1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 pToplevel = sqlite3ParseToplevel(pParse); 65 for(i=0; i<pToplevel->nTableLock; i++){ 66 p = &pToplevel->aTableLock[i]; 67 if( p->iDb==iDb && p->iTab==iTab ){ 68 p->isWriteLock = (p->isWriteLock || isWriteLock); 69 return; 70 } 71 } 72 73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 74 pToplevel->aTableLock = 75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 76 if( pToplevel->aTableLock ){ 77 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 78 p->iDb = iDb; 79 p->iTab = iTab; 80 p->isWriteLock = isWriteLock; 81 p->zLockName = zName; 82 }else{ 83 pToplevel->nTableLock = 0; 84 sqlite3OomFault(pToplevel->db); 85 } 86 } 87 88 /* 89 ** Code an OP_TableLock instruction for each table locked by the 90 ** statement (configured by calls to sqlite3TableLock()). 91 */ 92 static void codeTableLocks(Parse *pParse){ 93 int i; 94 Vdbe *pVdbe = pParse->pVdbe; 95 assert( pVdbe!=0 ); 96 97 for(i=0; i<pParse->nTableLock; i++){ 98 TableLock *p = &pParse->aTableLock[i]; 99 int p1 = p->iDb; 100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 p->zLockName, P4_STATIC); 102 } 103 } 104 #else 105 #define codeTableLocks(x) 106 #endif 107 108 /* 109 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 */ 113 #if SQLITE_MAX_ATTACHED>30 114 int sqlite3DbMaskAllZero(yDbMask m){ 115 int i; 116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 117 return 1; 118 } 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 assert( pParse->pToplevel==0 ); 136 db = pParse->db; 137 if( pParse->nested ) return; 138 if( db->mallocFailed || pParse->nErr ){ 139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 143 /* Begin by generating some termination code at the end of the 144 ** vdbe program 145 */ 146 v = pParse->pVdbe; 147 if( v==0 ){ 148 if( db->init.busy ){ 149 pParse->rc = SQLITE_DONE; 150 return; 151 } 152 v = sqlite3GetVdbe(pParse); 153 if( v==0 ) pParse->rc = SQLITE_ERROR; 154 } 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 if( pParse->bReturning ){ 159 Returning *pReturning = pParse->u1.pReturning; 160 int addrRewind; 161 int i; 162 int reg; 163 164 addrRewind = 165 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 166 VdbeCoverage(v); 167 reg = pReturning->iRetReg; 168 for(i=0; i<pReturning->nRetCol; i++){ 169 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 170 } 171 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 172 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 173 VdbeCoverage(v); 174 sqlite3VdbeJumpHere(v, addrRewind); 175 } 176 sqlite3VdbeAddOp0(v, OP_Halt); 177 178 #if SQLITE_USER_AUTHENTICATION 179 if( pParse->nTableLock>0 && db->init.busy==0 ){ 180 sqlite3UserAuthInit(db); 181 if( db->auth.authLevel<UAUTH_User ){ 182 sqlite3ErrorMsg(pParse, "user not authenticated"); 183 pParse->rc = SQLITE_AUTH_USER; 184 return; 185 } 186 } 187 #endif 188 189 /* The cookie mask contains one bit for each database file open. 190 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 191 ** set for each database that is used. Generate code to start a 192 ** transaction on each used database and to verify the schema cookie 193 ** on each used database. 194 */ 195 if( db->mallocFailed==0 196 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 197 ){ 198 int iDb, i; 199 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 200 sqlite3VdbeJumpHere(v, 0); 201 for(iDb=0; iDb<db->nDb; iDb++){ 202 Schema *pSchema; 203 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 204 sqlite3VdbeUsesBtree(v, iDb); 205 pSchema = db->aDb[iDb].pSchema; 206 sqlite3VdbeAddOp4Int(v, 207 OP_Transaction, /* Opcode */ 208 iDb, /* P1 */ 209 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 210 pSchema->schema_cookie, /* P3 */ 211 pSchema->iGeneration /* P4 */ 212 ); 213 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 214 VdbeComment((v, 215 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 216 } 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 for(i=0; i<pParse->nVtabLock; i++){ 219 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 220 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 221 } 222 pParse->nVtabLock = 0; 223 #endif 224 225 /* Once all the cookies have been verified and transactions opened, 226 ** obtain the required table-locks. This is a no-op unless the 227 ** shared-cache feature is enabled. 228 */ 229 codeTableLocks(pParse); 230 231 /* Initialize any AUTOINCREMENT data structures required. 232 */ 233 sqlite3AutoincrementBegin(pParse); 234 235 /* Code constant expressions that where factored out of inner loops. 236 ** 237 ** The pConstExpr list might also contain expressions that we simply 238 ** want to keep around until the Parse object is deleted. Such 239 ** expressions have iConstExprReg==0. Do not generate code for 240 ** those expressions, of course. 241 */ 242 if( pParse->pConstExpr ){ 243 ExprList *pEL = pParse->pConstExpr; 244 pParse->okConstFactor = 0; 245 for(i=0; i<pEL->nExpr; i++){ 246 int iReg = pEL->a[i].u.iConstExprReg; 247 if( iReg>0 ){ 248 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 249 } 250 } 251 } 252 253 if( pParse->bReturning ){ 254 Returning *pRet = pParse->u1.pReturning; 255 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 256 } 257 258 /* Finally, jump back to the beginning of the executable code. */ 259 sqlite3VdbeGoto(v, 1); 260 } 261 } 262 263 /* Get the VDBE program ready for execution 264 */ 265 if( v && pParse->nErr==0 && !db->mallocFailed ){ 266 /* A minimum of one cursor is required if autoincrement is used 267 * See ticket [a696379c1f08866] */ 268 assert( pParse->pAinc==0 || pParse->nTab>0 ); 269 sqlite3VdbeMakeReady(v, pParse); 270 pParse->rc = SQLITE_DONE; 271 }else{ 272 pParse->rc = SQLITE_ERROR; 273 } 274 } 275 276 /* 277 ** Run the parser and code generator recursively in order to generate 278 ** code for the SQL statement given onto the end of the pParse context 279 ** currently under construction. When the parser is run recursively 280 ** this way, the final OP_Halt is not appended and other initialization 281 ** and finalization steps are omitted because those are handling by the 282 ** outermost parser. 283 ** 284 ** Not everything is nestable. This facility is designed to permit 285 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 286 ** care if you decide to try to use this routine for some other purposes. 287 */ 288 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 289 va_list ap; 290 char *zSql; 291 char *zErrMsg = 0; 292 sqlite3 *db = pParse->db; 293 char saveBuf[PARSE_TAIL_SZ]; 294 295 if( pParse->nErr ) return; 296 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 297 va_start(ap, zFormat); 298 zSql = sqlite3VMPrintf(db, zFormat, ap); 299 va_end(ap); 300 if( zSql==0 ){ 301 /* This can result either from an OOM or because the formatted string 302 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 303 ** an error */ 304 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 305 pParse->nErr++; 306 return; 307 } 308 pParse->nested++; 309 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 310 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 311 sqlite3RunParser(pParse, zSql, &zErrMsg); 312 sqlite3DbFree(db, zErrMsg); 313 sqlite3DbFree(db, zSql); 314 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 315 pParse->nested--; 316 } 317 318 #if SQLITE_USER_AUTHENTICATION 319 /* 320 ** Return TRUE if zTable is the name of the system table that stores the 321 ** list of users and their access credentials. 322 */ 323 int sqlite3UserAuthTable(const char *zTable){ 324 return sqlite3_stricmp(zTable, "sqlite_user")==0; 325 } 326 #endif 327 328 /* 329 ** Locate the in-memory structure that describes a particular database 330 ** table given the name of that table and (optionally) the name of the 331 ** database containing the table. Return NULL if not found. 332 ** 333 ** If zDatabase is 0, all databases are searched for the table and the 334 ** first matching table is returned. (No checking for duplicate table 335 ** names is done.) The search order is TEMP first, then MAIN, then any 336 ** auxiliary databases added using the ATTACH command. 337 ** 338 ** See also sqlite3LocateTable(). 339 */ 340 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 341 Table *p = 0; 342 int i; 343 344 /* All mutexes are required for schema access. Make sure we hold them. */ 345 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 346 #if SQLITE_USER_AUTHENTICATION 347 /* Only the admin user is allowed to know that the sqlite_user table 348 ** exists */ 349 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 350 return 0; 351 } 352 #endif 353 if( zDatabase ){ 354 for(i=0; i<db->nDb; i++){ 355 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 356 } 357 if( i>=db->nDb ){ 358 /* No match against the official names. But always match "main" 359 ** to schema 0 as a legacy fallback. */ 360 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 361 i = 0; 362 }else{ 363 return 0; 364 } 365 } 366 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 367 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 368 if( i==1 ){ 369 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 370 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 371 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 372 ){ 373 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 374 DFLT_TEMP_SCHEMA_TABLE); 375 } 376 }else{ 377 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 378 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 379 DFLT_SCHEMA_TABLE); 380 } 381 } 382 } 383 }else{ 384 /* Match against TEMP first */ 385 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 386 if( p ) return p; 387 /* The main database is second */ 388 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 389 if( p ) return p; 390 /* Attached databases are in order of attachment */ 391 for(i=2; i<db->nDb; i++){ 392 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 393 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 394 if( p ) break; 395 } 396 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 397 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 398 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 399 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 400 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 401 DFLT_TEMP_SCHEMA_TABLE); 402 } 403 } 404 } 405 return p; 406 } 407 408 /* 409 ** Locate the in-memory structure that describes a particular database 410 ** table given the name of that table and (optionally) the name of the 411 ** database containing the table. Return NULL if not found. Also leave an 412 ** error message in pParse->zErrMsg. 413 ** 414 ** The difference between this routine and sqlite3FindTable() is that this 415 ** routine leaves an error message in pParse->zErrMsg where 416 ** sqlite3FindTable() does not. 417 */ 418 Table *sqlite3LocateTable( 419 Parse *pParse, /* context in which to report errors */ 420 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 421 const char *zName, /* Name of the table we are looking for */ 422 const char *zDbase /* Name of the database. Might be NULL */ 423 ){ 424 Table *p; 425 sqlite3 *db = pParse->db; 426 427 /* Read the database schema. If an error occurs, leave an error message 428 ** and code in pParse and return NULL. */ 429 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 430 && SQLITE_OK!=sqlite3ReadSchema(pParse) 431 ){ 432 return 0; 433 } 434 435 p = sqlite3FindTable(db, zName, zDbase); 436 if( p==0 ){ 437 #ifndef SQLITE_OMIT_VIRTUALTABLE 438 /* If zName is the not the name of a table in the schema created using 439 ** CREATE, then check to see if it is the name of an virtual table that 440 ** can be an eponymous virtual table. */ 441 if( pParse->disableVtab==0 && db->init.busy==0 ){ 442 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 443 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 444 pMod = sqlite3PragmaVtabRegister(db, zName); 445 } 446 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 447 return pMod->pEpoTab; 448 } 449 } 450 #endif 451 if( flags & LOCATE_NOERR ) return 0; 452 pParse->checkSchema = 1; 453 }else if( IsVirtual(p) && pParse->disableVtab ){ 454 p = 0; 455 } 456 457 if( p==0 ){ 458 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 459 if( zDbase ){ 460 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 461 }else{ 462 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 463 } 464 }else{ 465 assert( HasRowid(p) || p->iPKey<0 ); 466 } 467 468 return p; 469 } 470 471 /* 472 ** Locate the table identified by *p. 473 ** 474 ** This is a wrapper around sqlite3LocateTable(). The difference between 475 ** sqlite3LocateTable() and this function is that this function restricts 476 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 477 ** non-NULL if it is part of a view or trigger program definition. See 478 ** sqlite3FixSrcList() for details. 479 */ 480 Table *sqlite3LocateTableItem( 481 Parse *pParse, 482 u32 flags, 483 SrcItem *p 484 ){ 485 const char *zDb; 486 assert( p->pSchema==0 || p->zDatabase==0 ); 487 if( p->pSchema ){ 488 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 489 zDb = pParse->db->aDb[iDb].zDbSName; 490 }else{ 491 zDb = p->zDatabase; 492 } 493 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 494 } 495 496 /* 497 ** Locate the in-memory structure that describes 498 ** a particular index given the name of that index 499 ** and the name of the database that contains the index. 500 ** Return NULL if not found. 501 ** 502 ** If zDatabase is 0, all databases are searched for the 503 ** table and the first matching index is returned. (No checking 504 ** for duplicate index names is done.) The search order is 505 ** TEMP first, then MAIN, then any auxiliary databases added 506 ** using the ATTACH command. 507 */ 508 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 509 Index *p = 0; 510 int i; 511 /* All mutexes are required for schema access. Make sure we hold them. */ 512 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 513 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 514 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 515 Schema *pSchema = db->aDb[j].pSchema; 516 assert( pSchema ); 517 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 518 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 519 p = sqlite3HashFind(&pSchema->idxHash, zName); 520 if( p ) break; 521 } 522 return p; 523 } 524 525 /* 526 ** Reclaim the memory used by an index 527 */ 528 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 529 #ifndef SQLITE_OMIT_ANALYZE 530 sqlite3DeleteIndexSamples(db, p); 531 #endif 532 sqlite3ExprDelete(db, p->pPartIdxWhere); 533 sqlite3ExprListDelete(db, p->aColExpr); 534 sqlite3DbFree(db, p->zColAff); 535 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 536 #ifdef SQLITE_ENABLE_STAT4 537 sqlite3_free(p->aiRowEst); 538 #endif 539 sqlite3DbFree(db, p); 540 } 541 542 /* 543 ** For the index called zIdxName which is found in the database iDb, 544 ** unlike that index from its Table then remove the index from 545 ** the index hash table and free all memory structures associated 546 ** with the index. 547 */ 548 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 549 Index *pIndex; 550 Hash *pHash; 551 552 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 553 pHash = &db->aDb[iDb].pSchema->idxHash; 554 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 555 if( ALWAYS(pIndex) ){ 556 if( pIndex->pTable->pIndex==pIndex ){ 557 pIndex->pTable->pIndex = pIndex->pNext; 558 }else{ 559 Index *p; 560 /* Justification of ALWAYS(); The index must be on the list of 561 ** indices. */ 562 p = pIndex->pTable->pIndex; 563 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 564 if( ALWAYS(p && p->pNext==pIndex) ){ 565 p->pNext = pIndex->pNext; 566 } 567 } 568 sqlite3FreeIndex(db, pIndex); 569 } 570 db->mDbFlags |= DBFLAG_SchemaChange; 571 } 572 573 /* 574 ** Look through the list of open database files in db->aDb[] and if 575 ** any have been closed, remove them from the list. Reallocate the 576 ** db->aDb[] structure to a smaller size, if possible. 577 ** 578 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 579 ** are never candidates for being collapsed. 580 */ 581 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 582 int i, j; 583 for(i=j=2; i<db->nDb; i++){ 584 struct Db *pDb = &db->aDb[i]; 585 if( pDb->pBt==0 ){ 586 sqlite3DbFree(db, pDb->zDbSName); 587 pDb->zDbSName = 0; 588 continue; 589 } 590 if( j<i ){ 591 db->aDb[j] = db->aDb[i]; 592 } 593 j++; 594 } 595 db->nDb = j; 596 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 597 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 598 sqlite3DbFree(db, db->aDb); 599 db->aDb = db->aDbStatic; 600 } 601 } 602 603 /* 604 ** Reset the schema for the database at index iDb. Also reset the 605 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 606 ** Deferred resets may be run by calling with iDb<0. 607 */ 608 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 609 int i; 610 assert( iDb<db->nDb ); 611 612 if( iDb>=0 ){ 613 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 614 DbSetProperty(db, iDb, DB_ResetWanted); 615 DbSetProperty(db, 1, DB_ResetWanted); 616 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 617 } 618 619 if( db->nSchemaLock==0 ){ 620 for(i=0; i<db->nDb; i++){ 621 if( DbHasProperty(db, i, DB_ResetWanted) ){ 622 sqlite3SchemaClear(db->aDb[i].pSchema); 623 } 624 } 625 } 626 } 627 628 /* 629 ** Erase all schema information from all attached databases (including 630 ** "main" and "temp") for a single database connection. 631 */ 632 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 633 int i; 634 sqlite3BtreeEnterAll(db); 635 for(i=0; i<db->nDb; i++){ 636 Db *pDb = &db->aDb[i]; 637 if( pDb->pSchema ){ 638 if( db->nSchemaLock==0 ){ 639 sqlite3SchemaClear(pDb->pSchema); 640 }else{ 641 DbSetProperty(db, i, DB_ResetWanted); 642 } 643 } 644 } 645 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 646 sqlite3VtabUnlockList(db); 647 sqlite3BtreeLeaveAll(db); 648 if( db->nSchemaLock==0 ){ 649 sqlite3CollapseDatabaseArray(db); 650 } 651 } 652 653 /* 654 ** This routine is called when a commit occurs. 655 */ 656 void sqlite3CommitInternalChanges(sqlite3 *db){ 657 db->mDbFlags &= ~DBFLAG_SchemaChange; 658 } 659 660 /* 661 ** Delete memory allocated for the column names of a table or view (the 662 ** Table.aCol[] array). 663 */ 664 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 665 int i; 666 Column *pCol; 667 assert( pTable!=0 ); 668 if( (pCol = pTable->aCol)!=0 ){ 669 for(i=0; i<pTable->nCol; i++, pCol++){ 670 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 671 sqlite3DbFree(db, pCol->zName); 672 sqlite3ExprDelete(db, pCol->pDflt); 673 sqlite3DbFree(db, pCol->zColl); 674 } 675 sqlite3DbFree(db, pTable->aCol); 676 } 677 } 678 679 /* 680 ** Remove the memory data structures associated with the given 681 ** Table. No changes are made to disk by this routine. 682 ** 683 ** This routine just deletes the data structure. It does not unlink 684 ** the table data structure from the hash table. But it does destroy 685 ** memory structures of the indices and foreign keys associated with 686 ** the table. 687 ** 688 ** The db parameter is optional. It is needed if the Table object 689 ** contains lookaside memory. (Table objects in the schema do not use 690 ** lookaside memory, but some ephemeral Table objects do.) Or the 691 ** db parameter can be used with db->pnBytesFreed to measure the memory 692 ** used by the Table object. 693 */ 694 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 695 Index *pIndex, *pNext; 696 697 #ifdef SQLITE_DEBUG 698 /* Record the number of outstanding lookaside allocations in schema Tables 699 ** prior to doing any free() operations. Since schema Tables do not use 700 ** lookaside, this number should not change. 701 ** 702 ** If malloc has already failed, it may be that it failed while allocating 703 ** a Table object that was going to be marked ephemeral. So do not check 704 ** that no lookaside memory is used in this case either. */ 705 int nLookaside = 0; 706 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 707 nLookaside = sqlite3LookasideUsed(db, 0); 708 } 709 #endif 710 711 /* Delete all indices associated with this table. */ 712 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 713 pNext = pIndex->pNext; 714 assert( pIndex->pSchema==pTable->pSchema 715 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 716 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 717 char *zName = pIndex->zName; 718 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 719 &pIndex->pSchema->idxHash, zName, 0 720 ); 721 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 722 assert( pOld==pIndex || pOld==0 ); 723 } 724 sqlite3FreeIndex(db, pIndex); 725 } 726 727 /* Delete any foreign keys attached to this table. */ 728 sqlite3FkDelete(db, pTable); 729 730 /* Delete the Table structure itself. 731 */ 732 sqlite3DeleteColumnNames(db, pTable); 733 sqlite3DbFree(db, pTable->zName); 734 sqlite3DbFree(db, pTable->zColAff); 735 sqlite3SelectDelete(db, pTable->pSelect); 736 sqlite3ExprListDelete(db, pTable->pCheck); 737 #ifndef SQLITE_OMIT_VIRTUALTABLE 738 sqlite3VtabClear(db, pTable); 739 #endif 740 sqlite3DbFree(db, pTable); 741 742 /* Verify that no lookaside memory was used by schema tables */ 743 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 744 } 745 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 746 /* Do not delete the table until the reference count reaches zero. */ 747 if( !pTable ) return; 748 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 749 deleteTable(db, pTable); 750 } 751 752 753 /* 754 ** Unlink the given table from the hash tables and the delete the 755 ** table structure with all its indices and foreign keys. 756 */ 757 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 758 Table *p; 759 Db *pDb; 760 761 assert( db!=0 ); 762 assert( iDb>=0 && iDb<db->nDb ); 763 assert( zTabName ); 764 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 765 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 766 pDb = &db->aDb[iDb]; 767 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 768 sqlite3DeleteTable(db, p); 769 db->mDbFlags |= DBFLAG_SchemaChange; 770 } 771 772 /* 773 ** Given a token, return a string that consists of the text of that 774 ** token. Space to hold the returned string 775 ** is obtained from sqliteMalloc() and must be freed by the calling 776 ** function. 777 ** 778 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 779 ** surround the body of the token are removed. 780 ** 781 ** Tokens are often just pointers into the original SQL text and so 782 ** are not \000 terminated and are not persistent. The returned string 783 ** is \000 terminated and is persistent. 784 */ 785 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 786 char *zName; 787 if( pName ){ 788 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 789 sqlite3Dequote(zName); 790 }else{ 791 zName = 0; 792 } 793 return zName; 794 } 795 796 /* 797 ** Open the sqlite_schema table stored in database number iDb for 798 ** writing. The table is opened using cursor 0. 799 */ 800 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 801 Vdbe *v = sqlite3GetVdbe(p); 802 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 803 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 804 if( p->nTab==0 ){ 805 p->nTab = 1; 806 } 807 } 808 809 /* 810 ** Parameter zName points to a nul-terminated buffer containing the name 811 ** of a database ("main", "temp" or the name of an attached db). This 812 ** function returns the index of the named database in db->aDb[], or 813 ** -1 if the named db cannot be found. 814 */ 815 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 816 int i = -1; /* Database number */ 817 if( zName ){ 818 Db *pDb; 819 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 820 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 821 /* "main" is always an acceptable alias for the primary database 822 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 823 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 824 } 825 } 826 return i; 827 } 828 829 /* 830 ** The token *pName contains the name of a database (either "main" or 831 ** "temp" or the name of an attached db). This routine returns the 832 ** index of the named database in db->aDb[], or -1 if the named db 833 ** does not exist. 834 */ 835 int sqlite3FindDb(sqlite3 *db, Token *pName){ 836 int i; /* Database number */ 837 char *zName; /* Name we are searching for */ 838 zName = sqlite3NameFromToken(db, pName); 839 i = sqlite3FindDbName(db, zName); 840 sqlite3DbFree(db, zName); 841 return i; 842 } 843 844 /* The table or view or trigger name is passed to this routine via tokens 845 ** pName1 and pName2. If the table name was fully qualified, for example: 846 ** 847 ** CREATE TABLE xxx.yyy (...); 848 ** 849 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 850 ** the table name is not fully qualified, i.e.: 851 ** 852 ** CREATE TABLE yyy(...); 853 ** 854 ** Then pName1 is set to "yyy" and pName2 is "". 855 ** 856 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 857 ** pName2) that stores the unqualified table name. The index of the 858 ** database "xxx" is returned. 859 */ 860 int sqlite3TwoPartName( 861 Parse *pParse, /* Parsing and code generating context */ 862 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 863 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 864 Token **pUnqual /* Write the unqualified object name here */ 865 ){ 866 int iDb; /* Database holding the object */ 867 sqlite3 *db = pParse->db; 868 869 assert( pName2!=0 ); 870 if( pName2->n>0 ){ 871 if( db->init.busy ) { 872 sqlite3ErrorMsg(pParse, "corrupt database"); 873 return -1; 874 } 875 *pUnqual = pName2; 876 iDb = sqlite3FindDb(db, pName1); 877 if( iDb<0 ){ 878 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 879 return -1; 880 } 881 }else{ 882 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 883 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 884 iDb = db->init.iDb; 885 *pUnqual = pName1; 886 } 887 return iDb; 888 } 889 890 /* 891 ** True if PRAGMA writable_schema is ON 892 */ 893 int sqlite3WritableSchema(sqlite3 *db){ 894 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 895 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 896 SQLITE_WriteSchema ); 897 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 898 SQLITE_Defensive ); 899 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 900 (SQLITE_WriteSchema|SQLITE_Defensive) ); 901 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 902 } 903 904 /* 905 ** This routine is used to check if the UTF-8 string zName is a legal 906 ** unqualified name for a new schema object (table, index, view or 907 ** trigger). All names are legal except those that begin with the string 908 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 909 ** is reserved for internal use. 910 ** 911 ** When parsing the sqlite_schema table, this routine also checks to 912 ** make sure the "type", "name", and "tbl_name" columns are consistent 913 ** with the SQL. 914 */ 915 int sqlite3CheckObjectName( 916 Parse *pParse, /* Parsing context */ 917 const char *zName, /* Name of the object to check */ 918 const char *zType, /* Type of this object */ 919 const char *zTblName /* Parent table name for triggers and indexes */ 920 ){ 921 sqlite3 *db = pParse->db; 922 if( sqlite3WritableSchema(db) 923 || db->init.imposterTable 924 || !sqlite3Config.bExtraSchemaChecks 925 ){ 926 /* Skip these error checks for writable_schema=ON */ 927 return SQLITE_OK; 928 } 929 if( db->init.busy ){ 930 if( sqlite3_stricmp(zType, db->init.azInit[0]) 931 || sqlite3_stricmp(zName, db->init.azInit[1]) 932 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 933 ){ 934 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 935 return SQLITE_ERROR; 936 } 937 }else{ 938 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 939 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 940 ){ 941 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 942 zName); 943 return SQLITE_ERROR; 944 } 945 946 } 947 return SQLITE_OK; 948 } 949 950 /* 951 ** Return the PRIMARY KEY index of a table 952 */ 953 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 954 Index *p; 955 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 956 return p; 957 } 958 959 /* 960 ** Convert an table column number into a index column number. That is, 961 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 962 ** find the (first) offset of that column in index pIdx. Or return -1 963 ** if column iCol is not used in index pIdx. 964 */ 965 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 966 int i; 967 for(i=0; i<pIdx->nColumn; i++){ 968 if( iCol==pIdx->aiColumn[i] ) return i; 969 } 970 return -1; 971 } 972 973 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 974 /* Convert a storage column number into a table column number. 975 ** 976 ** The storage column number (0,1,2,....) is the index of the value 977 ** as it appears in the record on disk. The true column number 978 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 979 ** 980 ** The storage column number is less than the table column number if 981 ** and only there are VIRTUAL columns to the left. 982 ** 983 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 984 */ 985 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 986 if( pTab->tabFlags & TF_HasVirtual ){ 987 int i; 988 for(i=0; i<=iCol; i++){ 989 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 990 } 991 } 992 return iCol; 993 } 994 #endif 995 996 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 997 /* Convert a table column number into a storage column number. 998 ** 999 ** The storage column number (0,1,2,....) is the index of the value 1000 ** as it appears in the record on disk. Or, if the input column is 1001 ** the N-th virtual column (zero-based) then the storage number is 1002 ** the number of non-virtual columns in the table plus N. 1003 ** 1004 ** The true column number is the index (0,1,2,...) of the column in 1005 ** the CREATE TABLE statement. 1006 ** 1007 ** If the input column is a VIRTUAL column, then it should not appear 1008 ** in storage. But the value sometimes is cached in registers that 1009 ** follow the range of registers used to construct storage. This 1010 ** avoids computing the same VIRTUAL column multiple times, and provides 1011 ** values for use by OP_Param opcodes in triggers. Hence, if the 1012 ** input column is a VIRTUAL table, put it after all the other columns. 1013 ** 1014 ** In the following, N means "normal column", S means STORED, and 1015 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1016 ** 1017 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1018 ** -- 0 1 2 3 4 5 6 7 8 1019 ** 1020 ** Then the mapping from this function is as follows: 1021 ** 1022 ** INPUTS: 0 1 2 3 4 5 6 7 8 1023 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1024 ** 1025 ** So, in other words, this routine shifts all the virtual columns to 1026 ** the end. 1027 ** 1028 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1029 ** this routine is a no-op macro. If the pTab does not have any virtual 1030 ** columns, then this routine is no-op that always return iCol. If iCol 1031 ** is negative (indicating the ROWID column) then this routine return iCol. 1032 */ 1033 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1034 int i; 1035 i16 n; 1036 assert( iCol<pTab->nCol ); 1037 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1038 for(i=0, n=0; i<iCol; i++){ 1039 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1040 } 1041 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1042 /* iCol is a virtual column itself */ 1043 return pTab->nNVCol + i - n; 1044 }else{ 1045 /* iCol is a normal or stored column */ 1046 return n; 1047 } 1048 } 1049 #endif 1050 1051 /* 1052 ** Begin constructing a new table representation in memory. This is 1053 ** the first of several action routines that get called in response 1054 ** to a CREATE TABLE statement. In particular, this routine is called 1055 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1056 ** flag is true if the table should be stored in the auxiliary database 1057 ** file instead of in the main database file. This is normally the case 1058 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1059 ** CREATE and TABLE. 1060 ** 1061 ** The new table record is initialized and put in pParse->pNewTable. 1062 ** As more of the CREATE TABLE statement is parsed, additional action 1063 ** routines will be called to add more information to this record. 1064 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1065 ** is called to complete the construction of the new table record. 1066 */ 1067 void sqlite3StartTable( 1068 Parse *pParse, /* Parser context */ 1069 Token *pName1, /* First part of the name of the table or view */ 1070 Token *pName2, /* Second part of the name of the table or view */ 1071 int isTemp, /* True if this is a TEMP table */ 1072 int isView, /* True if this is a VIEW */ 1073 int isVirtual, /* True if this is a VIRTUAL table */ 1074 int noErr /* Do nothing if table already exists */ 1075 ){ 1076 Table *pTable; 1077 char *zName = 0; /* The name of the new table */ 1078 sqlite3 *db = pParse->db; 1079 Vdbe *v; 1080 int iDb; /* Database number to create the table in */ 1081 Token *pName; /* Unqualified name of the table to create */ 1082 1083 if( db->init.busy && db->init.newTnum==1 ){ 1084 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1085 iDb = db->init.iDb; 1086 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1087 pName = pName1; 1088 }else{ 1089 /* The common case */ 1090 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1091 if( iDb<0 ) return; 1092 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1093 /* If creating a temp table, the name may not be qualified. Unless 1094 ** the database name is "temp" anyway. */ 1095 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1096 return; 1097 } 1098 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1099 zName = sqlite3NameFromToken(db, pName); 1100 if( IN_RENAME_OBJECT ){ 1101 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1102 } 1103 } 1104 pParse->sNameToken = *pName; 1105 if( zName==0 ) return; 1106 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1107 goto begin_table_error; 1108 } 1109 if( db->init.iDb==1 ) isTemp = 1; 1110 #ifndef SQLITE_OMIT_AUTHORIZATION 1111 assert( isTemp==0 || isTemp==1 ); 1112 assert( isView==0 || isView==1 ); 1113 { 1114 static const u8 aCode[] = { 1115 SQLITE_CREATE_TABLE, 1116 SQLITE_CREATE_TEMP_TABLE, 1117 SQLITE_CREATE_VIEW, 1118 SQLITE_CREATE_TEMP_VIEW 1119 }; 1120 char *zDb = db->aDb[iDb].zDbSName; 1121 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1122 goto begin_table_error; 1123 } 1124 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1125 zName, 0, zDb) ){ 1126 goto begin_table_error; 1127 } 1128 } 1129 #endif 1130 1131 /* Make sure the new table name does not collide with an existing 1132 ** index or table name in the same database. Issue an error message if 1133 ** it does. The exception is if the statement being parsed was passed 1134 ** to an sqlite3_declare_vtab() call. In that case only the column names 1135 ** and types will be used, so there is no need to test for namespace 1136 ** collisions. 1137 */ 1138 if( !IN_SPECIAL_PARSE ){ 1139 char *zDb = db->aDb[iDb].zDbSName; 1140 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1141 goto begin_table_error; 1142 } 1143 pTable = sqlite3FindTable(db, zName, zDb); 1144 if( pTable ){ 1145 if( !noErr ){ 1146 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1147 }else{ 1148 assert( !db->init.busy || CORRUPT_DB ); 1149 sqlite3CodeVerifySchema(pParse, iDb); 1150 } 1151 goto begin_table_error; 1152 } 1153 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1154 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1155 goto begin_table_error; 1156 } 1157 } 1158 1159 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1160 if( pTable==0 ){ 1161 assert( db->mallocFailed ); 1162 pParse->rc = SQLITE_NOMEM_BKPT; 1163 pParse->nErr++; 1164 goto begin_table_error; 1165 } 1166 pTable->zName = zName; 1167 pTable->iPKey = -1; 1168 pTable->pSchema = db->aDb[iDb].pSchema; 1169 pTable->nTabRef = 1; 1170 #ifdef SQLITE_DEFAULT_ROWEST 1171 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1172 #else 1173 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1174 #endif 1175 assert( pParse->pNewTable==0 ); 1176 pParse->pNewTable = pTable; 1177 1178 /* Begin generating the code that will insert the table record into 1179 ** the schema table. Note in particular that we must go ahead 1180 ** and allocate the record number for the table entry now. Before any 1181 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1182 ** indices to be created and the table record must come before the 1183 ** indices. Hence, the record number for the table must be allocated 1184 ** now. 1185 */ 1186 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1187 int addr1; 1188 int fileFormat; 1189 int reg1, reg2, reg3; 1190 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1191 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1192 sqlite3BeginWriteOperation(pParse, 1, iDb); 1193 1194 #ifndef SQLITE_OMIT_VIRTUALTABLE 1195 if( isVirtual ){ 1196 sqlite3VdbeAddOp0(v, OP_VBegin); 1197 } 1198 #endif 1199 1200 /* If the file format and encoding in the database have not been set, 1201 ** set them now. 1202 */ 1203 reg1 = pParse->regRowid = ++pParse->nMem; 1204 reg2 = pParse->regRoot = ++pParse->nMem; 1205 reg3 = ++pParse->nMem; 1206 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1207 sqlite3VdbeUsesBtree(v, iDb); 1208 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1209 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1210 1 : SQLITE_MAX_FILE_FORMAT; 1211 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1212 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1213 sqlite3VdbeJumpHere(v, addr1); 1214 1215 /* This just creates a place-holder record in the sqlite_schema table. 1216 ** The record created does not contain anything yet. It will be replaced 1217 ** by the real entry in code generated at sqlite3EndTable(). 1218 ** 1219 ** The rowid for the new entry is left in register pParse->regRowid. 1220 ** The root page number of the new table is left in reg pParse->regRoot. 1221 ** The rowid and root page number values are needed by the code that 1222 ** sqlite3EndTable will generate. 1223 */ 1224 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1225 if( isView || isVirtual ){ 1226 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1227 }else 1228 #endif 1229 { 1230 assert( !pParse->bReturning ); 1231 pParse->u1.addrCrTab = 1232 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1233 } 1234 sqlite3OpenSchemaTable(pParse, iDb); 1235 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1236 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1237 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1238 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1239 sqlite3VdbeAddOp0(v, OP_Close); 1240 } 1241 1242 /* Normal (non-error) return. */ 1243 return; 1244 1245 /* If an error occurs, we jump here */ 1246 begin_table_error: 1247 sqlite3DbFree(db, zName); 1248 return; 1249 } 1250 1251 /* Set properties of a table column based on the (magical) 1252 ** name of the column. 1253 */ 1254 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1255 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1256 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1257 pCol->colFlags |= COLFLAG_HIDDEN; 1258 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1259 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1260 pTab->tabFlags |= TF_OOOHidden; 1261 } 1262 } 1263 #endif 1264 1265 /* 1266 ** Name of the special TEMP trigger used to implement RETURNING. The 1267 ** name begins with "sqlite_" so that it is guaranteed not to collide 1268 ** with any application-generated triggers. 1269 */ 1270 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1271 1272 /* 1273 ** Clean up the data structures associated with the RETURNING clause. 1274 */ 1275 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1276 Hash *pHash; 1277 pHash = &(db->aDb[1].pSchema->trigHash); 1278 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1279 sqlite3ExprListDelete(db, pRet->pReturnEL); 1280 sqlite3DbFree(db, pRet); 1281 } 1282 1283 /* 1284 ** Add the RETURNING clause to the parse currently underway. 1285 ** 1286 ** This routine creates a special TEMP trigger that will fire for each row 1287 ** of the DML statement. That TEMP trigger contains a single SELECT 1288 ** statement with a result set that is the argument of the RETURNING clause. 1289 ** The trigger has the Trigger.bReturning flag and an opcode of 1290 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1291 ** knows to handle it specially. The TEMP trigger is automatically 1292 ** removed at the end of the parse. 1293 ** 1294 ** When this routine is called, we do not yet know if the RETURNING clause 1295 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1296 ** RETURNING trigger instead. It will then be converted into the appropriate 1297 ** type on the first call to sqlite3TriggersExist(). 1298 */ 1299 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1300 Returning *pRet; 1301 Hash *pHash; 1302 sqlite3 *db = pParse->db; 1303 if( pParse->pNewTrigger ){ 1304 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1305 }else{ 1306 assert( pParse->bReturning==0 ); 1307 } 1308 pParse->bReturning = 1; 1309 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1310 if( pRet==0 ){ 1311 sqlite3ExprListDelete(db, pList); 1312 return; 1313 } 1314 pParse->u1.pReturning = pRet; 1315 pRet->pParse = pParse; 1316 pRet->pReturnEL = pList; 1317 sqlite3ParserAddCleanup(pParse, 1318 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1319 testcase( pParse->earlyCleanup ); 1320 if( db->mallocFailed ) return; 1321 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1322 pRet->retTrig.op = TK_RETURNING; 1323 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1324 pRet->retTrig.bReturning = 1; 1325 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1326 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1327 pRet->retTrig.step_list = &pRet->retTStep; 1328 pRet->retTStep.op = TK_RETURNING; 1329 pRet->retTStep.pTrig = &pRet->retTrig; 1330 pRet->retTStep.pExprList = pList; 1331 pHash = &(db->aDb[1].pSchema->trigHash); 1332 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1333 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1334 ==&pRet->retTrig ){ 1335 sqlite3OomFault(db); 1336 } 1337 } 1338 1339 /* 1340 ** Add a new column to the table currently being constructed. 1341 ** 1342 ** The parser calls this routine once for each column declaration 1343 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1344 ** first to get things going. Then this routine is called for each 1345 ** column. 1346 */ 1347 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1348 Table *p; 1349 int i; 1350 char *z; 1351 char *zType; 1352 Column *pCol; 1353 sqlite3 *db = pParse->db; 1354 u8 hName; 1355 1356 if( (p = pParse->pNewTable)==0 ) return; 1357 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1358 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1359 return; 1360 } 1361 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1362 if( z==0 ) return; 1363 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1364 memcpy(z, pName->z, pName->n); 1365 z[pName->n] = 0; 1366 sqlite3Dequote(z); 1367 hName = sqlite3StrIHash(z); 1368 for(i=0; i<p->nCol; i++){ 1369 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1370 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1371 sqlite3DbFree(db, z); 1372 return; 1373 } 1374 } 1375 if( (p->nCol & 0x7)==0 ){ 1376 Column *aNew; 1377 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1378 if( aNew==0 ){ 1379 sqlite3DbFree(db, z); 1380 return; 1381 } 1382 p->aCol = aNew; 1383 } 1384 pCol = &p->aCol[p->nCol]; 1385 memset(pCol, 0, sizeof(p->aCol[0])); 1386 pCol->zName = z; 1387 pCol->hName = hName; 1388 sqlite3ColumnPropertiesFromName(p, pCol); 1389 1390 if( pType->n==0 ){ 1391 /* If there is no type specified, columns have the default affinity 1392 ** 'BLOB' with a default size of 4 bytes. */ 1393 pCol->affinity = SQLITE_AFF_BLOB; 1394 pCol->szEst = 1; 1395 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1396 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1397 pCol->colFlags |= COLFLAG_SORTERREF; 1398 } 1399 #endif 1400 }else{ 1401 zType = z + sqlite3Strlen30(z) + 1; 1402 memcpy(zType, pType->z, pType->n); 1403 zType[pType->n] = 0; 1404 sqlite3Dequote(zType); 1405 pCol->affinity = sqlite3AffinityType(zType, pCol); 1406 pCol->colFlags |= COLFLAG_HASTYPE; 1407 } 1408 p->nCol++; 1409 p->nNVCol++; 1410 pParse->constraintName.n = 0; 1411 } 1412 1413 /* 1414 ** This routine is called by the parser while in the middle of 1415 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1416 ** been seen on a column. This routine sets the notNull flag on 1417 ** the column currently under construction. 1418 */ 1419 void sqlite3AddNotNull(Parse *pParse, int onError){ 1420 Table *p; 1421 Column *pCol; 1422 p = pParse->pNewTable; 1423 if( p==0 || NEVER(p->nCol<1) ) return; 1424 pCol = &p->aCol[p->nCol-1]; 1425 pCol->notNull = (u8)onError; 1426 p->tabFlags |= TF_HasNotNull; 1427 1428 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1429 ** on this column. */ 1430 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1431 Index *pIdx; 1432 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1433 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1434 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1435 pIdx->uniqNotNull = 1; 1436 } 1437 } 1438 } 1439 } 1440 1441 /* 1442 ** Scan the column type name zType (length nType) and return the 1443 ** associated affinity type. 1444 ** 1445 ** This routine does a case-independent search of zType for the 1446 ** substrings in the following table. If one of the substrings is 1447 ** found, the corresponding affinity is returned. If zType contains 1448 ** more than one of the substrings, entries toward the top of 1449 ** the table take priority. For example, if zType is 'BLOBINT', 1450 ** SQLITE_AFF_INTEGER is returned. 1451 ** 1452 ** Substring | Affinity 1453 ** -------------------------------- 1454 ** 'INT' | SQLITE_AFF_INTEGER 1455 ** 'CHAR' | SQLITE_AFF_TEXT 1456 ** 'CLOB' | SQLITE_AFF_TEXT 1457 ** 'TEXT' | SQLITE_AFF_TEXT 1458 ** 'BLOB' | SQLITE_AFF_BLOB 1459 ** 'REAL' | SQLITE_AFF_REAL 1460 ** 'FLOA' | SQLITE_AFF_REAL 1461 ** 'DOUB' | SQLITE_AFF_REAL 1462 ** 1463 ** If none of the substrings in the above table are found, 1464 ** SQLITE_AFF_NUMERIC is returned. 1465 */ 1466 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1467 u32 h = 0; 1468 char aff = SQLITE_AFF_NUMERIC; 1469 const char *zChar = 0; 1470 1471 assert( zIn!=0 ); 1472 while( zIn[0] ){ 1473 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1474 zIn++; 1475 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1476 aff = SQLITE_AFF_TEXT; 1477 zChar = zIn; 1478 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1479 aff = SQLITE_AFF_TEXT; 1480 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1481 aff = SQLITE_AFF_TEXT; 1482 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1483 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1484 aff = SQLITE_AFF_BLOB; 1485 if( zIn[0]=='(' ) zChar = zIn; 1486 #ifndef SQLITE_OMIT_FLOATING_POINT 1487 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1488 && aff==SQLITE_AFF_NUMERIC ){ 1489 aff = SQLITE_AFF_REAL; 1490 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1491 && aff==SQLITE_AFF_NUMERIC ){ 1492 aff = SQLITE_AFF_REAL; 1493 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1494 && aff==SQLITE_AFF_NUMERIC ){ 1495 aff = SQLITE_AFF_REAL; 1496 #endif 1497 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1498 aff = SQLITE_AFF_INTEGER; 1499 break; 1500 } 1501 } 1502 1503 /* If pCol is not NULL, store an estimate of the field size. The 1504 ** estimate is scaled so that the size of an integer is 1. */ 1505 if( pCol ){ 1506 int v = 0; /* default size is approx 4 bytes */ 1507 if( aff<SQLITE_AFF_NUMERIC ){ 1508 if( zChar ){ 1509 while( zChar[0] ){ 1510 if( sqlite3Isdigit(zChar[0]) ){ 1511 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1512 sqlite3GetInt32(zChar, &v); 1513 break; 1514 } 1515 zChar++; 1516 } 1517 }else{ 1518 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1519 } 1520 } 1521 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1522 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1523 pCol->colFlags |= COLFLAG_SORTERREF; 1524 } 1525 #endif 1526 v = v/4 + 1; 1527 if( v>255 ) v = 255; 1528 pCol->szEst = v; 1529 } 1530 return aff; 1531 } 1532 1533 /* 1534 ** The expression is the default value for the most recently added column 1535 ** of the table currently under construction. 1536 ** 1537 ** Default value expressions must be constant. Raise an exception if this 1538 ** is not the case. 1539 ** 1540 ** This routine is called by the parser while in the middle of 1541 ** parsing a CREATE TABLE statement. 1542 */ 1543 void sqlite3AddDefaultValue( 1544 Parse *pParse, /* Parsing context */ 1545 Expr *pExpr, /* The parsed expression of the default value */ 1546 const char *zStart, /* Start of the default value text */ 1547 const char *zEnd /* First character past end of defaut value text */ 1548 ){ 1549 Table *p; 1550 Column *pCol; 1551 sqlite3 *db = pParse->db; 1552 p = pParse->pNewTable; 1553 if( p!=0 ){ 1554 int isInit = db->init.busy && db->init.iDb!=1; 1555 pCol = &(p->aCol[p->nCol-1]); 1556 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1557 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1558 pCol->zName); 1559 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1560 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1561 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1562 testcase( pCol->colFlags & COLFLAG_STORED ); 1563 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1564 #endif 1565 }else{ 1566 /* A copy of pExpr is used instead of the original, as pExpr contains 1567 ** tokens that point to volatile memory. 1568 */ 1569 Expr x; 1570 sqlite3ExprDelete(db, pCol->pDflt); 1571 memset(&x, 0, sizeof(x)); 1572 x.op = TK_SPAN; 1573 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1574 x.pLeft = pExpr; 1575 x.flags = EP_Skip; 1576 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1577 sqlite3DbFree(db, x.u.zToken); 1578 } 1579 } 1580 if( IN_RENAME_OBJECT ){ 1581 sqlite3RenameExprUnmap(pParse, pExpr); 1582 } 1583 sqlite3ExprDelete(db, pExpr); 1584 } 1585 1586 /* 1587 ** Backwards Compatibility Hack: 1588 ** 1589 ** Historical versions of SQLite accepted strings as column names in 1590 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1591 ** 1592 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1593 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1594 ** 1595 ** This is goofy. But to preserve backwards compatibility we continue to 1596 ** accept it. This routine does the necessary conversion. It converts 1597 ** the expression given in its argument from a TK_STRING into a TK_ID 1598 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1599 ** If the expression is anything other than TK_STRING, the expression is 1600 ** unchanged. 1601 */ 1602 static void sqlite3StringToId(Expr *p){ 1603 if( p->op==TK_STRING ){ 1604 p->op = TK_ID; 1605 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1606 p->pLeft->op = TK_ID; 1607 } 1608 } 1609 1610 /* 1611 ** Tag the given column as being part of the PRIMARY KEY 1612 */ 1613 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1614 pCol->colFlags |= COLFLAG_PRIMKEY; 1615 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1616 if( pCol->colFlags & COLFLAG_GENERATED ){ 1617 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1618 testcase( pCol->colFlags & COLFLAG_STORED ); 1619 sqlite3ErrorMsg(pParse, 1620 "generated columns cannot be part of the PRIMARY KEY"); 1621 } 1622 #endif 1623 } 1624 1625 /* 1626 ** Designate the PRIMARY KEY for the table. pList is a list of names 1627 ** of columns that form the primary key. If pList is NULL, then the 1628 ** most recently added column of the table is the primary key. 1629 ** 1630 ** A table can have at most one primary key. If the table already has 1631 ** a primary key (and this is the second primary key) then create an 1632 ** error. 1633 ** 1634 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1635 ** then we will try to use that column as the rowid. Set the Table.iPKey 1636 ** field of the table under construction to be the index of the 1637 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1638 ** no INTEGER PRIMARY KEY. 1639 ** 1640 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1641 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1642 */ 1643 void sqlite3AddPrimaryKey( 1644 Parse *pParse, /* Parsing context */ 1645 ExprList *pList, /* List of field names to be indexed */ 1646 int onError, /* What to do with a uniqueness conflict */ 1647 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1648 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1649 ){ 1650 Table *pTab = pParse->pNewTable; 1651 Column *pCol = 0; 1652 int iCol = -1, i; 1653 int nTerm; 1654 if( pTab==0 ) goto primary_key_exit; 1655 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1656 sqlite3ErrorMsg(pParse, 1657 "table \"%s\" has more than one primary key", pTab->zName); 1658 goto primary_key_exit; 1659 } 1660 pTab->tabFlags |= TF_HasPrimaryKey; 1661 if( pList==0 ){ 1662 iCol = pTab->nCol - 1; 1663 pCol = &pTab->aCol[iCol]; 1664 makeColumnPartOfPrimaryKey(pParse, pCol); 1665 nTerm = 1; 1666 }else{ 1667 nTerm = pList->nExpr; 1668 for(i=0; i<nTerm; i++){ 1669 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1670 assert( pCExpr!=0 ); 1671 sqlite3StringToId(pCExpr); 1672 if( pCExpr->op==TK_ID ){ 1673 const char *zCName = pCExpr->u.zToken; 1674 for(iCol=0; iCol<pTab->nCol; iCol++){ 1675 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1676 pCol = &pTab->aCol[iCol]; 1677 makeColumnPartOfPrimaryKey(pParse, pCol); 1678 break; 1679 } 1680 } 1681 } 1682 } 1683 } 1684 if( nTerm==1 1685 && pCol 1686 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1687 && sortOrder!=SQLITE_SO_DESC 1688 ){ 1689 if( IN_RENAME_OBJECT && pList ){ 1690 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1691 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1692 } 1693 pTab->iPKey = iCol; 1694 pTab->keyConf = (u8)onError; 1695 assert( autoInc==0 || autoInc==1 ); 1696 pTab->tabFlags |= autoInc*TF_Autoincrement; 1697 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1698 (void)sqlite3HasExplicitNulls(pParse, pList); 1699 }else if( autoInc ){ 1700 #ifndef SQLITE_OMIT_AUTOINCREMENT 1701 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1702 "INTEGER PRIMARY KEY"); 1703 #endif 1704 }else{ 1705 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1706 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1707 pList = 0; 1708 } 1709 1710 primary_key_exit: 1711 sqlite3ExprListDelete(pParse->db, pList); 1712 return; 1713 } 1714 1715 /* 1716 ** Add a new CHECK constraint to the table currently under construction. 1717 */ 1718 void sqlite3AddCheckConstraint( 1719 Parse *pParse, /* Parsing context */ 1720 Expr *pCheckExpr, /* The check expression */ 1721 const char *zStart, /* Opening "(" */ 1722 const char *zEnd /* Closing ")" */ 1723 ){ 1724 #ifndef SQLITE_OMIT_CHECK 1725 Table *pTab = pParse->pNewTable; 1726 sqlite3 *db = pParse->db; 1727 if( pTab && !IN_DECLARE_VTAB 1728 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1729 ){ 1730 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1731 if( pParse->constraintName.n ){ 1732 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1733 }else{ 1734 Token t; 1735 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1736 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1737 t.z = zStart; 1738 t.n = (int)(zEnd - t.z); 1739 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1740 } 1741 }else 1742 #endif 1743 { 1744 sqlite3ExprDelete(pParse->db, pCheckExpr); 1745 } 1746 } 1747 1748 /* 1749 ** Set the collation function of the most recently parsed table column 1750 ** to the CollSeq given. 1751 */ 1752 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1753 Table *p; 1754 int i; 1755 char *zColl; /* Dequoted name of collation sequence */ 1756 sqlite3 *db; 1757 1758 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1759 i = p->nCol-1; 1760 db = pParse->db; 1761 zColl = sqlite3NameFromToken(db, pToken); 1762 if( !zColl ) return; 1763 1764 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1765 Index *pIdx; 1766 sqlite3DbFree(db, p->aCol[i].zColl); 1767 p->aCol[i].zColl = zColl; 1768 1769 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1770 ** then an index may have been created on this column before the 1771 ** collation type was added. Correct this if it is the case. 1772 */ 1773 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1774 assert( pIdx->nKeyCol==1 ); 1775 if( pIdx->aiColumn[0]==i ){ 1776 pIdx->azColl[0] = p->aCol[i].zColl; 1777 } 1778 } 1779 }else{ 1780 sqlite3DbFree(db, zColl); 1781 } 1782 } 1783 1784 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1785 ** column. 1786 */ 1787 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1788 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1789 u8 eType = COLFLAG_VIRTUAL; 1790 Table *pTab = pParse->pNewTable; 1791 Column *pCol; 1792 if( pTab==0 ){ 1793 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1794 goto generated_done; 1795 } 1796 pCol = &(pTab->aCol[pTab->nCol-1]); 1797 if( IN_DECLARE_VTAB ){ 1798 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1799 goto generated_done; 1800 } 1801 if( pCol->pDflt ) goto generated_error; 1802 if( pType ){ 1803 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1804 /* no-op */ 1805 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1806 eType = COLFLAG_STORED; 1807 }else{ 1808 goto generated_error; 1809 } 1810 } 1811 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1812 pCol->colFlags |= eType; 1813 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1814 assert( TF_HasStored==COLFLAG_STORED ); 1815 pTab->tabFlags |= eType; 1816 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1817 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1818 } 1819 pCol->pDflt = pExpr; 1820 pExpr = 0; 1821 goto generated_done; 1822 1823 generated_error: 1824 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1825 pCol->zName); 1826 generated_done: 1827 sqlite3ExprDelete(pParse->db, pExpr); 1828 #else 1829 /* Throw and error for the GENERATED ALWAYS AS clause if the 1830 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1831 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1832 sqlite3ExprDelete(pParse->db, pExpr); 1833 #endif 1834 } 1835 1836 /* 1837 ** Generate code that will increment the schema cookie. 1838 ** 1839 ** The schema cookie is used to determine when the schema for the 1840 ** database changes. After each schema change, the cookie value 1841 ** changes. When a process first reads the schema it records the 1842 ** cookie. Thereafter, whenever it goes to access the database, 1843 ** it checks the cookie to make sure the schema has not changed 1844 ** since it was last read. 1845 ** 1846 ** This plan is not completely bullet-proof. It is possible for 1847 ** the schema to change multiple times and for the cookie to be 1848 ** set back to prior value. But schema changes are infrequent 1849 ** and the probability of hitting the same cookie value is only 1850 ** 1 chance in 2^32. So we're safe enough. 1851 ** 1852 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1853 ** the schema-version whenever the schema changes. 1854 */ 1855 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1856 sqlite3 *db = pParse->db; 1857 Vdbe *v = pParse->pVdbe; 1858 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1859 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1860 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1861 } 1862 1863 /* 1864 ** Measure the number of characters needed to output the given 1865 ** identifier. The number returned includes any quotes used 1866 ** but does not include the null terminator. 1867 ** 1868 ** The estimate is conservative. It might be larger that what is 1869 ** really needed. 1870 */ 1871 static int identLength(const char *z){ 1872 int n; 1873 for(n=0; *z; n++, z++){ 1874 if( *z=='"' ){ n++; } 1875 } 1876 return n + 2; 1877 } 1878 1879 /* 1880 ** The first parameter is a pointer to an output buffer. The second 1881 ** parameter is a pointer to an integer that contains the offset at 1882 ** which to write into the output buffer. This function copies the 1883 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1884 ** to the specified offset in the buffer and updates *pIdx to refer 1885 ** to the first byte after the last byte written before returning. 1886 ** 1887 ** If the string zSignedIdent consists entirely of alpha-numeric 1888 ** characters, does not begin with a digit and is not an SQL keyword, 1889 ** then it is copied to the output buffer exactly as it is. Otherwise, 1890 ** it is quoted using double-quotes. 1891 */ 1892 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1893 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1894 int i, j, needQuote; 1895 i = *pIdx; 1896 1897 for(j=0; zIdent[j]; j++){ 1898 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1899 } 1900 needQuote = sqlite3Isdigit(zIdent[0]) 1901 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1902 || zIdent[j]!=0 1903 || j==0; 1904 1905 if( needQuote ) z[i++] = '"'; 1906 for(j=0; zIdent[j]; j++){ 1907 z[i++] = zIdent[j]; 1908 if( zIdent[j]=='"' ) z[i++] = '"'; 1909 } 1910 if( needQuote ) z[i++] = '"'; 1911 z[i] = 0; 1912 *pIdx = i; 1913 } 1914 1915 /* 1916 ** Generate a CREATE TABLE statement appropriate for the given 1917 ** table. Memory to hold the text of the statement is obtained 1918 ** from sqliteMalloc() and must be freed by the calling function. 1919 */ 1920 static char *createTableStmt(sqlite3 *db, Table *p){ 1921 int i, k, n; 1922 char *zStmt; 1923 char *zSep, *zSep2, *zEnd; 1924 Column *pCol; 1925 n = 0; 1926 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1927 n += identLength(pCol->zName) + 5; 1928 } 1929 n += identLength(p->zName); 1930 if( n<50 ){ 1931 zSep = ""; 1932 zSep2 = ","; 1933 zEnd = ")"; 1934 }else{ 1935 zSep = "\n "; 1936 zSep2 = ",\n "; 1937 zEnd = "\n)"; 1938 } 1939 n += 35 + 6*p->nCol; 1940 zStmt = sqlite3DbMallocRaw(0, n); 1941 if( zStmt==0 ){ 1942 sqlite3OomFault(db); 1943 return 0; 1944 } 1945 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1946 k = sqlite3Strlen30(zStmt); 1947 identPut(zStmt, &k, p->zName); 1948 zStmt[k++] = '('; 1949 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1950 static const char * const azType[] = { 1951 /* SQLITE_AFF_BLOB */ "", 1952 /* SQLITE_AFF_TEXT */ " TEXT", 1953 /* SQLITE_AFF_NUMERIC */ " NUM", 1954 /* SQLITE_AFF_INTEGER */ " INT", 1955 /* SQLITE_AFF_REAL */ " REAL" 1956 }; 1957 int len; 1958 const char *zType; 1959 1960 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1961 k += sqlite3Strlen30(&zStmt[k]); 1962 zSep = zSep2; 1963 identPut(zStmt, &k, pCol->zName); 1964 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1965 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1966 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1967 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1968 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1969 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1970 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1971 1972 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1973 len = sqlite3Strlen30(zType); 1974 assert( pCol->affinity==SQLITE_AFF_BLOB 1975 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1976 memcpy(&zStmt[k], zType, len); 1977 k += len; 1978 assert( k<=n ); 1979 } 1980 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1981 return zStmt; 1982 } 1983 1984 /* 1985 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1986 ** on success and SQLITE_NOMEM on an OOM error. 1987 */ 1988 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1989 char *zExtra; 1990 int nByte; 1991 if( pIdx->nColumn>=N ) return SQLITE_OK; 1992 assert( pIdx->isResized==0 ); 1993 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 1994 zExtra = sqlite3DbMallocZero(db, nByte); 1995 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1996 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1997 pIdx->azColl = (const char**)zExtra; 1998 zExtra += sizeof(char*)*N; 1999 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2000 pIdx->aiRowLogEst = (LogEst*)zExtra; 2001 zExtra += sizeof(LogEst)*N; 2002 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2003 pIdx->aiColumn = (i16*)zExtra; 2004 zExtra += sizeof(i16)*N; 2005 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2006 pIdx->aSortOrder = (u8*)zExtra; 2007 pIdx->nColumn = N; 2008 pIdx->isResized = 1; 2009 return SQLITE_OK; 2010 } 2011 2012 /* 2013 ** Estimate the total row width for a table. 2014 */ 2015 static void estimateTableWidth(Table *pTab){ 2016 unsigned wTable = 0; 2017 const Column *pTabCol; 2018 int i; 2019 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2020 wTable += pTabCol->szEst; 2021 } 2022 if( pTab->iPKey<0 ) wTable++; 2023 pTab->szTabRow = sqlite3LogEst(wTable*4); 2024 } 2025 2026 /* 2027 ** Estimate the average size of a row for an index. 2028 */ 2029 static void estimateIndexWidth(Index *pIdx){ 2030 unsigned wIndex = 0; 2031 int i; 2032 const Column *aCol = pIdx->pTable->aCol; 2033 for(i=0; i<pIdx->nColumn; i++){ 2034 i16 x = pIdx->aiColumn[i]; 2035 assert( x<pIdx->pTable->nCol ); 2036 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2037 } 2038 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2039 } 2040 2041 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2042 ** This is used to determine if the column number x appears in any of the 2043 ** first nCol entries of an index. 2044 */ 2045 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2046 while( nCol-- > 0 ){ 2047 assert( aiCol[0]>=0 ); 2048 if( x==*(aiCol++) ){ 2049 return 1; 2050 } 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 ** Return true if any of the first nKey entries of index pIdx exactly 2057 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2058 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2059 ** or may not be the same index as pPk. 2060 ** 2061 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2062 ** not a rowid or expression. 2063 ** 2064 ** This routine differs from hasColumn() in that both the column and the 2065 ** collating sequence must match for this routine, but for hasColumn() only 2066 ** the column name must match. 2067 */ 2068 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2069 int i, j; 2070 assert( nKey<=pIdx->nColumn ); 2071 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2072 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2073 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2074 assert( pPk->pTable==pIdx->pTable ); 2075 testcase( pPk==pIdx ); 2076 j = pPk->aiColumn[iCol]; 2077 assert( j!=XN_ROWID && j!=XN_EXPR ); 2078 for(i=0; i<nKey; i++){ 2079 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2080 if( pIdx->aiColumn[i]==j 2081 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2082 ){ 2083 return 1; 2084 } 2085 } 2086 return 0; 2087 } 2088 2089 /* Recompute the colNotIdxed field of the Index. 2090 ** 2091 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2092 ** columns that are within the first 63 columns of the table. The 2093 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2094 ** of the table have a 1. 2095 ** 2096 ** 2019-10-24: For the purpose of this computation, virtual columns are 2097 ** not considered to be covered by the index, even if they are in the 2098 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2099 ** able to find all instances of a reference to the indexed table column 2100 ** and convert them into references to the index. Hence we always want 2101 ** the actual table at hand in order to recompute the virtual column, if 2102 ** necessary. 2103 ** 2104 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2105 ** to determine if the index is covering index. 2106 */ 2107 static void recomputeColumnsNotIndexed(Index *pIdx){ 2108 Bitmask m = 0; 2109 int j; 2110 Table *pTab = pIdx->pTable; 2111 for(j=pIdx->nColumn-1; j>=0; j--){ 2112 int x = pIdx->aiColumn[j]; 2113 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2114 testcase( x==BMS-1 ); 2115 testcase( x==BMS-2 ); 2116 if( x<BMS-1 ) m |= MASKBIT(x); 2117 } 2118 } 2119 pIdx->colNotIdxed = ~m; 2120 assert( (pIdx->colNotIdxed>>63)==1 ); 2121 } 2122 2123 /* 2124 ** This routine runs at the end of parsing a CREATE TABLE statement that 2125 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2126 ** internal schema data structures and the generated VDBE code so that they 2127 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2128 ** Changes include: 2129 ** 2130 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2131 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2132 ** into BTREE_BLOBKEY. 2133 ** (3) Bypass the creation of the sqlite_schema table entry 2134 ** for the PRIMARY KEY as the primary key index is now 2135 ** identified by the sqlite_schema table entry of the table itself. 2136 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2137 ** schema to the rootpage from the main table. 2138 ** (5) Add all table columns to the PRIMARY KEY Index object 2139 ** so that the PRIMARY KEY is a covering index. The surplus 2140 ** columns are part of KeyInfo.nAllField and are not used for 2141 ** sorting or lookup or uniqueness checks. 2142 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2143 ** indices with the PRIMARY KEY columns. 2144 ** 2145 ** For virtual tables, only (1) is performed. 2146 */ 2147 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2148 Index *pIdx; 2149 Index *pPk; 2150 int nPk; 2151 int nExtra; 2152 int i, j; 2153 sqlite3 *db = pParse->db; 2154 Vdbe *v = pParse->pVdbe; 2155 2156 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2157 */ 2158 if( !db->init.imposterTable ){ 2159 for(i=0; i<pTab->nCol; i++){ 2160 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2161 pTab->aCol[i].notNull = OE_Abort; 2162 } 2163 } 2164 pTab->tabFlags |= TF_HasNotNull; 2165 } 2166 2167 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2168 ** into BTREE_BLOBKEY. 2169 */ 2170 assert( !pParse->bReturning ); 2171 if( pParse->u1.addrCrTab ){ 2172 assert( v ); 2173 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2174 } 2175 2176 /* Locate the PRIMARY KEY index. Or, if this table was originally 2177 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2178 */ 2179 if( pTab->iPKey>=0 ){ 2180 ExprList *pList; 2181 Token ipkToken; 2182 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2183 pList = sqlite3ExprListAppend(pParse, 0, 2184 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2185 if( pList==0 ){ 2186 pTab->tabFlags &= ~TF_WithoutRowid; 2187 return; 2188 } 2189 if( IN_RENAME_OBJECT ){ 2190 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2191 } 2192 pList->a[0].sortFlags = pParse->iPkSortOrder; 2193 assert( pParse->pNewTable==pTab ); 2194 pTab->iPKey = -1; 2195 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2196 SQLITE_IDXTYPE_PRIMARYKEY); 2197 if( db->mallocFailed || pParse->nErr ){ 2198 pTab->tabFlags &= ~TF_WithoutRowid; 2199 return; 2200 } 2201 pPk = sqlite3PrimaryKeyIndex(pTab); 2202 assert( pPk->nKeyCol==1 ); 2203 }else{ 2204 pPk = sqlite3PrimaryKeyIndex(pTab); 2205 assert( pPk!=0 ); 2206 2207 /* 2208 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2209 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2210 ** code assumes the PRIMARY KEY contains no repeated columns. 2211 */ 2212 for(i=j=1; i<pPk->nKeyCol; i++){ 2213 if( isDupColumn(pPk, j, pPk, i) ){ 2214 pPk->nColumn--; 2215 }else{ 2216 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2217 pPk->azColl[j] = pPk->azColl[i]; 2218 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2219 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2220 } 2221 } 2222 pPk->nKeyCol = j; 2223 } 2224 assert( pPk!=0 ); 2225 pPk->isCovering = 1; 2226 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2227 nPk = pPk->nColumn = pPk->nKeyCol; 2228 2229 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2230 ** table entry. This is only required if currently generating VDBE 2231 ** code for a CREATE TABLE (not when parsing one as part of reading 2232 ** a database schema). */ 2233 if( v && pPk->tnum>0 ){ 2234 assert( db->init.busy==0 ); 2235 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2236 } 2237 2238 /* The root page of the PRIMARY KEY is the table root page */ 2239 pPk->tnum = pTab->tnum; 2240 2241 /* Update the in-memory representation of all UNIQUE indices by converting 2242 ** the final rowid column into one or more columns of the PRIMARY KEY. 2243 */ 2244 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2245 int n; 2246 if( IsPrimaryKeyIndex(pIdx) ) continue; 2247 for(i=n=0; i<nPk; i++){ 2248 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2249 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2250 n++; 2251 } 2252 } 2253 if( n==0 ){ 2254 /* This index is a superset of the primary key */ 2255 pIdx->nColumn = pIdx->nKeyCol; 2256 continue; 2257 } 2258 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2259 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2260 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2261 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2262 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2263 pIdx->azColl[j] = pPk->azColl[i]; 2264 if( pPk->aSortOrder[i] ){ 2265 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2266 pIdx->bAscKeyBug = 1; 2267 } 2268 j++; 2269 } 2270 } 2271 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2272 assert( pIdx->nColumn>=j ); 2273 } 2274 2275 /* Add all table columns to the PRIMARY KEY index 2276 */ 2277 nExtra = 0; 2278 for(i=0; i<pTab->nCol; i++){ 2279 if( !hasColumn(pPk->aiColumn, nPk, i) 2280 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2281 } 2282 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2283 for(i=0, j=nPk; i<pTab->nCol; i++){ 2284 if( !hasColumn(pPk->aiColumn, j, i) 2285 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2286 ){ 2287 assert( j<pPk->nColumn ); 2288 pPk->aiColumn[j] = i; 2289 pPk->azColl[j] = sqlite3StrBINARY; 2290 j++; 2291 } 2292 } 2293 assert( pPk->nColumn==j ); 2294 assert( pTab->nNVCol<=j ); 2295 recomputeColumnsNotIndexed(pPk); 2296 } 2297 2298 2299 #ifndef SQLITE_OMIT_VIRTUALTABLE 2300 /* 2301 ** Return true if pTab is a virtual table and zName is a shadow table name 2302 ** for that virtual table. 2303 */ 2304 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2305 int nName; /* Length of zName */ 2306 Module *pMod; /* Module for the virtual table */ 2307 2308 if( !IsVirtual(pTab) ) return 0; 2309 nName = sqlite3Strlen30(pTab->zName); 2310 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2311 if( zName[nName]!='_' ) return 0; 2312 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2313 if( pMod==0 ) return 0; 2314 if( pMod->pModule->iVersion<3 ) return 0; 2315 if( pMod->pModule->xShadowName==0 ) return 0; 2316 return pMod->pModule->xShadowName(zName+nName+1); 2317 } 2318 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2319 2320 #ifndef SQLITE_OMIT_VIRTUALTABLE 2321 /* 2322 ** Return true if zName is a shadow table name in the current database 2323 ** connection. 2324 ** 2325 ** zName is temporarily modified while this routine is running, but is 2326 ** restored to its original value prior to this routine returning. 2327 */ 2328 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2329 char *zTail; /* Pointer to the last "_" in zName */ 2330 Table *pTab; /* Table that zName is a shadow of */ 2331 zTail = strrchr(zName, '_'); 2332 if( zTail==0 ) return 0; 2333 *zTail = 0; 2334 pTab = sqlite3FindTable(db, zName, 0); 2335 *zTail = '_'; 2336 if( pTab==0 ) return 0; 2337 if( !IsVirtual(pTab) ) return 0; 2338 return sqlite3IsShadowTableOf(db, pTab, zName); 2339 } 2340 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2341 2342 2343 #ifdef SQLITE_DEBUG 2344 /* 2345 ** Mark all nodes of an expression as EP_Immutable, indicating that 2346 ** they should not be changed. Expressions attached to a table or 2347 ** index definition are tagged this way to help ensure that we do 2348 ** not pass them into code generator routines by mistake. 2349 */ 2350 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2351 ExprSetVVAProperty(pExpr, EP_Immutable); 2352 return WRC_Continue; 2353 } 2354 static void markExprListImmutable(ExprList *pList){ 2355 if( pList ){ 2356 Walker w; 2357 memset(&w, 0, sizeof(w)); 2358 w.xExprCallback = markImmutableExprStep; 2359 w.xSelectCallback = sqlite3SelectWalkNoop; 2360 w.xSelectCallback2 = 0; 2361 sqlite3WalkExprList(&w, pList); 2362 } 2363 } 2364 #else 2365 #define markExprListImmutable(X) /* no-op */ 2366 #endif /* SQLITE_DEBUG */ 2367 2368 2369 /* 2370 ** This routine is called to report the final ")" that terminates 2371 ** a CREATE TABLE statement. 2372 ** 2373 ** The table structure that other action routines have been building 2374 ** is added to the internal hash tables, assuming no errors have 2375 ** occurred. 2376 ** 2377 ** An entry for the table is made in the schema table on disk, unless 2378 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2379 ** it means we are reading the sqlite_schema table because we just 2380 ** connected to the database or because the sqlite_schema table has 2381 ** recently changed, so the entry for this table already exists in 2382 ** the sqlite_schema table. We do not want to create it again. 2383 ** 2384 ** If the pSelect argument is not NULL, it means that this routine 2385 ** was called to create a table generated from a 2386 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2387 ** the new table will match the result set of the SELECT. 2388 */ 2389 void sqlite3EndTable( 2390 Parse *pParse, /* Parse context */ 2391 Token *pCons, /* The ',' token after the last column defn. */ 2392 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2393 u8 tabOpts, /* Extra table options. Usually 0. */ 2394 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2395 ){ 2396 Table *p; /* The new table */ 2397 sqlite3 *db = pParse->db; /* The database connection */ 2398 int iDb; /* Database in which the table lives */ 2399 Index *pIdx; /* An implied index of the table */ 2400 2401 if( pEnd==0 && pSelect==0 ){ 2402 return; 2403 } 2404 p = pParse->pNewTable; 2405 if( p==0 ) return; 2406 2407 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2408 p->tabFlags |= TF_Shadow; 2409 } 2410 2411 /* If the db->init.busy is 1 it means we are reading the SQL off the 2412 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2413 ** So do not write to the disk again. Extract the root page number 2414 ** for the table from the db->init.newTnum field. (The page number 2415 ** should have been put there by the sqliteOpenCb routine.) 2416 ** 2417 ** If the root page number is 1, that means this is the sqlite_schema 2418 ** table itself. So mark it read-only. 2419 */ 2420 if( db->init.busy ){ 2421 if( pSelect ){ 2422 sqlite3ErrorMsg(pParse, ""); 2423 return; 2424 } 2425 p->tnum = db->init.newTnum; 2426 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2427 } 2428 2429 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2430 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2431 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2432 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2433 2434 /* Special processing for WITHOUT ROWID Tables */ 2435 if( tabOpts & TF_WithoutRowid ){ 2436 if( (p->tabFlags & TF_Autoincrement) ){ 2437 sqlite3ErrorMsg(pParse, 2438 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2439 return; 2440 } 2441 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2442 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2443 return; 2444 } 2445 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2446 convertToWithoutRowidTable(pParse, p); 2447 } 2448 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2449 2450 #ifndef SQLITE_OMIT_CHECK 2451 /* Resolve names in all CHECK constraint expressions. 2452 */ 2453 if( p->pCheck ){ 2454 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2455 if( pParse->nErr ){ 2456 /* If errors are seen, delete the CHECK constraints now, else they might 2457 ** actually be used if PRAGMA writable_schema=ON is set. */ 2458 sqlite3ExprListDelete(db, p->pCheck); 2459 p->pCheck = 0; 2460 }else{ 2461 markExprListImmutable(p->pCheck); 2462 } 2463 } 2464 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2465 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2466 if( p->tabFlags & TF_HasGenerated ){ 2467 int ii, nNG = 0; 2468 testcase( p->tabFlags & TF_HasVirtual ); 2469 testcase( p->tabFlags & TF_HasStored ); 2470 for(ii=0; ii<p->nCol; ii++){ 2471 u32 colFlags = p->aCol[ii].colFlags; 2472 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2473 Expr *pX = p->aCol[ii].pDflt; 2474 testcase( colFlags & COLFLAG_VIRTUAL ); 2475 testcase( colFlags & COLFLAG_STORED ); 2476 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2477 /* If there are errors in resolving the expression, change the 2478 ** expression to a NULL. This prevents code generators that operate 2479 ** on the expression from inserting extra parts into the expression 2480 ** tree that have been allocated from lookaside memory, which is 2481 ** illegal in a schema and will lead to errors or heap corruption 2482 ** when the database connection closes. */ 2483 sqlite3ExprDelete(db, pX); 2484 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2485 } 2486 }else{ 2487 nNG++; 2488 } 2489 } 2490 if( nNG==0 ){ 2491 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2492 return; 2493 } 2494 } 2495 #endif 2496 2497 /* Estimate the average row size for the table and for all implied indices */ 2498 estimateTableWidth(p); 2499 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2500 estimateIndexWidth(pIdx); 2501 } 2502 2503 /* If not initializing, then create a record for the new table 2504 ** in the schema table of the database. 2505 ** 2506 ** If this is a TEMPORARY table, write the entry into the auxiliary 2507 ** file instead of into the main database file. 2508 */ 2509 if( !db->init.busy ){ 2510 int n; 2511 Vdbe *v; 2512 char *zType; /* "view" or "table" */ 2513 char *zType2; /* "VIEW" or "TABLE" */ 2514 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2515 2516 v = sqlite3GetVdbe(pParse); 2517 if( NEVER(v==0) ) return; 2518 2519 sqlite3VdbeAddOp1(v, OP_Close, 0); 2520 2521 /* 2522 ** Initialize zType for the new view or table. 2523 */ 2524 if( p->pSelect==0 ){ 2525 /* A regular table */ 2526 zType = "table"; 2527 zType2 = "TABLE"; 2528 #ifndef SQLITE_OMIT_VIEW 2529 }else{ 2530 /* A view */ 2531 zType = "view"; 2532 zType2 = "VIEW"; 2533 #endif 2534 } 2535 2536 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2537 ** statement to populate the new table. The root-page number for the 2538 ** new table is in register pParse->regRoot. 2539 ** 2540 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2541 ** suitable state to query for the column names and types to be used 2542 ** by the new table. 2543 ** 2544 ** A shared-cache write-lock is not required to write to the new table, 2545 ** as a schema-lock must have already been obtained to create it. Since 2546 ** a schema-lock excludes all other database users, the write-lock would 2547 ** be redundant. 2548 */ 2549 if( pSelect ){ 2550 SelectDest dest; /* Where the SELECT should store results */ 2551 int regYield; /* Register holding co-routine entry-point */ 2552 int addrTop; /* Top of the co-routine */ 2553 int regRec; /* A record to be insert into the new table */ 2554 int regRowid; /* Rowid of the next row to insert */ 2555 int addrInsLoop; /* Top of the loop for inserting rows */ 2556 Table *pSelTab; /* A table that describes the SELECT results */ 2557 2558 regYield = ++pParse->nMem; 2559 regRec = ++pParse->nMem; 2560 regRowid = ++pParse->nMem; 2561 assert(pParse->nTab==1); 2562 sqlite3MayAbort(pParse); 2563 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2564 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2565 pParse->nTab = 2; 2566 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2567 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2568 if( pParse->nErr ) return; 2569 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2570 if( pSelTab==0 ) return; 2571 assert( p->aCol==0 ); 2572 p->nCol = p->nNVCol = pSelTab->nCol; 2573 p->aCol = pSelTab->aCol; 2574 pSelTab->nCol = 0; 2575 pSelTab->aCol = 0; 2576 sqlite3DeleteTable(db, pSelTab); 2577 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2578 sqlite3Select(pParse, pSelect, &dest); 2579 if( pParse->nErr ) return; 2580 sqlite3VdbeEndCoroutine(v, regYield); 2581 sqlite3VdbeJumpHere(v, addrTop - 1); 2582 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2583 VdbeCoverage(v); 2584 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2585 sqlite3TableAffinity(v, p, 0); 2586 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2587 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2588 sqlite3VdbeGoto(v, addrInsLoop); 2589 sqlite3VdbeJumpHere(v, addrInsLoop); 2590 sqlite3VdbeAddOp1(v, OP_Close, 1); 2591 } 2592 2593 /* Compute the complete text of the CREATE statement */ 2594 if( pSelect ){ 2595 zStmt = createTableStmt(db, p); 2596 }else{ 2597 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2598 n = (int)(pEnd2->z - pParse->sNameToken.z); 2599 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2600 zStmt = sqlite3MPrintf(db, 2601 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2602 ); 2603 } 2604 2605 /* A slot for the record has already been allocated in the 2606 ** schema table. We just need to update that slot with all 2607 ** the information we've collected. 2608 */ 2609 sqlite3NestedParse(pParse, 2610 "UPDATE %Q." DFLT_SCHEMA_TABLE 2611 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2612 " WHERE rowid=#%d", 2613 db->aDb[iDb].zDbSName, 2614 zType, 2615 p->zName, 2616 p->zName, 2617 pParse->regRoot, 2618 zStmt, 2619 pParse->regRowid 2620 ); 2621 sqlite3DbFree(db, zStmt); 2622 sqlite3ChangeCookie(pParse, iDb); 2623 2624 #ifndef SQLITE_OMIT_AUTOINCREMENT 2625 /* Check to see if we need to create an sqlite_sequence table for 2626 ** keeping track of autoincrement keys. 2627 */ 2628 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2629 Db *pDb = &db->aDb[iDb]; 2630 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2631 if( pDb->pSchema->pSeqTab==0 ){ 2632 sqlite3NestedParse(pParse, 2633 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2634 pDb->zDbSName 2635 ); 2636 } 2637 } 2638 #endif 2639 2640 /* Reparse everything to update our internal data structures */ 2641 sqlite3VdbeAddParseSchemaOp(v, iDb, 2642 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2643 } 2644 2645 /* Add the table to the in-memory representation of the database. 2646 */ 2647 if( db->init.busy ){ 2648 Table *pOld; 2649 Schema *pSchema = p->pSchema; 2650 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2651 assert( HasRowid(p) || p->iPKey<0 ); 2652 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2653 if( pOld ){ 2654 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2655 sqlite3OomFault(db); 2656 return; 2657 } 2658 pParse->pNewTable = 0; 2659 db->mDbFlags |= DBFLAG_SchemaChange; 2660 2661 /* If this is the magic sqlite_sequence table used by autoincrement, 2662 ** then record a pointer to this table in the main database structure 2663 ** so that INSERT can find the table easily. */ 2664 assert( !pParse->nested ); 2665 #ifndef SQLITE_OMIT_AUTOINCREMENT 2666 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2667 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2668 p->pSchema->pSeqTab = p; 2669 } 2670 #endif 2671 } 2672 2673 #ifndef SQLITE_OMIT_ALTERTABLE 2674 if( !pSelect && !p->pSelect ){ 2675 assert( pCons && pEnd ); 2676 if( pCons->z==0 ){ 2677 pCons = pEnd; 2678 } 2679 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2680 } 2681 #endif 2682 } 2683 2684 #ifndef SQLITE_OMIT_VIEW 2685 /* 2686 ** The parser calls this routine in order to create a new VIEW 2687 */ 2688 void sqlite3CreateView( 2689 Parse *pParse, /* The parsing context */ 2690 Token *pBegin, /* The CREATE token that begins the statement */ 2691 Token *pName1, /* The token that holds the name of the view */ 2692 Token *pName2, /* The token that holds the name of the view */ 2693 ExprList *pCNames, /* Optional list of view column names */ 2694 Select *pSelect, /* A SELECT statement that will become the new view */ 2695 int isTemp, /* TRUE for a TEMPORARY view */ 2696 int noErr /* Suppress error messages if VIEW already exists */ 2697 ){ 2698 Table *p; 2699 int n; 2700 const char *z; 2701 Token sEnd; 2702 DbFixer sFix; 2703 Token *pName = 0; 2704 int iDb; 2705 sqlite3 *db = pParse->db; 2706 2707 if( pParse->nVar>0 ){ 2708 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2709 goto create_view_fail; 2710 } 2711 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2712 p = pParse->pNewTable; 2713 if( p==0 || pParse->nErr ) goto create_view_fail; 2714 2715 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2716 ** on a view, even though views do not have rowids. The following flag 2717 ** setting fixes this problem. But the fix can be disabled by compiling 2718 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2719 ** depend upon the old buggy behavior. */ 2720 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2721 p->tabFlags |= TF_NoVisibleRowid; 2722 #endif 2723 2724 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2725 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2726 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2727 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2728 2729 /* Make a copy of the entire SELECT statement that defines the view. 2730 ** This will force all the Expr.token.z values to be dynamically 2731 ** allocated rather than point to the input string - which means that 2732 ** they will persist after the current sqlite3_exec() call returns. 2733 */ 2734 pSelect->selFlags |= SF_View; 2735 if( IN_RENAME_OBJECT ){ 2736 p->pSelect = pSelect; 2737 pSelect = 0; 2738 }else{ 2739 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2740 } 2741 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2742 if( db->mallocFailed ) goto create_view_fail; 2743 2744 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2745 ** the end. 2746 */ 2747 sEnd = pParse->sLastToken; 2748 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2749 if( sEnd.z[0]!=';' ){ 2750 sEnd.z += sEnd.n; 2751 } 2752 sEnd.n = 0; 2753 n = (int)(sEnd.z - pBegin->z); 2754 assert( n>0 ); 2755 z = pBegin->z; 2756 while( sqlite3Isspace(z[n-1]) ){ n--; } 2757 sEnd.z = &z[n-1]; 2758 sEnd.n = 1; 2759 2760 /* Use sqlite3EndTable() to add the view to the schema table */ 2761 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2762 2763 create_view_fail: 2764 sqlite3SelectDelete(db, pSelect); 2765 if( IN_RENAME_OBJECT ){ 2766 sqlite3RenameExprlistUnmap(pParse, pCNames); 2767 } 2768 sqlite3ExprListDelete(db, pCNames); 2769 return; 2770 } 2771 #endif /* SQLITE_OMIT_VIEW */ 2772 2773 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2774 /* 2775 ** The Table structure pTable is really a VIEW. Fill in the names of 2776 ** the columns of the view in the pTable structure. Return the number 2777 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2778 */ 2779 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2780 Table *pSelTab; /* A fake table from which we get the result set */ 2781 Select *pSel; /* Copy of the SELECT that implements the view */ 2782 int nErr = 0; /* Number of errors encountered */ 2783 int n; /* Temporarily holds the number of cursors assigned */ 2784 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2785 #ifndef SQLITE_OMIT_VIRTUALTABLE 2786 int rc; 2787 #endif 2788 #ifndef SQLITE_OMIT_AUTHORIZATION 2789 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2790 #endif 2791 2792 assert( pTable ); 2793 2794 #ifndef SQLITE_OMIT_VIRTUALTABLE 2795 db->nSchemaLock++; 2796 rc = sqlite3VtabCallConnect(pParse, pTable); 2797 db->nSchemaLock--; 2798 if( rc ){ 2799 return 1; 2800 } 2801 if( IsVirtual(pTable) ) return 0; 2802 #endif 2803 2804 #ifndef SQLITE_OMIT_VIEW 2805 /* A positive nCol means the columns names for this view are 2806 ** already known. 2807 */ 2808 if( pTable->nCol>0 ) return 0; 2809 2810 /* A negative nCol is a special marker meaning that we are currently 2811 ** trying to compute the column names. If we enter this routine with 2812 ** a negative nCol, it means two or more views form a loop, like this: 2813 ** 2814 ** CREATE VIEW one AS SELECT * FROM two; 2815 ** CREATE VIEW two AS SELECT * FROM one; 2816 ** 2817 ** Actually, the error above is now caught prior to reaching this point. 2818 ** But the following test is still important as it does come up 2819 ** in the following: 2820 ** 2821 ** CREATE TABLE main.ex1(a); 2822 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2823 ** SELECT * FROM temp.ex1; 2824 */ 2825 if( pTable->nCol<0 ){ 2826 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2827 return 1; 2828 } 2829 assert( pTable->nCol>=0 ); 2830 2831 /* If we get this far, it means we need to compute the table names. 2832 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2833 ** "*" elements in the results set of the view and will assign cursors 2834 ** to the elements of the FROM clause. But we do not want these changes 2835 ** to be permanent. So the computation is done on a copy of the SELECT 2836 ** statement that defines the view. 2837 */ 2838 assert( pTable->pSelect ); 2839 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2840 if( pSel ){ 2841 u8 eParseMode = pParse->eParseMode; 2842 pParse->eParseMode = PARSE_MODE_NORMAL; 2843 n = pParse->nTab; 2844 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2845 pTable->nCol = -1; 2846 DisableLookaside; 2847 #ifndef SQLITE_OMIT_AUTHORIZATION 2848 xAuth = db->xAuth; 2849 db->xAuth = 0; 2850 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2851 db->xAuth = xAuth; 2852 #else 2853 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2854 #endif 2855 pParse->nTab = n; 2856 if( pSelTab==0 ){ 2857 pTable->nCol = 0; 2858 nErr++; 2859 }else if( pTable->pCheck ){ 2860 /* CREATE VIEW name(arglist) AS ... 2861 ** The names of the columns in the table are taken from 2862 ** arglist which is stored in pTable->pCheck. The pCheck field 2863 ** normally holds CHECK constraints on an ordinary table, but for 2864 ** a VIEW it holds the list of column names. 2865 */ 2866 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2867 &pTable->nCol, &pTable->aCol); 2868 if( db->mallocFailed==0 2869 && pParse->nErr==0 2870 && pTable->nCol==pSel->pEList->nExpr 2871 ){ 2872 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2873 SQLITE_AFF_NONE); 2874 } 2875 }else{ 2876 /* CREATE VIEW name AS... without an argument list. Construct 2877 ** the column names from the SELECT statement that defines the view. 2878 */ 2879 assert( pTable->aCol==0 ); 2880 pTable->nCol = pSelTab->nCol; 2881 pTable->aCol = pSelTab->aCol; 2882 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 2883 pSelTab->nCol = 0; 2884 pSelTab->aCol = 0; 2885 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2886 } 2887 pTable->nNVCol = pTable->nCol; 2888 sqlite3DeleteTable(db, pSelTab); 2889 sqlite3SelectDelete(db, pSel); 2890 EnableLookaside; 2891 pParse->eParseMode = eParseMode; 2892 } else { 2893 nErr++; 2894 } 2895 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2896 if( db->mallocFailed ){ 2897 sqlite3DeleteColumnNames(db, pTable); 2898 pTable->aCol = 0; 2899 pTable->nCol = 0; 2900 } 2901 #endif /* SQLITE_OMIT_VIEW */ 2902 return nErr; 2903 } 2904 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2905 2906 #ifndef SQLITE_OMIT_VIEW 2907 /* 2908 ** Clear the column names from every VIEW in database idx. 2909 */ 2910 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2911 HashElem *i; 2912 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2913 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2914 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2915 Table *pTab = sqliteHashData(i); 2916 if( pTab->pSelect ){ 2917 sqlite3DeleteColumnNames(db, pTab); 2918 pTab->aCol = 0; 2919 pTab->nCol = 0; 2920 } 2921 } 2922 DbClearProperty(db, idx, DB_UnresetViews); 2923 } 2924 #else 2925 # define sqliteViewResetAll(A,B) 2926 #endif /* SQLITE_OMIT_VIEW */ 2927 2928 /* 2929 ** This function is called by the VDBE to adjust the internal schema 2930 ** used by SQLite when the btree layer moves a table root page. The 2931 ** root-page of a table or index in database iDb has changed from iFrom 2932 ** to iTo. 2933 ** 2934 ** Ticket #1728: The symbol table might still contain information 2935 ** on tables and/or indices that are the process of being deleted. 2936 ** If you are unlucky, one of those deleted indices or tables might 2937 ** have the same rootpage number as the real table or index that is 2938 ** being moved. So we cannot stop searching after the first match 2939 ** because the first match might be for one of the deleted indices 2940 ** or tables and not the table/index that is actually being moved. 2941 ** We must continue looping until all tables and indices with 2942 ** rootpage==iFrom have been converted to have a rootpage of iTo 2943 ** in order to be certain that we got the right one. 2944 */ 2945 #ifndef SQLITE_OMIT_AUTOVACUUM 2946 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2947 HashElem *pElem; 2948 Hash *pHash; 2949 Db *pDb; 2950 2951 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2952 pDb = &db->aDb[iDb]; 2953 pHash = &pDb->pSchema->tblHash; 2954 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2955 Table *pTab = sqliteHashData(pElem); 2956 if( pTab->tnum==iFrom ){ 2957 pTab->tnum = iTo; 2958 } 2959 } 2960 pHash = &pDb->pSchema->idxHash; 2961 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2962 Index *pIdx = sqliteHashData(pElem); 2963 if( pIdx->tnum==iFrom ){ 2964 pIdx->tnum = iTo; 2965 } 2966 } 2967 } 2968 #endif 2969 2970 /* 2971 ** Write code to erase the table with root-page iTable from database iDb. 2972 ** Also write code to modify the sqlite_schema table and internal schema 2973 ** if a root-page of another table is moved by the btree-layer whilst 2974 ** erasing iTable (this can happen with an auto-vacuum database). 2975 */ 2976 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2977 Vdbe *v = sqlite3GetVdbe(pParse); 2978 int r1 = sqlite3GetTempReg(pParse); 2979 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2980 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2981 sqlite3MayAbort(pParse); 2982 #ifndef SQLITE_OMIT_AUTOVACUUM 2983 /* OP_Destroy stores an in integer r1. If this integer 2984 ** is non-zero, then it is the root page number of a table moved to 2985 ** location iTable. The following code modifies the sqlite_schema table to 2986 ** reflect this. 2987 ** 2988 ** The "#NNN" in the SQL is a special constant that means whatever value 2989 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2990 ** token for additional information. 2991 */ 2992 sqlite3NestedParse(pParse, 2993 "UPDATE %Q." DFLT_SCHEMA_TABLE 2994 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2995 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2996 #endif 2997 sqlite3ReleaseTempReg(pParse, r1); 2998 } 2999 3000 /* 3001 ** Write VDBE code to erase table pTab and all associated indices on disk. 3002 ** Code to update the sqlite_schema tables and internal schema definitions 3003 ** in case a root-page belonging to another table is moved by the btree layer 3004 ** is also added (this can happen with an auto-vacuum database). 3005 */ 3006 static void destroyTable(Parse *pParse, Table *pTab){ 3007 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3008 ** is not defined), then it is important to call OP_Destroy on the 3009 ** table and index root-pages in order, starting with the numerically 3010 ** largest root-page number. This guarantees that none of the root-pages 3011 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3012 ** following were coded: 3013 ** 3014 ** OP_Destroy 4 0 3015 ** ... 3016 ** OP_Destroy 5 0 3017 ** 3018 ** and root page 5 happened to be the largest root-page number in the 3019 ** database, then root page 5 would be moved to page 4 by the 3020 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3021 ** a free-list page. 3022 */ 3023 Pgno iTab = pTab->tnum; 3024 Pgno iDestroyed = 0; 3025 3026 while( 1 ){ 3027 Index *pIdx; 3028 Pgno iLargest = 0; 3029 3030 if( iDestroyed==0 || iTab<iDestroyed ){ 3031 iLargest = iTab; 3032 } 3033 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3034 Pgno iIdx = pIdx->tnum; 3035 assert( pIdx->pSchema==pTab->pSchema ); 3036 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3037 iLargest = iIdx; 3038 } 3039 } 3040 if( iLargest==0 ){ 3041 return; 3042 }else{ 3043 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3044 assert( iDb>=0 && iDb<pParse->db->nDb ); 3045 destroyRootPage(pParse, iLargest, iDb); 3046 iDestroyed = iLargest; 3047 } 3048 } 3049 } 3050 3051 /* 3052 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3053 ** after a DROP INDEX or DROP TABLE command. 3054 */ 3055 static void sqlite3ClearStatTables( 3056 Parse *pParse, /* The parsing context */ 3057 int iDb, /* The database number */ 3058 const char *zType, /* "idx" or "tbl" */ 3059 const char *zName /* Name of index or table */ 3060 ){ 3061 int i; 3062 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3063 for(i=1; i<=4; i++){ 3064 char zTab[24]; 3065 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3066 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3067 sqlite3NestedParse(pParse, 3068 "DELETE FROM %Q.%s WHERE %s=%Q", 3069 zDbName, zTab, zType, zName 3070 ); 3071 } 3072 } 3073 } 3074 3075 /* 3076 ** Generate code to drop a table. 3077 */ 3078 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3079 Vdbe *v; 3080 sqlite3 *db = pParse->db; 3081 Trigger *pTrigger; 3082 Db *pDb = &db->aDb[iDb]; 3083 3084 v = sqlite3GetVdbe(pParse); 3085 assert( v!=0 ); 3086 sqlite3BeginWriteOperation(pParse, 1, iDb); 3087 3088 #ifndef SQLITE_OMIT_VIRTUALTABLE 3089 if( IsVirtual(pTab) ){ 3090 sqlite3VdbeAddOp0(v, OP_VBegin); 3091 } 3092 #endif 3093 3094 /* Drop all triggers associated with the table being dropped. Code 3095 ** is generated to remove entries from sqlite_schema and/or 3096 ** sqlite_temp_schema if required. 3097 */ 3098 pTrigger = sqlite3TriggerList(pParse, pTab); 3099 while( pTrigger ){ 3100 assert( pTrigger->pSchema==pTab->pSchema || 3101 pTrigger->pSchema==db->aDb[1].pSchema ); 3102 sqlite3DropTriggerPtr(pParse, pTrigger); 3103 pTrigger = pTrigger->pNext; 3104 } 3105 3106 #ifndef SQLITE_OMIT_AUTOINCREMENT 3107 /* Remove any entries of the sqlite_sequence table associated with 3108 ** the table being dropped. This is done before the table is dropped 3109 ** at the btree level, in case the sqlite_sequence table needs to 3110 ** move as a result of the drop (can happen in auto-vacuum mode). 3111 */ 3112 if( pTab->tabFlags & TF_Autoincrement ){ 3113 sqlite3NestedParse(pParse, 3114 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3115 pDb->zDbSName, pTab->zName 3116 ); 3117 } 3118 #endif 3119 3120 /* Drop all entries in the schema table that refer to the 3121 ** table. The program name loops through the schema table and deletes 3122 ** every row that refers to a table of the same name as the one being 3123 ** dropped. Triggers are handled separately because a trigger can be 3124 ** created in the temp database that refers to a table in another 3125 ** database. 3126 */ 3127 sqlite3NestedParse(pParse, 3128 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3129 " WHERE tbl_name=%Q and type!='trigger'", 3130 pDb->zDbSName, pTab->zName); 3131 if( !isView && !IsVirtual(pTab) ){ 3132 destroyTable(pParse, pTab); 3133 } 3134 3135 /* Remove the table entry from SQLite's internal schema and modify 3136 ** the schema cookie. 3137 */ 3138 if( IsVirtual(pTab) ){ 3139 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3140 sqlite3MayAbort(pParse); 3141 } 3142 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3143 sqlite3ChangeCookie(pParse, iDb); 3144 sqliteViewResetAll(db, iDb); 3145 } 3146 3147 /* 3148 ** Return TRUE if shadow tables should be read-only in the current 3149 ** context. 3150 */ 3151 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3152 #ifndef SQLITE_OMIT_VIRTUALTABLE 3153 if( (db->flags & SQLITE_Defensive)!=0 3154 && db->pVtabCtx==0 3155 && db->nVdbeExec==0 3156 ){ 3157 return 1; 3158 } 3159 #endif 3160 return 0; 3161 } 3162 3163 /* 3164 ** Return true if it is not allowed to drop the given table 3165 */ 3166 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3167 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3168 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3169 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3170 return 1; 3171 } 3172 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3173 return 1; 3174 } 3175 return 0; 3176 } 3177 3178 /* 3179 ** This routine is called to do the work of a DROP TABLE statement. 3180 ** pName is the name of the table to be dropped. 3181 */ 3182 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3183 Table *pTab; 3184 Vdbe *v; 3185 sqlite3 *db = pParse->db; 3186 int iDb; 3187 3188 if( db->mallocFailed ){ 3189 goto exit_drop_table; 3190 } 3191 assert( pParse->nErr==0 ); 3192 assert( pName->nSrc==1 ); 3193 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3194 if( noErr ) db->suppressErr++; 3195 assert( isView==0 || isView==LOCATE_VIEW ); 3196 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3197 if( noErr ) db->suppressErr--; 3198 3199 if( pTab==0 ){ 3200 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3201 goto exit_drop_table; 3202 } 3203 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3204 assert( iDb>=0 && iDb<db->nDb ); 3205 3206 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3207 ** it is initialized. 3208 */ 3209 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3210 goto exit_drop_table; 3211 } 3212 #ifndef SQLITE_OMIT_AUTHORIZATION 3213 { 3214 int code; 3215 const char *zTab = SCHEMA_TABLE(iDb); 3216 const char *zDb = db->aDb[iDb].zDbSName; 3217 const char *zArg2 = 0; 3218 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3219 goto exit_drop_table; 3220 } 3221 if( isView ){ 3222 if( !OMIT_TEMPDB && iDb==1 ){ 3223 code = SQLITE_DROP_TEMP_VIEW; 3224 }else{ 3225 code = SQLITE_DROP_VIEW; 3226 } 3227 #ifndef SQLITE_OMIT_VIRTUALTABLE 3228 }else if( IsVirtual(pTab) ){ 3229 code = SQLITE_DROP_VTABLE; 3230 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3231 #endif 3232 }else{ 3233 if( !OMIT_TEMPDB && iDb==1 ){ 3234 code = SQLITE_DROP_TEMP_TABLE; 3235 }else{ 3236 code = SQLITE_DROP_TABLE; 3237 } 3238 } 3239 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3240 goto exit_drop_table; 3241 } 3242 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3243 goto exit_drop_table; 3244 } 3245 } 3246 #endif 3247 if( tableMayNotBeDropped(db, pTab) ){ 3248 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3249 goto exit_drop_table; 3250 } 3251 3252 #ifndef SQLITE_OMIT_VIEW 3253 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3254 ** on a table. 3255 */ 3256 if( isView && pTab->pSelect==0 ){ 3257 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3258 goto exit_drop_table; 3259 } 3260 if( !isView && pTab->pSelect ){ 3261 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3262 goto exit_drop_table; 3263 } 3264 #endif 3265 3266 /* Generate code to remove the table from the schema table 3267 ** on disk. 3268 */ 3269 v = sqlite3GetVdbe(pParse); 3270 if( v ){ 3271 sqlite3BeginWriteOperation(pParse, 1, iDb); 3272 if( !isView ){ 3273 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3274 sqlite3FkDropTable(pParse, pName, pTab); 3275 } 3276 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3277 } 3278 3279 exit_drop_table: 3280 sqlite3SrcListDelete(db, pName); 3281 } 3282 3283 /* 3284 ** This routine is called to create a new foreign key on the table 3285 ** currently under construction. pFromCol determines which columns 3286 ** in the current table point to the foreign key. If pFromCol==0 then 3287 ** connect the key to the last column inserted. pTo is the name of 3288 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3289 ** of tables in the parent pTo table. flags contains all 3290 ** information about the conflict resolution algorithms specified 3291 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3292 ** 3293 ** An FKey structure is created and added to the table currently 3294 ** under construction in the pParse->pNewTable field. 3295 ** 3296 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3297 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3298 */ 3299 void sqlite3CreateForeignKey( 3300 Parse *pParse, /* Parsing context */ 3301 ExprList *pFromCol, /* Columns in this table that point to other table */ 3302 Token *pTo, /* Name of the other table */ 3303 ExprList *pToCol, /* Columns in the other table */ 3304 int flags /* Conflict resolution algorithms. */ 3305 ){ 3306 sqlite3 *db = pParse->db; 3307 #ifndef SQLITE_OMIT_FOREIGN_KEY 3308 FKey *pFKey = 0; 3309 FKey *pNextTo; 3310 Table *p = pParse->pNewTable; 3311 int nByte; 3312 int i; 3313 int nCol; 3314 char *z; 3315 3316 assert( pTo!=0 ); 3317 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3318 if( pFromCol==0 ){ 3319 int iCol = p->nCol-1; 3320 if( NEVER(iCol<0) ) goto fk_end; 3321 if( pToCol && pToCol->nExpr!=1 ){ 3322 sqlite3ErrorMsg(pParse, "foreign key on %s" 3323 " should reference only one column of table %T", 3324 p->aCol[iCol].zName, pTo); 3325 goto fk_end; 3326 } 3327 nCol = 1; 3328 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3329 sqlite3ErrorMsg(pParse, 3330 "number of columns in foreign key does not match the number of " 3331 "columns in the referenced table"); 3332 goto fk_end; 3333 }else{ 3334 nCol = pFromCol->nExpr; 3335 } 3336 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3337 if( pToCol ){ 3338 for(i=0; i<pToCol->nExpr; i++){ 3339 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3340 } 3341 } 3342 pFKey = sqlite3DbMallocZero(db, nByte ); 3343 if( pFKey==0 ){ 3344 goto fk_end; 3345 } 3346 pFKey->pFrom = p; 3347 pFKey->pNextFrom = p->pFKey; 3348 z = (char*)&pFKey->aCol[nCol]; 3349 pFKey->zTo = z; 3350 if( IN_RENAME_OBJECT ){ 3351 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3352 } 3353 memcpy(z, pTo->z, pTo->n); 3354 z[pTo->n] = 0; 3355 sqlite3Dequote(z); 3356 z += pTo->n+1; 3357 pFKey->nCol = nCol; 3358 if( pFromCol==0 ){ 3359 pFKey->aCol[0].iFrom = p->nCol-1; 3360 }else{ 3361 for(i=0; i<nCol; i++){ 3362 int j; 3363 for(j=0; j<p->nCol; j++){ 3364 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3365 pFKey->aCol[i].iFrom = j; 3366 break; 3367 } 3368 } 3369 if( j>=p->nCol ){ 3370 sqlite3ErrorMsg(pParse, 3371 "unknown column \"%s\" in foreign key definition", 3372 pFromCol->a[i].zEName); 3373 goto fk_end; 3374 } 3375 if( IN_RENAME_OBJECT ){ 3376 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3377 } 3378 } 3379 } 3380 if( pToCol ){ 3381 for(i=0; i<nCol; i++){ 3382 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3383 pFKey->aCol[i].zCol = z; 3384 if( IN_RENAME_OBJECT ){ 3385 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3386 } 3387 memcpy(z, pToCol->a[i].zEName, n); 3388 z[n] = 0; 3389 z += n+1; 3390 } 3391 } 3392 pFKey->isDeferred = 0; 3393 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3394 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3395 3396 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3397 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3398 pFKey->zTo, (void *)pFKey 3399 ); 3400 if( pNextTo==pFKey ){ 3401 sqlite3OomFault(db); 3402 goto fk_end; 3403 } 3404 if( pNextTo ){ 3405 assert( pNextTo->pPrevTo==0 ); 3406 pFKey->pNextTo = pNextTo; 3407 pNextTo->pPrevTo = pFKey; 3408 } 3409 3410 /* Link the foreign key to the table as the last step. 3411 */ 3412 p->pFKey = pFKey; 3413 pFKey = 0; 3414 3415 fk_end: 3416 sqlite3DbFree(db, pFKey); 3417 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3418 sqlite3ExprListDelete(db, pFromCol); 3419 sqlite3ExprListDelete(db, pToCol); 3420 } 3421 3422 /* 3423 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3424 ** clause is seen as part of a foreign key definition. The isDeferred 3425 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3426 ** The behavior of the most recently created foreign key is adjusted 3427 ** accordingly. 3428 */ 3429 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3430 #ifndef SQLITE_OMIT_FOREIGN_KEY 3431 Table *pTab; 3432 FKey *pFKey; 3433 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3434 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3435 pFKey->isDeferred = (u8)isDeferred; 3436 #endif 3437 } 3438 3439 /* 3440 ** Generate code that will erase and refill index *pIdx. This is 3441 ** used to initialize a newly created index or to recompute the 3442 ** content of an index in response to a REINDEX command. 3443 ** 3444 ** if memRootPage is not negative, it means that the index is newly 3445 ** created. The register specified by memRootPage contains the 3446 ** root page number of the index. If memRootPage is negative, then 3447 ** the index already exists and must be cleared before being refilled and 3448 ** the root page number of the index is taken from pIndex->tnum. 3449 */ 3450 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3451 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3452 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3453 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3454 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3455 int addr1; /* Address of top of loop */ 3456 int addr2; /* Address to jump to for next iteration */ 3457 Pgno tnum; /* Root page of index */ 3458 int iPartIdxLabel; /* Jump to this label to skip a row */ 3459 Vdbe *v; /* Generate code into this virtual machine */ 3460 KeyInfo *pKey; /* KeyInfo for index */ 3461 int regRecord; /* Register holding assembled index record */ 3462 sqlite3 *db = pParse->db; /* The database connection */ 3463 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3464 3465 #ifndef SQLITE_OMIT_AUTHORIZATION 3466 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3467 db->aDb[iDb].zDbSName ) ){ 3468 return; 3469 } 3470 #endif 3471 3472 /* Require a write-lock on the table to perform this operation */ 3473 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3474 3475 v = sqlite3GetVdbe(pParse); 3476 if( v==0 ) return; 3477 if( memRootPage>=0 ){ 3478 tnum = (Pgno)memRootPage; 3479 }else{ 3480 tnum = pIndex->tnum; 3481 } 3482 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3483 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3484 3485 /* Open the sorter cursor if we are to use one. */ 3486 iSorter = pParse->nTab++; 3487 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3488 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3489 3490 /* Open the table. Loop through all rows of the table, inserting index 3491 ** records into the sorter. */ 3492 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3493 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3494 regRecord = sqlite3GetTempReg(pParse); 3495 sqlite3MultiWrite(pParse); 3496 3497 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3498 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3499 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3500 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3501 sqlite3VdbeJumpHere(v, addr1); 3502 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3503 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3504 (char *)pKey, P4_KEYINFO); 3505 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3506 3507 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3508 if( IsUniqueIndex(pIndex) ){ 3509 int j2 = sqlite3VdbeGoto(v, 1); 3510 addr2 = sqlite3VdbeCurrentAddr(v); 3511 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3512 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3513 pIndex->nKeyCol); VdbeCoverage(v); 3514 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3515 sqlite3VdbeJumpHere(v, j2); 3516 }else{ 3517 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3518 ** abort. The exception is if one of the indexed expressions contains a 3519 ** user function that throws an exception when it is evaluated. But the 3520 ** overhead of adding a statement journal to a CREATE INDEX statement is 3521 ** very small (since most of the pages written do not contain content that 3522 ** needs to be restored if the statement aborts), so we call 3523 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3524 sqlite3MayAbort(pParse); 3525 addr2 = sqlite3VdbeCurrentAddr(v); 3526 } 3527 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3528 if( !pIndex->bAscKeyBug ){ 3529 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3530 ** faster by avoiding unnecessary seeks. But the optimization does 3531 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3532 ** with DESC primary keys, since those indexes have there keys in 3533 ** a different order from the main table. 3534 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3535 */ 3536 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3537 } 3538 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3539 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3540 sqlite3ReleaseTempReg(pParse, regRecord); 3541 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3542 sqlite3VdbeJumpHere(v, addr1); 3543 3544 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3545 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3546 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3547 } 3548 3549 /* 3550 ** Allocate heap space to hold an Index object with nCol columns. 3551 ** 3552 ** Increase the allocation size to provide an extra nExtra bytes 3553 ** of 8-byte aligned space after the Index object and return a 3554 ** pointer to this extra space in *ppExtra. 3555 */ 3556 Index *sqlite3AllocateIndexObject( 3557 sqlite3 *db, /* Database connection */ 3558 i16 nCol, /* Total number of columns in the index */ 3559 int nExtra, /* Number of bytes of extra space to alloc */ 3560 char **ppExtra /* Pointer to the "extra" space */ 3561 ){ 3562 Index *p; /* Allocated index object */ 3563 int nByte; /* Bytes of space for Index object + arrays */ 3564 3565 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3566 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3567 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3568 sizeof(i16)*nCol + /* Index.aiColumn */ 3569 sizeof(u8)*nCol); /* Index.aSortOrder */ 3570 p = sqlite3DbMallocZero(db, nByte + nExtra); 3571 if( p ){ 3572 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3573 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3574 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3575 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3576 p->aSortOrder = (u8*)pExtra; 3577 p->nColumn = nCol; 3578 p->nKeyCol = nCol - 1; 3579 *ppExtra = ((char*)p) + nByte; 3580 } 3581 return p; 3582 } 3583 3584 /* 3585 ** If expression list pList contains an expression that was parsed with 3586 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3587 ** pParse and return non-zero. Otherwise, return zero. 3588 */ 3589 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3590 if( pList ){ 3591 int i; 3592 for(i=0; i<pList->nExpr; i++){ 3593 if( pList->a[i].bNulls ){ 3594 u8 sf = pList->a[i].sortFlags; 3595 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3596 (sf==0 || sf==3) ? "FIRST" : "LAST" 3597 ); 3598 return 1; 3599 } 3600 } 3601 } 3602 return 0; 3603 } 3604 3605 /* 3606 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3607 ** and pTblList is the name of the table that is to be indexed. Both will 3608 ** be NULL for a primary key or an index that is created to satisfy a 3609 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3610 ** as the table to be indexed. pParse->pNewTable is a table that is 3611 ** currently being constructed by a CREATE TABLE statement. 3612 ** 3613 ** pList is a list of columns to be indexed. pList will be NULL if this 3614 ** is a primary key or unique-constraint on the most recent column added 3615 ** to the table currently under construction. 3616 */ 3617 void sqlite3CreateIndex( 3618 Parse *pParse, /* All information about this parse */ 3619 Token *pName1, /* First part of index name. May be NULL */ 3620 Token *pName2, /* Second part of index name. May be NULL */ 3621 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3622 ExprList *pList, /* A list of columns to be indexed */ 3623 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3624 Token *pStart, /* The CREATE token that begins this statement */ 3625 Expr *pPIWhere, /* WHERE clause for partial indices */ 3626 int sortOrder, /* Sort order of primary key when pList==NULL */ 3627 int ifNotExist, /* Omit error if index already exists */ 3628 u8 idxType /* The index type */ 3629 ){ 3630 Table *pTab = 0; /* Table to be indexed */ 3631 Index *pIndex = 0; /* The index to be created */ 3632 char *zName = 0; /* Name of the index */ 3633 int nName; /* Number of characters in zName */ 3634 int i, j; 3635 DbFixer sFix; /* For assigning database names to pTable */ 3636 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3637 sqlite3 *db = pParse->db; 3638 Db *pDb; /* The specific table containing the indexed database */ 3639 int iDb; /* Index of the database that is being written */ 3640 Token *pName = 0; /* Unqualified name of the index to create */ 3641 struct ExprList_item *pListItem; /* For looping over pList */ 3642 int nExtra = 0; /* Space allocated for zExtra[] */ 3643 int nExtraCol; /* Number of extra columns needed */ 3644 char *zExtra = 0; /* Extra space after the Index object */ 3645 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3646 3647 if( db->mallocFailed || pParse->nErr>0 ){ 3648 goto exit_create_index; 3649 } 3650 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3651 goto exit_create_index; 3652 } 3653 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3654 goto exit_create_index; 3655 } 3656 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3657 goto exit_create_index; 3658 } 3659 3660 /* 3661 ** Find the table that is to be indexed. Return early if not found. 3662 */ 3663 if( pTblName!=0 ){ 3664 3665 /* Use the two-part index name to determine the database 3666 ** to search for the table. 'Fix' the table name to this db 3667 ** before looking up the table. 3668 */ 3669 assert( pName1 && pName2 ); 3670 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3671 if( iDb<0 ) goto exit_create_index; 3672 assert( pName && pName->z ); 3673 3674 #ifndef SQLITE_OMIT_TEMPDB 3675 /* If the index name was unqualified, check if the table 3676 ** is a temp table. If so, set the database to 1. Do not do this 3677 ** if initialising a database schema. 3678 */ 3679 if( !db->init.busy ){ 3680 pTab = sqlite3SrcListLookup(pParse, pTblName); 3681 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3682 iDb = 1; 3683 } 3684 } 3685 #endif 3686 3687 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3688 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3689 /* Because the parser constructs pTblName from a single identifier, 3690 ** sqlite3FixSrcList can never fail. */ 3691 assert(0); 3692 } 3693 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3694 assert( db->mallocFailed==0 || pTab==0 ); 3695 if( pTab==0 ) goto exit_create_index; 3696 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3697 sqlite3ErrorMsg(pParse, 3698 "cannot create a TEMP index on non-TEMP table \"%s\"", 3699 pTab->zName); 3700 goto exit_create_index; 3701 } 3702 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3703 }else{ 3704 assert( pName==0 ); 3705 assert( pStart==0 ); 3706 pTab = pParse->pNewTable; 3707 if( !pTab ) goto exit_create_index; 3708 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3709 } 3710 pDb = &db->aDb[iDb]; 3711 3712 assert( pTab!=0 ); 3713 assert( pParse->nErr==0 ); 3714 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3715 && db->init.busy==0 3716 && pTblName!=0 3717 #if SQLITE_USER_AUTHENTICATION 3718 && sqlite3UserAuthTable(pTab->zName)==0 3719 #endif 3720 ){ 3721 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3722 goto exit_create_index; 3723 } 3724 #ifndef SQLITE_OMIT_VIEW 3725 if( pTab->pSelect ){ 3726 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3727 goto exit_create_index; 3728 } 3729 #endif 3730 #ifndef SQLITE_OMIT_VIRTUALTABLE 3731 if( IsVirtual(pTab) ){ 3732 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3733 goto exit_create_index; 3734 } 3735 #endif 3736 3737 /* 3738 ** Find the name of the index. Make sure there is not already another 3739 ** index or table with the same name. 3740 ** 3741 ** Exception: If we are reading the names of permanent indices from the 3742 ** sqlite_schema table (because some other process changed the schema) and 3743 ** one of the index names collides with the name of a temporary table or 3744 ** index, then we will continue to process this index. 3745 ** 3746 ** If pName==0 it means that we are 3747 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3748 ** own name. 3749 */ 3750 if( pName ){ 3751 zName = sqlite3NameFromToken(db, pName); 3752 if( zName==0 ) goto exit_create_index; 3753 assert( pName->z!=0 ); 3754 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3755 goto exit_create_index; 3756 } 3757 if( !IN_RENAME_OBJECT ){ 3758 if( !db->init.busy ){ 3759 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3760 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3761 goto exit_create_index; 3762 } 3763 } 3764 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3765 if( !ifNotExist ){ 3766 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3767 }else{ 3768 assert( !db->init.busy ); 3769 sqlite3CodeVerifySchema(pParse, iDb); 3770 } 3771 goto exit_create_index; 3772 } 3773 } 3774 }else{ 3775 int n; 3776 Index *pLoop; 3777 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3778 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3779 if( zName==0 ){ 3780 goto exit_create_index; 3781 } 3782 3783 /* Automatic index names generated from within sqlite3_declare_vtab() 3784 ** must have names that are distinct from normal automatic index names. 3785 ** The following statement converts "sqlite3_autoindex..." into 3786 ** "sqlite3_butoindex..." in order to make the names distinct. 3787 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3788 if( IN_SPECIAL_PARSE ) zName[7]++; 3789 } 3790 3791 /* Check for authorization to create an index. 3792 */ 3793 #ifndef SQLITE_OMIT_AUTHORIZATION 3794 if( !IN_RENAME_OBJECT ){ 3795 const char *zDb = pDb->zDbSName; 3796 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3797 goto exit_create_index; 3798 } 3799 i = SQLITE_CREATE_INDEX; 3800 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3801 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3802 goto exit_create_index; 3803 } 3804 } 3805 #endif 3806 3807 /* If pList==0, it means this routine was called to make a primary 3808 ** key out of the last column added to the table under construction. 3809 ** So create a fake list to simulate this. 3810 */ 3811 if( pList==0 ){ 3812 Token prevCol; 3813 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3814 pCol->colFlags |= COLFLAG_UNIQUE; 3815 sqlite3TokenInit(&prevCol, pCol->zName); 3816 pList = sqlite3ExprListAppend(pParse, 0, 3817 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3818 if( pList==0 ) goto exit_create_index; 3819 assert( pList->nExpr==1 ); 3820 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3821 }else{ 3822 sqlite3ExprListCheckLength(pParse, pList, "index"); 3823 if( pParse->nErr ) goto exit_create_index; 3824 } 3825 3826 /* Figure out how many bytes of space are required to store explicitly 3827 ** specified collation sequence names. 3828 */ 3829 for(i=0; i<pList->nExpr; i++){ 3830 Expr *pExpr = pList->a[i].pExpr; 3831 assert( pExpr!=0 ); 3832 if( pExpr->op==TK_COLLATE ){ 3833 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3834 } 3835 } 3836 3837 /* 3838 ** Allocate the index structure. 3839 */ 3840 nName = sqlite3Strlen30(zName); 3841 nExtraCol = pPk ? pPk->nKeyCol : 1; 3842 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3843 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3844 nName + nExtra + 1, &zExtra); 3845 if( db->mallocFailed ){ 3846 goto exit_create_index; 3847 } 3848 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3849 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3850 pIndex->zName = zExtra; 3851 zExtra += nName + 1; 3852 memcpy(pIndex->zName, zName, nName+1); 3853 pIndex->pTable = pTab; 3854 pIndex->onError = (u8)onError; 3855 pIndex->uniqNotNull = onError!=OE_None; 3856 pIndex->idxType = idxType; 3857 pIndex->pSchema = db->aDb[iDb].pSchema; 3858 pIndex->nKeyCol = pList->nExpr; 3859 if( pPIWhere ){ 3860 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3861 pIndex->pPartIdxWhere = pPIWhere; 3862 pPIWhere = 0; 3863 } 3864 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3865 3866 /* Check to see if we should honor DESC requests on index columns 3867 */ 3868 if( pDb->pSchema->file_format>=4 ){ 3869 sortOrderMask = -1; /* Honor DESC */ 3870 }else{ 3871 sortOrderMask = 0; /* Ignore DESC */ 3872 } 3873 3874 /* Analyze the list of expressions that form the terms of the index and 3875 ** report any errors. In the common case where the expression is exactly 3876 ** a table column, store that column in aiColumn[]. For general expressions, 3877 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3878 ** 3879 ** TODO: Issue a warning if two or more columns of the index are identical. 3880 ** TODO: Issue a warning if the table primary key is used as part of the 3881 ** index key. 3882 */ 3883 pListItem = pList->a; 3884 if( IN_RENAME_OBJECT ){ 3885 pIndex->aColExpr = pList; 3886 pList = 0; 3887 } 3888 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3889 Expr *pCExpr; /* The i-th index expression */ 3890 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3891 const char *zColl; /* Collation sequence name */ 3892 3893 sqlite3StringToId(pListItem->pExpr); 3894 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3895 if( pParse->nErr ) goto exit_create_index; 3896 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3897 if( pCExpr->op!=TK_COLUMN ){ 3898 if( pTab==pParse->pNewTable ){ 3899 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3900 "UNIQUE constraints"); 3901 goto exit_create_index; 3902 } 3903 if( pIndex->aColExpr==0 ){ 3904 pIndex->aColExpr = pList; 3905 pList = 0; 3906 } 3907 j = XN_EXPR; 3908 pIndex->aiColumn[i] = XN_EXPR; 3909 pIndex->uniqNotNull = 0; 3910 }else{ 3911 j = pCExpr->iColumn; 3912 assert( j<=0x7fff ); 3913 if( j<0 ){ 3914 j = pTab->iPKey; 3915 }else{ 3916 if( pTab->aCol[j].notNull==0 ){ 3917 pIndex->uniqNotNull = 0; 3918 } 3919 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3920 pIndex->bHasVCol = 1; 3921 } 3922 } 3923 pIndex->aiColumn[i] = (i16)j; 3924 } 3925 zColl = 0; 3926 if( pListItem->pExpr->op==TK_COLLATE ){ 3927 int nColl; 3928 zColl = pListItem->pExpr->u.zToken; 3929 nColl = sqlite3Strlen30(zColl) + 1; 3930 assert( nExtra>=nColl ); 3931 memcpy(zExtra, zColl, nColl); 3932 zColl = zExtra; 3933 zExtra += nColl; 3934 nExtra -= nColl; 3935 }else if( j>=0 ){ 3936 zColl = pTab->aCol[j].zColl; 3937 } 3938 if( !zColl ) zColl = sqlite3StrBINARY; 3939 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3940 goto exit_create_index; 3941 } 3942 pIndex->azColl[i] = zColl; 3943 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3944 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3945 } 3946 3947 /* Append the table key to the end of the index. For WITHOUT ROWID 3948 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3949 ** normal tables (when pPk==0) this will be the rowid. 3950 */ 3951 if( pPk ){ 3952 for(j=0; j<pPk->nKeyCol; j++){ 3953 int x = pPk->aiColumn[j]; 3954 assert( x>=0 ); 3955 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3956 pIndex->nColumn--; 3957 }else{ 3958 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3959 pIndex->aiColumn[i] = x; 3960 pIndex->azColl[i] = pPk->azColl[j]; 3961 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3962 i++; 3963 } 3964 } 3965 assert( i==pIndex->nColumn ); 3966 }else{ 3967 pIndex->aiColumn[i] = XN_ROWID; 3968 pIndex->azColl[i] = sqlite3StrBINARY; 3969 } 3970 sqlite3DefaultRowEst(pIndex); 3971 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3972 3973 /* If this index contains every column of its table, then mark 3974 ** it as a covering index */ 3975 assert( HasRowid(pTab) 3976 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3977 recomputeColumnsNotIndexed(pIndex); 3978 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3979 pIndex->isCovering = 1; 3980 for(j=0; j<pTab->nCol; j++){ 3981 if( j==pTab->iPKey ) continue; 3982 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3983 pIndex->isCovering = 0; 3984 break; 3985 } 3986 } 3987 3988 if( pTab==pParse->pNewTable ){ 3989 /* This routine has been called to create an automatic index as a 3990 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3991 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3992 ** i.e. one of: 3993 ** 3994 ** CREATE TABLE t(x PRIMARY KEY, y); 3995 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3996 ** 3997 ** Either way, check to see if the table already has such an index. If 3998 ** so, don't bother creating this one. This only applies to 3999 ** automatically created indices. Users can do as they wish with 4000 ** explicit indices. 4001 ** 4002 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4003 ** (and thus suppressing the second one) even if they have different 4004 ** sort orders. 4005 ** 4006 ** If there are different collating sequences or if the columns of 4007 ** the constraint occur in different orders, then the constraints are 4008 ** considered distinct and both result in separate indices. 4009 */ 4010 Index *pIdx; 4011 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4012 int k; 4013 assert( IsUniqueIndex(pIdx) ); 4014 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4015 assert( IsUniqueIndex(pIndex) ); 4016 4017 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4018 for(k=0; k<pIdx->nKeyCol; k++){ 4019 const char *z1; 4020 const char *z2; 4021 assert( pIdx->aiColumn[k]>=0 ); 4022 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4023 z1 = pIdx->azColl[k]; 4024 z2 = pIndex->azColl[k]; 4025 if( sqlite3StrICmp(z1, z2) ) break; 4026 } 4027 if( k==pIdx->nKeyCol ){ 4028 if( pIdx->onError!=pIndex->onError ){ 4029 /* This constraint creates the same index as a previous 4030 ** constraint specified somewhere in the CREATE TABLE statement. 4031 ** However the ON CONFLICT clauses are different. If both this 4032 ** constraint and the previous equivalent constraint have explicit 4033 ** ON CONFLICT clauses this is an error. Otherwise, use the 4034 ** explicitly specified behavior for the index. 4035 */ 4036 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4037 sqlite3ErrorMsg(pParse, 4038 "conflicting ON CONFLICT clauses specified", 0); 4039 } 4040 if( pIdx->onError==OE_Default ){ 4041 pIdx->onError = pIndex->onError; 4042 } 4043 } 4044 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4045 if( IN_RENAME_OBJECT ){ 4046 pIndex->pNext = pParse->pNewIndex; 4047 pParse->pNewIndex = pIndex; 4048 pIndex = 0; 4049 } 4050 goto exit_create_index; 4051 } 4052 } 4053 } 4054 4055 if( !IN_RENAME_OBJECT ){ 4056 4057 /* Link the new Index structure to its table and to the other 4058 ** in-memory database structures. 4059 */ 4060 assert( pParse->nErr==0 ); 4061 if( db->init.busy ){ 4062 Index *p; 4063 assert( !IN_SPECIAL_PARSE ); 4064 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4065 if( pTblName!=0 ){ 4066 pIndex->tnum = db->init.newTnum; 4067 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4068 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4069 pParse->rc = SQLITE_CORRUPT_BKPT; 4070 goto exit_create_index; 4071 } 4072 } 4073 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4074 pIndex->zName, pIndex); 4075 if( p ){ 4076 assert( p==pIndex ); /* Malloc must have failed */ 4077 sqlite3OomFault(db); 4078 goto exit_create_index; 4079 } 4080 db->mDbFlags |= DBFLAG_SchemaChange; 4081 } 4082 4083 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4084 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4085 ** emit code to allocate the index rootpage on disk and make an entry for 4086 ** the index in the sqlite_schema table and populate the index with 4087 ** content. But, do not do this if we are simply reading the sqlite_schema 4088 ** table to parse the schema, or if this index is the PRIMARY KEY index 4089 ** of a WITHOUT ROWID table. 4090 ** 4091 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4092 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4093 ** has just been created, it contains no data and the index initialization 4094 ** step can be skipped. 4095 */ 4096 else if( HasRowid(pTab) || pTblName!=0 ){ 4097 Vdbe *v; 4098 char *zStmt; 4099 int iMem = ++pParse->nMem; 4100 4101 v = sqlite3GetVdbe(pParse); 4102 if( v==0 ) goto exit_create_index; 4103 4104 sqlite3BeginWriteOperation(pParse, 1, iDb); 4105 4106 /* Create the rootpage for the index using CreateIndex. But before 4107 ** doing so, code a Noop instruction and store its address in 4108 ** Index.tnum. This is required in case this index is actually a 4109 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4110 ** that case the convertToWithoutRowidTable() routine will replace 4111 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4112 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4113 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4114 4115 /* Gather the complete text of the CREATE INDEX statement into 4116 ** the zStmt variable 4117 */ 4118 assert( pName!=0 || pStart==0 ); 4119 if( pStart ){ 4120 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4121 if( pName->z[n-1]==';' ) n--; 4122 /* A named index with an explicit CREATE INDEX statement */ 4123 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4124 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4125 }else{ 4126 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4127 /* zStmt = sqlite3MPrintf(""); */ 4128 zStmt = 0; 4129 } 4130 4131 /* Add an entry in sqlite_schema for this index 4132 */ 4133 sqlite3NestedParse(pParse, 4134 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4135 db->aDb[iDb].zDbSName, 4136 pIndex->zName, 4137 pTab->zName, 4138 iMem, 4139 zStmt 4140 ); 4141 sqlite3DbFree(db, zStmt); 4142 4143 /* Fill the index with data and reparse the schema. Code an OP_Expire 4144 ** to invalidate all pre-compiled statements. 4145 */ 4146 if( pTblName ){ 4147 sqlite3RefillIndex(pParse, pIndex, iMem); 4148 sqlite3ChangeCookie(pParse, iDb); 4149 sqlite3VdbeAddParseSchemaOp(v, iDb, 4150 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4151 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4152 } 4153 4154 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4155 } 4156 } 4157 if( db->init.busy || pTblName==0 ){ 4158 pIndex->pNext = pTab->pIndex; 4159 pTab->pIndex = pIndex; 4160 pIndex = 0; 4161 } 4162 else if( IN_RENAME_OBJECT ){ 4163 assert( pParse->pNewIndex==0 ); 4164 pParse->pNewIndex = pIndex; 4165 pIndex = 0; 4166 } 4167 4168 /* Clean up before exiting */ 4169 exit_create_index: 4170 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4171 if( pTab ){ 4172 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4173 ** The list was already ordered when this routine was entered, so at this 4174 ** point at most a single index (the newly added index) will be out of 4175 ** order. So we have to reorder at most one index. */ 4176 Index **ppFrom = &pTab->pIndex; 4177 Index *pThis; 4178 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4179 Index *pNext; 4180 if( pThis->onError!=OE_Replace ) continue; 4181 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4182 *ppFrom = pNext; 4183 pThis->pNext = pNext->pNext; 4184 pNext->pNext = pThis; 4185 ppFrom = &pNext->pNext; 4186 } 4187 break; 4188 } 4189 #ifdef SQLITE_DEBUG 4190 /* Verify that all REPLACE indexes really are now at the end 4191 ** of the index list. In other words, no other index type ever 4192 ** comes after a REPLACE index on the list. */ 4193 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4194 assert( pThis->onError!=OE_Replace 4195 || pThis->pNext==0 4196 || pThis->pNext->onError==OE_Replace ); 4197 } 4198 #endif 4199 } 4200 sqlite3ExprDelete(db, pPIWhere); 4201 sqlite3ExprListDelete(db, pList); 4202 sqlite3SrcListDelete(db, pTblName); 4203 sqlite3DbFree(db, zName); 4204 } 4205 4206 /* 4207 ** Fill the Index.aiRowEst[] array with default information - information 4208 ** to be used when we have not run the ANALYZE command. 4209 ** 4210 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4211 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4212 ** number of rows in the table that match any particular value of the 4213 ** first column of the index. aiRowEst[2] is an estimate of the number 4214 ** of rows that match any particular combination of the first 2 columns 4215 ** of the index. And so forth. It must always be the case that 4216 * 4217 ** aiRowEst[N]<=aiRowEst[N-1] 4218 ** aiRowEst[N]>=1 4219 ** 4220 ** Apart from that, we have little to go on besides intuition as to 4221 ** how aiRowEst[] should be initialized. The numbers generated here 4222 ** are based on typical values found in actual indices. 4223 */ 4224 void sqlite3DefaultRowEst(Index *pIdx){ 4225 /* 10, 9, 8, 7, 6 */ 4226 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4227 LogEst *a = pIdx->aiRowLogEst; 4228 LogEst x; 4229 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4230 int i; 4231 4232 /* Indexes with default row estimates should not have stat1 data */ 4233 assert( !pIdx->hasStat1 ); 4234 4235 /* Set the first entry (number of rows in the index) to the estimated 4236 ** number of rows in the table, or half the number of rows in the table 4237 ** for a partial index. 4238 ** 4239 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4240 ** table but other parts we are having to guess at, then do not let the 4241 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4242 ** Failure to do this can cause the indexes for which we do not have 4243 ** stat1 data to be ignored by the query planner. 4244 */ 4245 x = pIdx->pTable->nRowLogEst; 4246 assert( 99==sqlite3LogEst(1000) ); 4247 if( x<99 ){ 4248 pIdx->pTable->nRowLogEst = x = 99; 4249 } 4250 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4251 a[0] = x; 4252 4253 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4254 ** 6 and each subsequent value (if any) is 5. */ 4255 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4256 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4257 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4258 } 4259 4260 assert( 0==sqlite3LogEst(1) ); 4261 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4262 } 4263 4264 /* 4265 ** This routine will drop an existing named index. This routine 4266 ** implements the DROP INDEX statement. 4267 */ 4268 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4269 Index *pIndex; 4270 Vdbe *v; 4271 sqlite3 *db = pParse->db; 4272 int iDb; 4273 4274 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4275 if( db->mallocFailed ){ 4276 goto exit_drop_index; 4277 } 4278 assert( pName->nSrc==1 ); 4279 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4280 goto exit_drop_index; 4281 } 4282 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4283 if( pIndex==0 ){ 4284 if( !ifExists ){ 4285 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4286 }else{ 4287 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4288 } 4289 pParse->checkSchema = 1; 4290 goto exit_drop_index; 4291 } 4292 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4293 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4294 "or PRIMARY KEY constraint cannot be dropped", 0); 4295 goto exit_drop_index; 4296 } 4297 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4298 #ifndef SQLITE_OMIT_AUTHORIZATION 4299 { 4300 int code = SQLITE_DROP_INDEX; 4301 Table *pTab = pIndex->pTable; 4302 const char *zDb = db->aDb[iDb].zDbSName; 4303 const char *zTab = SCHEMA_TABLE(iDb); 4304 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4305 goto exit_drop_index; 4306 } 4307 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4308 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4309 goto exit_drop_index; 4310 } 4311 } 4312 #endif 4313 4314 /* Generate code to remove the index and from the schema table */ 4315 v = sqlite3GetVdbe(pParse); 4316 if( v ){ 4317 sqlite3BeginWriteOperation(pParse, 1, iDb); 4318 sqlite3NestedParse(pParse, 4319 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4320 db->aDb[iDb].zDbSName, pIndex->zName 4321 ); 4322 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4323 sqlite3ChangeCookie(pParse, iDb); 4324 destroyRootPage(pParse, pIndex->tnum, iDb); 4325 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4326 } 4327 4328 exit_drop_index: 4329 sqlite3SrcListDelete(db, pName); 4330 } 4331 4332 /* 4333 ** pArray is a pointer to an array of objects. Each object in the 4334 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4335 ** to extend the array so that there is space for a new object at the end. 4336 ** 4337 ** When this function is called, *pnEntry contains the current size of 4338 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4339 ** in total). 4340 ** 4341 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4342 ** space allocated for the new object is zeroed, *pnEntry updated to 4343 ** reflect the new size of the array and a pointer to the new allocation 4344 ** returned. *pIdx is set to the index of the new array entry in this case. 4345 ** 4346 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4347 ** unchanged and a copy of pArray returned. 4348 */ 4349 void *sqlite3ArrayAllocate( 4350 sqlite3 *db, /* Connection to notify of malloc failures */ 4351 void *pArray, /* Array of objects. Might be reallocated */ 4352 int szEntry, /* Size of each object in the array */ 4353 int *pnEntry, /* Number of objects currently in use */ 4354 int *pIdx /* Write the index of a new slot here */ 4355 ){ 4356 char *z; 4357 sqlite3_int64 n = *pIdx = *pnEntry; 4358 if( (n & (n-1))==0 ){ 4359 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4360 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4361 if( pNew==0 ){ 4362 *pIdx = -1; 4363 return pArray; 4364 } 4365 pArray = pNew; 4366 } 4367 z = (char*)pArray; 4368 memset(&z[n * szEntry], 0, szEntry); 4369 ++*pnEntry; 4370 return pArray; 4371 } 4372 4373 /* 4374 ** Append a new element to the given IdList. Create a new IdList if 4375 ** need be. 4376 ** 4377 ** A new IdList is returned, or NULL if malloc() fails. 4378 */ 4379 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4380 sqlite3 *db = pParse->db; 4381 int i; 4382 if( pList==0 ){ 4383 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4384 if( pList==0 ) return 0; 4385 } 4386 pList->a = sqlite3ArrayAllocate( 4387 db, 4388 pList->a, 4389 sizeof(pList->a[0]), 4390 &pList->nId, 4391 &i 4392 ); 4393 if( i<0 ){ 4394 sqlite3IdListDelete(db, pList); 4395 return 0; 4396 } 4397 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4398 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4399 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4400 } 4401 return pList; 4402 } 4403 4404 /* 4405 ** Delete an IdList. 4406 */ 4407 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4408 int i; 4409 if( pList==0 ) return; 4410 for(i=0; i<pList->nId; i++){ 4411 sqlite3DbFree(db, pList->a[i].zName); 4412 } 4413 sqlite3DbFree(db, pList->a); 4414 sqlite3DbFreeNN(db, pList); 4415 } 4416 4417 /* 4418 ** Return the index in pList of the identifier named zId. Return -1 4419 ** if not found. 4420 */ 4421 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4422 int i; 4423 if( pList==0 ) return -1; 4424 for(i=0; i<pList->nId; i++){ 4425 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4426 } 4427 return -1; 4428 } 4429 4430 /* 4431 ** Maximum size of a SrcList object. 4432 ** The SrcList object is used to represent the FROM clause of a 4433 ** SELECT statement, and the query planner cannot deal with more 4434 ** than 64 tables in a join. So any value larger than 64 here 4435 ** is sufficient for most uses. Smaller values, like say 10, are 4436 ** appropriate for small and memory-limited applications. 4437 */ 4438 #ifndef SQLITE_MAX_SRCLIST 4439 # define SQLITE_MAX_SRCLIST 200 4440 #endif 4441 4442 /* 4443 ** Expand the space allocated for the given SrcList object by 4444 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4445 ** New slots are zeroed. 4446 ** 4447 ** For example, suppose a SrcList initially contains two entries: A,B. 4448 ** To append 3 new entries onto the end, do this: 4449 ** 4450 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4451 ** 4452 ** After the call above it would contain: A, B, nil, nil, nil. 4453 ** If the iStart argument had been 1 instead of 2, then the result 4454 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4455 ** the iStart value would be 0. The result then would 4456 ** be: nil, nil, nil, A, B. 4457 ** 4458 ** If a memory allocation fails or the SrcList becomes too large, leave 4459 ** the original SrcList unchanged, return NULL, and leave an error message 4460 ** in pParse. 4461 */ 4462 SrcList *sqlite3SrcListEnlarge( 4463 Parse *pParse, /* Parsing context into which errors are reported */ 4464 SrcList *pSrc, /* The SrcList to be enlarged */ 4465 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4466 int iStart /* Index in pSrc->a[] of first new slot */ 4467 ){ 4468 int i; 4469 4470 /* Sanity checking on calling parameters */ 4471 assert( iStart>=0 ); 4472 assert( nExtra>=1 ); 4473 assert( pSrc!=0 ); 4474 assert( iStart<=pSrc->nSrc ); 4475 4476 /* Allocate additional space if needed */ 4477 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4478 SrcList *pNew; 4479 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4480 sqlite3 *db = pParse->db; 4481 4482 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4483 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4484 SQLITE_MAX_SRCLIST); 4485 return 0; 4486 } 4487 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4488 pNew = sqlite3DbRealloc(db, pSrc, 4489 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4490 if( pNew==0 ){ 4491 assert( db->mallocFailed ); 4492 return 0; 4493 } 4494 pSrc = pNew; 4495 pSrc->nAlloc = nAlloc; 4496 } 4497 4498 /* Move existing slots that come after the newly inserted slots 4499 ** out of the way */ 4500 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4501 pSrc->a[i+nExtra] = pSrc->a[i]; 4502 } 4503 pSrc->nSrc += nExtra; 4504 4505 /* Zero the newly allocated slots */ 4506 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4507 for(i=iStart; i<iStart+nExtra; i++){ 4508 pSrc->a[i].iCursor = -1; 4509 } 4510 4511 /* Return a pointer to the enlarged SrcList */ 4512 return pSrc; 4513 } 4514 4515 4516 /* 4517 ** Append a new table name to the given SrcList. Create a new SrcList if 4518 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4519 ** 4520 ** A SrcList is returned, or NULL if there is an OOM error or if the 4521 ** SrcList grows to large. The returned 4522 ** SrcList might be the same as the SrcList that was input or it might be 4523 ** a new one. If an OOM error does occurs, then the prior value of pList 4524 ** that is input to this routine is automatically freed. 4525 ** 4526 ** If pDatabase is not null, it means that the table has an optional 4527 ** database name prefix. Like this: "database.table". The pDatabase 4528 ** points to the table name and the pTable points to the database name. 4529 ** The SrcList.a[].zName field is filled with the table name which might 4530 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4531 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4532 ** or with NULL if no database is specified. 4533 ** 4534 ** In other words, if call like this: 4535 ** 4536 ** sqlite3SrcListAppend(D,A,B,0); 4537 ** 4538 ** Then B is a table name and the database name is unspecified. If called 4539 ** like this: 4540 ** 4541 ** sqlite3SrcListAppend(D,A,B,C); 4542 ** 4543 ** Then C is the table name and B is the database name. If C is defined 4544 ** then so is B. In other words, we never have a case where: 4545 ** 4546 ** sqlite3SrcListAppend(D,A,0,C); 4547 ** 4548 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4549 ** before being added to the SrcList. 4550 */ 4551 SrcList *sqlite3SrcListAppend( 4552 Parse *pParse, /* Parsing context, in which errors are reported */ 4553 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4554 Token *pTable, /* Table to append */ 4555 Token *pDatabase /* Database of the table */ 4556 ){ 4557 SrcItem *pItem; 4558 sqlite3 *db; 4559 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4560 assert( pParse!=0 ); 4561 assert( pParse->db!=0 ); 4562 db = pParse->db; 4563 if( pList==0 ){ 4564 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4565 if( pList==0 ) return 0; 4566 pList->nAlloc = 1; 4567 pList->nSrc = 1; 4568 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4569 pList->a[0].iCursor = -1; 4570 }else{ 4571 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4572 if( pNew==0 ){ 4573 sqlite3SrcListDelete(db, pList); 4574 return 0; 4575 }else{ 4576 pList = pNew; 4577 } 4578 } 4579 pItem = &pList->a[pList->nSrc-1]; 4580 if( pDatabase && pDatabase->z==0 ){ 4581 pDatabase = 0; 4582 } 4583 if( pDatabase ){ 4584 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4585 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4586 }else{ 4587 pItem->zName = sqlite3NameFromToken(db, pTable); 4588 pItem->zDatabase = 0; 4589 } 4590 return pList; 4591 } 4592 4593 /* 4594 ** Assign VdbeCursor index numbers to all tables in a SrcList 4595 */ 4596 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4597 int i; 4598 SrcItem *pItem; 4599 assert( pList || pParse->db->mallocFailed ); 4600 if( ALWAYS(pList) ){ 4601 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4602 if( pItem->iCursor>=0 ) continue; 4603 pItem->iCursor = pParse->nTab++; 4604 if( pItem->pSelect ){ 4605 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4606 } 4607 } 4608 } 4609 } 4610 4611 /* 4612 ** Delete an entire SrcList including all its substructure. 4613 */ 4614 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4615 int i; 4616 SrcItem *pItem; 4617 if( pList==0 ) return; 4618 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4619 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4620 sqlite3DbFree(db, pItem->zName); 4621 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4622 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4623 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4624 sqlite3DeleteTable(db, pItem->pTab); 4625 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4626 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4627 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4628 } 4629 sqlite3DbFreeNN(db, pList); 4630 } 4631 4632 /* 4633 ** This routine is called by the parser to add a new term to the 4634 ** end of a growing FROM clause. The "p" parameter is the part of 4635 ** the FROM clause that has already been constructed. "p" is NULL 4636 ** if this is the first term of the FROM clause. pTable and pDatabase 4637 ** are the name of the table and database named in the FROM clause term. 4638 ** pDatabase is NULL if the database name qualifier is missing - the 4639 ** usual case. If the term has an alias, then pAlias points to the 4640 ** alias token. If the term is a subquery, then pSubquery is the 4641 ** SELECT statement that the subquery encodes. The pTable and 4642 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4643 ** parameters are the content of the ON and USING clauses. 4644 ** 4645 ** Return a new SrcList which encodes is the FROM with the new 4646 ** term added. 4647 */ 4648 SrcList *sqlite3SrcListAppendFromTerm( 4649 Parse *pParse, /* Parsing context */ 4650 SrcList *p, /* The left part of the FROM clause already seen */ 4651 Token *pTable, /* Name of the table to add to the FROM clause */ 4652 Token *pDatabase, /* Name of the database containing pTable */ 4653 Token *pAlias, /* The right-hand side of the AS subexpression */ 4654 Select *pSubquery, /* A subquery used in place of a table name */ 4655 Expr *pOn, /* The ON clause of a join */ 4656 IdList *pUsing /* The USING clause of a join */ 4657 ){ 4658 SrcItem *pItem; 4659 sqlite3 *db = pParse->db; 4660 if( !p && (pOn || pUsing) ){ 4661 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4662 (pOn ? "ON" : "USING") 4663 ); 4664 goto append_from_error; 4665 } 4666 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4667 if( p==0 ){ 4668 goto append_from_error; 4669 } 4670 assert( p->nSrc>0 ); 4671 pItem = &p->a[p->nSrc-1]; 4672 assert( (pTable==0)==(pDatabase==0) ); 4673 assert( pItem->zName==0 || pDatabase!=0 ); 4674 if( IN_RENAME_OBJECT && pItem->zName ){ 4675 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4676 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4677 } 4678 assert( pAlias!=0 ); 4679 if( pAlias->n ){ 4680 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4681 } 4682 pItem->pSelect = pSubquery; 4683 pItem->pOn = pOn; 4684 pItem->pUsing = pUsing; 4685 return p; 4686 4687 append_from_error: 4688 assert( p==0 ); 4689 sqlite3ExprDelete(db, pOn); 4690 sqlite3IdListDelete(db, pUsing); 4691 sqlite3SelectDelete(db, pSubquery); 4692 return 0; 4693 } 4694 4695 /* 4696 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4697 ** element of the source-list passed as the second argument. 4698 */ 4699 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4700 assert( pIndexedBy!=0 ); 4701 if( p && pIndexedBy->n>0 ){ 4702 SrcItem *pItem; 4703 assert( p->nSrc>0 ); 4704 pItem = &p->a[p->nSrc-1]; 4705 assert( pItem->fg.notIndexed==0 ); 4706 assert( pItem->fg.isIndexedBy==0 ); 4707 assert( pItem->fg.isTabFunc==0 ); 4708 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4709 /* A "NOT INDEXED" clause was supplied. See parse.y 4710 ** construct "indexed_opt" for details. */ 4711 pItem->fg.notIndexed = 1; 4712 }else{ 4713 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4714 pItem->fg.isIndexedBy = 1; 4715 } 4716 } 4717 } 4718 4719 /* 4720 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4721 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4722 ** are deleted by this function. 4723 */ 4724 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4725 assert( p1 && p1->nSrc==1 ); 4726 if( p2 ){ 4727 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4728 if( pNew==0 ){ 4729 sqlite3SrcListDelete(pParse->db, p2); 4730 }else{ 4731 p1 = pNew; 4732 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4733 sqlite3DbFree(pParse->db, p2); 4734 } 4735 } 4736 return p1; 4737 } 4738 4739 /* 4740 ** Add the list of function arguments to the SrcList entry for a 4741 ** table-valued-function. 4742 */ 4743 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4744 if( p ){ 4745 SrcItem *pItem = &p->a[p->nSrc-1]; 4746 assert( pItem->fg.notIndexed==0 ); 4747 assert( pItem->fg.isIndexedBy==0 ); 4748 assert( pItem->fg.isTabFunc==0 ); 4749 pItem->u1.pFuncArg = pList; 4750 pItem->fg.isTabFunc = 1; 4751 }else{ 4752 sqlite3ExprListDelete(pParse->db, pList); 4753 } 4754 } 4755 4756 /* 4757 ** When building up a FROM clause in the parser, the join operator 4758 ** is initially attached to the left operand. But the code generator 4759 ** expects the join operator to be on the right operand. This routine 4760 ** Shifts all join operators from left to right for an entire FROM 4761 ** clause. 4762 ** 4763 ** Example: Suppose the join is like this: 4764 ** 4765 ** A natural cross join B 4766 ** 4767 ** The operator is "natural cross join". The A and B operands are stored 4768 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4769 ** operator with A. This routine shifts that operator over to B. 4770 */ 4771 void sqlite3SrcListShiftJoinType(SrcList *p){ 4772 if( p ){ 4773 int i; 4774 for(i=p->nSrc-1; i>0; i--){ 4775 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4776 } 4777 p->a[0].fg.jointype = 0; 4778 } 4779 } 4780 4781 /* 4782 ** Generate VDBE code for a BEGIN statement. 4783 */ 4784 void sqlite3BeginTransaction(Parse *pParse, int type){ 4785 sqlite3 *db; 4786 Vdbe *v; 4787 int i; 4788 4789 assert( pParse!=0 ); 4790 db = pParse->db; 4791 assert( db!=0 ); 4792 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4793 return; 4794 } 4795 v = sqlite3GetVdbe(pParse); 4796 if( !v ) return; 4797 if( type!=TK_DEFERRED ){ 4798 for(i=0; i<db->nDb; i++){ 4799 int eTxnType; 4800 Btree *pBt = db->aDb[i].pBt; 4801 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4802 eTxnType = 0; /* Read txn */ 4803 }else if( type==TK_EXCLUSIVE ){ 4804 eTxnType = 2; /* Exclusive txn */ 4805 }else{ 4806 eTxnType = 1; /* Write txn */ 4807 } 4808 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4809 sqlite3VdbeUsesBtree(v, i); 4810 } 4811 } 4812 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4813 } 4814 4815 /* 4816 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4817 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4818 ** code is generated for a COMMIT. 4819 */ 4820 void sqlite3EndTransaction(Parse *pParse, int eType){ 4821 Vdbe *v; 4822 int isRollback; 4823 4824 assert( pParse!=0 ); 4825 assert( pParse->db!=0 ); 4826 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4827 isRollback = eType==TK_ROLLBACK; 4828 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4829 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4830 return; 4831 } 4832 v = sqlite3GetVdbe(pParse); 4833 if( v ){ 4834 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4835 } 4836 } 4837 4838 /* 4839 ** This function is called by the parser when it parses a command to create, 4840 ** release or rollback an SQL savepoint. 4841 */ 4842 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4843 char *zName = sqlite3NameFromToken(pParse->db, pName); 4844 if( zName ){ 4845 Vdbe *v = sqlite3GetVdbe(pParse); 4846 #ifndef SQLITE_OMIT_AUTHORIZATION 4847 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4848 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4849 #endif 4850 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4851 sqlite3DbFree(pParse->db, zName); 4852 return; 4853 } 4854 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4855 } 4856 } 4857 4858 /* 4859 ** Make sure the TEMP database is open and available for use. Return 4860 ** the number of errors. Leave any error messages in the pParse structure. 4861 */ 4862 int sqlite3OpenTempDatabase(Parse *pParse){ 4863 sqlite3 *db = pParse->db; 4864 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4865 int rc; 4866 Btree *pBt; 4867 static const int flags = 4868 SQLITE_OPEN_READWRITE | 4869 SQLITE_OPEN_CREATE | 4870 SQLITE_OPEN_EXCLUSIVE | 4871 SQLITE_OPEN_DELETEONCLOSE | 4872 SQLITE_OPEN_TEMP_DB; 4873 4874 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4875 if( rc!=SQLITE_OK ){ 4876 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4877 "file for storing temporary tables"); 4878 pParse->rc = rc; 4879 return 1; 4880 } 4881 db->aDb[1].pBt = pBt; 4882 assert( db->aDb[1].pSchema ); 4883 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4884 sqlite3OomFault(db); 4885 return 1; 4886 } 4887 } 4888 return 0; 4889 } 4890 4891 /* 4892 ** Record the fact that the schema cookie will need to be verified 4893 ** for database iDb. The code to actually verify the schema cookie 4894 ** will occur at the end of the top-level VDBE and will be generated 4895 ** later, by sqlite3FinishCoding(). 4896 */ 4897 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4898 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4899 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4900 assert( iDb<SQLITE_MAX_DB ); 4901 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4902 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4903 DbMaskSet(pToplevel->cookieMask, iDb); 4904 if( !OMIT_TEMPDB && iDb==1 ){ 4905 sqlite3OpenTempDatabase(pToplevel); 4906 } 4907 } 4908 } 4909 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4910 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4911 } 4912 4913 4914 /* 4915 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4916 ** attached database. Otherwise, invoke it for the database named zDb only. 4917 */ 4918 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4919 sqlite3 *db = pParse->db; 4920 int i; 4921 for(i=0; i<db->nDb; i++){ 4922 Db *pDb = &db->aDb[i]; 4923 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4924 sqlite3CodeVerifySchema(pParse, i); 4925 } 4926 } 4927 } 4928 4929 /* 4930 ** Generate VDBE code that prepares for doing an operation that 4931 ** might change the database. 4932 ** 4933 ** This routine starts a new transaction if we are not already within 4934 ** a transaction. If we are already within a transaction, then a checkpoint 4935 ** is set if the setStatement parameter is true. A checkpoint should 4936 ** be set for operations that might fail (due to a constraint) part of 4937 ** the way through and which will need to undo some writes without having to 4938 ** rollback the whole transaction. For operations where all constraints 4939 ** can be checked before any changes are made to the database, it is never 4940 ** necessary to undo a write and the checkpoint should not be set. 4941 */ 4942 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4943 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4944 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4945 DbMaskSet(pToplevel->writeMask, iDb); 4946 pToplevel->isMultiWrite |= setStatement; 4947 } 4948 4949 /* 4950 ** Indicate that the statement currently under construction might write 4951 ** more than one entry (example: deleting one row then inserting another, 4952 ** inserting multiple rows in a table, or inserting a row and index entries.) 4953 ** If an abort occurs after some of these writes have completed, then it will 4954 ** be necessary to undo the completed writes. 4955 */ 4956 void sqlite3MultiWrite(Parse *pParse){ 4957 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4958 pToplevel->isMultiWrite = 1; 4959 } 4960 4961 /* 4962 ** The code generator calls this routine if is discovers that it is 4963 ** possible to abort a statement prior to completion. In order to 4964 ** perform this abort without corrupting the database, we need to make 4965 ** sure that the statement is protected by a statement transaction. 4966 ** 4967 ** Technically, we only need to set the mayAbort flag if the 4968 ** isMultiWrite flag was previously set. There is a time dependency 4969 ** such that the abort must occur after the multiwrite. This makes 4970 ** some statements involving the REPLACE conflict resolution algorithm 4971 ** go a little faster. But taking advantage of this time dependency 4972 ** makes it more difficult to prove that the code is correct (in 4973 ** particular, it prevents us from writing an effective 4974 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4975 ** to take the safe route and skip the optimization. 4976 */ 4977 void sqlite3MayAbort(Parse *pParse){ 4978 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4979 pToplevel->mayAbort = 1; 4980 } 4981 4982 /* 4983 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4984 ** error. The onError parameter determines which (if any) of the statement 4985 ** and/or current transaction is rolled back. 4986 */ 4987 void sqlite3HaltConstraint( 4988 Parse *pParse, /* Parsing context */ 4989 int errCode, /* extended error code */ 4990 int onError, /* Constraint type */ 4991 char *p4, /* Error message */ 4992 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4993 u8 p5Errmsg /* P5_ErrMsg type */ 4994 ){ 4995 Vdbe *v; 4996 assert( pParse->pVdbe!=0 ); 4997 v = sqlite3GetVdbe(pParse); 4998 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4999 if( onError==OE_Abort ){ 5000 sqlite3MayAbort(pParse); 5001 } 5002 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5003 sqlite3VdbeChangeP5(v, p5Errmsg); 5004 } 5005 5006 /* 5007 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5008 */ 5009 void sqlite3UniqueConstraint( 5010 Parse *pParse, /* Parsing context */ 5011 int onError, /* Constraint type */ 5012 Index *pIdx /* The index that triggers the constraint */ 5013 ){ 5014 char *zErr; 5015 int j; 5016 StrAccum errMsg; 5017 Table *pTab = pIdx->pTable; 5018 5019 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5020 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5021 if( pIdx->aColExpr ){ 5022 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5023 }else{ 5024 for(j=0; j<pIdx->nKeyCol; j++){ 5025 char *zCol; 5026 assert( pIdx->aiColumn[j]>=0 ); 5027 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 5028 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5029 sqlite3_str_appendall(&errMsg, pTab->zName); 5030 sqlite3_str_append(&errMsg, ".", 1); 5031 sqlite3_str_appendall(&errMsg, zCol); 5032 } 5033 } 5034 zErr = sqlite3StrAccumFinish(&errMsg); 5035 sqlite3HaltConstraint(pParse, 5036 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5037 : SQLITE_CONSTRAINT_UNIQUE, 5038 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5039 } 5040 5041 5042 /* 5043 ** Code an OP_Halt due to non-unique rowid. 5044 */ 5045 void sqlite3RowidConstraint( 5046 Parse *pParse, /* Parsing context */ 5047 int onError, /* Conflict resolution algorithm */ 5048 Table *pTab /* The table with the non-unique rowid */ 5049 ){ 5050 char *zMsg; 5051 int rc; 5052 if( pTab->iPKey>=0 ){ 5053 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5054 pTab->aCol[pTab->iPKey].zName); 5055 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5056 }else{ 5057 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5058 rc = SQLITE_CONSTRAINT_ROWID; 5059 } 5060 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5061 P5_ConstraintUnique); 5062 } 5063 5064 /* 5065 ** Check to see if pIndex uses the collating sequence pColl. Return 5066 ** true if it does and false if it does not. 5067 */ 5068 #ifndef SQLITE_OMIT_REINDEX 5069 static int collationMatch(const char *zColl, Index *pIndex){ 5070 int i; 5071 assert( zColl!=0 ); 5072 for(i=0; i<pIndex->nColumn; i++){ 5073 const char *z = pIndex->azColl[i]; 5074 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5075 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5076 return 1; 5077 } 5078 } 5079 return 0; 5080 } 5081 #endif 5082 5083 /* 5084 ** Recompute all indices of pTab that use the collating sequence pColl. 5085 ** If pColl==0 then recompute all indices of pTab. 5086 */ 5087 #ifndef SQLITE_OMIT_REINDEX 5088 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5089 if( !IsVirtual(pTab) ){ 5090 Index *pIndex; /* An index associated with pTab */ 5091 5092 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5093 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5094 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5095 sqlite3BeginWriteOperation(pParse, 0, iDb); 5096 sqlite3RefillIndex(pParse, pIndex, -1); 5097 } 5098 } 5099 } 5100 } 5101 #endif 5102 5103 /* 5104 ** Recompute all indices of all tables in all databases where the 5105 ** indices use the collating sequence pColl. If pColl==0 then recompute 5106 ** all indices everywhere. 5107 */ 5108 #ifndef SQLITE_OMIT_REINDEX 5109 static void reindexDatabases(Parse *pParse, char const *zColl){ 5110 Db *pDb; /* A single database */ 5111 int iDb; /* The database index number */ 5112 sqlite3 *db = pParse->db; /* The database connection */ 5113 HashElem *k; /* For looping over tables in pDb */ 5114 Table *pTab; /* A table in the database */ 5115 5116 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5117 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5118 assert( pDb!=0 ); 5119 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5120 pTab = (Table*)sqliteHashData(k); 5121 reindexTable(pParse, pTab, zColl); 5122 } 5123 } 5124 } 5125 #endif 5126 5127 /* 5128 ** Generate code for the REINDEX command. 5129 ** 5130 ** REINDEX -- 1 5131 ** REINDEX <collation> -- 2 5132 ** REINDEX ?<database>.?<tablename> -- 3 5133 ** REINDEX ?<database>.?<indexname> -- 4 5134 ** 5135 ** Form 1 causes all indices in all attached databases to be rebuilt. 5136 ** Form 2 rebuilds all indices in all databases that use the named 5137 ** collating function. Forms 3 and 4 rebuild the named index or all 5138 ** indices associated with the named table. 5139 */ 5140 #ifndef SQLITE_OMIT_REINDEX 5141 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5142 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5143 char *z; /* Name of a table or index */ 5144 const char *zDb; /* Name of the database */ 5145 Table *pTab; /* A table in the database */ 5146 Index *pIndex; /* An index associated with pTab */ 5147 int iDb; /* The database index number */ 5148 sqlite3 *db = pParse->db; /* The database connection */ 5149 Token *pObjName; /* Name of the table or index to be reindexed */ 5150 5151 /* Read the database schema. If an error occurs, leave an error message 5152 ** and code in pParse and return NULL. */ 5153 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5154 return; 5155 } 5156 5157 if( pName1==0 ){ 5158 reindexDatabases(pParse, 0); 5159 return; 5160 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5161 char *zColl; 5162 assert( pName1->z ); 5163 zColl = sqlite3NameFromToken(pParse->db, pName1); 5164 if( !zColl ) return; 5165 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5166 if( pColl ){ 5167 reindexDatabases(pParse, zColl); 5168 sqlite3DbFree(db, zColl); 5169 return; 5170 } 5171 sqlite3DbFree(db, zColl); 5172 } 5173 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5174 if( iDb<0 ) return; 5175 z = sqlite3NameFromToken(db, pObjName); 5176 if( z==0 ) return; 5177 zDb = db->aDb[iDb].zDbSName; 5178 pTab = sqlite3FindTable(db, z, zDb); 5179 if( pTab ){ 5180 reindexTable(pParse, pTab, 0); 5181 sqlite3DbFree(db, z); 5182 return; 5183 } 5184 pIndex = sqlite3FindIndex(db, z, zDb); 5185 sqlite3DbFree(db, z); 5186 if( pIndex ){ 5187 sqlite3BeginWriteOperation(pParse, 0, iDb); 5188 sqlite3RefillIndex(pParse, pIndex, -1); 5189 return; 5190 } 5191 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5192 } 5193 #endif 5194 5195 /* 5196 ** Return a KeyInfo structure that is appropriate for the given Index. 5197 ** 5198 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5199 ** when it has finished using it. 5200 */ 5201 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5202 int i; 5203 int nCol = pIdx->nColumn; 5204 int nKey = pIdx->nKeyCol; 5205 KeyInfo *pKey; 5206 if( pParse->nErr ) return 0; 5207 if( pIdx->uniqNotNull ){ 5208 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5209 }else{ 5210 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5211 } 5212 if( pKey ){ 5213 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5214 for(i=0; i<nCol; i++){ 5215 const char *zColl = pIdx->azColl[i]; 5216 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5217 sqlite3LocateCollSeq(pParse, zColl); 5218 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5219 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5220 } 5221 if( pParse->nErr ){ 5222 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5223 if( pIdx->bNoQuery==0 ){ 5224 /* Deactivate the index because it contains an unknown collating 5225 ** sequence. The only way to reactive the index is to reload the 5226 ** schema. Adding the missing collating sequence later does not 5227 ** reactive the index. The application had the chance to register 5228 ** the missing index using the collation-needed callback. For 5229 ** simplicity, SQLite will not give the application a second chance. 5230 */ 5231 pIdx->bNoQuery = 1; 5232 pParse->rc = SQLITE_ERROR_RETRY; 5233 } 5234 sqlite3KeyInfoUnref(pKey); 5235 pKey = 0; 5236 } 5237 } 5238 return pKey; 5239 } 5240 5241 #ifndef SQLITE_OMIT_CTE 5242 /* 5243 ** Create a new CTE object 5244 */ 5245 Cte *sqlite3CteNew( 5246 Parse *pParse, /* Parsing context */ 5247 Token *pName, /* Name of the common-table */ 5248 ExprList *pArglist, /* Optional column name list for the table */ 5249 Select *pQuery, /* Query used to initialize the table */ 5250 u8 eM10d /* The MATERIALIZED flag */ 5251 ){ 5252 Cte *pNew; 5253 sqlite3 *db = pParse->db; 5254 5255 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5256 assert( pNew!=0 || db->mallocFailed ); 5257 5258 if( db->mallocFailed ){ 5259 sqlite3ExprListDelete(db, pArglist); 5260 sqlite3SelectDelete(db, pQuery); 5261 }else{ 5262 pNew->pSelect = pQuery; 5263 pNew->pCols = pArglist; 5264 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5265 pNew->eM10d = eM10d; 5266 } 5267 return pNew; 5268 } 5269 5270 /* 5271 ** Clear information from a Cte object, but do not deallocate storage 5272 ** for the object itself. 5273 */ 5274 static void cteClear(sqlite3 *db, Cte *pCte){ 5275 assert( pCte!=0 ); 5276 sqlite3ExprListDelete(db, pCte->pCols); 5277 sqlite3SelectDelete(db, pCte->pSelect); 5278 sqlite3DbFree(db, pCte->zName); 5279 } 5280 5281 /* 5282 ** Free the contents of the CTE object passed as the second argument. 5283 */ 5284 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5285 assert( pCte!=0 ); 5286 cteClear(db, pCte); 5287 sqlite3DbFree(db, pCte); 5288 } 5289 5290 /* 5291 ** This routine is invoked once per CTE by the parser while parsing a 5292 ** WITH clause. The CTE described by teh third argument is added to 5293 ** the WITH clause of the second argument. If the second argument is 5294 ** NULL, then a new WITH argument is created. 5295 */ 5296 With *sqlite3WithAdd( 5297 Parse *pParse, /* Parsing context */ 5298 With *pWith, /* Existing WITH clause, or NULL */ 5299 Cte *pCte /* CTE to add to the WITH clause */ 5300 ){ 5301 sqlite3 *db = pParse->db; 5302 With *pNew; 5303 char *zName; 5304 5305 if( pCte==0 ){ 5306 return pWith; 5307 } 5308 5309 /* Check that the CTE name is unique within this WITH clause. If 5310 ** not, store an error in the Parse structure. */ 5311 zName = pCte->zName; 5312 if( zName && pWith ){ 5313 int i; 5314 for(i=0; i<pWith->nCte; i++){ 5315 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5316 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5317 } 5318 } 5319 } 5320 5321 if( pWith ){ 5322 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5323 pNew = sqlite3DbRealloc(db, pWith, nByte); 5324 }else{ 5325 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5326 } 5327 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5328 5329 if( db->mallocFailed ){ 5330 sqlite3CteDelete(db, pCte); 5331 pNew = pWith; 5332 }else{ 5333 pNew->a[pNew->nCte++] = *pCte; 5334 sqlite3DbFree(db, pCte); 5335 } 5336 5337 return pNew; 5338 } 5339 5340 /* 5341 ** Free the contents of the With object passed as the second argument. 5342 */ 5343 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5344 if( pWith ){ 5345 int i; 5346 for(i=0; i<pWith->nCte; i++){ 5347 cteClear(db, &pWith->a[i]); 5348 } 5349 sqlite3DbFree(db, pWith); 5350 } 5351 } 5352 #endif /* !defined(SQLITE_OMIT_CTE) */ 5353