable->zColAff); 586 sqlite3SelectDelete(db, pTable->pSelect); 587 #ifndef SQLITE_OMIT_CHECK 588 sqlite3ExprListDelete(db, pTable->pCheck); 589 #endif 590 #ifndef SQLITE_OMIT_VIRTUALTABLE 591 sqlite3VtabClear(db, pTable); 592 #endif 593 sqlite3DbFree(db, pTable); 594 595 /* Verify that no lookaside memory was used by schema tables */ 596 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 597 } 598 599 /* 600 ** Unlink the given table from the hash tables and the delete the 601 ** table structure with all its indices and foreign keys. 602 */ 603 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 604 Table *p; 605 Db *pDb; 606 607 assert( db!=0 ); 608 assert( iDb>=0 && iDb<db->nDb ); 609 assert( zTabName ); 610 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 611 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 612 pDb = &db->aDb[iDb]; 613 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 614 sqlite3Strlen30(zTabName),0); 615 sqlite3DeleteTable(db, p); 616 db->flags |= SQLITE_InternChanges; 617 } 618 619 /* 620 ** Given a token, return a string that consists of the text of that 621 ** token. Space to hold the returned string 622 ** is obtained from sqliteMalloc() and must be freed by the calling 623 ** function. 624 ** 625 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 626 ** surround the body of the token are removed. 627 ** 628 ** Tokens are often just pointers into the original SQL text and so 629 ** are not \000 terminated and are not persistent. The returned string 630 ** is \000 terminated and is persistent. 631 */ 632 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 633 char *zName; 634 if( pName ){ 635 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 636 sqlite3Dequote(zName); 637 }else{ 638 zName = 0; 639 } 640 return zName; 641 } 642 643 /* 644 ** Open the sqlite_master table stored in database number iDb for 645 ** writing. The table is opened using cursor 0. 646 */ 647 void sqlite3OpenMasterTable(Parse *p, int iDb){ 648 Vdbe *v = sqlite3GetVdbe(p); 649 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 650 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 651 if( p->nTab==0 ){ 652 p->nTab = 1; 653 } 654 } 655 656 /* 657 ** Parameter zName points to a nul-terminated buffer containing the name 658 ** of a database ("main", "temp" or the name of an attached db). This 659 ** function returns the index of the named database in db->aDb[], or 660 ** -1 if the named db cannot be found. 661 */ 662 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 663 int i = -1; /* Database number */ 664 if( zName ){ 665 Db *pDb; 666 int n = sqlite3Strlen30(zName); 667 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 668 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 669 0==sqlite3StrICmp(pDb->zName, zName) ){ 670 break; 671 } 672 } 673 } 674 return i; 675 } 676 677 /* 678 ** The token *pName contains the name of a database (either "main" or 679 ** "temp" or the name of an attached db). This routine returns the 680 ** index of the named database in db->aDb[], or -1 if the named db 681 ** does not exist. 682 */ 683 int sqlite3FindDb(sqlite3 *db, Token *pName){ 684 int i; /* Database number */ 685 char *zName; /* Name we are searching for */ 686 zName = sqlite3NameFromToken(db, pName); 687 i = sqlite3FindDbName(db, zName); 688 sqlite3DbFree(db, zName); 689 return i; 690 } 691 692 /* The table or view or trigger name is passed to this routine via tokens 693 ** pName1 and pName2. If the table name was fully qualified, for example: 694 ** 695 ** CREATE TABLE xxx.yyy (...); 696 ** 697 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 698 ** the table name is not fully qualified, i.e.: 699 ** 700 ** CREATE TABLE yyy(...); 701 ** 702 ** Then pName1 is set to "yyy" and pName2 is "". 703 ** 704 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 705 ** pName2) that stores the unqualified table name. The index of the 706 ** database "xxx" is returned. 707 */ 708 int sqlite3TwoPartName( 709 Parse *pParse, /* Parsing and code generating context */ 710 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 711 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 712 Token **pUnqual /* Write the unqualified object name here */ 713 ){ 714 int iDb; /* Database holding the object */ 715 sqlite3 *db = pParse->db; 716 717 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 718 if( db->init.busy ) { 719 sqlite3ErrorMsg(pParse, "corrupt database"); 720 pParse->nErr++; 721 return -1; 722 } 723 *pUnqual = pName2; 724 iDb = sqlite3FindDb(db, pName1); 725 if( iDb<0 ){ 726 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 727 pParse->nErr++; 728 return -1; 729 } 730 }else{ 731 assert( db->init.iDb==0 || db->init.busy ); 732 iDb = db->init.iDb; 733 *pUnqual = pName1; 734 } 735 return iDb; 736 } 737 738 /* 739 ** This routine is used to check if the UTF-8 string zName is a legal 740 ** unqualified name for a new schema object (table, index, view or 741 ** trigger). All names are legal except those that begin with the string 742 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 743 ** is reserved for internal use. 744 */ 745 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 746 if( !pParse->db->init.busy && pParse->nested==0 747 && (pParse->db->flags & SQLITE_WriteSchema)==0 748 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 749 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 750 return SQLITE_ERROR; 751 } 752 return SQLITE_OK; 753 } 754 755 /* 756 ** Return the PRIMARY KEY index of a table 757 */ 758 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 759 Index *p; 760 for(p=pTab->pIndex; p && p->autoIndex!=2; p=p->pNext){} 761 return p; 762 } 763 764 /* 765 ** Return the column of index pIdx that corresponds to table 766 ** column iCol. Return -1 if not found. 767 */ 768 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 769 int i; 770 for(i=0; i<pIdx->nColumn; i++){ 771 if( iCol==pIdx->aiColumn[i] ) return i; 772 } 773 return -1; 774 } 775 776 /* 777 ** Begin constructing a new table representation in memory. This is 778 ** the first of several action routines that get called in response 779 ** to a CREATE TABLE statement. In particular, this routine is called 780 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 781 ** flag is true if the table should be stored in the auxiliary database 782 ** file instead of in the main database file. This is normally the case 783 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 784 ** CREATE and TABLE. 785 ** 786 ** The new table record is initialized and put in pParse->pNewTable. 787 ** As more of the CREATE TABLE statement is parsed, additional action 788 ** routines will be called to add more information to this record. 789 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 790 ** is called to complete the construction of the new table record. 791 */ 792 void sqlite3StartTable( 793 Parse *pParse, /* Parser context */ 794 Token *pName1, /* First part of the name of the table or view */ 795 Token *pName2, /* Second part of the name of the table or view */ 796 int isTemp, /* True if this is a TEMP table */ 797 int isView, /* True if this is a VIEW */ 798 int isVirtual, /* True if this is a VIRTUAL table */ 799 int noErr /* Do nothing if table already exists */ 800 ){ 801 Table *pTable; 802 char *zName = 0; /* The name of the new table */ 803 sqlite3 *db = pParse->db; 804 Vdbe *v; 805 int iDb; /* Database number to create the table in */ 806 Token *pName; /* Unqualified name of the table to create */ 807 808 /* The table or view name to create is passed to this routine via tokens 809 ** pName1 and pName2. If the table name was fully qualified, for example: 810 ** 811 ** CREATE TABLE xxx.yyy (...); 812 ** 813 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 814 ** the table name is not fully qualified, i.e.: 815 ** 816 ** CREATE TABLE yyy(...); 817 ** 818 ** Then pName1 is set to "yyy" and pName2 is "". 819 ** 820 ** The call below sets the pName pointer to point at the token (pName1 or 821 ** pName2) that stores the unqualified table name. The variable iDb is 822 ** set to the index of the database that the table or view is to be 823 ** created in. 824 */ 825 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 826 if( iDb<0 ) return; 827 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 828 /* If creating a temp table, the name may not be qualified. Unless 829 ** the database name is "temp" anyway. */ 830 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 831 return; 832 } 833 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 834 835 pParse->sNameToken = *pName; 836 zName = sqlite3NameFromToken(db, pName); 837 if( zName==0 ) return; 838 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 839 goto begin_table_error; 840 } 841 if( db->init.iDb==1 ) isTemp = 1; 842 #ifndef SQLITE_OMIT_AUTHORIZATION 843 assert( (isTemp & 1)==isTemp ); 844 { 845 int code; 846 char *zDb = db->aDb[iDb].zName; 847 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 848 goto begin_table_error; 849 } 850 if( isView ){ 851 if( !OMIT_TEMPDB && isTemp ){ 852 code = SQLITE_CREATE_TEMP_VIEW; 853 }else{ 854 code = SQLITE_CREATE_VIEW; 855 } 856 }else{ 857 if( !OMIT_TEMPDB && isTemp ){ 858 code = SQLITE_CREATE_TEMP_TABLE; 859 }else{ 860 code = SQLITE_CREATE_TABLE; 861 } 862 } 863 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 864 goto begin_table_error; 865 } 866 } 867 #endif 868 869 /* Make sure the new table name does not collide with an existing 870 ** index or table name in the same database. Issue an error message if 871 ** it does. The exception is if the statement being parsed was passed 872 ** to an sqlite3_declare_vtab() call. In that case only the column names 873 ** and types will be used, so there is no need to test for namespace 874 ** collisions. 875 */ 876 if( !IN_DECLARE_VTAB ){ 877 char *zDb = db->aDb[iDb].zName; 878 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 879 goto begin_table_error; 880 } 881 pTable = sqlite3FindTable(db, zName, zDb); 882 if( pTable ){ 883 if( !noErr ){ 884 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 885 }else{ 886 assert( !db->init.busy ); 887 sqlite3CodeVerifySchema(pParse, iDb); 888 } 889 goto begin_table_error; 890 } 891 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 892 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 893 goto begin_table_error; 894 } 895 } 896 897 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 898 if( pTable==0 ){ 899 db->mallocFailed = 1; 900 pParse->rc = SQLITE_NOMEM; 901 pParse->nErr++; 902 goto begin_table_error; 903 } 904 pTable->zName = zName; 905 pTable->iPKey = -1; 906 pTable->pSchema = db->aDb[iDb].pSchema; 907 pTable->nRef = 1; 908 pTable->nRowEst = 1048576; 909 assert( pParse->pNewTable==0 ); 910 pParse->pNewTable = pTable; 911 912 /* If this is the magic sqlite_sequence table used by autoincrement, 913 ** then record a pointer to this table in the main database structure 914 ** so that INSERT can find the table easily. 915 */ 916 #ifndef SQLITE_OMIT_AUTOINCREMENT 917 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 918 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 919 pTable->pSchema->pSeqTab = pTable; 920 } 921 #endif 922 923 /* Begin generating the code that will insert the table record into 924 ** the SQLITE_MASTER table. Note in particular that we must go ahead 925 ** and allocate the record number for the table entry now. Before any 926 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 927 ** indices to be created and the table record must come before the 928 ** indices. Hence, the record number for the table must be allocated 929 ** now. 930 */ 931 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 932 int j1; 933 int fileFormat; 934 int reg1, reg2, reg3; 935 sqlite3BeginWriteOperation(pParse, 0, iDb); 936 937 #ifndef SQLITE_OMIT_VIRTUALTABLE 938 if( isVirtual ){ 939 sqlite3VdbeAddOp0(v, OP_VBegin); 940 } 941 #endif 942 943 /* If the file format and encoding in the database have not been set, 944 ** set them now. 945 */ 946 reg1 = pParse->regRowid = ++pParse->nMem; 947 reg2 = pParse->regRoot = ++pParse->nMem; 948 reg3 = ++pParse->nMem; 949 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 950 sqlite3VdbeUsesBtree(v, iDb); 951 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 952 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 953 1 : SQLITE_MAX_FILE_FORMAT; 954 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 955 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 956 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 957 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 958 sqlite3VdbeJumpHere(v, j1); 959 960 /* This just creates a place-holder record in the sqlite_master table. 961 ** The record created does not contain anything yet. It will be replaced 962 ** by the real entry in code generated at sqlite3EndTable(). 963 ** 964 ** The rowid for the new entry is left in register pParse->regRowid. 965 ** The root page number of the new table is left in reg pParse->regRoot. 966 ** The rowid and root page number values are needed by the code that 967 ** sqlite3EndTable will generate. 968 */ 969 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 970 if( isView || isVirtual ){ 971 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 972 }else 973 #endif 974 { 975 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 976 } 977 sqlite3OpenMasterTable(pParse, iDb); 978 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 979 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 980 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 981 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 982 sqlite3VdbeAddOp0(v, OP_Close); 983 } 984 985 /* Normal (non-error) return. */ 986 return; 987 988 /* If an error occurs, we jump here */ 989 begin_table_error: 990 sqlite3DbFree(db, zName); 991 return; 992 } 993 994 /* 995 ** This macro is used to compare two strings in a case-insensitive manner. 996 ** It is slightly faster than calling sqlite3StrICmp() directly, but 997 ** produces larger code. 998 ** 999 ** WARNING: This macro is not compatible with the strcmp() family. It 1000 ** returns true if the two strings are equal, otherwise false. 1001 */ 1002 #define STRICMP(x, y) (\ 1003 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1004 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1005 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1006 1007 /* 1008 ** Add a new column to the table currently being constructed. 1009 ** 1010 ** The parser calls this routine once for each column declaration 1011 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1012 ** first to get things going. Then this routine is called for each 1013 ** column. 1014 */ 1015 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1016 Table *p; 1017 int i; 1018 char *z; 1019 Column *pCol; 1020 sqlite3 *db = pParse->db; 1021 if( (p = pParse->pNewTable)==0 ) return; 1022 #if SQLITE_MAX_COLUMN 1023 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1024 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1025 return; 1026 } 1027 #endif 1028 z = sqlite3NameFromToken(db, pName); 1029 if( z==0 ) return; 1030 for(i=0; i<p->nCol; i++){ 1031 if( STRICMP(z, p->aCol[i].zName) ){ 1032 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1033 sqlite3DbFree(db, z); 1034 return; 1035 } 1036 } 1037 if( (p->nCol & 0x7)==0 ){ 1038 Column *aNew; 1039 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1040 if( aNew==0 ){ 1041 sqlite3DbFree(db, z); 1042 return; 1043 } 1044 p->aCol = aNew; 1045 } 1046 pCol = &p->aCol[p->nCol]; 1047 memset(pCol, 0, sizeof(p->aCol[0])); 1048 pCol->zName = z; 1049 1050 /* If there is no type specified, columns have the default affinity 1051 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1052 ** be called next to set pCol->affinity correctly. 1053 */ 1054 pCol->affinity = SQLITE_AFF_NONE; 1055 pCol->szEst = 1; 1056 p->nCol++; 1057 } 1058 1059 /* 1060 ** This routine is called by the parser while in the middle of 1061 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1062 ** been seen on a column. This routine sets the notNull flag on 1063 ** the column currently under construction. 1064 */ 1065 void sqlite3AddNotNull(Parse *pParse, int onError){ 1066 Table *p; 1067 p = pParse->pNewTable; 1068 if( p==0 || NEVER(p->nCol<1) ) return; 1069 p->aCol[p->nCol-1].notNull = (u8)onError; 1070 } 1071 1072 /* 1073 ** Scan the column type name zType (length nType) and return the 1074 ** associated affinity type. 1075 ** 1076 ** This routine does a case-independent search of zType for the 1077 ** substrings in the following table. If one of the substrings is 1078 ** found, the corresponding affinity is returned. If zType contains 1079 ** more than one of the substrings, entries toward the top of 1080 ** the table take priority. For example, if zType is 'BLOBINT', 1081 ** SQLITE_AFF_INTEGER is returned. 1082 ** 1083 ** Substring | Affinity 1084 ** -------------------------------- 1085 ** 'INT' | SQLITE_AFF_INTEGER 1086 ** 'CHAR' | SQLITE_AFF_TEXT 1087 ** 'CLOB' | SQLITE_AFF_TEXT 1088 ** 'TEXT' | SQLITE_AFF_TEXT 1089 ** 'BLOB' | SQLITE_AFF_NONE 1090 ** 'REAL' | SQLITE_AFF_REAL 1091 ** 'FLOA' | SQLITE_AFF_REAL 1092 ** 'DOUB' | SQLITE_AFF_REAL 1093 ** 1094 ** If none of the substrings in the above table are found, 1095 ** SQLITE_AFF_NUMERIC is returned. 1096 */ 1097 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1098 u32 h = 0; 1099 char aff = SQLITE_AFF_NUMERIC; 1100 const char *zChar = 0; 1101 1102 if( zIn==0 ) return aff; 1103 while( zIn[0] ){ 1104 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1105 zIn++; 1106 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1107 aff = SQLITE_AFF_TEXT; 1108 zChar = zIn; 1109 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1110 aff = SQLITE_AFF_TEXT; 1111 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1112 aff = SQLITE_AFF_TEXT; 1113 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1114 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1115 aff = SQLITE_AFF_NONE; 1116 if( zIn[0]=='(' ) zChar = zIn; 1117 #ifndef SQLITE_OMIT_FLOATING_POINT 1118 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1119 && aff==SQLITE_AFF_NUMERIC ){ 1120 aff = SQLITE_AFF_REAL; 1121 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1122 && aff==SQLITE_AFF_NUMERIC ){ 1123 aff = SQLITE_AFF_REAL; 1124 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1125 && aff==SQLITE_AFF_NUMERIC ){ 1126 aff = SQLITE_AFF_REAL; 1127 #endif 1128 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1129 aff = SQLITE_AFF_INTEGER; 1130 break; 1131 } 1132 } 1133 1134 /* If pszEst is not NULL, store an estimate of the field size. The 1135 ** estimate is scaled so that the size of an integer is 1. */ 1136 if( pszEst ){ 1137 *pszEst = 1; /* default size is approx 4 bytes */ 1138 if( aff<=SQLITE_AFF_NONE ){ 1139 if( zChar ){ 1140 while( zChar[0] ){ 1141 if( sqlite3Isdigit(zChar[0]) ){ 1142 int v = 0; 1143 sqlite3GetInt32(zChar, &v); 1144 v = v/4 + 1; 1145 if( v>255 ) v = 255; 1146 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1147 break; 1148 } 1149 zChar++; 1150 } 1151 }else{ 1152 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1153 } 1154 } 1155 } 1156 return aff; 1157 } 1158 1159 /* 1160 ** This routine is called by the parser while in the middle of 1161 ** parsing a CREATE TABLE statement. The pFirst token is the first 1162 ** token in the sequence of tokens that describe the type of the 1163 ** column currently under construction. pLast is the last token 1164 ** in the sequence. Use this information to construct a string 1165 ** that contains the typename of the column and store that string 1166 ** in zType. 1167 */ 1168 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1169 Table *p; 1170 Column *pCol; 1171 1172 p = pParse->pNewTable; 1173 if( p==0 || NEVER(p->nCol<1) ) return; 1174 pCol = &p->aCol[p->nCol-1]; 1175 assert( pCol->zType==0 ); 1176 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1177 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1178 } 1179 1180 /* 1181 ** The expression is the default value for the most recently added column 1182 ** of the table currently under construction. 1183 ** 1184 ** Default value expressions must be constant. Raise an exception if this 1185 ** is not the case. 1186 ** 1187 ** This routine is called by the parser while in the middle of 1188 ** parsing a CREATE TABLE statement. 1189 */ 1190 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1191 Table *p; 1192 Column *pCol; 1193 sqlite3 *db = pParse->db; 1194 p = pParse->pNewTable; 1195 if( p!=0 ){ 1196 pCol = &(p->aCol[p->nCol-1]); 1197 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1198 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1199 pCol->zName); 1200 }else{ 1201 /* A copy of pExpr is used instead of the original, as pExpr contains 1202 ** tokens that point to volatile memory. The 'span' of the expression 1203 ** is required by pragma table_info. 1204 */ 1205 sqlite3ExprDelete(db, pCol->pDflt); 1206 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1207 sqlite3DbFree(db, pCol->zDflt); 1208 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1209 (int)(pSpan->zEnd - pSpan->zStart)); 1210 } 1211 } 1212 sqlite3ExprDelete(db, pSpan->pExpr); 1213 } 1214 1215 /* 1216 ** Designate the PRIMARY KEY for the table. pList is a list of names 1217 ** of columns that form the primary key. If pList is NULL, then the 1218 ** most recently added column of the table is the primary key. 1219 ** 1220 ** A table can have at most one primary key. If the table already has 1221 ** a primary key (and this is the second primary key) then create an 1222 ** error. 1223 ** 1224 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1225 ** then we will try to use that column as the rowid. Set the Table.iPKey 1226 ** field of the table under construction to be the index of the 1227 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1228 ** no INTEGER PRIMARY KEY. 1229 ** 1230 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1231 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1232 */ 1233 void sqlite3AddPrimaryKey( 1234 Parse *pParse, /* Parsing context */ 1235 ExprList *pList, /* List of field names to be indexed */ 1236 int onError, /* What to do with a uniqueness conflict */ 1237 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1238 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1239 ){ 1240 Table *pTab = pParse->pNewTable; 1241 char *zType = 0; 1242 int iCol = -1, i; 1243 int nTerm; 1244 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1245 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1246 sqlite3ErrorMsg(pParse, 1247 "table \"%s\" has more than one primary key", pTab->zName); 1248 goto primary_key_exit; 1249 } 1250 pTab->tabFlags |= TF_HasPrimaryKey; 1251 if( pList==0 ){ 1252 iCol = pTab->nCol - 1; 1253 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1254 zType = pTab->aCol[iCol].zType; 1255 nTerm = 1; 1256 }else{ 1257 nTerm = pList->nExpr; 1258 for(i=0; i<nTerm; i++){ 1259 for(iCol=0; iCol<pTab->nCol; iCol++){ 1260 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1261 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1262 zType = pTab->aCol[iCol].zType; 1263 break; 1264 } 1265 } 1266 } 1267 } 1268 if( nTerm==1 1269 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1270 && sortOrder==SQLITE_SO_ASC 1271 ){ 1272 pTab->iPKey = iCol; 1273 pTab->keyConf = (u8)onError; 1274 assert( autoInc==0 || autoInc==1 ); 1275 pTab->tabFlags |= autoInc*TF_Autoincrement; 1276 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1277 }else if( autoInc ){ 1278 #ifndef SQLITE_OMIT_AUTOINCREMENT 1279 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1280 "INTEGER PRIMARY KEY"); 1281 #endif 1282 }else{ 1283 Vdbe *v = pParse->pVdbe; 1284 Index *p; 1285 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1286 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1287 0, sortOrder, 0); 1288 if( p ){ 1289 p->autoIndex = 2; 1290 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1291 } 1292 pList = 0; 1293 } 1294 1295 primary_key_exit: 1296 sqlite3ExprListDelete(pParse->db, pList); 1297 return; 1298 } 1299 1300 /* 1301 ** Add a new CHECK constraint to the table currently under construction. 1302 */ 1303 void sqlite3AddCheckConstraint( 1304 Parse *pParse, /* Parsing context */ 1305 Expr *pCheckExpr /* The check expression */ 1306 ){ 1307 #ifndef SQLITE_OMIT_CHECK 1308 Table *pTab = pParse->pNewTable; 1309 if( pTab && !IN_DECLARE_VTAB ){ 1310 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1311 if( pParse->constraintName.n ){ 1312 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1313 } 1314 }else 1315 #endif 1316 { 1317 sqlite3ExprDelete(pParse->db, pCheckExpr); 1318 } 1319 } 1320 1321 /* 1322 ** Set the collation function of the most recently parsed table column 1323 ** to the CollSeq given. 1324 */ 1325 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1326 Table *p; 1327 int i; 1328 char *zColl; /* Dequoted name of collation sequence */ 1329 sqlite3 *db; 1330 1331 if( (p = pParse->pNewTable)==0 ) return; 1332 i = p->nCol-1; 1333 db = pParse->db; 1334 zColl = sqlite3NameFromToken(db, pToken); 1335 if( !zColl ) return; 1336 1337 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1338 Index *pIdx; 1339 sqlite3DbFree(db, p->aCol[i].zColl); 1340 p->aCol[i].zColl = zColl; 1341 1342 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1343 ** then an index may have been created on this column before the 1344 ** collation type was added. Correct this if it is the case. 1345 */ 1346 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1347 assert( pIdx->nKeyCol==1 ); 1348 if( pIdx->aiColumn[0]==i ){ 1349 pIdx->azColl[0] = p->aCol[i].zColl; 1350 } 1351 } 1352 }else{ 1353 sqlite3DbFree(db, zColl); 1354 } 1355 } 1356 1357 /* 1358 ** This function returns the collation sequence for database native text 1359 ** encoding identified by the string zName, length nName. 1360 ** 1361 ** If the requested collation sequence is not available, or not available 1362 ** in the database native encoding, the collation factory is invoked to 1363 ** request it. If the collation factory does not supply such a sequence, 1364 ** and the sequence is available in another text encoding, then that is 1365 ** returned instead. 1366 ** 1367 ** If no versions of the requested collations sequence are available, or 1368 ** another error occurs, NULL is returned and an error message written into 1369 ** pParse. 1370 ** 1371 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1372 ** invokes the collation factory if the named collation cannot be found 1373 ** and generates an error message. 1374 ** 1375 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1376 */ 1377 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1378 sqlite3 *db = pParse->db; 1379 u8 enc = ENC(db); 1380 u8 initbusy = db->init.busy; 1381 CollSeq *pColl; 1382 1383 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1384 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1385 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1386 } 1387 1388 return pColl; 1389 } 1390 1391 1392 /* 1393 ** Generate code that will increment the schema cookie. 1394 ** 1395 ** The schema cookie is used to determine when the schema for the 1396 ** database changes. After each schema change, the cookie value 1397 ** changes. When a process first reads the schema it records the 1398 ** cookie. Thereafter, whenever it goes to access the database, 1399 ** it checks the cookie to make sure the schema has not changed 1400 ** since it was last read. 1401 ** 1402 ** This plan is not completely bullet-proof. It is possible for 1403 ** the schema to change multiple times and for the cookie to be 1404 ** set back to prior value. But schema changes are infrequent 1405 ** and the probability of hitting the same cookie value is only 1406 ** 1 chance in 2^32. So we're safe enough. 1407 */ 1408 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1409 int r1 = sqlite3GetTempReg(pParse); 1410 sqlite3 *db = pParse->db; 1411 Vdbe *v = pParse->pVdbe; 1412 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1413 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1414 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1415 sqlite3ReleaseTempReg(pParse, r1); 1416 } 1417 1418 /* 1419 ** Measure the number of characters needed to output the given 1420 ** identifier. The number returned includes any quotes used 1421 ** but does not include the null terminator. 1422 ** 1423 ** The estimate is conservative. It might be larger that what is 1424 ** really needed. 1425 */ 1426 static int identLength(const char *z){ 1427 int n; 1428 for(n=0; *z; n++, z++){ 1429 if( *z=='"' ){ n++; } 1430 } 1431 return n + 2; 1432 } 1433 1434 /* 1435 ** The first parameter is a pointer to an output buffer. The second 1436 ** parameter is a pointer to an integer that contains the offset at 1437 ** which to write into the output buffer. This function copies the 1438 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1439 ** to the specified offset in the buffer and updates *pIdx to refer 1440 ** to the first byte after the last byte written before returning. 1441 ** 1442 ** If the string zSignedIdent consists entirely of alpha-numeric 1443 ** characters, does not begin with a digit and is not an SQL keyword, 1444 ** then it is copied to the output buffer exactly as it is. Otherwise, 1445 ** it is quoted using double-quotes. 1446 */ 1447 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1448 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1449 int i, j, needQuote; 1450 i = *pIdx; 1451 1452 for(j=0; zIdent[j]; j++){ 1453 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1454 } 1455 needQuote = sqlite3Isdigit(zIdent[0]) 1456 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1457 || zIdent[j]!=0 1458 || j==0; 1459 1460 if( needQuote ) z[i++] = '"'; 1461 for(j=0; zIdent[j]; j++){ 1462 z[i++] = zIdent[j]; 1463 if( zIdent[j]=='"' ) z[i++] = '"'; 1464 } 1465 if( needQuote ) z[i++] = '"'; 1466 z[i] = 0; 1467 *pIdx = i; 1468 } 1469 1470 /* 1471 ** Generate a CREATE TABLE statement appropriate for the given 1472 ** table. Memory to hold the text of the statement is obtained 1473 ** from sqliteMalloc() and must be freed by the calling function. 1474 */ 1475 static char *createTableStmt(sqlite3 *db, Table *p){ 1476 int i, k, n; 1477 char *zStmt; 1478 char *zSep, *zSep2, *zEnd; 1479 Column *pCol; 1480 n = 0; 1481 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1482 n += identLength(pCol->zName) + 5; 1483 } 1484 n += identLength(p->zName); 1485 if( n<50 ){ 1486 zSep = ""; 1487 zSep2 = ","; 1488 zEnd = ")"; 1489 }else{ 1490 zSep = "\n "; 1491 zSep2 = ",\n "; 1492 zEnd = "\n)"; 1493 } 1494 n += 35 + 6*p->nCol; 1495 zStmt = sqlite3DbMallocRaw(0, n); 1496 if( zStmt==0 ){ 1497 db->mallocFailed = 1; 1498 return 0; 1499 } 1500 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1501 k = sqlite3Strlen30(zStmt); 1502 identPut(zStmt, &k, p->zName); 1503 zStmt[k++] = '('; 1504 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1505 static const char * const azType[] = { 1506 /* SQLITE_AFF_TEXT */ " TEXT", 1507 /* SQLITE_AFF_NONE */ "", 1508 /* SQLITE_AFF_NUMERIC */ " NUM", 1509 /* SQLITE_AFF_INTEGER */ " INT", 1510 /* SQLITE_AFF_REAL */ " REAL" 1511 }; 1512 int len; 1513 const char *zType; 1514 1515 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1516 k += sqlite3Strlen30(&zStmt[k]); 1517 zSep = zSep2; 1518 identPut(zStmt, &k, pCol->zName); 1519 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1520 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1521 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1522 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1523 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1524 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1525 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1526 1527 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1528 len = sqlite3Strlen30(zType); 1529 assert( pCol->affinity==SQLITE_AFF_NONE 1530 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1531 memcpy(&zStmt[k], zType, len); 1532 k += len; 1533 assert( k<=n ); 1534 } 1535 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1536 return zStmt; 1537 } 1538 1539 /* 1540 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1541 ** on success and SQLITE_NOMEM on an OOM error. 1542 */ 1543 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1544 char *zExtra; 1545 int nByte; 1546 if( pIdx->nColumn>=N ) return SQLITE_OK; 1547 assert( pIdx->isResized==0 ); 1548 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1549 zExtra = sqlite3DbMallocZero(db, nByte); 1550 if( zExtra==0 ) return SQLITE_NOMEM; 1551 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1552 pIdx->azColl = (char**)zExtra; 1553 zExtra += sizeof(char*)*N; 1554 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1555 pIdx->aiColumn = (i16*)zExtra; 1556 zExtra += sizeof(i16)*N; 1557 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1558 pIdx->aSortOrder = (u8*)zExtra; 1559 pIdx->nColumn = N; 1560 pIdx->isResized = 1; 1561 return SQLITE_OK; 1562 } 1563 1564 /* 1565 ** Estimate the total row width for a table. 1566 */ 1567 static void estimateTableWidth(Table *pTab){ 1568 unsigned wTable = 0; 1569 const Column *pTabCol; 1570 int i; 1571 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1572 wTable += pTabCol->szEst; 1573 } 1574 if( pTab->iPKey<0 ) wTable++; 1575 pTab->szTabRow = sqlite3LogEst(wTable*4); 1576 } 1577 1578 /* 1579 ** Estimate the average size of a row for an index. 1580 */ 1581 static void estimateIndexWidth(Index *pIdx){ 1582 unsigned wIndex = 0; 1583 int i; 1584 const Column *aCol = pIdx->pTable->aCol; 1585 for(i=0; i<pIdx->nColumn; i++){ 1586 i16 x = pIdx->aiColumn[i]; 1587 assert( x<pIdx->pTable->nCol ); 1588 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1589 } 1590 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1591 } 1592 1593 /* Return true if value x is found any of the first nCol entries of aiCol[] 1594 */ 1595 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1596 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1597 return 0; 1598 } 1599 1600 /* 1601 ** This routine runs at the end of parsing a CREATE TABLE statement that 1602 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1603 ** internal schema data structures and the generated VDBE code so that they 1604 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1605 ** Changes include: 1606 ** 1607 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1608 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1609 ** data storage is a covering index btree. 1610 ** (2) Bypass the creation of the sqlite_master table entry 1611 ** for the PRIMARY KEY as the the primary key index is now 1612 ** identified by the sqlite_master table entry of the table itself. 1613 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1614 ** schema to the rootpage from the main table. 1615 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1616 ** (5) Add all table columns to the PRIMARY KEY Index object 1617 ** so that the PRIMARY KEY is a covering index. The surplus 1618 ** columns are part of KeyInfo.nXField and are not used for 1619 ** sorting or lookup or uniqueness checks. 1620 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1621 ** indices with the PRIMARY KEY columns. 1622 */ 1623 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1624 Index *pIdx; 1625 Index *pPk; 1626 int nPk; 1627 int i, j; 1628 sqlite3 *db = pParse->db; 1629 Vdbe *v = pParse->pVdbe; 1630 1631 /* Convert the OP_CreateTable opcode that would normally create the 1632 ** root-page for the table into a OP_CreateIndex opcode. The index 1633 ** created will become the PRIMARY KEY index. 1634 */ 1635 if( pParse->addrCrTab ){ 1636 assert( v ); 1637 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1638 } 1639 1640 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1641 ** table entry. 1642 */ 1643 if( pParse->addrSkipPK ){ 1644 assert( v ); 1645 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1646 } 1647 1648 /* Locate the PRIMARY KEY index. Or, if this table was originally 1649 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1650 */ 1651 if( pTab->iPKey>=0 ){ 1652 ExprList *pList; 1653 pList = sqlite3ExprListAppend(pParse, 0, 0); 1654 if( pList==0 ) return; 1655 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1656 pTab->aCol[pTab->iPKey].zName); 1657 pList->a[0].sortOrder = pParse->iPkSortOrder; 1658 assert( pParse->pNewTable==pTab ); 1659 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1660 if( pPk==0 ) return; 1661 pPk->autoIndex = 2; 1662 pTab->iPKey = -1; 1663 }else{ 1664 pPk = sqlite3PrimaryKeyIndex(pTab); 1665 } 1666 pPk->isCovering = 1; 1667 assert( pPk!=0 ); 1668 nPk = pPk->nKeyCol; 1669 1670 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1671 for(i=0; i<nPk; i++){ 1672 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1673 } 1674 pPk->uniqNotNull = 1; 1675 1676 /* The root page of the PRIMARY KEY is the table root page */ 1677 pPk->tnum = pTab->tnum; 1678 1679 /* Update the in-memory representation of all UNIQUE indices by converting 1680 ** the final rowid column into one or more columns of the PRIMARY KEY. 1681 */ 1682 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1683 int n; 1684 if( pIdx->autoIndex==2 ) continue; 1685 for(i=n=0; i<nPk; i++){ 1686 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1687 } 1688 if( n==0 ){ 1689 /* This index is a superset of the primary key */ 1690 pIdx->nColumn = pIdx->nKeyCol; 1691 continue; 1692 } 1693 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1694 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1695 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1696 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1697 pIdx->azColl[j] = pPk->azColl[i]; 1698 j++; 1699 } 1700 } 1701 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1702 assert( pIdx->nColumn>=j ); 1703 } 1704 1705 /* Add all table columns to the PRIMARY KEY index 1706 */ 1707 if( nPk<pTab->nCol ){ 1708 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1709 for(i=0, j=nPk; i<pTab->nCol; i++){ 1710 if( !hasColumn(pPk->aiColumn, j, i) ){ 1711 assert( j<pPk->nColumn ); 1712 pPk->aiColumn[j] = i; 1713 pPk->azColl[j] = "BINARY"; 1714 j++; 1715 } 1716 } 1717 assert( pPk->nColumn==j ); 1718 assert( pTab->nCol==j ); 1719 }else{ 1720 pPk->nColumn = pTab->nCol; 1721 } 1722 } 1723 1724 /* 1725 ** This routine is called to report the final ")" that terminates 1726 ** a CREATE TABLE statement. 1727 ** 1728 ** The table structure that other action routines have been building 1729 ** is added to the internal hash tables, assuming no errors have 1730 ** occurred. 1731 ** 1732 ** An entry for the table is made in the master table on disk, unless 1733 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1734 ** it means we are reading the sqlite_master table because we just 1735 ** connected to the database or because the sqlite_master table has 1736 ** recently changed, so the entry for this table already exists in 1737 ** the sqlite_master table. We do not want to create it again. 1738 ** 1739 ** If the pSelect argument is not NULL, it means that this routine 1740 ** was called to create a table generated from a 1741 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1742 ** the new table will match the result set of the SELECT. 1743 */ 1744 void sqlite3EndTable( 1745 Parse *pParse, /* Parse context */ 1746 Token *pCons, /* The ',' token after the last column defn. */ 1747 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1748 u8 tabOpts, /* Extra table options. Usually 0. */ 1749 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1750 ){ 1751 Table *p; /* The new table */ 1752 sqlite3 *db = pParse->db; /* The database connection */ 1753 int iDb; /* Database in which the table lives */ 1754 Index *pIdx; /* An implied index of the table */ 1755 1756 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1757 return; 1758 } 1759 p = pParse->pNewTable; 1760 if( p==0 ) return; 1761 1762 assert( !db->init.busy || !pSelect ); 1763 1764 /* If the db->init.busy is 1 it means we are reading the SQL off the 1765 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1766 ** So do not write to the disk again. Extract the root page number 1767 ** for the table from the db->init.newTnum field. (The page number 1768 ** should have been put there by the sqliteOpenCb routine.) 1769 */ 1770 if( db->init.busy ){ 1771 p->tnum = db->init.newTnum; 1772 } 1773 1774 /* Special processing for WITHOUT ROWID Tables */ 1775 if( tabOpts & TF_WithoutRowid ){ 1776 if( (p->tabFlags & TF_Autoincrement) ){ 1777 sqlite3ErrorMsg(pParse, 1778 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1779 return; 1780 } 1781 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1782 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1783 }else{ 1784 p->tabFlags |= TF_WithoutRowid; 1785 convertToWithoutRowidTable(pParse, p); 1786 } 1787 } 1788 1789 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1790 1791 #ifndef SQLITE_OMIT_CHECK 1792 /* Resolve names in all CHECK constraint expressions. 1793 */ 1794 if( p->pCheck ){ 1795 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1796 } 1797 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1798 1799 /* Estimate the average row size for the table and for all implied indices */ 1800 estimateTableWidth(p); 1801 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1802 estimateIndexWidth(pIdx); 1803 } 1804 1805 /* If not initializing, then create a record for the new table 1806 ** in the SQLITE_MASTER table of the database. 1807 ** 1808 ** If this is a TEMPORARY table, write the entry into the auxiliary 1809 ** file instead of into the main database file. 1810 */ 1811 if( !db->init.busy ){ 1812 int n; 1813 Vdbe *v; 1814 char *zType; /* "view" or "table" */ 1815 char *zType2; /* "VIEW" or "TABLE" */ 1816 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1817 1818 v = sqlite3GetVdbe(pParse); 1819 if( NEVER(v==0) ) return; 1820 1821 sqlite3VdbeAddOp1(v, OP_Close, 0); 1822 1823 /* 1824 ** Initialize zType for the new view or table. 1825 */ 1826 if( p->pSelect==0 ){ 1827 /* A regular table */ 1828 zType = "table"; 1829 zType2 = "TABLE"; 1830 #ifndef SQLITE_OMIT_VIEW 1831 }else{ 1832 /* A view */ 1833 zType = "view"; 1834 zType2 = "VIEW"; 1835 #endif 1836 } 1837 1838 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1839 ** statement to populate the new table. The root-page number for the 1840 ** new table is in register pParse->regRoot. 1841 ** 1842 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1843 ** suitable state to query for the column names and types to be used 1844 ** by the new table. 1845 ** 1846 ** A shared-cache write-lock is not required to write to the new table, 1847 ** as a schema-lock must have already been obtained to create it. Since 1848 ** a schema-lock excludes all other database users, the write-lock would 1849 ** be redundant. 1850 */ 1851 if( pSelect ){ 1852 SelectDest dest; 1853 Table *pSelTab; 1854 1855 assert(pParse->nTab==1); 1856 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1857 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1858 pParse->nTab = 2; 1859 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1860 sqlite3Select(pParse, pSelect, &dest); 1861 sqlite3VdbeAddOp1(v, OP_Close, 1); 1862 if( pParse->nErr==0 ){ 1863 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1864 if( pSelTab==0 ) return; 1865 assert( p->aCol==0 ); 1866 p->nCol = pSelTab->nCol; 1867 p->aCol = pSelTab->aCol; 1868 pSelTab->nCol = 0; 1869 pSelTab->aCol = 0; 1870 sqlite3DeleteTable(db, pSelTab); 1871 } 1872 } 1873 1874 /* Compute the complete text of the CREATE statement */ 1875 if( pSelect ){ 1876 zStmt = createTableStmt(db, p); 1877 }else{ 1878 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1879 n = (int)(pEnd2->z - pParse->sNameToken.z); 1880 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1881 zStmt = sqlite3MPrintf(db, 1882 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1883 ); 1884 } 1885 1886 /* A slot for the record has already been allocated in the 1887 ** SQLITE_MASTER table. We just need to update that slot with all 1888 ** the information we've collected. 1889 */ 1890 sqlite3NestedParse(pParse, 1891 "UPDATE %Q.%s " 1892 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1893 "WHERE rowid=#%d", 1894 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1895 zType, 1896 p->zName, 1897 p->zName, 1898 pParse->regRoot, 1899 zStmt, 1900 pParse->regRowid 1901 ); 1902 sqlite3DbFree(db, zStmt); 1903 sqlite3ChangeCookie(pParse, iDb); 1904 1905 #ifndef SQLITE_OMIT_AUTOINCREMENT 1906 /* Check to see if we need to create an sqlite_sequence table for 1907 ** keeping track of autoincrement keys. 1908 */ 1909 if( p->tabFlags & TF_Autoincrement ){ 1910 Db *pDb = &db->aDb[iDb]; 1911 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1912 if( pDb->pSchema->pSeqTab==0 ){ 1913 sqlite3NestedParse(pParse, 1914 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1915 pDb->zName 1916 ); 1917 } 1918 } 1919 #endif 1920 1921 /* Reparse everything to update our internal data structures */ 1922 sqlite3VdbeAddParseSchemaOp(v, iDb, 1923 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1924 } 1925 1926 1927 /* Add the table to the in-memory representation of the database. 1928 */ 1929 if( db->init.busy ){ 1930 Table *pOld; 1931 Schema *pSchema = p->pSchema; 1932 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1933 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1934 sqlite3Strlen30(p->zName),p); 1935 if( pOld ){ 1936 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1937 db->mallocFailed = 1; 1938 return; 1939 } 1940 pParse->pNewTable = 0; 1941 db->flags |= SQLITE_InternChanges; 1942 1943 #ifndef SQLITE_OMIT_ALTERTABLE 1944 if( !p->pSelect ){ 1945 const char *zName = (const char *)pParse->sNameToken.z; 1946 int nName; 1947 assert( !pSelect && pCons && pEnd ); 1948 if( pCons->z==0 ){ 1949 pCons = pEnd; 1950 } 1951 nName = (int)((const char *)pCons->z - zName); 1952 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1953 } 1954 #endif 1955 } 1956 } 1957 1958 #ifndef SQLITE_OMIT_VIEW 1959 /* 1960 ** The parser calls this routine in order to create a new VIEW 1961 */ 1962 void sqlite3CreateView( 1963 Parse *pParse, /* The parsing context */ 1964 Token *pBegin, /* The CREATE token that begins the statement */ 1965 Token *pName1, /* The token that holds the name of the view */ 1966 Token *pName2, /* The token that holds the name of the view */ 1967 Select *pSelect, /* A SELECT statement that will become the new view */ 1968 int isTemp, /* TRUE for a TEMPORARY view */ 1969 int noErr /* Suppress error messages if VIEW already exists */ 1970 ){ 1971 Table *p; 1972 int n; 1973 const char *z; 1974 Token sEnd; 1975 DbFixer sFix; 1976 Token *pName = 0; 1977 int iDb; 1978 sqlite3 *db = pParse->db; 1979 1980 if( pParse->nVar>0 ){ 1981 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1982 sqlite3SelectDelete(db, pSelect); 1983 return; 1984 } 1985 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1986 p = pParse->pNewTable; 1987 if( p==0 || pParse->nErr ){ 1988 sqlite3SelectDelete(db, pSelect); 1989 return; 1990 } 1991 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1992 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1993 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 1994 if( sqlite3FixSelect(&sFix, pSelect) ){ 1995 sqlite3SelectDelete(db, pSelect); 1996 return; 1997 } 1998 1999 /* Make a copy of the entire SELECT statement that defines the view. 2000 ** This will force all the Expr.token.z values to be dynamically 2001 ** allocated rather than point to the input string - which means that 2002 ** they will persist after the current sqlite3_exec() call returns. 2003 */ 2004 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2005 sqlite3SelectDelete(db, pSelect); 2006 if( db->mallocFailed ){ 2007 return; 2008 } 2009 if( !db->init.busy ){ 2010 sqlite3ViewGetColumnNames(pParse, p); 2011 } 2012 2013 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2014 ** the end. 2015 */ 2016 sEnd = pParse->sLastToken; 2017 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2018 sEnd.z += sEnd.n; 2019 } 2020 sEnd.n = 0; 2021 n = (int)(sEnd.z - pBegin->z); 2022 z = pBegin->z; 2023 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2024 sEnd.z = &z[n-1]; 2025 sEnd.n = 1; 2026 2027 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2028 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2029 return; 2030 } 2031 #endif /* SQLITE_OMIT_VIEW */ 2032 2033 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2034 /* 2035 ** The Table structure pTable is really a VIEW. Fill in the names of 2036 ** the columns of the view in the pTable structure. Return the number 2037 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2038 */ 2039 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2040 Table *pSelTab; /* A fake table from which we get the result set */ 2041 Select *pSel; /* Copy of the SELECT that implements the view */ 2042 int nErr = 0; /* Number of errors encountered */ 2043 int n; /* Temporarily holds the number of cursors assigned */ 2044 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2045 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 2046 2047 assert( pTable ); 2048 2049 #ifndef SQLITE_OMIT_VIRTUALTABLE 2050 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2051 return SQLITE_ERROR; 2052 } 2053 if( IsVirtual(pTable) ) return 0; 2054 #endif 2055 2056 #ifndef SQLITE_OMIT_VIEW 2057 /* A positive nCol means the columns names for this view are 2058 ** already known. 2059 */ 2060 if( pTable->nCol>0 ) return 0; 2061 2062 /* A negative nCol is a special marker meaning that we are currently 2063 ** trying to compute the column names. If we enter this routine with 2064 ** a negative nCol, it means two or more views form a loop, like this: 2065 ** 2066 ** CREATE VIEW one AS SELECT * FROM two; 2067 ** CREATE VIEW two AS SELECT * FROM one; 2068 ** 2069 ** Actually, the error above is now caught prior to reaching this point. 2070 ** But the following test is still important as it does come up 2071 ** in the following: 2072 ** 2073 ** CREATE TABLE main.ex1(a); 2074 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2075 ** SELECT * FROM temp.ex1; 2076 */ 2077 if( pTable->nCol<0 ){ 2078 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2079 return 1; 2080 } 2081 assert( pTable->nCol>=0 ); 2082 2083 /* If we get this far, it means we need to compute the table names. 2084 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2085 ** "*" elements in the results set of the view and will assign cursors 2086 ** to the elements of the FROM clause. But we do not want these changes 2087 ** to be permanent. So the computation is done on a copy of the SELECT 2088 ** statement that defines the view. 2089 */ 2090 assert( pTable->pSelect ); 2091 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2092 if( pSel ){ 2093 u8 enableLookaside = db->lookaside.bEnabled; 2094 n = pParse->nTab; 2095 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2096 pTable->nCol = -1; 2097 db->lookaside.bEnabled = 0; 2098 #ifndef SQLITE_OMIT_AUTHORIZATION 2099 xAuth = db->xAuth; 2100 db->xAuth = 0; 2101 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2102 db->xAuth = xAuth; 2103 #else 2104 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2105 #endif 2106 db->lookaside.bEnabled = enableLookaside; 2107 pParse->nTab = n; 2108 if( pSelTab ){ 2109 assert( pTable->aCol==0 ); 2110 pTable->nCol = pSelTab->nCol; 2111 pTable->aCol = pSelTab->aCol; 2112 pSelTab->nCol = 0; 2113 pSelTab->aCol = 0; 2114 sqlite3DeleteTable(db, pSelTab); 2115 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2116 pTable->pSchema->flags |= DB_UnresetViews; 2117 }else{ 2118 pTable->nCol = 0; 2119 nErr++; 2120 } 2121 sqlite3SelectDelete(db, pSel); 2122 } else { 2123 nErr++; 2124 } 2125 #endif /* SQLITE_OMIT_VIEW */ 2126 return nErr; 2127 } 2128 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2129 2130 #ifndef SQLITE_OMIT_VIEW 2131 /* 2132 ** Clear the column names from every VIEW in database idx. 2133 */ 2134 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2135 HashElem *i; 2136 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2137 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2138 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2139 Table *pTab = sqliteHashData(i); 2140 if( pTab->pSelect ){ 2141 sqliteDeleteColumnNames(db, pTab); 2142 pTab->aCol = 0; 2143 pTab->nCol = 0; 2144 } 2145 } 2146 DbClearProperty(db, idx, DB_UnresetViews); 2147 } 2148 #else 2149 # define sqliteViewResetAll(A,B) 2150 #endif /* SQLITE_OMIT_VIEW */ 2151 2152 /* 2153 ** This function is called by the VDBE to adjust the internal schema 2154 ** used by SQLite when the btree layer moves a table root page. The 2155 ** root-page of a table or index in database iDb has changed from iFrom 2156 ** to iTo. 2157 ** 2158 ** Ticket #1728: The symbol table might still contain information 2159 ** on tables and/or indices that are the process of being deleted. 2160 ** If you are unlucky, one of those deleted indices or tables might 2161 ** have the same rootpage number as the real table or index that is 2162 ** being moved. So we cannot stop searching after the first match 2163 ** because the first match might be for one of the deleted indices 2164 ** or tables and not the table/index that is actually being moved. 2165 ** We must continue looping until all tables and indices with 2166 ** rootpage==iFrom have been converted to have a rootpage of iTo 2167 ** in order to be certain that we got the right one. 2168 */ 2169 #ifndef SQLITE_OMIT_AUTOVACUUM 2170 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2171 HashElem *pElem; 2172 Hash *pHash; 2173 Db *pDb; 2174 2175 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2176 pDb = &db->aDb[iDb]; 2177 pHash = &pDb->pSchema->tblHash; 2178 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2179 Table *pTab = sqliteHashData(pElem); 2180 if( pTab->tnum==iFrom ){ 2181 pTab->tnum = iTo; 2182 } 2183 } 2184 pHash = &pDb->pSchema->idxHash; 2185 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2186 Index *pIdx = sqliteHashData(pElem); 2187 if( pIdx->tnum==iFrom ){ 2188 pIdx->tnum = iTo; 2189 } 2190 } 2191 } 2192 #endif 2193 2194 /* 2195 ** Write code to erase the table with root-page iTable from database iDb. 2196 ** Also write code to modify the sqlite_master table and internal schema 2197 ** if a root-page of another table is moved by the btree-layer whilst 2198 ** erasing iTable (this can happen with an auto-vacuum database). 2199 */ 2200 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2201 Vdbe *v = sqlite3GetVdbe(pParse); 2202 int r1 = sqlite3GetTempReg(pParse); 2203 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2204 sqlite3MayAbort(pParse); 2205 #ifndef SQLITE_OMIT_AUTOVACUUM 2206 /* OP_Destroy stores an in integer r1. If this integer 2207 ** is non-zero, then it is the root page number of a table moved to 2208 ** location iTable. The following code modifies the sqlite_master table to 2209 ** reflect this. 2210 ** 2211 ** The "#NNN" in the SQL is a special constant that means whatever value 2212 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2213 ** token for additional information. 2214 */ 2215 sqlite3NestedParse(pParse, 2216 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2217 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2218 #endif 2219 sqlite3ReleaseTempReg(pParse, r1); 2220 } 2221 2222 /* 2223 ** Write VDBE code to erase table pTab and all associated indices on disk. 2224 ** Code to update the sqlite_master tables and internal schema definitions 2225 ** in case a root-page belonging to another table is moved by the btree layer 2226 ** is also added (this can happen with an auto-vacuum database). 2227 */ 2228 static void destroyTable(Parse *pParse, Table *pTab){ 2229 #ifdef SQLITE_OMIT_AUTOVACUUM 2230 Index *pIdx; 2231 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2232 destroyRootPage(pParse, pTab->tnum, iDb); 2233 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2234 destroyRootPage(pParse, pIdx->tnum, iDb); 2235 } 2236 #else 2237 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2238 ** is not defined), then it is important to call OP_Destroy on the 2239 ** table and index root-pages in order, starting with the numerically 2240 ** largest root-page number. This guarantees that none of the root-pages 2241 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2242 ** following were coded: 2243 ** 2244 ** OP_Destroy 4 0 2245 ** ... 2246 ** OP_Destroy 5 0 2247 ** 2248 ** and root page 5 happened to be the largest root-page number in the 2249 ** database, then root page 5 would be moved to page 4 by the 2250 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2251 ** a free-list page. 2252 */ 2253 int iTab = pTab->tnum; 2254 int iDestroyed = 0; 2255 2256 while( 1 ){ 2257 Index *pIdx; 2258 int iLargest = 0; 2259 2260 if( iDestroyed==0 || iTab<iDestroyed ){ 2261 iLargest = iTab; 2262 } 2263 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2264 int iIdx = pIdx->tnum; 2265 assert( pIdx->pSchema==pTab->pSchema ); 2266 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2267 iLargest = iIdx; 2268 } 2269 } 2270 if( iLargest==0 ){ 2271 return; 2272 }else{ 2273 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2274 assert( iDb>=0 && iDb<pParse->db->nDb ); 2275 destroyRootPage(pParse, iLargest, iDb); 2276 iDestroyed = iLargest; 2277 } 2278 } 2279 #endif 2280 } 2281 2282 /* 2283 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2284 ** after a DROP INDEX or DROP TABLE command. 2285 */ 2286 static void sqlite3ClearStatTables( 2287 Parse *pParse, /* The parsing context */ 2288 int iDb, /* The database number */ 2289 const char *zType, /* "idx" or "tbl" */ 2290 const char *zName /* Name of index or table */ 2291 ){ 2292 int i; 2293 const char *zDbName = pParse->db->aDb[iDb].zName; 2294 for(i=1; i<=4; i++){ 2295 char zTab[24]; 2296 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2297 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2298 sqlite3NestedParse(pParse, 2299 "DELETE FROM %Q.%s WHERE %s=%Q", 2300 zDbName, zTab, zType, zName 2301 ); 2302 } 2303 } 2304 } 2305 2306 /* 2307 ** Generate code to drop a table. 2308 */ 2309 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2310 Vdbe *v; 2311 sqlite3 *db = pParse->db; 2312 Trigger *pTrigger; 2313 Db *pDb = &db->aDb[iDb]; 2314 2315 v = sqlite3GetVdbe(pParse); 2316 assert( v!=0 ); 2317 sqlite3BeginWriteOperation(pParse, 1, iDb); 2318 2319 #ifndef SQLITE_OMIT_VIRTUALTABLE 2320 if( IsVirtual(pTab) ){ 2321 sqlite3VdbeAddOp0(v, OP_VBegin); 2322 } 2323 #endif 2324 2325 /* Drop all triggers associated with the table being dropped. Code 2326 ** is generated to remove entries from sqlite_master and/or 2327 ** sqlite_temp_master if required. 2328 */ 2329 pTrigger = sqlite3TriggerList(pParse, pTab); 2330 while( pTrigger ){ 2331 assert( pTrigger->pSchema==pTab->pSchema || 2332 pTrigger->pSchema==db->aDb[1].pSchema ); 2333 sqlite3DropTriggerPtr(pParse, pTrigger); 2334 pTrigger = pTrigger->pNext; 2335 } 2336 2337 #ifndef SQLITE_OMIT_AUTOINCREMENT 2338 /* Remove any entries of the sqlite_sequence table associated with 2339 ** the table being dropped. This is done before the table is dropped 2340 ** at the btree level, in case the sqlite_sequence table needs to 2341 ** move as a result of the drop (can happen in auto-vacuum mode). 2342 */ 2343 if( pTab->tabFlags & TF_Autoincrement ){ 2344 sqlite3NestedParse(pParse, 2345 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2346 pDb->zName, pTab->zName 2347 ); 2348 } 2349 #endif 2350 2351 /* Drop all SQLITE_MASTER table and index entries that refer to the 2352 ** table. The program name loops through the master table and deletes 2353 ** every row that refers to a table of the same name as the one being 2354 ** dropped. Triggers are handled separately because a trigger can be 2355 ** created in the temp database that refers to a table in another 2356 ** database. 2357 */ 2358 sqlite3NestedParse(pParse, 2359 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2360 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2361 if( !isView && !IsVirtual(pTab) ){ 2362 destroyTable(pParse, pTab); 2363 } 2364 2365 /* Remove the table entry from SQLite's internal schema and modify 2366 ** the schema cookie. 2367 */ 2368 if( IsVirtual(pTab) ){ 2369 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2370 } 2371 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2372 sqlite3ChangeCookie(pParse, iDb); 2373 sqliteViewResetAll(db, iDb); 2374 } 2375 2376 /* 2377 ** This routine is called to do the work of a DROP TABLE statement. 2378 ** pName is the name of the table to be dropped. 2379 */ 2380 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2381 Table *pTab; 2382 Vdbe *v; 2383 sqlite3 *db = pParse->db; 2384 int iDb; 2385 2386 if( db->mallocFailed ){ 2387 goto exit_drop_table; 2388 } 2389 assert( pParse->nErr==0 ); 2390 assert( pName->nSrc==1 ); 2391 if( noErr ) db->suppressErr++; 2392 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2393 if( noErr ) db->suppressErr--; 2394 2395 if( pTab==0 ){ 2396 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2397 goto exit_drop_table; 2398 } 2399 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2400 assert( iDb>=0 && iDb<db->nDb ); 2401 2402 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2403 ** it is initialized. 2404 */ 2405 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2406 goto exit_drop_table; 2407 } 2408 #ifndef SQLITE_OMIT_AUTHORIZATION 2409 { 2410 int code; 2411 const char *zTab = SCHEMA_TABLE(iDb); 2412 const char *zDb = db->aDb[iDb].zName; 2413 const char *zArg2 = 0; 2414 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2415 goto exit_drop_table; 2416 } 2417 if( isView ){ 2418 if( !OMIT_TEMPDB && iDb==1 ){ 2419 code = SQLITE_DROP_TEMP_VIEW; 2420 }else{ 2421 code = SQLITE_DROP_VIEW; 2422 } 2423 #ifndef SQLITE_OMIT_VIRTUALTABLE 2424 }else if( IsVirtual(pTab) ){ 2425 code = SQLITE_DROP_VTABLE; 2426 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2427 #endif 2428 }else{ 2429 if( !OMIT_TEMPDB && iDb==1 ){ 2430 code = SQLITE_DROP_TEMP_TABLE; 2431 }else{ 2432 code = SQLITE_DROP_TABLE; 2433 } 2434 } 2435 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2436 goto exit_drop_table; 2437 } 2438 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2439 goto exit_drop_table; 2440 } 2441 } 2442 #endif 2443 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2444 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2445 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2446 goto exit_drop_table; 2447 } 2448 2449 #ifndef SQLITE_OMIT_VIEW 2450 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2451 ** on a table. 2452 */ 2453 if( isView && pTab->pSelect==0 ){ 2454 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2455 goto exit_drop_table; 2456 } 2457 if( !isView && pTab->pSelect ){ 2458 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2459 goto exit_drop_table; 2460 } 2461 #endif 2462 2463 /* Generate code to remove the table from the master table 2464 ** on disk. 2465 */ 2466 v = sqlite3GetVdbe(pParse); 2467 if( v ){ 2468 sqlite3BeginWriteOperation(pParse, 1, iDb); 2469 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2470 sqlite3FkDropTable(pParse, pName, pTab); 2471 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2472 } 2473 2474 exit_drop_table: 2475 sqlite3SrcListDelete(db, pName); 2476 } 2477 2478 /* 2479 ** This routine is called to create a new foreign key on the table 2480 ** currently under construction. pFromCol determines which columns 2481 ** in the current table point to the foreign key. If pFromCol==0 then 2482 ** connect the key to the last column inserted. pTo is the name of 2483 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2484 ** of tables in the parent pTo table. flags contains all 2485 ** information about the conflict resolution algorithms specified 2486 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2487 ** 2488 ** An FKey structure is created and added to the table currently 2489 ** under construction in the pParse->pNewTable field. 2490 ** 2491 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2492 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2493 */ 2494 void sqlite3CreateForeignKey( 2495 Parse *pParse, /* Parsing context */ 2496 ExprList *pFromCol, /* Columns in this table that point to other table */ 2497 Token *pTo, /* Name of the other table */ 2498 ExprList *pToCol, /* Columns in the other table */ 2499 int flags /* Conflict resolution algorithms. */ 2500 ){ 2501 sqlite3 *db = pParse->db; 2502 #ifndef SQLITE_OMIT_FOREIGN_KEY 2503 FKey *pFKey = 0; 2504 FKey *pNextTo; 2505 Table *p = pParse->pNewTable; 2506 int nByte; 2507 int i; 2508 int nCol; 2509 char *z; 2510 2511 assert( pTo!=0 ); 2512 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2513 if( pFromCol==0 ){ 2514 int iCol = p->nCol-1; 2515 if( NEVER(iCol<0) ) goto fk_end; 2516 if( pToCol && pToCol->nExpr!=1 ){ 2517 sqlite3ErrorMsg(pParse, "foreign key on %s" 2518 " should reference only one column of table %T", 2519 p->aCol[iCol].zName, pTo); 2520 goto fk_end; 2521 } 2522 nCol = 1; 2523 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2524 sqlite3ErrorMsg(pParse, 2525 "number of columns in foreign key does not match the number of " 2526 "columns in the referenced table"); 2527 goto fk_end; 2528 }else{ 2529 nCol = pFromCol->nExpr; 2530 } 2531 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2532 if( pToCol ){ 2533 for(i=0; i<pToCol->nExpr; i++){ 2534 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2535 } 2536 } 2537 pFKey = sqlite3DbMallocZero(db, nByte ); 2538 if( pFKey==0 ){ 2539 goto fk_end; 2540 } 2541 pFKey->pFrom = p; 2542 pFKey->pNextFrom = p->pFKey; 2543 z = (char*)&pFKey->aCol[nCol]; 2544 pFKey->zTo = z; 2545 memcpy(z, pTo->z, pTo->n); 2546 z[pTo->n] = 0; 2547 sqlite3Dequote(z); 2548 z += pTo->n+1; 2549 pFKey->nCol = nCol; 2550 if( pFromCol==0 ){ 2551 pFKey->aCol[0].iFrom = p->nCol-1; 2552 }else{ 2553 for(i=0; i<nCol; i++){ 2554 int j; 2555 for(j=0; j<p->nCol; j++){ 2556 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2557 pFKey->aCol[i].iFrom = j; 2558 break; 2559 } 2560 } 2561 if( j>=p->nCol ){ 2562 sqlite3ErrorMsg(pParse, 2563 "unknown column \"%s\" in foreign key definition", 2564 pFromCol->a[i].zName); 2565 goto fk_end; 2566 } 2567 } 2568 } 2569 if( pToCol ){ 2570 for(i=0; i<nCol; i++){ 2571 int n = sqlite3Strlen30(pToCol->a[i].zName); 2572 pFKey->aCol[i].zCol = z; 2573 memcpy(z, pToCol->a[i].zName, n); 2574 z[n] = 0; 2575 z += n+1; 2576 } 2577 } 2578 pFKey->isDeferred = 0; 2579 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2580 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2581 2582 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2583 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2584 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2585 ); 2586 if( pNextTo==pFKey ){ 2587 db->mallocFailed = 1; 2588 goto fk_end; 2589 } 2590 if( pNextTo ){ 2591 assert( pNextTo->pPrevTo==0 ); 2592 pFKey->pNextTo = pNextTo; 2593 pNextTo->pPrevTo = pFKey; 2594 } 2595 2596 /* Link the foreign key to the table as the last step. 2597 */ 2598 p->pFKey = pFKey; 2599 pFKey = 0; 2600 2601 fk_end: 2602 sqlite3DbFree(db, pFKey); 2603 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2604 sqlite3ExprListDelete(db, pFromCol); 2605 sqlite3ExprListDelete(db, pToCol); 2606 } 2607 2608 /* 2609 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2610 ** clause is seen as part of a foreign key definition. The isDeferred 2611 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2612 ** The behavior of the most recently created foreign key is adjusted 2613 ** accordingly. 2614 */ 2615 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2616 #ifndef SQLITE_OMIT_FOREIGN_KEY 2617 Table *pTab; 2618 FKey *pFKey; 2619 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2620 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2621 pFKey->isDeferred = (u8)isDeferred; 2622 #endif 2623 } 2624 2625 /* 2626 ** Generate code that will erase and refill index *pIdx. This is 2627 ** used to initialize a newly created index or to recompute the 2628 ** content of an index in response to a REINDEX command. 2629 ** 2630 ** if memRootPage is not negative, it means that the index is newly 2631 ** created. The register specified by memRootPage contains the 2632 ** root page number of the index. If memRootPage is negative, then 2633 ** the index already exists and must be cleared before being refilled and 2634 ** the root page number of the index is taken from pIndex->tnum. 2635 */ 2636 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2637 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2638 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2639 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2640 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2641 int addr1; /* Address of top of loop */ 2642 int addr2; /* Address to jump to for next iteration */ 2643 int tnum; /* Root page of index */ 2644 int iPartIdxLabel; /* Jump to this label to skip a row */ 2645 Vdbe *v; /* Generate code into this virtual machine */ 2646 KeyInfo *pKey; /* KeyInfo for index */ 2647 int regRecord; /* Register holding assemblied index record */ 2648 sqlite3 *db = pParse->db; /* The database connection */ 2649 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2650 2651 #ifndef SQLITE_OMIT_AUTHORIZATION 2652 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2653 db->aDb[iDb].zName ) ){ 2654 return; 2655 } 2656 #endif 2657 2658 /* Require a write-lock on the table to perform this operation */ 2659 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2660 2661 v = sqlite3GetVdbe(pParse); 2662 if( v==0 ) return; 2663 if( memRootPage>=0 ){ 2664 tnum = memRootPage; 2665 }else{ 2666 tnum = pIndex->tnum; 2667 } 2668 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2669 2670 /* Open the sorter cursor if we are to use one. */ 2671 iSorter = pParse->nTab++; 2672 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) 2673 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2674 2675 /* Open the table. Loop through all rows of the table, inserting index 2676 ** records into the sorter. */ 2677 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2678 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2679 regRecord = sqlite3GetTempReg(pParse); 2680 2681 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2682 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2683 sqlite3VdbeResolveLabel(v, iPartIdxLabel); 2684 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2685 sqlite3VdbeJumpHere(v, addr1); 2686 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2687 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2688 (char *)pKey, P4_KEYINFO); 2689 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2690 2691 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); 2692 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2693 if( pIndex->onError!=OE_None && pKey!=0 ){ 2694 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2695 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2696 addr2 = sqlite3VdbeCurrentAddr(v); 2697 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2698 pKey->nField - pIndex->nKeyCol); 2699 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2700 }else{ 2701 addr2 = sqlite3VdbeCurrentAddr(v); 2702 } 2703 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2704 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2705 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2706 sqlite3ReleaseTempReg(pParse, regRecord); 2707 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); 2708 sqlite3VdbeJumpHere(v, addr1); 2709 2710 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2711 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2712 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2713 } 2714 2715 /* 2716 ** Allocate heap space to hold an Index object with nCol columns. 2717 ** 2718 ** Increase the allocation size to provide an extra nExtra bytes 2719 ** of 8-byte aligned space after the Index object and return a 2720 ** pointer to this extra space in *ppExtra. 2721 */ 2722 Index *sqlite3AllocateIndexObject( 2723 sqlite3 *db, /* Database connection */ 2724 i16 nCol, /* Total number of columns in the index */ 2725 int nExtra, /* Number of bytes of extra space to alloc */ 2726 char **ppExtra /* Pointer to the "extra" space */ 2727 ){ 2728 Index *p; /* Allocated index object */ 2729 int nByte; /* Bytes of space for Index object + arrays */ 2730 2731 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2732 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2733 ROUND8(sizeof(tRowcnt)*(nCol+1) + /* Index.aiRowEst */ 2734 sizeof(i16)*nCol + /* Index.aiColumn */ 2735 sizeof(u8)*nCol); /* Index.aSortOrder */ 2736 p = sqlite3DbMallocZero(db, nByte + nExtra); 2737 if( p ){ 2738 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2739 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2740 p->aiRowEst = (tRowcnt*)pExtra; pExtra += sizeof(tRowcnt)*(nCol+1); 2741 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2742 p->aSortOrder = (u8*)pExtra; 2743 p->nColumn = nCol; 2744 p->nKeyCol = nCol - 1; 2745 *ppExtra = ((char*)p) + nByte; 2746 } 2747 return p; 2748 } 2749 2750 /* 2751 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2752 ** and pTblList is the name of the table that is to be indexed. Both will 2753 ** be NULL for a primary key or an index that is created to satisfy a 2754 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2755 ** as the table to be indexed. pParse->pNewTable is a table that is 2756 ** currently being constructed by a CREATE TABLE statement. 2757 ** 2758 ** pList is a list of columns to be indexed. pList will be NULL if this 2759 ** is a primary key or unique-constraint on the most recent column added 2760 ** to the table currently under construction. 2761 ** 2762 ** If the index is created successfully, return a pointer to the new Index 2763 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2764 ** as the tables primary key (Index.autoIndex==2). 2765 */ 2766 Index *sqlite3CreateIndex( 2767 Parse *pParse, /* All information about this parse */ 2768 Token *pName1, /* First part of index name. May be NULL */ 2769 Token *pName2, /* Second part of index name. May be NULL */ 2770 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2771 ExprList *pList, /* A list of columns to be indexed */ 2772 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2773 Token *pStart, /* The CREATE token that begins this statement */ 2774 Expr *pPIWhere, /* WHERE clause for partial indices */ 2775 int sortOrder, /* Sort order of primary key when pList==NULL */ 2776 int ifNotExist /* Omit error if index already exists */ 2777 ){ 2778 Index *pRet = 0; /* Pointer to return */ 2779 Table *pTab = 0; /* Table to be indexed */ 2780 Index *pIndex = 0; /* The index to be created */ 2781 char *zName = 0; /* Name of the index */ 2782 int nName; /* Number of characters in zName */ 2783 int i, j; 2784 DbFixer sFix; /* For assigning database names to pTable */ 2785 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2786 sqlite3 *db = pParse->db; 2787 Db *pDb; /* The specific table containing the indexed database */ 2788 int iDb; /* Index of the database that is being written */ 2789 Token *pName = 0; /* Unqualified name of the index to create */ 2790 struct ExprList_item *pListItem; /* For looping over pList */ 2791 const Column *pTabCol; /* A column in the table */ 2792 int nExtra = 0; /* Space allocated for zExtra[] */ 2793 int nExtraCol; /* Number of extra columns needed */ 2794 char *zExtra = 0; /* Extra space after the Index object */ 2795 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2796 2797 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2798 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2799 goto exit_create_index; 2800 } 2801 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2802 goto exit_create_index; 2803 } 2804 2805 /* 2806 ** Find the table that is to be indexed. Return early if not found. 2807 */ 2808 if( pTblName!=0 ){ 2809 2810 /* Use the two-part index name to determine the database 2811 ** to search for the table. 'Fix' the table name to this db 2812 ** before looking up the table. 2813 */ 2814 assert( pName1 && pName2 ); 2815 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2816 if( iDb<0 ) goto exit_create_index; 2817 assert( pName && pName->z ); 2818 2819 #ifndef SQLITE_OMIT_TEMPDB 2820 /* If the index name was unqualified, check if the table 2821 ** is a temp table. If so, set the database to 1. Do not do this 2822 ** if initialising a database schema. 2823 */ 2824 if( !db->init.busy ){ 2825 pTab = sqlite3SrcListLookup(pParse, pTblName); 2826 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2827 iDb = 1; 2828 } 2829 } 2830 #endif 2831 2832 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2833 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2834 /* Because the parser constructs pTblName from a single identifier, 2835 ** sqlite3FixSrcList can never fail. */ 2836 assert(0); 2837 } 2838 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2839 assert( db->mallocFailed==0 || pTab==0 ); 2840 if( pTab==0 ) goto exit_create_index; 2841 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2842 sqlite3ErrorMsg(pParse, 2843 "cannot create a TEMP index on non-TEMP table \"%s\"", 2844 pTab->zName); 2845 goto exit_create_index; 2846 } 2847 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2848 }else{ 2849 assert( pName==0 ); 2850 assert( pStart==0 ); 2851 pTab = pParse->pNewTable; 2852 if( !pTab ) goto exit_create_index; 2853 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2854 } 2855 pDb = &db->aDb[iDb]; 2856 2857 assert( pTab!=0 ); 2858 assert( pParse->nErr==0 ); 2859 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2860 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2861 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2862 goto exit_create_index; 2863 } 2864 #ifndef SQLITE_OMIT_VIEW 2865 if( pTab->pSelect ){ 2866 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2867 goto exit_create_index; 2868 } 2869 #endif 2870 #ifndef SQLITE_OMIT_VIRTUALTABLE 2871 if( IsVirtual(pTab) ){ 2872 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2873 goto exit_create_index; 2874 } 2875 #endif 2876 2877 /* 2878 ** Find the name of the index. Make sure there is not already another 2879 ** index or table with the same name. 2880 ** 2881 ** Exception: If we are reading the names of permanent indices from the 2882 ** sqlite_master table (because some other process changed the schema) and 2883 ** one of the index names collides with the name of a temporary table or 2884 ** index, then we will continue to process this index. 2885 ** 2886 ** If pName==0 it means that we are 2887 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2888 ** own name. 2889 */ 2890 if( pName ){ 2891 zName = sqlite3NameFromToken(db, pName); 2892 if( zName==0 ) goto exit_create_index; 2893 assert( pName->z!=0 ); 2894 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2895 goto exit_create_index; 2896 } 2897 if( !db->init.busy ){ 2898 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2899 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2900 goto exit_create_index; 2901 } 2902 } 2903 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2904 if( !ifNotExist ){ 2905 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2906 }else{ 2907 assert( !db->init.busy ); 2908 sqlite3CodeVerifySchema(pParse, iDb); 2909 } 2910 goto exit_create_index; 2911 } 2912 }else{ 2913 int n; 2914 Index *pLoop; 2915 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2916 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2917 if( zName==0 ){ 2918 goto exit_create_index; 2919 } 2920 } 2921 2922 /* Check for authorization to create an index. 2923 */ 2924 #ifndef SQLITE_OMIT_AUTHORIZATION 2925 { 2926 const char *zDb = pDb->zName; 2927 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2928 goto exit_create_index; 2929 } 2930 i = SQLITE_CREATE_INDEX; 2931 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2932 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2933 goto exit_create_index; 2934 } 2935 } 2936 #endif 2937 2938 /* If pList==0, it means this routine was called to make a primary 2939 ** key out of the last column added to the table under construction. 2940 ** So create a fake list to simulate this. 2941 */ 2942 if( pList==0 ){ 2943 pList = sqlite3ExprListAppend(pParse, 0, 0); 2944 if( pList==0 ) goto exit_create_index; 2945 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 2946 pTab->aCol[pTab->nCol-1].zName); 2947 pList->a[0].sortOrder = (u8)sortOrder; 2948 } 2949 2950 /* Figure out how many bytes of space are required to store explicitly 2951 ** specified collation sequence names. 2952 */ 2953 for(i=0; i<pList->nExpr; i++){ 2954 Expr *pExpr = pList->a[i].pExpr; 2955 if( pExpr ){ 2956 assert( pExpr->op==TK_COLLATE ); 2957 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 2958 } 2959 } 2960 2961 /* 2962 ** Allocate the index structure. 2963 */ 2964 nName = sqlite3Strlen30(zName); 2965 nExtraCol = pPk ? pPk->nKeyCol : 1; 2966 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 2967 nName + nExtra + 1, &zExtra); 2968 if( db->mallocFailed ){ 2969 goto exit_create_index; 2970 } 2971 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) ); 2972 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 2973 pIndex->zName = zExtra; 2974 zExtra += nName + 1; 2975 memcpy(pIndex->zName, zName, nName+1); 2976 pIndex->pTable = pTab; 2977 pIndex->onError = (u8)onError; 2978 pIndex->uniqNotNull = onError!=OE_None; 2979 pIndex->autoIndex = (u8)(pName==0); 2980 pIndex->pSchema = db->aDb[iDb].pSchema; 2981 pIndex->nKeyCol = pList->nExpr; 2982 if( pPIWhere ){ 2983 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 2984 pIndex->pPartIdxWhere = pPIWhere; 2985 pPIWhere = 0; 2986 } 2987 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2988 2989 /* Check to see if we should honor DESC requests on index columns 2990 */ 2991 if( pDb->pSchema->file_format>=4 ){ 2992 sortOrderMask = -1; /* Honor DESC */ 2993 }else{ 2994 sortOrderMask = 0; /* Ignore DESC */ 2995 } 2996 2997 /* Scan the names of the columns of the table to be indexed and 2998 ** load the column indices into the Index structure. Report an error 2999 ** if any column is not found. 3000 ** 3001 ** TODO: Add a test to make sure that the same column is not named 3002 ** more than once within the same index. Only the first instance of 3003 ** the column will ever be used by the optimizer. Note that using the 3004 ** same column more than once cannot be an error because that would 3005 ** break backwards compatibility - it needs to be a warning. 3006 */ 3007 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3008 const char *zColName = pListItem->zName; 3009 int requestedSortOrder; 3010 char *zColl; /* Collation sequence name */ 3011 3012 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3013 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3014 } 3015 if( j>=pTab->nCol ){ 3016 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3017 pTab->zName, zColName); 3018 pParse->checkSchema = 1; 3019 goto exit_create_index; 3020 } 3021 assert( pTab->nCol<=0x7fff && j<=0x7fff ); 3022 pIndex->aiColumn[i] = (i16)j; 3023 if( pListItem->pExpr ){ 3024 int nColl; 3025 assert( pListItem->pExpr->op==TK_COLLATE ); 3026 zColl = pListItem->pExpr->u.zToken; 3027 nColl = sqlite3Strlen30(zColl) + 1; 3028 assert( nExtra>=nColl ); 3029 memcpy(zExtra, zColl, nColl); 3030 zColl = zExtra; 3031 zExtra += nColl; 3032 nExtra -= nColl; 3033 }else{ 3034 zColl = pTab->aCol[j].zColl; 3035 if( !zColl ) zColl = "BINARY"; 3036 } 3037 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3038 goto exit_create_index; 3039 } 3040 pIndex->azColl[i] = zColl; 3041 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3042 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3043 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3044 } 3045 if( pPk ){ 3046 for(j=0; j<pPk->nKeyCol; j++){ 3047 int x = pPk->aiColumn[j]; 3048 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3049 pIndex->nColumn--; 3050 }else{ 3051 pIndex->aiColumn[i] = x; 3052 pIndex->azColl[i] = pPk->azColl[j]; 3053 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3054 i++; 3055 } 3056 } 3057 assert( i==pIndex->nColumn ); 3058 }else{ 3059 pIndex->aiColumn[i] = -1; 3060 pIndex->azColl[i] = "BINARY"; 3061 } 3062 sqlite3DefaultRowEst(pIndex); 3063 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3064 3065 if( pTab==pParse->pNewTable ){ 3066 /* This routine has been called to create an automatic index as a 3067 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3068 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3069 ** i.e. one of: 3070 ** 3071 ** CREATE TABLE t(x PRIMARY KEY, y); 3072 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3073 ** 3074 ** Either way, check to see if the table already has such an index. If 3075 ** so, don't bother creating this one. This only applies to 3076 ** automatically created indices. Users can do as they wish with 3077 ** explicit indices. 3078 ** 3079 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3080 ** (and thus suppressing the second one) even if they have different 3081 ** sort orders. 3082 ** 3083 ** If there are different collating sequences or if the columns of 3084 ** the constraint occur in different orders, then the constraints are 3085 ** considered distinct and both result in separate indices. 3086 */ 3087 Index *pIdx; 3088 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3089 int k; 3090 assert( pIdx->onError!=OE_None ); 3091 assert( pIdx->autoIndex ); 3092 assert( pIndex->onError!=OE_None ); 3093 3094 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3095 for(k=0; k<pIdx->nKeyCol; k++){ 3096 const char *z1; 3097 const char *z2; 3098 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3099 z1 = pIdx->azColl[k]; 3100 z2 = pIndex->azColl[k]; 3101 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3102 } 3103 if( k==pIdx->nKeyCol ){ 3104 if( pIdx->onError!=pIndex->onError ){ 3105 /* This constraint creates the same index as a previous 3106 ** constraint specified somewhere in the CREATE TABLE statement. 3107 ** However the ON CONFLICT clauses are different. If both this 3108 ** constraint and the previous equivalent constraint have explicit 3109 ** ON CONFLICT clauses this is an error. Otherwise, use the 3110 ** explicitly specified behavior for the index. 3111 */ 3112 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3113 sqlite3ErrorMsg(pParse, 3114 "conflicting ON CONFLICT clauses specified", 0); 3115 } 3116 if( pIdx->onError==OE_Default ){ 3117 pIdx->onError = pIndex->onError; 3118 } 3119 } 3120 goto exit_create_index; 3121 } 3122 } 3123 } 3124 3125 /* Link the new Index structure to its table and to the other 3126 ** in-memory database structures. 3127 */ 3128 if( db->init.busy ){ 3129 Index *p; 3130 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3131 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3132 pIndex->zName, sqlite3Strlen30(pIndex->zName), 3133 pIndex); 3134 if( p ){ 3135 assert( p==pIndex ); /* Malloc must have failed */ 3136 db->mallocFailed = 1; 3137 goto exit_create_index; 3138 } 3139 db->flags |= SQLITE_InternChanges; 3140 if( pTblName!=0 ){ 3141 pIndex->tnum = db->init.newTnum; 3142 } 3143 } 3144 3145 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3146 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3147 ** emit code to allocate the index rootpage on disk and make an entry for 3148 ** the index in the sqlite_master table and populate the index with 3149 ** content. But, do not do this if we are simply reading the sqlite_master 3150 ** table to parse the schema, or if this index is the PRIMARY KEY index 3151 ** of a WITHOUT ROWID table. 3152 ** 3153 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3154 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3155 ** has just been created, it contains no data and the index initialization 3156 ** step can be skipped. 3157 */ 3158 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3159 Vdbe *v; 3160 char *zStmt; 3161 int iMem = ++pParse->nMem; 3162 3163 v = sqlite3GetVdbe(pParse); 3164 if( v==0 ) goto exit_create_index; 3165 3166 3167 /* Create the rootpage for the index 3168 */ 3169 sqlite3BeginWriteOperation(pParse, 1, iDb); 3170 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3171 3172 /* Gather the complete text of the CREATE INDEX statement into 3173 ** the zStmt variable 3174 */ 3175 if( pStart ){ 3176 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3177 if( pName->z[n-1]==';' ) n--; 3178 /* A named index with an explicit CREATE INDEX statement */ 3179 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3180 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3181 }else{ 3182 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3183 /* zStmt = sqlite3MPrintf(""); */ 3184 zStmt = 0; 3185 } 3186 3187 /* Add an entry in sqlite_master for this index 3188 */ 3189 sqlite3NestedParse(pParse, 3190 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3191 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3192 pIndex->zName, 3193 pTab->zName, 3194 iMem, 3195 zStmt 3196 ); 3197 sqlite3DbFree(db, zStmt); 3198 3199 /* Fill the index with data and reparse the schema. Code an OP_Expire 3200 ** to invalidate all pre-compiled statements. 3201 */ 3202 if( pTblName ){ 3203 sqlite3RefillIndex(pParse, pIndex, iMem); 3204 sqlite3ChangeCookie(pParse, iDb); 3205 sqlite3VdbeAddParseSchemaOp(v, iDb, 3206 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3207 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3208 } 3209 } 3210 3211 /* When adding an index to the list of indices for a table, make 3212 ** sure all indices labeled OE_Replace come after all those labeled 3213 ** OE_Ignore. This is necessary for the correct constraint check 3214 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3215 ** UPDATE and INSERT statements. 3216 */ 3217 if( db->init.busy || pTblName==0 ){ 3218 if( onError!=OE_Replace || pTab->pIndex==0 3219 || pTab->pIndex->onError==OE_Replace){ 3220 pIndex->pNext = pTab->pIndex; 3221 pTab->pIndex = pIndex; 3222 }else{ 3223 Index *pOther = pTab->pIndex; 3224 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3225 pOther = pOther->pNext; 3226 } 3227 pIndex->pNext = pOther->pNext; 3228 pOther->pNext = pIndex; 3229 } 3230 pRet = pIndex; 3231 pIndex = 0; 3232 } 3233 3234 /* Clean up before exiting */ 3235 exit_create_index: 3236 if( pIndex ) freeIndex(db, pIndex); 3237 sqlite3ExprDelete(db, pPIWhere); 3238 sqlite3ExprListDelete(db, pList); 3239 sqlite3SrcListDelete(db, pTblName); 3240 sqlite3DbFree(db, zName); 3241 return pRet; 3242 } 3243 3244 /* 3245 ** Fill the Index.aiRowEst[] array with default information - information 3246 ** to be used when we have not run the ANALYZE command. 3247 ** 3248 ** aiRowEst[0] is suppose to contain the number of elements in the index. 3249 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3250 ** number of rows in the table that match any particular value of the 3251 ** first column of the index. aiRowEst[2] is an estimate of the number 3252 ** of rows that match any particular combiniation of the first 2 columns 3253 ** of the index. And so forth. It must always be the case that 3254 * 3255 ** aiRowEst[N]<=aiRowEst[N-1] 3256 ** aiRowEst[N]>=1 3257 ** 3258 ** Apart from that, we have little to go on besides intuition as to 3259 ** how aiRowEst[] should be initialized. The numbers generated here 3260 ** are based on typical values found in actual indices. 3261 */ 3262 void sqlite3DefaultRowEst(Index *pIdx){ 3263 tRowcnt *a = pIdx->aiRowEst; 3264 int i; 3265 tRowcnt n; 3266 assert( a!=0 ); 3267 a[0] = pIdx->pTable->nRowEst; 3268 if( a[0]<10 ) a[0] = 10; 3269 n = 10; 3270 for(i=1; i<=pIdx->nKeyCol; i++){ 3271 a[i] = n; 3272 if( n>5 ) n--; 3273 } 3274 if( pIdx->onError!=OE_None ){ 3275 a[pIdx->nKeyCol] = 1; 3276 } 3277 } 3278 3279 /* 3280 ** This routine will drop an existing named index. This routine 3281 ** implements the DROP INDEX statement. 3282 */ 3283 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3284 Index *pIndex; 3285 Vdbe *v; 3286 sqlite3 *db = pParse->db; 3287 int iDb; 3288 3289 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3290 if( db->mallocFailed ){ 3291 goto exit_drop_index; 3292 } 3293 assert( pName->nSrc==1 ); 3294 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3295 goto exit_drop_index; 3296 } 3297 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3298 if( pIndex==0 ){ 3299 if( !ifExists ){ 3300 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3301 }else{ 3302 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3303 } 3304 pParse->checkSchema = 1; 3305 goto exit_drop_index; 3306 } 3307 if( pIndex->autoIndex ){ 3308 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3309 "or PRIMARY KEY constraint cannot be dropped", 0); 3310 goto exit_drop_index; 3311 } 3312 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3313 #ifndef SQLITE_OMIT_AUTHORIZATION 3314 { 3315 int code = SQLITE_DROP_INDEX; 3316 Table *pTab = pIndex->pTable; 3317 const char *zDb = db->aDb[iDb].zName; 3318 const char *zTab = SCHEMA_TABLE(iDb); 3319 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3320 goto exit_drop_index; 3321 } 3322 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3323 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3324 goto exit_drop_index; 3325 } 3326 } 3327 #endif 3328 3329 /* Generate code to remove the index and from the master table */ 3330 v = sqlite3GetVdbe(pParse); 3331 if( v ){ 3332 sqlite3BeginWriteOperation(pParse, 1, iDb); 3333 sqlite3NestedParse(pParse, 3334 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3335 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3336 ); 3337 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3338 sqlite3ChangeCookie(pParse, iDb); 3339 destroyRootPage(pParse, pIndex->tnum, iDb); 3340 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3341 } 3342 3343 exit_drop_index: 3344 sqlite3SrcListDelete(db, pName); 3345 } 3346 3347 /* 3348 ** pArray is a pointer to an array of objects. Each object in the 3349 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3350 ** to extend the array so that there is space for a new object at the end. 3351 ** 3352 ** When this function is called, *pnEntry contains the current size of 3353 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3354 ** in total). 3355 ** 3356 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3357 ** space allocated for the new object is zeroed, *pnEntry updated to 3358 ** reflect the new size of the array and a pointer to the new allocation 3359 ** returned. *pIdx is set to the index of the new array entry in this case. 3360 ** 3361 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3362 ** unchanged and a copy of pArray returned. 3363 */ 3364 void *sqlite3ArrayAllocate( 3365 sqlite3 *db, /* Connection to notify of malloc failures */ 3366 void *pArray, /* Array of objects. Might be reallocated */ 3367 int szEntry, /* Size of each object in the array */ 3368 int *pnEntry, /* Number of objects currently in use */ 3369 int *pIdx /* Write the index of a new slot here */ 3370 ){ 3371 char *z; 3372 int n = *pnEntry; 3373 if( (n & (n-1))==0 ){ 3374 int sz = (n==0) ? 1 : 2*n; 3375 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3376 if( pNew==0 ){ 3377 *pIdx = -1; 3378 return pArray; 3379 } 3380 pArray = pNew; 3381 } 3382 z = (char*)pArray; 3383 memset(&z[n * szEntry], 0, szEntry); 3384 *pIdx = n; 3385 ++*pnEntry; 3386 return pArray; 3387 } 3388 3389 /* 3390 ** Append a new element to the given IdList. Create a new IdList if 3391 ** need be. 3392 ** 3393 ** A new IdList is returned, or NULL if malloc() fails. 3394 */ 3395 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3396 int i; 3397 if( pList==0 ){ 3398 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3399 if( pList==0 ) return 0; 3400 } 3401 pList->a = sqlite3ArrayAllocate( 3402 db, 3403 pList->a, 3404 sizeof(pList->a[0]), 3405 &pList->nId, 3406 &i 3407 ); 3408 if( i<0 ){ 3409 sqlite3IdListDelete(db, pList); 3410 return 0; 3411 } 3412 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3413 return pList; 3414 } 3415 3416 /* 3417 ** Delete an IdList. 3418 */ 3419 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3420 int i; 3421 if( pList==0 ) return; 3422 for(i=0; i<pList->nId; i++){ 3423 sqlite3DbFree(db, pList->a[i].zName); 3424 } 3425 sqlite3DbFree(db, pList->a); 3426 sqlite3DbFree(db, pList); 3427 } 3428 3429 /* 3430 ** Return the index in pList of the identifier named zId. Return -1 3431 ** if not found. 3432 */ 3433 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3434 int i; 3435 if( pList==0 ) return -1; 3436 for(i=0; i<pList->nId; i++){ 3437 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3438 } 3439 return -1; 3440 } 3441 3442 /* 3443 ** Expand the space allocated for the given SrcList object by 3444 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3445 ** New slots are zeroed. 3446 ** 3447 ** For example, suppose a SrcList initially contains two entries: A,B. 3448 ** To append 3 new entries onto the end, do this: 3449 ** 3450 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3451 ** 3452 ** After the call above it would contain: A, B, nil, nil, nil. 3453 ** If the iStart argument had been 1 instead of 2, then the result 3454 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3455 ** the iStart value would be 0. The result then would 3456 ** be: nil, nil, nil, A, B. 3457 ** 3458 ** If a memory allocation fails the SrcList is unchanged. The 3459 ** db->mallocFailed flag will be set to true. 3460 */ 3461 SrcList *sqlite3SrcListEnlarge( 3462 sqlite3 *db, /* Database connection to notify of OOM errors */ 3463 SrcList *pSrc, /* The SrcList to be enlarged */ 3464 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3465 int iStart /* Index in pSrc->a[] of first new slot */ 3466 ){ 3467 int i; 3468 3469 /* Sanity checking on calling parameters */ 3470 assert( iStart>=0 ); 3471 assert( nExtra>=1 ); 3472 assert( pSrc!=0 ); 3473 assert( iStart<=pSrc->nSrc ); 3474 3475 /* Allocate additional space if needed */ 3476 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3477 SrcList *pNew; 3478 int nAlloc = pSrc->nSrc+nExtra; 3479 int nGot; 3480 pNew = sqlite3DbRealloc(db, pSrc, 3481 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3482 if( pNew==0 ){ 3483 assert( db->mallocFailed ); 3484 return pSrc; 3485 } 3486 pSrc = pNew; 3487 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3488 pSrc->nAlloc = (u8)nGot; 3489 } 3490 3491 /* Move existing slots that come after the newly inserted slots 3492 ** out of the way */ 3493 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3494 pSrc->a[i+nExtra] = pSrc->a[i]; 3495 } 3496 pSrc->nSrc += (i8)nExtra; 3497 3498 /* Zero the newly allocated slots */ 3499 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3500 for(i=iStart; i<iStart+nExtra; i++){ 3501 pSrc->a[i].iCursor = -1; 3502 } 3503 3504 /* Return a pointer to the enlarged SrcList */ 3505 return pSrc; 3506 } 3507 3508 3509 /* 3510 ** Append a new table name to the given SrcList. Create a new SrcList if 3511 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3512 ** 3513 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3514 ** SrcList might be the same as the SrcList that was input or it might be 3515 ** a new one. If an OOM error does occurs, then the prior value of pList 3516 ** that is input to this routine is automatically freed. 3517 ** 3518 ** If pDatabase is not null, it means that the table has an optional 3519 ** database name prefix. Like this: "database.table". The pDatabase 3520 ** points to the table name and the pTable points to the database name. 3521 ** The SrcList.a[].zName field is filled with the table name which might 3522 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3523 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3524 ** or with NULL if no database is specified. 3525 ** 3526 ** In other words, if call like this: 3527 ** 3528 ** sqlite3SrcListAppend(D,A,B,0); 3529 ** 3530 ** Then B is a table name and the database name is unspecified. If called 3531 ** like this: 3532 ** 3533 ** sqlite3SrcListAppend(D,A,B,C); 3534 ** 3535 ** Then C is the table name and B is the database name. If C is defined 3536 ** then so is B. In other words, we never have a case where: 3537 ** 3538 ** sqlite3SrcListAppend(D,A,0,C); 3539 ** 3540 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3541 ** before being added to the SrcList. 3542 */ 3543 SrcList *sqlite3SrcListAppend( 3544 sqlite3 *db, /* Connection to notify of malloc failures */ 3545 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3546 Token *pTable, /* Table to append */ 3547 Token *pDatabase /* Database of the table */ 3548 ){ 3549 struct SrcList_item *pItem; 3550 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3551 if( pList==0 ){ 3552 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3553 if( pList==0 ) return 0; 3554 pList->nAlloc = 1; 3555 } 3556 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3557 if( db->mallocFailed ){ 3558 sqlite3SrcListDelete(db, pList); 3559 return 0; 3560 } 3561 pItem = &pList->a[pList->nSrc-1]; 3562 if( pDatabase && pDatabase->z==0 ){ 3563 pDatabase = 0; 3564 } 3565 if( pDatabase ){ 3566 Token *pTemp = pDatabase; 3567 pDatabase = pTable; 3568 pTable = pTemp; 3569 } 3570 pItem->zName = sqlite3NameFromToken(db, pTable); 3571 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3572 return pList; 3573 } 3574 3575 /* 3576 ** Assign VdbeCursor index numbers to all tables in a SrcList 3577 */ 3578 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3579 int i; 3580 struct SrcList_item *pItem; 3581 assert(pList || pParse->db->mallocFailed ); 3582 if( pList ){ 3583 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3584 if( pItem->iCursor>=0 ) break; 3585 pItem->iCursor = pParse->nTab++; 3586 if( pItem->pSelect ){ 3587 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3588 } 3589 } 3590 } 3591 } 3592 3593 /* 3594 ** Delete an entire SrcList including all its substructure. 3595 */ 3596 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3597 int i; 3598 struct SrcList_item *pItem; 3599 if( pList==0 ) return; 3600 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3601 sqlite3DbFree(db, pItem->zDatabase); 3602 sqlite3DbFree(db, pItem->zName); 3603 sqlite3DbFree(db, pItem->zAlias); 3604 sqlite3DbFree(db, pItem->zIndex); 3605 sqlite3DeleteTable(db, pItem->pTab); 3606 sqlite3SelectDelete(db, pItem->pSelect); 3607 sqlite3ExprDelete(db, pItem->pOn); 3608 sqlite3IdListDelete(db, pItem->pUsing); 3609 } 3610 sqlite3DbFree(db, pList); 3611 } 3612 3613 /* 3614 ** This routine is called by the parser to add a new term to the 3615 ** end of a growing FROM clause. The "p" parameter is the part of 3616 ** the FROM clause that has already been constructed. "p" is NULL 3617 ** if this is the first term of the FROM clause. pTable and pDatabase 3618 ** are the name of the table and database named in the FROM clause term. 3619 ** pDatabase is NULL if the database name qualifier is missing - the 3620 ** usual case. If the term has a alias, then pAlias points to the 3621 ** alias token. If the term is a subquery, then pSubquery is the 3622 ** SELECT statement that the subquery encodes. The pTable and 3623 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3624 ** parameters are the content of the ON and USING clauses. 3625 ** 3626 ** Return a new SrcList which encodes is the FROM with the new 3627 ** term added. 3628 */ 3629 SrcList *sqlite3SrcListAppendFromTerm( 3630 Parse *pParse, /* Parsing context */ 3631 SrcList *p, /* The left part of the FROM clause already seen */ 3632 Token *pTable, /* Name of the table to add to the FROM clause */ 3633 Token *pDatabase, /* Name of the database containing pTable */ 3634 Token *pAlias, /* The right-hand side of the AS subexpression */ 3635 Select *pSubquery, /* A subquery used in place of a table name */ 3636 Expr *pOn, /* The ON clause of a join */ 3637 IdList *pUsing /* The USING clause of a join */ 3638 ){ 3639 struct SrcList_item *pItem; 3640 sqlite3 *db = pParse->db; 3641 if( !p && (pOn || pUsing) ){ 3642 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3643 (pOn ? "ON" : "USING") 3644 ); 3645 goto append_from_error; 3646 } 3647 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3648 if( p==0 || NEVER(p->nSrc==0) ){ 3649 goto append_from_error; 3650 } 3651 pItem = &p->a[p->nSrc-1]; 3652 assert( pAlias!=0 ); 3653 if( pAlias->n ){ 3654 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3655 } 3656 pItem->pSelect = pSubquery; 3657 pItem->pOn = pOn; 3658 pItem->pUsing = pUsing; 3659 return p; 3660 3661 append_from_error: 3662 assert( p==0 ); 3663 sqlite3ExprDelete(db, pOn); 3664 sqlite3IdListDelete(db, pUsing); 3665 sqlite3SelectDelete(db, pSubquery); 3666 return 0; 3667 } 3668 3669 /* 3670 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3671 ** element of the source-list passed as the second argument. 3672 */ 3673 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3674 assert( pIndexedBy!=0 ); 3675 if( p && ALWAYS(p->nSrc>0) ){ 3676 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3677 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3678 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3679 /* A "NOT INDEXED" clause was supplied. See parse.y 3680 ** construct "indexed_opt" for details. */ 3681 pItem->notIndexed = 1; 3682 }else{ 3683 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3684 } 3685 } 3686 } 3687 3688 /* 3689 ** When building up a FROM clause in the parser, the join operator 3690 ** is initially attached to the left operand. But the code generator 3691 ** expects the join operator to be on the right operand. This routine 3692 ** Shifts all join operators from left to right for an entire FROM 3693 ** clause. 3694 ** 3695 ** Example: Suppose the join is like this: 3696 ** 3697 ** A natural cross join B 3698 ** 3699 ** The operator is "natural cross join". The A and B operands are stored 3700 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3701 ** operator with A. This routine shifts that operator over to B. 3702 */ 3703 void sqlite3SrcListShiftJoinType(SrcList *p){ 3704 if( p ){ 3705 int i; 3706 assert( p->a || p->nSrc==0 ); 3707 for(i=p->nSrc-1; i>0; i--){ 3708 p->a[i].jointype = p->a[i-1].jointype; 3709 } 3710 p->a[0].jointype = 0; 3711 } 3712 } 3713 3714 /* 3715 ** Begin a transaction 3716 */ 3717 void sqlite3BeginTransaction(Parse *pParse, int type){ 3718 sqlite3 *db; 3719 Vdbe *v; 3720 int i; 3721 3722 assert( pParse!=0 ); 3723 db = pParse->db; 3724 assert( db!=0 ); 3725 /* if( db->aDb[0].pBt==0 ) return; */ 3726 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3727 return; 3728 } 3729 v = sqlite3GetVdbe(pParse); 3730 if( !v ) return; 3731 if( type!=TK_DEFERRED ){ 3732 for(i=0; i<db->nDb; i++){ 3733 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3734 sqlite3VdbeUsesBtree(v, i); 3735 } 3736 } 3737 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3738 } 3739 3740 /* 3741 ** Commit a transaction 3742 */ 3743 void sqlite3CommitTransaction(Parse *pParse){ 3744 Vdbe *v; 3745 3746 assert( pParse!=0 ); 3747 assert( pParse->db!=0 ); 3748 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3749 return; 3750 } 3751 v = sqlite3GetVdbe(pParse); 3752 if( v ){ 3753 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3754 } 3755 } 3756 3757 /* 3758 ** Rollback a transaction 3759 */ 3760 void sqlite3RollbackTransaction(Parse *pParse){ 3761 Vdbe *v; 3762 3763 assert( pParse!=0 ); 3764 assert( pParse->db!=0 ); 3765 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3766 return; 3767 } 3768 v = sqlite3GetVdbe(pParse); 3769 if( v ){ 3770 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3771 } 3772 } 3773 3774 /* 3775 ** This function is called by the parser when it parses a command to create, 3776 ** release or rollback an SQL savepoint. 3777 */ 3778 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3779 char *zName = sqlite3NameFromToken(pParse->db, pName); 3780 if( zName ){ 3781 Vdbe *v = sqlite3GetVdbe(pParse); 3782 #ifndef SQLITE_OMIT_AUTHORIZATION 3783 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3784 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3785 #endif 3786 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3787 sqlite3DbFree(pParse->db, zName); 3788 return; 3789 } 3790 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3791 } 3792 } 3793 3794 /* 3795 ** Make sure the TEMP database is open and available for use. Return 3796 ** the number of errors. Leave any error messages in the pParse structure. 3797 */ 3798 int sqlite3OpenTempDatabase(Parse *pParse){ 3799 sqlite3 *db = pParse->db; 3800 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3801 int rc; 3802 Btree *pBt; 3803 static const int flags = 3804 SQLITE_OPEN_READWRITE | 3805 SQLITE_OPEN_CREATE | 3806 SQLITE_OPEN_EXCLUSIVE | 3807 SQLITE_OPEN_DELETEONCLOSE | 3808 SQLITE_OPEN_TEMP_DB; 3809 3810 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3811 if( rc!=SQLITE_OK ){ 3812 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3813 "file for storing temporary tables"); 3814 pParse->rc = rc; 3815 return 1; 3816 } 3817 db->aDb[1].pBt = pBt; 3818 assert( db->aDb[1].pSchema ); 3819 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3820 db->mallocFailed = 1; 3821 return 1; 3822 } 3823 } 3824 return 0; 3825 } 3826 3827 /* 3828 ** Generate VDBE code that will verify the schema cookie and start 3829 ** a read-transaction for all named database files. 3830 ** 3831 ** It is important that all schema cookies be verified and all 3832 ** read transactions be started before anything else happens in 3833 ** the VDBE program. But this routine can be called after much other 3834 ** code has been generated. So here is what we do: 3835 ** 3836 ** The first time this routine is called, we code an OP_Goto that 3837 ** will jump to a subroutine at the end of the program. Then we 3838 ** record every database that needs its schema verified in the 3839 ** pParse->cookieMask field. Later, after all other code has been 3840 ** generated, the subroutine that does the cookie verifications and 3841 ** starts the transactions will be coded and the OP_Goto P2 value 3842 ** will be made to point to that subroutine. The generation of the 3843 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3844 ** 3845 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3846 ** schema on any databases. This can be used to position the OP_Goto 3847 ** early in the code, before we know if any database tables will be used. 3848 */ 3849 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3850 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3851 3852 #ifndef SQLITE_OMIT_TRIGGER 3853 if( pToplevel!=pParse ){ 3854 /* This branch is taken if a trigger is currently being coded. In this 3855 ** case, set cookieGoto to a non-zero value to show that this function 3856 ** has been called. This is used by the sqlite3ExprCodeConstants() 3857 ** function. */ 3858 pParse->cookieGoto = -1; 3859 } 3860 #endif 3861 if( pToplevel->cookieGoto==0 ){ 3862 Vdbe *v = sqlite3GetVdbe(pToplevel); 3863 if( v==0 ) return; /* This only happens if there was a prior error */ 3864 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3865 } 3866 if( iDb>=0 ){ 3867 sqlite3 *db = pToplevel->db; 3868 yDbMask mask; 3869 3870 assert( iDb<db->nDb ); 3871 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3872 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3873 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3874 mask = ((yDbMask)1)<<iDb; 3875 if( (pToplevel->cookieMask & mask)==0 ){ 3876 pToplevel->cookieMask |= mask; 3877 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3878 if( !OMIT_TEMPDB && iDb==1 ){ 3879 sqlite3OpenTempDatabase(pToplevel); 3880 } 3881 } 3882 } 3883 } 3884 3885 /* 3886 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3887 ** attached database. Otherwise, invoke it for the database named zDb only. 3888 */ 3889 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3890 sqlite3 *db = pParse->db; 3891 int i; 3892 for(i=0; i<db->nDb; i++){ 3893 Db *pDb = &db->aDb[i]; 3894 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3895 sqlite3CodeVerifySchema(pParse, i); 3896 } 3897 } 3898 } 3899 3900 /* 3901 ** Generate VDBE code that prepares for doing an operation that 3902 ** might change the database. 3903 ** 3904 ** This routine starts a new transaction if we are not already within 3905 ** a transaction. If we are already within a transaction, then a checkpoint 3906 ** is set if the setStatement parameter is true. A checkpoint should 3907 ** be set for operations that might fail (due to a constraint) part of 3908 ** the way through and which will need to undo some writes without having to 3909 ** rollback the whole transaction. For operations where all constraints 3910 ** can be checked before any changes are made to the database, it is never 3911 ** necessary to undo a write and the checkpoint should not be set. 3912 */ 3913 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3914 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3915 sqlite3CodeVerifySchema(pParse, iDb); 3916 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3917 pToplevel->isMultiWrite |= setStatement; 3918 } 3919 3920 /* 3921 ** Indicate that the statement currently under construction might write 3922 ** more than one entry (example: deleting one row then inserting another, 3923 ** inserting multiple rows in a table, or inserting a row and index entries.) 3924 ** If an abort occurs after some of these writes have completed, then it will 3925 ** be necessary to undo the completed writes. 3926 */ 3927 void sqlite3MultiWrite(Parse *pParse){ 3928 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3929 pToplevel->isMultiWrite = 1; 3930 } 3931 3932 /* 3933 ** The code generator calls this routine if is discovers that it is 3934 ** possible to abort a statement prior to completion. In order to 3935 ** perform this abort without corrupting the database, we need to make 3936 ** sure that the statement is protected by a statement transaction. 3937 ** 3938 ** Technically, we only need to set the mayAbort flag if the 3939 ** isMultiWrite flag was previously set. There is a time dependency 3940 ** such that the abort must occur after the multiwrite. This makes 3941 ** some statements involving the REPLACE conflict resolution algorithm 3942 ** go a little faster. But taking advantage of this time dependency 3943 ** makes it more difficult to prove that the code is correct (in 3944 ** particular, it prevents us from writing an effective 3945 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3946 ** to take the safe route and skip the optimization. 3947 */ 3948 void sqlite3MayAbort(Parse *pParse){ 3949 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3950 pToplevel->mayAbort = 1; 3951 } 3952 3953 /* 3954 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3955 ** error. The onError parameter determines which (if any) of the statement 3956 ** and/or current transaction is rolled back. 3957 */ 3958 void sqlite3HaltConstraint( 3959 Parse *pParse, /* Parsing context */ 3960 int errCode, /* extended error code */ 3961 int onError, /* Constraint type */ 3962 char *p4, /* Error message */ 3963 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 3964 u8 p5Errmsg /* P5_ErrMsg type */ 3965 ){ 3966 Vdbe *v = sqlite3GetVdbe(pParse); 3967 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3968 if( onError==OE_Abort ){ 3969 sqlite3MayAbort(pParse); 3970 } 3971 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3972 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 3973 } 3974 3975 /* 3976 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 3977 */ 3978 void sqlite3UniqueConstraint( 3979 Parse *pParse, /* Parsing context */ 3980 int onError, /* Constraint type */ 3981 Index *pIdx /* The index that triggers the constraint */ 3982 ){ 3983 char *zErr; 3984 int j; 3985 StrAccum errMsg; 3986 Table *pTab = pIdx->pTable; 3987 3988 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 3989 errMsg.db = pParse->db; 3990 for(j=0; j<pIdx->nKeyCol; j++){ 3991 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 3992 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 3993 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 3994 sqlite3StrAccumAppend(&errMsg, ".", 1); 3995 sqlite3StrAccumAppendAll(&errMsg, zCol); 3996 } 3997 zErr = sqlite3StrAccumFinish(&errMsg); 3998 sqlite3HaltConstraint(pParse, 3999 (pIdx->autoIndex==2)?SQLITE_CONSTRAINT_PRIMARYKEY:SQLITE_CONSTRAINT_UNIQUE, 4000 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4001 } 4002 4003 4004 /* 4005 ** Code an OP_Halt due to non-unique rowid. 4006 */ 4007 void sqlite3RowidConstraint( 4008 Parse *pParse, /* Parsing context */ 4009 int onError, /* Conflict resolution algorithm */ 4010 Table *pTab /* The table with the non-unique rowid */ 4011 ){ 4012 char *zMsg; 4013 int rc; 4014 if( pTab->iPKey>=0 ){ 4015 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4016 pTab->aCol[pTab->iPKey].zName); 4017 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4018 }else{ 4019 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4020 rc = SQLITE_CONSTRAINT_ROWID; 4021 } 4022 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4023 P5_ConstraintUnique); 4024 } 4025 4026 /* 4027 ** Check to see if pIndex uses the collating sequence pColl. Return 4028 ** true if it does and false if it does not. 4029 */ 4030 #ifndef SQLITE_OMIT_REINDEX 4031 static int collationMatch(const char *zColl, Index *pIndex){ 4032 int i; 4033 assert( zColl!=0 ); 4034 for(i=0; i<pIndex->nColumn; i++){ 4035 const char *z = pIndex->azColl[i]; 4036 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4037 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4038 return 1; 4039 } 4040 } 4041 return 0; 4042 } 4043 #endif 4044 4045 /* 4046 ** Recompute all indices of pTab that use the collating sequence pColl. 4047 ** If pColl==0 then recompute all indices of pTab. 4048 */ 4049 #ifndef SQLITE_OMIT_REINDEX 4050 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4051 Index *pIndex; /* An index associated with pTab */ 4052 4053 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4054 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4055 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4056 sqlite3BeginWriteOperation(pParse, 0, iDb); 4057 sqlite3RefillIndex(pParse, pIndex, -1); 4058 } 4059 } 4060 } 4061 #endif 4062 4063 /* 4064 ** Recompute all indices of all tables in all databases where the 4065 ** indices use the collating sequence pColl. If pColl==0 then recompute 4066 ** all indices everywhere. 4067 */ 4068 #ifndef SQLITE_OMIT_REINDEX 4069 static void reindexDatabases(Parse *pParse, char const *zColl){ 4070 Db *pDb; /* A single database */ 4071 int iDb; /* The database index number */ 4072 sqlite3 *db = pParse->db; /* The database connection */ 4073 HashElem *k; /* For looping over tables in pDb */ 4074 Table *pTab; /* A table in the database */ 4075 4076 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4077 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4078 assert( pDb!=0 ); 4079 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4080 pTab = (Table*)sqliteHashData(k); 4081 reindexTable(pParse, pTab, zColl); 4082 } 4083 } 4084 } 4085 #endif 4086 4087 /* 4088 ** Generate code for the REINDEX command. 4089 ** 4090 ** REINDEX -- 1 4091 ** REINDEX <collation> -- 2 4092 ** REINDEX ?<database>.?<tablename> -- 3 4093 ** REINDEX ?<database>.?<indexname> -- 4 4094 ** 4095 ** Form 1 causes all indices in all attached databases to be rebuilt. 4096 ** Form 2 rebuilds all indices in all databases that use the named 4097 ** collating function. Forms 3 and 4 rebuild the named index or all 4098 ** indices associated with the named table. 4099 */ 4100 #ifndef SQLITE_OMIT_REINDEX 4101 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4102 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4103 char *z; /* Name of a table or index */ 4104 const char *zDb; /* Name of the database */ 4105 Table *pTab; /* A table in the database */ 4106 Index *pIndex; /* An index associated with pTab */ 4107 int iDb; /* The database index number */ 4108 sqlite3 *db = pParse->db; /* The database connection */ 4109 Token *pObjName; /* Name of the table or index to be reindexed */ 4110 4111 /* Read the database schema. If an error occurs, leave an error message 4112 ** and code in pParse and return NULL. */ 4113 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4114 return; 4115 } 4116 4117 if( pName1==0 ){ 4118 reindexDatabases(pParse, 0); 4119 return; 4120 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4121 char *zColl; 4122 assert( pName1->z ); 4123 zColl = sqlite3NameFromToken(pParse->db, pName1); 4124 if( !zColl ) return; 4125 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4126 if( pColl ){ 4127 reindexDatabases(pParse, zColl); 4128 sqlite3DbFree(db, zColl); 4129 return; 4130 } 4131 sqlite3DbFree(db, zColl); 4132 } 4133 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4134 if( iDb<0 ) return; 4135 z = sqlite3NameFromToken(db, pObjName); 4136 if( z==0 ) return; 4137 zDb = db->aDb[iDb].zName; 4138 pTab = sqlite3FindTable(db, z, zDb); 4139 if( pTab ){ 4140 reindexTable(pParse, pTab, 0); 4141 sqlite3DbFree(db, z); 4142 return; 4143 } 4144 pIndex = sqlite3FindIndex(db, z, zDb); 4145 sqlite3DbFree(db, z); 4146 if( pIndex ){ 4147 sqlite3BeginWriteOperation(pParse, 0, iDb); 4148 sqlite3RefillIndex(pParse, pIndex, -1); 4149 return; 4150 } 4151 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4152 } 4153 #endif 4154 4155 /* 4156 ** Return a KeyInfo structure that is appropriate for the given Index. 4157 ** 4158 ** The KeyInfo structure for an index is cached in the Index object. 4159 ** So there might be multiple references to the returned pointer. The 4160 ** caller should not try to modify the KeyInfo object. 4161 ** 4162 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4163 ** when it has finished using it. 4164 */ 4165 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4166 if( pParse->nErr ) return 0; 4167 #ifndef SQLITE_OMIT_SHARED_CACHE 4168 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ 4169 sqlite3KeyInfoUnref(pIdx->pKeyInfo); 4170 pIdx->pKeyInfo = 0; 4171 } 4172 #endif 4173 if( pIdx->pKeyInfo==0 ){ 4174 int i; 4175 int nCol = pIdx->nColumn; 4176 int nKey = pIdx->nKeyCol; 4177 KeyInfo *pKey; 4178 if( pIdx->uniqNotNull ){ 4179 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4180 }else{ 4181 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4182 } 4183 if( pKey ){ 4184 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4185 for(i=0; i<nCol; i++){ 4186 char *zColl = pIdx->azColl[i]; 4187 assert( zColl!=0 ); 4188 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4189 sqlite3LocateCollSeq(pParse, zColl); 4190 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4191 } 4192 if( pParse->nErr ){ 4193 sqlite3KeyInfoUnref(pKey); 4194 }else{ 4195 pIdx->pKeyInfo = pKey; 4196 } 4197 } 4198 } 4199 return sqlite3KeyInfoRef(pIdx->pKeyInfo); 4200 } 4201 4202 #ifndef SQLITE_OMIT_CTE 4203 /* 4204 ** This routine is invoked once per CTE by the parser while parsing a 4205 ** WITH clause. 4206 */ 4207 With *sqlite3WithAdd( 4208 Parse *pParse, /* Parsing context */ 4209 With *pWith, /* Existing WITH clause, or NULL */ 4210 Token *pName, /* Name of the common-table */ 4211 ExprList *pArglist, /* Optional column name list for the table */ 4212 Select *pQuery /* Query used to initialize the table */ 4213 ){ 4214 sqlite3 *db = pParse->db; 4215 With *pNew; 4216 char *zName; 4217 4218 /* Check that the CTE name is unique within this WITH clause. If 4219 ** not, store an error in the Parse structure. */ 4220 zName = sqlite3NameFromToken(pParse->db, pName); 4221 if( zName && pWith ){ 4222 int i; 4223 for(i=0; i<pWith->nCte; i++){ 4224 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4225 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4226 } 4227 } 4228 } 4229 4230 if( pWith ){ 4231 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4232 pNew = sqlite3DbRealloc(db, pWith, nByte); 4233 }else{ 4234 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4235 } 4236 assert( zName!=0 || pNew==0 ); 4237 assert( db->mallocFailed==0 || pNew==0 ); 4238 4239 if( pNew==0 ){ 4240 sqlite3ExprListDelete(db, pArglist); 4241 sqlite3SelectDelete(db, pQuery); 4242 sqlite3DbFree(db, zName); 4243 pNew = pWith; 4244 }else{ 4245 pNew->a[pNew->nCte].pSelect = pQuery; 4246 pNew->a[pNew->nCte].pCols = pArglist; 4247 pNew->a[pNew->nCte].zName = zName; 4248 pNew->a[pNew->nCte].zErr = 0; 4249 pNew->nCte++; 4250 } 4251 4252 return pNew; 4253 } 4254 4255 /* 4256 ** Free the contents of the With object passed as the second argument. 4257 */ 4258 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4259 if( pWith ){ 4260 int i; 4261 for(i=0; i<pWith->nCte; i++){ 4262 struct Cte *pCte = &pWith->a[i]; 4263 sqlite3ExprListDelete(db, pCte->pCols); 4264 sqlite3SelectDelete(db, pCte->pSelect); 4265 sqlite3DbFree(db, pCte->zName); 4266 } 4267 sqlite3DbFree(db, pWith); 4268 } 4269 } 4270 #endif /* !defined(SQLITE_OMIT_CTE) */ 4271