1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( pParse->nested ) return; 146 if( db->mallocFailed || pParse->nErr ){ 147 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 148 return; 149 } 150 151 /* Begin by generating some termination code at the end of the 152 ** vdbe program 153 */ 154 v = sqlite3GetVdbe(pParse); 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 159 sqlite3VdbeAddOp0(v, OP_Halt); 160 161 #if SQLITE_USER_AUTHENTICATION 162 if( pParse->nTableLock>0 && db->init.busy==0 ){ 163 sqlite3UserAuthInit(db); 164 if( db->auth.authLevel<UAUTH_User ){ 165 pParse->rc = SQLITE_AUTH_USER; 166 sqlite3ErrorMsg(pParse, "user not authenticated"); 167 return; 168 } 169 } 170 #endif 171 172 /* The cookie mask contains one bit for each database file open. 173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 174 ** set for each database that is used. Generate code to start a 175 ** transaction on each used database and to verify the schema cookie 176 ** on each used database. 177 */ 178 if( db->mallocFailed==0 179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 180 ){ 181 int iDb, i; 182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 183 sqlite3VdbeJumpHere(v, 0); 184 for(iDb=0; iDb<db->nDb; iDb++){ 185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 186 sqlite3VdbeUsesBtree(v, iDb); 187 sqlite3VdbeAddOp4Int(v, 188 OP_Transaction, /* Opcode */ 189 iDb, /* P1 */ 190 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 191 pParse->cookieValue[iDb], /* P3 */ 192 db->aDb[iDb].pSchema->iGeneration /* P4 */ 193 ); 194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 195 VdbeComment((v, 196 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 197 } 198 #ifndef SQLITE_OMIT_VIRTUALTABLE 199 for(i=0; i<pParse->nVtabLock; i++){ 200 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 201 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 202 } 203 pParse->nVtabLock = 0; 204 #endif 205 206 /* Once all the cookies have been verified and transactions opened, 207 ** obtain the required table-locks. This is a no-op unless the 208 ** shared-cache feature is enabled. 209 */ 210 codeTableLocks(pParse); 211 212 /* Initialize any AUTOINCREMENT data structures required. 213 */ 214 sqlite3AutoincrementBegin(pParse); 215 216 /* Code constant expressions that where factored out of inner loops */ 217 if( pParse->pConstExpr ){ 218 ExprList *pEL = pParse->pConstExpr; 219 pParse->okConstFactor = 0; 220 for(i=0; i<pEL->nExpr; i++){ 221 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 222 } 223 } 224 225 /* Finally, jump back to the beginning of the executable code. */ 226 sqlite3VdbeGoto(v, 1); 227 } 228 } 229 230 231 /* Get the VDBE program ready for execution 232 */ 233 if( v && pParse->nErr==0 && !db->mallocFailed ){ 234 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 235 /* A minimum of one cursor is required if autoincrement is used 236 * See ticket [a696379c1f08866] */ 237 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 238 sqlite3VdbeMakeReady(v, pParse); 239 pParse->rc = SQLITE_DONE; 240 pParse->colNamesSet = 0; 241 }else{ 242 pParse->rc = SQLITE_ERROR; 243 } 244 pParse->nTab = 0; 245 pParse->nMem = 0; 246 pParse->nSet = 0; 247 pParse->nVar = 0; 248 DbMaskZero(pParse->cookieMask); 249 } 250 251 /* 252 ** Run the parser and code generator recursively in order to generate 253 ** code for the SQL statement given onto the end of the pParse context 254 ** currently under construction. When the parser is run recursively 255 ** this way, the final OP_Halt is not appended and other initialization 256 ** and finalization steps are omitted because those are handling by the 257 ** outermost parser. 258 ** 259 ** Not everything is nestable. This facility is designed to permit 260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 261 ** care if you decide to try to use this routine for some other purposes. 262 */ 263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 264 va_list ap; 265 char *zSql; 266 char *zErrMsg = 0; 267 sqlite3 *db = pParse->db; 268 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 269 char saveBuf[SAVE_SZ]; 270 271 if( pParse->nErr ) return; 272 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 273 va_start(ap, zFormat); 274 zSql = sqlite3VMPrintf(db, zFormat, ap); 275 va_end(ap); 276 if( zSql==0 ){ 277 return; /* A malloc must have failed */ 278 } 279 pParse->nested++; 280 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 281 memset(&pParse->nVar, 0, SAVE_SZ); 282 sqlite3RunParser(pParse, zSql, &zErrMsg); 283 sqlite3DbFree(db, zErrMsg); 284 sqlite3DbFree(db, zSql); 285 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 286 pParse->nested--; 287 } 288 289 #if SQLITE_USER_AUTHENTICATION 290 /* 291 ** Return TRUE if zTable is the name of the system table that stores the 292 ** list of users and their access credentials. 293 */ 294 int sqlite3UserAuthTable(const char *zTable){ 295 return sqlite3_stricmp(zTable, "sqlite_user")==0; 296 } 297 #endif 298 299 /* 300 ** Locate the in-memory structure that describes a particular database 301 ** table given the name of that table and (optionally) the name of the 302 ** database containing the table. Return NULL if not found. 303 ** 304 ** If zDatabase is 0, all databases are searched for the table and the 305 ** first matching table is returned. (No checking for duplicate table 306 ** names is done.) The search order is TEMP first, then MAIN, then any 307 ** auxiliary databases added using the ATTACH command. 308 ** 309 ** See also sqlite3LocateTable(). 310 */ 311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 312 Table *p = 0; 313 int i; 314 315 /* All mutexes are required for schema access. Make sure we hold them. */ 316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 317 #if SQLITE_USER_AUTHENTICATION 318 /* Only the admin user is allowed to know that the sqlite_user table 319 ** exists */ 320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 321 return 0; 322 } 323 #endif 324 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 325 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 326 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 327 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 328 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 329 if( p ) break; 330 } 331 return p; 332 } 333 334 /* 335 ** Locate the in-memory structure that describes a particular database 336 ** table given the name of that table and (optionally) the name of the 337 ** database containing the table. Return NULL if not found. Also leave an 338 ** error message in pParse->zErrMsg. 339 ** 340 ** The difference between this routine and sqlite3FindTable() is that this 341 ** routine leaves an error message in pParse->zErrMsg where 342 ** sqlite3FindTable() does not. 343 */ 344 Table *sqlite3LocateTable( 345 Parse *pParse, /* context in which to report errors */ 346 int isView, /* True if looking for a VIEW rather than a TABLE */ 347 const char *zName, /* Name of the table we are looking for */ 348 const char *zDbase /* Name of the database. Might be NULL */ 349 ){ 350 Table *p; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 355 return 0; 356 } 357 358 p = sqlite3FindTable(pParse->db, zName, zDbase); 359 if( p==0 ){ 360 const char *zMsg = isView ? "no such view" : "no such table"; 361 #ifndef SQLITE_OMIT_VIRTUALTABLE 362 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 363 /* If zName is the not the name of a table in the schema created using 364 ** CREATE, then check to see if it is the name of an virtual table that 365 ** can be an eponymous virtual table. */ 366 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 367 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 368 return pMod->pEpoTab; 369 } 370 } 371 #endif 372 if( zDbase ){ 373 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 374 }else{ 375 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 376 } 377 pParse->checkSchema = 1; 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 int isView, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->flags |= SQLITE_InternChanges; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zName); 499 pDb->zName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 508 db->nDb = j; 509 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 510 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 511 sqlite3DbFree(db, db->aDb); 512 db->aDb = db->aDbStatic; 513 } 514 } 515 516 /* 517 ** Reset the schema for the database at index iDb. Also reset the 518 ** TEMP schema. 519 */ 520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 521 Db *pDb; 522 assert( iDb<db->nDb ); 523 524 /* Case 1: Reset the single schema identified by iDb */ 525 pDb = &db->aDb[iDb]; 526 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 527 assert( pDb->pSchema!=0 ); 528 sqlite3SchemaClear(pDb->pSchema); 529 530 /* If any database other than TEMP is reset, then also reset TEMP 531 ** since TEMP might be holding triggers that reference tables in the 532 ** other database. 533 */ 534 if( iDb!=1 ){ 535 pDb = &db->aDb[1]; 536 assert( pDb->pSchema!=0 ); 537 sqlite3SchemaClear(pDb->pSchema); 538 } 539 return; 540 } 541 542 /* 543 ** Erase all schema information from all attached databases (including 544 ** "main" and "temp") for a single database connection. 545 */ 546 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 547 int i; 548 sqlite3BtreeEnterAll(db); 549 for(i=0; i<db->nDb; i++){ 550 Db *pDb = &db->aDb[i]; 551 if( pDb->pSchema ){ 552 sqlite3SchemaClear(pDb->pSchema); 553 } 554 } 555 db->flags &= ~SQLITE_InternChanges; 556 sqlite3VtabUnlockList(db); 557 sqlite3BtreeLeaveAll(db); 558 sqlite3CollapseDatabaseArray(db); 559 } 560 561 /* 562 ** This routine is called when a commit occurs. 563 */ 564 void sqlite3CommitInternalChanges(sqlite3 *db){ 565 db->flags &= ~SQLITE_InternChanges; 566 } 567 568 /* 569 ** Delete memory allocated for the column names of a table or view (the 570 ** Table.aCol[] array). 571 */ 572 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 573 int i; 574 Column *pCol; 575 assert( pTable!=0 ); 576 if( (pCol = pTable->aCol)!=0 ){ 577 for(i=0; i<pTable->nCol; i++, pCol++){ 578 sqlite3DbFree(db, pCol->zName); 579 sqlite3ExprDelete(db, pCol->pDflt); 580 sqlite3DbFree(db, pCol->zDflt); 581 sqlite3DbFree(db, pCol->zType); 582 sqlite3DbFree(db, pCol->zColl); 583 } 584 sqlite3DbFree(db, pTable->aCol); 585 } 586 } 587 588 /* 589 ** Remove the memory data structures associated with the given 590 ** Table. No changes are made to disk by this routine. 591 ** 592 ** This routine just deletes the data structure. It does not unlink 593 ** the table data structure from the hash table. But it does destroy 594 ** memory structures of the indices and foreign keys associated with 595 ** the table. 596 ** 597 ** The db parameter is optional. It is needed if the Table object 598 ** contains lookaside memory. (Table objects in the schema do not use 599 ** lookaside memory, but some ephemeral Table objects do.) Or the 600 ** db parameter can be used with db->pnBytesFreed to measure the memory 601 ** used by the Table object. 602 */ 603 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 604 Index *pIndex, *pNext; 605 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 606 607 assert( !pTable || pTable->nRef>0 ); 608 609 /* Do not delete the table until the reference count reaches zero. */ 610 if( !pTable ) return; 611 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 612 613 /* Record the number of outstanding lookaside allocations in schema Tables 614 ** prior to doing any free() operations. Since schema Tables do not use 615 ** lookaside, this number should not change. */ 616 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 617 db->lookaside.nOut : 0 ); 618 619 /* Delete all indices associated with this table. */ 620 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 621 pNext = pIndex->pNext; 622 assert( pIndex->pSchema==pTable->pSchema ); 623 if( !db || db->pnBytesFreed==0 ){ 624 char *zName = pIndex->zName; 625 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 626 &pIndex->pSchema->idxHash, zName, 0 627 ); 628 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 629 assert( pOld==pIndex || pOld==0 ); 630 } 631 freeIndex(db, pIndex); 632 } 633 634 /* Delete any foreign keys attached to this table. */ 635 sqlite3FkDelete(db, pTable); 636 637 /* Delete the Table structure itself. 638 */ 639 sqlite3DeleteColumnNames(db, pTable); 640 sqlite3DbFree(db, pTable->zName); 641 sqlite3DbFree(db, pTable->zColAff); 642 sqlite3SelectDelete(db, pTable->pSelect); 643 sqlite3ExprListDelete(db, pTable->pCheck); 644 #ifndef SQLITE_OMIT_VIRTUALTABLE 645 sqlite3VtabClear(db, pTable); 646 #endif 647 sqlite3DbFree(db, pTable); 648 649 /* Verify that no lookaside memory was used by schema tables */ 650 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 651 } 652 653 /* 654 ** Unlink the given table from the hash tables and the delete the 655 ** table structure with all its indices and foreign keys. 656 */ 657 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 658 Table *p; 659 Db *pDb; 660 661 assert( db!=0 ); 662 assert( iDb>=0 && iDb<db->nDb ); 663 assert( zTabName ); 664 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 665 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 666 pDb = &db->aDb[iDb]; 667 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 668 sqlite3DeleteTable(db, p); 669 db->flags |= SQLITE_InternChanges; 670 } 671 672 /* 673 ** Given a token, return a string that consists of the text of that 674 ** token. Space to hold the returned string 675 ** is obtained from sqliteMalloc() and must be freed by the calling 676 ** function. 677 ** 678 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 679 ** surround the body of the token are removed. 680 ** 681 ** Tokens are often just pointers into the original SQL text and so 682 ** are not \000 terminated and are not persistent. The returned string 683 ** is \000 terminated and is persistent. 684 */ 685 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 686 char *zName; 687 if( pName ){ 688 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 689 sqlite3Dequote(zName); 690 }else{ 691 zName = 0; 692 } 693 return zName; 694 } 695 696 /* 697 ** Open the sqlite_master table stored in database number iDb for 698 ** writing. The table is opened using cursor 0. 699 */ 700 void sqlite3OpenMasterTable(Parse *p, int iDb){ 701 Vdbe *v = sqlite3GetVdbe(p); 702 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 703 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 704 if( p->nTab==0 ){ 705 p->nTab = 1; 706 } 707 } 708 709 /* 710 ** Parameter zName points to a nul-terminated buffer containing the name 711 ** of a database ("main", "temp" or the name of an attached db). This 712 ** function returns the index of the named database in db->aDb[], or 713 ** -1 if the named db cannot be found. 714 */ 715 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 716 int i = -1; /* Database number */ 717 if( zName ){ 718 Db *pDb; 719 int n = sqlite3Strlen30(zName); 720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 721 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 722 0==sqlite3StrICmp(pDb->zName, zName) ){ 723 break; 724 } 725 } 726 } 727 return i; 728 } 729 730 /* 731 ** The token *pName contains the name of a database (either "main" or 732 ** "temp" or the name of an attached db). This routine returns the 733 ** index of the named database in db->aDb[], or -1 if the named db 734 ** does not exist. 735 */ 736 int sqlite3FindDb(sqlite3 *db, Token *pName){ 737 int i; /* Database number */ 738 char *zName; /* Name we are searching for */ 739 zName = sqlite3NameFromToken(db, pName); 740 i = sqlite3FindDbName(db, zName); 741 sqlite3DbFree(db, zName); 742 return i; 743 } 744 745 /* The table or view or trigger name is passed to this routine via tokens 746 ** pName1 and pName2. If the table name was fully qualified, for example: 747 ** 748 ** CREATE TABLE xxx.yyy (...); 749 ** 750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 751 ** the table name is not fully qualified, i.e.: 752 ** 753 ** CREATE TABLE yyy(...); 754 ** 755 ** Then pName1 is set to "yyy" and pName2 is "". 756 ** 757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 758 ** pName2) that stores the unqualified table name. The index of the 759 ** database "xxx" is returned. 760 */ 761 int sqlite3TwoPartName( 762 Parse *pParse, /* Parsing and code generating context */ 763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 765 Token **pUnqual /* Write the unqualified object name here */ 766 ){ 767 int iDb; /* Database holding the object */ 768 sqlite3 *db = pParse->db; 769 770 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 771 if( db->init.busy ) { 772 sqlite3ErrorMsg(pParse, "corrupt database"); 773 return -1; 774 } 775 *pUnqual = pName2; 776 iDb = sqlite3FindDb(db, pName1); 777 if( iDb<0 ){ 778 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 779 return -1; 780 } 781 }else{ 782 assert( db->init.iDb==0 || db->init.busy ); 783 iDb = db->init.iDb; 784 *pUnqual = pName1; 785 } 786 return iDb; 787 } 788 789 /* 790 ** This routine is used to check if the UTF-8 string zName is a legal 791 ** unqualified name for a new schema object (table, index, view or 792 ** trigger). All names are legal except those that begin with the string 793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 794 ** is reserved for internal use. 795 */ 796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 797 if( !pParse->db->init.busy && pParse->nested==0 798 && (pParse->db->flags & SQLITE_WriteSchema)==0 799 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 800 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 801 return SQLITE_ERROR; 802 } 803 return SQLITE_OK; 804 } 805 806 /* 807 ** Return the PRIMARY KEY index of a table 808 */ 809 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 810 Index *p; 811 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 812 return p; 813 } 814 815 /* 816 ** Return the column of index pIdx that corresponds to table 817 ** column iCol. Return -1 if not found. 818 */ 819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 820 int i; 821 for(i=0; i<pIdx->nColumn; i++){ 822 if( iCol==pIdx->aiColumn[i] ) return i; 823 } 824 return -1; 825 } 826 827 /* 828 ** Begin constructing a new table representation in memory. This is 829 ** the first of several action routines that get called in response 830 ** to a CREATE TABLE statement. In particular, this routine is called 831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 832 ** flag is true if the table should be stored in the auxiliary database 833 ** file instead of in the main database file. This is normally the case 834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 835 ** CREATE and TABLE. 836 ** 837 ** The new table record is initialized and put in pParse->pNewTable. 838 ** As more of the CREATE TABLE statement is parsed, additional action 839 ** routines will be called to add more information to this record. 840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 841 ** is called to complete the construction of the new table record. 842 */ 843 void sqlite3StartTable( 844 Parse *pParse, /* Parser context */ 845 Token *pName1, /* First part of the name of the table or view */ 846 Token *pName2, /* Second part of the name of the table or view */ 847 int isTemp, /* True if this is a TEMP table */ 848 int isView, /* True if this is a VIEW */ 849 int isVirtual, /* True if this is a VIRTUAL table */ 850 int noErr /* Do nothing if table already exists */ 851 ){ 852 Table *pTable; 853 char *zName = 0; /* The name of the new table */ 854 sqlite3 *db = pParse->db; 855 Vdbe *v; 856 int iDb; /* Database number to create the table in */ 857 Token *pName; /* Unqualified name of the table to create */ 858 859 /* The table or view name to create is passed to this routine via tokens 860 ** pName1 and pName2. If the table name was fully qualified, for example: 861 ** 862 ** CREATE TABLE xxx.yyy (...); 863 ** 864 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 865 ** the table name is not fully qualified, i.e.: 866 ** 867 ** CREATE TABLE yyy(...); 868 ** 869 ** Then pName1 is set to "yyy" and pName2 is "". 870 ** 871 ** The call below sets the pName pointer to point at the token (pName1 or 872 ** pName2) that stores the unqualified table name. The variable iDb is 873 ** set to the index of the database that the table or view is to be 874 ** created in. 875 */ 876 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 877 if( iDb<0 ) return; 878 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 879 /* If creating a temp table, the name may not be qualified. Unless 880 ** the database name is "temp" anyway. */ 881 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 882 return; 883 } 884 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 885 886 pParse->sNameToken = *pName; 887 zName = sqlite3NameFromToken(db, pName); 888 if( zName==0 ) return; 889 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 890 goto begin_table_error; 891 } 892 if( db->init.iDb==1 ) isTemp = 1; 893 #ifndef SQLITE_OMIT_AUTHORIZATION 894 assert( (isTemp & 1)==isTemp ); 895 { 896 int code; 897 char *zDb = db->aDb[iDb].zName; 898 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 899 goto begin_table_error; 900 } 901 if( isView ){ 902 if( !OMIT_TEMPDB && isTemp ){ 903 code = SQLITE_CREATE_TEMP_VIEW; 904 }else{ 905 code = SQLITE_CREATE_VIEW; 906 } 907 }else{ 908 if( !OMIT_TEMPDB && isTemp ){ 909 code = SQLITE_CREATE_TEMP_TABLE; 910 }else{ 911 code = SQLITE_CREATE_TABLE; 912 } 913 } 914 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 915 goto begin_table_error; 916 } 917 } 918 #endif 919 920 /* Make sure the new table name does not collide with an existing 921 ** index or table name in the same database. Issue an error message if 922 ** it does. The exception is if the statement being parsed was passed 923 ** to an sqlite3_declare_vtab() call. In that case only the column names 924 ** and types will be used, so there is no need to test for namespace 925 ** collisions. 926 */ 927 if( !IN_DECLARE_VTAB ){ 928 char *zDb = db->aDb[iDb].zName; 929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 930 goto begin_table_error; 931 } 932 pTable = sqlite3FindTable(db, zName, zDb); 933 if( pTable ){ 934 if( !noErr ){ 935 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 936 }else{ 937 assert( !db->init.busy || CORRUPT_DB ); 938 sqlite3CodeVerifySchema(pParse, iDb); 939 } 940 goto begin_table_error; 941 } 942 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 943 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 944 goto begin_table_error; 945 } 946 } 947 948 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 949 if( pTable==0 ){ 950 db->mallocFailed = 1; 951 pParse->rc = SQLITE_NOMEM; 952 pParse->nErr++; 953 goto begin_table_error; 954 } 955 pTable->zName = zName; 956 pTable->iPKey = -1; 957 pTable->pSchema = db->aDb[iDb].pSchema; 958 pTable->nRef = 1; 959 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 960 assert( pParse->pNewTable==0 ); 961 pParse->pNewTable = pTable; 962 963 /* If this is the magic sqlite_sequence table used by autoincrement, 964 ** then record a pointer to this table in the main database structure 965 ** so that INSERT can find the table easily. 966 */ 967 #ifndef SQLITE_OMIT_AUTOINCREMENT 968 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 969 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 970 pTable->pSchema->pSeqTab = pTable; 971 } 972 #endif 973 974 /* Begin generating the code that will insert the table record into 975 ** the SQLITE_MASTER table. Note in particular that we must go ahead 976 ** and allocate the record number for the table entry now. Before any 977 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 978 ** indices to be created and the table record must come before the 979 ** indices. Hence, the record number for the table must be allocated 980 ** now. 981 */ 982 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 983 int addr1; 984 int fileFormat; 985 int reg1, reg2, reg3; 986 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 987 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 988 sqlite3BeginWriteOperation(pParse, 1, iDb); 989 990 #ifndef SQLITE_OMIT_VIRTUALTABLE 991 if( isVirtual ){ 992 sqlite3VdbeAddOp0(v, OP_VBegin); 993 } 994 #endif 995 996 /* If the file format and encoding in the database have not been set, 997 ** set them now. 998 */ 999 reg1 = pParse->regRowid = ++pParse->nMem; 1000 reg2 = pParse->regRoot = ++pParse->nMem; 1001 reg3 = ++pParse->nMem; 1002 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1003 sqlite3VdbeUsesBtree(v, iDb); 1004 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1005 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1006 1 : SQLITE_MAX_FILE_FORMAT; 1007 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 1008 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1009 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1010 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1011 sqlite3VdbeJumpHere(v, addr1); 1012 1013 /* This just creates a place-holder record in the sqlite_master table. 1014 ** The record created does not contain anything yet. It will be replaced 1015 ** by the real entry in code generated at sqlite3EndTable(). 1016 ** 1017 ** The rowid for the new entry is left in register pParse->regRowid. 1018 ** The root page number of the new table is left in reg pParse->regRoot. 1019 ** The rowid and root page number values are needed by the code that 1020 ** sqlite3EndTable will generate. 1021 */ 1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1023 if( isView || isVirtual ){ 1024 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1025 }else 1026 #endif 1027 { 1028 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1029 } 1030 sqlite3OpenMasterTable(pParse, iDb); 1031 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1032 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1033 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1034 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1035 sqlite3VdbeAddOp0(v, OP_Close); 1036 } 1037 1038 /* Normal (non-error) return. */ 1039 return; 1040 1041 /* If an error occurs, we jump here */ 1042 begin_table_error: 1043 sqlite3DbFree(db, zName); 1044 return; 1045 } 1046 1047 /* Set properties of a table column based on the (magical) 1048 ** name of the column. 1049 */ 1050 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1051 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1052 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1053 pCol->colFlags |= COLFLAG_HIDDEN; 1054 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1055 pTab->tabFlags |= TF_OOOHidden; 1056 } 1057 #endif 1058 } 1059 1060 1061 /* 1062 ** Add a new column to the table currently being constructed. 1063 ** 1064 ** The parser calls this routine once for each column declaration 1065 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1066 ** first to get things going. Then this routine is called for each 1067 ** column. 1068 */ 1069 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1070 Table *p; 1071 int i; 1072 char *z; 1073 Column *pCol; 1074 sqlite3 *db = pParse->db; 1075 if( (p = pParse->pNewTable)==0 ) return; 1076 #if SQLITE_MAX_COLUMN 1077 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1078 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1079 return; 1080 } 1081 #endif 1082 z = sqlite3NameFromToken(db, pName); 1083 if( z==0 ) return; 1084 for(i=0; i<p->nCol; i++){ 1085 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1086 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1087 sqlite3DbFree(db, z); 1088 return; 1089 } 1090 } 1091 if( (p->nCol & 0x7)==0 ){ 1092 Column *aNew; 1093 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1094 if( aNew==0 ){ 1095 sqlite3DbFree(db, z); 1096 return; 1097 } 1098 p->aCol = aNew; 1099 } 1100 pCol = &p->aCol[p->nCol]; 1101 memset(pCol, 0, sizeof(p->aCol[0])); 1102 pCol->zName = z; 1103 sqlite3ColumnPropertiesFromName(p, pCol); 1104 1105 /* If there is no type specified, columns have the default affinity 1106 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1107 ** be called next to set pCol->affinity correctly. 1108 */ 1109 pCol->affinity = SQLITE_AFF_BLOB; 1110 pCol->szEst = 1; 1111 p->nCol++; 1112 } 1113 1114 /* 1115 ** This routine is called by the parser while in the middle of 1116 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1117 ** been seen on a column. This routine sets the notNull flag on 1118 ** the column currently under construction. 1119 */ 1120 void sqlite3AddNotNull(Parse *pParse, int onError){ 1121 Table *p; 1122 p = pParse->pNewTable; 1123 if( p==0 || NEVER(p->nCol<1) ) return; 1124 p->aCol[p->nCol-1].notNull = (u8)onError; 1125 } 1126 1127 /* 1128 ** Scan the column type name zType (length nType) and return the 1129 ** associated affinity type. 1130 ** 1131 ** This routine does a case-independent search of zType for the 1132 ** substrings in the following table. If one of the substrings is 1133 ** found, the corresponding affinity is returned. If zType contains 1134 ** more than one of the substrings, entries toward the top of 1135 ** the table take priority. For example, if zType is 'BLOBINT', 1136 ** SQLITE_AFF_INTEGER is returned. 1137 ** 1138 ** Substring | Affinity 1139 ** -------------------------------- 1140 ** 'INT' | SQLITE_AFF_INTEGER 1141 ** 'CHAR' | SQLITE_AFF_TEXT 1142 ** 'CLOB' | SQLITE_AFF_TEXT 1143 ** 'TEXT' | SQLITE_AFF_TEXT 1144 ** 'BLOB' | SQLITE_AFF_BLOB 1145 ** 'REAL' | SQLITE_AFF_REAL 1146 ** 'FLOA' | SQLITE_AFF_REAL 1147 ** 'DOUB' | SQLITE_AFF_REAL 1148 ** 1149 ** If none of the substrings in the above table are found, 1150 ** SQLITE_AFF_NUMERIC is returned. 1151 */ 1152 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1153 u32 h = 0; 1154 char aff = SQLITE_AFF_NUMERIC; 1155 const char *zChar = 0; 1156 1157 if( zIn==0 ) return aff; 1158 while( zIn[0] ){ 1159 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1160 zIn++; 1161 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1162 aff = SQLITE_AFF_TEXT; 1163 zChar = zIn; 1164 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1165 aff = SQLITE_AFF_TEXT; 1166 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1167 aff = SQLITE_AFF_TEXT; 1168 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1169 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1170 aff = SQLITE_AFF_BLOB; 1171 if( zIn[0]=='(' ) zChar = zIn; 1172 #ifndef SQLITE_OMIT_FLOATING_POINT 1173 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1174 && aff==SQLITE_AFF_NUMERIC ){ 1175 aff = SQLITE_AFF_REAL; 1176 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1177 && aff==SQLITE_AFF_NUMERIC ){ 1178 aff = SQLITE_AFF_REAL; 1179 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1180 && aff==SQLITE_AFF_NUMERIC ){ 1181 aff = SQLITE_AFF_REAL; 1182 #endif 1183 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1184 aff = SQLITE_AFF_INTEGER; 1185 break; 1186 } 1187 } 1188 1189 /* If pszEst is not NULL, store an estimate of the field size. The 1190 ** estimate is scaled so that the size of an integer is 1. */ 1191 if( pszEst ){ 1192 *pszEst = 1; /* default size is approx 4 bytes */ 1193 if( aff<SQLITE_AFF_NUMERIC ){ 1194 if( zChar ){ 1195 while( zChar[0] ){ 1196 if( sqlite3Isdigit(zChar[0]) ){ 1197 int v = 0; 1198 sqlite3GetInt32(zChar, &v); 1199 v = v/4 + 1; 1200 if( v>255 ) v = 255; 1201 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1202 break; 1203 } 1204 zChar++; 1205 } 1206 }else{ 1207 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1208 } 1209 } 1210 } 1211 return aff; 1212 } 1213 1214 /* 1215 ** This routine is called by the parser while in the middle of 1216 ** parsing a CREATE TABLE statement. The pFirst token is the first 1217 ** token in the sequence of tokens that describe the type of the 1218 ** column currently under construction. pLast is the last token 1219 ** in the sequence. Use this information to construct a string 1220 ** that contains the typename of the column and store that string 1221 ** in zType. 1222 */ 1223 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1224 Table *p; 1225 Column *pCol; 1226 1227 p = pParse->pNewTable; 1228 if( p==0 || NEVER(p->nCol<1) ) return; 1229 pCol = &p->aCol[p->nCol-1]; 1230 assert( pCol->zType==0 || CORRUPT_DB ); 1231 sqlite3DbFree(pParse->db, pCol->zType); 1232 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1233 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1234 } 1235 1236 /* 1237 ** The expression is the default value for the most recently added column 1238 ** of the table currently under construction. 1239 ** 1240 ** Default value expressions must be constant. Raise an exception if this 1241 ** is not the case. 1242 ** 1243 ** This routine is called by the parser while in the middle of 1244 ** parsing a CREATE TABLE statement. 1245 */ 1246 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1247 Table *p; 1248 Column *pCol; 1249 sqlite3 *db = pParse->db; 1250 p = pParse->pNewTable; 1251 if( p!=0 ){ 1252 pCol = &(p->aCol[p->nCol-1]); 1253 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1254 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1255 pCol->zName); 1256 }else{ 1257 /* A copy of pExpr is used instead of the original, as pExpr contains 1258 ** tokens that point to volatile memory. The 'span' of the expression 1259 ** is required by pragma table_info. 1260 */ 1261 sqlite3ExprDelete(db, pCol->pDflt); 1262 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1263 sqlite3DbFree(db, pCol->zDflt); 1264 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1265 (int)(pSpan->zEnd - pSpan->zStart)); 1266 } 1267 } 1268 sqlite3ExprDelete(db, pSpan->pExpr); 1269 } 1270 1271 /* 1272 ** Backwards Compatibility Hack: 1273 ** 1274 ** Historical versions of SQLite accepted strings as column names in 1275 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1276 ** 1277 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1278 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1279 ** 1280 ** This is goofy. But to preserve backwards compatibility we continue to 1281 ** accept it. This routine does the necessary conversion. It converts 1282 ** the expression given in its argument from a TK_STRING into a TK_ID 1283 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1284 ** If the epxression is anything other than TK_STRING, the expression is 1285 ** unchanged. 1286 */ 1287 static void sqlite3StringToId(Expr *p){ 1288 if( p->op==TK_STRING ){ 1289 p->op = TK_ID; 1290 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1291 p->pLeft->op = TK_ID; 1292 } 1293 } 1294 1295 /* 1296 ** Designate the PRIMARY KEY for the table. pList is a list of names 1297 ** of columns that form the primary key. If pList is NULL, then the 1298 ** most recently added column of the table is the primary key. 1299 ** 1300 ** A table can have at most one primary key. If the table already has 1301 ** a primary key (and this is the second primary key) then create an 1302 ** error. 1303 ** 1304 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1305 ** then we will try to use that column as the rowid. Set the Table.iPKey 1306 ** field of the table under construction to be the index of the 1307 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1308 ** no INTEGER PRIMARY KEY. 1309 ** 1310 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1311 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1312 */ 1313 void sqlite3AddPrimaryKey( 1314 Parse *pParse, /* Parsing context */ 1315 ExprList *pList, /* List of field names to be indexed */ 1316 int onError, /* What to do with a uniqueness conflict */ 1317 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1318 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1319 ){ 1320 Table *pTab = pParse->pNewTable; 1321 char *zType = 0; 1322 int iCol = -1, i; 1323 int nTerm; 1324 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1325 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1326 sqlite3ErrorMsg(pParse, 1327 "table \"%s\" has more than one primary key", pTab->zName); 1328 goto primary_key_exit; 1329 } 1330 pTab->tabFlags |= TF_HasPrimaryKey; 1331 if( pList==0 ){ 1332 iCol = pTab->nCol - 1; 1333 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1334 zType = pTab->aCol[iCol].zType; 1335 nTerm = 1; 1336 }else{ 1337 nTerm = pList->nExpr; 1338 for(i=0; i<nTerm; i++){ 1339 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1340 assert( pCExpr!=0 ); 1341 sqlite3StringToId(pCExpr); 1342 if( pCExpr->op==TK_ID ){ 1343 const char *zCName = pCExpr->u.zToken; 1344 for(iCol=0; iCol<pTab->nCol; iCol++){ 1345 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1346 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1347 zType = pTab->aCol[iCol].zType; 1348 break; 1349 } 1350 } 1351 } 1352 } 1353 } 1354 if( nTerm==1 1355 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1356 && sortOrder!=SQLITE_SO_DESC 1357 ){ 1358 pTab->iPKey = iCol; 1359 pTab->keyConf = (u8)onError; 1360 assert( autoInc==0 || autoInc==1 ); 1361 pTab->tabFlags |= autoInc*TF_Autoincrement; 1362 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1363 }else if( autoInc ){ 1364 #ifndef SQLITE_OMIT_AUTOINCREMENT 1365 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1366 "INTEGER PRIMARY KEY"); 1367 #endif 1368 }else{ 1369 Index *p; 1370 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1371 0, sortOrder, 0); 1372 if( p ){ 1373 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1374 } 1375 pList = 0; 1376 } 1377 1378 primary_key_exit: 1379 sqlite3ExprListDelete(pParse->db, pList); 1380 return; 1381 } 1382 1383 /* 1384 ** Add a new CHECK constraint to the table currently under construction. 1385 */ 1386 void sqlite3AddCheckConstraint( 1387 Parse *pParse, /* Parsing context */ 1388 Expr *pCheckExpr /* The check expression */ 1389 ){ 1390 #ifndef SQLITE_OMIT_CHECK 1391 Table *pTab = pParse->pNewTable; 1392 sqlite3 *db = pParse->db; 1393 if( pTab && !IN_DECLARE_VTAB 1394 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1395 ){ 1396 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1397 if( pParse->constraintName.n ){ 1398 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1399 } 1400 }else 1401 #endif 1402 { 1403 sqlite3ExprDelete(pParse->db, pCheckExpr); 1404 } 1405 } 1406 1407 /* 1408 ** Set the collation function of the most recently parsed table column 1409 ** to the CollSeq given. 1410 */ 1411 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1412 Table *p; 1413 int i; 1414 char *zColl; /* Dequoted name of collation sequence */ 1415 sqlite3 *db; 1416 1417 if( (p = pParse->pNewTable)==0 ) return; 1418 i = p->nCol-1; 1419 db = pParse->db; 1420 zColl = sqlite3NameFromToken(db, pToken); 1421 if( !zColl ) return; 1422 1423 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1424 Index *pIdx; 1425 sqlite3DbFree(db, p->aCol[i].zColl); 1426 p->aCol[i].zColl = zColl; 1427 1428 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1429 ** then an index may have been created on this column before the 1430 ** collation type was added. Correct this if it is the case. 1431 */ 1432 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1433 assert( pIdx->nKeyCol==1 ); 1434 if( pIdx->aiColumn[0]==i ){ 1435 pIdx->azColl[0] = p->aCol[i].zColl; 1436 } 1437 } 1438 }else{ 1439 sqlite3DbFree(db, zColl); 1440 } 1441 } 1442 1443 /* 1444 ** This function returns the collation sequence for database native text 1445 ** encoding identified by the string zName, length nName. 1446 ** 1447 ** If the requested collation sequence is not available, or not available 1448 ** in the database native encoding, the collation factory is invoked to 1449 ** request it. If the collation factory does not supply such a sequence, 1450 ** and the sequence is available in another text encoding, then that is 1451 ** returned instead. 1452 ** 1453 ** If no versions of the requested collations sequence are available, or 1454 ** another error occurs, NULL is returned and an error message written into 1455 ** pParse. 1456 ** 1457 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1458 ** invokes the collation factory if the named collation cannot be found 1459 ** and generates an error message. 1460 ** 1461 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1462 */ 1463 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1464 sqlite3 *db = pParse->db; 1465 u8 enc = ENC(db); 1466 u8 initbusy = db->init.busy; 1467 CollSeq *pColl; 1468 1469 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1470 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1471 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1472 } 1473 1474 return pColl; 1475 } 1476 1477 1478 /* 1479 ** Generate code that will increment the schema cookie. 1480 ** 1481 ** The schema cookie is used to determine when the schema for the 1482 ** database changes. After each schema change, the cookie value 1483 ** changes. When a process first reads the schema it records the 1484 ** cookie. Thereafter, whenever it goes to access the database, 1485 ** it checks the cookie to make sure the schema has not changed 1486 ** since it was last read. 1487 ** 1488 ** This plan is not completely bullet-proof. It is possible for 1489 ** the schema to change multiple times and for the cookie to be 1490 ** set back to prior value. But schema changes are infrequent 1491 ** and the probability of hitting the same cookie value is only 1492 ** 1 chance in 2^32. So we're safe enough. 1493 */ 1494 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1495 int r1 = sqlite3GetTempReg(pParse); 1496 sqlite3 *db = pParse->db; 1497 Vdbe *v = pParse->pVdbe; 1498 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1499 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1500 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1501 sqlite3ReleaseTempReg(pParse, r1); 1502 } 1503 1504 /* 1505 ** Measure the number of characters needed to output the given 1506 ** identifier. The number returned includes any quotes used 1507 ** but does not include the null terminator. 1508 ** 1509 ** The estimate is conservative. It might be larger that what is 1510 ** really needed. 1511 */ 1512 static int identLength(const char *z){ 1513 int n; 1514 for(n=0; *z; n++, z++){ 1515 if( *z=='"' ){ n++; } 1516 } 1517 return n + 2; 1518 } 1519 1520 /* 1521 ** The first parameter is a pointer to an output buffer. The second 1522 ** parameter is a pointer to an integer that contains the offset at 1523 ** which to write into the output buffer. This function copies the 1524 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1525 ** to the specified offset in the buffer and updates *pIdx to refer 1526 ** to the first byte after the last byte written before returning. 1527 ** 1528 ** If the string zSignedIdent consists entirely of alpha-numeric 1529 ** characters, does not begin with a digit and is not an SQL keyword, 1530 ** then it is copied to the output buffer exactly as it is. Otherwise, 1531 ** it is quoted using double-quotes. 1532 */ 1533 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1534 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1535 int i, j, needQuote; 1536 i = *pIdx; 1537 1538 for(j=0; zIdent[j]; j++){ 1539 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1540 } 1541 needQuote = sqlite3Isdigit(zIdent[0]) 1542 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1543 || zIdent[j]!=0 1544 || j==0; 1545 1546 if( needQuote ) z[i++] = '"'; 1547 for(j=0; zIdent[j]; j++){ 1548 z[i++] = zIdent[j]; 1549 if( zIdent[j]=='"' ) z[i++] = '"'; 1550 } 1551 if( needQuote ) z[i++] = '"'; 1552 z[i] = 0; 1553 *pIdx = i; 1554 } 1555 1556 /* 1557 ** Generate a CREATE TABLE statement appropriate for the given 1558 ** table. Memory to hold the text of the statement is obtained 1559 ** from sqliteMalloc() and must be freed by the calling function. 1560 */ 1561 static char *createTableStmt(sqlite3 *db, Table *p){ 1562 int i, k, n; 1563 char *zStmt; 1564 char *zSep, *zSep2, *zEnd; 1565 Column *pCol; 1566 n = 0; 1567 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1568 n += identLength(pCol->zName) + 5; 1569 } 1570 n += identLength(p->zName); 1571 if( n<50 ){ 1572 zSep = ""; 1573 zSep2 = ","; 1574 zEnd = ")"; 1575 }else{ 1576 zSep = "\n "; 1577 zSep2 = ",\n "; 1578 zEnd = "\n)"; 1579 } 1580 n += 35 + 6*p->nCol; 1581 zStmt = sqlite3DbMallocRaw(0, n); 1582 if( zStmt==0 ){ 1583 db->mallocFailed = 1; 1584 return 0; 1585 } 1586 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1587 k = sqlite3Strlen30(zStmt); 1588 identPut(zStmt, &k, p->zName); 1589 zStmt[k++] = '('; 1590 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1591 static const char * const azType[] = { 1592 /* SQLITE_AFF_BLOB */ "", 1593 /* SQLITE_AFF_TEXT */ " TEXT", 1594 /* SQLITE_AFF_NUMERIC */ " NUM", 1595 /* SQLITE_AFF_INTEGER */ " INT", 1596 /* SQLITE_AFF_REAL */ " REAL" 1597 }; 1598 int len; 1599 const char *zType; 1600 1601 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1602 k += sqlite3Strlen30(&zStmt[k]); 1603 zSep = zSep2; 1604 identPut(zStmt, &k, pCol->zName); 1605 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1606 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1607 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1608 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1609 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1610 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1611 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1612 1613 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1614 len = sqlite3Strlen30(zType); 1615 assert( pCol->affinity==SQLITE_AFF_BLOB 1616 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1617 memcpy(&zStmt[k], zType, len); 1618 k += len; 1619 assert( k<=n ); 1620 } 1621 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1622 return zStmt; 1623 } 1624 1625 /* 1626 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1627 ** on success and SQLITE_NOMEM on an OOM error. 1628 */ 1629 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1630 char *zExtra; 1631 int nByte; 1632 if( pIdx->nColumn>=N ) return SQLITE_OK; 1633 assert( pIdx->isResized==0 ); 1634 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1635 zExtra = sqlite3DbMallocZero(db, nByte); 1636 if( zExtra==0 ) return SQLITE_NOMEM; 1637 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1638 pIdx->azColl = (char**)zExtra; 1639 zExtra += sizeof(char*)*N; 1640 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1641 pIdx->aiColumn = (i16*)zExtra; 1642 zExtra += sizeof(i16)*N; 1643 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1644 pIdx->aSortOrder = (u8*)zExtra; 1645 pIdx->nColumn = N; 1646 pIdx->isResized = 1; 1647 return SQLITE_OK; 1648 } 1649 1650 /* 1651 ** Estimate the total row width for a table. 1652 */ 1653 static void estimateTableWidth(Table *pTab){ 1654 unsigned wTable = 0; 1655 const Column *pTabCol; 1656 int i; 1657 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1658 wTable += pTabCol->szEst; 1659 } 1660 if( pTab->iPKey<0 ) wTable++; 1661 pTab->szTabRow = sqlite3LogEst(wTable*4); 1662 } 1663 1664 /* 1665 ** Estimate the average size of a row for an index. 1666 */ 1667 static void estimateIndexWidth(Index *pIdx){ 1668 unsigned wIndex = 0; 1669 int i; 1670 const Column *aCol = pIdx->pTable->aCol; 1671 for(i=0; i<pIdx->nColumn; i++){ 1672 i16 x = pIdx->aiColumn[i]; 1673 assert( x<pIdx->pTable->nCol ); 1674 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1675 } 1676 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1677 } 1678 1679 /* Return true if value x is found any of the first nCol entries of aiCol[] 1680 */ 1681 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1682 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1683 return 0; 1684 } 1685 1686 /* 1687 ** This routine runs at the end of parsing a CREATE TABLE statement that 1688 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1689 ** internal schema data structures and the generated VDBE code so that they 1690 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1691 ** Changes include: 1692 ** 1693 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1694 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1695 ** data storage is a covering index btree. 1696 ** (2) Bypass the creation of the sqlite_master table entry 1697 ** for the PRIMARY KEY as the primary key index is now 1698 ** identified by the sqlite_master table entry of the table itself. 1699 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1700 ** schema to the rootpage from the main table. 1701 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1702 ** (5) Add all table columns to the PRIMARY KEY Index object 1703 ** so that the PRIMARY KEY is a covering index. The surplus 1704 ** columns are part of KeyInfo.nXField and are not used for 1705 ** sorting or lookup or uniqueness checks. 1706 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1707 ** indices with the PRIMARY KEY columns. 1708 */ 1709 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1710 Index *pIdx; 1711 Index *pPk; 1712 int nPk; 1713 int i, j; 1714 sqlite3 *db = pParse->db; 1715 Vdbe *v = pParse->pVdbe; 1716 1717 /* Convert the OP_CreateTable opcode that would normally create the 1718 ** root-page for the table into an OP_CreateIndex opcode. The index 1719 ** created will become the PRIMARY KEY index. 1720 */ 1721 if( pParse->addrCrTab ){ 1722 assert( v ); 1723 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1724 } 1725 1726 /* Locate the PRIMARY KEY index. Or, if this table was originally 1727 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1728 */ 1729 if( pTab->iPKey>=0 ){ 1730 ExprList *pList; 1731 Token ipkToken; 1732 ipkToken.z = pTab->aCol[pTab->iPKey].zName; 1733 ipkToken.n = sqlite3Strlen30(ipkToken.z); 1734 pList = sqlite3ExprListAppend(pParse, 0, 1735 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1736 if( pList==0 ) return; 1737 pList->a[0].sortOrder = pParse->iPkSortOrder; 1738 assert( pParse->pNewTable==pTab ); 1739 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1740 if( pPk==0 ) return; 1741 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1742 pTab->iPKey = -1; 1743 }else{ 1744 pPk = sqlite3PrimaryKeyIndex(pTab); 1745 1746 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1747 ** table entry. This is only required if currently generating VDBE 1748 ** code for a CREATE TABLE (not when parsing one as part of reading 1749 ** a database schema). */ 1750 if( v ){ 1751 assert( db->init.busy==0 ); 1752 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1753 } 1754 1755 /* 1756 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1757 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1758 ** code assumes the PRIMARY KEY contains no repeated columns. 1759 */ 1760 for(i=j=1; i<pPk->nKeyCol; i++){ 1761 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1762 pPk->nColumn--; 1763 }else{ 1764 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1765 } 1766 } 1767 pPk->nKeyCol = j; 1768 } 1769 pPk->isCovering = 1; 1770 assert( pPk!=0 ); 1771 nPk = pPk->nKeyCol; 1772 1773 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1774 ** do not enforce this for imposter tables.) */ 1775 if( !db->init.imposterTable ){ 1776 for(i=0; i<nPk; i++){ 1777 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1778 } 1779 pPk->uniqNotNull = 1; 1780 } 1781 1782 /* The root page of the PRIMARY KEY is the table root page */ 1783 pPk->tnum = pTab->tnum; 1784 1785 /* Update the in-memory representation of all UNIQUE indices by converting 1786 ** the final rowid column into one or more columns of the PRIMARY KEY. 1787 */ 1788 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1789 int n; 1790 if( IsPrimaryKeyIndex(pIdx) ) continue; 1791 for(i=n=0; i<nPk; i++){ 1792 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1793 } 1794 if( n==0 ){ 1795 /* This index is a superset of the primary key */ 1796 pIdx->nColumn = pIdx->nKeyCol; 1797 continue; 1798 } 1799 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1800 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1801 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1802 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1803 pIdx->azColl[j] = pPk->azColl[i]; 1804 j++; 1805 } 1806 } 1807 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1808 assert( pIdx->nColumn>=j ); 1809 } 1810 1811 /* Add all table columns to the PRIMARY KEY index 1812 */ 1813 if( nPk<pTab->nCol ){ 1814 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1815 for(i=0, j=nPk; i<pTab->nCol; i++){ 1816 if( !hasColumn(pPk->aiColumn, j, i) ){ 1817 assert( j<pPk->nColumn ); 1818 pPk->aiColumn[j] = i; 1819 pPk->azColl[j] = "BINARY"; 1820 j++; 1821 } 1822 } 1823 assert( pPk->nColumn==j ); 1824 assert( pTab->nCol==j ); 1825 }else{ 1826 pPk->nColumn = pTab->nCol; 1827 } 1828 } 1829 1830 /* 1831 ** This routine is called to report the final ")" that terminates 1832 ** a CREATE TABLE statement. 1833 ** 1834 ** The table structure that other action routines have been building 1835 ** is added to the internal hash tables, assuming no errors have 1836 ** occurred. 1837 ** 1838 ** An entry for the table is made in the master table on disk, unless 1839 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1840 ** it means we are reading the sqlite_master table because we just 1841 ** connected to the database or because the sqlite_master table has 1842 ** recently changed, so the entry for this table already exists in 1843 ** the sqlite_master table. We do not want to create it again. 1844 ** 1845 ** If the pSelect argument is not NULL, it means that this routine 1846 ** was called to create a table generated from a 1847 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1848 ** the new table will match the result set of the SELECT. 1849 */ 1850 void sqlite3EndTable( 1851 Parse *pParse, /* Parse context */ 1852 Token *pCons, /* The ',' token after the last column defn. */ 1853 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1854 u8 tabOpts, /* Extra table options. Usually 0. */ 1855 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1856 ){ 1857 Table *p; /* The new table */ 1858 sqlite3 *db = pParse->db; /* The database connection */ 1859 int iDb; /* Database in which the table lives */ 1860 Index *pIdx; /* An implied index of the table */ 1861 1862 if( pEnd==0 && pSelect==0 ){ 1863 return; 1864 } 1865 assert( !db->mallocFailed ); 1866 p = pParse->pNewTable; 1867 if( p==0 ) return; 1868 1869 assert( !db->init.busy || !pSelect ); 1870 1871 /* If the db->init.busy is 1 it means we are reading the SQL off the 1872 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1873 ** So do not write to the disk again. Extract the root page number 1874 ** for the table from the db->init.newTnum field. (The page number 1875 ** should have been put there by the sqliteOpenCb routine.) 1876 */ 1877 if( db->init.busy ){ 1878 p->tnum = db->init.newTnum; 1879 } 1880 1881 /* Special processing for WITHOUT ROWID Tables */ 1882 if( tabOpts & TF_WithoutRowid ){ 1883 if( (p->tabFlags & TF_Autoincrement) ){ 1884 sqlite3ErrorMsg(pParse, 1885 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1886 return; 1887 } 1888 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1889 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1890 }else{ 1891 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1892 convertToWithoutRowidTable(pParse, p); 1893 } 1894 } 1895 1896 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1897 1898 #ifndef SQLITE_OMIT_CHECK 1899 /* Resolve names in all CHECK constraint expressions. 1900 */ 1901 if( p->pCheck ){ 1902 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1903 } 1904 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1905 1906 /* Estimate the average row size for the table and for all implied indices */ 1907 estimateTableWidth(p); 1908 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1909 estimateIndexWidth(pIdx); 1910 } 1911 1912 /* If not initializing, then create a record for the new table 1913 ** in the SQLITE_MASTER table of the database. 1914 ** 1915 ** If this is a TEMPORARY table, write the entry into the auxiliary 1916 ** file instead of into the main database file. 1917 */ 1918 if( !db->init.busy ){ 1919 int n; 1920 Vdbe *v; 1921 char *zType; /* "view" or "table" */ 1922 char *zType2; /* "VIEW" or "TABLE" */ 1923 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1924 1925 v = sqlite3GetVdbe(pParse); 1926 if( NEVER(v==0) ) return; 1927 1928 sqlite3VdbeAddOp1(v, OP_Close, 0); 1929 1930 /* 1931 ** Initialize zType for the new view or table. 1932 */ 1933 if( p->pSelect==0 ){ 1934 /* A regular table */ 1935 zType = "table"; 1936 zType2 = "TABLE"; 1937 #ifndef SQLITE_OMIT_VIEW 1938 }else{ 1939 /* A view */ 1940 zType = "view"; 1941 zType2 = "VIEW"; 1942 #endif 1943 } 1944 1945 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1946 ** statement to populate the new table. The root-page number for the 1947 ** new table is in register pParse->regRoot. 1948 ** 1949 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1950 ** suitable state to query for the column names and types to be used 1951 ** by the new table. 1952 ** 1953 ** A shared-cache write-lock is not required to write to the new table, 1954 ** as a schema-lock must have already been obtained to create it. Since 1955 ** a schema-lock excludes all other database users, the write-lock would 1956 ** be redundant. 1957 */ 1958 if( pSelect ){ 1959 SelectDest dest; /* Where the SELECT should store results */ 1960 int regYield; /* Register holding co-routine entry-point */ 1961 int addrTop; /* Top of the co-routine */ 1962 int regRec; /* A record to be insert into the new table */ 1963 int regRowid; /* Rowid of the next row to insert */ 1964 int addrInsLoop; /* Top of the loop for inserting rows */ 1965 Table *pSelTab; /* A table that describes the SELECT results */ 1966 1967 regYield = ++pParse->nMem; 1968 regRec = ++pParse->nMem; 1969 regRowid = ++pParse->nMem; 1970 assert(pParse->nTab==1); 1971 sqlite3MayAbort(pParse); 1972 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1973 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1974 pParse->nTab = 2; 1975 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1976 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1977 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1978 sqlite3Select(pParse, pSelect, &dest); 1979 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1980 sqlite3VdbeJumpHere(v, addrTop - 1); 1981 if( pParse->nErr ) return; 1982 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1983 if( pSelTab==0 ) return; 1984 assert( p->aCol==0 ); 1985 p->nCol = pSelTab->nCol; 1986 p->aCol = pSelTab->aCol; 1987 pSelTab->nCol = 0; 1988 pSelTab->aCol = 0; 1989 sqlite3DeleteTable(db, pSelTab); 1990 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1991 VdbeCoverage(v); 1992 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1993 sqlite3TableAffinity(v, p, 0); 1994 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1995 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1996 sqlite3VdbeGoto(v, addrInsLoop); 1997 sqlite3VdbeJumpHere(v, addrInsLoop); 1998 sqlite3VdbeAddOp1(v, OP_Close, 1); 1999 } 2000 2001 /* Compute the complete text of the CREATE statement */ 2002 if( pSelect ){ 2003 zStmt = createTableStmt(db, p); 2004 }else{ 2005 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2006 n = (int)(pEnd2->z - pParse->sNameToken.z); 2007 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2008 zStmt = sqlite3MPrintf(db, 2009 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2010 ); 2011 } 2012 2013 /* A slot for the record has already been allocated in the 2014 ** SQLITE_MASTER table. We just need to update that slot with all 2015 ** the information we've collected. 2016 */ 2017 sqlite3NestedParse(pParse, 2018 "UPDATE %Q.%s " 2019 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2020 "WHERE rowid=#%d", 2021 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2022 zType, 2023 p->zName, 2024 p->zName, 2025 pParse->regRoot, 2026 zStmt, 2027 pParse->regRowid 2028 ); 2029 sqlite3DbFree(db, zStmt); 2030 sqlite3ChangeCookie(pParse, iDb); 2031 2032 #ifndef SQLITE_OMIT_AUTOINCREMENT 2033 /* Check to see if we need to create an sqlite_sequence table for 2034 ** keeping track of autoincrement keys. 2035 */ 2036 if( p->tabFlags & TF_Autoincrement ){ 2037 Db *pDb = &db->aDb[iDb]; 2038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2039 if( pDb->pSchema->pSeqTab==0 ){ 2040 sqlite3NestedParse(pParse, 2041 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2042 pDb->zName 2043 ); 2044 } 2045 } 2046 #endif 2047 2048 /* Reparse everything to update our internal data structures */ 2049 sqlite3VdbeAddParseSchemaOp(v, iDb, 2050 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2051 } 2052 2053 2054 /* Add the table to the in-memory representation of the database. 2055 */ 2056 if( db->init.busy ){ 2057 Table *pOld; 2058 Schema *pSchema = p->pSchema; 2059 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2060 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2061 if( pOld ){ 2062 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2063 db->mallocFailed = 1; 2064 return; 2065 } 2066 pParse->pNewTable = 0; 2067 db->flags |= SQLITE_InternChanges; 2068 2069 #ifndef SQLITE_OMIT_ALTERTABLE 2070 if( !p->pSelect ){ 2071 const char *zName = (const char *)pParse->sNameToken.z; 2072 int nName; 2073 assert( !pSelect && pCons && pEnd ); 2074 if( pCons->z==0 ){ 2075 pCons = pEnd; 2076 } 2077 nName = (int)((const char *)pCons->z - zName); 2078 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2079 } 2080 #endif 2081 } 2082 } 2083 2084 #ifndef SQLITE_OMIT_VIEW 2085 /* 2086 ** The parser calls this routine in order to create a new VIEW 2087 */ 2088 void sqlite3CreateView( 2089 Parse *pParse, /* The parsing context */ 2090 Token *pBegin, /* The CREATE token that begins the statement */ 2091 Token *pName1, /* The token that holds the name of the view */ 2092 Token *pName2, /* The token that holds the name of the view */ 2093 ExprList *pCNames, /* Optional list of view column names */ 2094 Select *pSelect, /* A SELECT statement that will become the new view */ 2095 int isTemp, /* TRUE for a TEMPORARY view */ 2096 int noErr /* Suppress error messages if VIEW already exists */ 2097 ){ 2098 Table *p; 2099 int n; 2100 const char *z; 2101 Token sEnd; 2102 DbFixer sFix; 2103 Token *pName = 0; 2104 int iDb; 2105 sqlite3 *db = pParse->db; 2106 2107 if( pParse->nVar>0 ){ 2108 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2109 goto create_view_fail; 2110 } 2111 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2112 p = pParse->pNewTable; 2113 if( p==0 || pParse->nErr ) goto create_view_fail; 2114 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2115 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2116 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2117 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2118 2119 /* Make a copy of the entire SELECT statement that defines the view. 2120 ** This will force all the Expr.token.z values to be dynamically 2121 ** allocated rather than point to the input string - which means that 2122 ** they will persist after the current sqlite3_exec() call returns. 2123 */ 2124 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2125 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2126 if( db->mallocFailed ) goto create_view_fail; 2127 2128 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2129 ** the end. 2130 */ 2131 sEnd = pParse->sLastToken; 2132 assert( sEnd.z[0]!=0 ); 2133 if( sEnd.z[0]!=';' ){ 2134 sEnd.z += sEnd.n; 2135 } 2136 sEnd.n = 0; 2137 n = (int)(sEnd.z - pBegin->z); 2138 assert( n>0 ); 2139 z = pBegin->z; 2140 while( sqlite3Isspace(z[n-1]) ){ n--; } 2141 sEnd.z = &z[n-1]; 2142 sEnd.n = 1; 2143 2144 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2145 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2146 2147 create_view_fail: 2148 sqlite3SelectDelete(db, pSelect); 2149 sqlite3ExprListDelete(db, pCNames); 2150 return; 2151 } 2152 #endif /* SQLITE_OMIT_VIEW */ 2153 2154 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2155 /* 2156 ** The Table structure pTable is really a VIEW. Fill in the names of 2157 ** the columns of the view in the pTable structure. Return the number 2158 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2159 */ 2160 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2161 Table *pSelTab; /* A fake table from which we get the result set */ 2162 Select *pSel; /* Copy of the SELECT that implements the view */ 2163 int nErr = 0; /* Number of errors encountered */ 2164 int n; /* Temporarily holds the number of cursors assigned */ 2165 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2166 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2167 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2168 2169 assert( pTable ); 2170 2171 #ifndef SQLITE_OMIT_VIRTUALTABLE 2172 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2173 return SQLITE_ERROR; 2174 } 2175 if( IsVirtual(pTable) ) return 0; 2176 #endif 2177 2178 #ifndef SQLITE_OMIT_VIEW 2179 /* A positive nCol means the columns names for this view are 2180 ** already known. 2181 */ 2182 if( pTable->nCol>0 ) return 0; 2183 2184 /* A negative nCol is a special marker meaning that we are currently 2185 ** trying to compute the column names. If we enter this routine with 2186 ** a negative nCol, it means two or more views form a loop, like this: 2187 ** 2188 ** CREATE VIEW one AS SELECT * FROM two; 2189 ** CREATE VIEW two AS SELECT * FROM one; 2190 ** 2191 ** Actually, the error above is now caught prior to reaching this point. 2192 ** But the following test is still important as it does come up 2193 ** in the following: 2194 ** 2195 ** CREATE TABLE main.ex1(a); 2196 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2197 ** SELECT * FROM temp.ex1; 2198 */ 2199 if( pTable->nCol<0 ){ 2200 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2201 return 1; 2202 } 2203 assert( pTable->nCol>=0 ); 2204 2205 /* If we get this far, it means we need to compute the table names. 2206 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2207 ** "*" elements in the results set of the view and will assign cursors 2208 ** to the elements of the FROM clause. But we do not want these changes 2209 ** to be permanent. So the computation is done on a copy of the SELECT 2210 ** statement that defines the view. 2211 */ 2212 assert( pTable->pSelect ); 2213 bEnabledLA = db->lookaside.bEnabled; 2214 if( pTable->pCheck ){ 2215 db->lookaside.bEnabled = 0; 2216 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2217 &pTable->nCol, &pTable->aCol); 2218 }else{ 2219 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2220 if( pSel ){ 2221 n = pParse->nTab; 2222 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2223 pTable->nCol = -1; 2224 db->lookaside.bEnabled = 0; 2225 #ifndef SQLITE_OMIT_AUTHORIZATION 2226 xAuth = db->xAuth; 2227 db->xAuth = 0; 2228 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2229 db->xAuth = xAuth; 2230 #else 2231 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2232 #endif 2233 pParse->nTab = n; 2234 if( pSelTab ){ 2235 assert( pTable->aCol==0 ); 2236 pTable->nCol = pSelTab->nCol; 2237 pTable->aCol = pSelTab->aCol; 2238 pSelTab->nCol = 0; 2239 pSelTab->aCol = 0; 2240 sqlite3DeleteTable(db, pSelTab); 2241 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2242 }else{ 2243 pTable->nCol = 0; 2244 nErr++; 2245 } 2246 sqlite3SelectDelete(db, pSel); 2247 } else { 2248 nErr++; 2249 } 2250 } 2251 db->lookaside.bEnabled = bEnabledLA; 2252 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2253 #endif /* SQLITE_OMIT_VIEW */ 2254 return nErr; 2255 } 2256 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2257 2258 #ifndef SQLITE_OMIT_VIEW 2259 /* 2260 ** Clear the column names from every VIEW in database idx. 2261 */ 2262 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2263 HashElem *i; 2264 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2265 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2266 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2267 Table *pTab = sqliteHashData(i); 2268 if( pTab->pSelect ){ 2269 sqlite3DeleteColumnNames(db, pTab); 2270 pTab->aCol = 0; 2271 pTab->nCol = 0; 2272 } 2273 } 2274 DbClearProperty(db, idx, DB_UnresetViews); 2275 } 2276 #else 2277 # define sqliteViewResetAll(A,B) 2278 #endif /* SQLITE_OMIT_VIEW */ 2279 2280 /* 2281 ** This function is called by the VDBE to adjust the internal schema 2282 ** used by SQLite when the btree layer moves a table root page. The 2283 ** root-page of a table or index in database iDb has changed from iFrom 2284 ** to iTo. 2285 ** 2286 ** Ticket #1728: The symbol table might still contain information 2287 ** on tables and/or indices that are the process of being deleted. 2288 ** If you are unlucky, one of those deleted indices or tables might 2289 ** have the same rootpage number as the real table or index that is 2290 ** being moved. So we cannot stop searching after the first match 2291 ** because the first match might be for one of the deleted indices 2292 ** or tables and not the table/index that is actually being moved. 2293 ** We must continue looping until all tables and indices with 2294 ** rootpage==iFrom have been converted to have a rootpage of iTo 2295 ** in order to be certain that we got the right one. 2296 */ 2297 #ifndef SQLITE_OMIT_AUTOVACUUM 2298 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2299 HashElem *pElem; 2300 Hash *pHash; 2301 Db *pDb; 2302 2303 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2304 pDb = &db->aDb[iDb]; 2305 pHash = &pDb->pSchema->tblHash; 2306 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2307 Table *pTab = sqliteHashData(pElem); 2308 if( pTab->tnum==iFrom ){ 2309 pTab->tnum = iTo; 2310 } 2311 } 2312 pHash = &pDb->pSchema->idxHash; 2313 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2314 Index *pIdx = sqliteHashData(pElem); 2315 if( pIdx->tnum==iFrom ){ 2316 pIdx->tnum = iTo; 2317 } 2318 } 2319 } 2320 #endif 2321 2322 /* 2323 ** Write code to erase the table with root-page iTable from database iDb. 2324 ** Also write code to modify the sqlite_master table and internal schema 2325 ** if a root-page of another table is moved by the btree-layer whilst 2326 ** erasing iTable (this can happen with an auto-vacuum database). 2327 */ 2328 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2329 Vdbe *v = sqlite3GetVdbe(pParse); 2330 int r1 = sqlite3GetTempReg(pParse); 2331 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2332 sqlite3MayAbort(pParse); 2333 #ifndef SQLITE_OMIT_AUTOVACUUM 2334 /* OP_Destroy stores an in integer r1. If this integer 2335 ** is non-zero, then it is the root page number of a table moved to 2336 ** location iTable. The following code modifies the sqlite_master table to 2337 ** reflect this. 2338 ** 2339 ** The "#NNN" in the SQL is a special constant that means whatever value 2340 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2341 ** token for additional information. 2342 */ 2343 sqlite3NestedParse(pParse, 2344 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2345 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2346 #endif 2347 sqlite3ReleaseTempReg(pParse, r1); 2348 } 2349 2350 /* 2351 ** Write VDBE code to erase table pTab and all associated indices on disk. 2352 ** Code to update the sqlite_master tables and internal schema definitions 2353 ** in case a root-page belonging to another table is moved by the btree layer 2354 ** is also added (this can happen with an auto-vacuum database). 2355 */ 2356 static void destroyTable(Parse *pParse, Table *pTab){ 2357 #ifdef SQLITE_OMIT_AUTOVACUUM 2358 Index *pIdx; 2359 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2360 destroyRootPage(pParse, pTab->tnum, iDb); 2361 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2362 destroyRootPage(pParse, pIdx->tnum, iDb); 2363 } 2364 #else 2365 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2366 ** is not defined), then it is important to call OP_Destroy on the 2367 ** table and index root-pages in order, starting with the numerically 2368 ** largest root-page number. This guarantees that none of the root-pages 2369 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2370 ** following were coded: 2371 ** 2372 ** OP_Destroy 4 0 2373 ** ... 2374 ** OP_Destroy 5 0 2375 ** 2376 ** and root page 5 happened to be the largest root-page number in the 2377 ** database, then root page 5 would be moved to page 4 by the 2378 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2379 ** a free-list page. 2380 */ 2381 int iTab = pTab->tnum; 2382 int iDestroyed = 0; 2383 2384 while( 1 ){ 2385 Index *pIdx; 2386 int iLargest = 0; 2387 2388 if( iDestroyed==0 || iTab<iDestroyed ){ 2389 iLargest = iTab; 2390 } 2391 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2392 int iIdx = pIdx->tnum; 2393 assert( pIdx->pSchema==pTab->pSchema ); 2394 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2395 iLargest = iIdx; 2396 } 2397 } 2398 if( iLargest==0 ){ 2399 return; 2400 }else{ 2401 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2402 assert( iDb>=0 && iDb<pParse->db->nDb ); 2403 destroyRootPage(pParse, iLargest, iDb); 2404 iDestroyed = iLargest; 2405 } 2406 } 2407 #endif 2408 } 2409 2410 /* 2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2412 ** after a DROP INDEX or DROP TABLE command. 2413 */ 2414 static void sqlite3ClearStatTables( 2415 Parse *pParse, /* The parsing context */ 2416 int iDb, /* The database number */ 2417 const char *zType, /* "idx" or "tbl" */ 2418 const char *zName /* Name of index or table */ 2419 ){ 2420 int i; 2421 const char *zDbName = pParse->db->aDb[iDb].zName; 2422 for(i=1; i<=4; i++){ 2423 char zTab[24]; 2424 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2425 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2426 sqlite3NestedParse(pParse, 2427 "DELETE FROM %Q.%s WHERE %s=%Q", 2428 zDbName, zTab, zType, zName 2429 ); 2430 } 2431 } 2432 } 2433 2434 /* 2435 ** Generate code to drop a table. 2436 */ 2437 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2438 Vdbe *v; 2439 sqlite3 *db = pParse->db; 2440 Trigger *pTrigger; 2441 Db *pDb = &db->aDb[iDb]; 2442 2443 v = sqlite3GetVdbe(pParse); 2444 assert( v!=0 ); 2445 sqlite3BeginWriteOperation(pParse, 1, iDb); 2446 2447 #ifndef SQLITE_OMIT_VIRTUALTABLE 2448 if( IsVirtual(pTab) ){ 2449 sqlite3VdbeAddOp0(v, OP_VBegin); 2450 } 2451 #endif 2452 2453 /* Drop all triggers associated with the table being dropped. Code 2454 ** is generated to remove entries from sqlite_master and/or 2455 ** sqlite_temp_master if required. 2456 */ 2457 pTrigger = sqlite3TriggerList(pParse, pTab); 2458 while( pTrigger ){ 2459 assert( pTrigger->pSchema==pTab->pSchema || 2460 pTrigger->pSchema==db->aDb[1].pSchema ); 2461 sqlite3DropTriggerPtr(pParse, pTrigger); 2462 pTrigger = pTrigger->pNext; 2463 } 2464 2465 #ifndef SQLITE_OMIT_AUTOINCREMENT 2466 /* Remove any entries of the sqlite_sequence table associated with 2467 ** the table being dropped. This is done before the table is dropped 2468 ** at the btree level, in case the sqlite_sequence table needs to 2469 ** move as a result of the drop (can happen in auto-vacuum mode). 2470 */ 2471 if( pTab->tabFlags & TF_Autoincrement ){ 2472 sqlite3NestedParse(pParse, 2473 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2474 pDb->zName, pTab->zName 2475 ); 2476 } 2477 #endif 2478 2479 /* Drop all SQLITE_MASTER table and index entries that refer to the 2480 ** table. The program name loops through the master table and deletes 2481 ** every row that refers to a table of the same name as the one being 2482 ** dropped. Triggers are handled separately because a trigger can be 2483 ** created in the temp database that refers to a table in another 2484 ** database. 2485 */ 2486 sqlite3NestedParse(pParse, 2487 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2488 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2489 if( !isView && !IsVirtual(pTab) ){ 2490 destroyTable(pParse, pTab); 2491 } 2492 2493 /* Remove the table entry from SQLite's internal schema and modify 2494 ** the schema cookie. 2495 */ 2496 if( IsVirtual(pTab) ){ 2497 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2498 } 2499 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2500 sqlite3ChangeCookie(pParse, iDb); 2501 sqliteViewResetAll(db, iDb); 2502 } 2503 2504 /* 2505 ** This routine is called to do the work of a DROP TABLE statement. 2506 ** pName is the name of the table to be dropped. 2507 */ 2508 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2509 Table *pTab; 2510 Vdbe *v; 2511 sqlite3 *db = pParse->db; 2512 int iDb; 2513 2514 if( db->mallocFailed ){ 2515 goto exit_drop_table; 2516 } 2517 assert( pParse->nErr==0 ); 2518 assert( pName->nSrc==1 ); 2519 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2520 if( noErr ) db->suppressErr++; 2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2522 if( noErr ) db->suppressErr--; 2523 2524 if( pTab==0 ){ 2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2526 goto exit_drop_table; 2527 } 2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2529 assert( iDb>=0 && iDb<db->nDb ); 2530 2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2532 ** it is initialized. 2533 */ 2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2535 goto exit_drop_table; 2536 } 2537 #ifndef SQLITE_OMIT_AUTHORIZATION 2538 { 2539 int code; 2540 const char *zTab = SCHEMA_TABLE(iDb); 2541 const char *zDb = db->aDb[iDb].zName; 2542 const char *zArg2 = 0; 2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2544 goto exit_drop_table; 2545 } 2546 if( isView ){ 2547 if( !OMIT_TEMPDB && iDb==1 ){ 2548 code = SQLITE_DROP_TEMP_VIEW; 2549 }else{ 2550 code = SQLITE_DROP_VIEW; 2551 } 2552 #ifndef SQLITE_OMIT_VIRTUALTABLE 2553 }else if( IsVirtual(pTab) ){ 2554 code = SQLITE_DROP_VTABLE; 2555 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2556 #endif 2557 }else{ 2558 if( !OMIT_TEMPDB && iDb==1 ){ 2559 code = SQLITE_DROP_TEMP_TABLE; 2560 }else{ 2561 code = SQLITE_DROP_TABLE; 2562 } 2563 } 2564 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2565 goto exit_drop_table; 2566 } 2567 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2568 goto exit_drop_table; 2569 } 2570 } 2571 #endif 2572 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2573 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2574 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2575 goto exit_drop_table; 2576 } 2577 2578 #ifndef SQLITE_OMIT_VIEW 2579 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2580 ** on a table. 2581 */ 2582 if( isView && pTab->pSelect==0 ){ 2583 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2584 goto exit_drop_table; 2585 } 2586 if( !isView && pTab->pSelect ){ 2587 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2588 goto exit_drop_table; 2589 } 2590 #endif 2591 2592 /* Generate code to remove the table from the master table 2593 ** on disk. 2594 */ 2595 v = sqlite3GetVdbe(pParse); 2596 if( v ){ 2597 sqlite3BeginWriteOperation(pParse, 1, iDb); 2598 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2599 sqlite3FkDropTable(pParse, pName, pTab); 2600 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2601 } 2602 2603 exit_drop_table: 2604 sqlite3SrcListDelete(db, pName); 2605 } 2606 2607 /* 2608 ** This routine is called to create a new foreign key on the table 2609 ** currently under construction. pFromCol determines which columns 2610 ** in the current table point to the foreign key. If pFromCol==0 then 2611 ** connect the key to the last column inserted. pTo is the name of 2612 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2613 ** of tables in the parent pTo table. flags contains all 2614 ** information about the conflict resolution algorithms specified 2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2616 ** 2617 ** An FKey structure is created and added to the table currently 2618 ** under construction in the pParse->pNewTable field. 2619 ** 2620 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2622 */ 2623 void sqlite3CreateForeignKey( 2624 Parse *pParse, /* Parsing context */ 2625 ExprList *pFromCol, /* Columns in this table that point to other table */ 2626 Token *pTo, /* Name of the other table */ 2627 ExprList *pToCol, /* Columns in the other table */ 2628 int flags /* Conflict resolution algorithms. */ 2629 ){ 2630 sqlite3 *db = pParse->db; 2631 #ifndef SQLITE_OMIT_FOREIGN_KEY 2632 FKey *pFKey = 0; 2633 FKey *pNextTo; 2634 Table *p = pParse->pNewTable; 2635 int nByte; 2636 int i; 2637 int nCol; 2638 char *z; 2639 2640 assert( pTo!=0 ); 2641 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2642 if( pFromCol==0 ){ 2643 int iCol = p->nCol-1; 2644 if( NEVER(iCol<0) ) goto fk_end; 2645 if( pToCol && pToCol->nExpr!=1 ){ 2646 sqlite3ErrorMsg(pParse, "foreign key on %s" 2647 " should reference only one column of table %T", 2648 p->aCol[iCol].zName, pTo); 2649 goto fk_end; 2650 } 2651 nCol = 1; 2652 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2653 sqlite3ErrorMsg(pParse, 2654 "number of columns in foreign key does not match the number of " 2655 "columns in the referenced table"); 2656 goto fk_end; 2657 }else{ 2658 nCol = pFromCol->nExpr; 2659 } 2660 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2661 if( pToCol ){ 2662 for(i=0; i<pToCol->nExpr; i++){ 2663 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2664 } 2665 } 2666 pFKey = sqlite3DbMallocZero(db, nByte ); 2667 if( pFKey==0 ){ 2668 goto fk_end; 2669 } 2670 pFKey->pFrom = p; 2671 pFKey->pNextFrom = p->pFKey; 2672 z = (char*)&pFKey->aCol[nCol]; 2673 pFKey->zTo = z; 2674 memcpy(z, pTo->z, pTo->n); 2675 z[pTo->n] = 0; 2676 sqlite3Dequote(z); 2677 z += pTo->n+1; 2678 pFKey->nCol = nCol; 2679 if( pFromCol==0 ){ 2680 pFKey->aCol[0].iFrom = p->nCol-1; 2681 }else{ 2682 for(i=0; i<nCol; i++){ 2683 int j; 2684 for(j=0; j<p->nCol; j++){ 2685 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2686 pFKey->aCol[i].iFrom = j; 2687 break; 2688 } 2689 } 2690 if( j>=p->nCol ){ 2691 sqlite3ErrorMsg(pParse, 2692 "unknown column \"%s\" in foreign key definition", 2693 pFromCol->a[i].zName); 2694 goto fk_end; 2695 } 2696 } 2697 } 2698 if( pToCol ){ 2699 for(i=0; i<nCol; i++){ 2700 int n = sqlite3Strlen30(pToCol->a[i].zName); 2701 pFKey->aCol[i].zCol = z; 2702 memcpy(z, pToCol->a[i].zName, n); 2703 z[n] = 0; 2704 z += n+1; 2705 } 2706 } 2707 pFKey->isDeferred = 0; 2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2710 2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2713 pFKey->zTo, (void *)pFKey 2714 ); 2715 if( pNextTo==pFKey ){ 2716 db->mallocFailed = 1; 2717 goto fk_end; 2718 } 2719 if( pNextTo ){ 2720 assert( pNextTo->pPrevTo==0 ); 2721 pFKey->pNextTo = pNextTo; 2722 pNextTo->pPrevTo = pFKey; 2723 } 2724 2725 /* Link the foreign key to the table as the last step. 2726 */ 2727 p->pFKey = pFKey; 2728 pFKey = 0; 2729 2730 fk_end: 2731 sqlite3DbFree(db, pFKey); 2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2733 sqlite3ExprListDelete(db, pFromCol); 2734 sqlite3ExprListDelete(db, pToCol); 2735 } 2736 2737 /* 2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2739 ** clause is seen as part of a foreign key definition. The isDeferred 2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2741 ** The behavior of the most recently created foreign key is adjusted 2742 ** accordingly. 2743 */ 2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2745 #ifndef SQLITE_OMIT_FOREIGN_KEY 2746 Table *pTab; 2747 FKey *pFKey; 2748 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2749 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2750 pFKey->isDeferred = (u8)isDeferred; 2751 #endif 2752 } 2753 2754 /* 2755 ** Generate code that will erase and refill index *pIdx. This is 2756 ** used to initialize a newly created index or to recompute the 2757 ** content of an index in response to a REINDEX command. 2758 ** 2759 ** if memRootPage is not negative, it means that the index is newly 2760 ** created. The register specified by memRootPage contains the 2761 ** root page number of the index. If memRootPage is negative, then 2762 ** the index already exists and must be cleared before being refilled and 2763 ** the root page number of the index is taken from pIndex->tnum. 2764 */ 2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2766 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2767 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2768 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2769 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2770 int addr1; /* Address of top of loop */ 2771 int addr2; /* Address to jump to for next iteration */ 2772 int tnum; /* Root page of index */ 2773 int iPartIdxLabel; /* Jump to this label to skip a row */ 2774 Vdbe *v; /* Generate code into this virtual machine */ 2775 KeyInfo *pKey; /* KeyInfo for index */ 2776 int regRecord; /* Register holding assembled index record */ 2777 sqlite3 *db = pParse->db; /* The database connection */ 2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2779 2780 #ifndef SQLITE_OMIT_AUTHORIZATION 2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2782 db->aDb[iDb].zName ) ){ 2783 return; 2784 } 2785 #endif 2786 2787 /* Require a write-lock on the table to perform this operation */ 2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2789 2790 v = sqlite3GetVdbe(pParse); 2791 if( v==0 ) return; 2792 if( memRootPage>=0 ){ 2793 tnum = memRootPage; 2794 }else{ 2795 tnum = pIndex->tnum; 2796 } 2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2798 2799 /* Open the sorter cursor if we are to use one. */ 2800 iSorter = pParse->nTab++; 2801 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2802 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2803 2804 /* Open the table. Loop through all rows of the table, inserting index 2805 ** records into the sorter. */ 2806 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2807 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2808 regRecord = sqlite3GetTempReg(pParse); 2809 2810 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2811 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2812 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2814 sqlite3VdbeJumpHere(v, addr1); 2815 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2816 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2817 (char *)pKey, P4_KEYINFO); 2818 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2819 2820 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2821 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2822 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2824 sqlite3VdbeGoto(v, j2); 2825 addr2 = sqlite3VdbeCurrentAddr(v); 2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2827 pIndex->nKeyCol); VdbeCoverage(v); 2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2829 }else{ 2830 addr2 = sqlite3VdbeCurrentAddr(v); 2831 } 2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2834 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2836 sqlite3ReleaseTempReg(pParse, regRecord); 2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2838 sqlite3VdbeJumpHere(v, addr1); 2839 2840 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2843 } 2844 2845 /* 2846 ** Allocate heap space to hold an Index object with nCol columns. 2847 ** 2848 ** Increase the allocation size to provide an extra nExtra bytes 2849 ** of 8-byte aligned space after the Index object and return a 2850 ** pointer to this extra space in *ppExtra. 2851 */ 2852 Index *sqlite3AllocateIndexObject( 2853 sqlite3 *db, /* Database connection */ 2854 i16 nCol, /* Total number of columns in the index */ 2855 int nExtra, /* Number of bytes of extra space to alloc */ 2856 char **ppExtra /* Pointer to the "extra" space */ 2857 ){ 2858 Index *p; /* Allocated index object */ 2859 int nByte; /* Bytes of space for Index object + arrays */ 2860 2861 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2862 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2863 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2864 sizeof(i16)*nCol + /* Index.aiColumn */ 2865 sizeof(u8)*nCol); /* Index.aSortOrder */ 2866 p = sqlite3DbMallocZero(db, nByte + nExtra); 2867 if( p ){ 2868 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2869 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2870 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2871 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2872 p->aSortOrder = (u8*)pExtra; 2873 p->nColumn = nCol; 2874 p->nKeyCol = nCol - 1; 2875 *ppExtra = ((char*)p) + nByte; 2876 } 2877 return p; 2878 } 2879 2880 /* 2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2882 ** and pTblList is the name of the table that is to be indexed. Both will 2883 ** be NULL for a primary key or an index that is created to satisfy a 2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2885 ** as the table to be indexed. pParse->pNewTable is a table that is 2886 ** currently being constructed by a CREATE TABLE statement. 2887 ** 2888 ** pList is a list of columns to be indexed. pList will be NULL if this 2889 ** is a primary key or unique-constraint on the most recent column added 2890 ** to the table currently under construction. 2891 ** 2892 ** If the index is created successfully, return a pointer to the new Index 2893 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2894 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2895 */ 2896 Index *sqlite3CreateIndex( 2897 Parse *pParse, /* All information about this parse */ 2898 Token *pName1, /* First part of index name. May be NULL */ 2899 Token *pName2, /* Second part of index name. May be NULL */ 2900 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2901 ExprList *pList, /* A list of columns to be indexed */ 2902 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2903 Token *pStart, /* The CREATE token that begins this statement */ 2904 Expr *pPIWhere, /* WHERE clause for partial indices */ 2905 int sortOrder, /* Sort order of primary key when pList==NULL */ 2906 int ifNotExist /* Omit error if index already exists */ 2907 ){ 2908 Index *pRet = 0; /* Pointer to return */ 2909 Table *pTab = 0; /* Table to be indexed */ 2910 Index *pIndex = 0; /* The index to be created */ 2911 char *zName = 0; /* Name of the index */ 2912 int nName; /* Number of characters in zName */ 2913 int i, j; 2914 DbFixer sFix; /* For assigning database names to pTable */ 2915 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2916 sqlite3 *db = pParse->db; 2917 Db *pDb; /* The specific table containing the indexed database */ 2918 int iDb; /* Index of the database that is being written */ 2919 Token *pName = 0; /* Unqualified name of the index to create */ 2920 struct ExprList_item *pListItem; /* For looping over pList */ 2921 int nExtra = 0; /* Space allocated for zExtra[] */ 2922 int nExtraCol; /* Number of extra columns needed */ 2923 char *zExtra = 0; /* Extra space after the Index object */ 2924 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2925 2926 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2927 goto exit_create_index; 2928 } 2929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2930 goto exit_create_index; 2931 } 2932 2933 /* 2934 ** Find the table that is to be indexed. Return early if not found. 2935 */ 2936 if( pTblName!=0 ){ 2937 2938 /* Use the two-part index name to determine the database 2939 ** to search for the table. 'Fix' the table name to this db 2940 ** before looking up the table. 2941 */ 2942 assert( pName1 && pName2 ); 2943 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2944 if( iDb<0 ) goto exit_create_index; 2945 assert( pName && pName->z ); 2946 2947 #ifndef SQLITE_OMIT_TEMPDB 2948 /* If the index name was unqualified, check if the table 2949 ** is a temp table. If so, set the database to 1. Do not do this 2950 ** if initialising a database schema. 2951 */ 2952 if( !db->init.busy ){ 2953 pTab = sqlite3SrcListLookup(pParse, pTblName); 2954 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2955 iDb = 1; 2956 } 2957 } 2958 #endif 2959 2960 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2961 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2962 /* Because the parser constructs pTblName from a single identifier, 2963 ** sqlite3FixSrcList can never fail. */ 2964 assert(0); 2965 } 2966 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2967 assert( db->mallocFailed==0 || pTab==0 ); 2968 if( pTab==0 ) goto exit_create_index; 2969 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2970 sqlite3ErrorMsg(pParse, 2971 "cannot create a TEMP index on non-TEMP table \"%s\"", 2972 pTab->zName); 2973 goto exit_create_index; 2974 } 2975 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2976 }else{ 2977 assert( pName==0 ); 2978 assert( pStart==0 ); 2979 pTab = pParse->pNewTable; 2980 if( !pTab ) goto exit_create_index; 2981 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2982 } 2983 pDb = &db->aDb[iDb]; 2984 2985 assert( pTab!=0 ); 2986 assert( pParse->nErr==0 ); 2987 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2988 && db->init.busy==0 2989 #if SQLITE_USER_AUTHENTICATION 2990 && sqlite3UserAuthTable(pTab->zName)==0 2991 #endif 2992 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2993 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2994 goto exit_create_index; 2995 } 2996 #ifndef SQLITE_OMIT_VIEW 2997 if( pTab->pSelect ){ 2998 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2999 goto exit_create_index; 3000 } 3001 #endif 3002 #ifndef SQLITE_OMIT_VIRTUALTABLE 3003 if( IsVirtual(pTab) ){ 3004 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3005 goto exit_create_index; 3006 } 3007 #endif 3008 3009 /* 3010 ** Find the name of the index. Make sure there is not already another 3011 ** index or table with the same name. 3012 ** 3013 ** Exception: If we are reading the names of permanent indices from the 3014 ** sqlite_master table (because some other process changed the schema) and 3015 ** one of the index names collides with the name of a temporary table or 3016 ** index, then we will continue to process this index. 3017 ** 3018 ** If pName==0 it means that we are 3019 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3020 ** own name. 3021 */ 3022 if( pName ){ 3023 zName = sqlite3NameFromToken(db, pName); 3024 if( zName==0 ) goto exit_create_index; 3025 assert( pName->z!=0 ); 3026 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3027 goto exit_create_index; 3028 } 3029 if( !db->init.busy ){ 3030 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3031 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3032 goto exit_create_index; 3033 } 3034 } 3035 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3036 if( !ifNotExist ){ 3037 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3038 }else{ 3039 assert( !db->init.busy ); 3040 sqlite3CodeVerifySchema(pParse, iDb); 3041 } 3042 goto exit_create_index; 3043 } 3044 }else{ 3045 int n; 3046 Index *pLoop; 3047 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3048 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3049 if( zName==0 ){ 3050 goto exit_create_index; 3051 } 3052 } 3053 3054 /* Check for authorization to create an index. 3055 */ 3056 #ifndef SQLITE_OMIT_AUTHORIZATION 3057 { 3058 const char *zDb = pDb->zName; 3059 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3060 goto exit_create_index; 3061 } 3062 i = SQLITE_CREATE_INDEX; 3063 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3064 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3065 goto exit_create_index; 3066 } 3067 } 3068 #endif 3069 3070 /* If pList==0, it means this routine was called to make a primary 3071 ** key out of the last column added to the table under construction. 3072 ** So create a fake list to simulate this. 3073 */ 3074 if( pList==0 ){ 3075 Token prevCol; 3076 prevCol.z = pTab->aCol[pTab->nCol-1].zName; 3077 prevCol.n = sqlite3Strlen30(prevCol.z); 3078 pList = sqlite3ExprListAppend(pParse, 0, 3079 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3080 if( pList==0 ) goto exit_create_index; 3081 assert( pList->nExpr==1 ); 3082 sqlite3ExprListSetSortOrder(pList, sortOrder); 3083 }else{ 3084 sqlite3ExprListCheckLength(pParse, pList, "index"); 3085 } 3086 3087 /* Figure out how many bytes of space are required to store explicitly 3088 ** specified collation sequence names. 3089 */ 3090 for(i=0; i<pList->nExpr; i++){ 3091 Expr *pExpr = pList->a[i].pExpr; 3092 assert( pExpr!=0 ); 3093 if( pExpr->op==TK_COLLATE ){ 3094 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3095 } 3096 } 3097 3098 /* 3099 ** Allocate the index structure. 3100 */ 3101 nName = sqlite3Strlen30(zName); 3102 nExtraCol = pPk ? pPk->nKeyCol : 1; 3103 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3104 nName + nExtra + 1, &zExtra); 3105 if( db->mallocFailed ){ 3106 goto exit_create_index; 3107 } 3108 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3109 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3110 pIndex->zName = zExtra; 3111 zExtra += nName + 1; 3112 memcpy(pIndex->zName, zName, nName+1); 3113 pIndex->pTable = pTab; 3114 pIndex->onError = (u8)onError; 3115 pIndex->uniqNotNull = onError!=OE_None; 3116 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3117 pIndex->pSchema = db->aDb[iDb].pSchema; 3118 pIndex->nKeyCol = pList->nExpr; 3119 if( pPIWhere ){ 3120 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3121 pIndex->pPartIdxWhere = pPIWhere; 3122 pPIWhere = 0; 3123 } 3124 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3125 3126 /* Check to see if we should honor DESC requests on index columns 3127 */ 3128 if( pDb->pSchema->file_format>=4 ){ 3129 sortOrderMask = -1; /* Honor DESC */ 3130 }else{ 3131 sortOrderMask = 0; /* Ignore DESC */ 3132 } 3133 3134 /* Analyze the list of expressions that form the terms of the index and 3135 ** report any errors. In the common case where the expression is exactly 3136 ** a table column, store that column in aiColumn[]. For general expressions, 3137 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3138 ** 3139 ** TODO: Issue a warning if two or more columns of the index are identical. 3140 ** TODO: Issue a warning if the table primary key is used as part of the 3141 ** index key. 3142 */ 3143 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3144 Expr *pCExpr; /* The i-th index expression */ 3145 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3146 char *zColl; /* Collation sequence name */ 3147 3148 sqlite3StringToId(pListItem->pExpr); 3149 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3150 if( pParse->nErr ) goto exit_create_index; 3151 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3152 if( pCExpr->op!=TK_COLUMN ){ 3153 if( pTab==pParse->pNewTable ){ 3154 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3155 "UNIQUE constraints"); 3156 goto exit_create_index; 3157 } 3158 if( pIndex->aColExpr==0 ){ 3159 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3160 pIndex->aColExpr = pCopy; 3161 if( !db->mallocFailed ){ 3162 assert( pCopy!=0 ); 3163 pListItem = &pCopy->a[i]; 3164 } 3165 } 3166 j = XN_EXPR; 3167 pIndex->aiColumn[i] = XN_EXPR; 3168 pIndex->uniqNotNull = 0; 3169 }else{ 3170 j = pCExpr->iColumn; 3171 assert( j<=0x7fff ); 3172 if( j<0 ){ 3173 j = pTab->iPKey; 3174 }else if( pTab->aCol[j].notNull==0 ){ 3175 pIndex->uniqNotNull = 0; 3176 } 3177 pIndex->aiColumn[i] = (i16)j; 3178 } 3179 zColl = 0; 3180 if( pListItem->pExpr->op==TK_COLLATE ){ 3181 int nColl; 3182 zColl = pListItem->pExpr->u.zToken; 3183 nColl = sqlite3Strlen30(zColl) + 1; 3184 assert( nExtra>=nColl ); 3185 memcpy(zExtra, zColl, nColl); 3186 zColl = zExtra; 3187 zExtra += nColl; 3188 nExtra -= nColl; 3189 }else if( j>=0 ){ 3190 zColl = pTab->aCol[j].zColl; 3191 } 3192 if( !zColl ) zColl = "BINARY"; 3193 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3194 goto exit_create_index; 3195 } 3196 pIndex->azColl[i] = zColl; 3197 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3198 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3199 } 3200 3201 /* Append the table key to the end of the index. For WITHOUT ROWID 3202 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3203 ** normal tables (when pPk==0) this will be the rowid. 3204 */ 3205 if( pPk ){ 3206 for(j=0; j<pPk->nKeyCol; j++){ 3207 int x = pPk->aiColumn[j]; 3208 assert( x>=0 ); 3209 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3210 pIndex->nColumn--; 3211 }else{ 3212 pIndex->aiColumn[i] = x; 3213 pIndex->azColl[i] = pPk->azColl[j]; 3214 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3215 i++; 3216 } 3217 } 3218 assert( i==pIndex->nColumn ); 3219 }else{ 3220 pIndex->aiColumn[i] = XN_ROWID; 3221 pIndex->azColl[i] = "BINARY"; 3222 } 3223 sqlite3DefaultRowEst(pIndex); 3224 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3225 3226 if( pTab==pParse->pNewTable ){ 3227 /* This routine has been called to create an automatic index as a 3228 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3229 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3230 ** i.e. one of: 3231 ** 3232 ** CREATE TABLE t(x PRIMARY KEY, y); 3233 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3234 ** 3235 ** Either way, check to see if the table already has such an index. If 3236 ** so, don't bother creating this one. This only applies to 3237 ** automatically created indices. Users can do as they wish with 3238 ** explicit indices. 3239 ** 3240 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3241 ** (and thus suppressing the second one) even if they have different 3242 ** sort orders. 3243 ** 3244 ** If there are different collating sequences or if the columns of 3245 ** the constraint occur in different orders, then the constraints are 3246 ** considered distinct and both result in separate indices. 3247 */ 3248 Index *pIdx; 3249 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3250 int k; 3251 assert( IsUniqueIndex(pIdx) ); 3252 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3253 assert( IsUniqueIndex(pIndex) ); 3254 3255 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3256 for(k=0; k<pIdx->nKeyCol; k++){ 3257 const char *z1; 3258 const char *z2; 3259 assert( pIdx->aiColumn[k]>=0 ); 3260 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3261 z1 = pIdx->azColl[k]; 3262 z2 = pIndex->azColl[k]; 3263 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3264 } 3265 if( k==pIdx->nKeyCol ){ 3266 if( pIdx->onError!=pIndex->onError ){ 3267 /* This constraint creates the same index as a previous 3268 ** constraint specified somewhere in the CREATE TABLE statement. 3269 ** However the ON CONFLICT clauses are different. If both this 3270 ** constraint and the previous equivalent constraint have explicit 3271 ** ON CONFLICT clauses this is an error. Otherwise, use the 3272 ** explicitly specified behavior for the index. 3273 */ 3274 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3275 sqlite3ErrorMsg(pParse, 3276 "conflicting ON CONFLICT clauses specified", 0); 3277 } 3278 if( pIdx->onError==OE_Default ){ 3279 pIdx->onError = pIndex->onError; 3280 } 3281 } 3282 pRet = pIdx; 3283 goto exit_create_index; 3284 } 3285 } 3286 } 3287 3288 /* Link the new Index structure to its table and to the other 3289 ** in-memory database structures. 3290 */ 3291 assert( pParse->nErr==0 ); 3292 if( db->init.busy ){ 3293 Index *p; 3294 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3295 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3296 pIndex->zName, pIndex); 3297 if( p ){ 3298 assert( p==pIndex ); /* Malloc must have failed */ 3299 db->mallocFailed = 1; 3300 goto exit_create_index; 3301 } 3302 db->flags |= SQLITE_InternChanges; 3303 if( pTblName!=0 ){ 3304 pIndex->tnum = db->init.newTnum; 3305 } 3306 } 3307 3308 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3309 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3310 ** emit code to allocate the index rootpage on disk and make an entry for 3311 ** the index in the sqlite_master table and populate the index with 3312 ** content. But, do not do this if we are simply reading the sqlite_master 3313 ** table to parse the schema, or if this index is the PRIMARY KEY index 3314 ** of a WITHOUT ROWID table. 3315 ** 3316 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3317 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3318 ** has just been created, it contains no data and the index initialization 3319 ** step can be skipped. 3320 */ 3321 else if( HasRowid(pTab) || pTblName!=0 ){ 3322 Vdbe *v; 3323 char *zStmt; 3324 int iMem = ++pParse->nMem; 3325 3326 v = sqlite3GetVdbe(pParse); 3327 if( v==0 ) goto exit_create_index; 3328 3329 sqlite3BeginWriteOperation(pParse, 1, iDb); 3330 3331 /* Create the rootpage for the index using CreateIndex. But before 3332 ** doing so, code a Noop instruction and store its address in 3333 ** Index.tnum. This is required in case this index is actually a 3334 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3335 ** that case the convertToWithoutRowidTable() routine will replace 3336 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3337 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3338 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3339 3340 /* Gather the complete text of the CREATE INDEX statement into 3341 ** the zStmt variable 3342 */ 3343 if( pStart ){ 3344 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3345 if( pName->z[n-1]==';' ) n--; 3346 /* A named index with an explicit CREATE INDEX statement */ 3347 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3348 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3349 }else{ 3350 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3351 /* zStmt = sqlite3MPrintf(""); */ 3352 zStmt = 0; 3353 } 3354 3355 /* Add an entry in sqlite_master for this index 3356 */ 3357 sqlite3NestedParse(pParse, 3358 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3359 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3360 pIndex->zName, 3361 pTab->zName, 3362 iMem, 3363 zStmt 3364 ); 3365 sqlite3DbFree(db, zStmt); 3366 3367 /* Fill the index with data and reparse the schema. Code an OP_Expire 3368 ** to invalidate all pre-compiled statements. 3369 */ 3370 if( pTblName ){ 3371 sqlite3RefillIndex(pParse, pIndex, iMem); 3372 sqlite3ChangeCookie(pParse, iDb); 3373 sqlite3VdbeAddParseSchemaOp(v, iDb, 3374 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3375 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3376 } 3377 3378 sqlite3VdbeJumpHere(v, pIndex->tnum); 3379 } 3380 3381 /* When adding an index to the list of indices for a table, make 3382 ** sure all indices labeled OE_Replace come after all those labeled 3383 ** OE_Ignore. This is necessary for the correct constraint check 3384 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3385 ** UPDATE and INSERT statements. 3386 */ 3387 if( db->init.busy || pTblName==0 ){ 3388 if( onError!=OE_Replace || pTab->pIndex==0 3389 || pTab->pIndex->onError==OE_Replace){ 3390 pIndex->pNext = pTab->pIndex; 3391 pTab->pIndex = pIndex; 3392 }else{ 3393 Index *pOther = pTab->pIndex; 3394 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3395 pOther = pOther->pNext; 3396 } 3397 pIndex->pNext = pOther->pNext; 3398 pOther->pNext = pIndex; 3399 } 3400 pRet = pIndex; 3401 pIndex = 0; 3402 } 3403 3404 /* Clean up before exiting */ 3405 exit_create_index: 3406 if( pIndex ) freeIndex(db, pIndex); 3407 sqlite3ExprDelete(db, pPIWhere); 3408 sqlite3ExprListDelete(db, pList); 3409 sqlite3SrcListDelete(db, pTblName); 3410 sqlite3DbFree(db, zName); 3411 return pRet; 3412 } 3413 3414 /* 3415 ** Fill the Index.aiRowEst[] array with default information - information 3416 ** to be used when we have not run the ANALYZE command. 3417 ** 3418 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3419 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3420 ** number of rows in the table that match any particular value of the 3421 ** first column of the index. aiRowEst[2] is an estimate of the number 3422 ** of rows that match any particular combination of the first 2 columns 3423 ** of the index. And so forth. It must always be the case that 3424 * 3425 ** aiRowEst[N]<=aiRowEst[N-1] 3426 ** aiRowEst[N]>=1 3427 ** 3428 ** Apart from that, we have little to go on besides intuition as to 3429 ** how aiRowEst[] should be initialized. The numbers generated here 3430 ** are based on typical values found in actual indices. 3431 */ 3432 void sqlite3DefaultRowEst(Index *pIdx){ 3433 /* 10, 9, 8, 7, 6 */ 3434 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3435 LogEst *a = pIdx->aiRowLogEst; 3436 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3437 int i; 3438 3439 /* Set the first entry (number of rows in the index) to the estimated 3440 ** number of rows in the table. Or 10, if the estimated number of rows 3441 ** in the table is less than that. */ 3442 a[0] = pIdx->pTable->nRowLogEst; 3443 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3444 3445 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3446 ** 6 and each subsequent value (if any) is 5. */ 3447 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3448 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3449 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3450 } 3451 3452 assert( 0==sqlite3LogEst(1) ); 3453 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3454 } 3455 3456 /* 3457 ** This routine will drop an existing named index. This routine 3458 ** implements the DROP INDEX statement. 3459 */ 3460 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3461 Index *pIndex; 3462 Vdbe *v; 3463 sqlite3 *db = pParse->db; 3464 int iDb; 3465 3466 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3467 if( db->mallocFailed ){ 3468 goto exit_drop_index; 3469 } 3470 assert( pName->nSrc==1 ); 3471 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3472 goto exit_drop_index; 3473 } 3474 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3475 if( pIndex==0 ){ 3476 if( !ifExists ){ 3477 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3478 }else{ 3479 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3480 } 3481 pParse->checkSchema = 1; 3482 goto exit_drop_index; 3483 } 3484 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3485 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3486 "or PRIMARY KEY constraint cannot be dropped", 0); 3487 goto exit_drop_index; 3488 } 3489 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3490 #ifndef SQLITE_OMIT_AUTHORIZATION 3491 { 3492 int code = SQLITE_DROP_INDEX; 3493 Table *pTab = pIndex->pTable; 3494 const char *zDb = db->aDb[iDb].zName; 3495 const char *zTab = SCHEMA_TABLE(iDb); 3496 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3497 goto exit_drop_index; 3498 } 3499 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3500 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3501 goto exit_drop_index; 3502 } 3503 } 3504 #endif 3505 3506 /* Generate code to remove the index and from the master table */ 3507 v = sqlite3GetVdbe(pParse); 3508 if( v ){ 3509 sqlite3BeginWriteOperation(pParse, 1, iDb); 3510 sqlite3NestedParse(pParse, 3511 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3512 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3513 ); 3514 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3515 sqlite3ChangeCookie(pParse, iDb); 3516 destroyRootPage(pParse, pIndex->tnum, iDb); 3517 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3518 } 3519 3520 exit_drop_index: 3521 sqlite3SrcListDelete(db, pName); 3522 } 3523 3524 /* 3525 ** pArray is a pointer to an array of objects. Each object in the 3526 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3527 ** to extend the array so that there is space for a new object at the end. 3528 ** 3529 ** When this function is called, *pnEntry contains the current size of 3530 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3531 ** in total). 3532 ** 3533 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3534 ** space allocated for the new object is zeroed, *pnEntry updated to 3535 ** reflect the new size of the array and a pointer to the new allocation 3536 ** returned. *pIdx is set to the index of the new array entry in this case. 3537 ** 3538 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3539 ** unchanged and a copy of pArray returned. 3540 */ 3541 void *sqlite3ArrayAllocate( 3542 sqlite3 *db, /* Connection to notify of malloc failures */ 3543 void *pArray, /* Array of objects. Might be reallocated */ 3544 int szEntry, /* Size of each object in the array */ 3545 int *pnEntry, /* Number of objects currently in use */ 3546 int *pIdx /* Write the index of a new slot here */ 3547 ){ 3548 char *z; 3549 int n = *pnEntry; 3550 if( (n & (n-1))==0 ){ 3551 int sz = (n==0) ? 1 : 2*n; 3552 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3553 if( pNew==0 ){ 3554 *pIdx = -1; 3555 return pArray; 3556 } 3557 pArray = pNew; 3558 } 3559 z = (char*)pArray; 3560 memset(&z[n * szEntry], 0, szEntry); 3561 *pIdx = n; 3562 ++*pnEntry; 3563 return pArray; 3564 } 3565 3566 /* 3567 ** Append a new element to the given IdList. Create a new IdList if 3568 ** need be. 3569 ** 3570 ** A new IdList is returned, or NULL if malloc() fails. 3571 */ 3572 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3573 int i; 3574 if( pList==0 ){ 3575 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3576 if( pList==0 ) return 0; 3577 } 3578 pList->a = sqlite3ArrayAllocate( 3579 db, 3580 pList->a, 3581 sizeof(pList->a[0]), 3582 &pList->nId, 3583 &i 3584 ); 3585 if( i<0 ){ 3586 sqlite3IdListDelete(db, pList); 3587 return 0; 3588 } 3589 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3590 return pList; 3591 } 3592 3593 /* 3594 ** Delete an IdList. 3595 */ 3596 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3597 int i; 3598 if( pList==0 ) return; 3599 for(i=0; i<pList->nId; i++){ 3600 sqlite3DbFree(db, pList->a[i].zName); 3601 } 3602 sqlite3DbFree(db, pList->a); 3603 sqlite3DbFree(db, pList); 3604 } 3605 3606 /* 3607 ** Return the index in pList of the identifier named zId. Return -1 3608 ** if not found. 3609 */ 3610 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3611 int i; 3612 if( pList==0 ) return -1; 3613 for(i=0; i<pList->nId; i++){ 3614 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3615 } 3616 return -1; 3617 } 3618 3619 /* 3620 ** Expand the space allocated for the given SrcList object by 3621 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3622 ** New slots are zeroed. 3623 ** 3624 ** For example, suppose a SrcList initially contains two entries: A,B. 3625 ** To append 3 new entries onto the end, do this: 3626 ** 3627 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3628 ** 3629 ** After the call above it would contain: A, B, nil, nil, nil. 3630 ** If the iStart argument had been 1 instead of 2, then the result 3631 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3632 ** the iStart value would be 0. The result then would 3633 ** be: nil, nil, nil, A, B. 3634 ** 3635 ** If a memory allocation fails the SrcList is unchanged. The 3636 ** db->mallocFailed flag will be set to true. 3637 */ 3638 SrcList *sqlite3SrcListEnlarge( 3639 sqlite3 *db, /* Database connection to notify of OOM errors */ 3640 SrcList *pSrc, /* The SrcList to be enlarged */ 3641 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3642 int iStart /* Index in pSrc->a[] of first new slot */ 3643 ){ 3644 int i; 3645 3646 /* Sanity checking on calling parameters */ 3647 assert( iStart>=0 ); 3648 assert( nExtra>=1 ); 3649 assert( pSrc!=0 ); 3650 assert( iStart<=pSrc->nSrc ); 3651 3652 /* Allocate additional space if needed */ 3653 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3654 SrcList *pNew; 3655 int nAlloc = pSrc->nSrc+nExtra; 3656 int nGot; 3657 pNew = sqlite3DbRealloc(db, pSrc, 3658 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3659 if( pNew==0 ){ 3660 assert( db->mallocFailed ); 3661 return pSrc; 3662 } 3663 pSrc = pNew; 3664 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3665 pSrc->nAlloc = nGot; 3666 } 3667 3668 /* Move existing slots that come after the newly inserted slots 3669 ** out of the way */ 3670 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3671 pSrc->a[i+nExtra] = pSrc->a[i]; 3672 } 3673 pSrc->nSrc += nExtra; 3674 3675 /* Zero the newly allocated slots */ 3676 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3677 for(i=iStart; i<iStart+nExtra; i++){ 3678 pSrc->a[i].iCursor = -1; 3679 } 3680 3681 /* Return a pointer to the enlarged SrcList */ 3682 return pSrc; 3683 } 3684 3685 3686 /* 3687 ** Append a new table name to the given SrcList. Create a new SrcList if 3688 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3689 ** 3690 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3691 ** SrcList might be the same as the SrcList that was input or it might be 3692 ** a new one. If an OOM error does occurs, then the prior value of pList 3693 ** that is input to this routine is automatically freed. 3694 ** 3695 ** If pDatabase is not null, it means that the table has an optional 3696 ** database name prefix. Like this: "database.table". The pDatabase 3697 ** points to the table name and the pTable points to the database name. 3698 ** The SrcList.a[].zName field is filled with the table name which might 3699 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3700 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3701 ** or with NULL if no database is specified. 3702 ** 3703 ** In other words, if call like this: 3704 ** 3705 ** sqlite3SrcListAppend(D,A,B,0); 3706 ** 3707 ** Then B is a table name and the database name is unspecified. If called 3708 ** like this: 3709 ** 3710 ** sqlite3SrcListAppend(D,A,B,C); 3711 ** 3712 ** Then C is the table name and B is the database name. If C is defined 3713 ** then so is B. In other words, we never have a case where: 3714 ** 3715 ** sqlite3SrcListAppend(D,A,0,C); 3716 ** 3717 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3718 ** before being added to the SrcList. 3719 */ 3720 SrcList *sqlite3SrcListAppend( 3721 sqlite3 *db, /* Connection to notify of malloc failures */ 3722 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3723 Token *pTable, /* Table to append */ 3724 Token *pDatabase /* Database of the table */ 3725 ){ 3726 struct SrcList_item *pItem; 3727 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3728 if( pList==0 ){ 3729 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3730 if( pList==0 ) return 0; 3731 pList->nAlloc = 1; 3732 } 3733 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3734 if( db->mallocFailed ){ 3735 sqlite3SrcListDelete(db, pList); 3736 return 0; 3737 } 3738 pItem = &pList->a[pList->nSrc-1]; 3739 if( pDatabase && pDatabase->z==0 ){ 3740 pDatabase = 0; 3741 } 3742 if( pDatabase ){ 3743 Token *pTemp = pDatabase; 3744 pDatabase = pTable; 3745 pTable = pTemp; 3746 } 3747 pItem->zName = sqlite3NameFromToken(db, pTable); 3748 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3749 return pList; 3750 } 3751 3752 /* 3753 ** Assign VdbeCursor index numbers to all tables in a SrcList 3754 */ 3755 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3756 int i; 3757 struct SrcList_item *pItem; 3758 assert(pList || pParse->db->mallocFailed ); 3759 if( pList ){ 3760 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3761 if( pItem->iCursor>=0 ) break; 3762 pItem->iCursor = pParse->nTab++; 3763 if( pItem->pSelect ){ 3764 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3765 } 3766 } 3767 } 3768 } 3769 3770 /* 3771 ** Delete an entire SrcList including all its substructure. 3772 */ 3773 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3774 int i; 3775 struct SrcList_item *pItem; 3776 if( pList==0 ) return; 3777 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3778 sqlite3DbFree(db, pItem->zDatabase); 3779 sqlite3DbFree(db, pItem->zName); 3780 sqlite3DbFree(db, pItem->zAlias); 3781 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3782 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3783 sqlite3DeleteTable(db, pItem->pTab); 3784 sqlite3SelectDelete(db, pItem->pSelect); 3785 sqlite3ExprDelete(db, pItem->pOn); 3786 sqlite3IdListDelete(db, pItem->pUsing); 3787 } 3788 sqlite3DbFree(db, pList); 3789 } 3790 3791 /* 3792 ** This routine is called by the parser to add a new term to the 3793 ** end of a growing FROM clause. The "p" parameter is the part of 3794 ** the FROM clause that has already been constructed. "p" is NULL 3795 ** if this is the first term of the FROM clause. pTable and pDatabase 3796 ** are the name of the table and database named in the FROM clause term. 3797 ** pDatabase is NULL if the database name qualifier is missing - the 3798 ** usual case. If the term has an alias, then pAlias points to the 3799 ** alias token. If the term is a subquery, then pSubquery is the 3800 ** SELECT statement that the subquery encodes. The pTable and 3801 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3802 ** parameters are the content of the ON and USING clauses. 3803 ** 3804 ** Return a new SrcList which encodes is the FROM with the new 3805 ** term added. 3806 */ 3807 SrcList *sqlite3SrcListAppendFromTerm( 3808 Parse *pParse, /* Parsing context */ 3809 SrcList *p, /* The left part of the FROM clause already seen */ 3810 Token *pTable, /* Name of the table to add to the FROM clause */ 3811 Token *pDatabase, /* Name of the database containing pTable */ 3812 Token *pAlias, /* The right-hand side of the AS subexpression */ 3813 Select *pSubquery, /* A subquery used in place of a table name */ 3814 Expr *pOn, /* The ON clause of a join */ 3815 IdList *pUsing /* The USING clause of a join */ 3816 ){ 3817 struct SrcList_item *pItem; 3818 sqlite3 *db = pParse->db; 3819 if( !p && (pOn || pUsing) ){ 3820 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3821 (pOn ? "ON" : "USING") 3822 ); 3823 goto append_from_error; 3824 } 3825 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3826 if( p==0 || NEVER(p->nSrc==0) ){ 3827 goto append_from_error; 3828 } 3829 pItem = &p->a[p->nSrc-1]; 3830 assert( pAlias!=0 ); 3831 if( pAlias->n ){ 3832 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3833 } 3834 pItem->pSelect = pSubquery; 3835 pItem->pOn = pOn; 3836 pItem->pUsing = pUsing; 3837 return p; 3838 3839 append_from_error: 3840 assert( p==0 ); 3841 sqlite3ExprDelete(db, pOn); 3842 sqlite3IdListDelete(db, pUsing); 3843 sqlite3SelectDelete(db, pSubquery); 3844 return 0; 3845 } 3846 3847 /* 3848 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3849 ** element of the source-list passed as the second argument. 3850 */ 3851 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3852 assert( pIndexedBy!=0 ); 3853 if( p && ALWAYS(p->nSrc>0) ){ 3854 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3855 assert( pItem->fg.notIndexed==0 ); 3856 assert( pItem->fg.isIndexedBy==0 ); 3857 assert( pItem->fg.isTabFunc==0 ); 3858 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3859 /* A "NOT INDEXED" clause was supplied. See parse.y 3860 ** construct "indexed_opt" for details. */ 3861 pItem->fg.notIndexed = 1; 3862 }else{ 3863 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3864 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3865 } 3866 } 3867 } 3868 3869 /* 3870 ** Add the list of function arguments to the SrcList entry for a 3871 ** table-valued-function. 3872 */ 3873 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3874 if( p ){ 3875 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3876 assert( pItem->fg.notIndexed==0 ); 3877 assert( pItem->fg.isIndexedBy==0 ); 3878 assert( pItem->fg.isTabFunc==0 ); 3879 pItem->u1.pFuncArg = pList; 3880 pItem->fg.isTabFunc = 1; 3881 }else{ 3882 sqlite3ExprListDelete(pParse->db, pList); 3883 } 3884 } 3885 3886 /* 3887 ** When building up a FROM clause in the parser, the join operator 3888 ** is initially attached to the left operand. But the code generator 3889 ** expects the join operator to be on the right operand. This routine 3890 ** Shifts all join operators from left to right for an entire FROM 3891 ** clause. 3892 ** 3893 ** Example: Suppose the join is like this: 3894 ** 3895 ** A natural cross join B 3896 ** 3897 ** The operator is "natural cross join". The A and B operands are stored 3898 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3899 ** operator with A. This routine shifts that operator over to B. 3900 */ 3901 void sqlite3SrcListShiftJoinType(SrcList *p){ 3902 if( p ){ 3903 int i; 3904 for(i=p->nSrc-1; i>0; i--){ 3905 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3906 } 3907 p->a[0].fg.jointype = 0; 3908 } 3909 } 3910 3911 /* 3912 ** Begin a transaction 3913 */ 3914 void sqlite3BeginTransaction(Parse *pParse, int type){ 3915 sqlite3 *db; 3916 Vdbe *v; 3917 int i; 3918 3919 assert( pParse!=0 ); 3920 db = pParse->db; 3921 assert( db!=0 ); 3922 /* if( db->aDb[0].pBt==0 ) return; */ 3923 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3924 return; 3925 } 3926 v = sqlite3GetVdbe(pParse); 3927 if( !v ) return; 3928 if( type!=TK_DEFERRED ){ 3929 for(i=0; i<db->nDb; i++){ 3930 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3931 sqlite3VdbeUsesBtree(v, i); 3932 } 3933 } 3934 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3935 } 3936 3937 /* 3938 ** Commit a transaction 3939 */ 3940 void sqlite3CommitTransaction(Parse *pParse){ 3941 Vdbe *v; 3942 3943 assert( pParse!=0 ); 3944 assert( pParse->db!=0 ); 3945 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3946 return; 3947 } 3948 v = sqlite3GetVdbe(pParse); 3949 if( v ){ 3950 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3951 } 3952 } 3953 3954 /* 3955 ** Rollback a transaction 3956 */ 3957 void sqlite3RollbackTransaction(Parse *pParse){ 3958 Vdbe *v; 3959 3960 assert( pParse!=0 ); 3961 assert( pParse->db!=0 ); 3962 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3963 return; 3964 } 3965 v = sqlite3GetVdbe(pParse); 3966 if( v ){ 3967 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3968 } 3969 } 3970 3971 /* 3972 ** This function is called by the parser when it parses a command to create, 3973 ** release or rollback an SQL savepoint. 3974 */ 3975 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3976 char *zName = sqlite3NameFromToken(pParse->db, pName); 3977 if( zName ){ 3978 Vdbe *v = sqlite3GetVdbe(pParse); 3979 #ifndef SQLITE_OMIT_AUTHORIZATION 3980 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3981 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3982 #endif 3983 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3984 sqlite3DbFree(pParse->db, zName); 3985 return; 3986 } 3987 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3988 } 3989 } 3990 3991 /* 3992 ** Make sure the TEMP database is open and available for use. Return 3993 ** the number of errors. Leave any error messages in the pParse structure. 3994 */ 3995 int sqlite3OpenTempDatabase(Parse *pParse){ 3996 sqlite3 *db = pParse->db; 3997 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3998 int rc; 3999 Btree *pBt; 4000 static const int flags = 4001 SQLITE_OPEN_READWRITE | 4002 SQLITE_OPEN_CREATE | 4003 SQLITE_OPEN_EXCLUSIVE | 4004 SQLITE_OPEN_DELETEONCLOSE | 4005 SQLITE_OPEN_TEMP_DB; 4006 4007 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4008 if( rc!=SQLITE_OK ){ 4009 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4010 "file for storing temporary tables"); 4011 pParse->rc = rc; 4012 return 1; 4013 } 4014 db->aDb[1].pBt = pBt; 4015 assert( db->aDb[1].pSchema ); 4016 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4017 db->mallocFailed = 1; 4018 return 1; 4019 } 4020 } 4021 return 0; 4022 } 4023 4024 /* 4025 ** Record the fact that the schema cookie will need to be verified 4026 ** for database iDb. The code to actually verify the schema cookie 4027 ** will occur at the end of the top-level VDBE and will be generated 4028 ** later, by sqlite3FinishCoding(). 4029 */ 4030 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4031 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4032 sqlite3 *db = pToplevel->db; 4033 4034 assert( iDb>=0 && iDb<db->nDb ); 4035 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4036 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4037 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4038 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4039 DbMaskSet(pToplevel->cookieMask, iDb); 4040 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4041 if( !OMIT_TEMPDB && iDb==1 ){ 4042 sqlite3OpenTempDatabase(pToplevel); 4043 } 4044 } 4045 } 4046 4047 /* 4048 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4049 ** attached database. Otherwise, invoke it for the database named zDb only. 4050 */ 4051 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4052 sqlite3 *db = pParse->db; 4053 int i; 4054 for(i=0; i<db->nDb; i++){ 4055 Db *pDb = &db->aDb[i]; 4056 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4057 sqlite3CodeVerifySchema(pParse, i); 4058 } 4059 } 4060 } 4061 4062 /* 4063 ** Generate VDBE code that prepares for doing an operation that 4064 ** might change the database. 4065 ** 4066 ** This routine starts a new transaction if we are not already within 4067 ** a transaction. If we are already within a transaction, then a checkpoint 4068 ** is set if the setStatement parameter is true. A checkpoint should 4069 ** be set for operations that might fail (due to a constraint) part of 4070 ** the way through and which will need to undo some writes without having to 4071 ** rollback the whole transaction. For operations where all constraints 4072 ** can be checked before any changes are made to the database, it is never 4073 ** necessary to undo a write and the checkpoint should not be set. 4074 */ 4075 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4076 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4077 sqlite3CodeVerifySchema(pParse, iDb); 4078 DbMaskSet(pToplevel->writeMask, iDb); 4079 pToplevel->isMultiWrite |= setStatement; 4080 } 4081 4082 /* 4083 ** Indicate that the statement currently under construction might write 4084 ** more than one entry (example: deleting one row then inserting another, 4085 ** inserting multiple rows in a table, or inserting a row and index entries.) 4086 ** If an abort occurs after some of these writes have completed, then it will 4087 ** be necessary to undo the completed writes. 4088 */ 4089 void sqlite3MultiWrite(Parse *pParse){ 4090 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4091 pToplevel->isMultiWrite = 1; 4092 } 4093 4094 /* 4095 ** The code generator calls this routine if is discovers that it is 4096 ** possible to abort a statement prior to completion. In order to 4097 ** perform this abort without corrupting the database, we need to make 4098 ** sure that the statement is protected by a statement transaction. 4099 ** 4100 ** Technically, we only need to set the mayAbort flag if the 4101 ** isMultiWrite flag was previously set. There is a time dependency 4102 ** such that the abort must occur after the multiwrite. This makes 4103 ** some statements involving the REPLACE conflict resolution algorithm 4104 ** go a little faster. But taking advantage of this time dependency 4105 ** makes it more difficult to prove that the code is correct (in 4106 ** particular, it prevents us from writing an effective 4107 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4108 ** to take the safe route and skip the optimization. 4109 */ 4110 void sqlite3MayAbort(Parse *pParse){ 4111 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4112 pToplevel->mayAbort = 1; 4113 } 4114 4115 /* 4116 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4117 ** error. The onError parameter determines which (if any) of the statement 4118 ** and/or current transaction is rolled back. 4119 */ 4120 void sqlite3HaltConstraint( 4121 Parse *pParse, /* Parsing context */ 4122 int errCode, /* extended error code */ 4123 int onError, /* Constraint type */ 4124 char *p4, /* Error message */ 4125 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4126 u8 p5Errmsg /* P5_ErrMsg type */ 4127 ){ 4128 Vdbe *v = sqlite3GetVdbe(pParse); 4129 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4130 if( onError==OE_Abort ){ 4131 sqlite3MayAbort(pParse); 4132 } 4133 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4134 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4135 } 4136 4137 /* 4138 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4139 */ 4140 void sqlite3UniqueConstraint( 4141 Parse *pParse, /* Parsing context */ 4142 int onError, /* Constraint type */ 4143 Index *pIdx /* The index that triggers the constraint */ 4144 ){ 4145 char *zErr; 4146 int j; 4147 StrAccum errMsg; 4148 Table *pTab = pIdx->pTable; 4149 4150 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4151 if( pIdx->aColExpr ){ 4152 sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName); 4153 }else{ 4154 for(j=0; j<pIdx->nKeyCol; j++){ 4155 char *zCol; 4156 assert( pIdx->aiColumn[j]>=0 ); 4157 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4158 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4159 sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol); 4160 } 4161 } 4162 zErr = sqlite3StrAccumFinish(&errMsg); 4163 sqlite3HaltConstraint(pParse, 4164 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4165 : SQLITE_CONSTRAINT_UNIQUE, 4166 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4167 } 4168 4169 4170 /* 4171 ** Code an OP_Halt due to non-unique rowid. 4172 */ 4173 void sqlite3RowidConstraint( 4174 Parse *pParse, /* Parsing context */ 4175 int onError, /* Conflict resolution algorithm */ 4176 Table *pTab /* The table with the non-unique rowid */ 4177 ){ 4178 char *zMsg; 4179 int rc; 4180 if( pTab->iPKey>=0 ){ 4181 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4182 pTab->aCol[pTab->iPKey].zName); 4183 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4184 }else{ 4185 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4186 rc = SQLITE_CONSTRAINT_ROWID; 4187 } 4188 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4189 P5_ConstraintUnique); 4190 } 4191 4192 /* 4193 ** Check to see if pIndex uses the collating sequence pColl. Return 4194 ** true if it does and false if it does not. 4195 */ 4196 #ifndef SQLITE_OMIT_REINDEX 4197 static int collationMatch(const char *zColl, Index *pIndex){ 4198 int i; 4199 assert( zColl!=0 ); 4200 for(i=0; i<pIndex->nColumn; i++){ 4201 const char *z = pIndex->azColl[i]; 4202 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4203 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4204 return 1; 4205 } 4206 } 4207 return 0; 4208 } 4209 #endif 4210 4211 /* 4212 ** Recompute all indices of pTab that use the collating sequence pColl. 4213 ** If pColl==0 then recompute all indices of pTab. 4214 */ 4215 #ifndef SQLITE_OMIT_REINDEX 4216 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4217 Index *pIndex; /* An index associated with pTab */ 4218 4219 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4220 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4221 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4222 sqlite3BeginWriteOperation(pParse, 0, iDb); 4223 sqlite3RefillIndex(pParse, pIndex, -1); 4224 } 4225 } 4226 } 4227 #endif 4228 4229 /* 4230 ** Recompute all indices of all tables in all databases where the 4231 ** indices use the collating sequence pColl. If pColl==0 then recompute 4232 ** all indices everywhere. 4233 */ 4234 #ifndef SQLITE_OMIT_REINDEX 4235 static void reindexDatabases(Parse *pParse, char const *zColl){ 4236 Db *pDb; /* A single database */ 4237 int iDb; /* The database index number */ 4238 sqlite3 *db = pParse->db; /* The database connection */ 4239 HashElem *k; /* For looping over tables in pDb */ 4240 Table *pTab; /* A table in the database */ 4241 4242 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4243 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4244 assert( pDb!=0 ); 4245 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4246 pTab = (Table*)sqliteHashData(k); 4247 reindexTable(pParse, pTab, zColl); 4248 } 4249 } 4250 } 4251 #endif 4252 4253 /* 4254 ** Generate code for the REINDEX command. 4255 ** 4256 ** REINDEX -- 1 4257 ** REINDEX <collation> -- 2 4258 ** REINDEX ?<database>.?<tablename> -- 3 4259 ** REINDEX ?<database>.?<indexname> -- 4 4260 ** 4261 ** Form 1 causes all indices in all attached databases to be rebuilt. 4262 ** Form 2 rebuilds all indices in all databases that use the named 4263 ** collating function. Forms 3 and 4 rebuild the named index or all 4264 ** indices associated with the named table. 4265 */ 4266 #ifndef SQLITE_OMIT_REINDEX 4267 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4268 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4269 char *z; /* Name of a table or index */ 4270 const char *zDb; /* Name of the database */ 4271 Table *pTab; /* A table in the database */ 4272 Index *pIndex; /* An index associated with pTab */ 4273 int iDb; /* The database index number */ 4274 sqlite3 *db = pParse->db; /* The database connection */ 4275 Token *pObjName; /* Name of the table or index to be reindexed */ 4276 4277 /* Read the database schema. If an error occurs, leave an error message 4278 ** and code in pParse and return NULL. */ 4279 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4280 return; 4281 } 4282 4283 if( pName1==0 ){ 4284 reindexDatabases(pParse, 0); 4285 return; 4286 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4287 char *zColl; 4288 assert( pName1->z ); 4289 zColl = sqlite3NameFromToken(pParse->db, pName1); 4290 if( !zColl ) return; 4291 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4292 if( pColl ){ 4293 reindexDatabases(pParse, zColl); 4294 sqlite3DbFree(db, zColl); 4295 return; 4296 } 4297 sqlite3DbFree(db, zColl); 4298 } 4299 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4300 if( iDb<0 ) return; 4301 z = sqlite3NameFromToken(db, pObjName); 4302 if( z==0 ) return; 4303 zDb = db->aDb[iDb].zName; 4304 pTab = sqlite3FindTable(db, z, zDb); 4305 if( pTab ){ 4306 reindexTable(pParse, pTab, 0); 4307 sqlite3DbFree(db, z); 4308 return; 4309 } 4310 pIndex = sqlite3FindIndex(db, z, zDb); 4311 sqlite3DbFree(db, z); 4312 if( pIndex ){ 4313 sqlite3BeginWriteOperation(pParse, 0, iDb); 4314 sqlite3RefillIndex(pParse, pIndex, -1); 4315 return; 4316 } 4317 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4318 } 4319 #endif 4320 4321 /* 4322 ** Return a KeyInfo structure that is appropriate for the given Index. 4323 ** 4324 ** The KeyInfo structure for an index is cached in the Index object. 4325 ** So there might be multiple references to the returned pointer. The 4326 ** caller should not try to modify the KeyInfo object. 4327 ** 4328 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4329 ** when it has finished using it. 4330 */ 4331 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4332 int i; 4333 int nCol = pIdx->nColumn; 4334 int nKey = pIdx->nKeyCol; 4335 KeyInfo *pKey; 4336 if( pParse->nErr ) return 0; 4337 if( pIdx->uniqNotNull ){ 4338 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4339 }else{ 4340 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4341 } 4342 if( pKey ){ 4343 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4344 for(i=0; i<nCol; i++){ 4345 char *zColl = pIdx->azColl[i]; 4346 assert( zColl!=0 ); 4347 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4348 sqlite3LocateCollSeq(pParse, zColl); 4349 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4350 } 4351 if( pParse->nErr ){ 4352 sqlite3KeyInfoUnref(pKey); 4353 pKey = 0; 4354 } 4355 } 4356 return pKey; 4357 } 4358 4359 #ifndef SQLITE_OMIT_CTE 4360 /* 4361 ** This routine is invoked once per CTE by the parser while parsing a 4362 ** WITH clause. 4363 */ 4364 With *sqlite3WithAdd( 4365 Parse *pParse, /* Parsing context */ 4366 With *pWith, /* Existing WITH clause, or NULL */ 4367 Token *pName, /* Name of the common-table */ 4368 ExprList *pArglist, /* Optional column name list for the table */ 4369 Select *pQuery /* Query used to initialize the table */ 4370 ){ 4371 sqlite3 *db = pParse->db; 4372 With *pNew; 4373 char *zName; 4374 4375 /* Check that the CTE name is unique within this WITH clause. If 4376 ** not, store an error in the Parse structure. */ 4377 zName = sqlite3NameFromToken(pParse->db, pName); 4378 if( zName && pWith ){ 4379 int i; 4380 for(i=0; i<pWith->nCte; i++){ 4381 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4382 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4383 } 4384 } 4385 } 4386 4387 if( pWith ){ 4388 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4389 pNew = sqlite3DbRealloc(db, pWith, nByte); 4390 }else{ 4391 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4392 } 4393 assert( zName!=0 || pNew==0 ); 4394 assert( db->mallocFailed==0 || pNew==0 ); 4395 4396 if( pNew==0 ){ 4397 sqlite3ExprListDelete(db, pArglist); 4398 sqlite3SelectDelete(db, pQuery); 4399 sqlite3DbFree(db, zName); 4400 pNew = pWith; 4401 }else{ 4402 pNew->a[pNew->nCte].pSelect = pQuery; 4403 pNew->a[pNew->nCte].pCols = pArglist; 4404 pNew->a[pNew->nCte].zName = zName; 4405 pNew->a[pNew->nCte].zCteErr = 0; 4406 pNew->nCte++; 4407 } 4408 4409 return pNew; 4410 } 4411 4412 /* 4413 ** Free the contents of the With object passed as the second argument. 4414 */ 4415 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4416 if( pWith ){ 4417 int i; 4418 for(i=0; i<pWith->nCte; i++){ 4419 struct Cte *pCte = &pWith->a[i]; 4420 sqlite3ExprListDelete(db, pCte->pCols); 4421 sqlite3SelectDelete(db, pCte->pSelect); 4422 sqlite3DbFree(db, pCte->zName); 4423 } 4424 sqlite3DbFree(db, pWith); 4425 } 4426 } 4427 #endif /* !defined(SQLITE_OMIT_CTE) */ 4428