xref: /sqlite-3.40.0/src/build.c (revision 9a243e69)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
229     /* A minimum of one cursor is required if autoincrement is used
230     *  See ticket [a696379c1f08866] */
231     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232     sqlite3VdbeMakeReady(v, pParse);
233     pParse->rc = SQLITE_DONE;
234   }else{
235     pParse->rc = SQLITE_ERROR;
236   }
237 }
238 
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction.  When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable.  This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252   va_list ap;
253   char *zSql;
254   char *zErrMsg = 0;
255   sqlite3 *db = pParse->db;
256   char saveBuf[PARSE_TAIL_SZ];
257 
258   if( pParse->nErr ) return;
259   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
260   va_start(ap, zFormat);
261   zSql = sqlite3VMPrintf(db, zFormat, ap);
262   va_end(ap);
263   if( zSql==0 ){
264     return;   /* A malloc must have failed */
265   }
266   pParse->nested++;
267   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269   sqlite3RunParser(pParse, zSql, &zErrMsg);
270   sqlite3DbFree(db, zErrMsg);
271   sqlite3DbFree(db, zSql);
272   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273   pParse->nested--;
274 }
275 
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
281 int sqlite3UserAuthTable(const char *zTable){
282   return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285 
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table.  Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned.  (No checking for duplicate table
293 ** names is done.)  The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299   Table *p = 0;
300   int i;
301 
302   /* All mutexes are required for schema access.  Make sure we hold them. */
303   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305   /* Only the admin user is allowed to know that the sqlite_user table
306   ** exists */
307   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308     return 0;
309   }
310 #endif
311   while(1){
312     for(i=OMIT_TEMPDB; i<db->nDb; i++){
313       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
314       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315         assert( sqlite3SchemaMutexHeld(db, j, 0) );
316         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317         if( p ) return p;
318       }
319     }
320     /* Not found.  If the name we were looking for was temp.sqlite_master
321     ** then change the name to sqlite_temp_master and try again. */
322     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324     zName = TEMP_MASTER_NAME;
325   }
326   return 0;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363         pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364       }
365       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366         return pMod->pEpoTab;
367       }
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->mDbFlags |= DBFLAG_SchemaChange;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
518 ** Deferred resets may be run by calling with iDb<0.
519 */
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521   int i;
522   assert( iDb<db->nDb );
523 
524   if( iDb>=0 ){
525     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526     DbSetProperty(db, iDb, DB_ResetWanted);
527     DbSetProperty(db, 1, DB_ResetWanted);
528   }
529 
530   if( db->nSchemaLock==0 ){
531     for(i=0; i<db->nDb; i++){
532       if( DbHasProperty(db, i, DB_ResetWanted) ){
533         sqlite3SchemaClear(db->aDb[i].pSchema);
534       }
535     }
536   }
537 }
538 
539 /*
540 ** Erase all schema information from all attached databases (including
541 ** "main" and "temp") for a single database connection.
542 */
543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
544   int i;
545   sqlite3BtreeEnterAll(db);
546   assert( db->nSchemaLock==0 );
547   for(i=0; i<db->nDb; i++){
548     Db *pDb = &db->aDb[i];
549     if( pDb->pSchema ){
550       sqlite3SchemaClear(pDb->pSchema);
551     }
552   }
553   db->mDbFlags &= ~DBFLAG_SchemaChange;
554   sqlite3VtabUnlockList(db);
555   sqlite3BtreeLeaveAll(db);
556   sqlite3CollapseDatabaseArray(db);
557 }
558 
559 /*
560 ** This routine is called when a commit occurs.
561 */
562 void sqlite3CommitInternalChanges(sqlite3 *db){
563   db->mDbFlags &= ~DBFLAG_SchemaChange;
564 }
565 
566 /*
567 ** Delete memory allocated for the column names of a table or view (the
568 ** Table.aCol[] array).
569 */
570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
571   int i;
572   Column *pCol;
573   assert( pTable!=0 );
574   if( (pCol = pTable->aCol)!=0 ){
575     for(i=0; i<pTable->nCol; i++, pCol++){
576       sqlite3DbFree(db, pCol->zName);
577       sqlite3ExprDelete(db, pCol->pDflt);
578       sqlite3DbFree(db, pCol->zColl);
579     }
580     sqlite3DbFree(db, pTable->aCol);
581   }
582 }
583 
584 /*
585 ** Remove the memory data structures associated with the given
586 ** Table.  No changes are made to disk by this routine.
587 **
588 ** This routine just deletes the data structure.  It does not unlink
589 ** the table data structure from the hash table.  But it does destroy
590 ** memory structures of the indices and foreign keys associated with
591 ** the table.
592 **
593 ** The db parameter is optional.  It is needed if the Table object
594 ** contains lookaside memory.  (Table objects in the schema do not use
595 ** lookaside memory, but some ephemeral Table objects do.)  Or the
596 ** db parameter can be used with db->pnBytesFreed to measure the memory
597 ** used by the Table object.
598 */
599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
600   Index *pIndex, *pNext;
601 
602 #ifdef SQLITE_DEBUG
603   /* Record the number of outstanding lookaside allocations in schema Tables
604   ** prior to doing any free() operations.  Since schema Tables do not use
605   ** lookaside, this number should not change. */
606   int nLookaside = 0;
607   if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
608     nLookaside = sqlite3LookasideUsed(db, 0);
609   }
610 #endif
611 
612   /* Delete all indices associated with this table. */
613   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
614     pNext = pIndex->pNext;
615     assert( pIndex->pSchema==pTable->pSchema
616          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
617     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
618       char *zName = pIndex->zName;
619       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620          &pIndex->pSchema->idxHash, zName, 0
621       );
622       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623       assert( pOld==pIndex || pOld==0 );
624     }
625     freeIndex(db, pIndex);
626   }
627 
628   /* Delete any foreign keys attached to this table. */
629   sqlite3FkDelete(db, pTable);
630 
631   /* Delete the Table structure itself.
632   */
633   sqlite3DeleteColumnNames(db, pTable);
634   sqlite3DbFree(db, pTable->zName);
635   sqlite3DbFree(db, pTable->zColAff);
636   sqlite3SelectDelete(db, pTable->pSelect);
637   sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639   sqlite3VtabClear(db, pTable);
640 #endif
641   sqlite3DbFree(db, pTable);
642 
643   /* Verify that no lookaside memory was used by schema tables */
644   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
645 }
646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
647   /* Do not delete the table until the reference count reaches zero. */
648   if( !pTable ) return;
649   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
650   deleteTable(db, pTable);
651 }
652 
653 
654 /*
655 ** Unlink the given table from the hash tables and the delete the
656 ** table structure with all its indices and foreign keys.
657 */
658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
659   Table *p;
660   Db *pDb;
661 
662   assert( db!=0 );
663   assert( iDb>=0 && iDb<db->nDb );
664   assert( zTabName );
665   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
666   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
667   pDb = &db->aDb[iDb];
668   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
669   sqlite3DeleteTable(db, p);
670   db->mDbFlags |= DBFLAG_SchemaChange;
671 }
672 
673 /*
674 ** Given a token, return a string that consists of the text of that
675 ** token.  Space to hold the returned string
676 ** is obtained from sqliteMalloc() and must be freed by the calling
677 ** function.
678 **
679 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
680 ** surround the body of the token are removed.
681 **
682 ** Tokens are often just pointers into the original SQL text and so
683 ** are not \000 terminated and are not persistent.  The returned string
684 ** is \000 terminated and is persistent.
685 */
686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
687   char *zName;
688   if( pName ){
689     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
690     sqlite3Dequote(zName);
691   }else{
692     zName = 0;
693   }
694   return zName;
695 }
696 
697 /*
698 ** Open the sqlite_master table stored in database number iDb for
699 ** writing. The table is opened using cursor 0.
700 */
701 void sqlite3OpenMasterTable(Parse *p, int iDb){
702   Vdbe *v = sqlite3GetVdbe(p);
703   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
704   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
705   if( p->nTab==0 ){
706     p->nTab = 1;
707   }
708 }
709 
710 /*
711 ** Parameter zName points to a nul-terminated buffer containing the name
712 ** of a database ("main", "temp" or the name of an attached db). This
713 ** function returns the index of the named database in db->aDb[], or
714 ** -1 if the named db cannot be found.
715 */
716 int sqlite3FindDbName(sqlite3 *db, const char *zName){
717   int i = -1;         /* Database number */
718   if( zName ){
719     Db *pDb;
720     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
722       /* "main" is always an acceptable alias for the primary database
723       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
724       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
725     }
726   }
727   return i;
728 }
729 
730 /*
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
735 */
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737   int i;                               /* Database number */
738   char *zName;                         /* Name we are searching for */
739   zName = sqlite3NameFromToken(db, pName);
740   i = sqlite3FindDbName(db, zName);
741   sqlite3DbFree(db, zName);
742   return i;
743 }
744 
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
747 **
748 ** CREATE TABLE xxx.yyy (...);
749 **
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
752 **
753 ** CREATE TABLE yyy(...);
754 **
755 ** Then pName1 is set to "yyy" and pName2 is "".
756 **
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name.  The index of the
759 ** database "xxx" is returned.
760 */
761 int sqlite3TwoPartName(
762   Parse *pParse,      /* Parsing and code generating context */
763   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
764   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
765   Token **pUnqual     /* Write the unqualified object name here */
766 ){
767   int iDb;                    /* Database holding the object */
768   sqlite3 *db = pParse->db;
769 
770   assert( pName2!=0 );
771   if( pName2->n>0 ){
772     if( db->init.busy ) {
773       sqlite3ErrorMsg(pParse, "corrupt database");
774       return -1;
775     }
776     *pUnqual = pName2;
777     iDb = sqlite3FindDb(db, pName1);
778     if( iDb<0 ){
779       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
780       return -1;
781     }
782   }else{
783     assert( db->init.iDb==0 || db->init.busy
784              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
785     iDb = db->init.iDb;
786     *pUnqual = pName1;
787   }
788   return iDb;
789 }
790 
791 /*
792 ** This routine is used to check if the UTF-8 string zName is a legal
793 ** unqualified name for a new schema object (table, index, view or
794 ** trigger). All names are legal except those that begin with the string
795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
796 ** is reserved for internal use.
797 */
798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
799   if( !pParse->db->init.busy && pParse->nested==0
800           && (pParse->db->flags & SQLITE_WriteSchema)==0
801           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
802     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
803     return SQLITE_ERROR;
804   }
805   return SQLITE_OK;
806 }
807 
808 /*
809 ** Return the PRIMARY KEY index of a table
810 */
811 Index *sqlite3PrimaryKeyIndex(Table *pTab){
812   Index *p;
813   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
814   return p;
815 }
816 
817 /*
818 ** Return the column of index pIdx that corresponds to table
819 ** column iCol.  Return -1 if not found.
820 */
821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
822   int i;
823   for(i=0; i<pIdx->nColumn; i++){
824     if( iCol==pIdx->aiColumn[i] ) return i;
825   }
826   return -1;
827 }
828 
829 /*
830 ** Begin constructing a new table representation in memory.  This is
831 ** the first of several action routines that get called in response
832 ** to a CREATE TABLE statement.  In particular, this routine is called
833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
834 ** flag is true if the table should be stored in the auxiliary database
835 ** file instead of in the main database file.  This is normally the case
836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
837 ** CREATE and TABLE.
838 **
839 ** The new table record is initialized and put in pParse->pNewTable.
840 ** As more of the CREATE TABLE statement is parsed, additional action
841 ** routines will be called to add more information to this record.
842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
843 ** is called to complete the construction of the new table record.
844 */
845 void sqlite3StartTable(
846   Parse *pParse,   /* Parser context */
847   Token *pName1,   /* First part of the name of the table or view */
848   Token *pName2,   /* Second part of the name of the table or view */
849   int isTemp,      /* True if this is a TEMP table */
850   int isView,      /* True if this is a VIEW */
851   int isVirtual,   /* True if this is a VIRTUAL table */
852   int noErr        /* Do nothing if table already exists */
853 ){
854   Table *pTable;
855   char *zName = 0; /* The name of the new table */
856   sqlite3 *db = pParse->db;
857   Vdbe *v;
858   int iDb;         /* Database number to create the table in */
859   Token *pName;    /* Unqualified name of the table to create */
860 
861   if( db->init.busy && db->init.newTnum==1 ){
862     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
863     iDb = db->init.iDb;
864     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
865     pName = pName1;
866   }else{
867     /* The common case */
868     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
869     if( iDb<0 ) return;
870     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
871       /* If creating a temp table, the name may not be qualified. Unless
872       ** the database name is "temp" anyway.  */
873       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
874       return;
875     }
876     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
877     zName = sqlite3NameFromToken(db, pName);
878   }
879   pParse->sNameToken = *pName;
880   if( zName==0 ) return;
881   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
882     goto begin_table_error;
883   }
884   if( db->init.iDb==1 ) isTemp = 1;
885 #ifndef SQLITE_OMIT_AUTHORIZATION
886   assert( isTemp==0 || isTemp==1 );
887   assert( isView==0 || isView==1 );
888   {
889     static const u8 aCode[] = {
890        SQLITE_CREATE_TABLE,
891        SQLITE_CREATE_TEMP_TABLE,
892        SQLITE_CREATE_VIEW,
893        SQLITE_CREATE_TEMP_VIEW
894     };
895     char *zDb = db->aDb[iDb].zDbSName;
896     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
897       goto begin_table_error;
898     }
899     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
900                                        zName, 0, zDb) ){
901       goto begin_table_error;
902     }
903   }
904 #endif
905 
906   /* Make sure the new table name does not collide with an existing
907   ** index or table name in the same database.  Issue an error message if
908   ** it does. The exception is if the statement being parsed was passed
909   ** to an sqlite3_declare_vtab() call. In that case only the column names
910   ** and types will be used, so there is no need to test for namespace
911   ** collisions.
912   */
913   if( !IN_DECLARE_VTAB ){
914     char *zDb = db->aDb[iDb].zDbSName;
915     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
916       goto begin_table_error;
917     }
918     pTable = sqlite3FindTable(db, zName, zDb);
919     if( pTable ){
920       if( !noErr ){
921         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
922       }else{
923         assert( !db->init.busy || CORRUPT_DB );
924         sqlite3CodeVerifySchema(pParse, iDb);
925       }
926       goto begin_table_error;
927     }
928     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
929       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
930       goto begin_table_error;
931     }
932   }
933 
934   pTable = sqlite3DbMallocZero(db, sizeof(Table));
935   if( pTable==0 ){
936     assert( db->mallocFailed );
937     pParse->rc = SQLITE_NOMEM_BKPT;
938     pParse->nErr++;
939     goto begin_table_error;
940   }
941   pTable->zName = zName;
942   pTable->iPKey = -1;
943   pTable->pSchema = db->aDb[iDb].pSchema;
944   pTable->nTabRef = 1;
945 #ifdef SQLITE_DEFAULT_ROWEST
946   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
947 #else
948   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
949 #endif
950   assert( pParse->pNewTable==0 );
951   pParse->pNewTable = pTable;
952 
953   /* If this is the magic sqlite_sequence table used by autoincrement,
954   ** then record a pointer to this table in the main database structure
955   ** so that INSERT can find the table easily.
956   */
957 #ifndef SQLITE_OMIT_AUTOINCREMENT
958   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
959     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
960     pTable->pSchema->pSeqTab = pTable;
961   }
962 #endif
963 
964   /* Begin generating the code that will insert the table record into
965   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
966   ** and allocate the record number for the table entry now.  Before any
967   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
968   ** indices to be created and the table record must come before the
969   ** indices.  Hence, the record number for the table must be allocated
970   ** now.
971   */
972   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
973     int addr1;
974     int fileFormat;
975     int reg1, reg2, reg3;
976     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
977     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
978     sqlite3BeginWriteOperation(pParse, 1, iDb);
979 
980 #ifndef SQLITE_OMIT_VIRTUALTABLE
981     if( isVirtual ){
982       sqlite3VdbeAddOp0(v, OP_VBegin);
983     }
984 #endif
985 
986     /* If the file format and encoding in the database have not been set,
987     ** set them now.
988     */
989     reg1 = pParse->regRowid = ++pParse->nMem;
990     reg2 = pParse->regRoot = ++pParse->nMem;
991     reg3 = ++pParse->nMem;
992     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
993     sqlite3VdbeUsesBtree(v, iDb);
994     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
995     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
996                   1 : SQLITE_MAX_FILE_FORMAT;
997     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
998     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
999     sqlite3VdbeJumpHere(v, addr1);
1000 
1001     /* This just creates a place-holder record in the sqlite_master table.
1002     ** The record created does not contain anything yet.  It will be replaced
1003     ** by the real entry in code generated at sqlite3EndTable().
1004     **
1005     ** The rowid for the new entry is left in register pParse->regRowid.
1006     ** The root page number of the new table is left in reg pParse->regRoot.
1007     ** The rowid and root page number values are needed by the code that
1008     ** sqlite3EndTable will generate.
1009     */
1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1011     if( isView || isVirtual ){
1012       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1013     }else
1014 #endif
1015     {
1016       pParse->addrCrTab =
1017          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1018     }
1019     sqlite3OpenMasterTable(pParse, iDb);
1020     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1021     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1022     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1023     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1024     sqlite3VdbeAddOp0(v, OP_Close);
1025   }
1026 
1027   /* Normal (non-error) return. */
1028   return;
1029 
1030   /* If an error occurs, we jump here */
1031 begin_table_error:
1032   sqlite3DbFree(db, zName);
1033   return;
1034 }
1035 
1036 /* Set properties of a table column based on the (magical)
1037 ** name of the column.
1038 */
1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1041   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1042     pCol->colFlags |= COLFLAG_HIDDEN;
1043   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1044     pTab->tabFlags |= TF_OOOHidden;
1045   }
1046 }
1047 #endif
1048 
1049 
1050 /*
1051 ** Add a new column to the table currently being constructed.
1052 **
1053 ** The parser calls this routine once for each column declaration
1054 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1055 ** first to get things going.  Then this routine is called for each
1056 ** column.
1057 */
1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1059   Table *p;
1060   int i;
1061   char *z;
1062   char *zType;
1063   Column *pCol;
1064   sqlite3 *db = pParse->db;
1065   if( (p = pParse->pNewTable)==0 ) return;
1066 #if SQLITE_MAX_COLUMN
1067   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1068     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1069     return;
1070   }
1071 #endif
1072   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1073   if( z==0 ) return;
1074   memcpy(z, pName->z, pName->n);
1075   z[pName->n] = 0;
1076   sqlite3Dequote(z);
1077   for(i=0; i<p->nCol; i++){
1078     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1079       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1080       sqlite3DbFree(db, z);
1081       return;
1082     }
1083   }
1084   if( (p->nCol & 0x7)==0 ){
1085     Column *aNew;
1086     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1087     if( aNew==0 ){
1088       sqlite3DbFree(db, z);
1089       return;
1090     }
1091     p->aCol = aNew;
1092   }
1093   pCol = &p->aCol[p->nCol];
1094   memset(pCol, 0, sizeof(p->aCol[0]));
1095   pCol->zName = z;
1096   sqlite3ColumnPropertiesFromName(p, pCol);
1097 
1098   if( pType->n==0 ){
1099     /* If there is no type specified, columns have the default affinity
1100     ** 'BLOB'. */
1101     pCol->affinity = SQLITE_AFF_BLOB;
1102     pCol->szEst = 1;
1103   }else{
1104     zType = z + sqlite3Strlen30(z) + 1;
1105     memcpy(zType, pType->z, pType->n);
1106     zType[pType->n] = 0;
1107     sqlite3Dequote(zType);
1108     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1109     pCol->colFlags |= COLFLAG_HASTYPE;
1110   }
1111   p->nCol++;
1112   pParse->constraintName.n = 0;
1113 }
1114 
1115 /*
1116 ** This routine is called by the parser while in the middle of
1117 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1118 ** been seen on a column.  This routine sets the notNull flag on
1119 ** the column currently under construction.
1120 */
1121 void sqlite3AddNotNull(Parse *pParse, int onError){
1122   Table *p;
1123   p = pParse->pNewTable;
1124   if( p==0 || NEVER(p->nCol<1) ) return;
1125   p->aCol[p->nCol-1].notNull = (u8)onError;
1126   p->tabFlags |= TF_HasNotNull;
1127 }
1128 
1129 /*
1130 ** Scan the column type name zType (length nType) and return the
1131 ** associated affinity type.
1132 **
1133 ** This routine does a case-independent search of zType for the
1134 ** substrings in the following table. If one of the substrings is
1135 ** found, the corresponding affinity is returned. If zType contains
1136 ** more than one of the substrings, entries toward the top of
1137 ** the table take priority. For example, if zType is 'BLOBINT',
1138 ** SQLITE_AFF_INTEGER is returned.
1139 **
1140 ** Substring     | Affinity
1141 ** --------------------------------
1142 ** 'INT'         | SQLITE_AFF_INTEGER
1143 ** 'CHAR'        | SQLITE_AFF_TEXT
1144 ** 'CLOB'        | SQLITE_AFF_TEXT
1145 ** 'TEXT'        | SQLITE_AFF_TEXT
1146 ** 'BLOB'        | SQLITE_AFF_BLOB
1147 ** 'REAL'        | SQLITE_AFF_REAL
1148 ** 'FLOA'        | SQLITE_AFF_REAL
1149 ** 'DOUB'        | SQLITE_AFF_REAL
1150 **
1151 ** If none of the substrings in the above table are found,
1152 ** SQLITE_AFF_NUMERIC is returned.
1153 */
1154 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1155   u32 h = 0;
1156   char aff = SQLITE_AFF_NUMERIC;
1157   const char *zChar = 0;
1158 
1159   assert( zIn!=0 );
1160   while( zIn[0] ){
1161     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1162     zIn++;
1163     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1164       aff = SQLITE_AFF_TEXT;
1165       zChar = zIn;
1166     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1167       aff = SQLITE_AFF_TEXT;
1168     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1169       aff = SQLITE_AFF_TEXT;
1170     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1171         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1172       aff = SQLITE_AFF_BLOB;
1173       if( zIn[0]=='(' ) zChar = zIn;
1174 #ifndef SQLITE_OMIT_FLOATING_POINT
1175     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1176         && aff==SQLITE_AFF_NUMERIC ){
1177       aff = SQLITE_AFF_REAL;
1178     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1179         && aff==SQLITE_AFF_NUMERIC ){
1180       aff = SQLITE_AFF_REAL;
1181     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1182         && aff==SQLITE_AFF_NUMERIC ){
1183       aff = SQLITE_AFF_REAL;
1184 #endif
1185     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1186       aff = SQLITE_AFF_INTEGER;
1187       break;
1188     }
1189   }
1190 
1191   /* If pszEst is not NULL, store an estimate of the field size.  The
1192   ** estimate is scaled so that the size of an integer is 1.  */
1193   if( pszEst ){
1194     *pszEst = 1;   /* default size is approx 4 bytes */
1195     if( aff<SQLITE_AFF_NUMERIC ){
1196       if( zChar ){
1197         while( zChar[0] ){
1198           if( sqlite3Isdigit(zChar[0]) ){
1199             int v = 0;
1200             sqlite3GetInt32(zChar, &v);
1201             v = v/4 + 1;
1202             if( v>255 ) v = 255;
1203             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1204             break;
1205           }
1206           zChar++;
1207         }
1208       }else{
1209         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1210       }
1211     }
1212   }
1213   return aff;
1214 }
1215 
1216 /*
1217 ** The expression is the default value for the most recently added column
1218 ** of the table currently under construction.
1219 **
1220 ** Default value expressions must be constant.  Raise an exception if this
1221 ** is not the case.
1222 **
1223 ** This routine is called by the parser while in the middle of
1224 ** parsing a CREATE TABLE statement.
1225 */
1226 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1227   Table *p;
1228   Column *pCol;
1229   sqlite3 *db = pParse->db;
1230   p = pParse->pNewTable;
1231   if( p!=0 ){
1232     pCol = &(p->aCol[p->nCol-1]);
1233     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1234       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1235           pCol->zName);
1236     }else{
1237       /* A copy of pExpr is used instead of the original, as pExpr contains
1238       ** tokens that point to volatile memory. The 'span' of the expression
1239       ** is required by pragma table_info.
1240       */
1241       Expr x;
1242       sqlite3ExprDelete(db, pCol->pDflt);
1243       memset(&x, 0, sizeof(x));
1244       x.op = TK_SPAN;
1245       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1246                                     (int)(pSpan->zEnd - pSpan->zStart));
1247       x.pLeft = pSpan->pExpr;
1248       x.flags = EP_Skip;
1249       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1250       sqlite3DbFree(db, x.u.zToken);
1251     }
1252   }
1253   sqlite3ExprDelete(db, pSpan->pExpr);
1254 }
1255 
1256 /*
1257 ** Backwards Compatibility Hack:
1258 **
1259 ** Historical versions of SQLite accepted strings as column names in
1260 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1261 **
1262 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1263 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1264 **
1265 ** This is goofy.  But to preserve backwards compatibility we continue to
1266 ** accept it.  This routine does the necessary conversion.  It converts
1267 ** the expression given in its argument from a TK_STRING into a TK_ID
1268 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1269 ** If the epxression is anything other than TK_STRING, the expression is
1270 ** unchanged.
1271 */
1272 static void sqlite3StringToId(Expr *p){
1273   if( p->op==TK_STRING ){
1274     p->op = TK_ID;
1275   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1276     p->pLeft->op = TK_ID;
1277   }
1278 }
1279 
1280 /*
1281 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1282 ** of columns that form the primary key.  If pList is NULL, then the
1283 ** most recently added column of the table is the primary key.
1284 **
1285 ** A table can have at most one primary key.  If the table already has
1286 ** a primary key (and this is the second primary key) then create an
1287 ** error.
1288 **
1289 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1290 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1291 ** field of the table under construction to be the index of the
1292 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1293 ** no INTEGER PRIMARY KEY.
1294 **
1295 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1296 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1297 */
1298 void sqlite3AddPrimaryKey(
1299   Parse *pParse,    /* Parsing context */
1300   ExprList *pList,  /* List of field names to be indexed */
1301   int onError,      /* What to do with a uniqueness conflict */
1302   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1303   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1304 ){
1305   Table *pTab = pParse->pNewTable;
1306   Column *pCol = 0;
1307   int iCol = -1, i;
1308   int nTerm;
1309   if( pTab==0 ) goto primary_key_exit;
1310   if( pTab->tabFlags & TF_HasPrimaryKey ){
1311     sqlite3ErrorMsg(pParse,
1312       "table \"%s\" has more than one primary key", pTab->zName);
1313     goto primary_key_exit;
1314   }
1315   pTab->tabFlags |= TF_HasPrimaryKey;
1316   if( pList==0 ){
1317     iCol = pTab->nCol - 1;
1318     pCol = &pTab->aCol[iCol];
1319     pCol->colFlags |= COLFLAG_PRIMKEY;
1320     nTerm = 1;
1321   }else{
1322     nTerm = pList->nExpr;
1323     for(i=0; i<nTerm; i++){
1324       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1325       assert( pCExpr!=0 );
1326       sqlite3StringToId(pCExpr);
1327       if( pCExpr->op==TK_ID ){
1328         const char *zCName = pCExpr->u.zToken;
1329         for(iCol=0; iCol<pTab->nCol; iCol++){
1330           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1331             pCol = &pTab->aCol[iCol];
1332             pCol->colFlags |= COLFLAG_PRIMKEY;
1333             break;
1334           }
1335         }
1336       }
1337     }
1338   }
1339   if( nTerm==1
1340    && pCol
1341    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1342    && sortOrder!=SQLITE_SO_DESC
1343   ){
1344     pTab->iPKey = iCol;
1345     pTab->keyConf = (u8)onError;
1346     assert( autoInc==0 || autoInc==1 );
1347     pTab->tabFlags |= autoInc*TF_Autoincrement;
1348     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1349   }else if( autoInc ){
1350 #ifndef SQLITE_OMIT_AUTOINCREMENT
1351     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1352        "INTEGER PRIMARY KEY");
1353 #endif
1354   }else{
1355     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1356                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1357     pList = 0;
1358   }
1359 
1360 primary_key_exit:
1361   sqlite3ExprListDelete(pParse->db, pList);
1362   return;
1363 }
1364 
1365 /*
1366 ** Add a new CHECK constraint to the table currently under construction.
1367 */
1368 void sqlite3AddCheckConstraint(
1369   Parse *pParse,    /* Parsing context */
1370   Expr *pCheckExpr  /* The check expression */
1371 ){
1372 #ifndef SQLITE_OMIT_CHECK
1373   Table *pTab = pParse->pNewTable;
1374   sqlite3 *db = pParse->db;
1375   if( pTab && !IN_DECLARE_VTAB
1376    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1377   ){
1378     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1379     if( pParse->constraintName.n ){
1380       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1381     }
1382   }else
1383 #endif
1384   {
1385     sqlite3ExprDelete(pParse->db, pCheckExpr);
1386   }
1387 }
1388 
1389 /*
1390 ** Set the collation function of the most recently parsed table column
1391 ** to the CollSeq given.
1392 */
1393 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1394   Table *p;
1395   int i;
1396   char *zColl;              /* Dequoted name of collation sequence */
1397   sqlite3 *db;
1398 
1399   if( (p = pParse->pNewTable)==0 ) return;
1400   i = p->nCol-1;
1401   db = pParse->db;
1402   zColl = sqlite3NameFromToken(db, pToken);
1403   if( !zColl ) return;
1404 
1405   if( sqlite3LocateCollSeq(pParse, zColl) ){
1406     Index *pIdx;
1407     sqlite3DbFree(db, p->aCol[i].zColl);
1408     p->aCol[i].zColl = zColl;
1409 
1410     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1411     ** then an index may have been created on this column before the
1412     ** collation type was added. Correct this if it is the case.
1413     */
1414     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1415       assert( pIdx->nKeyCol==1 );
1416       if( pIdx->aiColumn[0]==i ){
1417         pIdx->azColl[0] = p->aCol[i].zColl;
1418       }
1419     }
1420   }else{
1421     sqlite3DbFree(db, zColl);
1422   }
1423 }
1424 
1425 /*
1426 ** This function returns the collation sequence for database native text
1427 ** encoding identified by the string zName, length nName.
1428 **
1429 ** If the requested collation sequence is not available, or not available
1430 ** in the database native encoding, the collation factory is invoked to
1431 ** request it. If the collation factory does not supply such a sequence,
1432 ** and the sequence is available in another text encoding, then that is
1433 ** returned instead.
1434 **
1435 ** If no versions of the requested collations sequence are available, or
1436 ** another error occurs, NULL is returned and an error message written into
1437 ** pParse.
1438 **
1439 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1440 ** invokes the collation factory if the named collation cannot be found
1441 ** and generates an error message.
1442 **
1443 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1444 */
1445 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1446   sqlite3 *db = pParse->db;
1447   u8 enc = ENC(db);
1448   u8 initbusy = db->init.busy;
1449   CollSeq *pColl;
1450 
1451   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1452   if( !initbusy && (!pColl || !pColl->xCmp) ){
1453     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1454   }
1455 
1456   return pColl;
1457 }
1458 
1459 
1460 /*
1461 ** Generate code that will increment the schema cookie.
1462 **
1463 ** The schema cookie is used to determine when the schema for the
1464 ** database changes.  After each schema change, the cookie value
1465 ** changes.  When a process first reads the schema it records the
1466 ** cookie.  Thereafter, whenever it goes to access the database,
1467 ** it checks the cookie to make sure the schema has not changed
1468 ** since it was last read.
1469 **
1470 ** This plan is not completely bullet-proof.  It is possible for
1471 ** the schema to change multiple times and for the cookie to be
1472 ** set back to prior value.  But schema changes are infrequent
1473 ** and the probability of hitting the same cookie value is only
1474 ** 1 chance in 2^32.  So we're safe enough.
1475 **
1476 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1477 ** the schema-version whenever the schema changes.
1478 */
1479 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1480   sqlite3 *db = pParse->db;
1481   Vdbe *v = pParse->pVdbe;
1482   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1483   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1484                     db->aDb[iDb].pSchema->schema_cookie+1);
1485 }
1486 
1487 /*
1488 ** Measure the number of characters needed to output the given
1489 ** identifier.  The number returned includes any quotes used
1490 ** but does not include the null terminator.
1491 **
1492 ** The estimate is conservative.  It might be larger that what is
1493 ** really needed.
1494 */
1495 static int identLength(const char *z){
1496   int n;
1497   for(n=0; *z; n++, z++){
1498     if( *z=='"' ){ n++; }
1499   }
1500   return n + 2;
1501 }
1502 
1503 /*
1504 ** The first parameter is a pointer to an output buffer. The second
1505 ** parameter is a pointer to an integer that contains the offset at
1506 ** which to write into the output buffer. This function copies the
1507 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1508 ** to the specified offset in the buffer and updates *pIdx to refer
1509 ** to the first byte after the last byte written before returning.
1510 **
1511 ** If the string zSignedIdent consists entirely of alpha-numeric
1512 ** characters, does not begin with a digit and is not an SQL keyword,
1513 ** then it is copied to the output buffer exactly as it is. Otherwise,
1514 ** it is quoted using double-quotes.
1515 */
1516 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1517   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1518   int i, j, needQuote;
1519   i = *pIdx;
1520 
1521   for(j=0; zIdent[j]; j++){
1522     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1523   }
1524   needQuote = sqlite3Isdigit(zIdent[0])
1525             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1526             || zIdent[j]!=0
1527             || j==0;
1528 
1529   if( needQuote ) z[i++] = '"';
1530   for(j=0; zIdent[j]; j++){
1531     z[i++] = zIdent[j];
1532     if( zIdent[j]=='"' ) z[i++] = '"';
1533   }
1534   if( needQuote ) z[i++] = '"';
1535   z[i] = 0;
1536   *pIdx = i;
1537 }
1538 
1539 /*
1540 ** Generate a CREATE TABLE statement appropriate for the given
1541 ** table.  Memory to hold the text of the statement is obtained
1542 ** from sqliteMalloc() and must be freed by the calling function.
1543 */
1544 static char *createTableStmt(sqlite3 *db, Table *p){
1545   int i, k, n;
1546   char *zStmt;
1547   char *zSep, *zSep2, *zEnd;
1548   Column *pCol;
1549   n = 0;
1550   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1551     n += identLength(pCol->zName) + 5;
1552   }
1553   n += identLength(p->zName);
1554   if( n<50 ){
1555     zSep = "";
1556     zSep2 = ",";
1557     zEnd = ")";
1558   }else{
1559     zSep = "\n  ";
1560     zSep2 = ",\n  ";
1561     zEnd = "\n)";
1562   }
1563   n += 35 + 6*p->nCol;
1564   zStmt = sqlite3DbMallocRaw(0, n);
1565   if( zStmt==0 ){
1566     sqlite3OomFault(db);
1567     return 0;
1568   }
1569   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1570   k = sqlite3Strlen30(zStmt);
1571   identPut(zStmt, &k, p->zName);
1572   zStmt[k++] = '(';
1573   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1574     static const char * const azType[] = {
1575         /* SQLITE_AFF_BLOB    */ "",
1576         /* SQLITE_AFF_TEXT    */ " TEXT",
1577         /* SQLITE_AFF_NUMERIC */ " NUM",
1578         /* SQLITE_AFF_INTEGER */ " INT",
1579         /* SQLITE_AFF_REAL    */ " REAL"
1580     };
1581     int len;
1582     const char *zType;
1583 
1584     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1585     k += sqlite3Strlen30(&zStmt[k]);
1586     zSep = zSep2;
1587     identPut(zStmt, &k, pCol->zName);
1588     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1589     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1590     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1591     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1592     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1593     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1594     testcase( pCol->affinity==SQLITE_AFF_REAL );
1595 
1596     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1597     len = sqlite3Strlen30(zType);
1598     assert( pCol->affinity==SQLITE_AFF_BLOB
1599             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1600     memcpy(&zStmt[k], zType, len);
1601     k += len;
1602     assert( k<=n );
1603   }
1604   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1605   return zStmt;
1606 }
1607 
1608 /*
1609 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1610 ** on success and SQLITE_NOMEM on an OOM error.
1611 */
1612 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1613   char *zExtra;
1614   int nByte;
1615   if( pIdx->nColumn>=N ) return SQLITE_OK;
1616   assert( pIdx->isResized==0 );
1617   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1618   zExtra = sqlite3DbMallocZero(db, nByte);
1619   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1620   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1621   pIdx->azColl = (const char**)zExtra;
1622   zExtra += sizeof(char*)*N;
1623   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1624   pIdx->aiColumn = (i16*)zExtra;
1625   zExtra += sizeof(i16)*N;
1626   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1627   pIdx->aSortOrder = (u8*)zExtra;
1628   pIdx->nColumn = N;
1629   pIdx->isResized = 1;
1630   return SQLITE_OK;
1631 }
1632 
1633 /*
1634 ** Estimate the total row width for a table.
1635 */
1636 static void estimateTableWidth(Table *pTab){
1637   unsigned wTable = 0;
1638   const Column *pTabCol;
1639   int i;
1640   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1641     wTable += pTabCol->szEst;
1642   }
1643   if( pTab->iPKey<0 ) wTable++;
1644   pTab->szTabRow = sqlite3LogEst(wTable*4);
1645 }
1646 
1647 /*
1648 ** Estimate the average size of a row for an index.
1649 */
1650 static void estimateIndexWidth(Index *pIdx){
1651   unsigned wIndex = 0;
1652   int i;
1653   const Column *aCol = pIdx->pTable->aCol;
1654   for(i=0; i<pIdx->nColumn; i++){
1655     i16 x = pIdx->aiColumn[i];
1656     assert( x<pIdx->pTable->nCol );
1657     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1658   }
1659   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1660 }
1661 
1662 /* Return true if value x is found any of the first nCol entries of aiCol[]
1663 */
1664 static int hasColumn(const i16 *aiCol, int nCol, int x){
1665   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1666   return 0;
1667 }
1668 
1669 /*
1670 ** This routine runs at the end of parsing a CREATE TABLE statement that
1671 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1672 ** internal schema data structures and the generated VDBE code so that they
1673 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1674 ** Changes include:
1675 **
1676 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1677 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1678 **          into BTREE_BLOBKEY.
1679 **     (3)  Bypass the creation of the sqlite_master table entry
1680 **          for the PRIMARY KEY as the primary key index is now
1681 **          identified by the sqlite_master table entry of the table itself.
1682 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1683 **          schema to the rootpage from the main table.
1684 **     (5)  Add all table columns to the PRIMARY KEY Index object
1685 **          so that the PRIMARY KEY is a covering index.  The surplus
1686 **          columns are part of KeyInfo.nAllField and are not used for
1687 **          sorting or lookup or uniqueness checks.
1688 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1689 **          indices with the PRIMARY KEY columns.
1690 **
1691 ** For virtual tables, only (1) is performed.
1692 */
1693 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1694   Index *pIdx;
1695   Index *pPk;
1696   int nPk;
1697   int i, j;
1698   sqlite3 *db = pParse->db;
1699   Vdbe *v = pParse->pVdbe;
1700 
1701   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1702   */
1703   if( !db->init.imposterTable ){
1704     for(i=0; i<pTab->nCol; i++){
1705       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1706         pTab->aCol[i].notNull = OE_Abort;
1707       }
1708     }
1709   }
1710 
1711   /* The remaining transformations only apply to b-tree tables, not to
1712   ** virtual tables */
1713   if( IN_DECLARE_VTAB ) return;
1714 
1715   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1716   ** into BTREE_BLOBKEY.
1717   */
1718   if( pParse->addrCrTab ){
1719     assert( v );
1720     sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1721   }
1722 
1723   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1724   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1725   */
1726   if( pTab->iPKey>=0 ){
1727     ExprList *pList;
1728     Token ipkToken;
1729     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1730     pList = sqlite3ExprListAppend(pParse, 0,
1731                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1732     if( pList==0 ) return;
1733     pList->a[0].sortOrder = pParse->iPkSortOrder;
1734     assert( pParse->pNewTable==pTab );
1735     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1736                        SQLITE_IDXTYPE_PRIMARYKEY);
1737     if( db->mallocFailed ) return;
1738     pPk = sqlite3PrimaryKeyIndex(pTab);
1739     pTab->iPKey = -1;
1740   }else{
1741     pPk = sqlite3PrimaryKeyIndex(pTab);
1742 
1743     /*
1744     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1745     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1746     ** code assumes the PRIMARY KEY contains no repeated columns.
1747     */
1748     for(i=j=1; i<pPk->nKeyCol; i++){
1749       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1750         pPk->nColumn--;
1751       }else{
1752         pPk->aiColumn[j++] = pPk->aiColumn[i];
1753       }
1754     }
1755     pPk->nKeyCol = j;
1756   }
1757   assert( pPk!=0 );
1758   pPk->isCovering = 1;
1759   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1760   nPk = pPk->nKeyCol;
1761 
1762   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1763   ** table entry. This is only required if currently generating VDBE
1764   ** code for a CREATE TABLE (not when parsing one as part of reading
1765   ** a database schema).  */
1766   if( v && pPk->tnum>0 ){
1767     assert( db->init.busy==0 );
1768     sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1769   }
1770 
1771   /* The root page of the PRIMARY KEY is the table root page */
1772   pPk->tnum = pTab->tnum;
1773 
1774   /* Update the in-memory representation of all UNIQUE indices by converting
1775   ** the final rowid column into one or more columns of the PRIMARY KEY.
1776   */
1777   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1778     int n;
1779     if( IsPrimaryKeyIndex(pIdx) ) continue;
1780     for(i=n=0; i<nPk; i++){
1781       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1782     }
1783     if( n==0 ){
1784       /* This index is a superset of the primary key */
1785       pIdx->nColumn = pIdx->nKeyCol;
1786       continue;
1787     }
1788     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1789     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1790       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1791         pIdx->aiColumn[j] = pPk->aiColumn[i];
1792         pIdx->azColl[j] = pPk->azColl[i];
1793         j++;
1794       }
1795     }
1796     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1797     assert( pIdx->nColumn>=j );
1798   }
1799 
1800   /* Add all table columns to the PRIMARY KEY index
1801   */
1802   if( nPk<pTab->nCol ){
1803     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1804     for(i=0, j=nPk; i<pTab->nCol; i++){
1805       if( !hasColumn(pPk->aiColumn, j, i) ){
1806         assert( j<pPk->nColumn );
1807         pPk->aiColumn[j] = i;
1808         pPk->azColl[j] = sqlite3StrBINARY;
1809         j++;
1810       }
1811     }
1812     assert( pPk->nColumn==j );
1813     assert( pTab->nCol==j );
1814   }else{
1815     pPk->nColumn = pTab->nCol;
1816   }
1817 }
1818 
1819 /*
1820 ** This routine is called to report the final ")" that terminates
1821 ** a CREATE TABLE statement.
1822 **
1823 ** The table structure that other action routines have been building
1824 ** is added to the internal hash tables, assuming no errors have
1825 ** occurred.
1826 **
1827 ** An entry for the table is made in the master table on disk, unless
1828 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1829 ** it means we are reading the sqlite_master table because we just
1830 ** connected to the database or because the sqlite_master table has
1831 ** recently changed, so the entry for this table already exists in
1832 ** the sqlite_master table.  We do not want to create it again.
1833 **
1834 ** If the pSelect argument is not NULL, it means that this routine
1835 ** was called to create a table generated from a
1836 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1837 ** the new table will match the result set of the SELECT.
1838 */
1839 void sqlite3EndTable(
1840   Parse *pParse,          /* Parse context */
1841   Token *pCons,           /* The ',' token after the last column defn. */
1842   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1843   u8 tabOpts,             /* Extra table options. Usually 0. */
1844   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1845 ){
1846   Table *p;                 /* The new table */
1847   sqlite3 *db = pParse->db; /* The database connection */
1848   int iDb;                  /* Database in which the table lives */
1849   Index *pIdx;              /* An implied index of the table */
1850 
1851   if( pEnd==0 && pSelect==0 ){
1852     return;
1853   }
1854   assert( !db->mallocFailed );
1855   p = pParse->pNewTable;
1856   if( p==0 ) return;
1857 
1858   assert( !db->init.busy || !pSelect );
1859 
1860   /* If the db->init.busy is 1 it means we are reading the SQL off the
1861   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1862   ** So do not write to the disk again.  Extract the root page number
1863   ** for the table from the db->init.newTnum field.  (The page number
1864   ** should have been put there by the sqliteOpenCb routine.)
1865   **
1866   ** If the root page number is 1, that means this is the sqlite_master
1867   ** table itself.  So mark it read-only.
1868   */
1869   if( db->init.busy ){
1870     p->tnum = db->init.newTnum;
1871     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1872   }
1873 
1874   /* Special processing for WITHOUT ROWID Tables */
1875   if( tabOpts & TF_WithoutRowid ){
1876     if( (p->tabFlags & TF_Autoincrement) ){
1877       sqlite3ErrorMsg(pParse,
1878           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1879       return;
1880     }
1881     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1882       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1883     }else{
1884       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1885       convertToWithoutRowidTable(pParse, p);
1886     }
1887   }
1888 
1889   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1890 
1891 #ifndef SQLITE_OMIT_CHECK
1892   /* Resolve names in all CHECK constraint expressions.
1893   */
1894   if( p->pCheck ){
1895     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1896   }
1897 #endif /* !defined(SQLITE_OMIT_CHECK) */
1898 
1899   /* Estimate the average row size for the table and for all implied indices */
1900   estimateTableWidth(p);
1901   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1902     estimateIndexWidth(pIdx);
1903   }
1904 
1905   /* If not initializing, then create a record for the new table
1906   ** in the SQLITE_MASTER table of the database.
1907   **
1908   ** If this is a TEMPORARY table, write the entry into the auxiliary
1909   ** file instead of into the main database file.
1910   */
1911   if( !db->init.busy ){
1912     int n;
1913     Vdbe *v;
1914     char *zType;    /* "view" or "table" */
1915     char *zType2;   /* "VIEW" or "TABLE" */
1916     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1917 
1918     v = sqlite3GetVdbe(pParse);
1919     if( NEVER(v==0) ) return;
1920 
1921     sqlite3VdbeAddOp1(v, OP_Close, 0);
1922 
1923     /*
1924     ** Initialize zType for the new view or table.
1925     */
1926     if( p->pSelect==0 ){
1927       /* A regular table */
1928       zType = "table";
1929       zType2 = "TABLE";
1930 #ifndef SQLITE_OMIT_VIEW
1931     }else{
1932       /* A view */
1933       zType = "view";
1934       zType2 = "VIEW";
1935 #endif
1936     }
1937 
1938     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1939     ** statement to populate the new table. The root-page number for the
1940     ** new table is in register pParse->regRoot.
1941     **
1942     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1943     ** suitable state to query for the column names and types to be used
1944     ** by the new table.
1945     **
1946     ** A shared-cache write-lock is not required to write to the new table,
1947     ** as a schema-lock must have already been obtained to create it. Since
1948     ** a schema-lock excludes all other database users, the write-lock would
1949     ** be redundant.
1950     */
1951     if( pSelect ){
1952       SelectDest dest;    /* Where the SELECT should store results */
1953       int regYield;       /* Register holding co-routine entry-point */
1954       int addrTop;        /* Top of the co-routine */
1955       int regRec;         /* A record to be insert into the new table */
1956       int regRowid;       /* Rowid of the next row to insert */
1957       int addrInsLoop;    /* Top of the loop for inserting rows */
1958       Table *pSelTab;     /* A table that describes the SELECT results */
1959 
1960       regYield = ++pParse->nMem;
1961       regRec = ++pParse->nMem;
1962       regRowid = ++pParse->nMem;
1963       assert(pParse->nTab==1);
1964       sqlite3MayAbort(pParse);
1965       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1966       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1967       pParse->nTab = 2;
1968       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1969       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1970       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1971       sqlite3Select(pParse, pSelect, &dest);
1972       sqlite3VdbeEndCoroutine(v, regYield);
1973       sqlite3VdbeJumpHere(v, addrTop - 1);
1974       if( pParse->nErr ) return;
1975       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1976       if( pSelTab==0 ) return;
1977       assert( p->aCol==0 );
1978       p->nCol = pSelTab->nCol;
1979       p->aCol = pSelTab->aCol;
1980       pSelTab->nCol = 0;
1981       pSelTab->aCol = 0;
1982       sqlite3DeleteTable(db, pSelTab);
1983       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1984       VdbeCoverage(v);
1985       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1986       sqlite3TableAffinity(v, p, 0);
1987       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1988       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1989       sqlite3VdbeGoto(v, addrInsLoop);
1990       sqlite3VdbeJumpHere(v, addrInsLoop);
1991       sqlite3VdbeAddOp1(v, OP_Close, 1);
1992     }
1993 
1994     /* Compute the complete text of the CREATE statement */
1995     if( pSelect ){
1996       zStmt = createTableStmt(db, p);
1997     }else{
1998       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1999       n = (int)(pEnd2->z - pParse->sNameToken.z);
2000       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2001       zStmt = sqlite3MPrintf(db,
2002           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2003       );
2004     }
2005 
2006     /* A slot for the record has already been allocated in the
2007     ** SQLITE_MASTER table.  We just need to update that slot with all
2008     ** the information we've collected.
2009     */
2010     sqlite3NestedParse(pParse,
2011       "UPDATE %Q.%s "
2012          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2013        "WHERE rowid=#%d",
2014       db->aDb[iDb].zDbSName, MASTER_NAME,
2015       zType,
2016       p->zName,
2017       p->zName,
2018       pParse->regRoot,
2019       zStmt,
2020       pParse->regRowid
2021     );
2022     sqlite3DbFree(db, zStmt);
2023     sqlite3ChangeCookie(pParse, iDb);
2024 
2025 #ifndef SQLITE_OMIT_AUTOINCREMENT
2026     /* Check to see if we need to create an sqlite_sequence table for
2027     ** keeping track of autoincrement keys.
2028     */
2029     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2030       Db *pDb = &db->aDb[iDb];
2031       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2032       if( pDb->pSchema->pSeqTab==0 ){
2033         sqlite3NestedParse(pParse,
2034           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2035           pDb->zDbSName
2036         );
2037       }
2038     }
2039 #endif
2040 
2041     /* Reparse everything to update our internal data structures */
2042     sqlite3VdbeAddParseSchemaOp(v, iDb,
2043            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2044   }
2045 
2046 
2047   /* Add the table to the in-memory representation of the database.
2048   */
2049   if( db->init.busy ){
2050     Table *pOld;
2051     Schema *pSchema = p->pSchema;
2052     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2053     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2054     if( pOld ){
2055       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2056       sqlite3OomFault(db);
2057       return;
2058     }
2059     pParse->pNewTable = 0;
2060     db->mDbFlags |= DBFLAG_SchemaChange;
2061 
2062 #ifndef SQLITE_OMIT_ALTERTABLE
2063     if( !p->pSelect ){
2064       const char *zName = (const char *)pParse->sNameToken.z;
2065       int nName;
2066       assert( !pSelect && pCons && pEnd );
2067       if( pCons->z==0 ){
2068         pCons = pEnd;
2069       }
2070       nName = (int)((const char *)pCons->z - zName);
2071       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2072     }
2073 #endif
2074   }
2075 }
2076 
2077 #ifndef SQLITE_OMIT_VIEW
2078 /*
2079 ** The parser calls this routine in order to create a new VIEW
2080 */
2081 void sqlite3CreateView(
2082   Parse *pParse,     /* The parsing context */
2083   Token *pBegin,     /* The CREATE token that begins the statement */
2084   Token *pName1,     /* The token that holds the name of the view */
2085   Token *pName2,     /* The token that holds the name of the view */
2086   ExprList *pCNames, /* Optional list of view column names */
2087   Select *pSelect,   /* A SELECT statement that will become the new view */
2088   int isTemp,        /* TRUE for a TEMPORARY view */
2089   int noErr          /* Suppress error messages if VIEW already exists */
2090 ){
2091   Table *p;
2092   int n;
2093   const char *z;
2094   Token sEnd;
2095   DbFixer sFix;
2096   Token *pName = 0;
2097   int iDb;
2098   sqlite3 *db = pParse->db;
2099 
2100   if( pParse->nVar>0 ){
2101     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2102     goto create_view_fail;
2103   }
2104   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2105   p = pParse->pNewTable;
2106   if( p==0 || pParse->nErr ) goto create_view_fail;
2107   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2108   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2109   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2110   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2111 
2112   /* Make a copy of the entire SELECT statement that defines the view.
2113   ** This will force all the Expr.token.z values to be dynamically
2114   ** allocated rather than point to the input string - which means that
2115   ** they will persist after the current sqlite3_exec() call returns.
2116   */
2117   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2118   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2119   if( db->mallocFailed ) goto create_view_fail;
2120 
2121   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2122   ** the end.
2123   */
2124   sEnd = pParse->sLastToken;
2125   assert( sEnd.z[0]!=0 );
2126   if( sEnd.z[0]!=';' ){
2127     sEnd.z += sEnd.n;
2128   }
2129   sEnd.n = 0;
2130   n = (int)(sEnd.z - pBegin->z);
2131   assert( n>0 );
2132   z = pBegin->z;
2133   while( sqlite3Isspace(z[n-1]) ){ n--; }
2134   sEnd.z = &z[n-1];
2135   sEnd.n = 1;
2136 
2137   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2138   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2139 
2140 create_view_fail:
2141   sqlite3SelectDelete(db, pSelect);
2142   sqlite3ExprListDelete(db, pCNames);
2143   return;
2144 }
2145 #endif /* SQLITE_OMIT_VIEW */
2146 
2147 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2148 /*
2149 ** The Table structure pTable is really a VIEW.  Fill in the names of
2150 ** the columns of the view in the pTable structure.  Return the number
2151 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2152 */
2153 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2154   Table *pSelTab;   /* A fake table from which we get the result set */
2155   Select *pSel;     /* Copy of the SELECT that implements the view */
2156   int nErr = 0;     /* Number of errors encountered */
2157   int n;            /* Temporarily holds the number of cursors assigned */
2158   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2159 #ifndef SQLITE_OMIT_VIRTUALTABLE
2160   int rc;
2161 #endif
2162 #ifndef SQLITE_OMIT_AUTHORIZATION
2163   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2164 #endif
2165 
2166   assert( pTable );
2167 
2168 #ifndef SQLITE_OMIT_VIRTUALTABLE
2169   db->nSchemaLock++;
2170   rc = sqlite3VtabCallConnect(pParse, pTable);
2171   db->nSchemaLock--;
2172   if( rc ){
2173     return 1;
2174   }
2175   if( IsVirtual(pTable) ) return 0;
2176 #endif
2177 
2178 #ifndef SQLITE_OMIT_VIEW
2179   /* A positive nCol means the columns names for this view are
2180   ** already known.
2181   */
2182   if( pTable->nCol>0 ) return 0;
2183 
2184   /* A negative nCol is a special marker meaning that we are currently
2185   ** trying to compute the column names.  If we enter this routine with
2186   ** a negative nCol, it means two or more views form a loop, like this:
2187   **
2188   **     CREATE VIEW one AS SELECT * FROM two;
2189   **     CREATE VIEW two AS SELECT * FROM one;
2190   **
2191   ** Actually, the error above is now caught prior to reaching this point.
2192   ** But the following test is still important as it does come up
2193   ** in the following:
2194   **
2195   **     CREATE TABLE main.ex1(a);
2196   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2197   **     SELECT * FROM temp.ex1;
2198   */
2199   if( pTable->nCol<0 ){
2200     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2201     return 1;
2202   }
2203   assert( pTable->nCol>=0 );
2204 
2205   /* If we get this far, it means we need to compute the table names.
2206   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2207   ** "*" elements in the results set of the view and will assign cursors
2208   ** to the elements of the FROM clause.  But we do not want these changes
2209   ** to be permanent.  So the computation is done on a copy of the SELECT
2210   ** statement that defines the view.
2211   */
2212   assert( pTable->pSelect );
2213   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2214   if( pSel ){
2215     n = pParse->nTab;
2216     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2217     pTable->nCol = -1;
2218     db->lookaside.bDisable++;
2219 #ifndef SQLITE_OMIT_AUTHORIZATION
2220     xAuth = db->xAuth;
2221     db->xAuth = 0;
2222     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2223     db->xAuth = xAuth;
2224 #else
2225     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2226 #endif
2227     pParse->nTab = n;
2228     if( pTable->pCheck ){
2229       /* CREATE VIEW name(arglist) AS ...
2230       ** The names of the columns in the table are taken from
2231       ** arglist which is stored in pTable->pCheck.  The pCheck field
2232       ** normally holds CHECK constraints on an ordinary table, but for
2233       ** a VIEW it holds the list of column names.
2234       */
2235       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2236                                  &pTable->nCol, &pTable->aCol);
2237       if( db->mallocFailed==0
2238        && pParse->nErr==0
2239        && pTable->nCol==pSel->pEList->nExpr
2240       ){
2241         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2242       }
2243     }else if( pSelTab ){
2244       /* CREATE VIEW name AS...  without an argument list.  Construct
2245       ** the column names from the SELECT statement that defines the view.
2246       */
2247       assert( pTable->aCol==0 );
2248       pTable->nCol = pSelTab->nCol;
2249       pTable->aCol = pSelTab->aCol;
2250       pSelTab->nCol = 0;
2251       pSelTab->aCol = 0;
2252       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2253     }else{
2254       pTable->nCol = 0;
2255       nErr++;
2256     }
2257     sqlite3DeleteTable(db, pSelTab);
2258     sqlite3SelectDelete(db, pSel);
2259     db->lookaside.bDisable--;
2260   } else {
2261     nErr++;
2262   }
2263   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2264 #endif /* SQLITE_OMIT_VIEW */
2265   return nErr;
2266 }
2267 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2268 
2269 #ifndef SQLITE_OMIT_VIEW
2270 /*
2271 ** Clear the column names from every VIEW in database idx.
2272 */
2273 static void sqliteViewResetAll(sqlite3 *db, int idx){
2274   HashElem *i;
2275   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2276   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2277   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2278     Table *pTab = sqliteHashData(i);
2279     if( pTab->pSelect ){
2280       sqlite3DeleteColumnNames(db, pTab);
2281       pTab->aCol = 0;
2282       pTab->nCol = 0;
2283     }
2284   }
2285   DbClearProperty(db, idx, DB_UnresetViews);
2286 }
2287 #else
2288 # define sqliteViewResetAll(A,B)
2289 #endif /* SQLITE_OMIT_VIEW */
2290 
2291 /*
2292 ** This function is called by the VDBE to adjust the internal schema
2293 ** used by SQLite when the btree layer moves a table root page. The
2294 ** root-page of a table or index in database iDb has changed from iFrom
2295 ** to iTo.
2296 **
2297 ** Ticket #1728:  The symbol table might still contain information
2298 ** on tables and/or indices that are the process of being deleted.
2299 ** If you are unlucky, one of those deleted indices or tables might
2300 ** have the same rootpage number as the real table or index that is
2301 ** being moved.  So we cannot stop searching after the first match
2302 ** because the first match might be for one of the deleted indices
2303 ** or tables and not the table/index that is actually being moved.
2304 ** We must continue looping until all tables and indices with
2305 ** rootpage==iFrom have been converted to have a rootpage of iTo
2306 ** in order to be certain that we got the right one.
2307 */
2308 #ifndef SQLITE_OMIT_AUTOVACUUM
2309 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2310   HashElem *pElem;
2311   Hash *pHash;
2312   Db *pDb;
2313 
2314   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2315   pDb = &db->aDb[iDb];
2316   pHash = &pDb->pSchema->tblHash;
2317   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2318     Table *pTab = sqliteHashData(pElem);
2319     if( pTab->tnum==iFrom ){
2320       pTab->tnum = iTo;
2321     }
2322   }
2323   pHash = &pDb->pSchema->idxHash;
2324   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2325     Index *pIdx = sqliteHashData(pElem);
2326     if( pIdx->tnum==iFrom ){
2327       pIdx->tnum = iTo;
2328     }
2329   }
2330 }
2331 #endif
2332 
2333 /*
2334 ** Write code to erase the table with root-page iTable from database iDb.
2335 ** Also write code to modify the sqlite_master table and internal schema
2336 ** if a root-page of another table is moved by the btree-layer whilst
2337 ** erasing iTable (this can happen with an auto-vacuum database).
2338 */
2339 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2340   Vdbe *v = sqlite3GetVdbe(pParse);
2341   int r1 = sqlite3GetTempReg(pParse);
2342   assert( iTable>1 );
2343   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2344   sqlite3MayAbort(pParse);
2345 #ifndef SQLITE_OMIT_AUTOVACUUM
2346   /* OP_Destroy stores an in integer r1. If this integer
2347   ** is non-zero, then it is the root page number of a table moved to
2348   ** location iTable. The following code modifies the sqlite_master table to
2349   ** reflect this.
2350   **
2351   ** The "#NNN" in the SQL is a special constant that means whatever value
2352   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2353   ** token for additional information.
2354   */
2355   sqlite3NestedParse(pParse,
2356      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2357      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2358 #endif
2359   sqlite3ReleaseTempReg(pParse, r1);
2360 }
2361 
2362 /*
2363 ** Write VDBE code to erase table pTab and all associated indices on disk.
2364 ** Code to update the sqlite_master tables and internal schema definitions
2365 ** in case a root-page belonging to another table is moved by the btree layer
2366 ** is also added (this can happen with an auto-vacuum database).
2367 */
2368 static void destroyTable(Parse *pParse, Table *pTab){
2369 #ifdef SQLITE_OMIT_AUTOVACUUM
2370   Index *pIdx;
2371   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2372   destroyRootPage(pParse, pTab->tnum, iDb);
2373   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2374     destroyRootPage(pParse, pIdx->tnum, iDb);
2375   }
2376 #else
2377   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2378   ** is not defined), then it is important to call OP_Destroy on the
2379   ** table and index root-pages in order, starting with the numerically
2380   ** largest root-page number. This guarantees that none of the root-pages
2381   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2382   ** following were coded:
2383   **
2384   ** OP_Destroy 4 0
2385   ** ...
2386   ** OP_Destroy 5 0
2387   **
2388   ** and root page 5 happened to be the largest root-page number in the
2389   ** database, then root page 5 would be moved to page 4 by the
2390   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2391   ** a free-list page.
2392   */
2393   int iTab = pTab->tnum;
2394   int iDestroyed = 0;
2395 
2396   while( 1 ){
2397     Index *pIdx;
2398     int iLargest = 0;
2399 
2400     if( iDestroyed==0 || iTab<iDestroyed ){
2401       iLargest = iTab;
2402     }
2403     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2404       int iIdx = pIdx->tnum;
2405       assert( pIdx->pSchema==pTab->pSchema );
2406       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2407         iLargest = iIdx;
2408       }
2409     }
2410     if( iLargest==0 ){
2411       return;
2412     }else{
2413       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2414       assert( iDb>=0 && iDb<pParse->db->nDb );
2415       destroyRootPage(pParse, iLargest, iDb);
2416       iDestroyed = iLargest;
2417     }
2418   }
2419 #endif
2420 }
2421 
2422 /*
2423 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2424 ** after a DROP INDEX or DROP TABLE command.
2425 */
2426 static void sqlite3ClearStatTables(
2427   Parse *pParse,         /* The parsing context */
2428   int iDb,               /* The database number */
2429   const char *zType,     /* "idx" or "tbl" */
2430   const char *zName      /* Name of index or table */
2431 ){
2432   int i;
2433   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2434   for(i=1; i<=4; i++){
2435     char zTab[24];
2436     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2437     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2438       sqlite3NestedParse(pParse,
2439         "DELETE FROM %Q.%s WHERE %s=%Q",
2440         zDbName, zTab, zType, zName
2441       );
2442     }
2443   }
2444 }
2445 
2446 /*
2447 ** Generate code to drop a table.
2448 */
2449 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2450   Vdbe *v;
2451   sqlite3 *db = pParse->db;
2452   Trigger *pTrigger;
2453   Db *pDb = &db->aDb[iDb];
2454 
2455   v = sqlite3GetVdbe(pParse);
2456   assert( v!=0 );
2457   sqlite3BeginWriteOperation(pParse, 1, iDb);
2458 
2459 #ifndef SQLITE_OMIT_VIRTUALTABLE
2460   if( IsVirtual(pTab) ){
2461     sqlite3VdbeAddOp0(v, OP_VBegin);
2462   }
2463 #endif
2464 
2465   /* Drop all triggers associated with the table being dropped. Code
2466   ** is generated to remove entries from sqlite_master and/or
2467   ** sqlite_temp_master if required.
2468   */
2469   pTrigger = sqlite3TriggerList(pParse, pTab);
2470   while( pTrigger ){
2471     assert( pTrigger->pSchema==pTab->pSchema ||
2472         pTrigger->pSchema==db->aDb[1].pSchema );
2473     sqlite3DropTriggerPtr(pParse, pTrigger);
2474     pTrigger = pTrigger->pNext;
2475   }
2476 
2477 #ifndef SQLITE_OMIT_AUTOINCREMENT
2478   /* Remove any entries of the sqlite_sequence table associated with
2479   ** the table being dropped. This is done before the table is dropped
2480   ** at the btree level, in case the sqlite_sequence table needs to
2481   ** move as a result of the drop (can happen in auto-vacuum mode).
2482   */
2483   if( pTab->tabFlags & TF_Autoincrement ){
2484     sqlite3NestedParse(pParse,
2485       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2486       pDb->zDbSName, pTab->zName
2487     );
2488   }
2489 #endif
2490 
2491   /* Drop all SQLITE_MASTER table and index entries that refer to the
2492   ** table. The program name loops through the master table and deletes
2493   ** every row that refers to a table of the same name as the one being
2494   ** dropped. Triggers are handled separately because a trigger can be
2495   ** created in the temp database that refers to a table in another
2496   ** database.
2497   */
2498   sqlite3NestedParse(pParse,
2499       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2500       pDb->zDbSName, MASTER_NAME, pTab->zName);
2501   if( !isView && !IsVirtual(pTab) ){
2502     destroyTable(pParse, pTab);
2503   }
2504 
2505   /* Remove the table entry from SQLite's internal schema and modify
2506   ** the schema cookie.
2507   */
2508   if( IsVirtual(pTab) ){
2509     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2510   }
2511   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2512   sqlite3ChangeCookie(pParse, iDb);
2513   sqliteViewResetAll(db, iDb);
2514 }
2515 
2516 /*
2517 ** This routine is called to do the work of a DROP TABLE statement.
2518 ** pName is the name of the table to be dropped.
2519 */
2520 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2521   Table *pTab;
2522   Vdbe *v;
2523   sqlite3 *db = pParse->db;
2524   int iDb;
2525 
2526   if( db->mallocFailed ){
2527     goto exit_drop_table;
2528   }
2529   assert( pParse->nErr==0 );
2530   assert( pName->nSrc==1 );
2531   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2532   if( noErr ) db->suppressErr++;
2533   assert( isView==0 || isView==LOCATE_VIEW );
2534   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2535   if( noErr ) db->suppressErr--;
2536 
2537   if( pTab==0 ){
2538     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2539     goto exit_drop_table;
2540   }
2541   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2542   assert( iDb>=0 && iDb<db->nDb );
2543 
2544   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2545   ** it is initialized.
2546   */
2547   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2548     goto exit_drop_table;
2549   }
2550 #ifndef SQLITE_OMIT_AUTHORIZATION
2551   {
2552     int code;
2553     const char *zTab = SCHEMA_TABLE(iDb);
2554     const char *zDb = db->aDb[iDb].zDbSName;
2555     const char *zArg2 = 0;
2556     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2557       goto exit_drop_table;
2558     }
2559     if( isView ){
2560       if( !OMIT_TEMPDB && iDb==1 ){
2561         code = SQLITE_DROP_TEMP_VIEW;
2562       }else{
2563         code = SQLITE_DROP_VIEW;
2564       }
2565 #ifndef SQLITE_OMIT_VIRTUALTABLE
2566     }else if( IsVirtual(pTab) ){
2567       code = SQLITE_DROP_VTABLE;
2568       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2569 #endif
2570     }else{
2571       if( !OMIT_TEMPDB && iDb==1 ){
2572         code = SQLITE_DROP_TEMP_TABLE;
2573       }else{
2574         code = SQLITE_DROP_TABLE;
2575       }
2576     }
2577     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2578       goto exit_drop_table;
2579     }
2580     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2581       goto exit_drop_table;
2582     }
2583   }
2584 #endif
2585   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2586     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2587     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2588     goto exit_drop_table;
2589   }
2590 
2591 #ifndef SQLITE_OMIT_VIEW
2592   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2593   ** on a table.
2594   */
2595   if( isView && pTab->pSelect==0 ){
2596     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2597     goto exit_drop_table;
2598   }
2599   if( !isView && pTab->pSelect ){
2600     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2601     goto exit_drop_table;
2602   }
2603 #endif
2604 
2605   /* Generate code to remove the table from the master table
2606   ** on disk.
2607   */
2608   v = sqlite3GetVdbe(pParse);
2609   if( v ){
2610     sqlite3BeginWriteOperation(pParse, 1, iDb);
2611     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2612     sqlite3FkDropTable(pParse, pName, pTab);
2613     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2614   }
2615 
2616 exit_drop_table:
2617   sqlite3SrcListDelete(db, pName);
2618 }
2619 
2620 /*
2621 ** This routine is called to create a new foreign key on the table
2622 ** currently under construction.  pFromCol determines which columns
2623 ** in the current table point to the foreign key.  If pFromCol==0 then
2624 ** connect the key to the last column inserted.  pTo is the name of
2625 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2626 ** of tables in the parent pTo table.  flags contains all
2627 ** information about the conflict resolution algorithms specified
2628 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2629 **
2630 ** An FKey structure is created and added to the table currently
2631 ** under construction in the pParse->pNewTable field.
2632 **
2633 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2634 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2635 */
2636 void sqlite3CreateForeignKey(
2637   Parse *pParse,       /* Parsing context */
2638   ExprList *pFromCol,  /* Columns in this table that point to other table */
2639   Token *pTo,          /* Name of the other table */
2640   ExprList *pToCol,    /* Columns in the other table */
2641   int flags            /* Conflict resolution algorithms. */
2642 ){
2643   sqlite3 *db = pParse->db;
2644 #ifndef SQLITE_OMIT_FOREIGN_KEY
2645   FKey *pFKey = 0;
2646   FKey *pNextTo;
2647   Table *p = pParse->pNewTable;
2648   int nByte;
2649   int i;
2650   int nCol;
2651   char *z;
2652 
2653   assert( pTo!=0 );
2654   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2655   if( pFromCol==0 ){
2656     int iCol = p->nCol-1;
2657     if( NEVER(iCol<0) ) goto fk_end;
2658     if( pToCol && pToCol->nExpr!=1 ){
2659       sqlite3ErrorMsg(pParse, "foreign key on %s"
2660          " should reference only one column of table %T",
2661          p->aCol[iCol].zName, pTo);
2662       goto fk_end;
2663     }
2664     nCol = 1;
2665   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2666     sqlite3ErrorMsg(pParse,
2667         "number of columns in foreign key does not match the number of "
2668         "columns in the referenced table");
2669     goto fk_end;
2670   }else{
2671     nCol = pFromCol->nExpr;
2672   }
2673   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2674   if( pToCol ){
2675     for(i=0; i<pToCol->nExpr; i++){
2676       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2677     }
2678   }
2679   pFKey = sqlite3DbMallocZero(db, nByte );
2680   if( pFKey==0 ){
2681     goto fk_end;
2682   }
2683   pFKey->pFrom = p;
2684   pFKey->pNextFrom = p->pFKey;
2685   z = (char*)&pFKey->aCol[nCol];
2686   pFKey->zTo = z;
2687   memcpy(z, pTo->z, pTo->n);
2688   z[pTo->n] = 0;
2689   sqlite3Dequote(z);
2690   z += pTo->n+1;
2691   pFKey->nCol = nCol;
2692   if( pFromCol==0 ){
2693     pFKey->aCol[0].iFrom = p->nCol-1;
2694   }else{
2695     for(i=0; i<nCol; i++){
2696       int j;
2697       for(j=0; j<p->nCol; j++){
2698         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2699           pFKey->aCol[i].iFrom = j;
2700           break;
2701         }
2702       }
2703       if( j>=p->nCol ){
2704         sqlite3ErrorMsg(pParse,
2705           "unknown column \"%s\" in foreign key definition",
2706           pFromCol->a[i].zName);
2707         goto fk_end;
2708       }
2709     }
2710   }
2711   if( pToCol ){
2712     for(i=0; i<nCol; i++){
2713       int n = sqlite3Strlen30(pToCol->a[i].zName);
2714       pFKey->aCol[i].zCol = z;
2715       memcpy(z, pToCol->a[i].zName, n);
2716       z[n] = 0;
2717       z += n+1;
2718     }
2719   }
2720   pFKey->isDeferred = 0;
2721   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2722   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2723 
2724   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2725   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2726       pFKey->zTo, (void *)pFKey
2727   );
2728   if( pNextTo==pFKey ){
2729     sqlite3OomFault(db);
2730     goto fk_end;
2731   }
2732   if( pNextTo ){
2733     assert( pNextTo->pPrevTo==0 );
2734     pFKey->pNextTo = pNextTo;
2735     pNextTo->pPrevTo = pFKey;
2736   }
2737 
2738   /* Link the foreign key to the table as the last step.
2739   */
2740   p->pFKey = pFKey;
2741   pFKey = 0;
2742 
2743 fk_end:
2744   sqlite3DbFree(db, pFKey);
2745 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2746   sqlite3ExprListDelete(db, pFromCol);
2747   sqlite3ExprListDelete(db, pToCol);
2748 }
2749 
2750 /*
2751 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2752 ** clause is seen as part of a foreign key definition.  The isDeferred
2753 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2754 ** The behavior of the most recently created foreign key is adjusted
2755 ** accordingly.
2756 */
2757 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2758 #ifndef SQLITE_OMIT_FOREIGN_KEY
2759   Table *pTab;
2760   FKey *pFKey;
2761   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2762   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2763   pFKey->isDeferred = (u8)isDeferred;
2764 #endif
2765 }
2766 
2767 /*
2768 ** Generate code that will erase and refill index *pIdx.  This is
2769 ** used to initialize a newly created index or to recompute the
2770 ** content of an index in response to a REINDEX command.
2771 **
2772 ** if memRootPage is not negative, it means that the index is newly
2773 ** created.  The register specified by memRootPage contains the
2774 ** root page number of the index.  If memRootPage is negative, then
2775 ** the index already exists and must be cleared before being refilled and
2776 ** the root page number of the index is taken from pIndex->tnum.
2777 */
2778 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2779   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2780   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2781   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2782   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2783   int addr1;                     /* Address of top of loop */
2784   int addr2;                     /* Address to jump to for next iteration */
2785   int tnum;                      /* Root page of index */
2786   int iPartIdxLabel;             /* Jump to this label to skip a row */
2787   Vdbe *v;                       /* Generate code into this virtual machine */
2788   KeyInfo *pKey;                 /* KeyInfo for index */
2789   int regRecord;                 /* Register holding assembled index record */
2790   sqlite3 *db = pParse->db;      /* The database connection */
2791   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2792 
2793 #ifndef SQLITE_OMIT_AUTHORIZATION
2794   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2795       db->aDb[iDb].zDbSName ) ){
2796     return;
2797   }
2798 #endif
2799 
2800   /* Require a write-lock on the table to perform this operation */
2801   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2802 
2803   v = sqlite3GetVdbe(pParse);
2804   if( v==0 ) return;
2805   if( memRootPage>=0 ){
2806     tnum = memRootPage;
2807   }else{
2808     tnum = pIndex->tnum;
2809   }
2810   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2811   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2812 
2813   /* Open the sorter cursor if we are to use one. */
2814   iSorter = pParse->nTab++;
2815   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2816                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2817 
2818   /* Open the table. Loop through all rows of the table, inserting index
2819   ** records into the sorter. */
2820   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2821   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2822   regRecord = sqlite3GetTempReg(pParse);
2823 
2824   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2825   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2826   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2827   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2828   sqlite3VdbeJumpHere(v, addr1);
2829   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2830   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2831                     (char *)pKey, P4_KEYINFO);
2832   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2833 
2834   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2835   if( IsUniqueIndex(pIndex) ){
2836     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2837     sqlite3VdbeGoto(v, j2);
2838     addr2 = sqlite3VdbeCurrentAddr(v);
2839     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2840                          pIndex->nKeyCol); VdbeCoverage(v);
2841     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2842   }else{
2843     addr2 = sqlite3VdbeCurrentAddr(v);
2844   }
2845   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2846   sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2847   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2848   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2849   sqlite3ReleaseTempReg(pParse, regRecord);
2850   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2851   sqlite3VdbeJumpHere(v, addr1);
2852 
2853   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2854   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2855   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2856 }
2857 
2858 /*
2859 ** Allocate heap space to hold an Index object with nCol columns.
2860 **
2861 ** Increase the allocation size to provide an extra nExtra bytes
2862 ** of 8-byte aligned space after the Index object and return a
2863 ** pointer to this extra space in *ppExtra.
2864 */
2865 Index *sqlite3AllocateIndexObject(
2866   sqlite3 *db,         /* Database connection */
2867   i16 nCol,            /* Total number of columns in the index */
2868   int nExtra,          /* Number of bytes of extra space to alloc */
2869   char **ppExtra       /* Pointer to the "extra" space */
2870 ){
2871   Index *p;            /* Allocated index object */
2872   int nByte;           /* Bytes of space for Index object + arrays */
2873 
2874   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2875           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2876           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2877                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2878                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2879   p = sqlite3DbMallocZero(db, nByte + nExtra);
2880   if( p ){
2881     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2882     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2883     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2884     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2885     p->aSortOrder = (u8*)pExtra;
2886     p->nColumn = nCol;
2887     p->nKeyCol = nCol - 1;
2888     *ppExtra = ((char*)p) + nByte;
2889   }
2890   return p;
2891 }
2892 
2893 /*
2894 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2895 ** and pTblList is the name of the table that is to be indexed.  Both will
2896 ** be NULL for a primary key or an index that is created to satisfy a
2897 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2898 ** as the table to be indexed.  pParse->pNewTable is a table that is
2899 ** currently being constructed by a CREATE TABLE statement.
2900 **
2901 ** pList is a list of columns to be indexed.  pList will be NULL if this
2902 ** is a primary key or unique-constraint on the most recent column added
2903 ** to the table currently under construction.
2904 */
2905 void sqlite3CreateIndex(
2906   Parse *pParse,     /* All information about this parse */
2907   Token *pName1,     /* First part of index name. May be NULL */
2908   Token *pName2,     /* Second part of index name. May be NULL */
2909   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2910   ExprList *pList,   /* A list of columns to be indexed */
2911   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2912   Token *pStart,     /* The CREATE token that begins this statement */
2913   Expr *pPIWhere,    /* WHERE clause for partial indices */
2914   int sortOrder,     /* Sort order of primary key when pList==NULL */
2915   int ifNotExist,    /* Omit error if index already exists */
2916   u8 idxType         /* The index type */
2917 ){
2918   Table *pTab = 0;     /* Table to be indexed */
2919   Index *pIndex = 0;   /* The index to be created */
2920   char *zName = 0;     /* Name of the index */
2921   int nName;           /* Number of characters in zName */
2922   int i, j;
2923   DbFixer sFix;        /* For assigning database names to pTable */
2924   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2925   sqlite3 *db = pParse->db;
2926   Db *pDb;             /* The specific table containing the indexed database */
2927   int iDb;             /* Index of the database that is being written */
2928   Token *pName = 0;    /* Unqualified name of the index to create */
2929   struct ExprList_item *pListItem; /* For looping over pList */
2930   int nExtra = 0;                  /* Space allocated for zExtra[] */
2931   int nExtraCol;                   /* Number of extra columns needed */
2932   char *zExtra = 0;                /* Extra space after the Index object */
2933   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2934 
2935   if( db->mallocFailed || pParse->nErr>0 ){
2936     goto exit_create_index;
2937   }
2938   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2939     goto exit_create_index;
2940   }
2941   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2942     goto exit_create_index;
2943   }
2944 
2945   /*
2946   ** Find the table that is to be indexed.  Return early if not found.
2947   */
2948   if( pTblName!=0 ){
2949 
2950     /* Use the two-part index name to determine the database
2951     ** to search for the table. 'Fix' the table name to this db
2952     ** before looking up the table.
2953     */
2954     assert( pName1 && pName2 );
2955     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2956     if( iDb<0 ) goto exit_create_index;
2957     assert( pName && pName->z );
2958 
2959 #ifndef SQLITE_OMIT_TEMPDB
2960     /* If the index name was unqualified, check if the table
2961     ** is a temp table. If so, set the database to 1. Do not do this
2962     ** if initialising a database schema.
2963     */
2964     if( !db->init.busy ){
2965       pTab = sqlite3SrcListLookup(pParse, pTblName);
2966       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2967         iDb = 1;
2968       }
2969     }
2970 #endif
2971 
2972     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2973     if( sqlite3FixSrcList(&sFix, pTblName) ){
2974       /* Because the parser constructs pTblName from a single identifier,
2975       ** sqlite3FixSrcList can never fail. */
2976       assert(0);
2977     }
2978     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2979     assert( db->mallocFailed==0 || pTab==0 );
2980     if( pTab==0 ) goto exit_create_index;
2981     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2982       sqlite3ErrorMsg(pParse,
2983            "cannot create a TEMP index on non-TEMP table \"%s\"",
2984            pTab->zName);
2985       goto exit_create_index;
2986     }
2987     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2988   }else{
2989     assert( pName==0 );
2990     assert( pStart==0 );
2991     pTab = pParse->pNewTable;
2992     if( !pTab ) goto exit_create_index;
2993     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2994   }
2995   pDb = &db->aDb[iDb];
2996 
2997   assert( pTab!=0 );
2998   assert( pParse->nErr==0 );
2999   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3000        && db->init.busy==0
3001 #if SQLITE_USER_AUTHENTICATION
3002        && sqlite3UserAuthTable(pTab->zName)==0
3003 #endif
3004        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
3005     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3006     goto exit_create_index;
3007   }
3008 #ifndef SQLITE_OMIT_VIEW
3009   if( pTab->pSelect ){
3010     sqlite3ErrorMsg(pParse, "views may not be indexed");
3011     goto exit_create_index;
3012   }
3013 #endif
3014 #ifndef SQLITE_OMIT_VIRTUALTABLE
3015   if( IsVirtual(pTab) ){
3016     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3017     goto exit_create_index;
3018   }
3019 #endif
3020 
3021   /*
3022   ** Find the name of the index.  Make sure there is not already another
3023   ** index or table with the same name.
3024   **
3025   ** Exception:  If we are reading the names of permanent indices from the
3026   ** sqlite_master table (because some other process changed the schema) and
3027   ** one of the index names collides with the name of a temporary table or
3028   ** index, then we will continue to process this index.
3029   **
3030   ** If pName==0 it means that we are
3031   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3032   ** own name.
3033   */
3034   if( pName ){
3035     zName = sqlite3NameFromToken(db, pName);
3036     if( zName==0 ) goto exit_create_index;
3037     assert( pName->z!=0 );
3038     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3039       goto exit_create_index;
3040     }
3041     if( !db->init.busy ){
3042       if( sqlite3FindTable(db, zName, 0)!=0 ){
3043         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3044         goto exit_create_index;
3045       }
3046     }
3047     if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3048       if( !ifNotExist ){
3049         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3050       }else{
3051         assert( !db->init.busy );
3052         sqlite3CodeVerifySchema(pParse, iDb);
3053       }
3054       goto exit_create_index;
3055     }
3056   }else{
3057     int n;
3058     Index *pLoop;
3059     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3060     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3061     if( zName==0 ){
3062       goto exit_create_index;
3063     }
3064 
3065     /* Automatic index names generated from within sqlite3_declare_vtab()
3066     ** must have names that are distinct from normal automatic index names.
3067     ** The following statement converts "sqlite3_autoindex..." into
3068     ** "sqlite3_butoindex..." in order to make the names distinct.
3069     ** The "vtab_err.test" test demonstrates the need of this statement. */
3070     if( IN_DECLARE_VTAB ) zName[7]++;
3071   }
3072 
3073   /* Check for authorization to create an index.
3074   */
3075 #ifndef SQLITE_OMIT_AUTHORIZATION
3076   {
3077     const char *zDb = pDb->zDbSName;
3078     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3079       goto exit_create_index;
3080     }
3081     i = SQLITE_CREATE_INDEX;
3082     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3083     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3084       goto exit_create_index;
3085     }
3086   }
3087 #endif
3088 
3089   /* If pList==0, it means this routine was called to make a primary
3090   ** key out of the last column added to the table under construction.
3091   ** So create a fake list to simulate this.
3092   */
3093   if( pList==0 ){
3094     Token prevCol;
3095     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3096     pList = sqlite3ExprListAppend(pParse, 0,
3097               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3098     if( pList==0 ) goto exit_create_index;
3099     assert( pList->nExpr==1 );
3100     sqlite3ExprListSetSortOrder(pList, sortOrder);
3101   }else{
3102     sqlite3ExprListCheckLength(pParse, pList, "index");
3103   }
3104 
3105   /* Figure out how many bytes of space are required to store explicitly
3106   ** specified collation sequence names.
3107   */
3108   for(i=0; i<pList->nExpr; i++){
3109     Expr *pExpr = pList->a[i].pExpr;
3110     assert( pExpr!=0 );
3111     if( pExpr->op==TK_COLLATE ){
3112       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3113     }
3114   }
3115 
3116   /*
3117   ** Allocate the index structure.
3118   */
3119   nName = sqlite3Strlen30(zName);
3120   nExtraCol = pPk ? pPk->nKeyCol : 1;
3121   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3122                                       nName + nExtra + 1, &zExtra);
3123   if( db->mallocFailed ){
3124     goto exit_create_index;
3125   }
3126   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3127   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3128   pIndex->zName = zExtra;
3129   zExtra += nName + 1;
3130   memcpy(pIndex->zName, zName, nName+1);
3131   pIndex->pTable = pTab;
3132   pIndex->onError = (u8)onError;
3133   pIndex->uniqNotNull = onError!=OE_None;
3134   pIndex->idxType = idxType;
3135   pIndex->pSchema = db->aDb[iDb].pSchema;
3136   pIndex->nKeyCol = pList->nExpr;
3137   if( pPIWhere ){
3138     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3139     pIndex->pPartIdxWhere = pPIWhere;
3140     pPIWhere = 0;
3141   }
3142   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3143 
3144   /* Check to see if we should honor DESC requests on index columns
3145   */
3146   if( pDb->pSchema->file_format>=4 ){
3147     sortOrderMask = -1;   /* Honor DESC */
3148   }else{
3149     sortOrderMask = 0;    /* Ignore DESC */
3150   }
3151 
3152   /* Analyze the list of expressions that form the terms of the index and
3153   ** report any errors.  In the common case where the expression is exactly
3154   ** a table column, store that column in aiColumn[].  For general expressions,
3155   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3156   **
3157   ** TODO: Issue a warning if two or more columns of the index are identical.
3158   ** TODO: Issue a warning if the table primary key is used as part of the
3159   ** index key.
3160   */
3161   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3162     Expr *pCExpr;                  /* The i-th index expression */
3163     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3164     const char *zColl;             /* Collation sequence name */
3165 
3166     sqlite3StringToId(pListItem->pExpr);
3167     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3168     if( pParse->nErr ) goto exit_create_index;
3169     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3170     if( pCExpr->op!=TK_COLUMN ){
3171       if( pTab==pParse->pNewTable ){
3172         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3173                                 "UNIQUE constraints");
3174         goto exit_create_index;
3175       }
3176       if( pIndex->aColExpr==0 ){
3177         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3178         pIndex->aColExpr = pCopy;
3179         if( !db->mallocFailed ){
3180           assert( pCopy!=0 );
3181           pListItem = &pCopy->a[i];
3182         }
3183       }
3184       j = XN_EXPR;
3185       pIndex->aiColumn[i] = XN_EXPR;
3186       pIndex->uniqNotNull = 0;
3187     }else{
3188       j = pCExpr->iColumn;
3189       assert( j<=0x7fff );
3190       if( j<0 ){
3191         j = pTab->iPKey;
3192       }else if( pTab->aCol[j].notNull==0 ){
3193         pIndex->uniqNotNull = 0;
3194       }
3195       pIndex->aiColumn[i] = (i16)j;
3196     }
3197     zColl = 0;
3198     if( pListItem->pExpr->op==TK_COLLATE ){
3199       int nColl;
3200       zColl = pListItem->pExpr->u.zToken;
3201       nColl = sqlite3Strlen30(zColl) + 1;
3202       assert( nExtra>=nColl );
3203       memcpy(zExtra, zColl, nColl);
3204       zColl = zExtra;
3205       zExtra += nColl;
3206       nExtra -= nColl;
3207     }else if( j>=0 ){
3208       zColl = pTab->aCol[j].zColl;
3209     }
3210     if( !zColl ) zColl = sqlite3StrBINARY;
3211     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3212       goto exit_create_index;
3213     }
3214     pIndex->azColl[i] = zColl;
3215     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3216     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3217   }
3218 
3219   /* Append the table key to the end of the index.  For WITHOUT ROWID
3220   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3221   ** normal tables (when pPk==0) this will be the rowid.
3222   */
3223   if( pPk ){
3224     for(j=0; j<pPk->nKeyCol; j++){
3225       int x = pPk->aiColumn[j];
3226       assert( x>=0 );
3227       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3228         pIndex->nColumn--;
3229       }else{
3230         pIndex->aiColumn[i] = x;
3231         pIndex->azColl[i] = pPk->azColl[j];
3232         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3233         i++;
3234       }
3235     }
3236     assert( i==pIndex->nColumn );
3237   }else{
3238     pIndex->aiColumn[i] = XN_ROWID;
3239     pIndex->azColl[i] = sqlite3StrBINARY;
3240   }
3241   sqlite3DefaultRowEst(pIndex);
3242   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3243 
3244   /* If this index contains every column of its table, then mark
3245   ** it as a covering index */
3246   assert( HasRowid(pTab)
3247       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3248   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3249     pIndex->isCovering = 1;
3250     for(j=0; j<pTab->nCol; j++){
3251       if( j==pTab->iPKey ) continue;
3252       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3253       pIndex->isCovering = 0;
3254       break;
3255     }
3256   }
3257 
3258   if( pTab==pParse->pNewTable ){
3259     /* This routine has been called to create an automatic index as a
3260     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3261     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3262     ** i.e. one of:
3263     **
3264     ** CREATE TABLE t(x PRIMARY KEY, y);
3265     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3266     **
3267     ** Either way, check to see if the table already has such an index. If
3268     ** so, don't bother creating this one. This only applies to
3269     ** automatically created indices. Users can do as they wish with
3270     ** explicit indices.
3271     **
3272     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3273     ** (and thus suppressing the second one) even if they have different
3274     ** sort orders.
3275     **
3276     ** If there are different collating sequences or if the columns of
3277     ** the constraint occur in different orders, then the constraints are
3278     ** considered distinct and both result in separate indices.
3279     */
3280     Index *pIdx;
3281     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3282       int k;
3283       assert( IsUniqueIndex(pIdx) );
3284       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3285       assert( IsUniqueIndex(pIndex) );
3286 
3287       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3288       for(k=0; k<pIdx->nKeyCol; k++){
3289         const char *z1;
3290         const char *z2;
3291         assert( pIdx->aiColumn[k]>=0 );
3292         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3293         z1 = pIdx->azColl[k];
3294         z2 = pIndex->azColl[k];
3295         if( sqlite3StrICmp(z1, z2) ) break;
3296       }
3297       if( k==pIdx->nKeyCol ){
3298         if( pIdx->onError!=pIndex->onError ){
3299           /* This constraint creates the same index as a previous
3300           ** constraint specified somewhere in the CREATE TABLE statement.
3301           ** However the ON CONFLICT clauses are different. If both this
3302           ** constraint and the previous equivalent constraint have explicit
3303           ** ON CONFLICT clauses this is an error. Otherwise, use the
3304           ** explicitly specified behavior for the index.
3305           */
3306           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3307             sqlite3ErrorMsg(pParse,
3308                 "conflicting ON CONFLICT clauses specified", 0);
3309           }
3310           if( pIdx->onError==OE_Default ){
3311             pIdx->onError = pIndex->onError;
3312           }
3313         }
3314         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3315         goto exit_create_index;
3316       }
3317     }
3318   }
3319 
3320   /* Link the new Index structure to its table and to the other
3321   ** in-memory database structures.
3322   */
3323   assert( pParse->nErr==0 );
3324   if( db->init.busy ){
3325     Index *p;
3326     assert( !IN_DECLARE_VTAB );
3327     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3328     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3329                           pIndex->zName, pIndex);
3330     if( p ){
3331       assert( p==pIndex );  /* Malloc must have failed */
3332       sqlite3OomFault(db);
3333       goto exit_create_index;
3334     }
3335     db->mDbFlags |= DBFLAG_SchemaChange;
3336     if( pTblName!=0 ){
3337       pIndex->tnum = db->init.newTnum;
3338     }
3339   }
3340 
3341   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3342   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3343   ** emit code to allocate the index rootpage on disk and make an entry for
3344   ** the index in the sqlite_master table and populate the index with
3345   ** content.  But, do not do this if we are simply reading the sqlite_master
3346   ** table to parse the schema, or if this index is the PRIMARY KEY index
3347   ** of a WITHOUT ROWID table.
3348   **
3349   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3350   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3351   ** has just been created, it contains no data and the index initialization
3352   ** step can be skipped.
3353   */
3354   else if( HasRowid(pTab) || pTblName!=0 ){
3355     Vdbe *v;
3356     char *zStmt;
3357     int iMem = ++pParse->nMem;
3358 
3359     v = sqlite3GetVdbe(pParse);
3360     if( v==0 ) goto exit_create_index;
3361 
3362     sqlite3BeginWriteOperation(pParse, 1, iDb);
3363 
3364     /* Create the rootpage for the index using CreateIndex. But before
3365     ** doing so, code a Noop instruction and store its address in
3366     ** Index.tnum. This is required in case this index is actually a
3367     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3368     ** that case the convertToWithoutRowidTable() routine will replace
3369     ** the Noop with a Goto to jump over the VDBE code generated below. */
3370     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3371     sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3372 
3373     /* Gather the complete text of the CREATE INDEX statement into
3374     ** the zStmt variable
3375     */
3376     if( pStart ){
3377       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3378       if( pName->z[n-1]==';' ) n--;
3379       /* A named index with an explicit CREATE INDEX statement */
3380       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3381         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3382     }else{
3383       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3384       /* zStmt = sqlite3MPrintf(""); */
3385       zStmt = 0;
3386     }
3387 
3388     /* Add an entry in sqlite_master for this index
3389     */
3390     sqlite3NestedParse(pParse,
3391         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3392         db->aDb[iDb].zDbSName, MASTER_NAME,
3393         pIndex->zName,
3394         pTab->zName,
3395         iMem,
3396         zStmt
3397     );
3398     sqlite3DbFree(db, zStmt);
3399 
3400     /* Fill the index with data and reparse the schema. Code an OP_Expire
3401     ** to invalidate all pre-compiled statements.
3402     */
3403     if( pTblName ){
3404       sqlite3RefillIndex(pParse, pIndex, iMem);
3405       sqlite3ChangeCookie(pParse, iDb);
3406       sqlite3VdbeAddParseSchemaOp(v, iDb,
3407          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3408       sqlite3VdbeAddOp0(v, OP_Expire);
3409     }
3410 
3411     sqlite3VdbeJumpHere(v, pIndex->tnum);
3412   }
3413 
3414   /* When adding an index to the list of indices for a table, make
3415   ** sure all indices labeled OE_Replace come after all those labeled
3416   ** OE_Ignore.  This is necessary for the correct constraint check
3417   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3418   ** UPDATE and INSERT statements.
3419   */
3420   if( db->init.busy || pTblName==0 ){
3421     if( onError!=OE_Replace || pTab->pIndex==0
3422          || pTab->pIndex->onError==OE_Replace){
3423       pIndex->pNext = pTab->pIndex;
3424       pTab->pIndex = pIndex;
3425     }else{
3426       Index *pOther = pTab->pIndex;
3427       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3428         pOther = pOther->pNext;
3429       }
3430       pIndex->pNext = pOther->pNext;
3431       pOther->pNext = pIndex;
3432     }
3433     pIndex = 0;
3434   }
3435 
3436   /* Clean up before exiting */
3437 exit_create_index:
3438   if( pIndex ) freeIndex(db, pIndex);
3439   sqlite3ExprDelete(db, pPIWhere);
3440   sqlite3ExprListDelete(db, pList);
3441   sqlite3SrcListDelete(db, pTblName);
3442   sqlite3DbFree(db, zName);
3443 }
3444 
3445 /*
3446 ** Fill the Index.aiRowEst[] array with default information - information
3447 ** to be used when we have not run the ANALYZE command.
3448 **
3449 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3450 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3451 ** number of rows in the table that match any particular value of the
3452 ** first column of the index.  aiRowEst[2] is an estimate of the number
3453 ** of rows that match any particular combination of the first 2 columns
3454 ** of the index.  And so forth.  It must always be the case that
3455 *
3456 **           aiRowEst[N]<=aiRowEst[N-1]
3457 **           aiRowEst[N]>=1
3458 **
3459 ** Apart from that, we have little to go on besides intuition as to
3460 ** how aiRowEst[] should be initialized.  The numbers generated here
3461 ** are based on typical values found in actual indices.
3462 */
3463 void sqlite3DefaultRowEst(Index *pIdx){
3464   /*                10,  9,  8,  7,  6 */
3465   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3466   LogEst *a = pIdx->aiRowLogEst;
3467   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3468   int i;
3469 
3470   /* Indexes with default row estimates should not have stat1 data */
3471   assert( !pIdx->hasStat1 );
3472 
3473   /* Set the first entry (number of rows in the index) to the estimated
3474   ** number of rows in the table, or half the number of rows in the table
3475   ** for a partial index.   But do not let the estimate drop below 10. */
3476   a[0] = pIdx->pTable->nRowLogEst;
3477   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3478   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3479 
3480   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3481   ** 6 and each subsequent value (if any) is 5.  */
3482   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3483   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3484     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3485   }
3486 
3487   assert( 0==sqlite3LogEst(1) );
3488   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3489 }
3490 
3491 /*
3492 ** This routine will drop an existing named index.  This routine
3493 ** implements the DROP INDEX statement.
3494 */
3495 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3496   Index *pIndex;
3497   Vdbe *v;
3498   sqlite3 *db = pParse->db;
3499   int iDb;
3500 
3501   assert( pParse->nErr==0 );   /* Never called with prior errors */
3502   if( db->mallocFailed ){
3503     goto exit_drop_index;
3504   }
3505   assert( pName->nSrc==1 );
3506   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3507     goto exit_drop_index;
3508   }
3509   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3510   if( pIndex==0 ){
3511     if( !ifExists ){
3512       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3513     }else{
3514       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3515     }
3516     pParse->checkSchema = 1;
3517     goto exit_drop_index;
3518   }
3519   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3520     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3521       "or PRIMARY KEY constraint cannot be dropped", 0);
3522     goto exit_drop_index;
3523   }
3524   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3525 #ifndef SQLITE_OMIT_AUTHORIZATION
3526   {
3527     int code = SQLITE_DROP_INDEX;
3528     Table *pTab = pIndex->pTable;
3529     const char *zDb = db->aDb[iDb].zDbSName;
3530     const char *zTab = SCHEMA_TABLE(iDb);
3531     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3532       goto exit_drop_index;
3533     }
3534     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3535     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3536       goto exit_drop_index;
3537     }
3538   }
3539 #endif
3540 
3541   /* Generate code to remove the index and from the master table */
3542   v = sqlite3GetVdbe(pParse);
3543   if( v ){
3544     sqlite3BeginWriteOperation(pParse, 1, iDb);
3545     sqlite3NestedParse(pParse,
3546        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3547        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3548     );
3549     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3550     sqlite3ChangeCookie(pParse, iDb);
3551     destroyRootPage(pParse, pIndex->tnum, iDb);
3552     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3553   }
3554 
3555 exit_drop_index:
3556   sqlite3SrcListDelete(db, pName);
3557 }
3558 
3559 /*
3560 ** pArray is a pointer to an array of objects. Each object in the
3561 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3562 ** to extend the array so that there is space for a new object at the end.
3563 **
3564 ** When this function is called, *pnEntry contains the current size of
3565 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3566 ** in total).
3567 **
3568 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3569 ** space allocated for the new object is zeroed, *pnEntry updated to
3570 ** reflect the new size of the array and a pointer to the new allocation
3571 ** returned. *pIdx is set to the index of the new array entry in this case.
3572 **
3573 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3574 ** unchanged and a copy of pArray returned.
3575 */
3576 void *sqlite3ArrayAllocate(
3577   sqlite3 *db,      /* Connection to notify of malloc failures */
3578   void *pArray,     /* Array of objects.  Might be reallocated */
3579   int szEntry,      /* Size of each object in the array */
3580   int *pnEntry,     /* Number of objects currently in use */
3581   int *pIdx         /* Write the index of a new slot here */
3582 ){
3583   char *z;
3584   int n = *pnEntry;
3585   if( (n & (n-1))==0 ){
3586     int sz = (n==0) ? 1 : 2*n;
3587     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3588     if( pNew==0 ){
3589       *pIdx = -1;
3590       return pArray;
3591     }
3592     pArray = pNew;
3593   }
3594   z = (char*)pArray;
3595   memset(&z[n * szEntry], 0, szEntry);
3596   *pIdx = n;
3597   ++*pnEntry;
3598   return pArray;
3599 }
3600 
3601 /*
3602 ** Append a new element to the given IdList.  Create a new IdList if
3603 ** need be.
3604 **
3605 ** A new IdList is returned, or NULL if malloc() fails.
3606 */
3607 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3608   int i;
3609   if( pList==0 ){
3610     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3611     if( pList==0 ) return 0;
3612   }
3613   pList->a = sqlite3ArrayAllocate(
3614       db,
3615       pList->a,
3616       sizeof(pList->a[0]),
3617       &pList->nId,
3618       &i
3619   );
3620   if( i<0 ){
3621     sqlite3IdListDelete(db, pList);
3622     return 0;
3623   }
3624   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3625   return pList;
3626 }
3627 
3628 /*
3629 ** Delete an IdList.
3630 */
3631 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3632   int i;
3633   if( pList==0 ) return;
3634   for(i=0; i<pList->nId; i++){
3635     sqlite3DbFree(db, pList->a[i].zName);
3636   }
3637   sqlite3DbFree(db, pList->a);
3638   sqlite3DbFreeNN(db, pList);
3639 }
3640 
3641 /*
3642 ** Return the index in pList of the identifier named zId.  Return -1
3643 ** if not found.
3644 */
3645 int sqlite3IdListIndex(IdList *pList, const char *zName){
3646   int i;
3647   if( pList==0 ) return -1;
3648   for(i=0; i<pList->nId; i++){
3649     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3650   }
3651   return -1;
3652 }
3653 
3654 /*
3655 ** Expand the space allocated for the given SrcList object by
3656 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3657 ** New slots are zeroed.
3658 **
3659 ** For example, suppose a SrcList initially contains two entries: A,B.
3660 ** To append 3 new entries onto the end, do this:
3661 **
3662 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3663 **
3664 ** After the call above it would contain:  A, B, nil, nil, nil.
3665 ** If the iStart argument had been 1 instead of 2, then the result
3666 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3667 ** the iStart value would be 0.  The result then would
3668 ** be: nil, nil, nil, A, B.
3669 **
3670 ** If a memory allocation fails the SrcList is unchanged.  The
3671 ** db->mallocFailed flag will be set to true.
3672 */
3673 SrcList *sqlite3SrcListEnlarge(
3674   sqlite3 *db,       /* Database connection to notify of OOM errors */
3675   SrcList *pSrc,     /* The SrcList to be enlarged */
3676   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3677   int iStart         /* Index in pSrc->a[] of first new slot */
3678 ){
3679   int i;
3680 
3681   /* Sanity checking on calling parameters */
3682   assert( iStart>=0 );
3683   assert( nExtra>=1 );
3684   assert( pSrc!=0 );
3685   assert( iStart<=pSrc->nSrc );
3686 
3687   /* Allocate additional space if needed */
3688   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3689     SrcList *pNew;
3690     int nAlloc = pSrc->nSrc*2+nExtra;
3691     int nGot;
3692     pNew = sqlite3DbRealloc(db, pSrc,
3693                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3694     if( pNew==0 ){
3695       assert( db->mallocFailed );
3696       return pSrc;
3697     }
3698     pSrc = pNew;
3699     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3700     pSrc->nAlloc = nGot;
3701   }
3702 
3703   /* Move existing slots that come after the newly inserted slots
3704   ** out of the way */
3705   for(i=pSrc->nSrc-1; i>=iStart; i--){
3706     pSrc->a[i+nExtra] = pSrc->a[i];
3707   }
3708   pSrc->nSrc += nExtra;
3709 
3710   /* Zero the newly allocated slots */
3711   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3712   for(i=iStart; i<iStart+nExtra; i++){
3713     pSrc->a[i].iCursor = -1;
3714   }
3715 
3716   /* Return a pointer to the enlarged SrcList */
3717   return pSrc;
3718 }
3719 
3720 
3721 /*
3722 ** Append a new table name to the given SrcList.  Create a new SrcList if
3723 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3724 **
3725 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3726 ** SrcList might be the same as the SrcList that was input or it might be
3727 ** a new one.  If an OOM error does occurs, then the prior value of pList
3728 ** that is input to this routine is automatically freed.
3729 **
3730 ** If pDatabase is not null, it means that the table has an optional
3731 ** database name prefix.  Like this:  "database.table".  The pDatabase
3732 ** points to the table name and the pTable points to the database name.
3733 ** The SrcList.a[].zName field is filled with the table name which might
3734 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3735 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3736 ** or with NULL if no database is specified.
3737 **
3738 ** In other words, if call like this:
3739 **
3740 **         sqlite3SrcListAppend(D,A,B,0);
3741 **
3742 ** Then B is a table name and the database name is unspecified.  If called
3743 ** like this:
3744 **
3745 **         sqlite3SrcListAppend(D,A,B,C);
3746 **
3747 ** Then C is the table name and B is the database name.  If C is defined
3748 ** then so is B.  In other words, we never have a case where:
3749 **
3750 **         sqlite3SrcListAppend(D,A,0,C);
3751 **
3752 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3753 ** before being added to the SrcList.
3754 */
3755 SrcList *sqlite3SrcListAppend(
3756   sqlite3 *db,        /* Connection to notify of malloc failures */
3757   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3758   Token *pTable,      /* Table to append */
3759   Token *pDatabase    /* Database of the table */
3760 ){
3761   struct SrcList_item *pItem;
3762   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3763   assert( db!=0 );
3764   if( pList==0 ){
3765     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3766     if( pList==0 ) return 0;
3767     pList->nAlloc = 1;
3768     pList->nSrc = 1;
3769     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3770     pList->a[0].iCursor = -1;
3771   }else{
3772     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3773   }
3774   if( db->mallocFailed ){
3775     sqlite3SrcListDelete(db, pList);
3776     return 0;
3777   }
3778   pItem = &pList->a[pList->nSrc-1];
3779   if( pDatabase && pDatabase->z==0 ){
3780     pDatabase = 0;
3781   }
3782   if( pDatabase ){
3783     pItem->zName = sqlite3NameFromToken(db, pDatabase);
3784     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3785   }else{
3786     pItem->zName = sqlite3NameFromToken(db, pTable);
3787     pItem->zDatabase = 0;
3788   }
3789   return pList;
3790 }
3791 
3792 /*
3793 ** Assign VdbeCursor index numbers to all tables in a SrcList
3794 */
3795 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3796   int i;
3797   struct SrcList_item *pItem;
3798   assert(pList || pParse->db->mallocFailed );
3799   if( pList ){
3800     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3801       if( pItem->iCursor>=0 ) break;
3802       pItem->iCursor = pParse->nTab++;
3803       if( pItem->pSelect ){
3804         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3805       }
3806     }
3807   }
3808 }
3809 
3810 /*
3811 ** Delete an entire SrcList including all its substructure.
3812 */
3813 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3814   int i;
3815   struct SrcList_item *pItem;
3816   if( pList==0 ) return;
3817   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3818     sqlite3DbFree(db, pItem->zDatabase);
3819     sqlite3DbFree(db, pItem->zName);
3820     sqlite3DbFree(db, pItem->zAlias);
3821     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3822     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3823     sqlite3DeleteTable(db, pItem->pTab);
3824     sqlite3SelectDelete(db, pItem->pSelect);
3825     sqlite3ExprDelete(db, pItem->pOn);
3826     sqlite3IdListDelete(db, pItem->pUsing);
3827   }
3828   sqlite3DbFreeNN(db, pList);
3829 }
3830 
3831 /*
3832 ** This routine is called by the parser to add a new term to the
3833 ** end of a growing FROM clause.  The "p" parameter is the part of
3834 ** the FROM clause that has already been constructed.  "p" is NULL
3835 ** if this is the first term of the FROM clause.  pTable and pDatabase
3836 ** are the name of the table and database named in the FROM clause term.
3837 ** pDatabase is NULL if the database name qualifier is missing - the
3838 ** usual case.  If the term has an alias, then pAlias points to the
3839 ** alias token.  If the term is a subquery, then pSubquery is the
3840 ** SELECT statement that the subquery encodes.  The pTable and
3841 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3842 ** parameters are the content of the ON and USING clauses.
3843 **
3844 ** Return a new SrcList which encodes is the FROM with the new
3845 ** term added.
3846 */
3847 SrcList *sqlite3SrcListAppendFromTerm(
3848   Parse *pParse,          /* Parsing context */
3849   SrcList *p,             /* The left part of the FROM clause already seen */
3850   Token *pTable,          /* Name of the table to add to the FROM clause */
3851   Token *pDatabase,       /* Name of the database containing pTable */
3852   Token *pAlias,          /* The right-hand side of the AS subexpression */
3853   Select *pSubquery,      /* A subquery used in place of a table name */
3854   Expr *pOn,              /* The ON clause of a join */
3855   IdList *pUsing          /* The USING clause of a join */
3856 ){
3857   struct SrcList_item *pItem;
3858   sqlite3 *db = pParse->db;
3859   if( !p && (pOn || pUsing) ){
3860     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3861       (pOn ? "ON" : "USING")
3862     );
3863     goto append_from_error;
3864   }
3865   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3866   if( p==0 || NEVER(p->nSrc==0) ){
3867     goto append_from_error;
3868   }
3869   pItem = &p->a[p->nSrc-1];
3870   assert( pAlias!=0 );
3871   if( pAlias->n ){
3872     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3873   }
3874   pItem->pSelect = pSubquery;
3875   pItem->pOn = pOn;
3876   pItem->pUsing = pUsing;
3877   return p;
3878 
3879  append_from_error:
3880   assert( p==0 );
3881   sqlite3ExprDelete(db, pOn);
3882   sqlite3IdListDelete(db, pUsing);
3883   sqlite3SelectDelete(db, pSubquery);
3884   return 0;
3885 }
3886 
3887 /*
3888 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3889 ** element of the source-list passed as the second argument.
3890 */
3891 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3892   assert( pIndexedBy!=0 );
3893   if( p && pIndexedBy->n>0 ){
3894     struct SrcList_item *pItem;
3895     assert( p->nSrc>0 );
3896     pItem = &p->a[p->nSrc-1];
3897     assert( pItem->fg.notIndexed==0 );
3898     assert( pItem->fg.isIndexedBy==0 );
3899     assert( pItem->fg.isTabFunc==0 );
3900     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3901       /* A "NOT INDEXED" clause was supplied. See parse.y
3902       ** construct "indexed_opt" for details. */
3903       pItem->fg.notIndexed = 1;
3904     }else{
3905       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3906       pItem->fg.isIndexedBy = 1;
3907     }
3908   }
3909 }
3910 
3911 /*
3912 ** Add the list of function arguments to the SrcList entry for a
3913 ** table-valued-function.
3914 */
3915 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3916   if( p ){
3917     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3918     assert( pItem->fg.notIndexed==0 );
3919     assert( pItem->fg.isIndexedBy==0 );
3920     assert( pItem->fg.isTabFunc==0 );
3921     pItem->u1.pFuncArg = pList;
3922     pItem->fg.isTabFunc = 1;
3923   }else{
3924     sqlite3ExprListDelete(pParse->db, pList);
3925   }
3926 }
3927 
3928 /*
3929 ** When building up a FROM clause in the parser, the join operator
3930 ** is initially attached to the left operand.  But the code generator
3931 ** expects the join operator to be on the right operand.  This routine
3932 ** Shifts all join operators from left to right for an entire FROM
3933 ** clause.
3934 **
3935 ** Example: Suppose the join is like this:
3936 **
3937 **           A natural cross join B
3938 **
3939 ** The operator is "natural cross join".  The A and B operands are stored
3940 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3941 ** operator with A.  This routine shifts that operator over to B.
3942 */
3943 void sqlite3SrcListShiftJoinType(SrcList *p){
3944   if( p ){
3945     int i;
3946     for(i=p->nSrc-1; i>0; i--){
3947       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3948     }
3949     p->a[0].fg.jointype = 0;
3950   }
3951 }
3952 
3953 /*
3954 ** Generate VDBE code for a BEGIN statement.
3955 */
3956 void sqlite3BeginTransaction(Parse *pParse, int type){
3957   sqlite3 *db;
3958   Vdbe *v;
3959   int i;
3960 
3961   assert( pParse!=0 );
3962   db = pParse->db;
3963   assert( db!=0 );
3964   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3965     return;
3966   }
3967   v = sqlite3GetVdbe(pParse);
3968   if( !v ) return;
3969   if( type!=TK_DEFERRED ){
3970     for(i=0; i<db->nDb; i++){
3971       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3972       sqlite3VdbeUsesBtree(v, i);
3973     }
3974   }
3975   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3976 }
3977 
3978 /*
3979 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3980 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
3981 ** code is generated for a COMMIT.
3982 */
3983 void sqlite3EndTransaction(Parse *pParse, int eType){
3984   Vdbe *v;
3985   int isRollback;
3986 
3987   assert( pParse!=0 );
3988   assert( pParse->db!=0 );
3989   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
3990   isRollback = eType==TK_ROLLBACK;
3991   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
3992        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
3993     return;
3994   }
3995   v = sqlite3GetVdbe(pParse);
3996   if( v ){
3997     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
3998   }
3999 }
4000 
4001 /*
4002 ** This function is called by the parser when it parses a command to create,
4003 ** release or rollback an SQL savepoint.
4004 */
4005 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4006   char *zName = sqlite3NameFromToken(pParse->db, pName);
4007   if( zName ){
4008     Vdbe *v = sqlite3GetVdbe(pParse);
4009 #ifndef SQLITE_OMIT_AUTHORIZATION
4010     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4011     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4012 #endif
4013     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4014       sqlite3DbFree(pParse->db, zName);
4015       return;
4016     }
4017     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4018   }
4019 }
4020 
4021 /*
4022 ** Make sure the TEMP database is open and available for use.  Return
4023 ** the number of errors.  Leave any error messages in the pParse structure.
4024 */
4025 int sqlite3OpenTempDatabase(Parse *pParse){
4026   sqlite3 *db = pParse->db;
4027   if( db->aDb[1].pBt==0 && !pParse->explain ){
4028     int rc;
4029     Btree *pBt;
4030     static const int flags =
4031           SQLITE_OPEN_READWRITE |
4032           SQLITE_OPEN_CREATE |
4033           SQLITE_OPEN_EXCLUSIVE |
4034           SQLITE_OPEN_DELETEONCLOSE |
4035           SQLITE_OPEN_TEMP_DB;
4036 
4037     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4038     if( rc!=SQLITE_OK ){
4039       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4040         "file for storing temporary tables");
4041       pParse->rc = rc;
4042       return 1;
4043     }
4044     db->aDb[1].pBt = pBt;
4045     assert( db->aDb[1].pSchema );
4046     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4047       sqlite3OomFault(db);
4048       return 1;
4049     }
4050   }
4051   return 0;
4052 }
4053 
4054 /*
4055 ** Record the fact that the schema cookie will need to be verified
4056 ** for database iDb.  The code to actually verify the schema cookie
4057 ** will occur at the end of the top-level VDBE and will be generated
4058 ** later, by sqlite3FinishCoding().
4059 */
4060 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4061   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4062 
4063   assert( iDb>=0 && iDb<pParse->db->nDb );
4064   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4065   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4066   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4067   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4068     DbMaskSet(pToplevel->cookieMask, iDb);
4069     if( !OMIT_TEMPDB && iDb==1 ){
4070       sqlite3OpenTempDatabase(pToplevel);
4071     }
4072   }
4073 }
4074 
4075 /*
4076 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4077 ** attached database. Otherwise, invoke it for the database named zDb only.
4078 */
4079 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4080   sqlite3 *db = pParse->db;
4081   int i;
4082   for(i=0; i<db->nDb; i++){
4083     Db *pDb = &db->aDb[i];
4084     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4085       sqlite3CodeVerifySchema(pParse, i);
4086     }
4087   }
4088 }
4089 
4090 /*
4091 ** Generate VDBE code that prepares for doing an operation that
4092 ** might change the database.
4093 **
4094 ** This routine starts a new transaction if we are not already within
4095 ** a transaction.  If we are already within a transaction, then a checkpoint
4096 ** is set if the setStatement parameter is true.  A checkpoint should
4097 ** be set for operations that might fail (due to a constraint) part of
4098 ** the way through and which will need to undo some writes without having to
4099 ** rollback the whole transaction.  For operations where all constraints
4100 ** can be checked before any changes are made to the database, it is never
4101 ** necessary to undo a write and the checkpoint should not be set.
4102 */
4103 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4104   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4105   sqlite3CodeVerifySchema(pParse, iDb);
4106   DbMaskSet(pToplevel->writeMask, iDb);
4107   pToplevel->isMultiWrite |= setStatement;
4108 }
4109 
4110 /*
4111 ** Indicate that the statement currently under construction might write
4112 ** more than one entry (example: deleting one row then inserting another,
4113 ** inserting multiple rows in a table, or inserting a row and index entries.)
4114 ** If an abort occurs after some of these writes have completed, then it will
4115 ** be necessary to undo the completed writes.
4116 */
4117 void sqlite3MultiWrite(Parse *pParse){
4118   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4119   pToplevel->isMultiWrite = 1;
4120 }
4121 
4122 /*
4123 ** The code generator calls this routine if is discovers that it is
4124 ** possible to abort a statement prior to completion.  In order to
4125 ** perform this abort without corrupting the database, we need to make
4126 ** sure that the statement is protected by a statement transaction.
4127 **
4128 ** Technically, we only need to set the mayAbort flag if the
4129 ** isMultiWrite flag was previously set.  There is a time dependency
4130 ** such that the abort must occur after the multiwrite.  This makes
4131 ** some statements involving the REPLACE conflict resolution algorithm
4132 ** go a little faster.  But taking advantage of this time dependency
4133 ** makes it more difficult to prove that the code is correct (in
4134 ** particular, it prevents us from writing an effective
4135 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4136 ** to take the safe route and skip the optimization.
4137 */
4138 void sqlite3MayAbort(Parse *pParse){
4139   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4140   pToplevel->mayAbort = 1;
4141 }
4142 
4143 /*
4144 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4145 ** error. The onError parameter determines which (if any) of the statement
4146 ** and/or current transaction is rolled back.
4147 */
4148 void sqlite3HaltConstraint(
4149   Parse *pParse,    /* Parsing context */
4150   int errCode,      /* extended error code */
4151   int onError,      /* Constraint type */
4152   char *p4,         /* Error message */
4153   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4154   u8 p5Errmsg       /* P5_ErrMsg type */
4155 ){
4156   Vdbe *v = sqlite3GetVdbe(pParse);
4157   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4158   if( onError==OE_Abort ){
4159     sqlite3MayAbort(pParse);
4160   }
4161   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4162   sqlite3VdbeChangeP5(v, p5Errmsg);
4163 }
4164 
4165 /*
4166 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4167 */
4168 void sqlite3UniqueConstraint(
4169   Parse *pParse,    /* Parsing context */
4170   int onError,      /* Constraint type */
4171   Index *pIdx       /* The index that triggers the constraint */
4172 ){
4173   char *zErr;
4174   int j;
4175   StrAccum errMsg;
4176   Table *pTab = pIdx->pTable;
4177 
4178   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4179   if( pIdx->aColExpr ){
4180     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4181   }else{
4182     for(j=0; j<pIdx->nKeyCol; j++){
4183       char *zCol;
4184       assert( pIdx->aiColumn[j]>=0 );
4185       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4186       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4187       sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4188       sqlite3StrAccumAppend(&errMsg, ".", 1);
4189       sqlite3StrAccumAppendAll(&errMsg, zCol);
4190     }
4191   }
4192   zErr = sqlite3StrAccumFinish(&errMsg);
4193   sqlite3HaltConstraint(pParse,
4194     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4195                             : SQLITE_CONSTRAINT_UNIQUE,
4196     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4197 }
4198 
4199 
4200 /*
4201 ** Code an OP_Halt due to non-unique rowid.
4202 */
4203 void sqlite3RowidConstraint(
4204   Parse *pParse,    /* Parsing context */
4205   int onError,      /* Conflict resolution algorithm */
4206   Table *pTab       /* The table with the non-unique rowid */
4207 ){
4208   char *zMsg;
4209   int rc;
4210   if( pTab->iPKey>=0 ){
4211     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4212                           pTab->aCol[pTab->iPKey].zName);
4213     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4214   }else{
4215     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4216     rc = SQLITE_CONSTRAINT_ROWID;
4217   }
4218   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4219                         P5_ConstraintUnique);
4220 }
4221 
4222 /*
4223 ** Check to see if pIndex uses the collating sequence pColl.  Return
4224 ** true if it does and false if it does not.
4225 */
4226 #ifndef SQLITE_OMIT_REINDEX
4227 static int collationMatch(const char *zColl, Index *pIndex){
4228   int i;
4229   assert( zColl!=0 );
4230   for(i=0; i<pIndex->nColumn; i++){
4231     const char *z = pIndex->azColl[i];
4232     assert( z!=0 || pIndex->aiColumn[i]<0 );
4233     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4234       return 1;
4235     }
4236   }
4237   return 0;
4238 }
4239 #endif
4240 
4241 /*
4242 ** Recompute all indices of pTab that use the collating sequence pColl.
4243 ** If pColl==0 then recompute all indices of pTab.
4244 */
4245 #ifndef SQLITE_OMIT_REINDEX
4246 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4247   Index *pIndex;              /* An index associated with pTab */
4248 
4249   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4250     if( zColl==0 || collationMatch(zColl, pIndex) ){
4251       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4252       sqlite3BeginWriteOperation(pParse, 0, iDb);
4253       sqlite3RefillIndex(pParse, pIndex, -1);
4254     }
4255   }
4256 }
4257 #endif
4258 
4259 /*
4260 ** Recompute all indices of all tables in all databases where the
4261 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4262 ** all indices everywhere.
4263 */
4264 #ifndef SQLITE_OMIT_REINDEX
4265 static void reindexDatabases(Parse *pParse, char const *zColl){
4266   Db *pDb;                    /* A single database */
4267   int iDb;                    /* The database index number */
4268   sqlite3 *db = pParse->db;   /* The database connection */
4269   HashElem *k;                /* For looping over tables in pDb */
4270   Table *pTab;                /* A table in the database */
4271 
4272   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4273   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4274     assert( pDb!=0 );
4275     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4276       pTab = (Table*)sqliteHashData(k);
4277       reindexTable(pParse, pTab, zColl);
4278     }
4279   }
4280 }
4281 #endif
4282 
4283 /*
4284 ** Generate code for the REINDEX command.
4285 **
4286 **        REINDEX                            -- 1
4287 **        REINDEX  <collation>               -- 2
4288 **        REINDEX  ?<database>.?<tablename>  -- 3
4289 **        REINDEX  ?<database>.?<indexname>  -- 4
4290 **
4291 ** Form 1 causes all indices in all attached databases to be rebuilt.
4292 ** Form 2 rebuilds all indices in all databases that use the named
4293 ** collating function.  Forms 3 and 4 rebuild the named index or all
4294 ** indices associated with the named table.
4295 */
4296 #ifndef SQLITE_OMIT_REINDEX
4297 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4298   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4299   char *z;                    /* Name of a table or index */
4300   const char *zDb;            /* Name of the database */
4301   Table *pTab;                /* A table in the database */
4302   Index *pIndex;              /* An index associated with pTab */
4303   int iDb;                    /* The database index number */
4304   sqlite3 *db = pParse->db;   /* The database connection */
4305   Token *pObjName;            /* Name of the table or index to be reindexed */
4306 
4307   /* Read the database schema. If an error occurs, leave an error message
4308   ** and code in pParse and return NULL. */
4309   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4310     return;
4311   }
4312 
4313   if( pName1==0 ){
4314     reindexDatabases(pParse, 0);
4315     return;
4316   }else if( NEVER(pName2==0) || pName2->z==0 ){
4317     char *zColl;
4318     assert( pName1->z );
4319     zColl = sqlite3NameFromToken(pParse->db, pName1);
4320     if( !zColl ) return;
4321     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4322     if( pColl ){
4323       reindexDatabases(pParse, zColl);
4324       sqlite3DbFree(db, zColl);
4325       return;
4326     }
4327     sqlite3DbFree(db, zColl);
4328   }
4329   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4330   if( iDb<0 ) return;
4331   z = sqlite3NameFromToken(db, pObjName);
4332   if( z==0 ) return;
4333   zDb = db->aDb[iDb].zDbSName;
4334   pTab = sqlite3FindTable(db, z, zDb);
4335   if( pTab ){
4336     reindexTable(pParse, pTab, 0);
4337     sqlite3DbFree(db, z);
4338     return;
4339   }
4340   pIndex = sqlite3FindIndex(db, z, zDb);
4341   sqlite3DbFree(db, z);
4342   if( pIndex ){
4343     sqlite3BeginWriteOperation(pParse, 0, iDb);
4344     sqlite3RefillIndex(pParse, pIndex, -1);
4345     return;
4346   }
4347   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4348 }
4349 #endif
4350 
4351 /*
4352 ** Return a KeyInfo structure that is appropriate for the given Index.
4353 **
4354 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4355 ** when it has finished using it.
4356 */
4357 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4358   int i;
4359   int nCol = pIdx->nColumn;
4360   int nKey = pIdx->nKeyCol;
4361   KeyInfo *pKey;
4362   if( pParse->nErr ) return 0;
4363   if( pIdx->uniqNotNull ){
4364     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4365   }else{
4366     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4367   }
4368   if( pKey ){
4369     assert( sqlite3KeyInfoIsWriteable(pKey) );
4370     for(i=0; i<nCol; i++){
4371       const char *zColl = pIdx->azColl[i];
4372       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4373                         sqlite3LocateCollSeq(pParse, zColl);
4374       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4375     }
4376     if( pParse->nErr ){
4377       sqlite3KeyInfoUnref(pKey);
4378       pKey = 0;
4379     }
4380   }
4381   return pKey;
4382 }
4383 
4384 #ifndef SQLITE_OMIT_CTE
4385 /*
4386 ** This routine is invoked once per CTE by the parser while parsing a
4387 ** WITH clause.
4388 */
4389 With *sqlite3WithAdd(
4390   Parse *pParse,          /* Parsing context */
4391   With *pWith,            /* Existing WITH clause, or NULL */
4392   Token *pName,           /* Name of the common-table */
4393   ExprList *pArglist,     /* Optional column name list for the table */
4394   Select *pQuery          /* Query used to initialize the table */
4395 ){
4396   sqlite3 *db = pParse->db;
4397   With *pNew;
4398   char *zName;
4399 
4400   /* Check that the CTE name is unique within this WITH clause. If
4401   ** not, store an error in the Parse structure. */
4402   zName = sqlite3NameFromToken(pParse->db, pName);
4403   if( zName && pWith ){
4404     int i;
4405     for(i=0; i<pWith->nCte; i++){
4406       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4407         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4408       }
4409     }
4410   }
4411 
4412   if( pWith ){
4413     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4414     pNew = sqlite3DbRealloc(db, pWith, nByte);
4415   }else{
4416     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4417   }
4418   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4419 
4420   if( db->mallocFailed ){
4421     sqlite3ExprListDelete(db, pArglist);
4422     sqlite3SelectDelete(db, pQuery);
4423     sqlite3DbFree(db, zName);
4424     pNew = pWith;
4425   }else{
4426     pNew->a[pNew->nCte].pSelect = pQuery;
4427     pNew->a[pNew->nCte].pCols = pArglist;
4428     pNew->a[pNew->nCte].zName = zName;
4429     pNew->a[pNew->nCte].zCteErr = 0;
4430     pNew->nCte++;
4431   }
4432 
4433   return pNew;
4434 }
4435 
4436 /*
4437 ** Free the contents of the With object passed as the second argument.
4438 */
4439 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4440   if( pWith ){
4441     int i;
4442     for(i=0; i<pWith->nCte; i++){
4443       struct Cte *pCte = &pWith->a[i];
4444       sqlite3ExprListDelete(db, pCte->pCols);
4445       sqlite3SelectDelete(db, pCte->pSelect);
4446       sqlite3DbFree(db, pCte->zName);
4447     }
4448     sqlite3DbFree(db, pWith);
4449   }
4450 }
4451 #endif /* !defined(SQLITE_OMIT_CTE) */
4452