1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.433 2007/07/02 19:31:27 drh Exp $ 26 */ 27 #include "sqliteInt.h" 28 #include <ctype.h> 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 int i; 69 int nBytes; 70 TableLock *p; 71 72 if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){ 73 return; 74 } 75 76 for(i=0; i<pParse->nTableLock; i++){ 77 p = &pParse->aTableLock[i]; 78 if( p->iDb==iDb && p->iTab==iTab ){ 79 p->isWriteLock = (p->isWriteLock || isWriteLock); 80 return; 81 } 82 } 83 84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 85 pParse->aTableLock = sqliteReallocOrFree(pParse->aTableLock, nBytes); 86 if( pParse->aTableLock ){ 87 p = &pParse->aTableLock[pParse->nTableLock++]; 88 p->iDb = iDb; 89 p->iTab = iTab; 90 p->isWriteLock = isWriteLock; 91 p->zName = zName; 92 } 93 } 94 95 /* 96 ** Code an OP_TableLock instruction for each table locked by the 97 ** statement (configured by calls to sqlite3TableLock()). 98 */ 99 static void codeTableLocks(Parse *pParse){ 100 int i; 101 Vdbe *pVdbe; 102 assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 ); 103 104 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 105 return; 106 } 107 108 for(i=0; i<pParse->nTableLock; i++){ 109 TableLock *p = &pParse->aTableLock[i]; 110 int p1 = p->iDb; 111 if( p->isWriteLock ){ 112 p1 = -1*(p1+1); 113 } 114 sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC); 115 } 116 } 117 #else 118 #define codeTableLocks(x) 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 if( sqlite3MallocFailed() ) return; 136 if( pParse->nested ) return; 137 if( !pParse->pVdbe ){ 138 if( pParse->rc==SQLITE_OK && pParse->nErr ){ 139 pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 db = pParse->db; 148 v = sqlite3GetVdbe(pParse); 149 if( v ){ 150 sqlite3VdbeAddOp(v, OP_Halt, 0, 0); 151 152 /* The cookie mask contains one bit for each database file open. 153 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 154 ** set for each database that is used. Generate code to start a 155 ** transaction on each used database and to verify the schema cookie 156 ** on each used database. 157 */ 158 if( pParse->cookieGoto>0 ){ 159 u32 mask; 160 int iDb; 161 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 162 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 163 if( (mask & pParse->cookieMask)==0 ) continue; 164 sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 165 sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 166 } 167 #ifndef SQLITE_OMIT_VIRTUALTABLE 168 if( pParse->pVirtualLock ){ 169 char *vtab = (char *)pParse->pVirtualLock->pVtab; 170 sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB); 171 } 172 #endif 173 174 /* Once all the cookies have been verified and transactions opened, 175 ** obtain the required table-locks. This is a no-op unless the 176 ** shared-cache feature is enabled. 177 */ 178 codeTableLocks(pParse); 179 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); 180 } 181 182 #ifndef SQLITE_OMIT_TRACE 183 /* Add a No-op that contains the complete text of the compiled SQL 184 ** statement as its P3 argument. This does not change the functionality 185 ** of the program. 186 ** 187 ** This is used to implement sqlite3_trace(). 188 */ 189 sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); 190 #endif /* SQLITE_OMIT_TRACE */ 191 } 192 193 194 /* Get the VDBE program ready for execution 195 */ 196 if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){ 197 #ifdef SQLITE_DEBUG 198 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 199 sqlite3VdbeTrace(v, trace); 200 #endif 201 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, 202 pParse->nTab+3, pParse->explain); 203 pParse->rc = SQLITE_DONE; 204 pParse->colNamesSet = 0; 205 }else if( pParse->rc==SQLITE_OK ){ 206 pParse->rc = SQLITE_ERROR; 207 } 208 pParse->nTab = 0; 209 pParse->nMem = 0; 210 pParse->nSet = 0; 211 pParse->nVar = 0; 212 pParse->cookieMask = 0; 213 pParse->cookieGoto = 0; 214 } 215 216 /* 217 ** Run the parser and code generator recursively in order to generate 218 ** code for the SQL statement given onto the end of the pParse context 219 ** currently under construction. When the parser is run recursively 220 ** this way, the final OP_Halt is not appended and other initialization 221 ** and finalization steps are omitted because those are handling by the 222 ** outermost parser. 223 ** 224 ** Not everything is nestable. This facility is designed to permit 225 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 226 ** care if you decide to try to use this routine for some other purposes. 227 */ 228 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 229 va_list ap; 230 char *zSql; 231 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 232 char saveBuf[SAVE_SZ]; 233 234 if( pParse->nErr ) return; 235 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 236 va_start(ap, zFormat); 237 zSql = sqlite3VMPrintf(zFormat, ap); 238 va_end(ap); 239 if( zSql==0 ){ 240 return; /* A malloc must have failed */ 241 } 242 pParse->nested++; 243 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 244 memset(&pParse->nVar, 0, SAVE_SZ); 245 sqlite3RunParser(pParse, zSql, 0); 246 sqliteFree(zSql); 247 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 248 pParse->nested--; 249 } 250 251 /* 252 ** Locate the in-memory structure that describes a particular database 253 ** table given the name of that table and (optionally) the name of the 254 ** database containing the table. Return NULL if not found. 255 ** 256 ** If zDatabase is 0, all databases are searched for the table and the 257 ** first matching table is returned. (No checking for duplicate table 258 ** names is done.) The search order is TEMP first, then MAIN, then any 259 ** auxiliary databases added using the ATTACH command. 260 ** 261 ** See also sqlite3LocateTable(). 262 */ 263 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 264 Table *p = 0; 265 int i; 266 assert( zName!=0 ); 267 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 268 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 269 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 270 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); 271 if( p ) break; 272 } 273 return p; 274 } 275 276 /* 277 ** Locate the in-memory structure that describes a particular database 278 ** table given the name of that table and (optionally) the name of the 279 ** database containing the table. Return NULL if not found. Also leave an 280 ** error message in pParse->zErrMsg. 281 ** 282 ** The difference between this routine and sqlite3FindTable() is that this 283 ** routine leaves an error message in pParse->zErrMsg where 284 ** sqlite3FindTable() does not. 285 */ 286 Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ 287 Table *p; 288 289 /* Read the database schema. If an error occurs, leave an error message 290 ** and code in pParse and return NULL. */ 291 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 292 return 0; 293 } 294 295 p = sqlite3FindTable(pParse->db, zName, zDbase); 296 if( p==0 ){ 297 if( zDbase ){ 298 sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); 299 }else{ 300 sqlite3ErrorMsg(pParse, "no such table: %s", zName); 301 } 302 pParse->checkSchema = 1; 303 } 304 return p; 305 } 306 307 /* 308 ** Locate the in-memory structure that describes 309 ** a particular index given the name of that index 310 ** and the name of the database that contains the index. 311 ** Return NULL if not found. 312 ** 313 ** If zDatabase is 0, all databases are searched for the 314 ** table and the first matching index is returned. (No checking 315 ** for duplicate index names is done.) The search order is 316 ** TEMP first, then MAIN, then any auxiliary databases added 317 ** using the ATTACH command. 318 */ 319 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 320 Index *p = 0; 321 int i; 322 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 323 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 324 Schema *pSchema = db->aDb[j].pSchema; 325 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 326 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 327 if( pSchema ){ 328 p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); 329 } 330 if( p ) break; 331 } 332 return p; 333 } 334 335 /* 336 ** Reclaim the memory used by an index 337 */ 338 static void freeIndex(Index *p){ 339 sqliteFree(p->zColAff); 340 sqliteFree(p); 341 } 342 343 /* 344 ** Remove the given index from the index hash table, and free 345 ** its memory structures. 346 ** 347 ** The index is removed from the database hash tables but 348 ** it is not unlinked from the Table that it indexes. 349 ** Unlinking from the Table must be done by the calling function. 350 */ 351 static void sqliteDeleteIndex(Index *p){ 352 Index *pOld; 353 const char *zName = p->zName; 354 355 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); 356 assert( pOld==0 || pOld==p ); 357 freeIndex(p); 358 } 359 360 /* 361 ** For the index called zIdxName which is found in the database iDb, 362 ** unlike that index from its Table then remove the index from 363 ** the index hash table and free all memory structures associated 364 ** with the index. 365 */ 366 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 367 Index *pIndex; 368 int len; 369 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 370 371 len = strlen(zIdxName); 372 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 373 if( pIndex ){ 374 if( pIndex->pTable->pIndex==pIndex ){ 375 pIndex->pTable->pIndex = pIndex->pNext; 376 }else{ 377 Index *p; 378 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 379 if( p && p->pNext==pIndex ){ 380 p->pNext = pIndex->pNext; 381 } 382 } 383 freeIndex(pIndex); 384 } 385 db->flags |= SQLITE_InternChanges; 386 } 387 388 /* 389 ** Erase all schema information from the in-memory hash tables of 390 ** a single database. This routine is called to reclaim memory 391 ** before the database closes. It is also called during a rollback 392 ** if there were schema changes during the transaction or if a 393 ** schema-cookie mismatch occurs. 394 ** 395 ** If iDb<=0 then reset the internal schema tables for all database 396 ** files. If iDb>=2 then reset the internal schema for only the 397 ** single file indicated. 398 */ 399 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 400 int i, j; 401 402 assert( iDb>=0 && iDb<db->nDb ); 403 for(i=iDb; i<db->nDb; i++){ 404 Db *pDb = &db->aDb[i]; 405 if( pDb->pSchema ){ 406 sqlite3SchemaFree(pDb->pSchema); 407 } 408 if( iDb>0 ) return; 409 } 410 assert( iDb==0 ); 411 db->flags &= ~SQLITE_InternChanges; 412 413 /* If one or more of the auxiliary database files has been closed, 414 ** then remove them from the auxiliary database list. We take the 415 ** opportunity to do this here since we have just deleted all of the 416 ** schema hash tables and therefore do not have to make any changes 417 ** to any of those tables. 418 */ 419 for(i=0; i<db->nDb; i++){ 420 struct Db *pDb = &db->aDb[i]; 421 if( pDb->pBt==0 ){ 422 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 423 pDb->pAux = 0; 424 } 425 } 426 for(i=j=2; i<db->nDb; i++){ 427 struct Db *pDb = &db->aDb[i]; 428 if( pDb->pBt==0 ){ 429 sqliteFree(pDb->zName); 430 pDb->zName = 0; 431 continue; 432 } 433 if( j<i ){ 434 db->aDb[j] = db->aDb[i]; 435 } 436 j++; 437 } 438 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 439 db->nDb = j; 440 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 441 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 442 sqliteFree(db->aDb); 443 db->aDb = db->aDbStatic; 444 } 445 } 446 447 /* 448 ** This routine is called when a commit occurs. 449 */ 450 void sqlite3CommitInternalChanges(sqlite3 *db){ 451 db->flags &= ~SQLITE_InternChanges; 452 } 453 454 /* 455 ** Clear the column names from a table or view. 456 */ 457 static void sqliteResetColumnNames(Table *pTable){ 458 int i; 459 Column *pCol; 460 assert( pTable!=0 ); 461 if( (pCol = pTable->aCol)!=0 ){ 462 for(i=0; i<pTable->nCol; i++, pCol++){ 463 sqliteFree(pCol->zName); 464 sqlite3ExprDelete(pCol->pDflt); 465 sqliteFree(pCol->zType); 466 sqliteFree(pCol->zColl); 467 } 468 sqliteFree(pTable->aCol); 469 } 470 pTable->aCol = 0; 471 pTable->nCol = 0; 472 } 473 474 /* 475 ** Remove the memory data structures associated with the given 476 ** Table. No changes are made to disk by this routine. 477 ** 478 ** This routine just deletes the data structure. It does not unlink 479 ** the table data structure from the hash table. Nor does it remove 480 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 481 ** memory structures of the indices and foreign keys associated with 482 ** the table. 483 */ 484 void sqlite3DeleteTable(Table *pTable){ 485 Index *pIndex, *pNext; 486 FKey *pFKey, *pNextFKey; 487 488 if( pTable==0 ) return; 489 490 /* Do not delete the table until the reference count reaches zero. */ 491 pTable->nRef--; 492 if( pTable->nRef>0 ){ 493 return; 494 } 495 assert( pTable->nRef==0 ); 496 497 /* Delete all indices associated with this table 498 */ 499 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 500 pNext = pIndex->pNext; 501 assert( pIndex->pSchema==pTable->pSchema ); 502 sqliteDeleteIndex(pIndex); 503 } 504 505 #ifndef SQLITE_OMIT_FOREIGN_KEY 506 /* Delete all foreign keys associated with this table. The keys 507 ** should have already been unlinked from the pSchema->aFKey hash table 508 */ 509 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 510 pNextFKey = pFKey->pNextFrom; 511 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 512 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); 513 sqliteFree(pFKey); 514 } 515 #endif 516 517 /* Delete the Table structure itself. 518 */ 519 sqliteResetColumnNames(pTable); 520 sqliteFree(pTable->zName); 521 sqliteFree(pTable->zColAff); 522 sqlite3SelectDelete(pTable->pSelect); 523 #ifndef SQLITE_OMIT_CHECK 524 sqlite3ExprDelete(pTable->pCheck); 525 #endif 526 sqlite3VtabClear(pTable); 527 sqliteFree(pTable); 528 } 529 530 /* 531 ** Unlink the given table from the hash tables and the delete the 532 ** table structure with all its indices and foreign keys. 533 */ 534 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 535 Table *p; 536 FKey *pF1, *pF2; 537 Db *pDb; 538 539 assert( db!=0 ); 540 assert( iDb>=0 && iDb<db->nDb ); 541 assert( zTabName && zTabName[0] ); 542 pDb = &db->aDb[iDb]; 543 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); 544 if( p ){ 545 #ifndef SQLITE_OMIT_FOREIGN_KEY 546 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 547 int nTo = strlen(pF1->zTo) + 1; 548 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 549 if( pF2==pF1 ){ 550 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 551 }else{ 552 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 553 if( pF2 ){ 554 pF2->pNextTo = pF1->pNextTo; 555 } 556 } 557 } 558 #endif 559 sqlite3DeleteTable(p); 560 } 561 db->flags |= SQLITE_InternChanges; 562 } 563 564 /* 565 ** Given a token, return a string that consists of the text of that 566 ** token with any quotations removed. Space to hold the returned string 567 ** is obtained from sqliteMalloc() and must be freed by the calling 568 ** function. 569 ** 570 ** Tokens are often just pointers into the original SQL text and so 571 ** are not \000 terminated and are not persistent. The returned string 572 ** is \000 terminated and is persistent. 573 */ 574 char *sqlite3NameFromToken(Token *pName){ 575 char *zName; 576 if( pName ){ 577 zName = sqliteStrNDup((char*)pName->z, pName->n); 578 sqlite3Dequote(zName); 579 }else{ 580 zName = 0; 581 } 582 return zName; 583 } 584 585 /* 586 ** Open the sqlite_master table stored in database number iDb for 587 ** writing. The table is opened using cursor 0. 588 */ 589 void sqlite3OpenMasterTable(Parse *p, int iDb){ 590 Vdbe *v = sqlite3GetVdbe(p); 591 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 592 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 593 sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); 594 sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ 595 } 596 597 /* 598 ** The token *pName contains the name of a database (either "main" or 599 ** "temp" or the name of an attached db). This routine returns the 600 ** index of the named database in db->aDb[], or -1 if the named db 601 ** does not exist. 602 */ 603 int sqlite3FindDb(sqlite3 *db, Token *pName){ 604 int i = -1; /* Database number */ 605 int n; /* Number of characters in the name */ 606 Db *pDb; /* A database whose name space is being searched */ 607 char *zName; /* Name we are searching for */ 608 609 zName = sqlite3NameFromToken(pName); 610 if( zName ){ 611 n = strlen(zName); 612 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 613 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 614 0==sqlite3StrICmp(pDb->zName, zName) ){ 615 break; 616 } 617 } 618 sqliteFree(zName); 619 } 620 return i; 621 } 622 623 /* The table or view or trigger name is passed to this routine via tokens 624 ** pName1 and pName2. If the table name was fully qualified, for example: 625 ** 626 ** CREATE TABLE xxx.yyy (...); 627 ** 628 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 629 ** the table name is not fully qualified, i.e.: 630 ** 631 ** CREATE TABLE yyy(...); 632 ** 633 ** Then pName1 is set to "yyy" and pName2 is "". 634 ** 635 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 636 ** pName2) that stores the unqualified table name. The index of the 637 ** database "xxx" is returned. 638 */ 639 int sqlite3TwoPartName( 640 Parse *pParse, /* Parsing and code generating context */ 641 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 642 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 643 Token **pUnqual /* Write the unqualified object name here */ 644 ){ 645 int iDb; /* Database holding the object */ 646 sqlite3 *db = pParse->db; 647 648 if( pName2 && pName2->n>0 ){ 649 assert( !db->init.busy ); 650 *pUnqual = pName2; 651 iDb = sqlite3FindDb(db, pName1); 652 if( iDb<0 ){ 653 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 654 pParse->nErr++; 655 return -1; 656 } 657 }else{ 658 assert( db->init.iDb==0 || db->init.busy ); 659 iDb = db->init.iDb; 660 *pUnqual = pName1; 661 } 662 return iDb; 663 } 664 665 /* 666 ** This routine is used to check if the UTF-8 string zName is a legal 667 ** unqualified name for a new schema object (table, index, view or 668 ** trigger). All names are legal except those that begin with the string 669 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 670 ** is reserved for internal use. 671 */ 672 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 673 if( !pParse->db->init.busy && pParse->nested==0 674 && (pParse->db->flags & SQLITE_WriteSchema)==0 675 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 676 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 677 return SQLITE_ERROR; 678 } 679 return SQLITE_OK; 680 } 681 682 /* 683 ** Begin constructing a new table representation in memory. This is 684 ** the first of several action routines that get called in response 685 ** to a CREATE TABLE statement. In particular, this routine is called 686 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 687 ** flag is true if the table should be stored in the auxiliary database 688 ** file instead of in the main database file. This is normally the case 689 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 690 ** CREATE and TABLE. 691 ** 692 ** The new table record is initialized and put in pParse->pNewTable. 693 ** As more of the CREATE TABLE statement is parsed, additional action 694 ** routines will be called to add more information to this record. 695 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 696 ** is called to complete the construction of the new table record. 697 */ 698 void sqlite3StartTable( 699 Parse *pParse, /* Parser context */ 700 Token *pName1, /* First part of the name of the table or view */ 701 Token *pName2, /* Second part of the name of the table or view */ 702 int isTemp, /* True if this is a TEMP table */ 703 int isView, /* True if this is a VIEW */ 704 int isVirtual, /* True if this is a VIRTUAL table */ 705 int noErr /* Do nothing if table already exists */ 706 ){ 707 Table *pTable; 708 char *zName = 0; /* The name of the new table */ 709 sqlite3 *db = pParse->db; 710 Vdbe *v; 711 int iDb; /* Database number to create the table in */ 712 Token *pName; /* Unqualified name of the table to create */ 713 714 /* The table or view name to create is passed to this routine via tokens 715 ** pName1 and pName2. If the table name was fully qualified, for example: 716 ** 717 ** CREATE TABLE xxx.yyy (...); 718 ** 719 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 720 ** the table name is not fully qualified, i.e.: 721 ** 722 ** CREATE TABLE yyy(...); 723 ** 724 ** Then pName1 is set to "yyy" and pName2 is "". 725 ** 726 ** The call below sets the pName pointer to point at the token (pName1 or 727 ** pName2) that stores the unqualified table name. The variable iDb is 728 ** set to the index of the database that the table or view is to be 729 ** created in. 730 */ 731 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 732 if( iDb<0 ) return; 733 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 734 /* If creating a temp table, the name may not be qualified */ 735 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 736 return; 737 } 738 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 739 740 pParse->sNameToken = *pName; 741 zName = sqlite3NameFromToken(pName); 742 if( zName==0 ) return; 743 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 744 goto begin_table_error; 745 } 746 if( db->init.iDb==1 ) isTemp = 1; 747 #ifndef SQLITE_OMIT_AUTHORIZATION 748 assert( (isTemp & 1)==isTemp ); 749 { 750 int code; 751 char *zDb = db->aDb[iDb].zName; 752 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 753 goto begin_table_error; 754 } 755 if( isView ){ 756 if( !OMIT_TEMPDB && isTemp ){ 757 code = SQLITE_CREATE_TEMP_VIEW; 758 }else{ 759 code = SQLITE_CREATE_VIEW; 760 } 761 }else{ 762 if( !OMIT_TEMPDB && isTemp ){ 763 code = SQLITE_CREATE_TEMP_TABLE; 764 }else{ 765 code = SQLITE_CREATE_TABLE; 766 } 767 } 768 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 769 goto begin_table_error; 770 } 771 } 772 #endif 773 774 /* Make sure the new table name does not collide with an existing 775 ** index or table name in the same database. Issue an error message if 776 ** it does. The exception is if the statement being parsed was passed 777 ** to an sqlite3_declare_vtab() call. In that case only the column names 778 ** and types will be used, so there is no need to test for namespace 779 ** collisions. 780 */ 781 if( !IN_DECLARE_VTAB ){ 782 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 783 goto begin_table_error; 784 } 785 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 786 if( pTable ){ 787 if( !noErr ){ 788 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 789 } 790 goto begin_table_error; 791 } 792 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 793 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 794 goto begin_table_error; 795 } 796 } 797 798 pTable = sqliteMalloc( sizeof(Table) ); 799 if( pTable==0 ){ 800 pParse->rc = SQLITE_NOMEM; 801 pParse->nErr++; 802 goto begin_table_error; 803 } 804 pTable->zName = zName; 805 pTable->iPKey = -1; 806 pTable->pSchema = db->aDb[iDb].pSchema; 807 pTable->nRef = 1; 808 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); 809 pParse->pNewTable = pTable; 810 811 /* If this is the magic sqlite_sequence table used by autoincrement, 812 ** then record a pointer to this table in the main database structure 813 ** so that INSERT can find the table easily. 814 */ 815 #ifndef SQLITE_OMIT_AUTOINCREMENT 816 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 817 pTable->pSchema->pSeqTab = pTable; 818 } 819 #endif 820 821 /* Begin generating the code that will insert the table record into 822 ** the SQLITE_MASTER table. Note in particular that we must go ahead 823 ** and allocate the record number for the table entry now. Before any 824 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 825 ** indices to be created and the table record must come before the 826 ** indices. Hence, the record number for the table must be allocated 827 ** now. 828 */ 829 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 830 int lbl; 831 int fileFormat; 832 sqlite3BeginWriteOperation(pParse, 0, iDb); 833 834 #ifndef SQLITE_OMIT_VIRTUALTABLE 835 if( isVirtual ){ 836 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 837 } 838 #endif 839 840 /* If the file format and encoding in the database have not been set, 841 ** set them now. 842 */ 843 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */ 844 lbl = sqlite3VdbeMakeLabel(v); 845 sqlite3VdbeAddOp(v, OP_If, 0, lbl); 846 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 847 1 : SQLITE_MAX_FILE_FORMAT; 848 sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0); 849 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 850 sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0); 851 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); 852 sqlite3VdbeResolveLabel(v, lbl); 853 854 /* This just creates a place-holder record in the sqlite_master table. 855 ** The record created does not contain anything yet. It will be replaced 856 ** by the real entry in code generated at sqlite3EndTable(). 857 ** 858 ** The rowid for the new entry is left on the top of the stack. 859 ** The rowid value is needed by the code that sqlite3EndTable will 860 ** generate. 861 */ 862 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 863 if( isView || isVirtual ){ 864 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 865 }else 866 #endif 867 { 868 sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0); 869 } 870 sqlite3OpenMasterTable(pParse, iDb); 871 sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0); 872 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 873 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 874 sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND); 875 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 876 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 877 } 878 879 /* Normal (non-error) return. */ 880 return; 881 882 /* If an error occurs, we jump here */ 883 begin_table_error: 884 sqliteFree(zName); 885 return; 886 } 887 888 /* 889 ** This macro is used to compare two strings in a case-insensitive manner. 890 ** It is slightly faster than calling sqlite3StrICmp() directly, but 891 ** produces larger code. 892 ** 893 ** WARNING: This macro is not compatible with the strcmp() family. It 894 ** returns true if the two strings are equal, otherwise false. 895 */ 896 #define STRICMP(x, y) (\ 897 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 898 sqlite3UpperToLower[*(unsigned char *)(y)] \ 899 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 900 901 /* 902 ** Add a new column to the table currently being constructed. 903 ** 904 ** The parser calls this routine once for each column declaration 905 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 906 ** first to get things going. Then this routine is called for each 907 ** column. 908 */ 909 void sqlite3AddColumn(Parse *pParse, Token *pName){ 910 Table *p; 911 int i; 912 char *z; 913 Column *pCol; 914 if( (p = pParse->pNewTable)==0 ) return; 915 if( p->nCol+1>SQLITE_MAX_COLUMN ){ 916 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 917 return; 918 } 919 z = sqlite3NameFromToken(pName); 920 if( z==0 ) return; 921 for(i=0; i<p->nCol; i++){ 922 if( STRICMP(z, p->aCol[i].zName) ){ 923 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 924 sqliteFree(z); 925 return; 926 } 927 } 928 if( (p->nCol & 0x7)==0 ){ 929 Column *aNew; 930 aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); 931 if( aNew==0 ){ 932 sqliteFree(z); 933 return; 934 } 935 p->aCol = aNew; 936 } 937 pCol = &p->aCol[p->nCol]; 938 memset(pCol, 0, sizeof(p->aCol[0])); 939 pCol->zName = z; 940 941 /* If there is no type specified, columns have the default affinity 942 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 943 ** be called next to set pCol->affinity correctly. 944 */ 945 pCol->affinity = SQLITE_AFF_NONE; 946 p->nCol++; 947 } 948 949 /* 950 ** This routine is called by the parser while in the middle of 951 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 952 ** been seen on a column. This routine sets the notNull flag on 953 ** the column currently under construction. 954 */ 955 void sqlite3AddNotNull(Parse *pParse, int onError){ 956 Table *p; 957 int i; 958 if( (p = pParse->pNewTable)==0 ) return; 959 i = p->nCol-1; 960 if( i>=0 ) p->aCol[i].notNull = onError; 961 } 962 963 /* 964 ** Scan the column type name zType (length nType) and return the 965 ** associated affinity type. 966 ** 967 ** This routine does a case-independent search of zType for the 968 ** substrings in the following table. If one of the substrings is 969 ** found, the corresponding affinity is returned. If zType contains 970 ** more than one of the substrings, entries toward the top of 971 ** the table take priority. For example, if zType is 'BLOBINT', 972 ** SQLITE_AFF_INTEGER is returned. 973 ** 974 ** Substring | Affinity 975 ** -------------------------------- 976 ** 'INT' | SQLITE_AFF_INTEGER 977 ** 'CHAR' | SQLITE_AFF_TEXT 978 ** 'CLOB' | SQLITE_AFF_TEXT 979 ** 'TEXT' | SQLITE_AFF_TEXT 980 ** 'BLOB' | SQLITE_AFF_NONE 981 ** 'REAL' | SQLITE_AFF_REAL 982 ** 'FLOA' | SQLITE_AFF_REAL 983 ** 'DOUB' | SQLITE_AFF_REAL 984 ** 985 ** If none of the substrings in the above table are found, 986 ** SQLITE_AFF_NUMERIC is returned. 987 */ 988 char sqlite3AffinityType(const Token *pType){ 989 u32 h = 0; 990 char aff = SQLITE_AFF_NUMERIC; 991 const unsigned char *zIn = pType->z; 992 const unsigned char *zEnd = &pType->z[pType->n]; 993 994 while( zIn!=zEnd ){ 995 h = (h<<8) + sqlite3UpperToLower[*zIn]; 996 zIn++; 997 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 998 aff = SQLITE_AFF_TEXT; 999 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1000 aff = SQLITE_AFF_TEXT; 1001 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1002 aff = SQLITE_AFF_TEXT; 1003 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1004 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1005 aff = SQLITE_AFF_NONE; 1006 #ifndef SQLITE_OMIT_FLOATING_POINT 1007 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1008 && aff==SQLITE_AFF_NUMERIC ){ 1009 aff = SQLITE_AFF_REAL; 1010 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1011 && aff==SQLITE_AFF_NUMERIC ){ 1012 aff = SQLITE_AFF_REAL; 1013 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1014 && aff==SQLITE_AFF_NUMERIC ){ 1015 aff = SQLITE_AFF_REAL; 1016 #endif 1017 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1018 aff = SQLITE_AFF_INTEGER; 1019 break; 1020 } 1021 } 1022 1023 return aff; 1024 } 1025 1026 /* 1027 ** This routine is called by the parser while in the middle of 1028 ** parsing a CREATE TABLE statement. The pFirst token is the first 1029 ** token in the sequence of tokens that describe the type of the 1030 ** column currently under construction. pLast is the last token 1031 ** in the sequence. Use this information to construct a string 1032 ** that contains the typename of the column and store that string 1033 ** in zType. 1034 */ 1035 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1036 Table *p; 1037 int i; 1038 Column *pCol; 1039 1040 if( (p = pParse->pNewTable)==0 ) return; 1041 i = p->nCol-1; 1042 if( i<0 ) return; 1043 pCol = &p->aCol[i]; 1044 sqliteFree(pCol->zType); 1045 pCol->zType = sqlite3NameFromToken(pType); 1046 pCol->affinity = sqlite3AffinityType(pType); 1047 } 1048 1049 /* 1050 ** The expression is the default value for the most recently added column 1051 ** of the table currently under construction. 1052 ** 1053 ** Default value expressions must be constant. Raise an exception if this 1054 ** is not the case. 1055 ** 1056 ** This routine is called by the parser while in the middle of 1057 ** parsing a CREATE TABLE statement. 1058 */ 1059 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1060 Table *p; 1061 Column *pCol; 1062 if( (p = pParse->pNewTable)!=0 ){ 1063 pCol = &(p->aCol[p->nCol-1]); 1064 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1065 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1066 pCol->zName); 1067 }else{ 1068 Expr *pCopy; 1069 sqlite3ExprDelete(pCol->pDflt); 1070 pCol->pDflt = pCopy = sqlite3ExprDup(pExpr); 1071 if( pCopy ){ 1072 sqlite3TokenCopy(&pCopy->span, &pExpr->span); 1073 } 1074 } 1075 } 1076 sqlite3ExprDelete(pExpr); 1077 } 1078 1079 /* 1080 ** Designate the PRIMARY KEY for the table. pList is a list of names 1081 ** of columns that form the primary key. If pList is NULL, then the 1082 ** most recently added column of the table is the primary key. 1083 ** 1084 ** A table can have at most one primary key. If the table already has 1085 ** a primary key (and this is the second primary key) then create an 1086 ** error. 1087 ** 1088 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1089 ** then we will try to use that column as the rowid. Set the Table.iPKey 1090 ** field of the table under construction to be the index of the 1091 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1092 ** no INTEGER PRIMARY KEY. 1093 ** 1094 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1095 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1096 */ 1097 void sqlite3AddPrimaryKey( 1098 Parse *pParse, /* Parsing context */ 1099 ExprList *pList, /* List of field names to be indexed */ 1100 int onError, /* What to do with a uniqueness conflict */ 1101 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1102 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1103 ){ 1104 Table *pTab = pParse->pNewTable; 1105 char *zType = 0; 1106 int iCol = -1, i; 1107 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1108 if( pTab->hasPrimKey ){ 1109 sqlite3ErrorMsg(pParse, 1110 "table \"%s\" has more than one primary key", pTab->zName); 1111 goto primary_key_exit; 1112 } 1113 pTab->hasPrimKey = 1; 1114 if( pList==0 ){ 1115 iCol = pTab->nCol - 1; 1116 pTab->aCol[iCol].isPrimKey = 1; 1117 }else{ 1118 for(i=0; i<pList->nExpr; i++){ 1119 for(iCol=0; iCol<pTab->nCol; iCol++){ 1120 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1121 break; 1122 } 1123 } 1124 if( iCol<pTab->nCol ){ 1125 pTab->aCol[iCol].isPrimKey = 1; 1126 } 1127 } 1128 if( pList->nExpr>1 ) iCol = -1; 1129 } 1130 if( iCol>=0 && iCol<pTab->nCol ){ 1131 zType = pTab->aCol[iCol].zType; 1132 } 1133 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1134 && sortOrder==SQLITE_SO_ASC ){ 1135 pTab->iPKey = iCol; 1136 pTab->keyConf = onError; 1137 pTab->autoInc = autoInc; 1138 }else if( autoInc ){ 1139 #ifndef SQLITE_OMIT_AUTOINCREMENT 1140 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1141 "INTEGER PRIMARY KEY"); 1142 #endif 1143 }else{ 1144 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1145 pList = 0; 1146 } 1147 1148 primary_key_exit: 1149 sqlite3ExprListDelete(pList); 1150 return; 1151 } 1152 1153 /* 1154 ** Add a new CHECK constraint to the table currently under construction. 1155 */ 1156 void sqlite3AddCheckConstraint( 1157 Parse *pParse, /* Parsing context */ 1158 Expr *pCheckExpr /* The check expression */ 1159 ){ 1160 #ifndef SQLITE_OMIT_CHECK 1161 Table *pTab = pParse->pNewTable; 1162 if( pTab && !IN_DECLARE_VTAB ){ 1163 /* The CHECK expression must be duplicated so that tokens refer 1164 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1165 ** statement */ 1166 pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr)); 1167 } 1168 #endif 1169 sqlite3ExprDelete(pCheckExpr); 1170 } 1171 1172 /* 1173 ** Set the collation function of the most recently parsed table column 1174 ** to the CollSeq given. 1175 */ 1176 void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ 1177 Table *p; 1178 int i; 1179 1180 if( (p = pParse->pNewTable)==0 ) return; 1181 i = p->nCol-1; 1182 1183 if( sqlite3LocateCollSeq(pParse, zType, nType) ){ 1184 Index *pIdx; 1185 p->aCol[i].zColl = sqliteStrNDup(zType, nType); 1186 1187 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1188 ** then an index may have been created on this column before the 1189 ** collation type was added. Correct this if it is the case. 1190 */ 1191 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1192 assert( pIdx->nColumn==1 ); 1193 if( pIdx->aiColumn[0]==i ){ 1194 pIdx->azColl[0] = p->aCol[i].zColl; 1195 } 1196 } 1197 } 1198 } 1199 1200 /* 1201 ** This function returns the collation sequence for database native text 1202 ** encoding identified by the string zName, length nName. 1203 ** 1204 ** If the requested collation sequence is not available, or not available 1205 ** in the database native encoding, the collation factory is invoked to 1206 ** request it. If the collation factory does not supply such a sequence, 1207 ** and the sequence is available in another text encoding, then that is 1208 ** returned instead. 1209 ** 1210 ** If no versions of the requested collations sequence are available, or 1211 ** another error occurs, NULL is returned and an error message written into 1212 ** pParse. 1213 ** 1214 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1215 ** invokes the collation factory if the named collation cannot be found 1216 ** and generates an error message. 1217 */ 1218 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1219 sqlite3 *db = pParse->db; 1220 u8 enc = ENC(db); 1221 u8 initbusy = db->init.busy; 1222 CollSeq *pColl; 1223 1224 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1225 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1226 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1227 if( !pColl ){ 1228 if( nName<0 ){ 1229 nName = strlen(zName); 1230 } 1231 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1232 pColl = 0; 1233 } 1234 } 1235 1236 return pColl; 1237 } 1238 1239 1240 /* 1241 ** Generate code that will increment the schema cookie. 1242 ** 1243 ** The schema cookie is used to determine when the schema for the 1244 ** database changes. After each schema change, the cookie value 1245 ** changes. When a process first reads the schema it records the 1246 ** cookie. Thereafter, whenever it goes to access the database, 1247 ** it checks the cookie to make sure the schema has not changed 1248 ** since it was last read. 1249 ** 1250 ** This plan is not completely bullet-proof. It is possible for 1251 ** the schema to change multiple times and for the cookie to be 1252 ** set back to prior value. But schema changes are infrequent 1253 ** and the probability of hitting the same cookie value is only 1254 ** 1 chance in 2^32. So we're safe enough. 1255 */ 1256 void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ 1257 sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); 1258 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); 1259 } 1260 1261 /* 1262 ** Measure the number of characters needed to output the given 1263 ** identifier. The number returned includes any quotes used 1264 ** but does not include the null terminator. 1265 ** 1266 ** The estimate is conservative. It might be larger that what is 1267 ** really needed. 1268 */ 1269 static int identLength(const char *z){ 1270 int n; 1271 for(n=0; *z; n++, z++){ 1272 if( *z=='"' ){ n++; } 1273 } 1274 return n + 2; 1275 } 1276 1277 /* 1278 ** Write an identifier onto the end of the given string. Add 1279 ** quote characters as needed. 1280 */ 1281 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1282 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1283 int i, j, needQuote; 1284 i = *pIdx; 1285 for(j=0; zIdent[j]; j++){ 1286 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1287 } 1288 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 1289 || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1290 if( needQuote ) z[i++] = '"'; 1291 for(j=0; zIdent[j]; j++){ 1292 z[i++] = zIdent[j]; 1293 if( zIdent[j]=='"' ) z[i++] = '"'; 1294 } 1295 if( needQuote ) z[i++] = '"'; 1296 z[i] = 0; 1297 *pIdx = i; 1298 } 1299 1300 /* 1301 ** Generate a CREATE TABLE statement appropriate for the given 1302 ** table. Memory to hold the text of the statement is obtained 1303 ** from sqliteMalloc() and must be freed by the calling function. 1304 */ 1305 static char *createTableStmt(Table *p, int isTemp){ 1306 int i, k, n; 1307 char *zStmt; 1308 char *zSep, *zSep2, *zEnd, *z; 1309 Column *pCol; 1310 n = 0; 1311 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1312 n += identLength(pCol->zName); 1313 z = pCol->zType; 1314 if( z ){ 1315 n += (strlen(z) + 1); 1316 } 1317 } 1318 n += identLength(p->zName); 1319 if( n<50 ){ 1320 zSep = ""; 1321 zSep2 = ","; 1322 zEnd = ")"; 1323 }else{ 1324 zSep = "\n "; 1325 zSep2 = ",\n "; 1326 zEnd = "\n)"; 1327 } 1328 n += 35 + 6*p->nCol; 1329 zStmt = sqliteMallocRaw( n ); 1330 if( zStmt==0 ) return 0; 1331 sqlite3_snprintf(n, zStmt, 1332 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); 1333 k = strlen(zStmt); 1334 identPut(zStmt, &k, p->zName); 1335 zStmt[k++] = '('; 1336 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1337 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1338 k += strlen(&zStmt[k]); 1339 zSep = zSep2; 1340 identPut(zStmt, &k, pCol->zName); 1341 if( (z = pCol->zType)!=0 ){ 1342 zStmt[k++] = ' '; 1343 assert( strlen(z)+k+1<=n ); 1344 sqlite3_snprintf(n-k, &zStmt[k], "%s", z); 1345 k += strlen(z); 1346 } 1347 } 1348 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1349 return zStmt; 1350 } 1351 1352 /* 1353 ** This routine is called to report the final ")" that terminates 1354 ** a CREATE TABLE statement. 1355 ** 1356 ** The table structure that other action routines have been building 1357 ** is added to the internal hash tables, assuming no errors have 1358 ** occurred. 1359 ** 1360 ** An entry for the table is made in the master table on disk, unless 1361 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1362 ** it means we are reading the sqlite_master table because we just 1363 ** connected to the database or because the sqlite_master table has 1364 ** recently changed, so the entry for this table already exists in 1365 ** the sqlite_master table. We do not want to create it again. 1366 ** 1367 ** If the pSelect argument is not NULL, it means that this routine 1368 ** was called to create a table generated from a 1369 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1370 ** the new table will match the result set of the SELECT. 1371 */ 1372 void sqlite3EndTable( 1373 Parse *pParse, /* Parse context */ 1374 Token *pCons, /* The ',' token after the last column defn. */ 1375 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1376 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1377 ){ 1378 Table *p; 1379 sqlite3 *db = pParse->db; 1380 int iDb; 1381 1382 if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) { 1383 return; 1384 } 1385 p = pParse->pNewTable; 1386 if( p==0 ) return; 1387 1388 assert( !db->init.busy || !pSelect ); 1389 1390 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1391 1392 #ifndef SQLITE_OMIT_CHECK 1393 /* Resolve names in all CHECK constraint expressions. 1394 */ 1395 if( p->pCheck ){ 1396 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1397 NameContext sNC; /* Name context for pParse->pNewTable */ 1398 1399 memset(&sNC, 0, sizeof(sNC)); 1400 memset(&sSrc, 0, sizeof(sSrc)); 1401 sSrc.nSrc = 1; 1402 sSrc.a[0].zName = p->zName; 1403 sSrc.a[0].pTab = p; 1404 sSrc.a[0].iCursor = -1; 1405 sNC.pParse = pParse; 1406 sNC.pSrcList = &sSrc; 1407 sNC.isCheck = 1; 1408 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ 1409 return; 1410 } 1411 } 1412 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1413 1414 /* If the db->init.busy is 1 it means we are reading the SQL off the 1415 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1416 ** So do not write to the disk again. Extract the root page number 1417 ** for the table from the db->init.newTnum field. (The page number 1418 ** should have been put there by the sqliteOpenCb routine.) 1419 */ 1420 if( db->init.busy ){ 1421 p->tnum = db->init.newTnum; 1422 } 1423 1424 /* If not initializing, then create a record for the new table 1425 ** in the SQLITE_MASTER table of the database. The record number 1426 ** for the new table entry should already be on the stack. 1427 ** 1428 ** If this is a TEMPORARY table, write the entry into the auxiliary 1429 ** file instead of into the main database file. 1430 */ 1431 if( !db->init.busy ){ 1432 int n; 1433 Vdbe *v; 1434 char *zType; /* "view" or "table" */ 1435 char *zType2; /* "VIEW" or "TABLE" */ 1436 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1437 1438 v = sqlite3GetVdbe(pParse); 1439 if( v==0 ) return; 1440 1441 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 1442 1443 /* Create the rootpage for the new table and push it onto the stack. 1444 ** A view has no rootpage, so just push a zero onto the stack for 1445 ** views. Initialize zType at the same time. 1446 */ 1447 if( p->pSelect==0 ){ 1448 /* A regular table */ 1449 zType = "table"; 1450 zType2 = "TABLE"; 1451 #ifndef SQLITE_OMIT_VIEW 1452 }else{ 1453 /* A view */ 1454 zType = "view"; 1455 zType2 = "VIEW"; 1456 #endif 1457 } 1458 1459 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1460 ** statement to populate the new table. The root-page number for the 1461 ** new table is on the top of the vdbe stack. 1462 ** 1463 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1464 ** suitable state to query for the column names and types to be used 1465 ** by the new table. 1466 ** 1467 ** A shared-cache write-lock is not required to write to the new table, 1468 ** as a schema-lock must have already been obtained to create it. Since 1469 ** a schema-lock excludes all other database users, the write-lock would 1470 ** be redundant. 1471 */ 1472 if( pSelect ){ 1473 Table *pSelTab; 1474 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1475 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1476 sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); 1477 pParse->nTab = 2; 1478 sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); 1479 sqlite3VdbeAddOp(v, OP_Close, 1, 0); 1480 if( pParse->nErr==0 ){ 1481 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); 1482 if( pSelTab==0 ) return; 1483 assert( p->aCol==0 ); 1484 p->nCol = pSelTab->nCol; 1485 p->aCol = pSelTab->aCol; 1486 pSelTab->nCol = 0; 1487 pSelTab->aCol = 0; 1488 sqlite3DeleteTable(pSelTab); 1489 } 1490 } 1491 1492 /* Compute the complete text of the CREATE statement */ 1493 if( pSelect ){ 1494 zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema); 1495 }else{ 1496 n = pEnd->z - pParse->sNameToken.z + 1; 1497 zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z); 1498 } 1499 1500 /* A slot for the record has already been allocated in the 1501 ** SQLITE_MASTER table. We just need to update that slot with all 1502 ** the information we've collected. The rowid for the preallocated 1503 ** slot is the 2nd item on the stack. The top of the stack is the 1504 ** root page for the new table (or a 0 if this is a view). 1505 */ 1506 sqlite3NestedParse(pParse, 1507 "UPDATE %Q.%s " 1508 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " 1509 "WHERE rowid=#1", 1510 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1511 zType, 1512 p->zName, 1513 p->zName, 1514 zStmt 1515 ); 1516 sqliteFree(zStmt); 1517 sqlite3ChangeCookie(db, v, iDb); 1518 1519 #ifndef SQLITE_OMIT_AUTOINCREMENT 1520 /* Check to see if we need to create an sqlite_sequence table for 1521 ** keeping track of autoincrement keys. 1522 */ 1523 if( p->autoInc ){ 1524 Db *pDb = &db->aDb[iDb]; 1525 if( pDb->pSchema->pSeqTab==0 ){ 1526 sqlite3NestedParse(pParse, 1527 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1528 pDb->zName 1529 ); 1530 } 1531 } 1532 #endif 1533 1534 /* Reparse everything to update our internal data structures */ 1535 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 1536 sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC); 1537 } 1538 1539 1540 /* Add the table to the in-memory representation of the database. 1541 */ 1542 if( db->init.busy && pParse->nErr==0 ){ 1543 Table *pOld; 1544 FKey *pFKey; 1545 Schema *pSchema = p->pSchema; 1546 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); 1547 if( pOld ){ 1548 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1549 return; 1550 } 1551 #ifndef SQLITE_OMIT_FOREIGN_KEY 1552 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1553 int nTo = strlen(pFKey->zTo) + 1; 1554 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1555 sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1556 } 1557 #endif 1558 pParse->pNewTable = 0; 1559 db->nTable++; 1560 db->flags |= SQLITE_InternChanges; 1561 1562 #ifndef SQLITE_OMIT_ALTERTABLE 1563 if( !p->pSelect ){ 1564 const char *zName = (const char *)pParse->sNameToken.z; 1565 int nName; 1566 assert( !pSelect && pCons && pEnd ); 1567 if( pCons->z==0 ){ 1568 pCons = pEnd; 1569 } 1570 nName = (const char *)pCons->z - zName; 1571 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1572 } 1573 #endif 1574 } 1575 } 1576 1577 #ifndef SQLITE_OMIT_VIEW 1578 /* 1579 ** The parser calls this routine in order to create a new VIEW 1580 */ 1581 void sqlite3CreateView( 1582 Parse *pParse, /* The parsing context */ 1583 Token *pBegin, /* The CREATE token that begins the statement */ 1584 Token *pName1, /* The token that holds the name of the view */ 1585 Token *pName2, /* The token that holds the name of the view */ 1586 Select *pSelect, /* A SELECT statement that will become the new view */ 1587 int isTemp, /* TRUE for a TEMPORARY view */ 1588 int noErr /* Suppress error messages if VIEW already exists */ 1589 ){ 1590 Table *p; 1591 int n; 1592 const unsigned char *z; 1593 Token sEnd; 1594 DbFixer sFix; 1595 Token *pName; 1596 int iDb; 1597 1598 if( pParse->nVar>0 ){ 1599 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1600 sqlite3SelectDelete(pSelect); 1601 return; 1602 } 1603 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1604 p = pParse->pNewTable; 1605 if( p==0 || pParse->nErr ){ 1606 sqlite3SelectDelete(pSelect); 1607 return; 1608 } 1609 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1610 iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 1611 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1612 && sqlite3FixSelect(&sFix, pSelect) 1613 ){ 1614 sqlite3SelectDelete(pSelect); 1615 return; 1616 } 1617 1618 /* Make a copy of the entire SELECT statement that defines the view. 1619 ** This will force all the Expr.token.z values to be dynamically 1620 ** allocated rather than point to the input string - which means that 1621 ** they will persist after the current sqlite3_exec() call returns. 1622 */ 1623 p->pSelect = sqlite3SelectDup(pSelect); 1624 sqlite3SelectDelete(pSelect); 1625 if( sqlite3MallocFailed() ){ 1626 return; 1627 } 1628 if( !pParse->db->init.busy ){ 1629 sqlite3ViewGetColumnNames(pParse, p); 1630 } 1631 1632 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1633 ** the end. 1634 */ 1635 sEnd = pParse->sLastToken; 1636 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1637 sEnd.z += sEnd.n; 1638 } 1639 sEnd.n = 0; 1640 n = sEnd.z - pBegin->z; 1641 z = (const unsigned char*)pBegin->z; 1642 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1643 sEnd.z = &z[n-1]; 1644 sEnd.n = 1; 1645 1646 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1647 sqlite3EndTable(pParse, 0, &sEnd, 0); 1648 return; 1649 } 1650 #endif /* SQLITE_OMIT_VIEW */ 1651 1652 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1653 /* 1654 ** The Table structure pTable is really a VIEW. Fill in the names of 1655 ** the columns of the view in the pTable structure. Return the number 1656 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1657 */ 1658 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1659 Table *pSelTab; /* A fake table from which we get the result set */ 1660 Select *pSel; /* Copy of the SELECT that implements the view */ 1661 int nErr = 0; /* Number of errors encountered */ 1662 int n; /* Temporarily holds the number of cursors assigned */ 1663 1664 assert( pTable ); 1665 1666 #ifndef SQLITE_OMIT_VIRTUALTABLE 1667 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1668 return SQLITE_ERROR; 1669 } 1670 if( IsVirtual(pTable) ) return 0; 1671 #endif 1672 1673 #ifndef SQLITE_OMIT_VIEW 1674 /* A positive nCol means the columns names for this view are 1675 ** already known. 1676 */ 1677 if( pTable->nCol>0 ) return 0; 1678 1679 /* A negative nCol is a special marker meaning that we are currently 1680 ** trying to compute the column names. If we enter this routine with 1681 ** a negative nCol, it means two or more views form a loop, like this: 1682 ** 1683 ** CREATE VIEW one AS SELECT * FROM two; 1684 ** CREATE VIEW two AS SELECT * FROM one; 1685 ** 1686 ** Actually, this error is caught previously and so the following test 1687 ** should always fail. But we will leave it in place just to be safe. 1688 */ 1689 if( pTable->nCol<0 ){ 1690 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1691 return 1; 1692 } 1693 assert( pTable->nCol>=0 ); 1694 1695 /* If we get this far, it means we need to compute the table names. 1696 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1697 ** "*" elements in the results set of the view and will assign cursors 1698 ** to the elements of the FROM clause. But we do not want these changes 1699 ** to be permanent. So the computation is done on a copy of the SELECT 1700 ** statement that defines the view. 1701 */ 1702 assert( pTable->pSelect ); 1703 pSel = sqlite3SelectDup(pTable->pSelect); 1704 if( pSel ){ 1705 n = pParse->nTab; 1706 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1707 pTable->nCol = -1; 1708 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1709 pParse->nTab = n; 1710 if( pSelTab ){ 1711 assert( pTable->aCol==0 ); 1712 pTable->nCol = pSelTab->nCol; 1713 pTable->aCol = pSelTab->aCol; 1714 pSelTab->nCol = 0; 1715 pSelTab->aCol = 0; 1716 sqlite3DeleteTable(pSelTab); 1717 pTable->pSchema->flags |= DB_UnresetViews; 1718 }else{ 1719 pTable->nCol = 0; 1720 nErr++; 1721 } 1722 sqlite3SelectDelete(pSel); 1723 } else { 1724 nErr++; 1725 } 1726 #endif /* SQLITE_OMIT_VIEW */ 1727 return nErr; 1728 } 1729 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1730 1731 #ifndef SQLITE_OMIT_VIEW 1732 /* 1733 ** Clear the column names from every VIEW in database idx. 1734 */ 1735 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1736 HashElem *i; 1737 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1738 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1739 Table *pTab = sqliteHashData(i); 1740 if( pTab->pSelect ){ 1741 sqliteResetColumnNames(pTab); 1742 } 1743 } 1744 DbClearProperty(db, idx, DB_UnresetViews); 1745 } 1746 #else 1747 # define sqliteViewResetAll(A,B) 1748 #endif /* SQLITE_OMIT_VIEW */ 1749 1750 /* 1751 ** This function is called by the VDBE to adjust the internal schema 1752 ** used by SQLite when the btree layer moves a table root page. The 1753 ** root-page of a table or index in database iDb has changed from iFrom 1754 ** to iTo. 1755 ** 1756 ** Ticket #1728: The symbol table might still contain information 1757 ** on tables and/or indices that are the process of being deleted. 1758 ** If you are unlucky, one of those deleted indices or tables might 1759 ** have the same rootpage number as the real table or index that is 1760 ** being moved. So we cannot stop searching after the first match 1761 ** because the first match might be for one of the deleted indices 1762 ** or tables and not the table/index that is actually being moved. 1763 ** We must continue looping until all tables and indices with 1764 ** rootpage==iFrom have been converted to have a rootpage of iTo 1765 ** in order to be certain that we got the right one. 1766 */ 1767 #ifndef SQLITE_OMIT_AUTOVACUUM 1768 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1769 HashElem *pElem; 1770 Hash *pHash; 1771 1772 pHash = &pDb->pSchema->tblHash; 1773 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1774 Table *pTab = sqliteHashData(pElem); 1775 if( pTab->tnum==iFrom ){ 1776 pTab->tnum = iTo; 1777 } 1778 } 1779 pHash = &pDb->pSchema->idxHash; 1780 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1781 Index *pIdx = sqliteHashData(pElem); 1782 if( pIdx->tnum==iFrom ){ 1783 pIdx->tnum = iTo; 1784 } 1785 } 1786 } 1787 #endif 1788 1789 /* 1790 ** Write code to erase the table with root-page iTable from database iDb. 1791 ** Also write code to modify the sqlite_master table and internal schema 1792 ** if a root-page of another table is moved by the btree-layer whilst 1793 ** erasing iTable (this can happen with an auto-vacuum database). 1794 */ 1795 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1796 Vdbe *v = sqlite3GetVdbe(pParse); 1797 sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb); 1798 #ifndef SQLITE_OMIT_AUTOVACUUM 1799 /* OP_Destroy pushes an integer onto the stack. If this integer 1800 ** is non-zero, then it is the root page number of a table moved to 1801 ** location iTable. The following code modifies the sqlite_master table to 1802 ** reflect this. 1803 ** 1804 ** The "#0" in the SQL is a special constant that means whatever value 1805 ** is on the top of the stack. See sqlite3RegisterExpr(). 1806 */ 1807 sqlite3NestedParse(pParse, 1808 "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0", 1809 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable); 1810 #endif 1811 } 1812 1813 /* 1814 ** Write VDBE code to erase table pTab and all associated indices on disk. 1815 ** Code to update the sqlite_master tables and internal schema definitions 1816 ** in case a root-page belonging to another table is moved by the btree layer 1817 ** is also added (this can happen with an auto-vacuum database). 1818 */ 1819 static void destroyTable(Parse *pParse, Table *pTab){ 1820 #ifdef SQLITE_OMIT_AUTOVACUUM 1821 Index *pIdx; 1822 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1823 destroyRootPage(pParse, pTab->tnum, iDb); 1824 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1825 destroyRootPage(pParse, pIdx->tnum, iDb); 1826 } 1827 #else 1828 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1829 ** is not defined), then it is important to call OP_Destroy on the 1830 ** table and index root-pages in order, starting with the numerically 1831 ** largest root-page number. This guarantees that none of the root-pages 1832 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1833 ** following were coded: 1834 ** 1835 ** OP_Destroy 4 0 1836 ** ... 1837 ** OP_Destroy 5 0 1838 ** 1839 ** and root page 5 happened to be the largest root-page number in the 1840 ** database, then root page 5 would be moved to page 4 by the 1841 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1842 ** a free-list page. 1843 */ 1844 int iTab = pTab->tnum; 1845 int iDestroyed = 0; 1846 1847 while( 1 ){ 1848 Index *pIdx; 1849 int iLargest = 0; 1850 1851 if( iDestroyed==0 || iTab<iDestroyed ){ 1852 iLargest = iTab; 1853 } 1854 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1855 int iIdx = pIdx->tnum; 1856 assert( pIdx->pSchema==pTab->pSchema ); 1857 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1858 iLargest = iIdx; 1859 } 1860 } 1861 if( iLargest==0 ){ 1862 return; 1863 }else{ 1864 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1865 destroyRootPage(pParse, iLargest, iDb); 1866 iDestroyed = iLargest; 1867 } 1868 } 1869 #endif 1870 } 1871 1872 /* 1873 ** This routine is called to do the work of a DROP TABLE statement. 1874 ** pName is the name of the table to be dropped. 1875 */ 1876 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1877 Table *pTab; 1878 Vdbe *v; 1879 sqlite3 *db = pParse->db; 1880 int iDb; 1881 1882 if( pParse->nErr || sqlite3MallocFailed() ){ 1883 goto exit_drop_table; 1884 } 1885 assert( pName->nSrc==1 ); 1886 pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); 1887 1888 if( pTab==0 ){ 1889 if( noErr ){ 1890 sqlite3ErrorClear(pParse); 1891 } 1892 goto exit_drop_table; 1893 } 1894 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1895 assert( iDb>=0 && iDb<db->nDb ); 1896 #ifndef SQLITE_OMIT_AUTHORIZATION 1897 { 1898 int code; 1899 const char *zTab = SCHEMA_TABLE(iDb); 1900 const char *zDb = db->aDb[iDb].zName; 1901 const char *zArg2 = 0; 1902 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1903 goto exit_drop_table; 1904 } 1905 if( isView ){ 1906 if( !OMIT_TEMPDB && iDb==1 ){ 1907 code = SQLITE_DROP_TEMP_VIEW; 1908 }else{ 1909 code = SQLITE_DROP_VIEW; 1910 } 1911 #ifndef SQLITE_OMIT_VIRTUALTABLE 1912 }else if( IsVirtual(pTab) ){ 1913 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1914 goto exit_drop_table; 1915 } 1916 code = SQLITE_DROP_VTABLE; 1917 zArg2 = pTab->pMod->zName; 1918 #endif 1919 }else{ 1920 if( !OMIT_TEMPDB && iDb==1 ){ 1921 code = SQLITE_DROP_TEMP_TABLE; 1922 }else{ 1923 code = SQLITE_DROP_TABLE; 1924 } 1925 } 1926 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 1927 goto exit_drop_table; 1928 } 1929 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 1930 goto exit_drop_table; 1931 } 1932 } 1933 #endif 1934 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ 1935 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 1936 goto exit_drop_table; 1937 } 1938 1939 #ifndef SQLITE_OMIT_VIEW 1940 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 1941 ** on a table. 1942 */ 1943 if( isView && pTab->pSelect==0 ){ 1944 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 1945 goto exit_drop_table; 1946 } 1947 if( !isView && pTab->pSelect ){ 1948 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 1949 goto exit_drop_table; 1950 } 1951 #endif 1952 1953 /* Generate code to remove the table from the master table 1954 ** on disk. 1955 */ 1956 v = sqlite3GetVdbe(pParse); 1957 if( v ){ 1958 Trigger *pTrigger; 1959 Db *pDb = &db->aDb[iDb]; 1960 sqlite3BeginWriteOperation(pParse, 0, iDb); 1961 1962 #ifndef SQLITE_OMIT_VIRTUALTABLE 1963 if( IsVirtual(pTab) ){ 1964 Vdbe *v = sqlite3GetVdbe(pParse); 1965 if( v ){ 1966 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 1967 } 1968 } 1969 #endif 1970 1971 /* Drop all triggers associated with the table being dropped. Code 1972 ** is generated to remove entries from sqlite_master and/or 1973 ** sqlite_temp_master if required. 1974 */ 1975 pTrigger = pTab->pTrigger; 1976 while( pTrigger ){ 1977 assert( pTrigger->pSchema==pTab->pSchema || 1978 pTrigger->pSchema==db->aDb[1].pSchema ); 1979 sqlite3DropTriggerPtr(pParse, pTrigger); 1980 pTrigger = pTrigger->pNext; 1981 } 1982 1983 #ifndef SQLITE_OMIT_AUTOINCREMENT 1984 /* Remove any entries of the sqlite_sequence table associated with 1985 ** the table being dropped. This is done before the table is dropped 1986 ** at the btree level, in case the sqlite_sequence table needs to 1987 ** move as a result of the drop (can happen in auto-vacuum mode). 1988 */ 1989 if( pTab->autoInc ){ 1990 sqlite3NestedParse(pParse, 1991 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 1992 pDb->zName, pTab->zName 1993 ); 1994 } 1995 #endif 1996 1997 /* Drop all SQLITE_MASTER table and index entries that refer to the 1998 ** table. The program name loops through the master table and deletes 1999 ** every row that refers to a table of the same name as the one being 2000 ** dropped. Triggers are handled seperately because a trigger can be 2001 ** created in the temp database that refers to a table in another 2002 ** database. 2003 */ 2004 sqlite3NestedParse(pParse, 2005 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2006 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2007 if( !isView && !IsVirtual(pTab) ){ 2008 destroyTable(pParse, pTab); 2009 } 2010 2011 /* Remove the table entry from SQLite's internal schema and modify 2012 ** the schema cookie. 2013 */ 2014 if( IsVirtual(pTab) ){ 2015 sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0); 2016 } 2017 sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); 2018 sqlite3ChangeCookie(db, v, iDb); 2019 } 2020 sqliteViewResetAll(db, iDb); 2021 2022 exit_drop_table: 2023 sqlite3SrcListDelete(pName); 2024 } 2025 2026 /* 2027 ** This routine is called to create a new foreign key on the table 2028 ** currently under construction. pFromCol determines which columns 2029 ** in the current table point to the foreign key. If pFromCol==0 then 2030 ** connect the key to the last column inserted. pTo is the name of 2031 ** the table referred to. pToCol is a list of tables in the other 2032 ** pTo table that the foreign key points to. flags contains all 2033 ** information about the conflict resolution algorithms specified 2034 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2035 ** 2036 ** An FKey structure is created and added to the table currently 2037 ** under construction in the pParse->pNewTable field. The new FKey 2038 ** is not linked into db->aFKey at this point - that does not happen 2039 ** until sqlite3EndTable(). 2040 ** 2041 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2042 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2043 */ 2044 void sqlite3CreateForeignKey( 2045 Parse *pParse, /* Parsing context */ 2046 ExprList *pFromCol, /* Columns in this table that point to other table */ 2047 Token *pTo, /* Name of the other table */ 2048 ExprList *pToCol, /* Columns in the other table */ 2049 int flags /* Conflict resolution algorithms. */ 2050 ){ 2051 #ifndef SQLITE_OMIT_FOREIGN_KEY 2052 FKey *pFKey = 0; 2053 Table *p = pParse->pNewTable; 2054 int nByte; 2055 int i; 2056 int nCol; 2057 char *z; 2058 2059 assert( pTo!=0 ); 2060 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2061 if( pFromCol==0 ){ 2062 int iCol = p->nCol-1; 2063 if( iCol<0 ) goto fk_end; 2064 if( pToCol && pToCol->nExpr!=1 ){ 2065 sqlite3ErrorMsg(pParse, "foreign key on %s" 2066 " should reference only one column of table %T", 2067 p->aCol[iCol].zName, pTo); 2068 goto fk_end; 2069 } 2070 nCol = 1; 2071 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2072 sqlite3ErrorMsg(pParse, 2073 "number of columns in foreign key does not match the number of " 2074 "columns in the referenced table"); 2075 goto fk_end; 2076 }else{ 2077 nCol = pFromCol->nExpr; 2078 } 2079 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2080 if( pToCol ){ 2081 for(i=0; i<pToCol->nExpr; i++){ 2082 nByte += strlen(pToCol->a[i].zName) + 1; 2083 } 2084 } 2085 pFKey = sqliteMalloc( nByte ); 2086 if( pFKey==0 ) goto fk_end; 2087 pFKey->pFrom = p; 2088 pFKey->pNextFrom = p->pFKey; 2089 z = (char*)&pFKey[1]; 2090 pFKey->aCol = (struct sColMap*)z; 2091 z += sizeof(struct sColMap)*nCol; 2092 pFKey->zTo = z; 2093 memcpy(z, pTo->z, pTo->n); 2094 z[pTo->n] = 0; 2095 z += pTo->n+1; 2096 pFKey->pNextTo = 0; 2097 pFKey->nCol = nCol; 2098 if( pFromCol==0 ){ 2099 pFKey->aCol[0].iFrom = p->nCol-1; 2100 }else{ 2101 for(i=0; i<nCol; i++){ 2102 int j; 2103 for(j=0; j<p->nCol; j++){ 2104 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2105 pFKey->aCol[i].iFrom = j; 2106 break; 2107 } 2108 } 2109 if( j>=p->nCol ){ 2110 sqlite3ErrorMsg(pParse, 2111 "unknown column \"%s\" in foreign key definition", 2112 pFromCol->a[i].zName); 2113 goto fk_end; 2114 } 2115 } 2116 } 2117 if( pToCol ){ 2118 for(i=0; i<nCol; i++){ 2119 int n = strlen(pToCol->a[i].zName); 2120 pFKey->aCol[i].zCol = z; 2121 memcpy(z, pToCol->a[i].zName, n); 2122 z[n] = 0; 2123 z += n+1; 2124 } 2125 } 2126 pFKey->isDeferred = 0; 2127 pFKey->deleteConf = flags & 0xff; 2128 pFKey->updateConf = (flags >> 8 ) & 0xff; 2129 pFKey->insertConf = (flags >> 16 ) & 0xff; 2130 2131 /* Link the foreign key to the table as the last step. 2132 */ 2133 p->pFKey = pFKey; 2134 pFKey = 0; 2135 2136 fk_end: 2137 sqliteFree(pFKey); 2138 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2139 sqlite3ExprListDelete(pFromCol); 2140 sqlite3ExprListDelete(pToCol); 2141 } 2142 2143 /* 2144 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2145 ** clause is seen as part of a foreign key definition. The isDeferred 2146 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2147 ** The behavior of the most recently created foreign key is adjusted 2148 ** accordingly. 2149 */ 2150 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2151 #ifndef SQLITE_OMIT_FOREIGN_KEY 2152 Table *pTab; 2153 FKey *pFKey; 2154 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2155 pFKey->isDeferred = isDeferred; 2156 #endif 2157 } 2158 2159 /* 2160 ** Generate code that will erase and refill index *pIdx. This is 2161 ** used to initialize a newly created index or to recompute the 2162 ** content of an index in response to a REINDEX command. 2163 ** 2164 ** if memRootPage is not negative, it means that the index is newly 2165 ** created. The memory cell specified by memRootPage contains the 2166 ** root page number of the index. If memRootPage is negative, then 2167 ** the index already exists and must be cleared before being refilled and 2168 ** the root page number of the index is taken from pIndex->tnum. 2169 */ 2170 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2171 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2172 int iTab = pParse->nTab; /* Btree cursor used for pTab */ 2173 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ 2174 int addr1; /* Address of top of loop */ 2175 int tnum; /* Root page of index */ 2176 Vdbe *v; /* Generate code into this virtual machine */ 2177 KeyInfo *pKey; /* KeyInfo for index */ 2178 int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema); 2179 2180 #ifndef SQLITE_OMIT_AUTHORIZATION 2181 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2182 pParse->db->aDb[iDb].zName ) ){ 2183 return; 2184 } 2185 #endif 2186 2187 /* Require a write-lock on the table to perform this operation */ 2188 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2189 2190 v = sqlite3GetVdbe(pParse); 2191 if( v==0 ) return; 2192 if( memRootPage>=0 ){ 2193 sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); 2194 tnum = 0; 2195 }else{ 2196 tnum = pIndex->tnum; 2197 sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); 2198 } 2199 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2200 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2201 sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF); 2202 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2203 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 2204 sqlite3GenerateIndexKey(v, pIndex, iTab); 2205 if( pIndex->onError!=OE_None ){ 2206 int curaddr = sqlite3VdbeCurrentAddr(v); 2207 int addr2 = curaddr+4; 2208 sqlite3VdbeChangeP2(v, curaddr-1, addr2); 2209 sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); 2210 sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); 2211 sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2); 2212 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 2213 "indexed columns are not unique", P3_STATIC); 2214 assert( sqlite3MallocFailed() || addr2==sqlite3VdbeCurrentAddr(v) ); 2215 } 2216 sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0); 2217 sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1); 2218 sqlite3VdbeJumpHere(v, addr1); 2219 sqlite3VdbeAddOp(v, OP_Close, iTab, 0); 2220 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2221 } 2222 2223 /* 2224 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2225 ** and pTblList is the name of the table that is to be indexed. Both will 2226 ** be NULL for a primary key or an index that is created to satisfy a 2227 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2228 ** as the table to be indexed. pParse->pNewTable is a table that is 2229 ** currently being constructed by a CREATE TABLE statement. 2230 ** 2231 ** pList is a list of columns to be indexed. pList will be NULL if this 2232 ** is a primary key or unique-constraint on the most recent column added 2233 ** to the table currently under construction. 2234 */ 2235 void sqlite3CreateIndex( 2236 Parse *pParse, /* All information about this parse */ 2237 Token *pName1, /* First part of index name. May be NULL */ 2238 Token *pName2, /* Second part of index name. May be NULL */ 2239 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2240 ExprList *pList, /* A list of columns to be indexed */ 2241 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2242 Token *pStart, /* The CREATE token that begins this statement */ 2243 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2244 int sortOrder, /* Sort order of primary key when pList==NULL */ 2245 int ifNotExist /* Omit error if index already exists */ 2246 ){ 2247 Table *pTab = 0; /* Table to be indexed */ 2248 Index *pIndex = 0; /* The index to be created */ 2249 char *zName = 0; /* Name of the index */ 2250 int nName; /* Number of characters in zName */ 2251 int i, j; 2252 Token nullId; /* Fake token for an empty ID list */ 2253 DbFixer sFix; /* For assigning database names to pTable */ 2254 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2255 sqlite3 *db = pParse->db; 2256 Db *pDb; /* The specific table containing the indexed database */ 2257 int iDb; /* Index of the database that is being written */ 2258 Token *pName = 0; /* Unqualified name of the index to create */ 2259 struct ExprList_item *pListItem; /* For looping over pList */ 2260 int nCol; 2261 int nExtra = 0; 2262 char *zExtra; 2263 2264 if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){ 2265 goto exit_create_index; 2266 } 2267 2268 /* 2269 ** Find the table that is to be indexed. Return early if not found. 2270 */ 2271 if( pTblName!=0 ){ 2272 2273 /* Use the two-part index name to determine the database 2274 ** to search for the table. 'Fix' the table name to this db 2275 ** before looking up the table. 2276 */ 2277 assert( pName1 && pName2 ); 2278 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2279 if( iDb<0 ) goto exit_create_index; 2280 2281 #ifndef SQLITE_OMIT_TEMPDB 2282 /* If the index name was unqualified, check if the the table 2283 ** is a temp table. If so, set the database to 1. 2284 */ 2285 pTab = sqlite3SrcListLookup(pParse, pTblName); 2286 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2287 iDb = 1; 2288 } 2289 #endif 2290 2291 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2292 sqlite3FixSrcList(&sFix, pTblName) 2293 ){ 2294 /* Because the parser constructs pTblName from a single identifier, 2295 ** sqlite3FixSrcList can never fail. */ 2296 assert(0); 2297 } 2298 pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 2299 pTblName->a[0].zDatabase); 2300 if( !pTab ) goto exit_create_index; 2301 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2302 }else{ 2303 assert( pName==0 ); 2304 pTab = pParse->pNewTable; 2305 if( !pTab ) goto exit_create_index; 2306 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2307 } 2308 pDb = &db->aDb[iDb]; 2309 2310 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2311 if( pTab->readOnly ){ 2312 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2313 goto exit_create_index; 2314 } 2315 #ifndef SQLITE_OMIT_VIEW 2316 if( pTab->pSelect ){ 2317 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2318 goto exit_create_index; 2319 } 2320 #endif 2321 #ifndef SQLITE_OMIT_VIRTUALTABLE 2322 if( IsVirtual(pTab) ){ 2323 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2324 goto exit_create_index; 2325 } 2326 #endif 2327 2328 /* 2329 ** Find the name of the index. Make sure there is not already another 2330 ** index or table with the same name. 2331 ** 2332 ** Exception: If we are reading the names of permanent indices from the 2333 ** sqlite_master table (because some other process changed the schema) and 2334 ** one of the index names collides with the name of a temporary table or 2335 ** index, then we will continue to process this index. 2336 ** 2337 ** If pName==0 it means that we are 2338 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2339 ** own name. 2340 */ 2341 if( pName ){ 2342 zName = sqlite3NameFromToken(pName); 2343 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2344 if( zName==0 ) goto exit_create_index; 2345 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2346 goto exit_create_index; 2347 } 2348 if( !db->init.busy ){ 2349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2350 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2351 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2352 goto exit_create_index; 2353 } 2354 } 2355 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2356 if( !ifNotExist ){ 2357 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2358 } 2359 goto exit_create_index; 2360 } 2361 }else{ 2362 char zBuf[30]; 2363 int n; 2364 Index *pLoop; 2365 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2366 sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n); 2367 zName = 0; 2368 sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); 2369 if( zName==0 ) goto exit_create_index; 2370 } 2371 2372 /* Check for authorization to create an index. 2373 */ 2374 #ifndef SQLITE_OMIT_AUTHORIZATION 2375 { 2376 const char *zDb = pDb->zName; 2377 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2378 goto exit_create_index; 2379 } 2380 i = SQLITE_CREATE_INDEX; 2381 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2382 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2383 goto exit_create_index; 2384 } 2385 } 2386 #endif 2387 2388 /* If pList==0, it means this routine was called to make a primary 2389 ** key out of the last column added to the table under construction. 2390 ** So create a fake list to simulate this. 2391 */ 2392 if( pList==0 ){ 2393 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2394 nullId.n = strlen((char*)nullId.z); 2395 pList = sqlite3ExprListAppend(0, 0, &nullId); 2396 if( pList==0 ) goto exit_create_index; 2397 pList->a[0].sortOrder = sortOrder; 2398 } 2399 2400 /* Figure out how many bytes of space are required to store explicitly 2401 ** specified collation sequence names. 2402 */ 2403 for(i=0; i<pList->nExpr; i++){ 2404 Expr *pExpr = pList->a[i].pExpr; 2405 if( pExpr ){ 2406 nExtra += (1 + strlen(pExpr->pColl->zName)); 2407 } 2408 } 2409 2410 /* 2411 ** Allocate the index structure. 2412 */ 2413 nName = strlen(zName); 2414 nCol = pList->nExpr; 2415 pIndex = sqliteMalloc( 2416 sizeof(Index) + /* Index structure */ 2417 sizeof(int)*nCol + /* Index.aiColumn */ 2418 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2419 sizeof(char *)*nCol + /* Index.azColl */ 2420 sizeof(u8)*nCol + /* Index.aSortOrder */ 2421 nName + 1 + /* Index.zName */ 2422 nExtra /* Collation sequence names */ 2423 ); 2424 if( sqlite3MallocFailed() ) goto exit_create_index; 2425 pIndex->azColl = (char**)(&pIndex[1]); 2426 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2427 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2428 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2429 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2430 zExtra = (char *)(&pIndex->zName[nName+1]); 2431 memcpy(pIndex->zName, zName, nName+1); 2432 pIndex->pTable = pTab; 2433 pIndex->nColumn = pList->nExpr; 2434 pIndex->onError = onError; 2435 pIndex->autoIndex = pName==0; 2436 pIndex->pSchema = db->aDb[iDb].pSchema; 2437 2438 /* Check to see if we should honor DESC requests on index columns 2439 */ 2440 if( pDb->pSchema->file_format>=4 ){ 2441 sortOrderMask = -1; /* Honor DESC */ 2442 }else{ 2443 sortOrderMask = 0; /* Ignore DESC */ 2444 } 2445 2446 /* Scan the names of the columns of the table to be indexed and 2447 ** load the column indices into the Index structure. Report an error 2448 ** if any column is not found. 2449 */ 2450 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2451 const char *zColName = pListItem->zName; 2452 Column *pTabCol; 2453 int requestedSortOrder; 2454 char *zColl; /* Collation sequence name */ 2455 2456 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2457 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2458 } 2459 if( j>=pTab->nCol ){ 2460 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2461 pTab->zName, zColName); 2462 goto exit_create_index; 2463 } 2464 /* TODO: Add a test to make sure that the same column is not named 2465 ** more than once within the same index. Only the first instance of 2466 ** the column will ever be used by the optimizer. Note that using the 2467 ** same column more than once cannot be an error because that would 2468 ** break backwards compatibility - it needs to be a warning. 2469 */ 2470 pIndex->aiColumn[i] = j; 2471 if( pListItem->pExpr ){ 2472 assert( pListItem->pExpr->pColl ); 2473 zColl = zExtra; 2474 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); 2475 zExtra += (strlen(zColl) + 1); 2476 }else{ 2477 zColl = pTab->aCol[j].zColl; 2478 if( !zColl ){ 2479 zColl = db->pDfltColl->zName; 2480 } 2481 } 2482 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2483 goto exit_create_index; 2484 } 2485 pIndex->azColl[i] = zColl; 2486 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2487 pIndex->aSortOrder[i] = requestedSortOrder; 2488 } 2489 sqlite3DefaultRowEst(pIndex); 2490 2491 if( pTab==pParse->pNewTable ){ 2492 /* This routine has been called to create an automatic index as a 2493 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2494 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2495 ** i.e. one of: 2496 ** 2497 ** CREATE TABLE t(x PRIMARY KEY, y); 2498 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2499 ** 2500 ** Either way, check to see if the table already has such an index. If 2501 ** so, don't bother creating this one. This only applies to 2502 ** automatically created indices. Users can do as they wish with 2503 ** explicit indices. 2504 */ 2505 Index *pIdx; 2506 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2507 int k; 2508 assert( pIdx->onError!=OE_None ); 2509 assert( pIdx->autoIndex ); 2510 assert( pIndex->onError!=OE_None ); 2511 2512 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2513 for(k=0; k<pIdx->nColumn; k++){ 2514 const char *z1 = pIdx->azColl[k]; 2515 const char *z2 = pIndex->azColl[k]; 2516 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2517 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2518 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2519 } 2520 if( k==pIdx->nColumn ){ 2521 if( pIdx->onError!=pIndex->onError ){ 2522 /* This constraint creates the same index as a previous 2523 ** constraint specified somewhere in the CREATE TABLE statement. 2524 ** However the ON CONFLICT clauses are different. If both this 2525 ** constraint and the previous equivalent constraint have explicit 2526 ** ON CONFLICT clauses this is an error. Otherwise, use the 2527 ** explicitly specified behaviour for the index. 2528 */ 2529 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2530 sqlite3ErrorMsg(pParse, 2531 "conflicting ON CONFLICT clauses specified", 0); 2532 } 2533 if( pIdx->onError==OE_Default ){ 2534 pIdx->onError = pIndex->onError; 2535 } 2536 } 2537 goto exit_create_index; 2538 } 2539 } 2540 } 2541 2542 /* Link the new Index structure to its table and to the other 2543 ** in-memory database structures. 2544 */ 2545 if( db->init.busy ){ 2546 Index *p; 2547 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2548 pIndex->zName, strlen(pIndex->zName)+1, pIndex); 2549 if( p ){ 2550 assert( p==pIndex ); /* Malloc must have failed */ 2551 goto exit_create_index; 2552 } 2553 db->flags |= SQLITE_InternChanges; 2554 if( pTblName!=0 ){ 2555 pIndex->tnum = db->init.newTnum; 2556 } 2557 } 2558 2559 /* If the db->init.busy is 0 then create the index on disk. This 2560 ** involves writing the index into the master table and filling in the 2561 ** index with the current table contents. 2562 ** 2563 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2564 ** command. db->init.busy is 1 when a database is opened and 2565 ** CREATE INDEX statements are read out of the master table. In 2566 ** the latter case the index already exists on disk, which is why 2567 ** we don't want to recreate it. 2568 ** 2569 ** If pTblName==0 it means this index is generated as a primary key 2570 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2571 ** has just been created, it contains no data and the index initialization 2572 ** step can be skipped. 2573 */ 2574 else if( db->init.busy==0 ){ 2575 Vdbe *v; 2576 char *zStmt; 2577 int iMem = pParse->nMem++; 2578 2579 v = sqlite3GetVdbe(pParse); 2580 if( v==0 ) goto exit_create_index; 2581 2582 2583 /* Create the rootpage for the index 2584 */ 2585 sqlite3BeginWriteOperation(pParse, 1, iDb); 2586 sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); 2587 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2588 2589 /* Gather the complete text of the CREATE INDEX statement into 2590 ** the zStmt variable 2591 */ 2592 if( pStart && pEnd ){ 2593 /* A named index with an explicit CREATE INDEX statement */ 2594 zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s", 2595 onError==OE_None ? "" : " UNIQUE", 2596 pEnd->z - pName->z + 1, 2597 pName->z); 2598 }else{ 2599 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2600 /* zStmt = sqlite3MPrintf(""); */ 2601 zStmt = 0; 2602 } 2603 2604 /* Add an entry in sqlite_master for this index 2605 */ 2606 sqlite3NestedParse(pParse, 2607 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);", 2608 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2609 pIndex->zName, 2610 pTab->zName, 2611 zStmt 2612 ); 2613 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2614 sqliteFree(zStmt); 2615 2616 /* Fill the index with data and reparse the schema. Code an OP_Expire 2617 ** to invalidate all pre-compiled statements. 2618 */ 2619 if( pTblName ){ 2620 sqlite3RefillIndex(pParse, pIndex, iMem); 2621 sqlite3ChangeCookie(db, v, iDb); 2622 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 2623 sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC); 2624 sqlite3VdbeAddOp(v, OP_Expire, 0, 0); 2625 } 2626 } 2627 2628 /* When adding an index to the list of indices for a table, make 2629 ** sure all indices labeled OE_Replace come after all those labeled 2630 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2631 ** and INSERT. 2632 */ 2633 if( db->init.busy || pTblName==0 ){ 2634 if( onError!=OE_Replace || pTab->pIndex==0 2635 || pTab->pIndex->onError==OE_Replace){ 2636 pIndex->pNext = pTab->pIndex; 2637 pTab->pIndex = pIndex; 2638 }else{ 2639 Index *pOther = pTab->pIndex; 2640 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2641 pOther = pOther->pNext; 2642 } 2643 pIndex->pNext = pOther->pNext; 2644 pOther->pNext = pIndex; 2645 } 2646 pIndex = 0; 2647 } 2648 2649 /* Clean up before exiting */ 2650 exit_create_index: 2651 if( pIndex ){ 2652 freeIndex(pIndex); 2653 } 2654 sqlite3ExprListDelete(pList); 2655 sqlite3SrcListDelete(pTblName); 2656 sqliteFree(zName); 2657 return; 2658 } 2659 2660 /* 2661 ** Generate code to make sure the file format number is at least minFormat. 2662 ** The generated code will increase the file format number if necessary. 2663 */ 2664 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2665 Vdbe *v; 2666 v = sqlite3GetVdbe(pParse); 2667 if( v ){ 2668 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); 2669 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2670 sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3); 2671 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2672 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 2673 } 2674 } 2675 2676 /* 2677 ** Fill the Index.aiRowEst[] array with default information - information 2678 ** to be used when we have not run the ANALYZE command. 2679 ** 2680 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2681 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2682 ** number of rows in the table that match any particular value of the 2683 ** first column of the index. aiRowEst[2] is an estimate of the number 2684 ** of rows that match any particular combiniation of the first 2 columns 2685 ** of the index. And so forth. It must always be the case that 2686 * 2687 ** aiRowEst[N]<=aiRowEst[N-1] 2688 ** aiRowEst[N]>=1 2689 ** 2690 ** Apart from that, we have little to go on besides intuition as to 2691 ** how aiRowEst[] should be initialized. The numbers generated here 2692 ** are based on typical values found in actual indices. 2693 */ 2694 void sqlite3DefaultRowEst(Index *pIdx){ 2695 unsigned *a = pIdx->aiRowEst; 2696 int i; 2697 assert( a!=0 ); 2698 a[0] = 1000000; 2699 for(i=pIdx->nColumn; i>=5; i--){ 2700 a[i] = 5; 2701 } 2702 while( i>=1 ){ 2703 a[i] = 11 - i; 2704 i--; 2705 } 2706 if( pIdx->onError!=OE_None ){ 2707 a[pIdx->nColumn] = 1; 2708 } 2709 } 2710 2711 /* 2712 ** This routine will drop an existing named index. This routine 2713 ** implements the DROP INDEX statement. 2714 */ 2715 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2716 Index *pIndex; 2717 Vdbe *v; 2718 sqlite3 *db = pParse->db; 2719 int iDb; 2720 2721 if( pParse->nErr || sqlite3MallocFailed() ){ 2722 goto exit_drop_index; 2723 } 2724 assert( pName->nSrc==1 ); 2725 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2726 goto exit_drop_index; 2727 } 2728 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2729 if( pIndex==0 ){ 2730 if( !ifExists ){ 2731 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2732 } 2733 pParse->checkSchema = 1; 2734 goto exit_drop_index; 2735 } 2736 if( pIndex->autoIndex ){ 2737 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2738 "or PRIMARY KEY constraint cannot be dropped", 0); 2739 goto exit_drop_index; 2740 } 2741 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2742 #ifndef SQLITE_OMIT_AUTHORIZATION 2743 { 2744 int code = SQLITE_DROP_INDEX; 2745 Table *pTab = pIndex->pTable; 2746 const char *zDb = db->aDb[iDb].zName; 2747 const char *zTab = SCHEMA_TABLE(iDb); 2748 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2749 goto exit_drop_index; 2750 } 2751 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2752 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2753 goto exit_drop_index; 2754 } 2755 } 2756 #endif 2757 2758 /* Generate code to remove the index and from the master table */ 2759 v = sqlite3GetVdbe(pParse); 2760 if( v ){ 2761 sqlite3NestedParse(pParse, 2762 "DELETE FROM %Q.%s WHERE name=%Q", 2763 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2764 pIndex->zName 2765 ); 2766 sqlite3ChangeCookie(db, v, iDb); 2767 destroyRootPage(pParse, pIndex->tnum, iDb); 2768 sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0); 2769 } 2770 2771 exit_drop_index: 2772 sqlite3SrcListDelete(pName); 2773 } 2774 2775 /* 2776 ** pArray is a pointer to an array of objects. Each object in the 2777 ** array is szEntry bytes in size. This routine allocates a new 2778 ** object on the end of the array. 2779 ** 2780 ** *pnEntry is the number of entries already in use. *pnAlloc is 2781 ** the previously allocated size of the array. initSize is the 2782 ** suggested initial array size allocation. 2783 ** 2784 ** The index of the new entry is returned in *pIdx. 2785 ** 2786 ** This routine returns a pointer to the array of objects. This 2787 ** might be the same as the pArray parameter or it might be a different 2788 ** pointer if the array was resized. 2789 */ 2790 void *sqlite3ArrayAllocate( 2791 void *pArray, /* Array of objects. Might be reallocated */ 2792 int szEntry, /* Size of each object in the array */ 2793 int initSize, /* Suggested initial allocation, in elements */ 2794 int *pnEntry, /* Number of objects currently in use */ 2795 int *pnAlloc, /* Current size of the allocation, in elements */ 2796 int *pIdx /* Write the index of a new slot here */ 2797 ){ 2798 char *z; 2799 if( *pnEntry >= *pnAlloc ){ 2800 void *pNew; 2801 int newSize; 2802 newSize = (*pnAlloc)*2 + initSize; 2803 pNew = sqliteRealloc(pArray, newSize*szEntry); 2804 if( pNew==0 ){ 2805 *pIdx = -1; 2806 return pArray; 2807 } 2808 *pnAlloc = newSize; 2809 pArray = pNew; 2810 } 2811 z = (char*)pArray; 2812 memset(&z[*pnEntry * szEntry], 0, szEntry); 2813 *pIdx = *pnEntry; 2814 ++*pnEntry; 2815 return pArray; 2816 } 2817 2818 /* 2819 ** Append a new element to the given IdList. Create a new IdList if 2820 ** need be. 2821 ** 2822 ** A new IdList is returned, or NULL if malloc() fails. 2823 */ 2824 IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){ 2825 int i; 2826 if( pList==0 ){ 2827 pList = sqliteMalloc( sizeof(IdList) ); 2828 if( pList==0 ) return 0; 2829 pList->nAlloc = 0; 2830 } 2831 pList->a = sqlite3ArrayAllocate( 2832 pList->a, 2833 sizeof(pList->a[0]), 2834 5, 2835 &pList->nId, 2836 &pList->nAlloc, 2837 &i 2838 ); 2839 if( i<0 ){ 2840 sqlite3IdListDelete(pList); 2841 return 0; 2842 } 2843 pList->a[i].zName = sqlite3NameFromToken(pToken); 2844 return pList; 2845 } 2846 2847 /* 2848 ** Delete an IdList. 2849 */ 2850 void sqlite3IdListDelete(IdList *pList){ 2851 int i; 2852 if( pList==0 ) return; 2853 for(i=0; i<pList->nId; i++){ 2854 sqliteFree(pList->a[i].zName); 2855 } 2856 sqliteFree(pList->a); 2857 sqliteFree(pList); 2858 } 2859 2860 /* 2861 ** Return the index in pList of the identifier named zId. Return -1 2862 ** if not found. 2863 */ 2864 int sqlite3IdListIndex(IdList *pList, const char *zName){ 2865 int i; 2866 if( pList==0 ) return -1; 2867 for(i=0; i<pList->nId; i++){ 2868 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 2869 } 2870 return -1; 2871 } 2872 2873 /* 2874 ** Append a new table name to the given SrcList. Create a new SrcList if 2875 ** need be. A new entry is created in the SrcList even if pToken is NULL. 2876 ** 2877 ** A new SrcList is returned, or NULL if malloc() fails. 2878 ** 2879 ** If pDatabase is not null, it means that the table has an optional 2880 ** database name prefix. Like this: "database.table". The pDatabase 2881 ** points to the table name and the pTable points to the database name. 2882 ** The SrcList.a[].zName field is filled with the table name which might 2883 ** come from pTable (if pDatabase is NULL) or from pDatabase. 2884 ** SrcList.a[].zDatabase is filled with the database name from pTable, 2885 ** or with NULL if no database is specified. 2886 ** 2887 ** In other words, if call like this: 2888 ** 2889 ** sqlite3SrcListAppend(A,B,0); 2890 ** 2891 ** Then B is a table name and the database name is unspecified. If called 2892 ** like this: 2893 ** 2894 ** sqlite3SrcListAppend(A,B,C); 2895 ** 2896 ** Then C is the table name and B is the database name. 2897 */ 2898 SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ 2899 struct SrcList_item *pItem; 2900 if( pList==0 ){ 2901 pList = sqliteMalloc( sizeof(SrcList) ); 2902 if( pList==0 ) return 0; 2903 pList->nAlloc = 1; 2904 } 2905 if( pList->nSrc>=pList->nAlloc ){ 2906 SrcList *pNew; 2907 pList->nAlloc *= 2; 2908 pNew = sqliteRealloc(pList, 2909 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); 2910 if( pNew==0 ){ 2911 sqlite3SrcListDelete(pList); 2912 return 0; 2913 } 2914 pList = pNew; 2915 } 2916 pItem = &pList->a[pList->nSrc]; 2917 memset(pItem, 0, sizeof(pList->a[0])); 2918 if( pDatabase && pDatabase->z==0 ){ 2919 pDatabase = 0; 2920 } 2921 if( pDatabase && pTable ){ 2922 Token *pTemp = pDatabase; 2923 pDatabase = pTable; 2924 pTable = pTemp; 2925 } 2926 pItem->zName = sqlite3NameFromToken(pTable); 2927 pItem->zDatabase = sqlite3NameFromToken(pDatabase); 2928 pItem->iCursor = -1; 2929 pItem->isPopulated = 0; 2930 pList->nSrc++; 2931 return pList; 2932 } 2933 2934 /* 2935 ** Assign cursors to all tables in a SrcList 2936 */ 2937 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 2938 int i; 2939 struct SrcList_item *pItem; 2940 assert(pList || sqlite3MallocFailed() ); 2941 if( pList ){ 2942 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 2943 if( pItem->iCursor>=0 ) break; 2944 pItem->iCursor = pParse->nTab++; 2945 if( pItem->pSelect ){ 2946 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 2947 } 2948 } 2949 } 2950 } 2951 2952 /* 2953 ** Delete an entire SrcList including all its substructure. 2954 */ 2955 void sqlite3SrcListDelete(SrcList *pList){ 2956 int i; 2957 struct SrcList_item *pItem; 2958 if( pList==0 ) return; 2959 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 2960 sqliteFree(pItem->zDatabase); 2961 sqliteFree(pItem->zName); 2962 sqliteFree(pItem->zAlias); 2963 sqlite3DeleteTable(pItem->pTab); 2964 sqlite3SelectDelete(pItem->pSelect); 2965 sqlite3ExprDelete(pItem->pOn); 2966 sqlite3IdListDelete(pItem->pUsing); 2967 } 2968 sqliteFree(pList); 2969 } 2970 2971 /* 2972 ** This routine is called by the parser to add a new term to the 2973 ** end of a growing FROM clause. The "p" parameter is the part of 2974 ** the FROM clause that has already been constructed. "p" is NULL 2975 ** if this is the first term of the FROM clause. pTable and pDatabase 2976 ** are the name of the table and database named in the FROM clause term. 2977 ** pDatabase is NULL if the database name qualifier is missing - the 2978 ** usual case. If the term has a alias, then pAlias points to the 2979 ** alias token. If the term is a subquery, then pSubquery is the 2980 ** SELECT statement that the subquery encodes. The pTable and 2981 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 2982 ** parameters are the content of the ON and USING clauses. 2983 ** 2984 ** Return a new SrcList which encodes is the FROM with the new 2985 ** term added. 2986 */ 2987 SrcList *sqlite3SrcListAppendFromTerm( 2988 SrcList *p, /* The left part of the FROM clause already seen */ 2989 Token *pTable, /* Name of the table to add to the FROM clause */ 2990 Token *pDatabase, /* Name of the database containing pTable */ 2991 Token *pAlias, /* The right-hand side of the AS subexpression */ 2992 Select *pSubquery, /* A subquery used in place of a table name */ 2993 Expr *pOn, /* The ON clause of a join */ 2994 IdList *pUsing /* The USING clause of a join */ 2995 ){ 2996 struct SrcList_item *pItem; 2997 p = sqlite3SrcListAppend(p, pTable, pDatabase); 2998 if( p==0 || p->nSrc==0 ){ 2999 sqlite3ExprDelete(pOn); 3000 sqlite3IdListDelete(pUsing); 3001 sqlite3SelectDelete(pSubquery); 3002 return p; 3003 } 3004 pItem = &p->a[p->nSrc-1]; 3005 if( pAlias && pAlias->n ){ 3006 pItem->zAlias = sqlite3NameFromToken(pAlias); 3007 } 3008 pItem->pSelect = pSubquery; 3009 pItem->pOn = pOn; 3010 pItem->pUsing = pUsing; 3011 return p; 3012 } 3013 3014 /* 3015 ** When building up a FROM clause in the parser, the join operator 3016 ** is initially attached to the left operand. But the code generator 3017 ** expects the join operator to be on the right operand. This routine 3018 ** Shifts all join operators from left to right for an entire FROM 3019 ** clause. 3020 ** 3021 ** Example: Suppose the join is like this: 3022 ** 3023 ** A natural cross join B 3024 ** 3025 ** The operator is "natural cross join". The A and B operands are stored 3026 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3027 ** operator with A. This routine shifts that operator over to B. 3028 */ 3029 void sqlite3SrcListShiftJoinType(SrcList *p){ 3030 if( p && p->a ){ 3031 int i; 3032 for(i=p->nSrc-1; i>0; i--){ 3033 p->a[i].jointype = p->a[i-1].jointype; 3034 } 3035 p->a[0].jointype = 0; 3036 } 3037 } 3038 3039 /* 3040 ** Begin a transaction 3041 */ 3042 void sqlite3BeginTransaction(Parse *pParse, int type){ 3043 sqlite3 *db; 3044 Vdbe *v; 3045 int i; 3046 3047 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3048 if( pParse->nErr || sqlite3MallocFailed() ) return; 3049 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3050 3051 v = sqlite3GetVdbe(pParse); 3052 if( !v ) return; 3053 if( type!=TK_DEFERRED ){ 3054 for(i=0; i<db->nDb; i++){ 3055 sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3056 } 3057 } 3058 sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); 3059 } 3060 3061 /* 3062 ** Commit a transaction 3063 */ 3064 void sqlite3CommitTransaction(Parse *pParse){ 3065 sqlite3 *db; 3066 Vdbe *v; 3067 3068 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3069 if( pParse->nErr || sqlite3MallocFailed() ) return; 3070 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3071 3072 v = sqlite3GetVdbe(pParse); 3073 if( v ){ 3074 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); 3075 } 3076 } 3077 3078 /* 3079 ** Rollback a transaction 3080 */ 3081 void sqlite3RollbackTransaction(Parse *pParse){ 3082 sqlite3 *db; 3083 Vdbe *v; 3084 3085 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3086 if( pParse->nErr || sqlite3MallocFailed() ) return; 3087 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3088 3089 v = sqlite3GetVdbe(pParse); 3090 if( v ){ 3091 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); 3092 } 3093 } 3094 3095 /* 3096 ** Make sure the TEMP database is open and available for use. Return 3097 ** the number of errors. Leave any error messages in the pParse structure. 3098 */ 3099 int sqlite3OpenTempDatabase(Parse *pParse){ 3100 sqlite3 *db = pParse->db; 3101 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3102 int rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, 3103 &db->aDb[1].pBt); 3104 if( rc!=SQLITE_OK ){ 3105 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3106 "file for storing temporary tables"); 3107 pParse->rc = rc; 3108 return 1; 3109 } 3110 if( db->flags & !db->autoCommit ){ 3111 rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); 3112 if( rc!=SQLITE_OK ){ 3113 sqlite3ErrorMsg(pParse, "unable to get a write lock on " 3114 "the temporary database file"); 3115 pParse->rc = rc; 3116 return 1; 3117 } 3118 } 3119 assert( db->aDb[1].pSchema ); 3120 } 3121 return 0; 3122 } 3123 3124 /* 3125 ** Generate VDBE code that will verify the schema cookie and start 3126 ** a read-transaction for all named database files. 3127 ** 3128 ** It is important that all schema cookies be verified and all 3129 ** read transactions be started before anything else happens in 3130 ** the VDBE program. But this routine can be called after much other 3131 ** code has been generated. So here is what we do: 3132 ** 3133 ** The first time this routine is called, we code an OP_Goto that 3134 ** will jump to a subroutine at the end of the program. Then we 3135 ** record every database that needs its schema verified in the 3136 ** pParse->cookieMask field. Later, after all other code has been 3137 ** generated, the subroutine that does the cookie verifications and 3138 ** starts the transactions will be coded and the OP_Goto P2 value 3139 ** will be made to point to that subroutine. The generation of the 3140 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3141 ** 3142 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3143 ** schema on any databases. This can be used to position the OP_Goto 3144 ** early in the code, before we know if any database tables will be used. 3145 */ 3146 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3147 sqlite3 *db; 3148 Vdbe *v; 3149 int mask; 3150 3151 v = sqlite3GetVdbe(pParse); 3152 if( v==0 ) return; /* This only happens if there was a prior error */ 3153 db = pParse->db; 3154 if( pParse->cookieGoto==0 ){ 3155 pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; 3156 } 3157 if( iDb>=0 ){ 3158 assert( iDb<db->nDb ); 3159 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3160 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3161 mask = 1<<iDb; 3162 if( (pParse->cookieMask & mask)==0 ){ 3163 pParse->cookieMask |= mask; 3164 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3165 if( !OMIT_TEMPDB && iDb==1 ){ 3166 sqlite3OpenTempDatabase(pParse); 3167 } 3168 } 3169 } 3170 } 3171 3172 /* 3173 ** Generate VDBE code that prepares for doing an operation that 3174 ** might change the database. 3175 ** 3176 ** This routine starts a new transaction if we are not already within 3177 ** a transaction. If we are already within a transaction, then a checkpoint 3178 ** is set if the setStatement parameter is true. A checkpoint should 3179 ** be set for operations that might fail (due to a constraint) part of 3180 ** the way through and which will need to undo some writes without having to 3181 ** rollback the whole transaction. For operations where all constraints 3182 ** can be checked before any changes are made to the database, it is never 3183 ** necessary to undo a write and the checkpoint should not be set. 3184 ** 3185 ** Only database iDb and the temp database are made writable by this call. 3186 ** If iDb==0, then the main and temp databases are made writable. If 3187 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 3188 ** specified auxiliary database and the temp database are made writable. 3189 */ 3190 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3191 Vdbe *v = sqlite3GetVdbe(pParse); 3192 if( v==0 ) return; 3193 sqlite3CodeVerifySchema(pParse, iDb); 3194 pParse->writeMask |= 1<<iDb; 3195 if( setStatement && pParse->nested==0 ){ 3196 sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); 3197 } 3198 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ 3199 sqlite3BeginWriteOperation(pParse, setStatement, 1); 3200 } 3201 } 3202 3203 /* 3204 ** Check to see if pIndex uses the collating sequence pColl. Return 3205 ** true if it does and false if it does not. 3206 */ 3207 #ifndef SQLITE_OMIT_REINDEX 3208 static int collationMatch(const char *zColl, Index *pIndex){ 3209 int i; 3210 for(i=0; i<pIndex->nColumn; i++){ 3211 const char *z = pIndex->azColl[i]; 3212 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3213 return 1; 3214 } 3215 } 3216 return 0; 3217 } 3218 #endif 3219 3220 /* 3221 ** Recompute all indices of pTab that use the collating sequence pColl. 3222 ** If pColl==0 then recompute all indices of pTab. 3223 */ 3224 #ifndef SQLITE_OMIT_REINDEX 3225 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3226 Index *pIndex; /* An index associated with pTab */ 3227 3228 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3229 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3230 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3231 sqlite3BeginWriteOperation(pParse, 0, iDb); 3232 sqlite3RefillIndex(pParse, pIndex, -1); 3233 } 3234 } 3235 } 3236 #endif 3237 3238 /* 3239 ** Recompute all indices of all tables in all databases where the 3240 ** indices use the collating sequence pColl. If pColl==0 then recompute 3241 ** all indices everywhere. 3242 */ 3243 #ifndef SQLITE_OMIT_REINDEX 3244 static void reindexDatabases(Parse *pParse, char const *zColl){ 3245 Db *pDb; /* A single database */ 3246 int iDb; /* The database index number */ 3247 sqlite3 *db = pParse->db; /* The database connection */ 3248 HashElem *k; /* For looping over tables in pDb */ 3249 Table *pTab; /* A table in the database */ 3250 3251 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3252 assert( pDb!=0 ); 3253 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3254 pTab = (Table*)sqliteHashData(k); 3255 reindexTable(pParse, pTab, zColl); 3256 } 3257 } 3258 } 3259 #endif 3260 3261 /* 3262 ** Generate code for the REINDEX command. 3263 ** 3264 ** REINDEX -- 1 3265 ** REINDEX <collation> -- 2 3266 ** REINDEX ?<database>.?<tablename> -- 3 3267 ** REINDEX ?<database>.?<indexname> -- 4 3268 ** 3269 ** Form 1 causes all indices in all attached databases to be rebuilt. 3270 ** Form 2 rebuilds all indices in all databases that use the named 3271 ** collating function. Forms 3 and 4 rebuild the named index or all 3272 ** indices associated with the named table. 3273 */ 3274 #ifndef SQLITE_OMIT_REINDEX 3275 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3276 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3277 char *z; /* Name of a table or index */ 3278 const char *zDb; /* Name of the database */ 3279 Table *pTab; /* A table in the database */ 3280 Index *pIndex; /* An index associated with pTab */ 3281 int iDb; /* The database index number */ 3282 sqlite3 *db = pParse->db; /* The database connection */ 3283 Token *pObjName; /* Name of the table or index to be reindexed */ 3284 3285 /* Read the database schema. If an error occurs, leave an error message 3286 ** and code in pParse and return NULL. */ 3287 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3288 return; 3289 } 3290 3291 if( pName1==0 || pName1->z==0 ){ 3292 reindexDatabases(pParse, 0); 3293 return; 3294 }else if( pName2==0 || pName2->z==0 ){ 3295 assert( pName1->z ); 3296 pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0); 3297 if( pColl ){ 3298 char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n); 3299 if( zColl ){ 3300 reindexDatabases(pParse, zColl); 3301 sqliteFree(zColl); 3302 } 3303 return; 3304 } 3305 } 3306 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3307 if( iDb<0 ) return; 3308 z = sqlite3NameFromToken(pObjName); 3309 if( z==0 ) return; 3310 zDb = db->aDb[iDb].zName; 3311 pTab = sqlite3FindTable(db, z, zDb); 3312 if( pTab ){ 3313 reindexTable(pParse, pTab, 0); 3314 sqliteFree(z); 3315 return; 3316 } 3317 pIndex = sqlite3FindIndex(db, z, zDb); 3318 sqliteFree(z); 3319 if( pIndex ){ 3320 sqlite3BeginWriteOperation(pParse, 0, iDb); 3321 sqlite3RefillIndex(pParse, pIndex, -1); 3322 return; 3323 } 3324 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3325 } 3326 #endif 3327 3328 /* 3329 ** Return a dynamicly allocated KeyInfo structure that can be used 3330 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3331 ** 3332 ** If successful, a pointer to the new structure is returned. In this case 3333 ** the caller is responsible for calling sqliteFree() on the returned 3334 ** pointer. If an error occurs (out of memory or missing collation 3335 ** sequence), NULL is returned and the state of pParse updated to reflect 3336 ** the error. 3337 */ 3338 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3339 int i; 3340 int nCol = pIdx->nColumn; 3341 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3342 KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes); 3343 3344 if( pKey ){ 3345 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3346 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3347 for(i=0; i<nCol; i++){ 3348 char *zColl = pIdx->azColl[i]; 3349 assert( zColl ); 3350 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3351 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3352 } 3353 pKey->nField = nCol; 3354 } 3355 3356 if( pParse->nErr ){ 3357 sqliteFree(pKey); 3358 pKey = 0; 3359 } 3360 return pKey; 3361 } 3362