1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); 364 } 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 366 return pMod->pEpoTab; 367 } 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->mDbFlags |= DBFLAG_SchemaChange; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 518 ** Deferred resets may be run by calling with iDb<0. 519 */ 520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 521 int i; 522 assert( iDb<db->nDb ); 523 524 if( iDb>=0 ){ 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 DbSetProperty(db, iDb, DB_ResetWanted); 527 DbSetProperty(db, 1, DB_ResetWanted); 528 } 529 530 if( db->nSchemaLock==0 ){ 531 for(i=0; i<db->nDb; i++){ 532 if( DbHasProperty(db, i, DB_ResetWanted) ){ 533 sqlite3SchemaClear(db->aDb[i].pSchema); 534 } 535 } 536 } 537 } 538 539 /* 540 ** Erase all schema information from all attached databases (including 541 ** "main" and "temp") for a single database connection. 542 */ 543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 544 int i; 545 sqlite3BtreeEnterAll(db); 546 assert( db->nSchemaLock==0 ); 547 for(i=0; i<db->nDb; i++){ 548 Db *pDb = &db->aDb[i]; 549 if( pDb->pSchema ){ 550 sqlite3SchemaClear(pDb->pSchema); 551 } 552 } 553 db->mDbFlags &= ~DBFLAG_SchemaChange; 554 sqlite3VtabUnlockList(db); 555 sqlite3BtreeLeaveAll(db); 556 sqlite3CollapseDatabaseArray(db); 557 } 558 559 /* 560 ** This routine is called when a commit occurs. 561 */ 562 void sqlite3CommitInternalChanges(sqlite3 *db){ 563 db->mDbFlags &= ~DBFLAG_SchemaChange; 564 } 565 566 /* 567 ** Delete memory allocated for the column names of a table or view (the 568 ** Table.aCol[] array). 569 */ 570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 571 int i; 572 Column *pCol; 573 assert( pTable!=0 ); 574 if( (pCol = pTable->aCol)!=0 ){ 575 for(i=0; i<pTable->nCol; i++, pCol++){ 576 sqlite3DbFree(db, pCol->zName); 577 sqlite3ExprDelete(db, pCol->pDflt); 578 sqlite3DbFree(db, pCol->zColl); 579 } 580 sqlite3DbFree(db, pTable->aCol); 581 } 582 } 583 584 /* 585 ** Remove the memory data structures associated with the given 586 ** Table. No changes are made to disk by this routine. 587 ** 588 ** This routine just deletes the data structure. It does not unlink 589 ** the table data structure from the hash table. But it does destroy 590 ** memory structures of the indices and foreign keys associated with 591 ** the table. 592 ** 593 ** The db parameter is optional. It is needed if the Table object 594 ** contains lookaside memory. (Table objects in the schema do not use 595 ** lookaside memory, but some ephemeral Table objects do.) Or the 596 ** db parameter can be used with db->pnBytesFreed to measure the memory 597 ** used by the Table object. 598 */ 599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 600 Index *pIndex, *pNext; 601 602 #ifdef SQLITE_DEBUG 603 /* Record the number of outstanding lookaside allocations in schema Tables 604 ** prior to doing any free() operations. Since schema Tables do not use 605 ** lookaside, this number should not change. */ 606 int nLookaside = 0; 607 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){ 608 nLookaside = sqlite3LookasideUsed(db, 0); 609 } 610 #endif 611 612 /* Delete all indices associated with this table. */ 613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 614 pNext = pIndex->pNext; 615 assert( pIndex->pSchema==pTable->pSchema 616 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 617 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 618 char *zName = pIndex->zName; 619 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 620 &pIndex->pSchema->idxHash, zName, 0 621 ); 622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 623 assert( pOld==pIndex || pOld==0 ); 624 } 625 freeIndex(db, pIndex); 626 } 627 628 /* Delete any foreign keys attached to this table. */ 629 sqlite3FkDelete(db, pTable); 630 631 /* Delete the Table structure itself. 632 */ 633 sqlite3DeleteColumnNames(db, pTable); 634 sqlite3DbFree(db, pTable->zName); 635 sqlite3DbFree(db, pTable->zColAff); 636 sqlite3SelectDelete(db, pTable->pSelect); 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #ifndef SQLITE_OMIT_VIRTUALTABLE 639 sqlite3VtabClear(db, pTable); 640 #endif 641 sqlite3DbFree(db, pTable); 642 643 /* Verify that no lookaside memory was used by schema tables */ 644 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 645 } 646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 647 /* Do not delete the table until the reference count reaches zero. */ 648 if( !pTable ) return; 649 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 650 deleteTable(db, pTable); 651 } 652 653 654 /* 655 ** Unlink the given table from the hash tables and the delete the 656 ** table structure with all its indices and foreign keys. 657 */ 658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 659 Table *p; 660 Db *pDb; 661 662 assert( db!=0 ); 663 assert( iDb>=0 && iDb<db->nDb ); 664 assert( zTabName ); 665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 667 pDb = &db->aDb[iDb]; 668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 669 sqlite3DeleteTable(db, p); 670 db->mDbFlags |= DBFLAG_SchemaChange; 671 } 672 673 /* 674 ** Given a token, return a string that consists of the text of that 675 ** token. Space to hold the returned string 676 ** is obtained from sqliteMalloc() and must be freed by the calling 677 ** function. 678 ** 679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 680 ** surround the body of the token are removed. 681 ** 682 ** Tokens are often just pointers into the original SQL text and so 683 ** are not \000 terminated and are not persistent. The returned string 684 ** is \000 terminated and is persistent. 685 */ 686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 687 char *zName; 688 if( pName ){ 689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 690 sqlite3Dequote(zName); 691 }else{ 692 zName = 0; 693 } 694 return zName; 695 } 696 697 /* 698 ** Open the sqlite_master table stored in database number iDb for 699 ** writing. The table is opened using cursor 0. 700 */ 701 void sqlite3OpenMasterTable(Parse *p, int iDb){ 702 Vdbe *v = sqlite3GetVdbe(p); 703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 705 if( p->nTab==0 ){ 706 p->nTab = 1; 707 } 708 } 709 710 /* 711 ** Parameter zName points to a nul-terminated buffer containing the name 712 ** of a database ("main", "temp" or the name of an attached db). This 713 ** function returns the index of the named database in db->aDb[], or 714 ** -1 if the named db cannot be found. 715 */ 716 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 717 int i = -1; /* Database number */ 718 if( zName ){ 719 Db *pDb; 720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 721 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 722 /* "main" is always an acceptable alias for the primary database 723 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 724 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 725 } 726 } 727 return i; 728 } 729 730 /* 731 ** The token *pName contains the name of a database (either "main" or 732 ** "temp" or the name of an attached db). This routine returns the 733 ** index of the named database in db->aDb[], or -1 if the named db 734 ** does not exist. 735 */ 736 int sqlite3FindDb(sqlite3 *db, Token *pName){ 737 int i; /* Database number */ 738 char *zName; /* Name we are searching for */ 739 zName = sqlite3NameFromToken(db, pName); 740 i = sqlite3FindDbName(db, zName); 741 sqlite3DbFree(db, zName); 742 return i; 743 } 744 745 /* The table or view or trigger name is passed to this routine via tokens 746 ** pName1 and pName2. If the table name was fully qualified, for example: 747 ** 748 ** CREATE TABLE xxx.yyy (...); 749 ** 750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 751 ** the table name is not fully qualified, i.e.: 752 ** 753 ** CREATE TABLE yyy(...); 754 ** 755 ** Then pName1 is set to "yyy" and pName2 is "". 756 ** 757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 758 ** pName2) that stores the unqualified table name. The index of the 759 ** database "xxx" is returned. 760 */ 761 int sqlite3TwoPartName( 762 Parse *pParse, /* Parsing and code generating context */ 763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 765 Token **pUnqual /* Write the unqualified object name here */ 766 ){ 767 int iDb; /* Database holding the object */ 768 sqlite3 *db = pParse->db; 769 770 assert( pName2!=0 ); 771 if( pName2->n>0 ){ 772 if( db->init.busy ) { 773 sqlite3ErrorMsg(pParse, "corrupt database"); 774 return -1; 775 } 776 *pUnqual = pName2; 777 iDb = sqlite3FindDb(db, pName1); 778 if( iDb<0 ){ 779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 780 return -1; 781 } 782 }else{ 783 assert( db->init.iDb==0 || db->init.busy 784 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 785 iDb = db->init.iDb; 786 *pUnqual = pName1; 787 } 788 return iDb; 789 } 790 791 /* 792 ** This routine is used to check if the UTF-8 string zName is a legal 793 ** unqualified name for a new schema object (table, index, view or 794 ** trigger). All names are legal except those that begin with the string 795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 796 ** is reserved for internal use. 797 */ 798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 799 if( !pParse->db->init.busy && pParse->nested==0 800 && (pParse->db->flags & SQLITE_WriteSchema)==0 801 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 802 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 803 return SQLITE_ERROR; 804 } 805 return SQLITE_OK; 806 } 807 808 /* 809 ** Return the PRIMARY KEY index of a table 810 */ 811 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 812 Index *p; 813 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 814 return p; 815 } 816 817 /* 818 ** Return the column of index pIdx that corresponds to table 819 ** column iCol. Return -1 if not found. 820 */ 821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 822 int i; 823 for(i=0; i<pIdx->nColumn; i++){ 824 if( iCol==pIdx->aiColumn[i] ) return i; 825 } 826 return -1; 827 } 828 829 /* 830 ** Begin constructing a new table representation in memory. This is 831 ** the first of several action routines that get called in response 832 ** to a CREATE TABLE statement. In particular, this routine is called 833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 834 ** flag is true if the table should be stored in the auxiliary database 835 ** file instead of in the main database file. This is normally the case 836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 837 ** CREATE and TABLE. 838 ** 839 ** The new table record is initialized and put in pParse->pNewTable. 840 ** As more of the CREATE TABLE statement is parsed, additional action 841 ** routines will be called to add more information to this record. 842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 843 ** is called to complete the construction of the new table record. 844 */ 845 void sqlite3StartTable( 846 Parse *pParse, /* Parser context */ 847 Token *pName1, /* First part of the name of the table or view */ 848 Token *pName2, /* Second part of the name of the table or view */ 849 int isTemp, /* True if this is a TEMP table */ 850 int isView, /* True if this is a VIEW */ 851 int isVirtual, /* True if this is a VIRTUAL table */ 852 int noErr /* Do nothing if table already exists */ 853 ){ 854 Table *pTable; 855 char *zName = 0; /* The name of the new table */ 856 sqlite3 *db = pParse->db; 857 Vdbe *v; 858 int iDb; /* Database number to create the table in */ 859 Token *pName; /* Unqualified name of the table to create */ 860 861 if( db->init.busy && db->init.newTnum==1 ){ 862 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 863 iDb = db->init.iDb; 864 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 865 pName = pName1; 866 }else{ 867 /* The common case */ 868 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 869 if( iDb<0 ) return; 870 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 871 /* If creating a temp table, the name may not be qualified. Unless 872 ** the database name is "temp" anyway. */ 873 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 874 return; 875 } 876 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 877 zName = sqlite3NameFromToken(db, pName); 878 } 879 pParse->sNameToken = *pName; 880 if( zName==0 ) return; 881 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 882 goto begin_table_error; 883 } 884 if( db->init.iDb==1 ) isTemp = 1; 885 #ifndef SQLITE_OMIT_AUTHORIZATION 886 assert( isTemp==0 || isTemp==1 ); 887 assert( isView==0 || isView==1 ); 888 { 889 static const u8 aCode[] = { 890 SQLITE_CREATE_TABLE, 891 SQLITE_CREATE_TEMP_TABLE, 892 SQLITE_CREATE_VIEW, 893 SQLITE_CREATE_TEMP_VIEW 894 }; 895 char *zDb = db->aDb[iDb].zDbSName; 896 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 897 goto begin_table_error; 898 } 899 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 900 zName, 0, zDb) ){ 901 goto begin_table_error; 902 } 903 } 904 #endif 905 906 /* Make sure the new table name does not collide with an existing 907 ** index or table name in the same database. Issue an error message if 908 ** it does. The exception is if the statement being parsed was passed 909 ** to an sqlite3_declare_vtab() call. In that case only the column names 910 ** and types will be used, so there is no need to test for namespace 911 ** collisions. 912 */ 913 if( !IN_DECLARE_VTAB ){ 914 char *zDb = db->aDb[iDb].zDbSName; 915 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 916 goto begin_table_error; 917 } 918 pTable = sqlite3FindTable(db, zName, zDb); 919 if( pTable ){ 920 if( !noErr ){ 921 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 922 }else{ 923 assert( !db->init.busy || CORRUPT_DB ); 924 sqlite3CodeVerifySchema(pParse, iDb); 925 } 926 goto begin_table_error; 927 } 928 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 929 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 930 goto begin_table_error; 931 } 932 } 933 934 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 935 if( pTable==0 ){ 936 assert( db->mallocFailed ); 937 pParse->rc = SQLITE_NOMEM_BKPT; 938 pParse->nErr++; 939 goto begin_table_error; 940 } 941 pTable->zName = zName; 942 pTable->iPKey = -1; 943 pTable->pSchema = db->aDb[iDb].pSchema; 944 pTable->nTabRef = 1; 945 #ifdef SQLITE_DEFAULT_ROWEST 946 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 947 #else 948 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 949 #endif 950 assert( pParse->pNewTable==0 ); 951 pParse->pNewTable = pTable; 952 953 /* If this is the magic sqlite_sequence table used by autoincrement, 954 ** then record a pointer to this table in the main database structure 955 ** so that INSERT can find the table easily. 956 */ 957 #ifndef SQLITE_OMIT_AUTOINCREMENT 958 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 959 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 960 pTable->pSchema->pSeqTab = pTable; 961 } 962 #endif 963 964 /* Begin generating the code that will insert the table record into 965 ** the SQLITE_MASTER table. Note in particular that we must go ahead 966 ** and allocate the record number for the table entry now. Before any 967 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 968 ** indices to be created and the table record must come before the 969 ** indices. Hence, the record number for the table must be allocated 970 ** now. 971 */ 972 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 973 int addr1; 974 int fileFormat; 975 int reg1, reg2, reg3; 976 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 977 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 978 sqlite3BeginWriteOperation(pParse, 1, iDb); 979 980 #ifndef SQLITE_OMIT_VIRTUALTABLE 981 if( isVirtual ){ 982 sqlite3VdbeAddOp0(v, OP_VBegin); 983 } 984 #endif 985 986 /* If the file format and encoding in the database have not been set, 987 ** set them now. 988 */ 989 reg1 = pParse->regRowid = ++pParse->nMem; 990 reg2 = pParse->regRoot = ++pParse->nMem; 991 reg3 = ++pParse->nMem; 992 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 993 sqlite3VdbeUsesBtree(v, iDb); 994 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 995 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 996 1 : SQLITE_MAX_FILE_FORMAT; 997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 998 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 999 sqlite3VdbeJumpHere(v, addr1); 1000 1001 /* This just creates a place-holder record in the sqlite_master table. 1002 ** The record created does not contain anything yet. It will be replaced 1003 ** by the real entry in code generated at sqlite3EndTable(). 1004 ** 1005 ** The rowid for the new entry is left in register pParse->regRowid. 1006 ** The root page number of the new table is left in reg pParse->regRoot. 1007 ** The rowid and root page number values are needed by the code that 1008 ** sqlite3EndTable will generate. 1009 */ 1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1011 if( isView || isVirtual ){ 1012 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1013 }else 1014 #endif 1015 { 1016 pParse->addrCrTab = 1017 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1018 } 1019 sqlite3OpenMasterTable(pParse, iDb); 1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1021 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1024 sqlite3VdbeAddOp0(v, OP_Close); 1025 } 1026 1027 /* Normal (non-error) return. */ 1028 return; 1029 1030 /* If an error occurs, we jump here */ 1031 begin_table_error: 1032 sqlite3DbFree(db, zName); 1033 return; 1034 } 1035 1036 /* Set properties of a table column based on the (magical) 1037 ** name of the column. 1038 */ 1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1041 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1042 pCol->colFlags |= COLFLAG_HIDDEN; 1043 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1044 pTab->tabFlags |= TF_OOOHidden; 1045 } 1046 } 1047 #endif 1048 1049 1050 /* 1051 ** Add a new column to the table currently being constructed. 1052 ** 1053 ** The parser calls this routine once for each column declaration 1054 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1055 ** first to get things going. Then this routine is called for each 1056 ** column. 1057 */ 1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1059 Table *p; 1060 int i; 1061 char *z; 1062 char *zType; 1063 Column *pCol; 1064 sqlite3 *db = pParse->db; 1065 if( (p = pParse->pNewTable)==0 ) return; 1066 #if SQLITE_MAX_COLUMN 1067 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1068 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1069 return; 1070 } 1071 #endif 1072 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1073 if( z==0 ) return; 1074 memcpy(z, pName->z, pName->n); 1075 z[pName->n] = 0; 1076 sqlite3Dequote(z); 1077 for(i=0; i<p->nCol; i++){ 1078 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1079 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1080 sqlite3DbFree(db, z); 1081 return; 1082 } 1083 } 1084 if( (p->nCol & 0x7)==0 ){ 1085 Column *aNew; 1086 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1087 if( aNew==0 ){ 1088 sqlite3DbFree(db, z); 1089 return; 1090 } 1091 p->aCol = aNew; 1092 } 1093 pCol = &p->aCol[p->nCol]; 1094 memset(pCol, 0, sizeof(p->aCol[0])); 1095 pCol->zName = z; 1096 sqlite3ColumnPropertiesFromName(p, pCol); 1097 1098 if( pType->n==0 ){ 1099 /* If there is no type specified, columns have the default affinity 1100 ** 'BLOB'. */ 1101 pCol->affinity = SQLITE_AFF_BLOB; 1102 pCol->szEst = 1; 1103 }else{ 1104 zType = z + sqlite3Strlen30(z) + 1; 1105 memcpy(zType, pType->z, pType->n); 1106 zType[pType->n] = 0; 1107 sqlite3Dequote(zType); 1108 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1109 pCol->colFlags |= COLFLAG_HASTYPE; 1110 } 1111 p->nCol++; 1112 pParse->constraintName.n = 0; 1113 } 1114 1115 /* 1116 ** This routine is called by the parser while in the middle of 1117 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1118 ** been seen on a column. This routine sets the notNull flag on 1119 ** the column currently under construction. 1120 */ 1121 void sqlite3AddNotNull(Parse *pParse, int onError){ 1122 Table *p; 1123 p = pParse->pNewTable; 1124 if( p==0 || NEVER(p->nCol<1) ) return; 1125 p->aCol[p->nCol-1].notNull = (u8)onError; 1126 p->tabFlags |= TF_HasNotNull; 1127 } 1128 1129 /* 1130 ** Scan the column type name zType (length nType) and return the 1131 ** associated affinity type. 1132 ** 1133 ** This routine does a case-independent search of zType for the 1134 ** substrings in the following table. If one of the substrings is 1135 ** found, the corresponding affinity is returned. If zType contains 1136 ** more than one of the substrings, entries toward the top of 1137 ** the table take priority. For example, if zType is 'BLOBINT', 1138 ** SQLITE_AFF_INTEGER is returned. 1139 ** 1140 ** Substring | Affinity 1141 ** -------------------------------- 1142 ** 'INT' | SQLITE_AFF_INTEGER 1143 ** 'CHAR' | SQLITE_AFF_TEXT 1144 ** 'CLOB' | SQLITE_AFF_TEXT 1145 ** 'TEXT' | SQLITE_AFF_TEXT 1146 ** 'BLOB' | SQLITE_AFF_BLOB 1147 ** 'REAL' | SQLITE_AFF_REAL 1148 ** 'FLOA' | SQLITE_AFF_REAL 1149 ** 'DOUB' | SQLITE_AFF_REAL 1150 ** 1151 ** If none of the substrings in the above table are found, 1152 ** SQLITE_AFF_NUMERIC is returned. 1153 */ 1154 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1155 u32 h = 0; 1156 char aff = SQLITE_AFF_NUMERIC; 1157 const char *zChar = 0; 1158 1159 assert( zIn!=0 ); 1160 while( zIn[0] ){ 1161 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1162 zIn++; 1163 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1164 aff = SQLITE_AFF_TEXT; 1165 zChar = zIn; 1166 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1167 aff = SQLITE_AFF_TEXT; 1168 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1169 aff = SQLITE_AFF_TEXT; 1170 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1171 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1172 aff = SQLITE_AFF_BLOB; 1173 if( zIn[0]=='(' ) zChar = zIn; 1174 #ifndef SQLITE_OMIT_FLOATING_POINT 1175 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1176 && aff==SQLITE_AFF_NUMERIC ){ 1177 aff = SQLITE_AFF_REAL; 1178 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1179 && aff==SQLITE_AFF_NUMERIC ){ 1180 aff = SQLITE_AFF_REAL; 1181 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1182 && aff==SQLITE_AFF_NUMERIC ){ 1183 aff = SQLITE_AFF_REAL; 1184 #endif 1185 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1186 aff = SQLITE_AFF_INTEGER; 1187 break; 1188 } 1189 } 1190 1191 /* If pszEst is not NULL, store an estimate of the field size. The 1192 ** estimate is scaled so that the size of an integer is 1. */ 1193 if( pszEst ){ 1194 *pszEst = 1; /* default size is approx 4 bytes */ 1195 if( aff<SQLITE_AFF_NUMERIC ){ 1196 if( zChar ){ 1197 while( zChar[0] ){ 1198 if( sqlite3Isdigit(zChar[0]) ){ 1199 int v = 0; 1200 sqlite3GetInt32(zChar, &v); 1201 v = v/4 + 1; 1202 if( v>255 ) v = 255; 1203 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1204 break; 1205 } 1206 zChar++; 1207 } 1208 }else{ 1209 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1210 } 1211 } 1212 } 1213 return aff; 1214 } 1215 1216 /* 1217 ** The expression is the default value for the most recently added column 1218 ** of the table currently under construction. 1219 ** 1220 ** Default value expressions must be constant. Raise an exception if this 1221 ** is not the case. 1222 ** 1223 ** This routine is called by the parser while in the middle of 1224 ** parsing a CREATE TABLE statement. 1225 */ 1226 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1227 Table *p; 1228 Column *pCol; 1229 sqlite3 *db = pParse->db; 1230 p = pParse->pNewTable; 1231 if( p!=0 ){ 1232 pCol = &(p->aCol[p->nCol-1]); 1233 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1234 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1235 pCol->zName); 1236 }else{ 1237 /* A copy of pExpr is used instead of the original, as pExpr contains 1238 ** tokens that point to volatile memory. The 'span' of the expression 1239 ** is required by pragma table_info. 1240 */ 1241 Expr x; 1242 sqlite3ExprDelete(db, pCol->pDflt); 1243 memset(&x, 0, sizeof(x)); 1244 x.op = TK_SPAN; 1245 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1246 (int)(pSpan->zEnd - pSpan->zStart)); 1247 x.pLeft = pSpan->pExpr; 1248 x.flags = EP_Skip; 1249 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1250 sqlite3DbFree(db, x.u.zToken); 1251 } 1252 } 1253 sqlite3ExprDelete(db, pSpan->pExpr); 1254 } 1255 1256 /* 1257 ** Backwards Compatibility Hack: 1258 ** 1259 ** Historical versions of SQLite accepted strings as column names in 1260 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1261 ** 1262 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1263 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1264 ** 1265 ** This is goofy. But to preserve backwards compatibility we continue to 1266 ** accept it. This routine does the necessary conversion. It converts 1267 ** the expression given in its argument from a TK_STRING into a TK_ID 1268 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1269 ** If the epxression is anything other than TK_STRING, the expression is 1270 ** unchanged. 1271 */ 1272 static void sqlite3StringToId(Expr *p){ 1273 if( p->op==TK_STRING ){ 1274 p->op = TK_ID; 1275 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1276 p->pLeft->op = TK_ID; 1277 } 1278 } 1279 1280 /* 1281 ** Designate the PRIMARY KEY for the table. pList is a list of names 1282 ** of columns that form the primary key. If pList is NULL, then the 1283 ** most recently added column of the table is the primary key. 1284 ** 1285 ** A table can have at most one primary key. If the table already has 1286 ** a primary key (and this is the second primary key) then create an 1287 ** error. 1288 ** 1289 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1290 ** then we will try to use that column as the rowid. Set the Table.iPKey 1291 ** field of the table under construction to be the index of the 1292 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1293 ** no INTEGER PRIMARY KEY. 1294 ** 1295 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1296 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1297 */ 1298 void sqlite3AddPrimaryKey( 1299 Parse *pParse, /* Parsing context */ 1300 ExprList *pList, /* List of field names to be indexed */ 1301 int onError, /* What to do with a uniqueness conflict */ 1302 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1303 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1304 ){ 1305 Table *pTab = pParse->pNewTable; 1306 Column *pCol = 0; 1307 int iCol = -1, i; 1308 int nTerm; 1309 if( pTab==0 ) goto primary_key_exit; 1310 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1311 sqlite3ErrorMsg(pParse, 1312 "table \"%s\" has more than one primary key", pTab->zName); 1313 goto primary_key_exit; 1314 } 1315 pTab->tabFlags |= TF_HasPrimaryKey; 1316 if( pList==0 ){ 1317 iCol = pTab->nCol - 1; 1318 pCol = &pTab->aCol[iCol]; 1319 pCol->colFlags |= COLFLAG_PRIMKEY; 1320 nTerm = 1; 1321 }else{ 1322 nTerm = pList->nExpr; 1323 for(i=0; i<nTerm; i++){ 1324 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1325 assert( pCExpr!=0 ); 1326 sqlite3StringToId(pCExpr); 1327 if( pCExpr->op==TK_ID ){ 1328 const char *zCName = pCExpr->u.zToken; 1329 for(iCol=0; iCol<pTab->nCol; iCol++){ 1330 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1331 pCol = &pTab->aCol[iCol]; 1332 pCol->colFlags |= COLFLAG_PRIMKEY; 1333 break; 1334 } 1335 } 1336 } 1337 } 1338 } 1339 if( nTerm==1 1340 && pCol 1341 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1342 && sortOrder!=SQLITE_SO_DESC 1343 ){ 1344 pTab->iPKey = iCol; 1345 pTab->keyConf = (u8)onError; 1346 assert( autoInc==0 || autoInc==1 ); 1347 pTab->tabFlags |= autoInc*TF_Autoincrement; 1348 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1349 }else if( autoInc ){ 1350 #ifndef SQLITE_OMIT_AUTOINCREMENT 1351 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1352 "INTEGER PRIMARY KEY"); 1353 #endif 1354 }else{ 1355 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1356 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1357 pList = 0; 1358 } 1359 1360 primary_key_exit: 1361 sqlite3ExprListDelete(pParse->db, pList); 1362 return; 1363 } 1364 1365 /* 1366 ** Add a new CHECK constraint to the table currently under construction. 1367 */ 1368 void sqlite3AddCheckConstraint( 1369 Parse *pParse, /* Parsing context */ 1370 Expr *pCheckExpr /* The check expression */ 1371 ){ 1372 #ifndef SQLITE_OMIT_CHECK 1373 Table *pTab = pParse->pNewTable; 1374 sqlite3 *db = pParse->db; 1375 if( pTab && !IN_DECLARE_VTAB 1376 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1377 ){ 1378 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1379 if( pParse->constraintName.n ){ 1380 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1381 } 1382 }else 1383 #endif 1384 { 1385 sqlite3ExprDelete(pParse->db, pCheckExpr); 1386 } 1387 } 1388 1389 /* 1390 ** Set the collation function of the most recently parsed table column 1391 ** to the CollSeq given. 1392 */ 1393 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1394 Table *p; 1395 int i; 1396 char *zColl; /* Dequoted name of collation sequence */ 1397 sqlite3 *db; 1398 1399 if( (p = pParse->pNewTable)==0 ) return; 1400 i = p->nCol-1; 1401 db = pParse->db; 1402 zColl = sqlite3NameFromToken(db, pToken); 1403 if( !zColl ) return; 1404 1405 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1406 Index *pIdx; 1407 sqlite3DbFree(db, p->aCol[i].zColl); 1408 p->aCol[i].zColl = zColl; 1409 1410 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1411 ** then an index may have been created on this column before the 1412 ** collation type was added. Correct this if it is the case. 1413 */ 1414 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1415 assert( pIdx->nKeyCol==1 ); 1416 if( pIdx->aiColumn[0]==i ){ 1417 pIdx->azColl[0] = p->aCol[i].zColl; 1418 } 1419 } 1420 }else{ 1421 sqlite3DbFree(db, zColl); 1422 } 1423 } 1424 1425 /* 1426 ** This function returns the collation sequence for database native text 1427 ** encoding identified by the string zName, length nName. 1428 ** 1429 ** If the requested collation sequence is not available, or not available 1430 ** in the database native encoding, the collation factory is invoked to 1431 ** request it. If the collation factory does not supply such a sequence, 1432 ** and the sequence is available in another text encoding, then that is 1433 ** returned instead. 1434 ** 1435 ** If no versions of the requested collations sequence are available, or 1436 ** another error occurs, NULL is returned and an error message written into 1437 ** pParse. 1438 ** 1439 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1440 ** invokes the collation factory if the named collation cannot be found 1441 ** and generates an error message. 1442 ** 1443 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1444 */ 1445 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1446 sqlite3 *db = pParse->db; 1447 u8 enc = ENC(db); 1448 u8 initbusy = db->init.busy; 1449 CollSeq *pColl; 1450 1451 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1452 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1453 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1454 } 1455 1456 return pColl; 1457 } 1458 1459 1460 /* 1461 ** Generate code that will increment the schema cookie. 1462 ** 1463 ** The schema cookie is used to determine when the schema for the 1464 ** database changes. After each schema change, the cookie value 1465 ** changes. When a process first reads the schema it records the 1466 ** cookie. Thereafter, whenever it goes to access the database, 1467 ** it checks the cookie to make sure the schema has not changed 1468 ** since it was last read. 1469 ** 1470 ** This plan is not completely bullet-proof. It is possible for 1471 ** the schema to change multiple times and for the cookie to be 1472 ** set back to prior value. But schema changes are infrequent 1473 ** and the probability of hitting the same cookie value is only 1474 ** 1 chance in 2^32. So we're safe enough. 1475 ** 1476 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1477 ** the schema-version whenever the schema changes. 1478 */ 1479 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1480 sqlite3 *db = pParse->db; 1481 Vdbe *v = pParse->pVdbe; 1482 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1483 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1484 db->aDb[iDb].pSchema->schema_cookie+1); 1485 } 1486 1487 /* 1488 ** Measure the number of characters needed to output the given 1489 ** identifier. The number returned includes any quotes used 1490 ** but does not include the null terminator. 1491 ** 1492 ** The estimate is conservative. It might be larger that what is 1493 ** really needed. 1494 */ 1495 static int identLength(const char *z){ 1496 int n; 1497 for(n=0; *z; n++, z++){ 1498 if( *z=='"' ){ n++; } 1499 } 1500 return n + 2; 1501 } 1502 1503 /* 1504 ** The first parameter is a pointer to an output buffer. The second 1505 ** parameter is a pointer to an integer that contains the offset at 1506 ** which to write into the output buffer. This function copies the 1507 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1508 ** to the specified offset in the buffer and updates *pIdx to refer 1509 ** to the first byte after the last byte written before returning. 1510 ** 1511 ** If the string zSignedIdent consists entirely of alpha-numeric 1512 ** characters, does not begin with a digit and is not an SQL keyword, 1513 ** then it is copied to the output buffer exactly as it is. Otherwise, 1514 ** it is quoted using double-quotes. 1515 */ 1516 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1517 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1518 int i, j, needQuote; 1519 i = *pIdx; 1520 1521 for(j=0; zIdent[j]; j++){ 1522 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1523 } 1524 needQuote = sqlite3Isdigit(zIdent[0]) 1525 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1526 || zIdent[j]!=0 1527 || j==0; 1528 1529 if( needQuote ) z[i++] = '"'; 1530 for(j=0; zIdent[j]; j++){ 1531 z[i++] = zIdent[j]; 1532 if( zIdent[j]=='"' ) z[i++] = '"'; 1533 } 1534 if( needQuote ) z[i++] = '"'; 1535 z[i] = 0; 1536 *pIdx = i; 1537 } 1538 1539 /* 1540 ** Generate a CREATE TABLE statement appropriate for the given 1541 ** table. Memory to hold the text of the statement is obtained 1542 ** from sqliteMalloc() and must be freed by the calling function. 1543 */ 1544 static char *createTableStmt(sqlite3 *db, Table *p){ 1545 int i, k, n; 1546 char *zStmt; 1547 char *zSep, *zSep2, *zEnd; 1548 Column *pCol; 1549 n = 0; 1550 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1551 n += identLength(pCol->zName) + 5; 1552 } 1553 n += identLength(p->zName); 1554 if( n<50 ){ 1555 zSep = ""; 1556 zSep2 = ","; 1557 zEnd = ")"; 1558 }else{ 1559 zSep = "\n "; 1560 zSep2 = ",\n "; 1561 zEnd = "\n)"; 1562 } 1563 n += 35 + 6*p->nCol; 1564 zStmt = sqlite3DbMallocRaw(0, n); 1565 if( zStmt==0 ){ 1566 sqlite3OomFault(db); 1567 return 0; 1568 } 1569 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1570 k = sqlite3Strlen30(zStmt); 1571 identPut(zStmt, &k, p->zName); 1572 zStmt[k++] = '('; 1573 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1574 static const char * const azType[] = { 1575 /* SQLITE_AFF_BLOB */ "", 1576 /* SQLITE_AFF_TEXT */ " TEXT", 1577 /* SQLITE_AFF_NUMERIC */ " NUM", 1578 /* SQLITE_AFF_INTEGER */ " INT", 1579 /* SQLITE_AFF_REAL */ " REAL" 1580 }; 1581 int len; 1582 const char *zType; 1583 1584 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1585 k += sqlite3Strlen30(&zStmt[k]); 1586 zSep = zSep2; 1587 identPut(zStmt, &k, pCol->zName); 1588 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1589 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1590 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1591 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1592 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1593 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1594 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1595 1596 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1597 len = sqlite3Strlen30(zType); 1598 assert( pCol->affinity==SQLITE_AFF_BLOB 1599 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1600 memcpy(&zStmt[k], zType, len); 1601 k += len; 1602 assert( k<=n ); 1603 } 1604 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1605 return zStmt; 1606 } 1607 1608 /* 1609 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1610 ** on success and SQLITE_NOMEM on an OOM error. 1611 */ 1612 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1613 char *zExtra; 1614 int nByte; 1615 if( pIdx->nColumn>=N ) return SQLITE_OK; 1616 assert( pIdx->isResized==0 ); 1617 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1618 zExtra = sqlite3DbMallocZero(db, nByte); 1619 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1620 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1621 pIdx->azColl = (const char**)zExtra; 1622 zExtra += sizeof(char*)*N; 1623 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1624 pIdx->aiColumn = (i16*)zExtra; 1625 zExtra += sizeof(i16)*N; 1626 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1627 pIdx->aSortOrder = (u8*)zExtra; 1628 pIdx->nColumn = N; 1629 pIdx->isResized = 1; 1630 return SQLITE_OK; 1631 } 1632 1633 /* 1634 ** Estimate the total row width for a table. 1635 */ 1636 static void estimateTableWidth(Table *pTab){ 1637 unsigned wTable = 0; 1638 const Column *pTabCol; 1639 int i; 1640 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1641 wTable += pTabCol->szEst; 1642 } 1643 if( pTab->iPKey<0 ) wTable++; 1644 pTab->szTabRow = sqlite3LogEst(wTable*4); 1645 } 1646 1647 /* 1648 ** Estimate the average size of a row for an index. 1649 */ 1650 static void estimateIndexWidth(Index *pIdx){ 1651 unsigned wIndex = 0; 1652 int i; 1653 const Column *aCol = pIdx->pTable->aCol; 1654 for(i=0; i<pIdx->nColumn; i++){ 1655 i16 x = pIdx->aiColumn[i]; 1656 assert( x<pIdx->pTable->nCol ); 1657 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1658 } 1659 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1660 } 1661 1662 /* Return true if value x is found any of the first nCol entries of aiCol[] 1663 */ 1664 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1665 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1666 return 0; 1667 } 1668 1669 /* 1670 ** This routine runs at the end of parsing a CREATE TABLE statement that 1671 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1672 ** internal schema data structures and the generated VDBE code so that they 1673 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1674 ** Changes include: 1675 ** 1676 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1677 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1678 ** into BTREE_BLOBKEY. 1679 ** (3) Bypass the creation of the sqlite_master table entry 1680 ** for the PRIMARY KEY as the primary key index is now 1681 ** identified by the sqlite_master table entry of the table itself. 1682 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1683 ** schema to the rootpage from the main table. 1684 ** (5) Add all table columns to the PRIMARY KEY Index object 1685 ** so that the PRIMARY KEY is a covering index. The surplus 1686 ** columns are part of KeyInfo.nAllField and are not used for 1687 ** sorting or lookup or uniqueness checks. 1688 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1689 ** indices with the PRIMARY KEY columns. 1690 ** 1691 ** For virtual tables, only (1) is performed. 1692 */ 1693 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1694 Index *pIdx; 1695 Index *pPk; 1696 int nPk; 1697 int i, j; 1698 sqlite3 *db = pParse->db; 1699 Vdbe *v = pParse->pVdbe; 1700 1701 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1702 */ 1703 if( !db->init.imposterTable ){ 1704 for(i=0; i<pTab->nCol; i++){ 1705 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1706 pTab->aCol[i].notNull = OE_Abort; 1707 } 1708 } 1709 } 1710 1711 /* The remaining transformations only apply to b-tree tables, not to 1712 ** virtual tables */ 1713 if( IN_DECLARE_VTAB ) return; 1714 1715 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1716 ** into BTREE_BLOBKEY. 1717 */ 1718 if( pParse->addrCrTab ){ 1719 assert( v ); 1720 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1721 } 1722 1723 /* Locate the PRIMARY KEY index. Or, if this table was originally 1724 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1725 */ 1726 if( pTab->iPKey>=0 ){ 1727 ExprList *pList; 1728 Token ipkToken; 1729 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1730 pList = sqlite3ExprListAppend(pParse, 0, 1731 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1732 if( pList==0 ) return; 1733 pList->a[0].sortOrder = pParse->iPkSortOrder; 1734 assert( pParse->pNewTable==pTab ); 1735 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1736 SQLITE_IDXTYPE_PRIMARYKEY); 1737 if( db->mallocFailed ) return; 1738 pPk = sqlite3PrimaryKeyIndex(pTab); 1739 pTab->iPKey = -1; 1740 }else{ 1741 pPk = sqlite3PrimaryKeyIndex(pTab); 1742 1743 /* 1744 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1745 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1746 ** code assumes the PRIMARY KEY contains no repeated columns. 1747 */ 1748 for(i=j=1; i<pPk->nKeyCol; i++){ 1749 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1750 pPk->nColumn--; 1751 }else{ 1752 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1753 } 1754 } 1755 pPk->nKeyCol = j; 1756 } 1757 assert( pPk!=0 ); 1758 pPk->isCovering = 1; 1759 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1760 nPk = pPk->nKeyCol; 1761 1762 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1763 ** table entry. This is only required if currently generating VDBE 1764 ** code for a CREATE TABLE (not when parsing one as part of reading 1765 ** a database schema). */ 1766 if( v && pPk->tnum>0 ){ 1767 assert( db->init.busy==0 ); 1768 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1769 } 1770 1771 /* The root page of the PRIMARY KEY is the table root page */ 1772 pPk->tnum = pTab->tnum; 1773 1774 /* Update the in-memory representation of all UNIQUE indices by converting 1775 ** the final rowid column into one or more columns of the PRIMARY KEY. 1776 */ 1777 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1778 int n; 1779 if( IsPrimaryKeyIndex(pIdx) ) continue; 1780 for(i=n=0; i<nPk; i++){ 1781 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1782 } 1783 if( n==0 ){ 1784 /* This index is a superset of the primary key */ 1785 pIdx->nColumn = pIdx->nKeyCol; 1786 continue; 1787 } 1788 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1789 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1790 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1791 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1792 pIdx->azColl[j] = pPk->azColl[i]; 1793 j++; 1794 } 1795 } 1796 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1797 assert( pIdx->nColumn>=j ); 1798 } 1799 1800 /* Add all table columns to the PRIMARY KEY index 1801 */ 1802 if( nPk<pTab->nCol ){ 1803 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1804 for(i=0, j=nPk; i<pTab->nCol; i++){ 1805 if( !hasColumn(pPk->aiColumn, j, i) ){ 1806 assert( j<pPk->nColumn ); 1807 pPk->aiColumn[j] = i; 1808 pPk->azColl[j] = sqlite3StrBINARY; 1809 j++; 1810 } 1811 } 1812 assert( pPk->nColumn==j ); 1813 assert( pTab->nCol==j ); 1814 }else{ 1815 pPk->nColumn = pTab->nCol; 1816 } 1817 } 1818 1819 /* 1820 ** This routine is called to report the final ")" that terminates 1821 ** a CREATE TABLE statement. 1822 ** 1823 ** The table structure that other action routines have been building 1824 ** is added to the internal hash tables, assuming no errors have 1825 ** occurred. 1826 ** 1827 ** An entry for the table is made in the master table on disk, unless 1828 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1829 ** it means we are reading the sqlite_master table because we just 1830 ** connected to the database or because the sqlite_master table has 1831 ** recently changed, so the entry for this table already exists in 1832 ** the sqlite_master table. We do not want to create it again. 1833 ** 1834 ** If the pSelect argument is not NULL, it means that this routine 1835 ** was called to create a table generated from a 1836 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1837 ** the new table will match the result set of the SELECT. 1838 */ 1839 void sqlite3EndTable( 1840 Parse *pParse, /* Parse context */ 1841 Token *pCons, /* The ',' token after the last column defn. */ 1842 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1843 u8 tabOpts, /* Extra table options. Usually 0. */ 1844 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1845 ){ 1846 Table *p; /* The new table */ 1847 sqlite3 *db = pParse->db; /* The database connection */ 1848 int iDb; /* Database in which the table lives */ 1849 Index *pIdx; /* An implied index of the table */ 1850 1851 if( pEnd==0 && pSelect==0 ){ 1852 return; 1853 } 1854 assert( !db->mallocFailed ); 1855 p = pParse->pNewTable; 1856 if( p==0 ) return; 1857 1858 assert( !db->init.busy || !pSelect ); 1859 1860 /* If the db->init.busy is 1 it means we are reading the SQL off the 1861 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1862 ** So do not write to the disk again. Extract the root page number 1863 ** for the table from the db->init.newTnum field. (The page number 1864 ** should have been put there by the sqliteOpenCb routine.) 1865 ** 1866 ** If the root page number is 1, that means this is the sqlite_master 1867 ** table itself. So mark it read-only. 1868 */ 1869 if( db->init.busy ){ 1870 p->tnum = db->init.newTnum; 1871 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1872 } 1873 1874 /* Special processing for WITHOUT ROWID Tables */ 1875 if( tabOpts & TF_WithoutRowid ){ 1876 if( (p->tabFlags & TF_Autoincrement) ){ 1877 sqlite3ErrorMsg(pParse, 1878 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1879 return; 1880 } 1881 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1882 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1883 }else{ 1884 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1885 convertToWithoutRowidTable(pParse, p); 1886 } 1887 } 1888 1889 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1890 1891 #ifndef SQLITE_OMIT_CHECK 1892 /* Resolve names in all CHECK constraint expressions. 1893 */ 1894 if( p->pCheck ){ 1895 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1896 } 1897 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1898 1899 /* Estimate the average row size for the table and for all implied indices */ 1900 estimateTableWidth(p); 1901 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1902 estimateIndexWidth(pIdx); 1903 } 1904 1905 /* If not initializing, then create a record for the new table 1906 ** in the SQLITE_MASTER table of the database. 1907 ** 1908 ** If this is a TEMPORARY table, write the entry into the auxiliary 1909 ** file instead of into the main database file. 1910 */ 1911 if( !db->init.busy ){ 1912 int n; 1913 Vdbe *v; 1914 char *zType; /* "view" or "table" */ 1915 char *zType2; /* "VIEW" or "TABLE" */ 1916 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1917 1918 v = sqlite3GetVdbe(pParse); 1919 if( NEVER(v==0) ) return; 1920 1921 sqlite3VdbeAddOp1(v, OP_Close, 0); 1922 1923 /* 1924 ** Initialize zType for the new view or table. 1925 */ 1926 if( p->pSelect==0 ){ 1927 /* A regular table */ 1928 zType = "table"; 1929 zType2 = "TABLE"; 1930 #ifndef SQLITE_OMIT_VIEW 1931 }else{ 1932 /* A view */ 1933 zType = "view"; 1934 zType2 = "VIEW"; 1935 #endif 1936 } 1937 1938 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1939 ** statement to populate the new table. The root-page number for the 1940 ** new table is in register pParse->regRoot. 1941 ** 1942 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1943 ** suitable state to query for the column names and types to be used 1944 ** by the new table. 1945 ** 1946 ** A shared-cache write-lock is not required to write to the new table, 1947 ** as a schema-lock must have already been obtained to create it. Since 1948 ** a schema-lock excludes all other database users, the write-lock would 1949 ** be redundant. 1950 */ 1951 if( pSelect ){ 1952 SelectDest dest; /* Where the SELECT should store results */ 1953 int regYield; /* Register holding co-routine entry-point */ 1954 int addrTop; /* Top of the co-routine */ 1955 int regRec; /* A record to be insert into the new table */ 1956 int regRowid; /* Rowid of the next row to insert */ 1957 int addrInsLoop; /* Top of the loop for inserting rows */ 1958 Table *pSelTab; /* A table that describes the SELECT results */ 1959 1960 regYield = ++pParse->nMem; 1961 regRec = ++pParse->nMem; 1962 regRowid = ++pParse->nMem; 1963 assert(pParse->nTab==1); 1964 sqlite3MayAbort(pParse); 1965 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1966 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1967 pParse->nTab = 2; 1968 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1969 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1970 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1971 sqlite3Select(pParse, pSelect, &dest); 1972 sqlite3VdbeEndCoroutine(v, regYield); 1973 sqlite3VdbeJumpHere(v, addrTop - 1); 1974 if( pParse->nErr ) return; 1975 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1976 if( pSelTab==0 ) return; 1977 assert( p->aCol==0 ); 1978 p->nCol = pSelTab->nCol; 1979 p->aCol = pSelTab->aCol; 1980 pSelTab->nCol = 0; 1981 pSelTab->aCol = 0; 1982 sqlite3DeleteTable(db, pSelTab); 1983 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1984 VdbeCoverage(v); 1985 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1986 sqlite3TableAffinity(v, p, 0); 1987 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1988 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1989 sqlite3VdbeGoto(v, addrInsLoop); 1990 sqlite3VdbeJumpHere(v, addrInsLoop); 1991 sqlite3VdbeAddOp1(v, OP_Close, 1); 1992 } 1993 1994 /* Compute the complete text of the CREATE statement */ 1995 if( pSelect ){ 1996 zStmt = createTableStmt(db, p); 1997 }else{ 1998 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1999 n = (int)(pEnd2->z - pParse->sNameToken.z); 2000 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2001 zStmt = sqlite3MPrintf(db, 2002 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2003 ); 2004 } 2005 2006 /* A slot for the record has already been allocated in the 2007 ** SQLITE_MASTER table. We just need to update that slot with all 2008 ** the information we've collected. 2009 */ 2010 sqlite3NestedParse(pParse, 2011 "UPDATE %Q.%s " 2012 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2013 "WHERE rowid=#%d", 2014 db->aDb[iDb].zDbSName, MASTER_NAME, 2015 zType, 2016 p->zName, 2017 p->zName, 2018 pParse->regRoot, 2019 zStmt, 2020 pParse->regRowid 2021 ); 2022 sqlite3DbFree(db, zStmt); 2023 sqlite3ChangeCookie(pParse, iDb); 2024 2025 #ifndef SQLITE_OMIT_AUTOINCREMENT 2026 /* Check to see if we need to create an sqlite_sequence table for 2027 ** keeping track of autoincrement keys. 2028 */ 2029 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2030 Db *pDb = &db->aDb[iDb]; 2031 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2032 if( pDb->pSchema->pSeqTab==0 ){ 2033 sqlite3NestedParse(pParse, 2034 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2035 pDb->zDbSName 2036 ); 2037 } 2038 } 2039 #endif 2040 2041 /* Reparse everything to update our internal data structures */ 2042 sqlite3VdbeAddParseSchemaOp(v, iDb, 2043 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2044 } 2045 2046 2047 /* Add the table to the in-memory representation of the database. 2048 */ 2049 if( db->init.busy ){ 2050 Table *pOld; 2051 Schema *pSchema = p->pSchema; 2052 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2053 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2054 if( pOld ){ 2055 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2056 sqlite3OomFault(db); 2057 return; 2058 } 2059 pParse->pNewTable = 0; 2060 db->mDbFlags |= DBFLAG_SchemaChange; 2061 2062 #ifndef SQLITE_OMIT_ALTERTABLE 2063 if( !p->pSelect ){ 2064 const char *zName = (const char *)pParse->sNameToken.z; 2065 int nName; 2066 assert( !pSelect && pCons && pEnd ); 2067 if( pCons->z==0 ){ 2068 pCons = pEnd; 2069 } 2070 nName = (int)((const char *)pCons->z - zName); 2071 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2072 } 2073 #endif 2074 } 2075 } 2076 2077 #ifndef SQLITE_OMIT_VIEW 2078 /* 2079 ** The parser calls this routine in order to create a new VIEW 2080 */ 2081 void sqlite3CreateView( 2082 Parse *pParse, /* The parsing context */ 2083 Token *pBegin, /* The CREATE token that begins the statement */ 2084 Token *pName1, /* The token that holds the name of the view */ 2085 Token *pName2, /* The token that holds the name of the view */ 2086 ExprList *pCNames, /* Optional list of view column names */ 2087 Select *pSelect, /* A SELECT statement that will become the new view */ 2088 int isTemp, /* TRUE for a TEMPORARY view */ 2089 int noErr /* Suppress error messages if VIEW already exists */ 2090 ){ 2091 Table *p; 2092 int n; 2093 const char *z; 2094 Token sEnd; 2095 DbFixer sFix; 2096 Token *pName = 0; 2097 int iDb; 2098 sqlite3 *db = pParse->db; 2099 2100 if( pParse->nVar>0 ){ 2101 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2102 goto create_view_fail; 2103 } 2104 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2105 p = pParse->pNewTable; 2106 if( p==0 || pParse->nErr ) goto create_view_fail; 2107 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2108 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2109 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2110 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2111 2112 /* Make a copy of the entire SELECT statement that defines the view. 2113 ** This will force all the Expr.token.z values to be dynamically 2114 ** allocated rather than point to the input string - which means that 2115 ** they will persist after the current sqlite3_exec() call returns. 2116 */ 2117 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2118 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2119 if( db->mallocFailed ) goto create_view_fail; 2120 2121 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2122 ** the end. 2123 */ 2124 sEnd = pParse->sLastToken; 2125 assert( sEnd.z[0]!=0 ); 2126 if( sEnd.z[0]!=';' ){ 2127 sEnd.z += sEnd.n; 2128 } 2129 sEnd.n = 0; 2130 n = (int)(sEnd.z - pBegin->z); 2131 assert( n>0 ); 2132 z = pBegin->z; 2133 while( sqlite3Isspace(z[n-1]) ){ n--; } 2134 sEnd.z = &z[n-1]; 2135 sEnd.n = 1; 2136 2137 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2138 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2139 2140 create_view_fail: 2141 sqlite3SelectDelete(db, pSelect); 2142 sqlite3ExprListDelete(db, pCNames); 2143 return; 2144 } 2145 #endif /* SQLITE_OMIT_VIEW */ 2146 2147 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2148 /* 2149 ** The Table structure pTable is really a VIEW. Fill in the names of 2150 ** the columns of the view in the pTable structure. Return the number 2151 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2152 */ 2153 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2154 Table *pSelTab; /* A fake table from which we get the result set */ 2155 Select *pSel; /* Copy of the SELECT that implements the view */ 2156 int nErr = 0; /* Number of errors encountered */ 2157 int n; /* Temporarily holds the number of cursors assigned */ 2158 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2159 #ifndef SQLITE_OMIT_VIRTUALTABLE 2160 int rc; 2161 #endif 2162 #ifndef SQLITE_OMIT_AUTHORIZATION 2163 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2164 #endif 2165 2166 assert( pTable ); 2167 2168 #ifndef SQLITE_OMIT_VIRTUALTABLE 2169 db->nSchemaLock++; 2170 rc = sqlite3VtabCallConnect(pParse, pTable); 2171 db->nSchemaLock--; 2172 if( rc ){ 2173 return 1; 2174 } 2175 if( IsVirtual(pTable) ) return 0; 2176 #endif 2177 2178 #ifndef SQLITE_OMIT_VIEW 2179 /* A positive nCol means the columns names for this view are 2180 ** already known. 2181 */ 2182 if( pTable->nCol>0 ) return 0; 2183 2184 /* A negative nCol is a special marker meaning that we are currently 2185 ** trying to compute the column names. If we enter this routine with 2186 ** a negative nCol, it means two or more views form a loop, like this: 2187 ** 2188 ** CREATE VIEW one AS SELECT * FROM two; 2189 ** CREATE VIEW two AS SELECT * FROM one; 2190 ** 2191 ** Actually, the error above is now caught prior to reaching this point. 2192 ** But the following test is still important as it does come up 2193 ** in the following: 2194 ** 2195 ** CREATE TABLE main.ex1(a); 2196 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2197 ** SELECT * FROM temp.ex1; 2198 */ 2199 if( pTable->nCol<0 ){ 2200 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2201 return 1; 2202 } 2203 assert( pTable->nCol>=0 ); 2204 2205 /* If we get this far, it means we need to compute the table names. 2206 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2207 ** "*" elements in the results set of the view and will assign cursors 2208 ** to the elements of the FROM clause. But we do not want these changes 2209 ** to be permanent. So the computation is done on a copy of the SELECT 2210 ** statement that defines the view. 2211 */ 2212 assert( pTable->pSelect ); 2213 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2214 if( pSel ){ 2215 n = pParse->nTab; 2216 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2217 pTable->nCol = -1; 2218 db->lookaside.bDisable++; 2219 #ifndef SQLITE_OMIT_AUTHORIZATION 2220 xAuth = db->xAuth; 2221 db->xAuth = 0; 2222 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2223 db->xAuth = xAuth; 2224 #else 2225 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2226 #endif 2227 pParse->nTab = n; 2228 if( pTable->pCheck ){ 2229 /* CREATE VIEW name(arglist) AS ... 2230 ** The names of the columns in the table are taken from 2231 ** arglist which is stored in pTable->pCheck. The pCheck field 2232 ** normally holds CHECK constraints on an ordinary table, but for 2233 ** a VIEW it holds the list of column names. 2234 */ 2235 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2236 &pTable->nCol, &pTable->aCol); 2237 if( db->mallocFailed==0 2238 && pParse->nErr==0 2239 && pTable->nCol==pSel->pEList->nExpr 2240 ){ 2241 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2242 } 2243 }else if( pSelTab ){ 2244 /* CREATE VIEW name AS... without an argument list. Construct 2245 ** the column names from the SELECT statement that defines the view. 2246 */ 2247 assert( pTable->aCol==0 ); 2248 pTable->nCol = pSelTab->nCol; 2249 pTable->aCol = pSelTab->aCol; 2250 pSelTab->nCol = 0; 2251 pSelTab->aCol = 0; 2252 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2253 }else{ 2254 pTable->nCol = 0; 2255 nErr++; 2256 } 2257 sqlite3DeleteTable(db, pSelTab); 2258 sqlite3SelectDelete(db, pSel); 2259 db->lookaside.bDisable--; 2260 } else { 2261 nErr++; 2262 } 2263 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2264 #endif /* SQLITE_OMIT_VIEW */ 2265 return nErr; 2266 } 2267 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2268 2269 #ifndef SQLITE_OMIT_VIEW 2270 /* 2271 ** Clear the column names from every VIEW in database idx. 2272 */ 2273 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2274 HashElem *i; 2275 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2276 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2277 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2278 Table *pTab = sqliteHashData(i); 2279 if( pTab->pSelect ){ 2280 sqlite3DeleteColumnNames(db, pTab); 2281 pTab->aCol = 0; 2282 pTab->nCol = 0; 2283 } 2284 } 2285 DbClearProperty(db, idx, DB_UnresetViews); 2286 } 2287 #else 2288 # define sqliteViewResetAll(A,B) 2289 #endif /* SQLITE_OMIT_VIEW */ 2290 2291 /* 2292 ** This function is called by the VDBE to adjust the internal schema 2293 ** used by SQLite when the btree layer moves a table root page. The 2294 ** root-page of a table or index in database iDb has changed from iFrom 2295 ** to iTo. 2296 ** 2297 ** Ticket #1728: The symbol table might still contain information 2298 ** on tables and/or indices that are the process of being deleted. 2299 ** If you are unlucky, one of those deleted indices or tables might 2300 ** have the same rootpage number as the real table or index that is 2301 ** being moved. So we cannot stop searching after the first match 2302 ** because the first match might be for one of the deleted indices 2303 ** or tables and not the table/index that is actually being moved. 2304 ** We must continue looping until all tables and indices with 2305 ** rootpage==iFrom have been converted to have a rootpage of iTo 2306 ** in order to be certain that we got the right one. 2307 */ 2308 #ifndef SQLITE_OMIT_AUTOVACUUM 2309 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2310 HashElem *pElem; 2311 Hash *pHash; 2312 Db *pDb; 2313 2314 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2315 pDb = &db->aDb[iDb]; 2316 pHash = &pDb->pSchema->tblHash; 2317 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2318 Table *pTab = sqliteHashData(pElem); 2319 if( pTab->tnum==iFrom ){ 2320 pTab->tnum = iTo; 2321 } 2322 } 2323 pHash = &pDb->pSchema->idxHash; 2324 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2325 Index *pIdx = sqliteHashData(pElem); 2326 if( pIdx->tnum==iFrom ){ 2327 pIdx->tnum = iTo; 2328 } 2329 } 2330 } 2331 #endif 2332 2333 /* 2334 ** Write code to erase the table with root-page iTable from database iDb. 2335 ** Also write code to modify the sqlite_master table and internal schema 2336 ** if a root-page of another table is moved by the btree-layer whilst 2337 ** erasing iTable (this can happen with an auto-vacuum database). 2338 */ 2339 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2340 Vdbe *v = sqlite3GetVdbe(pParse); 2341 int r1 = sqlite3GetTempReg(pParse); 2342 assert( iTable>1 ); 2343 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2344 sqlite3MayAbort(pParse); 2345 #ifndef SQLITE_OMIT_AUTOVACUUM 2346 /* OP_Destroy stores an in integer r1. If this integer 2347 ** is non-zero, then it is the root page number of a table moved to 2348 ** location iTable. The following code modifies the sqlite_master table to 2349 ** reflect this. 2350 ** 2351 ** The "#NNN" in the SQL is a special constant that means whatever value 2352 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2353 ** token for additional information. 2354 */ 2355 sqlite3NestedParse(pParse, 2356 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2357 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2358 #endif 2359 sqlite3ReleaseTempReg(pParse, r1); 2360 } 2361 2362 /* 2363 ** Write VDBE code to erase table pTab and all associated indices on disk. 2364 ** Code to update the sqlite_master tables and internal schema definitions 2365 ** in case a root-page belonging to another table is moved by the btree layer 2366 ** is also added (this can happen with an auto-vacuum database). 2367 */ 2368 static void destroyTable(Parse *pParse, Table *pTab){ 2369 #ifdef SQLITE_OMIT_AUTOVACUUM 2370 Index *pIdx; 2371 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2372 destroyRootPage(pParse, pTab->tnum, iDb); 2373 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2374 destroyRootPage(pParse, pIdx->tnum, iDb); 2375 } 2376 #else 2377 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2378 ** is not defined), then it is important to call OP_Destroy on the 2379 ** table and index root-pages in order, starting with the numerically 2380 ** largest root-page number. This guarantees that none of the root-pages 2381 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2382 ** following were coded: 2383 ** 2384 ** OP_Destroy 4 0 2385 ** ... 2386 ** OP_Destroy 5 0 2387 ** 2388 ** and root page 5 happened to be the largest root-page number in the 2389 ** database, then root page 5 would be moved to page 4 by the 2390 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2391 ** a free-list page. 2392 */ 2393 int iTab = pTab->tnum; 2394 int iDestroyed = 0; 2395 2396 while( 1 ){ 2397 Index *pIdx; 2398 int iLargest = 0; 2399 2400 if( iDestroyed==0 || iTab<iDestroyed ){ 2401 iLargest = iTab; 2402 } 2403 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2404 int iIdx = pIdx->tnum; 2405 assert( pIdx->pSchema==pTab->pSchema ); 2406 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2407 iLargest = iIdx; 2408 } 2409 } 2410 if( iLargest==0 ){ 2411 return; 2412 }else{ 2413 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2414 assert( iDb>=0 && iDb<pParse->db->nDb ); 2415 destroyRootPage(pParse, iLargest, iDb); 2416 iDestroyed = iLargest; 2417 } 2418 } 2419 #endif 2420 } 2421 2422 /* 2423 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2424 ** after a DROP INDEX or DROP TABLE command. 2425 */ 2426 static void sqlite3ClearStatTables( 2427 Parse *pParse, /* The parsing context */ 2428 int iDb, /* The database number */ 2429 const char *zType, /* "idx" or "tbl" */ 2430 const char *zName /* Name of index or table */ 2431 ){ 2432 int i; 2433 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2434 for(i=1; i<=4; i++){ 2435 char zTab[24]; 2436 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2437 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2438 sqlite3NestedParse(pParse, 2439 "DELETE FROM %Q.%s WHERE %s=%Q", 2440 zDbName, zTab, zType, zName 2441 ); 2442 } 2443 } 2444 } 2445 2446 /* 2447 ** Generate code to drop a table. 2448 */ 2449 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2450 Vdbe *v; 2451 sqlite3 *db = pParse->db; 2452 Trigger *pTrigger; 2453 Db *pDb = &db->aDb[iDb]; 2454 2455 v = sqlite3GetVdbe(pParse); 2456 assert( v!=0 ); 2457 sqlite3BeginWriteOperation(pParse, 1, iDb); 2458 2459 #ifndef SQLITE_OMIT_VIRTUALTABLE 2460 if( IsVirtual(pTab) ){ 2461 sqlite3VdbeAddOp0(v, OP_VBegin); 2462 } 2463 #endif 2464 2465 /* Drop all triggers associated with the table being dropped. Code 2466 ** is generated to remove entries from sqlite_master and/or 2467 ** sqlite_temp_master if required. 2468 */ 2469 pTrigger = sqlite3TriggerList(pParse, pTab); 2470 while( pTrigger ){ 2471 assert( pTrigger->pSchema==pTab->pSchema || 2472 pTrigger->pSchema==db->aDb[1].pSchema ); 2473 sqlite3DropTriggerPtr(pParse, pTrigger); 2474 pTrigger = pTrigger->pNext; 2475 } 2476 2477 #ifndef SQLITE_OMIT_AUTOINCREMENT 2478 /* Remove any entries of the sqlite_sequence table associated with 2479 ** the table being dropped. This is done before the table is dropped 2480 ** at the btree level, in case the sqlite_sequence table needs to 2481 ** move as a result of the drop (can happen in auto-vacuum mode). 2482 */ 2483 if( pTab->tabFlags & TF_Autoincrement ){ 2484 sqlite3NestedParse(pParse, 2485 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2486 pDb->zDbSName, pTab->zName 2487 ); 2488 } 2489 #endif 2490 2491 /* Drop all SQLITE_MASTER table and index entries that refer to the 2492 ** table. The program name loops through the master table and deletes 2493 ** every row that refers to a table of the same name as the one being 2494 ** dropped. Triggers are handled separately because a trigger can be 2495 ** created in the temp database that refers to a table in another 2496 ** database. 2497 */ 2498 sqlite3NestedParse(pParse, 2499 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2500 pDb->zDbSName, MASTER_NAME, pTab->zName); 2501 if( !isView && !IsVirtual(pTab) ){ 2502 destroyTable(pParse, pTab); 2503 } 2504 2505 /* Remove the table entry from SQLite's internal schema and modify 2506 ** the schema cookie. 2507 */ 2508 if( IsVirtual(pTab) ){ 2509 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2510 } 2511 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2512 sqlite3ChangeCookie(pParse, iDb); 2513 sqliteViewResetAll(db, iDb); 2514 } 2515 2516 /* 2517 ** This routine is called to do the work of a DROP TABLE statement. 2518 ** pName is the name of the table to be dropped. 2519 */ 2520 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2521 Table *pTab; 2522 Vdbe *v; 2523 sqlite3 *db = pParse->db; 2524 int iDb; 2525 2526 if( db->mallocFailed ){ 2527 goto exit_drop_table; 2528 } 2529 assert( pParse->nErr==0 ); 2530 assert( pName->nSrc==1 ); 2531 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2532 if( noErr ) db->suppressErr++; 2533 assert( isView==0 || isView==LOCATE_VIEW ); 2534 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2535 if( noErr ) db->suppressErr--; 2536 2537 if( pTab==0 ){ 2538 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2539 goto exit_drop_table; 2540 } 2541 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2542 assert( iDb>=0 && iDb<db->nDb ); 2543 2544 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2545 ** it is initialized. 2546 */ 2547 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2548 goto exit_drop_table; 2549 } 2550 #ifndef SQLITE_OMIT_AUTHORIZATION 2551 { 2552 int code; 2553 const char *zTab = SCHEMA_TABLE(iDb); 2554 const char *zDb = db->aDb[iDb].zDbSName; 2555 const char *zArg2 = 0; 2556 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2557 goto exit_drop_table; 2558 } 2559 if( isView ){ 2560 if( !OMIT_TEMPDB && iDb==1 ){ 2561 code = SQLITE_DROP_TEMP_VIEW; 2562 }else{ 2563 code = SQLITE_DROP_VIEW; 2564 } 2565 #ifndef SQLITE_OMIT_VIRTUALTABLE 2566 }else if( IsVirtual(pTab) ){ 2567 code = SQLITE_DROP_VTABLE; 2568 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2569 #endif 2570 }else{ 2571 if( !OMIT_TEMPDB && iDb==1 ){ 2572 code = SQLITE_DROP_TEMP_TABLE; 2573 }else{ 2574 code = SQLITE_DROP_TABLE; 2575 } 2576 } 2577 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2578 goto exit_drop_table; 2579 } 2580 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2581 goto exit_drop_table; 2582 } 2583 } 2584 #endif 2585 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2586 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2587 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2588 goto exit_drop_table; 2589 } 2590 2591 #ifndef SQLITE_OMIT_VIEW 2592 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2593 ** on a table. 2594 */ 2595 if( isView && pTab->pSelect==0 ){ 2596 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2597 goto exit_drop_table; 2598 } 2599 if( !isView && pTab->pSelect ){ 2600 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2601 goto exit_drop_table; 2602 } 2603 #endif 2604 2605 /* Generate code to remove the table from the master table 2606 ** on disk. 2607 */ 2608 v = sqlite3GetVdbe(pParse); 2609 if( v ){ 2610 sqlite3BeginWriteOperation(pParse, 1, iDb); 2611 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2612 sqlite3FkDropTable(pParse, pName, pTab); 2613 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2614 } 2615 2616 exit_drop_table: 2617 sqlite3SrcListDelete(db, pName); 2618 } 2619 2620 /* 2621 ** This routine is called to create a new foreign key on the table 2622 ** currently under construction. pFromCol determines which columns 2623 ** in the current table point to the foreign key. If pFromCol==0 then 2624 ** connect the key to the last column inserted. pTo is the name of 2625 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2626 ** of tables in the parent pTo table. flags contains all 2627 ** information about the conflict resolution algorithms specified 2628 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2629 ** 2630 ** An FKey structure is created and added to the table currently 2631 ** under construction in the pParse->pNewTable field. 2632 ** 2633 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2634 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2635 */ 2636 void sqlite3CreateForeignKey( 2637 Parse *pParse, /* Parsing context */ 2638 ExprList *pFromCol, /* Columns in this table that point to other table */ 2639 Token *pTo, /* Name of the other table */ 2640 ExprList *pToCol, /* Columns in the other table */ 2641 int flags /* Conflict resolution algorithms. */ 2642 ){ 2643 sqlite3 *db = pParse->db; 2644 #ifndef SQLITE_OMIT_FOREIGN_KEY 2645 FKey *pFKey = 0; 2646 FKey *pNextTo; 2647 Table *p = pParse->pNewTable; 2648 int nByte; 2649 int i; 2650 int nCol; 2651 char *z; 2652 2653 assert( pTo!=0 ); 2654 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2655 if( pFromCol==0 ){ 2656 int iCol = p->nCol-1; 2657 if( NEVER(iCol<0) ) goto fk_end; 2658 if( pToCol && pToCol->nExpr!=1 ){ 2659 sqlite3ErrorMsg(pParse, "foreign key on %s" 2660 " should reference only one column of table %T", 2661 p->aCol[iCol].zName, pTo); 2662 goto fk_end; 2663 } 2664 nCol = 1; 2665 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2666 sqlite3ErrorMsg(pParse, 2667 "number of columns in foreign key does not match the number of " 2668 "columns in the referenced table"); 2669 goto fk_end; 2670 }else{ 2671 nCol = pFromCol->nExpr; 2672 } 2673 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2674 if( pToCol ){ 2675 for(i=0; i<pToCol->nExpr; i++){ 2676 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2677 } 2678 } 2679 pFKey = sqlite3DbMallocZero(db, nByte ); 2680 if( pFKey==0 ){ 2681 goto fk_end; 2682 } 2683 pFKey->pFrom = p; 2684 pFKey->pNextFrom = p->pFKey; 2685 z = (char*)&pFKey->aCol[nCol]; 2686 pFKey->zTo = z; 2687 memcpy(z, pTo->z, pTo->n); 2688 z[pTo->n] = 0; 2689 sqlite3Dequote(z); 2690 z += pTo->n+1; 2691 pFKey->nCol = nCol; 2692 if( pFromCol==0 ){ 2693 pFKey->aCol[0].iFrom = p->nCol-1; 2694 }else{ 2695 for(i=0; i<nCol; i++){ 2696 int j; 2697 for(j=0; j<p->nCol; j++){ 2698 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2699 pFKey->aCol[i].iFrom = j; 2700 break; 2701 } 2702 } 2703 if( j>=p->nCol ){ 2704 sqlite3ErrorMsg(pParse, 2705 "unknown column \"%s\" in foreign key definition", 2706 pFromCol->a[i].zName); 2707 goto fk_end; 2708 } 2709 } 2710 } 2711 if( pToCol ){ 2712 for(i=0; i<nCol; i++){ 2713 int n = sqlite3Strlen30(pToCol->a[i].zName); 2714 pFKey->aCol[i].zCol = z; 2715 memcpy(z, pToCol->a[i].zName, n); 2716 z[n] = 0; 2717 z += n+1; 2718 } 2719 } 2720 pFKey->isDeferred = 0; 2721 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2722 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2723 2724 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2725 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2726 pFKey->zTo, (void *)pFKey 2727 ); 2728 if( pNextTo==pFKey ){ 2729 sqlite3OomFault(db); 2730 goto fk_end; 2731 } 2732 if( pNextTo ){ 2733 assert( pNextTo->pPrevTo==0 ); 2734 pFKey->pNextTo = pNextTo; 2735 pNextTo->pPrevTo = pFKey; 2736 } 2737 2738 /* Link the foreign key to the table as the last step. 2739 */ 2740 p->pFKey = pFKey; 2741 pFKey = 0; 2742 2743 fk_end: 2744 sqlite3DbFree(db, pFKey); 2745 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2746 sqlite3ExprListDelete(db, pFromCol); 2747 sqlite3ExprListDelete(db, pToCol); 2748 } 2749 2750 /* 2751 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2752 ** clause is seen as part of a foreign key definition. The isDeferred 2753 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2754 ** The behavior of the most recently created foreign key is adjusted 2755 ** accordingly. 2756 */ 2757 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2758 #ifndef SQLITE_OMIT_FOREIGN_KEY 2759 Table *pTab; 2760 FKey *pFKey; 2761 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2762 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2763 pFKey->isDeferred = (u8)isDeferred; 2764 #endif 2765 } 2766 2767 /* 2768 ** Generate code that will erase and refill index *pIdx. This is 2769 ** used to initialize a newly created index or to recompute the 2770 ** content of an index in response to a REINDEX command. 2771 ** 2772 ** if memRootPage is not negative, it means that the index is newly 2773 ** created. The register specified by memRootPage contains the 2774 ** root page number of the index. If memRootPage is negative, then 2775 ** the index already exists and must be cleared before being refilled and 2776 ** the root page number of the index is taken from pIndex->tnum. 2777 */ 2778 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2779 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2780 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2781 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2782 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2783 int addr1; /* Address of top of loop */ 2784 int addr2; /* Address to jump to for next iteration */ 2785 int tnum; /* Root page of index */ 2786 int iPartIdxLabel; /* Jump to this label to skip a row */ 2787 Vdbe *v; /* Generate code into this virtual machine */ 2788 KeyInfo *pKey; /* KeyInfo for index */ 2789 int regRecord; /* Register holding assembled index record */ 2790 sqlite3 *db = pParse->db; /* The database connection */ 2791 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2792 2793 #ifndef SQLITE_OMIT_AUTHORIZATION 2794 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2795 db->aDb[iDb].zDbSName ) ){ 2796 return; 2797 } 2798 #endif 2799 2800 /* Require a write-lock on the table to perform this operation */ 2801 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2802 2803 v = sqlite3GetVdbe(pParse); 2804 if( v==0 ) return; 2805 if( memRootPage>=0 ){ 2806 tnum = memRootPage; 2807 }else{ 2808 tnum = pIndex->tnum; 2809 } 2810 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2811 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2812 2813 /* Open the sorter cursor if we are to use one. */ 2814 iSorter = pParse->nTab++; 2815 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2816 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2817 2818 /* Open the table. Loop through all rows of the table, inserting index 2819 ** records into the sorter. */ 2820 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2821 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2822 regRecord = sqlite3GetTempReg(pParse); 2823 2824 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2825 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2826 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2827 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2828 sqlite3VdbeJumpHere(v, addr1); 2829 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2830 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2831 (char *)pKey, P4_KEYINFO); 2832 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2833 2834 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2835 if( IsUniqueIndex(pIndex) ){ 2836 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2837 sqlite3VdbeGoto(v, j2); 2838 addr2 = sqlite3VdbeCurrentAddr(v); 2839 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2840 pIndex->nKeyCol); VdbeCoverage(v); 2841 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2842 }else{ 2843 addr2 = sqlite3VdbeCurrentAddr(v); 2844 } 2845 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2846 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 2847 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2848 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2849 sqlite3ReleaseTempReg(pParse, regRecord); 2850 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2851 sqlite3VdbeJumpHere(v, addr1); 2852 2853 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2854 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2855 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2856 } 2857 2858 /* 2859 ** Allocate heap space to hold an Index object with nCol columns. 2860 ** 2861 ** Increase the allocation size to provide an extra nExtra bytes 2862 ** of 8-byte aligned space after the Index object and return a 2863 ** pointer to this extra space in *ppExtra. 2864 */ 2865 Index *sqlite3AllocateIndexObject( 2866 sqlite3 *db, /* Database connection */ 2867 i16 nCol, /* Total number of columns in the index */ 2868 int nExtra, /* Number of bytes of extra space to alloc */ 2869 char **ppExtra /* Pointer to the "extra" space */ 2870 ){ 2871 Index *p; /* Allocated index object */ 2872 int nByte; /* Bytes of space for Index object + arrays */ 2873 2874 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2875 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2876 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2877 sizeof(i16)*nCol + /* Index.aiColumn */ 2878 sizeof(u8)*nCol); /* Index.aSortOrder */ 2879 p = sqlite3DbMallocZero(db, nByte + nExtra); 2880 if( p ){ 2881 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2882 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2883 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2884 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2885 p->aSortOrder = (u8*)pExtra; 2886 p->nColumn = nCol; 2887 p->nKeyCol = nCol - 1; 2888 *ppExtra = ((char*)p) + nByte; 2889 } 2890 return p; 2891 } 2892 2893 /* 2894 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2895 ** and pTblList is the name of the table that is to be indexed. Both will 2896 ** be NULL for a primary key or an index that is created to satisfy a 2897 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2898 ** as the table to be indexed. pParse->pNewTable is a table that is 2899 ** currently being constructed by a CREATE TABLE statement. 2900 ** 2901 ** pList is a list of columns to be indexed. pList will be NULL if this 2902 ** is a primary key or unique-constraint on the most recent column added 2903 ** to the table currently under construction. 2904 */ 2905 void sqlite3CreateIndex( 2906 Parse *pParse, /* All information about this parse */ 2907 Token *pName1, /* First part of index name. May be NULL */ 2908 Token *pName2, /* Second part of index name. May be NULL */ 2909 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2910 ExprList *pList, /* A list of columns to be indexed */ 2911 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2912 Token *pStart, /* The CREATE token that begins this statement */ 2913 Expr *pPIWhere, /* WHERE clause for partial indices */ 2914 int sortOrder, /* Sort order of primary key when pList==NULL */ 2915 int ifNotExist, /* Omit error if index already exists */ 2916 u8 idxType /* The index type */ 2917 ){ 2918 Table *pTab = 0; /* Table to be indexed */ 2919 Index *pIndex = 0; /* The index to be created */ 2920 char *zName = 0; /* Name of the index */ 2921 int nName; /* Number of characters in zName */ 2922 int i, j; 2923 DbFixer sFix; /* For assigning database names to pTable */ 2924 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2925 sqlite3 *db = pParse->db; 2926 Db *pDb; /* The specific table containing the indexed database */ 2927 int iDb; /* Index of the database that is being written */ 2928 Token *pName = 0; /* Unqualified name of the index to create */ 2929 struct ExprList_item *pListItem; /* For looping over pList */ 2930 int nExtra = 0; /* Space allocated for zExtra[] */ 2931 int nExtraCol; /* Number of extra columns needed */ 2932 char *zExtra = 0; /* Extra space after the Index object */ 2933 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2934 2935 if( db->mallocFailed || pParse->nErr>0 ){ 2936 goto exit_create_index; 2937 } 2938 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2939 goto exit_create_index; 2940 } 2941 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2942 goto exit_create_index; 2943 } 2944 2945 /* 2946 ** Find the table that is to be indexed. Return early if not found. 2947 */ 2948 if( pTblName!=0 ){ 2949 2950 /* Use the two-part index name to determine the database 2951 ** to search for the table. 'Fix' the table name to this db 2952 ** before looking up the table. 2953 */ 2954 assert( pName1 && pName2 ); 2955 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2956 if( iDb<0 ) goto exit_create_index; 2957 assert( pName && pName->z ); 2958 2959 #ifndef SQLITE_OMIT_TEMPDB 2960 /* If the index name was unqualified, check if the table 2961 ** is a temp table. If so, set the database to 1. Do not do this 2962 ** if initialising a database schema. 2963 */ 2964 if( !db->init.busy ){ 2965 pTab = sqlite3SrcListLookup(pParse, pTblName); 2966 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2967 iDb = 1; 2968 } 2969 } 2970 #endif 2971 2972 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2973 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2974 /* Because the parser constructs pTblName from a single identifier, 2975 ** sqlite3FixSrcList can never fail. */ 2976 assert(0); 2977 } 2978 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2979 assert( db->mallocFailed==0 || pTab==0 ); 2980 if( pTab==0 ) goto exit_create_index; 2981 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2982 sqlite3ErrorMsg(pParse, 2983 "cannot create a TEMP index on non-TEMP table \"%s\"", 2984 pTab->zName); 2985 goto exit_create_index; 2986 } 2987 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2988 }else{ 2989 assert( pName==0 ); 2990 assert( pStart==0 ); 2991 pTab = pParse->pNewTable; 2992 if( !pTab ) goto exit_create_index; 2993 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2994 } 2995 pDb = &db->aDb[iDb]; 2996 2997 assert( pTab!=0 ); 2998 assert( pParse->nErr==0 ); 2999 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3000 && db->init.busy==0 3001 #if SQLITE_USER_AUTHENTICATION 3002 && sqlite3UserAuthTable(pTab->zName)==0 3003 #endif 3004 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 3005 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3006 goto exit_create_index; 3007 } 3008 #ifndef SQLITE_OMIT_VIEW 3009 if( pTab->pSelect ){ 3010 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3011 goto exit_create_index; 3012 } 3013 #endif 3014 #ifndef SQLITE_OMIT_VIRTUALTABLE 3015 if( IsVirtual(pTab) ){ 3016 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3017 goto exit_create_index; 3018 } 3019 #endif 3020 3021 /* 3022 ** Find the name of the index. Make sure there is not already another 3023 ** index or table with the same name. 3024 ** 3025 ** Exception: If we are reading the names of permanent indices from the 3026 ** sqlite_master table (because some other process changed the schema) and 3027 ** one of the index names collides with the name of a temporary table or 3028 ** index, then we will continue to process this index. 3029 ** 3030 ** If pName==0 it means that we are 3031 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3032 ** own name. 3033 */ 3034 if( pName ){ 3035 zName = sqlite3NameFromToken(db, pName); 3036 if( zName==0 ) goto exit_create_index; 3037 assert( pName->z!=0 ); 3038 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3039 goto exit_create_index; 3040 } 3041 if( !db->init.busy ){ 3042 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3043 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3044 goto exit_create_index; 3045 } 3046 } 3047 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3048 if( !ifNotExist ){ 3049 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3050 }else{ 3051 assert( !db->init.busy ); 3052 sqlite3CodeVerifySchema(pParse, iDb); 3053 } 3054 goto exit_create_index; 3055 } 3056 }else{ 3057 int n; 3058 Index *pLoop; 3059 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3060 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3061 if( zName==0 ){ 3062 goto exit_create_index; 3063 } 3064 3065 /* Automatic index names generated from within sqlite3_declare_vtab() 3066 ** must have names that are distinct from normal automatic index names. 3067 ** The following statement converts "sqlite3_autoindex..." into 3068 ** "sqlite3_butoindex..." in order to make the names distinct. 3069 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3070 if( IN_DECLARE_VTAB ) zName[7]++; 3071 } 3072 3073 /* Check for authorization to create an index. 3074 */ 3075 #ifndef SQLITE_OMIT_AUTHORIZATION 3076 { 3077 const char *zDb = pDb->zDbSName; 3078 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3079 goto exit_create_index; 3080 } 3081 i = SQLITE_CREATE_INDEX; 3082 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3083 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3084 goto exit_create_index; 3085 } 3086 } 3087 #endif 3088 3089 /* If pList==0, it means this routine was called to make a primary 3090 ** key out of the last column added to the table under construction. 3091 ** So create a fake list to simulate this. 3092 */ 3093 if( pList==0 ){ 3094 Token prevCol; 3095 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3096 pList = sqlite3ExprListAppend(pParse, 0, 3097 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3098 if( pList==0 ) goto exit_create_index; 3099 assert( pList->nExpr==1 ); 3100 sqlite3ExprListSetSortOrder(pList, sortOrder); 3101 }else{ 3102 sqlite3ExprListCheckLength(pParse, pList, "index"); 3103 } 3104 3105 /* Figure out how many bytes of space are required to store explicitly 3106 ** specified collation sequence names. 3107 */ 3108 for(i=0; i<pList->nExpr; i++){ 3109 Expr *pExpr = pList->a[i].pExpr; 3110 assert( pExpr!=0 ); 3111 if( pExpr->op==TK_COLLATE ){ 3112 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3113 } 3114 } 3115 3116 /* 3117 ** Allocate the index structure. 3118 */ 3119 nName = sqlite3Strlen30(zName); 3120 nExtraCol = pPk ? pPk->nKeyCol : 1; 3121 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3122 nName + nExtra + 1, &zExtra); 3123 if( db->mallocFailed ){ 3124 goto exit_create_index; 3125 } 3126 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3127 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3128 pIndex->zName = zExtra; 3129 zExtra += nName + 1; 3130 memcpy(pIndex->zName, zName, nName+1); 3131 pIndex->pTable = pTab; 3132 pIndex->onError = (u8)onError; 3133 pIndex->uniqNotNull = onError!=OE_None; 3134 pIndex->idxType = idxType; 3135 pIndex->pSchema = db->aDb[iDb].pSchema; 3136 pIndex->nKeyCol = pList->nExpr; 3137 if( pPIWhere ){ 3138 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3139 pIndex->pPartIdxWhere = pPIWhere; 3140 pPIWhere = 0; 3141 } 3142 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3143 3144 /* Check to see if we should honor DESC requests on index columns 3145 */ 3146 if( pDb->pSchema->file_format>=4 ){ 3147 sortOrderMask = -1; /* Honor DESC */ 3148 }else{ 3149 sortOrderMask = 0; /* Ignore DESC */ 3150 } 3151 3152 /* Analyze the list of expressions that form the terms of the index and 3153 ** report any errors. In the common case where the expression is exactly 3154 ** a table column, store that column in aiColumn[]. For general expressions, 3155 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3156 ** 3157 ** TODO: Issue a warning if two or more columns of the index are identical. 3158 ** TODO: Issue a warning if the table primary key is used as part of the 3159 ** index key. 3160 */ 3161 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3162 Expr *pCExpr; /* The i-th index expression */ 3163 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3164 const char *zColl; /* Collation sequence name */ 3165 3166 sqlite3StringToId(pListItem->pExpr); 3167 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3168 if( pParse->nErr ) goto exit_create_index; 3169 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3170 if( pCExpr->op!=TK_COLUMN ){ 3171 if( pTab==pParse->pNewTable ){ 3172 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3173 "UNIQUE constraints"); 3174 goto exit_create_index; 3175 } 3176 if( pIndex->aColExpr==0 ){ 3177 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3178 pIndex->aColExpr = pCopy; 3179 if( !db->mallocFailed ){ 3180 assert( pCopy!=0 ); 3181 pListItem = &pCopy->a[i]; 3182 } 3183 } 3184 j = XN_EXPR; 3185 pIndex->aiColumn[i] = XN_EXPR; 3186 pIndex->uniqNotNull = 0; 3187 }else{ 3188 j = pCExpr->iColumn; 3189 assert( j<=0x7fff ); 3190 if( j<0 ){ 3191 j = pTab->iPKey; 3192 }else if( pTab->aCol[j].notNull==0 ){ 3193 pIndex->uniqNotNull = 0; 3194 } 3195 pIndex->aiColumn[i] = (i16)j; 3196 } 3197 zColl = 0; 3198 if( pListItem->pExpr->op==TK_COLLATE ){ 3199 int nColl; 3200 zColl = pListItem->pExpr->u.zToken; 3201 nColl = sqlite3Strlen30(zColl) + 1; 3202 assert( nExtra>=nColl ); 3203 memcpy(zExtra, zColl, nColl); 3204 zColl = zExtra; 3205 zExtra += nColl; 3206 nExtra -= nColl; 3207 }else if( j>=0 ){ 3208 zColl = pTab->aCol[j].zColl; 3209 } 3210 if( !zColl ) zColl = sqlite3StrBINARY; 3211 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3212 goto exit_create_index; 3213 } 3214 pIndex->azColl[i] = zColl; 3215 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3216 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3217 } 3218 3219 /* Append the table key to the end of the index. For WITHOUT ROWID 3220 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3221 ** normal tables (when pPk==0) this will be the rowid. 3222 */ 3223 if( pPk ){ 3224 for(j=0; j<pPk->nKeyCol; j++){ 3225 int x = pPk->aiColumn[j]; 3226 assert( x>=0 ); 3227 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3228 pIndex->nColumn--; 3229 }else{ 3230 pIndex->aiColumn[i] = x; 3231 pIndex->azColl[i] = pPk->azColl[j]; 3232 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3233 i++; 3234 } 3235 } 3236 assert( i==pIndex->nColumn ); 3237 }else{ 3238 pIndex->aiColumn[i] = XN_ROWID; 3239 pIndex->azColl[i] = sqlite3StrBINARY; 3240 } 3241 sqlite3DefaultRowEst(pIndex); 3242 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3243 3244 /* If this index contains every column of its table, then mark 3245 ** it as a covering index */ 3246 assert( HasRowid(pTab) 3247 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3248 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3249 pIndex->isCovering = 1; 3250 for(j=0; j<pTab->nCol; j++){ 3251 if( j==pTab->iPKey ) continue; 3252 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3253 pIndex->isCovering = 0; 3254 break; 3255 } 3256 } 3257 3258 if( pTab==pParse->pNewTable ){ 3259 /* This routine has been called to create an automatic index as a 3260 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3261 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3262 ** i.e. one of: 3263 ** 3264 ** CREATE TABLE t(x PRIMARY KEY, y); 3265 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3266 ** 3267 ** Either way, check to see if the table already has such an index. If 3268 ** so, don't bother creating this one. This only applies to 3269 ** automatically created indices. Users can do as they wish with 3270 ** explicit indices. 3271 ** 3272 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3273 ** (and thus suppressing the second one) even if they have different 3274 ** sort orders. 3275 ** 3276 ** If there are different collating sequences or if the columns of 3277 ** the constraint occur in different orders, then the constraints are 3278 ** considered distinct and both result in separate indices. 3279 */ 3280 Index *pIdx; 3281 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3282 int k; 3283 assert( IsUniqueIndex(pIdx) ); 3284 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3285 assert( IsUniqueIndex(pIndex) ); 3286 3287 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3288 for(k=0; k<pIdx->nKeyCol; k++){ 3289 const char *z1; 3290 const char *z2; 3291 assert( pIdx->aiColumn[k]>=0 ); 3292 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3293 z1 = pIdx->azColl[k]; 3294 z2 = pIndex->azColl[k]; 3295 if( sqlite3StrICmp(z1, z2) ) break; 3296 } 3297 if( k==pIdx->nKeyCol ){ 3298 if( pIdx->onError!=pIndex->onError ){ 3299 /* This constraint creates the same index as a previous 3300 ** constraint specified somewhere in the CREATE TABLE statement. 3301 ** However the ON CONFLICT clauses are different. If both this 3302 ** constraint and the previous equivalent constraint have explicit 3303 ** ON CONFLICT clauses this is an error. Otherwise, use the 3304 ** explicitly specified behavior for the index. 3305 */ 3306 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3307 sqlite3ErrorMsg(pParse, 3308 "conflicting ON CONFLICT clauses specified", 0); 3309 } 3310 if( pIdx->onError==OE_Default ){ 3311 pIdx->onError = pIndex->onError; 3312 } 3313 } 3314 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3315 goto exit_create_index; 3316 } 3317 } 3318 } 3319 3320 /* Link the new Index structure to its table and to the other 3321 ** in-memory database structures. 3322 */ 3323 assert( pParse->nErr==0 ); 3324 if( db->init.busy ){ 3325 Index *p; 3326 assert( !IN_DECLARE_VTAB ); 3327 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3328 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3329 pIndex->zName, pIndex); 3330 if( p ){ 3331 assert( p==pIndex ); /* Malloc must have failed */ 3332 sqlite3OomFault(db); 3333 goto exit_create_index; 3334 } 3335 db->mDbFlags |= DBFLAG_SchemaChange; 3336 if( pTblName!=0 ){ 3337 pIndex->tnum = db->init.newTnum; 3338 } 3339 } 3340 3341 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3342 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3343 ** emit code to allocate the index rootpage on disk and make an entry for 3344 ** the index in the sqlite_master table and populate the index with 3345 ** content. But, do not do this if we are simply reading the sqlite_master 3346 ** table to parse the schema, or if this index is the PRIMARY KEY index 3347 ** of a WITHOUT ROWID table. 3348 ** 3349 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3350 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3351 ** has just been created, it contains no data and the index initialization 3352 ** step can be skipped. 3353 */ 3354 else if( HasRowid(pTab) || pTblName!=0 ){ 3355 Vdbe *v; 3356 char *zStmt; 3357 int iMem = ++pParse->nMem; 3358 3359 v = sqlite3GetVdbe(pParse); 3360 if( v==0 ) goto exit_create_index; 3361 3362 sqlite3BeginWriteOperation(pParse, 1, iDb); 3363 3364 /* Create the rootpage for the index using CreateIndex. But before 3365 ** doing so, code a Noop instruction and store its address in 3366 ** Index.tnum. This is required in case this index is actually a 3367 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3368 ** that case the convertToWithoutRowidTable() routine will replace 3369 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3370 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3371 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3372 3373 /* Gather the complete text of the CREATE INDEX statement into 3374 ** the zStmt variable 3375 */ 3376 if( pStart ){ 3377 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3378 if( pName->z[n-1]==';' ) n--; 3379 /* A named index with an explicit CREATE INDEX statement */ 3380 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3381 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3382 }else{ 3383 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3384 /* zStmt = sqlite3MPrintf(""); */ 3385 zStmt = 0; 3386 } 3387 3388 /* Add an entry in sqlite_master for this index 3389 */ 3390 sqlite3NestedParse(pParse, 3391 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3392 db->aDb[iDb].zDbSName, MASTER_NAME, 3393 pIndex->zName, 3394 pTab->zName, 3395 iMem, 3396 zStmt 3397 ); 3398 sqlite3DbFree(db, zStmt); 3399 3400 /* Fill the index with data and reparse the schema. Code an OP_Expire 3401 ** to invalidate all pre-compiled statements. 3402 */ 3403 if( pTblName ){ 3404 sqlite3RefillIndex(pParse, pIndex, iMem); 3405 sqlite3ChangeCookie(pParse, iDb); 3406 sqlite3VdbeAddParseSchemaOp(v, iDb, 3407 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3408 sqlite3VdbeAddOp0(v, OP_Expire); 3409 } 3410 3411 sqlite3VdbeJumpHere(v, pIndex->tnum); 3412 } 3413 3414 /* When adding an index to the list of indices for a table, make 3415 ** sure all indices labeled OE_Replace come after all those labeled 3416 ** OE_Ignore. This is necessary for the correct constraint check 3417 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3418 ** UPDATE and INSERT statements. 3419 */ 3420 if( db->init.busy || pTblName==0 ){ 3421 if( onError!=OE_Replace || pTab->pIndex==0 3422 || pTab->pIndex->onError==OE_Replace){ 3423 pIndex->pNext = pTab->pIndex; 3424 pTab->pIndex = pIndex; 3425 }else{ 3426 Index *pOther = pTab->pIndex; 3427 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3428 pOther = pOther->pNext; 3429 } 3430 pIndex->pNext = pOther->pNext; 3431 pOther->pNext = pIndex; 3432 } 3433 pIndex = 0; 3434 } 3435 3436 /* Clean up before exiting */ 3437 exit_create_index: 3438 if( pIndex ) freeIndex(db, pIndex); 3439 sqlite3ExprDelete(db, pPIWhere); 3440 sqlite3ExprListDelete(db, pList); 3441 sqlite3SrcListDelete(db, pTblName); 3442 sqlite3DbFree(db, zName); 3443 } 3444 3445 /* 3446 ** Fill the Index.aiRowEst[] array with default information - information 3447 ** to be used when we have not run the ANALYZE command. 3448 ** 3449 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3450 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3451 ** number of rows in the table that match any particular value of the 3452 ** first column of the index. aiRowEst[2] is an estimate of the number 3453 ** of rows that match any particular combination of the first 2 columns 3454 ** of the index. And so forth. It must always be the case that 3455 * 3456 ** aiRowEst[N]<=aiRowEst[N-1] 3457 ** aiRowEst[N]>=1 3458 ** 3459 ** Apart from that, we have little to go on besides intuition as to 3460 ** how aiRowEst[] should be initialized. The numbers generated here 3461 ** are based on typical values found in actual indices. 3462 */ 3463 void sqlite3DefaultRowEst(Index *pIdx){ 3464 /* 10, 9, 8, 7, 6 */ 3465 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3466 LogEst *a = pIdx->aiRowLogEst; 3467 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3468 int i; 3469 3470 /* Indexes with default row estimates should not have stat1 data */ 3471 assert( !pIdx->hasStat1 ); 3472 3473 /* Set the first entry (number of rows in the index) to the estimated 3474 ** number of rows in the table, or half the number of rows in the table 3475 ** for a partial index. But do not let the estimate drop below 10. */ 3476 a[0] = pIdx->pTable->nRowLogEst; 3477 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3478 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3479 3480 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3481 ** 6 and each subsequent value (if any) is 5. */ 3482 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3483 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3484 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3485 } 3486 3487 assert( 0==sqlite3LogEst(1) ); 3488 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3489 } 3490 3491 /* 3492 ** This routine will drop an existing named index. This routine 3493 ** implements the DROP INDEX statement. 3494 */ 3495 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3496 Index *pIndex; 3497 Vdbe *v; 3498 sqlite3 *db = pParse->db; 3499 int iDb; 3500 3501 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3502 if( db->mallocFailed ){ 3503 goto exit_drop_index; 3504 } 3505 assert( pName->nSrc==1 ); 3506 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3507 goto exit_drop_index; 3508 } 3509 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3510 if( pIndex==0 ){ 3511 if( !ifExists ){ 3512 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3513 }else{ 3514 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3515 } 3516 pParse->checkSchema = 1; 3517 goto exit_drop_index; 3518 } 3519 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3520 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3521 "or PRIMARY KEY constraint cannot be dropped", 0); 3522 goto exit_drop_index; 3523 } 3524 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3525 #ifndef SQLITE_OMIT_AUTHORIZATION 3526 { 3527 int code = SQLITE_DROP_INDEX; 3528 Table *pTab = pIndex->pTable; 3529 const char *zDb = db->aDb[iDb].zDbSName; 3530 const char *zTab = SCHEMA_TABLE(iDb); 3531 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3532 goto exit_drop_index; 3533 } 3534 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3535 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3536 goto exit_drop_index; 3537 } 3538 } 3539 #endif 3540 3541 /* Generate code to remove the index and from the master table */ 3542 v = sqlite3GetVdbe(pParse); 3543 if( v ){ 3544 sqlite3BeginWriteOperation(pParse, 1, iDb); 3545 sqlite3NestedParse(pParse, 3546 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3547 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3548 ); 3549 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3550 sqlite3ChangeCookie(pParse, iDb); 3551 destroyRootPage(pParse, pIndex->tnum, iDb); 3552 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3553 } 3554 3555 exit_drop_index: 3556 sqlite3SrcListDelete(db, pName); 3557 } 3558 3559 /* 3560 ** pArray is a pointer to an array of objects. Each object in the 3561 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3562 ** to extend the array so that there is space for a new object at the end. 3563 ** 3564 ** When this function is called, *pnEntry contains the current size of 3565 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3566 ** in total). 3567 ** 3568 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3569 ** space allocated for the new object is zeroed, *pnEntry updated to 3570 ** reflect the new size of the array and a pointer to the new allocation 3571 ** returned. *pIdx is set to the index of the new array entry in this case. 3572 ** 3573 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3574 ** unchanged and a copy of pArray returned. 3575 */ 3576 void *sqlite3ArrayAllocate( 3577 sqlite3 *db, /* Connection to notify of malloc failures */ 3578 void *pArray, /* Array of objects. Might be reallocated */ 3579 int szEntry, /* Size of each object in the array */ 3580 int *pnEntry, /* Number of objects currently in use */ 3581 int *pIdx /* Write the index of a new slot here */ 3582 ){ 3583 char *z; 3584 int n = *pnEntry; 3585 if( (n & (n-1))==0 ){ 3586 int sz = (n==0) ? 1 : 2*n; 3587 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3588 if( pNew==0 ){ 3589 *pIdx = -1; 3590 return pArray; 3591 } 3592 pArray = pNew; 3593 } 3594 z = (char*)pArray; 3595 memset(&z[n * szEntry], 0, szEntry); 3596 *pIdx = n; 3597 ++*pnEntry; 3598 return pArray; 3599 } 3600 3601 /* 3602 ** Append a new element to the given IdList. Create a new IdList if 3603 ** need be. 3604 ** 3605 ** A new IdList is returned, or NULL if malloc() fails. 3606 */ 3607 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3608 int i; 3609 if( pList==0 ){ 3610 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3611 if( pList==0 ) return 0; 3612 } 3613 pList->a = sqlite3ArrayAllocate( 3614 db, 3615 pList->a, 3616 sizeof(pList->a[0]), 3617 &pList->nId, 3618 &i 3619 ); 3620 if( i<0 ){ 3621 sqlite3IdListDelete(db, pList); 3622 return 0; 3623 } 3624 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3625 return pList; 3626 } 3627 3628 /* 3629 ** Delete an IdList. 3630 */ 3631 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3632 int i; 3633 if( pList==0 ) return; 3634 for(i=0; i<pList->nId; i++){ 3635 sqlite3DbFree(db, pList->a[i].zName); 3636 } 3637 sqlite3DbFree(db, pList->a); 3638 sqlite3DbFreeNN(db, pList); 3639 } 3640 3641 /* 3642 ** Return the index in pList of the identifier named zId. Return -1 3643 ** if not found. 3644 */ 3645 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3646 int i; 3647 if( pList==0 ) return -1; 3648 for(i=0; i<pList->nId; i++){ 3649 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3650 } 3651 return -1; 3652 } 3653 3654 /* 3655 ** Expand the space allocated for the given SrcList object by 3656 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3657 ** New slots are zeroed. 3658 ** 3659 ** For example, suppose a SrcList initially contains two entries: A,B. 3660 ** To append 3 new entries onto the end, do this: 3661 ** 3662 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3663 ** 3664 ** After the call above it would contain: A, B, nil, nil, nil. 3665 ** If the iStart argument had been 1 instead of 2, then the result 3666 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3667 ** the iStart value would be 0. The result then would 3668 ** be: nil, nil, nil, A, B. 3669 ** 3670 ** If a memory allocation fails the SrcList is unchanged. The 3671 ** db->mallocFailed flag will be set to true. 3672 */ 3673 SrcList *sqlite3SrcListEnlarge( 3674 sqlite3 *db, /* Database connection to notify of OOM errors */ 3675 SrcList *pSrc, /* The SrcList to be enlarged */ 3676 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3677 int iStart /* Index in pSrc->a[] of first new slot */ 3678 ){ 3679 int i; 3680 3681 /* Sanity checking on calling parameters */ 3682 assert( iStart>=0 ); 3683 assert( nExtra>=1 ); 3684 assert( pSrc!=0 ); 3685 assert( iStart<=pSrc->nSrc ); 3686 3687 /* Allocate additional space if needed */ 3688 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3689 SrcList *pNew; 3690 int nAlloc = pSrc->nSrc*2+nExtra; 3691 int nGot; 3692 pNew = sqlite3DbRealloc(db, pSrc, 3693 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3694 if( pNew==0 ){ 3695 assert( db->mallocFailed ); 3696 return pSrc; 3697 } 3698 pSrc = pNew; 3699 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3700 pSrc->nAlloc = nGot; 3701 } 3702 3703 /* Move existing slots that come after the newly inserted slots 3704 ** out of the way */ 3705 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3706 pSrc->a[i+nExtra] = pSrc->a[i]; 3707 } 3708 pSrc->nSrc += nExtra; 3709 3710 /* Zero the newly allocated slots */ 3711 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3712 for(i=iStart; i<iStart+nExtra; i++){ 3713 pSrc->a[i].iCursor = -1; 3714 } 3715 3716 /* Return a pointer to the enlarged SrcList */ 3717 return pSrc; 3718 } 3719 3720 3721 /* 3722 ** Append a new table name to the given SrcList. Create a new SrcList if 3723 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3724 ** 3725 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3726 ** SrcList might be the same as the SrcList that was input or it might be 3727 ** a new one. If an OOM error does occurs, then the prior value of pList 3728 ** that is input to this routine is automatically freed. 3729 ** 3730 ** If pDatabase is not null, it means that the table has an optional 3731 ** database name prefix. Like this: "database.table". The pDatabase 3732 ** points to the table name and the pTable points to the database name. 3733 ** The SrcList.a[].zName field is filled with the table name which might 3734 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3735 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3736 ** or with NULL if no database is specified. 3737 ** 3738 ** In other words, if call like this: 3739 ** 3740 ** sqlite3SrcListAppend(D,A,B,0); 3741 ** 3742 ** Then B is a table name and the database name is unspecified. If called 3743 ** like this: 3744 ** 3745 ** sqlite3SrcListAppend(D,A,B,C); 3746 ** 3747 ** Then C is the table name and B is the database name. If C is defined 3748 ** then so is B. In other words, we never have a case where: 3749 ** 3750 ** sqlite3SrcListAppend(D,A,0,C); 3751 ** 3752 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3753 ** before being added to the SrcList. 3754 */ 3755 SrcList *sqlite3SrcListAppend( 3756 sqlite3 *db, /* Connection to notify of malloc failures */ 3757 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3758 Token *pTable, /* Table to append */ 3759 Token *pDatabase /* Database of the table */ 3760 ){ 3761 struct SrcList_item *pItem; 3762 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3763 assert( db!=0 ); 3764 if( pList==0 ){ 3765 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3766 if( pList==0 ) return 0; 3767 pList->nAlloc = 1; 3768 pList->nSrc = 1; 3769 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3770 pList->a[0].iCursor = -1; 3771 }else{ 3772 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3773 } 3774 if( db->mallocFailed ){ 3775 sqlite3SrcListDelete(db, pList); 3776 return 0; 3777 } 3778 pItem = &pList->a[pList->nSrc-1]; 3779 if( pDatabase && pDatabase->z==0 ){ 3780 pDatabase = 0; 3781 } 3782 if( pDatabase ){ 3783 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3784 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3785 }else{ 3786 pItem->zName = sqlite3NameFromToken(db, pTable); 3787 pItem->zDatabase = 0; 3788 } 3789 return pList; 3790 } 3791 3792 /* 3793 ** Assign VdbeCursor index numbers to all tables in a SrcList 3794 */ 3795 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3796 int i; 3797 struct SrcList_item *pItem; 3798 assert(pList || pParse->db->mallocFailed ); 3799 if( pList ){ 3800 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3801 if( pItem->iCursor>=0 ) break; 3802 pItem->iCursor = pParse->nTab++; 3803 if( pItem->pSelect ){ 3804 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3805 } 3806 } 3807 } 3808 } 3809 3810 /* 3811 ** Delete an entire SrcList including all its substructure. 3812 */ 3813 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3814 int i; 3815 struct SrcList_item *pItem; 3816 if( pList==0 ) return; 3817 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3818 sqlite3DbFree(db, pItem->zDatabase); 3819 sqlite3DbFree(db, pItem->zName); 3820 sqlite3DbFree(db, pItem->zAlias); 3821 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3822 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3823 sqlite3DeleteTable(db, pItem->pTab); 3824 sqlite3SelectDelete(db, pItem->pSelect); 3825 sqlite3ExprDelete(db, pItem->pOn); 3826 sqlite3IdListDelete(db, pItem->pUsing); 3827 } 3828 sqlite3DbFreeNN(db, pList); 3829 } 3830 3831 /* 3832 ** This routine is called by the parser to add a new term to the 3833 ** end of a growing FROM clause. The "p" parameter is the part of 3834 ** the FROM clause that has already been constructed. "p" is NULL 3835 ** if this is the first term of the FROM clause. pTable and pDatabase 3836 ** are the name of the table and database named in the FROM clause term. 3837 ** pDatabase is NULL if the database name qualifier is missing - the 3838 ** usual case. If the term has an alias, then pAlias points to the 3839 ** alias token. If the term is a subquery, then pSubquery is the 3840 ** SELECT statement that the subquery encodes. The pTable and 3841 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3842 ** parameters are the content of the ON and USING clauses. 3843 ** 3844 ** Return a new SrcList which encodes is the FROM with the new 3845 ** term added. 3846 */ 3847 SrcList *sqlite3SrcListAppendFromTerm( 3848 Parse *pParse, /* Parsing context */ 3849 SrcList *p, /* The left part of the FROM clause already seen */ 3850 Token *pTable, /* Name of the table to add to the FROM clause */ 3851 Token *pDatabase, /* Name of the database containing pTable */ 3852 Token *pAlias, /* The right-hand side of the AS subexpression */ 3853 Select *pSubquery, /* A subquery used in place of a table name */ 3854 Expr *pOn, /* The ON clause of a join */ 3855 IdList *pUsing /* The USING clause of a join */ 3856 ){ 3857 struct SrcList_item *pItem; 3858 sqlite3 *db = pParse->db; 3859 if( !p && (pOn || pUsing) ){ 3860 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3861 (pOn ? "ON" : "USING") 3862 ); 3863 goto append_from_error; 3864 } 3865 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3866 if( p==0 || NEVER(p->nSrc==0) ){ 3867 goto append_from_error; 3868 } 3869 pItem = &p->a[p->nSrc-1]; 3870 assert( pAlias!=0 ); 3871 if( pAlias->n ){ 3872 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3873 } 3874 pItem->pSelect = pSubquery; 3875 pItem->pOn = pOn; 3876 pItem->pUsing = pUsing; 3877 return p; 3878 3879 append_from_error: 3880 assert( p==0 ); 3881 sqlite3ExprDelete(db, pOn); 3882 sqlite3IdListDelete(db, pUsing); 3883 sqlite3SelectDelete(db, pSubquery); 3884 return 0; 3885 } 3886 3887 /* 3888 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3889 ** element of the source-list passed as the second argument. 3890 */ 3891 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3892 assert( pIndexedBy!=0 ); 3893 if( p && pIndexedBy->n>0 ){ 3894 struct SrcList_item *pItem; 3895 assert( p->nSrc>0 ); 3896 pItem = &p->a[p->nSrc-1]; 3897 assert( pItem->fg.notIndexed==0 ); 3898 assert( pItem->fg.isIndexedBy==0 ); 3899 assert( pItem->fg.isTabFunc==0 ); 3900 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3901 /* A "NOT INDEXED" clause was supplied. See parse.y 3902 ** construct "indexed_opt" for details. */ 3903 pItem->fg.notIndexed = 1; 3904 }else{ 3905 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3906 pItem->fg.isIndexedBy = 1; 3907 } 3908 } 3909 } 3910 3911 /* 3912 ** Add the list of function arguments to the SrcList entry for a 3913 ** table-valued-function. 3914 */ 3915 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3916 if( p ){ 3917 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3918 assert( pItem->fg.notIndexed==0 ); 3919 assert( pItem->fg.isIndexedBy==0 ); 3920 assert( pItem->fg.isTabFunc==0 ); 3921 pItem->u1.pFuncArg = pList; 3922 pItem->fg.isTabFunc = 1; 3923 }else{ 3924 sqlite3ExprListDelete(pParse->db, pList); 3925 } 3926 } 3927 3928 /* 3929 ** When building up a FROM clause in the parser, the join operator 3930 ** is initially attached to the left operand. But the code generator 3931 ** expects the join operator to be on the right operand. This routine 3932 ** Shifts all join operators from left to right for an entire FROM 3933 ** clause. 3934 ** 3935 ** Example: Suppose the join is like this: 3936 ** 3937 ** A natural cross join B 3938 ** 3939 ** The operator is "natural cross join". The A and B operands are stored 3940 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3941 ** operator with A. This routine shifts that operator over to B. 3942 */ 3943 void sqlite3SrcListShiftJoinType(SrcList *p){ 3944 if( p ){ 3945 int i; 3946 for(i=p->nSrc-1; i>0; i--){ 3947 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3948 } 3949 p->a[0].fg.jointype = 0; 3950 } 3951 } 3952 3953 /* 3954 ** Generate VDBE code for a BEGIN statement. 3955 */ 3956 void sqlite3BeginTransaction(Parse *pParse, int type){ 3957 sqlite3 *db; 3958 Vdbe *v; 3959 int i; 3960 3961 assert( pParse!=0 ); 3962 db = pParse->db; 3963 assert( db!=0 ); 3964 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3965 return; 3966 } 3967 v = sqlite3GetVdbe(pParse); 3968 if( !v ) return; 3969 if( type!=TK_DEFERRED ){ 3970 for(i=0; i<db->nDb; i++){ 3971 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3972 sqlite3VdbeUsesBtree(v, i); 3973 } 3974 } 3975 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3976 } 3977 3978 /* 3979 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 3980 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 3981 ** code is generated for a COMMIT. 3982 */ 3983 void sqlite3EndTransaction(Parse *pParse, int eType){ 3984 Vdbe *v; 3985 int isRollback; 3986 3987 assert( pParse!=0 ); 3988 assert( pParse->db!=0 ); 3989 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 3990 isRollback = eType==TK_ROLLBACK; 3991 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 3992 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 3993 return; 3994 } 3995 v = sqlite3GetVdbe(pParse); 3996 if( v ){ 3997 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 3998 } 3999 } 4000 4001 /* 4002 ** This function is called by the parser when it parses a command to create, 4003 ** release or rollback an SQL savepoint. 4004 */ 4005 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4006 char *zName = sqlite3NameFromToken(pParse->db, pName); 4007 if( zName ){ 4008 Vdbe *v = sqlite3GetVdbe(pParse); 4009 #ifndef SQLITE_OMIT_AUTHORIZATION 4010 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4011 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4012 #endif 4013 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4014 sqlite3DbFree(pParse->db, zName); 4015 return; 4016 } 4017 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4018 } 4019 } 4020 4021 /* 4022 ** Make sure the TEMP database is open and available for use. Return 4023 ** the number of errors. Leave any error messages in the pParse structure. 4024 */ 4025 int sqlite3OpenTempDatabase(Parse *pParse){ 4026 sqlite3 *db = pParse->db; 4027 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4028 int rc; 4029 Btree *pBt; 4030 static const int flags = 4031 SQLITE_OPEN_READWRITE | 4032 SQLITE_OPEN_CREATE | 4033 SQLITE_OPEN_EXCLUSIVE | 4034 SQLITE_OPEN_DELETEONCLOSE | 4035 SQLITE_OPEN_TEMP_DB; 4036 4037 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4038 if( rc!=SQLITE_OK ){ 4039 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4040 "file for storing temporary tables"); 4041 pParse->rc = rc; 4042 return 1; 4043 } 4044 db->aDb[1].pBt = pBt; 4045 assert( db->aDb[1].pSchema ); 4046 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4047 sqlite3OomFault(db); 4048 return 1; 4049 } 4050 } 4051 return 0; 4052 } 4053 4054 /* 4055 ** Record the fact that the schema cookie will need to be verified 4056 ** for database iDb. The code to actually verify the schema cookie 4057 ** will occur at the end of the top-level VDBE and will be generated 4058 ** later, by sqlite3FinishCoding(). 4059 */ 4060 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4061 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4062 4063 assert( iDb>=0 && iDb<pParse->db->nDb ); 4064 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4065 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4066 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4067 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4068 DbMaskSet(pToplevel->cookieMask, iDb); 4069 if( !OMIT_TEMPDB && iDb==1 ){ 4070 sqlite3OpenTempDatabase(pToplevel); 4071 } 4072 } 4073 } 4074 4075 /* 4076 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4077 ** attached database. Otherwise, invoke it for the database named zDb only. 4078 */ 4079 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4080 sqlite3 *db = pParse->db; 4081 int i; 4082 for(i=0; i<db->nDb; i++){ 4083 Db *pDb = &db->aDb[i]; 4084 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4085 sqlite3CodeVerifySchema(pParse, i); 4086 } 4087 } 4088 } 4089 4090 /* 4091 ** Generate VDBE code that prepares for doing an operation that 4092 ** might change the database. 4093 ** 4094 ** This routine starts a new transaction if we are not already within 4095 ** a transaction. If we are already within a transaction, then a checkpoint 4096 ** is set if the setStatement parameter is true. A checkpoint should 4097 ** be set for operations that might fail (due to a constraint) part of 4098 ** the way through and which will need to undo some writes without having to 4099 ** rollback the whole transaction. For operations where all constraints 4100 ** can be checked before any changes are made to the database, it is never 4101 ** necessary to undo a write and the checkpoint should not be set. 4102 */ 4103 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4104 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4105 sqlite3CodeVerifySchema(pParse, iDb); 4106 DbMaskSet(pToplevel->writeMask, iDb); 4107 pToplevel->isMultiWrite |= setStatement; 4108 } 4109 4110 /* 4111 ** Indicate that the statement currently under construction might write 4112 ** more than one entry (example: deleting one row then inserting another, 4113 ** inserting multiple rows in a table, or inserting a row and index entries.) 4114 ** If an abort occurs after some of these writes have completed, then it will 4115 ** be necessary to undo the completed writes. 4116 */ 4117 void sqlite3MultiWrite(Parse *pParse){ 4118 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4119 pToplevel->isMultiWrite = 1; 4120 } 4121 4122 /* 4123 ** The code generator calls this routine if is discovers that it is 4124 ** possible to abort a statement prior to completion. In order to 4125 ** perform this abort without corrupting the database, we need to make 4126 ** sure that the statement is protected by a statement transaction. 4127 ** 4128 ** Technically, we only need to set the mayAbort flag if the 4129 ** isMultiWrite flag was previously set. There is a time dependency 4130 ** such that the abort must occur after the multiwrite. This makes 4131 ** some statements involving the REPLACE conflict resolution algorithm 4132 ** go a little faster. But taking advantage of this time dependency 4133 ** makes it more difficult to prove that the code is correct (in 4134 ** particular, it prevents us from writing an effective 4135 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4136 ** to take the safe route and skip the optimization. 4137 */ 4138 void sqlite3MayAbort(Parse *pParse){ 4139 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4140 pToplevel->mayAbort = 1; 4141 } 4142 4143 /* 4144 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4145 ** error. The onError parameter determines which (if any) of the statement 4146 ** and/or current transaction is rolled back. 4147 */ 4148 void sqlite3HaltConstraint( 4149 Parse *pParse, /* Parsing context */ 4150 int errCode, /* extended error code */ 4151 int onError, /* Constraint type */ 4152 char *p4, /* Error message */ 4153 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4154 u8 p5Errmsg /* P5_ErrMsg type */ 4155 ){ 4156 Vdbe *v = sqlite3GetVdbe(pParse); 4157 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4158 if( onError==OE_Abort ){ 4159 sqlite3MayAbort(pParse); 4160 } 4161 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4162 sqlite3VdbeChangeP5(v, p5Errmsg); 4163 } 4164 4165 /* 4166 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4167 */ 4168 void sqlite3UniqueConstraint( 4169 Parse *pParse, /* Parsing context */ 4170 int onError, /* Constraint type */ 4171 Index *pIdx /* The index that triggers the constraint */ 4172 ){ 4173 char *zErr; 4174 int j; 4175 StrAccum errMsg; 4176 Table *pTab = pIdx->pTable; 4177 4178 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4179 if( pIdx->aColExpr ){ 4180 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4181 }else{ 4182 for(j=0; j<pIdx->nKeyCol; j++){ 4183 char *zCol; 4184 assert( pIdx->aiColumn[j]>=0 ); 4185 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4186 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4187 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4188 sqlite3StrAccumAppend(&errMsg, ".", 1); 4189 sqlite3StrAccumAppendAll(&errMsg, zCol); 4190 } 4191 } 4192 zErr = sqlite3StrAccumFinish(&errMsg); 4193 sqlite3HaltConstraint(pParse, 4194 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4195 : SQLITE_CONSTRAINT_UNIQUE, 4196 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4197 } 4198 4199 4200 /* 4201 ** Code an OP_Halt due to non-unique rowid. 4202 */ 4203 void sqlite3RowidConstraint( 4204 Parse *pParse, /* Parsing context */ 4205 int onError, /* Conflict resolution algorithm */ 4206 Table *pTab /* The table with the non-unique rowid */ 4207 ){ 4208 char *zMsg; 4209 int rc; 4210 if( pTab->iPKey>=0 ){ 4211 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4212 pTab->aCol[pTab->iPKey].zName); 4213 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4214 }else{ 4215 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4216 rc = SQLITE_CONSTRAINT_ROWID; 4217 } 4218 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4219 P5_ConstraintUnique); 4220 } 4221 4222 /* 4223 ** Check to see if pIndex uses the collating sequence pColl. Return 4224 ** true if it does and false if it does not. 4225 */ 4226 #ifndef SQLITE_OMIT_REINDEX 4227 static int collationMatch(const char *zColl, Index *pIndex){ 4228 int i; 4229 assert( zColl!=0 ); 4230 for(i=0; i<pIndex->nColumn; i++){ 4231 const char *z = pIndex->azColl[i]; 4232 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4233 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4234 return 1; 4235 } 4236 } 4237 return 0; 4238 } 4239 #endif 4240 4241 /* 4242 ** Recompute all indices of pTab that use the collating sequence pColl. 4243 ** If pColl==0 then recompute all indices of pTab. 4244 */ 4245 #ifndef SQLITE_OMIT_REINDEX 4246 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4247 Index *pIndex; /* An index associated with pTab */ 4248 4249 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4250 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4251 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4252 sqlite3BeginWriteOperation(pParse, 0, iDb); 4253 sqlite3RefillIndex(pParse, pIndex, -1); 4254 } 4255 } 4256 } 4257 #endif 4258 4259 /* 4260 ** Recompute all indices of all tables in all databases where the 4261 ** indices use the collating sequence pColl. If pColl==0 then recompute 4262 ** all indices everywhere. 4263 */ 4264 #ifndef SQLITE_OMIT_REINDEX 4265 static void reindexDatabases(Parse *pParse, char const *zColl){ 4266 Db *pDb; /* A single database */ 4267 int iDb; /* The database index number */ 4268 sqlite3 *db = pParse->db; /* The database connection */ 4269 HashElem *k; /* For looping over tables in pDb */ 4270 Table *pTab; /* A table in the database */ 4271 4272 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4273 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4274 assert( pDb!=0 ); 4275 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4276 pTab = (Table*)sqliteHashData(k); 4277 reindexTable(pParse, pTab, zColl); 4278 } 4279 } 4280 } 4281 #endif 4282 4283 /* 4284 ** Generate code for the REINDEX command. 4285 ** 4286 ** REINDEX -- 1 4287 ** REINDEX <collation> -- 2 4288 ** REINDEX ?<database>.?<tablename> -- 3 4289 ** REINDEX ?<database>.?<indexname> -- 4 4290 ** 4291 ** Form 1 causes all indices in all attached databases to be rebuilt. 4292 ** Form 2 rebuilds all indices in all databases that use the named 4293 ** collating function. Forms 3 and 4 rebuild the named index or all 4294 ** indices associated with the named table. 4295 */ 4296 #ifndef SQLITE_OMIT_REINDEX 4297 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4298 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4299 char *z; /* Name of a table or index */ 4300 const char *zDb; /* Name of the database */ 4301 Table *pTab; /* A table in the database */ 4302 Index *pIndex; /* An index associated with pTab */ 4303 int iDb; /* The database index number */ 4304 sqlite3 *db = pParse->db; /* The database connection */ 4305 Token *pObjName; /* Name of the table or index to be reindexed */ 4306 4307 /* Read the database schema. If an error occurs, leave an error message 4308 ** and code in pParse and return NULL. */ 4309 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4310 return; 4311 } 4312 4313 if( pName1==0 ){ 4314 reindexDatabases(pParse, 0); 4315 return; 4316 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4317 char *zColl; 4318 assert( pName1->z ); 4319 zColl = sqlite3NameFromToken(pParse->db, pName1); 4320 if( !zColl ) return; 4321 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4322 if( pColl ){ 4323 reindexDatabases(pParse, zColl); 4324 sqlite3DbFree(db, zColl); 4325 return; 4326 } 4327 sqlite3DbFree(db, zColl); 4328 } 4329 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4330 if( iDb<0 ) return; 4331 z = sqlite3NameFromToken(db, pObjName); 4332 if( z==0 ) return; 4333 zDb = db->aDb[iDb].zDbSName; 4334 pTab = sqlite3FindTable(db, z, zDb); 4335 if( pTab ){ 4336 reindexTable(pParse, pTab, 0); 4337 sqlite3DbFree(db, z); 4338 return; 4339 } 4340 pIndex = sqlite3FindIndex(db, z, zDb); 4341 sqlite3DbFree(db, z); 4342 if( pIndex ){ 4343 sqlite3BeginWriteOperation(pParse, 0, iDb); 4344 sqlite3RefillIndex(pParse, pIndex, -1); 4345 return; 4346 } 4347 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4348 } 4349 #endif 4350 4351 /* 4352 ** Return a KeyInfo structure that is appropriate for the given Index. 4353 ** 4354 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4355 ** when it has finished using it. 4356 */ 4357 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4358 int i; 4359 int nCol = pIdx->nColumn; 4360 int nKey = pIdx->nKeyCol; 4361 KeyInfo *pKey; 4362 if( pParse->nErr ) return 0; 4363 if( pIdx->uniqNotNull ){ 4364 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4365 }else{ 4366 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4367 } 4368 if( pKey ){ 4369 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4370 for(i=0; i<nCol; i++){ 4371 const char *zColl = pIdx->azColl[i]; 4372 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4373 sqlite3LocateCollSeq(pParse, zColl); 4374 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4375 } 4376 if( pParse->nErr ){ 4377 sqlite3KeyInfoUnref(pKey); 4378 pKey = 0; 4379 } 4380 } 4381 return pKey; 4382 } 4383 4384 #ifndef SQLITE_OMIT_CTE 4385 /* 4386 ** This routine is invoked once per CTE by the parser while parsing a 4387 ** WITH clause. 4388 */ 4389 With *sqlite3WithAdd( 4390 Parse *pParse, /* Parsing context */ 4391 With *pWith, /* Existing WITH clause, or NULL */ 4392 Token *pName, /* Name of the common-table */ 4393 ExprList *pArglist, /* Optional column name list for the table */ 4394 Select *pQuery /* Query used to initialize the table */ 4395 ){ 4396 sqlite3 *db = pParse->db; 4397 With *pNew; 4398 char *zName; 4399 4400 /* Check that the CTE name is unique within this WITH clause. If 4401 ** not, store an error in the Parse structure. */ 4402 zName = sqlite3NameFromToken(pParse->db, pName); 4403 if( zName && pWith ){ 4404 int i; 4405 for(i=0; i<pWith->nCte; i++){ 4406 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4407 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4408 } 4409 } 4410 } 4411 4412 if( pWith ){ 4413 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4414 pNew = sqlite3DbRealloc(db, pWith, nByte); 4415 }else{ 4416 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4417 } 4418 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4419 4420 if( db->mallocFailed ){ 4421 sqlite3ExprListDelete(db, pArglist); 4422 sqlite3SelectDelete(db, pQuery); 4423 sqlite3DbFree(db, zName); 4424 pNew = pWith; 4425 }else{ 4426 pNew->a[pNew->nCte].pSelect = pQuery; 4427 pNew->a[pNew->nCte].pCols = pArglist; 4428 pNew->a[pNew->nCte].zName = zName; 4429 pNew->a[pNew->nCte].zCteErr = 0; 4430 pNew->nCte++; 4431 } 4432 4433 return pNew; 4434 } 4435 4436 /* 4437 ** Free the contents of the With object passed as the second argument. 4438 */ 4439 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4440 if( pWith ){ 4441 int i; 4442 for(i=0; i<pWith->nCte; i++){ 4443 struct Cte *pCte = &pWith->a[i]; 4444 sqlite3ExprListDelete(db, pCte->pCols); 4445 sqlite3SelectDelete(db, pCte->pSelect); 4446 sqlite3DbFree(db, pCte->zName); 4447 } 4448 sqlite3DbFree(db, pWith); 4449 } 4450 } 4451 #endif /* !defined(SQLITE_OMIT_CTE) */ 4452