xref: /sqlite-3.40.0/src/build.c (revision 8ccdef6b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
120 */
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m){
123   int i;
124   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
125   return 1;
126 }
127 #endif
128 
129 /*
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared.  This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
134 ** parse.
135 **
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
138 */
139 void sqlite3FinishCoding(Parse *pParse){
140   sqlite3 *db;
141   Vdbe *v;
142 
143   assert( pParse->pToplevel==0 );
144   db = pParse->db;
145   if( pParse->nested ) return;
146   if( db->mallocFailed || pParse->nErr ){
147     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
148     return;
149   }
150 
151   /* Begin by generating some termination code at the end of the
152   ** vdbe program
153   */
154   v = sqlite3GetVdbe(pParse);
155   assert( !pParse->isMultiWrite
156        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
157   if( v ){
158     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
159     sqlite3VdbeAddOp0(v, OP_Halt);
160 
161 #if SQLITE_USER_AUTHENTICATION
162     if( pParse->nTableLock>0 && db->init.busy==0 ){
163       sqlite3UserAuthInit(db);
164       if( db->auth.authLevel<UAUTH_User ){
165         pParse->rc = SQLITE_AUTH_USER;
166         sqlite3ErrorMsg(pParse, "user not authenticated");
167         return;
168       }
169     }
170 #endif
171 
172     /* The cookie mask contains one bit for each database file open.
173     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
174     ** set for each database that is used.  Generate code to start a
175     ** transaction on each used database and to verify the schema cookie
176     ** on each used database.
177     */
178     if( db->mallocFailed==0
179      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
180     ){
181       int iDb, i;
182       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
183       sqlite3VdbeJumpHere(v, 0);
184       for(iDb=0; iDb<db->nDb; iDb++){
185         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
186         sqlite3VdbeUsesBtree(v, iDb);
187         sqlite3VdbeAddOp4Int(v,
188           OP_Transaction,                    /* Opcode */
189           iDb,                               /* P1 */
190           DbMaskTest(pParse->writeMask,iDb), /* P2 */
191           pParse->cookieValue[iDb],          /* P3 */
192           db->aDb[iDb].pSchema->iGeneration  /* P4 */
193         );
194         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
195         VdbeComment((v,
196               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
197       }
198 #ifndef SQLITE_OMIT_VIRTUALTABLE
199       for(i=0; i<pParse->nVtabLock; i++){
200         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
201         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
202       }
203       pParse->nVtabLock = 0;
204 #endif
205 
206       /* Once all the cookies have been verified and transactions opened,
207       ** obtain the required table-locks. This is a no-op unless the
208       ** shared-cache feature is enabled.
209       */
210       codeTableLocks(pParse);
211 
212       /* Initialize any AUTOINCREMENT data structures required.
213       */
214       sqlite3AutoincrementBegin(pParse);
215 
216       /* Code constant expressions that where factored out of inner loops */
217       if( pParse->pConstExpr ){
218         ExprList *pEL = pParse->pConstExpr;
219         pParse->okConstFactor = 0;
220         for(i=0; i<pEL->nExpr; i++){
221           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
222         }
223       }
224 
225       /* Finally, jump back to the beginning of the executable code. */
226       sqlite3VdbeGoto(v, 1);
227     }
228   }
229 
230 
231   /* Get the VDBE program ready for execution
232   */
233   if( v && pParse->nErr==0 && !db->mallocFailed ){
234     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
235     /* A minimum of one cursor is required if autoincrement is used
236     *  See ticket [a696379c1f08866] */
237     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
238     sqlite3VdbeMakeReady(v, pParse);
239     pParse->rc = SQLITE_DONE;
240     pParse->colNamesSet = 0;
241   }else{
242     pParse->rc = SQLITE_ERROR;
243   }
244   pParse->nTab = 0;
245   pParse->nMem = 0;
246   pParse->nSet = 0;
247   pParse->nVar = 0;
248   DbMaskZero(pParse->cookieMask);
249 }
250 
251 /*
252 ** Run the parser and code generator recursively in order to generate
253 ** code for the SQL statement given onto the end of the pParse context
254 ** currently under construction.  When the parser is run recursively
255 ** this way, the final OP_Halt is not appended and other initialization
256 ** and finalization steps are omitted because those are handling by the
257 ** outermost parser.
258 **
259 ** Not everything is nestable.  This facility is designed to permit
260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
261 ** care if you decide to try to use this routine for some other purposes.
262 */
263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
264   va_list ap;
265   char *zSql;
266   char *zErrMsg = 0;
267   sqlite3 *db = pParse->db;
268 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
269   char saveBuf[SAVE_SZ];
270 
271   if( pParse->nErr ) return;
272   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
273   va_start(ap, zFormat);
274   zSql = sqlite3VMPrintf(db, zFormat, ap);
275   va_end(ap);
276   if( zSql==0 ){
277     return;   /* A malloc must have failed */
278   }
279   pParse->nested++;
280   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
281   memset(&pParse->nVar, 0, SAVE_SZ);
282   sqlite3RunParser(pParse, zSql, &zErrMsg);
283   sqlite3DbFree(db, zErrMsg);
284   sqlite3DbFree(db, zSql);
285   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
286   pParse->nested--;
287 }
288 
289 #if SQLITE_USER_AUTHENTICATION
290 /*
291 ** Return TRUE if zTable is the name of the system table that stores the
292 ** list of users and their access credentials.
293 */
294 int sqlite3UserAuthTable(const char *zTable){
295   return sqlite3_stricmp(zTable, "sqlite_user")==0;
296 }
297 #endif
298 
299 /*
300 ** Locate the in-memory structure that describes a particular database
301 ** table given the name of that table and (optionally) the name of the
302 ** database containing the table.  Return NULL if not found.
303 **
304 ** If zDatabase is 0, all databases are searched for the table and the
305 ** first matching table is returned.  (No checking for duplicate table
306 ** names is done.)  The search order is TEMP first, then MAIN, then any
307 ** auxiliary databases added using the ATTACH command.
308 **
309 ** See also sqlite3LocateTable().
310 */
311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
312   Table *p = 0;
313   int i;
314 
315   /* All mutexes are required for schema access.  Make sure we hold them. */
316   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
317 #if SQLITE_USER_AUTHENTICATION
318   /* Only the admin user is allowed to know that the sqlite_user table
319   ** exists */
320   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
321     return 0;
322   }
323 #endif
324   for(i=OMIT_TEMPDB; i<db->nDb; i++){
325     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
326     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
327     assert( sqlite3SchemaMutexHeld(db, j, 0) );
328     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
329     if( p ) break;
330   }
331   return p;
332 }
333 
334 /*
335 ** Locate the in-memory structure that describes a particular database
336 ** table given the name of that table and (optionally) the name of the
337 ** database containing the table.  Return NULL if not found.  Also leave an
338 ** error message in pParse->zErrMsg.
339 **
340 ** The difference between this routine and sqlite3FindTable() is that this
341 ** routine leaves an error message in pParse->zErrMsg where
342 ** sqlite3FindTable() does not.
343 */
344 Table *sqlite3LocateTable(
345   Parse *pParse,         /* context in which to report errors */
346   int isView,            /* True if looking for a VIEW rather than a TABLE */
347   const char *zName,     /* Name of the table we are looking for */
348   const char *zDbase     /* Name of the database.  Might be NULL */
349 ){
350   Table *p;
351 
352   /* Read the database schema. If an error occurs, leave an error message
353   ** and code in pParse and return NULL. */
354   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
355     return 0;
356   }
357 
358   p = sqlite3FindTable(pParse->db, zName, zDbase);
359   if( p==0 ){
360     const char *zMsg = isView ? "no such view" : "no such table";
361 #ifndef SQLITE_OMIT_VIRTUALTABLE
362     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
363       /* If zName is the not the name of a table in the schema created using
364       ** CREATE, then check to see if it is the name of an virtual table that
365       ** can be an eponymous virtual table. */
366       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
367       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
368         return pMod->pEpoTab;
369       }
370     }
371 #endif
372     if( zDbase ){
373       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
374     }else{
375       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376     }
377     pParse->checkSchema = 1;
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   int isView,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->flags |= SQLITE_InternChanges;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zName);
499       pDb->zName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
508   db->nDb = j;
509   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
510     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
511     sqlite3DbFree(db, db->aDb);
512     db->aDb = db->aDbStatic;
513   }
514 }
515 
516 /*
517 ** Reset the schema for the database at index iDb.  Also reset the
518 ** TEMP schema.
519 */
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521   Db *pDb;
522   assert( iDb<db->nDb );
523 
524   /* Case 1:  Reset the single schema identified by iDb */
525   pDb = &db->aDb[iDb];
526   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
527   assert( pDb->pSchema!=0 );
528   sqlite3SchemaClear(pDb->pSchema);
529 
530   /* If any database other than TEMP is reset, then also reset TEMP
531   ** since TEMP might be holding triggers that reference tables in the
532   ** other database.
533   */
534   if( iDb!=1 ){
535     pDb = &db->aDb[1];
536     assert( pDb->pSchema!=0 );
537     sqlite3SchemaClear(pDb->pSchema);
538   }
539   return;
540 }
541 
542 /*
543 ** Erase all schema information from all attached databases (including
544 ** "main" and "temp") for a single database connection.
545 */
546 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
547   int i;
548   sqlite3BtreeEnterAll(db);
549   for(i=0; i<db->nDb; i++){
550     Db *pDb = &db->aDb[i];
551     if( pDb->pSchema ){
552       sqlite3SchemaClear(pDb->pSchema);
553     }
554   }
555   db->flags &= ~SQLITE_InternChanges;
556   sqlite3VtabUnlockList(db);
557   sqlite3BtreeLeaveAll(db);
558   sqlite3CollapseDatabaseArray(db);
559 }
560 
561 /*
562 ** This routine is called when a commit occurs.
563 */
564 void sqlite3CommitInternalChanges(sqlite3 *db){
565   db->flags &= ~SQLITE_InternChanges;
566 }
567 
568 /*
569 ** Delete memory allocated for the column names of a table or view (the
570 ** Table.aCol[] array).
571 */
572 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
573   int i;
574   Column *pCol;
575   assert( pTable!=0 );
576   if( (pCol = pTable->aCol)!=0 ){
577     for(i=0; i<pTable->nCol; i++, pCol++){
578       sqlite3DbFree(db, pCol->zName);
579       sqlite3ExprDelete(db, pCol->pDflt);
580       sqlite3DbFree(db, pCol->zDflt);
581       sqlite3DbFree(db, pCol->zType);
582       sqlite3DbFree(db, pCol->zColl);
583     }
584     sqlite3DbFree(db, pTable->aCol);
585   }
586 }
587 
588 /*
589 ** Remove the memory data structures associated with the given
590 ** Table.  No changes are made to disk by this routine.
591 **
592 ** This routine just deletes the data structure.  It does not unlink
593 ** the table data structure from the hash table.  But it does destroy
594 ** memory structures of the indices and foreign keys associated with
595 ** the table.
596 **
597 ** The db parameter is optional.  It is needed if the Table object
598 ** contains lookaside memory.  (Table objects in the schema do not use
599 ** lookaside memory, but some ephemeral Table objects do.)  Or the
600 ** db parameter can be used with db->pnBytesFreed to measure the memory
601 ** used by the Table object.
602 */
603 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
604   Index *pIndex, *pNext;
605   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
606 
607   assert( !pTable || pTable->nRef>0 );
608 
609   /* Do not delete the table until the reference count reaches zero. */
610   if( !pTable ) return;
611   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
612 
613   /* Record the number of outstanding lookaside allocations in schema Tables
614   ** prior to doing any free() operations.  Since schema Tables do not use
615   ** lookaside, this number should not change. */
616   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
617                          db->lookaside.nOut : 0 );
618 
619   /* Delete all indices associated with this table. */
620   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
621     pNext = pIndex->pNext;
622     assert( pIndex->pSchema==pTable->pSchema );
623     if( !db || db->pnBytesFreed==0 ){
624       char *zName = pIndex->zName;
625       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
626          &pIndex->pSchema->idxHash, zName, 0
627       );
628       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
629       assert( pOld==pIndex || pOld==0 );
630     }
631     freeIndex(db, pIndex);
632   }
633 
634   /* Delete any foreign keys attached to this table. */
635   sqlite3FkDelete(db, pTable);
636 
637   /* Delete the Table structure itself.
638   */
639   sqlite3DeleteColumnNames(db, pTable);
640   sqlite3DbFree(db, pTable->zName);
641   sqlite3DbFree(db, pTable->zColAff);
642   sqlite3SelectDelete(db, pTable->pSelect);
643   sqlite3ExprListDelete(db, pTable->pCheck);
644 #ifndef SQLITE_OMIT_VIRTUALTABLE
645   sqlite3VtabClear(db, pTable);
646 #endif
647   sqlite3DbFree(db, pTable);
648 
649   /* Verify that no lookaside memory was used by schema tables */
650   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
651 }
652 
653 /*
654 ** Unlink the given table from the hash tables and the delete the
655 ** table structure with all its indices and foreign keys.
656 */
657 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
658   Table *p;
659   Db *pDb;
660 
661   assert( db!=0 );
662   assert( iDb>=0 && iDb<db->nDb );
663   assert( zTabName );
664   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
665   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
666   pDb = &db->aDb[iDb];
667   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
668   sqlite3DeleteTable(db, p);
669   db->flags |= SQLITE_InternChanges;
670 }
671 
672 /*
673 ** Given a token, return a string that consists of the text of that
674 ** token.  Space to hold the returned string
675 ** is obtained from sqliteMalloc() and must be freed by the calling
676 ** function.
677 **
678 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
679 ** surround the body of the token are removed.
680 **
681 ** Tokens are often just pointers into the original SQL text and so
682 ** are not \000 terminated and are not persistent.  The returned string
683 ** is \000 terminated and is persistent.
684 */
685 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
686   char *zName;
687   if( pName ){
688     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
689     sqlite3Dequote(zName);
690   }else{
691     zName = 0;
692   }
693   return zName;
694 }
695 
696 /*
697 ** Open the sqlite_master table stored in database number iDb for
698 ** writing. The table is opened using cursor 0.
699 */
700 void sqlite3OpenMasterTable(Parse *p, int iDb){
701   Vdbe *v = sqlite3GetVdbe(p);
702   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
703   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
704   if( p->nTab==0 ){
705     p->nTab = 1;
706   }
707 }
708 
709 /*
710 ** Parameter zName points to a nul-terminated buffer containing the name
711 ** of a database ("main", "temp" or the name of an attached db). This
712 ** function returns the index of the named database in db->aDb[], or
713 ** -1 if the named db cannot be found.
714 */
715 int sqlite3FindDbName(sqlite3 *db, const char *zName){
716   int i = -1;         /* Database number */
717   if( zName ){
718     Db *pDb;
719     int n = sqlite3Strlen30(zName);
720     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
722           0==sqlite3StrICmp(pDb->zName, zName) ){
723         break;
724       }
725     }
726   }
727   return i;
728 }
729 
730 /*
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
735 */
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737   int i;                               /* Database number */
738   char *zName;                         /* Name we are searching for */
739   zName = sqlite3NameFromToken(db, pName);
740   i = sqlite3FindDbName(db, zName);
741   sqlite3DbFree(db, zName);
742   return i;
743 }
744 
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
747 **
748 ** CREATE TABLE xxx.yyy (...);
749 **
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
752 **
753 ** CREATE TABLE yyy(...);
754 **
755 ** Then pName1 is set to "yyy" and pName2 is "".
756 **
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name.  The index of the
759 ** database "xxx" is returned.
760 */
761 int sqlite3TwoPartName(
762   Parse *pParse,      /* Parsing and code generating context */
763   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
764   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
765   Token **pUnqual     /* Write the unqualified object name here */
766 ){
767   int iDb;                    /* Database holding the object */
768   sqlite3 *db = pParse->db;
769 
770   if( ALWAYS(pName2!=0) && pName2->n>0 ){
771     if( db->init.busy ) {
772       sqlite3ErrorMsg(pParse, "corrupt database");
773       return -1;
774     }
775     *pUnqual = pName2;
776     iDb = sqlite3FindDb(db, pName1);
777     if( iDb<0 ){
778       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
779       return -1;
780     }
781   }else{
782     assert( db->init.iDb==0 || db->init.busy );
783     iDb = db->init.iDb;
784     *pUnqual = pName1;
785   }
786   return iDb;
787 }
788 
789 /*
790 ** This routine is used to check if the UTF-8 string zName is a legal
791 ** unqualified name for a new schema object (table, index, view or
792 ** trigger). All names are legal except those that begin with the string
793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
794 ** is reserved for internal use.
795 */
796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
797   if( !pParse->db->init.busy && pParse->nested==0
798           && (pParse->db->flags & SQLITE_WriteSchema)==0
799           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
800     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
801     return SQLITE_ERROR;
802   }
803   return SQLITE_OK;
804 }
805 
806 /*
807 ** Return the PRIMARY KEY index of a table
808 */
809 Index *sqlite3PrimaryKeyIndex(Table *pTab){
810   Index *p;
811   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
812   return p;
813 }
814 
815 /*
816 ** Return the column of index pIdx that corresponds to table
817 ** column iCol.  Return -1 if not found.
818 */
819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
820   int i;
821   for(i=0; i<pIdx->nColumn; i++){
822     if( iCol==pIdx->aiColumn[i] ) return i;
823   }
824   return -1;
825 }
826 
827 /*
828 ** Begin constructing a new table representation in memory.  This is
829 ** the first of several action routines that get called in response
830 ** to a CREATE TABLE statement.  In particular, this routine is called
831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
832 ** flag is true if the table should be stored in the auxiliary database
833 ** file instead of in the main database file.  This is normally the case
834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
835 ** CREATE and TABLE.
836 **
837 ** The new table record is initialized and put in pParse->pNewTable.
838 ** As more of the CREATE TABLE statement is parsed, additional action
839 ** routines will be called to add more information to this record.
840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
841 ** is called to complete the construction of the new table record.
842 */
843 void sqlite3StartTable(
844   Parse *pParse,   /* Parser context */
845   Token *pName1,   /* First part of the name of the table or view */
846   Token *pName2,   /* Second part of the name of the table or view */
847   int isTemp,      /* True if this is a TEMP table */
848   int isView,      /* True if this is a VIEW */
849   int isVirtual,   /* True if this is a VIRTUAL table */
850   int noErr        /* Do nothing if table already exists */
851 ){
852   Table *pTable;
853   char *zName = 0; /* The name of the new table */
854   sqlite3 *db = pParse->db;
855   Vdbe *v;
856   int iDb;         /* Database number to create the table in */
857   Token *pName;    /* Unqualified name of the table to create */
858 
859   /* The table or view name to create is passed to this routine via tokens
860   ** pName1 and pName2. If the table name was fully qualified, for example:
861   **
862   ** CREATE TABLE xxx.yyy (...);
863   **
864   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
865   ** the table name is not fully qualified, i.e.:
866   **
867   ** CREATE TABLE yyy(...);
868   **
869   ** Then pName1 is set to "yyy" and pName2 is "".
870   **
871   ** The call below sets the pName pointer to point at the token (pName1 or
872   ** pName2) that stores the unqualified table name. The variable iDb is
873   ** set to the index of the database that the table or view is to be
874   ** created in.
875   */
876   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
877   if( iDb<0 ) return;
878   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
879     /* If creating a temp table, the name may not be qualified. Unless
880     ** the database name is "temp" anyway.  */
881     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
882     return;
883   }
884   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
885 
886   pParse->sNameToken = *pName;
887   zName = sqlite3NameFromToken(db, pName);
888   if( zName==0 ) return;
889   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
890     goto begin_table_error;
891   }
892   if( db->init.iDb==1 ) isTemp = 1;
893 #ifndef SQLITE_OMIT_AUTHORIZATION
894   assert( (isTemp & 1)==isTemp );
895   {
896     int code;
897     char *zDb = db->aDb[iDb].zName;
898     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
899       goto begin_table_error;
900     }
901     if( isView ){
902       if( !OMIT_TEMPDB && isTemp ){
903         code = SQLITE_CREATE_TEMP_VIEW;
904       }else{
905         code = SQLITE_CREATE_VIEW;
906       }
907     }else{
908       if( !OMIT_TEMPDB && isTemp ){
909         code = SQLITE_CREATE_TEMP_TABLE;
910       }else{
911         code = SQLITE_CREATE_TABLE;
912       }
913     }
914     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
915       goto begin_table_error;
916     }
917   }
918 #endif
919 
920   /* Make sure the new table name does not collide with an existing
921   ** index or table name in the same database.  Issue an error message if
922   ** it does. The exception is if the statement being parsed was passed
923   ** to an sqlite3_declare_vtab() call. In that case only the column names
924   ** and types will be used, so there is no need to test for namespace
925   ** collisions.
926   */
927   if( !IN_DECLARE_VTAB ){
928     char *zDb = db->aDb[iDb].zName;
929     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
930       goto begin_table_error;
931     }
932     pTable = sqlite3FindTable(db, zName, zDb);
933     if( pTable ){
934       if( !noErr ){
935         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
936       }else{
937         assert( !db->init.busy || CORRUPT_DB );
938         sqlite3CodeVerifySchema(pParse, iDb);
939       }
940       goto begin_table_error;
941     }
942     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
943       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
944       goto begin_table_error;
945     }
946   }
947 
948   pTable = sqlite3DbMallocZero(db, sizeof(Table));
949   if( pTable==0 ){
950     db->mallocFailed = 1;
951     pParse->rc = SQLITE_NOMEM;
952     pParse->nErr++;
953     goto begin_table_error;
954   }
955   pTable->zName = zName;
956   pTable->iPKey = -1;
957   pTable->pSchema = db->aDb[iDb].pSchema;
958   pTable->nRef = 1;
959   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
960   assert( pParse->pNewTable==0 );
961   pParse->pNewTable = pTable;
962 
963   /* If this is the magic sqlite_sequence table used by autoincrement,
964   ** then record a pointer to this table in the main database structure
965   ** so that INSERT can find the table easily.
966   */
967 #ifndef SQLITE_OMIT_AUTOINCREMENT
968   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
969     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
970     pTable->pSchema->pSeqTab = pTable;
971   }
972 #endif
973 
974   /* Begin generating the code that will insert the table record into
975   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
976   ** and allocate the record number for the table entry now.  Before any
977   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
978   ** indices to be created and the table record must come before the
979   ** indices.  Hence, the record number for the table must be allocated
980   ** now.
981   */
982   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
983     int addr1;
984     int fileFormat;
985     int reg1, reg2, reg3;
986     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
987     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
988     sqlite3BeginWriteOperation(pParse, 1, iDb);
989 
990 #ifndef SQLITE_OMIT_VIRTUALTABLE
991     if( isVirtual ){
992       sqlite3VdbeAddOp0(v, OP_VBegin);
993     }
994 #endif
995 
996     /* If the file format and encoding in the database have not been set,
997     ** set them now.
998     */
999     reg1 = pParse->regRowid = ++pParse->nMem;
1000     reg2 = pParse->regRoot = ++pParse->nMem;
1001     reg3 = ++pParse->nMem;
1002     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1003     sqlite3VdbeUsesBtree(v, iDb);
1004     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1005     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1006                   1 : SQLITE_MAX_FILE_FORMAT;
1007     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
1008     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
1009     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1010     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1011     sqlite3VdbeJumpHere(v, addr1);
1012 
1013     /* This just creates a place-holder record in the sqlite_master table.
1014     ** The record created does not contain anything yet.  It will be replaced
1015     ** by the real entry in code generated at sqlite3EndTable().
1016     **
1017     ** The rowid for the new entry is left in register pParse->regRowid.
1018     ** The root page number of the new table is left in reg pParse->regRoot.
1019     ** The rowid and root page number values are needed by the code that
1020     ** sqlite3EndTable will generate.
1021     */
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1023     if( isView || isVirtual ){
1024       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1025     }else
1026 #endif
1027     {
1028       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1029     }
1030     sqlite3OpenMasterTable(pParse, iDb);
1031     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1032     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1033     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1034     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1035     sqlite3VdbeAddOp0(v, OP_Close);
1036   }
1037 
1038   /* Normal (non-error) return. */
1039   return;
1040 
1041   /* If an error occurs, we jump here */
1042 begin_table_error:
1043   sqlite3DbFree(db, zName);
1044   return;
1045 }
1046 
1047 /* Set properties of a table column based on the (magical)
1048 ** name of the column.
1049 */
1050 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1051 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1052   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1053     pCol->colFlags |= COLFLAG_HIDDEN;
1054   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1055     pTab->tabFlags |= TF_OOOHidden;
1056   }
1057 #endif
1058 }
1059 
1060 
1061 /*
1062 ** Add a new column to the table currently being constructed.
1063 **
1064 ** The parser calls this routine once for each column declaration
1065 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1066 ** first to get things going.  Then this routine is called for each
1067 ** column.
1068 */
1069 void sqlite3AddColumn(Parse *pParse, Token *pName){
1070   Table *p;
1071   int i;
1072   char *z;
1073   Column *pCol;
1074   sqlite3 *db = pParse->db;
1075   if( (p = pParse->pNewTable)==0 ) return;
1076 #if SQLITE_MAX_COLUMN
1077   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1078     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1079     return;
1080   }
1081 #endif
1082   z = sqlite3NameFromToken(db, pName);
1083   if( z==0 ) return;
1084   for(i=0; i<p->nCol; i++){
1085     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1086       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1087       sqlite3DbFree(db, z);
1088       return;
1089     }
1090   }
1091   if( (p->nCol & 0x7)==0 ){
1092     Column *aNew;
1093     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1094     if( aNew==0 ){
1095       sqlite3DbFree(db, z);
1096       return;
1097     }
1098     p->aCol = aNew;
1099   }
1100   pCol = &p->aCol[p->nCol];
1101   memset(pCol, 0, sizeof(p->aCol[0]));
1102   pCol->zName = z;
1103   sqlite3ColumnPropertiesFromName(p, pCol);
1104 
1105   /* If there is no type specified, columns have the default affinity
1106   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1107   ** be called next to set pCol->affinity correctly.
1108   */
1109   pCol->affinity = SQLITE_AFF_BLOB;
1110   pCol->szEst = 1;
1111   p->nCol++;
1112 }
1113 
1114 /*
1115 ** This routine is called by the parser while in the middle of
1116 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1117 ** been seen on a column.  This routine sets the notNull flag on
1118 ** the column currently under construction.
1119 */
1120 void sqlite3AddNotNull(Parse *pParse, int onError){
1121   Table *p;
1122   p = pParse->pNewTable;
1123   if( p==0 || NEVER(p->nCol<1) ) return;
1124   p->aCol[p->nCol-1].notNull = (u8)onError;
1125 }
1126 
1127 /*
1128 ** Scan the column type name zType (length nType) and return the
1129 ** associated affinity type.
1130 **
1131 ** This routine does a case-independent search of zType for the
1132 ** substrings in the following table. If one of the substrings is
1133 ** found, the corresponding affinity is returned. If zType contains
1134 ** more than one of the substrings, entries toward the top of
1135 ** the table take priority. For example, if zType is 'BLOBINT',
1136 ** SQLITE_AFF_INTEGER is returned.
1137 **
1138 ** Substring     | Affinity
1139 ** --------------------------------
1140 ** 'INT'         | SQLITE_AFF_INTEGER
1141 ** 'CHAR'        | SQLITE_AFF_TEXT
1142 ** 'CLOB'        | SQLITE_AFF_TEXT
1143 ** 'TEXT'        | SQLITE_AFF_TEXT
1144 ** 'BLOB'        | SQLITE_AFF_BLOB
1145 ** 'REAL'        | SQLITE_AFF_REAL
1146 ** 'FLOA'        | SQLITE_AFF_REAL
1147 ** 'DOUB'        | SQLITE_AFF_REAL
1148 **
1149 ** If none of the substrings in the above table are found,
1150 ** SQLITE_AFF_NUMERIC is returned.
1151 */
1152 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1153   u32 h = 0;
1154   char aff = SQLITE_AFF_NUMERIC;
1155   const char *zChar = 0;
1156 
1157   if( zIn==0 ) return aff;
1158   while( zIn[0] ){
1159     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1160     zIn++;
1161     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1162       aff = SQLITE_AFF_TEXT;
1163       zChar = zIn;
1164     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1165       aff = SQLITE_AFF_TEXT;
1166     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1167       aff = SQLITE_AFF_TEXT;
1168     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1169         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1170       aff = SQLITE_AFF_BLOB;
1171       if( zIn[0]=='(' ) zChar = zIn;
1172 #ifndef SQLITE_OMIT_FLOATING_POINT
1173     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1174         && aff==SQLITE_AFF_NUMERIC ){
1175       aff = SQLITE_AFF_REAL;
1176     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1177         && aff==SQLITE_AFF_NUMERIC ){
1178       aff = SQLITE_AFF_REAL;
1179     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1180         && aff==SQLITE_AFF_NUMERIC ){
1181       aff = SQLITE_AFF_REAL;
1182 #endif
1183     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1184       aff = SQLITE_AFF_INTEGER;
1185       break;
1186     }
1187   }
1188 
1189   /* If pszEst is not NULL, store an estimate of the field size.  The
1190   ** estimate is scaled so that the size of an integer is 1.  */
1191   if( pszEst ){
1192     *pszEst = 1;   /* default size is approx 4 bytes */
1193     if( aff<SQLITE_AFF_NUMERIC ){
1194       if( zChar ){
1195         while( zChar[0] ){
1196           if( sqlite3Isdigit(zChar[0]) ){
1197             int v = 0;
1198             sqlite3GetInt32(zChar, &v);
1199             v = v/4 + 1;
1200             if( v>255 ) v = 255;
1201             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1202             break;
1203           }
1204           zChar++;
1205         }
1206       }else{
1207         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1208       }
1209     }
1210   }
1211   return aff;
1212 }
1213 
1214 /*
1215 ** This routine is called by the parser while in the middle of
1216 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1217 ** token in the sequence of tokens that describe the type of the
1218 ** column currently under construction.   pLast is the last token
1219 ** in the sequence.  Use this information to construct a string
1220 ** that contains the typename of the column and store that string
1221 ** in zType.
1222 */
1223 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1224   Table *p;
1225   Column *pCol;
1226 
1227   p = pParse->pNewTable;
1228   if( p==0 || NEVER(p->nCol<1) ) return;
1229   pCol = &p->aCol[p->nCol-1];
1230   assert( pCol->zType==0 || CORRUPT_DB );
1231   sqlite3DbFree(pParse->db, pCol->zType);
1232   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1233   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1234 }
1235 
1236 /*
1237 ** The expression is the default value for the most recently added column
1238 ** of the table currently under construction.
1239 **
1240 ** Default value expressions must be constant.  Raise an exception if this
1241 ** is not the case.
1242 **
1243 ** This routine is called by the parser while in the middle of
1244 ** parsing a CREATE TABLE statement.
1245 */
1246 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1247   Table *p;
1248   Column *pCol;
1249   sqlite3 *db = pParse->db;
1250   p = pParse->pNewTable;
1251   if( p!=0 ){
1252     pCol = &(p->aCol[p->nCol-1]);
1253     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1254       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1255           pCol->zName);
1256     }else{
1257       /* A copy of pExpr is used instead of the original, as pExpr contains
1258       ** tokens that point to volatile memory. The 'span' of the expression
1259       ** is required by pragma table_info.
1260       */
1261       sqlite3ExprDelete(db, pCol->pDflt);
1262       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1263       sqlite3DbFree(db, pCol->zDflt);
1264       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1265                                      (int)(pSpan->zEnd - pSpan->zStart));
1266     }
1267   }
1268   sqlite3ExprDelete(db, pSpan->pExpr);
1269 }
1270 
1271 /*
1272 ** Backwards Compatibility Hack:
1273 **
1274 ** Historical versions of SQLite accepted strings as column names in
1275 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1276 **
1277 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1278 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1279 **
1280 ** This is goofy.  But to preserve backwards compatibility we continue to
1281 ** accept it.  This routine does the necessary conversion.  It converts
1282 ** the expression given in its argument from a TK_STRING into a TK_ID
1283 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1284 ** If the epxression is anything other than TK_STRING, the expression is
1285 ** unchanged.
1286 */
1287 static void sqlite3StringToId(Expr *p){
1288   if( p->op==TK_STRING ){
1289     p->op = TK_ID;
1290   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1291     p->pLeft->op = TK_ID;
1292   }
1293 }
1294 
1295 /*
1296 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1297 ** of columns that form the primary key.  If pList is NULL, then the
1298 ** most recently added column of the table is the primary key.
1299 **
1300 ** A table can have at most one primary key.  If the table already has
1301 ** a primary key (and this is the second primary key) then create an
1302 ** error.
1303 **
1304 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1305 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1306 ** field of the table under construction to be the index of the
1307 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1308 ** no INTEGER PRIMARY KEY.
1309 **
1310 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1311 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1312 */
1313 void sqlite3AddPrimaryKey(
1314   Parse *pParse,    /* Parsing context */
1315   ExprList *pList,  /* List of field names to be indexed */
1316   int onError,      /* What to do with a uniqueness conflict */
1317   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1318   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1319 ){
1320   Table *pTab = pParse->pNewTable;
1321   char *zType = 0;
1322   int iCol = -1, i;
1323   int nTerm;
1324   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1325   if( pTab->tabFlags & TF_HasPrimaryKey ){
1326     sqlite3ErrorMsg(pParse,
1327       "table \"%s\" has more than one primary key", pTab->zName);
1328     goto primary_key_exit;
1329   }
1330   pTab->tabFlags |= TF_HasPrimaryKey;
1331   if( pList==0 ){
1332     iCol = pTab->nCol - 1;
1333     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1334     zType = pTab->aCol[iCol].zType;
1335     nTerm = 1;
1336   }else{
1337     nTerm = pList->nExpr;
1338     for(i=0; i<nTerm; i++){
1339       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1340       assert( pCExpr!=0 );
1341       sqlite3StringToId(pCExpr);
1342       if( pCExpr->op==TK_ID ){
1343         const char *zCName = pCExpr->u.zToken;
1344         for(iCol=0; iCol<pTab->nCol; iCol++){
1345           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1346             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1347             zType = pTab->aCol[iCol].zType;
1348             break;
1349           }
1350         }
1351       }
1352     }
1353   }
1354   if( nTerm==1
1355    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1356    && sortOrder!=SQLITE_SO_DESC
1357   ){
1358     pTab->iPKey = iCol;
1359     pTab->keyConf = (u8)onError;
1360     assert( autoInc==0 || autoInc==1 );
1361     pTab->tabFlags |= autoInc*TF_Autoincrement;
1362     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1363   }else if( autoInc ){
1364 #ifndef SQLITE_OMIT_AUTOINCREMENT
1365     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1366        "INTEGER PRIMARY KEY");
1367 #endif
1368   }else{
1369     Index *p;
1370     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1371                            0, sortOrder, 0);
1372     if( p ){
1373       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1374     }
1375     pList = 0;
1376   }
1377 
1378 primary_key_exit:
1379   sqlite3ExprListDelete(pParse->db, pList);
1380   return;
1381 }
1382 
1383 /*
1384 ** Add a new CHECK constraint to the table currently under construction.
1385 */
1386 void sqlite3AddCheckConstraint(
1387   Parse *pParse,    /* Parsing context */
1388   Expr *pCheckExpr  /* The check expression */
1389 ){
1390 #ifndef SQLITE_OMIT_CHECK
1391   Table *pTab = pParse->pNewTable;
1392   sqlite3 *db = pParse->db;
1393   if( pTab && !IN_DECLARE_VTAB
1394    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1395   ){
1396     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1397     if( pParse->constraintName.n ){
1398       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1399     }
1400   }else
1401 #endif
1402   {
1403     sqlite3ExprDelete(pParse->db, pCheckExpr);
1404   }
1405 }
1406 
1407 /*
1408 ** Set the collation function of the most recently parsed table column
1409 ** to the CollSeq given.
1410 */
1411 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1412   Table *p;
1413   int i;
1414   char *zColl;              /* Dequoted name of collation sequence */
1415   sqlite3 *db;
1416 
1417   if( (p = pParse->pNewTable)==0 ) return;
1418   i = p->nCol-1;
1419   db = pParse->db;
1420   zColl = sqlite3NameFromToken(db, pToken);
1421   if( !zColl ) return;
1422 
1423   if( sqlite3LocateCollSeq(pParse, zColl) ){
1424     Index *pIdx;
1425     sqlite3DbFree(db, p->aCol[i].zColl);
1426     p->aCol[i].zColl = zColl;
1427 
1428     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1429     ** then an index may have been created on this column before the
1430     ** collation type was added. Correct this if it is the case.
1431     */
1432     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1433       assert( pIdx->nKeyCol==1 );
1434       if( pIdx->aiColumn[0]==i ){
1435         pIdx->azColl[0] = p->aCol[i].zColl;
1436       }
1437     }
1438   }else{
1439     sqlite3DbFree(db, zColl);
1440   }
1441 }
1442 
1443 /*
1444 ** This function returns the collation sequence for database native text
1445 ** encoding identified by the string zName, length nName.
1446 **
1447 ** If the requested collation sequence is not available, or not available
1448 ** in the database native encoding, the collation factory is invoked to
1449 ** request it. If the collation factory does not supply such a sequence,
1450 ** and the sequence is available in another text encoding, then that is
1451 ** returned instead.
1452 **
1453 ** If no versions of the requested collations sequence are available, or
1454 ** another error occurs, NULL is returned and an error message written into
1455 ** pParse.
1456 **
1457 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1458 ** invokes the collation factory if the named collation cannot be found
1459 ** and generates an error message.
1460 **
1461 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1462 */
1463 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1464   sqlite3 *db = pParse->db;
1465   u8 enc = ENC(db);
1466   u8 initbusy = db->init.busy;
1467   CollSeq *pColl;
1468 
1469   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1470   if( !initbusy && (!pColl || !pColl->xCmp) ){
1471     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1472   }
1473 
1474   return pColl;
1475 }
1476 
1477 
1478 /*
1479 ** Generate code that will increment the schema cookie.
1480 **
1481 ** The schema cookie is used to determine when the schema for the
1482 ** database changes.  After each schema change, the cookie value
1483 ** changes.  When a process first reads the schema it records the
1484 ** cookie.  Thereafter, whenever it goes to access the database,
1485 ** it checks the cookie to make sure the schema has not changed
1486 ** since it was last read.
1487 **
1488 ** This plan is not completely bullet-proof.  It is possible for
1489 ** the schema to change multiple times and for the cookie to be
1490 ** set back to prior value.  But schema changes are infrequent
1491 ** and the probability of hitting the same cookie value is only
1492 ** 1 chance in 2^32.  So we're safe enough.
1493 */
1494 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1495   int r1 = sqlite3GetTempReg(pParse);
1496   sqlite3 *db = pParse->db;
1497   Vdbe *v = pParse->pVdbe;
1498   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1499   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1500   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1501   sqlite3ReleaseTempReg(pParse, r1);
1502 }
1503 
1504 /*
1505 ** Measure the number of characters needed to output the given
1506 ** identifier.  The number returned includes any quotes used
1507 ** but does not include the null terminator.
1508 **
1509 ** The estimate is conservative.  It might be larger that what is
1510 ** really needed.
1511 */
1512 static int identLength(const char *z){
1513   int n;
1514   for(n=0; *z; n++, z++){
1515     if( *z=='"' ){ n++; }
1516   }
1517   return n + 2;
1518 }
1519 
1520 /*
1521 ** The first parameter is a pointer to an output buffer. The second
1522 ** parameter is a pointer to an integer that contains the offset at
1523 ** which to write into the output buffer. This function copies the
1524 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1525 ** to the specified offset in the buffer and updates *pIdx to refer
1526 ** to the first byte after the last byte written before returning.
1527 **
1528 ** If the string zSignedIdent consists entirely of alpha-numeric
1529 ** characters, does not begin with a digit and is not an SQL keyword,
1530 ** then it is copied to the output buffer exactly as it is. Otherwise,
1531 ** it is quoted using double-quotes.
1532 */
1533 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1534   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1535   int i, j, needQuote;
1536   i = *pIdx;
1537 
1538   for(j=0; zIdent[j]; j++){
1539     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1540   }
1541   needQuote = sqlite3Isdigit(zIdent[0])
1542             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1543             || zIdent[j]!=0
1544             || j==0;
1545 
1546   if( needQuote ) z[i++] = '"';
1547   for(j=0; zIdent[j]; j++){
1548     z[i++] = zIdent[j];
1549     if( zIdent[j]=='"' ) z[i++] = '"';
1550   }
1551   if( needQuote ) z[i++] = '"';
1552   z[i] = 0;
1553   *pIdx = i;
1554 }
1555 
1556 /*
1557 ** Generate a CREATE TABLE statement appropriate for the given
1558 ** table.  Memory to hold the text of the statement is obtained
1559 ** from sqliteMalloc() and must be freed by the calling function.
1560 */
1561 static char *createTableStmt(sqlite3 *db, Table *p){
1562   int i, k, n;
1563   char *zStmt;
1564   char *zSep, *zSep2, *zEnd;
1565   Column *pCol;
1566   n = 0;
1567   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1568     n += identLength(pCol->zName) + 5;
1569   }
1570   n += identLength(p->zName);
1571   if( n<50 ){
1572     zSep = "";
1573     zSep2 = ",";
1574     zEnd = ")";
1575   }else{
1576     zSep = "\n  ";
1577     zSep2 = ",\n  ";
1578     zEnd = "\n)";
1579   }
1580   n += 35 + 6*p->nCol;
1581   zStmt = sqlite3DbMallocRaw(0, n);
1582   if( zStmt==0 ){
1583     db->mallocFailed = 1;
1584     return 0;
1585   }
1586   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1587   k = sqlite3Strlen30(zStmt);
1588   identPut(zStmt, &k, p->zName);
1589   zStmt[k++] = '(';
1590   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1591     static const char * const azType[] = {
1592         /* SQLITE_AFF_BLOB    */ "",
1593         /* SQLITE_AFF_TEXT    */ " TEXT",
1594         /* SQLITE_AFF_NUMERIC */ " NUM",
1595         /* SQLITE_AFF_INTEGER */ " INT",
1596         /* SQLITE_AFF_REAL    */ " REAL"
1597     };
1598     int len;
1599     const char *zType;
1600 
1601     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1602     k += sqlite3Strlen30(&zStmt[k]);
1603     zSep = zSep2;
1604     identPut(zStmt, &k, pCol->zName);
1605     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1606     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1607     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1608     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1609     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1610     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1611     testcase( pCol->affinity==SQLITE_AFF_REAL );
1612 
1613     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1614     len = sqlite3Strlen30(zType);
1615     assert( pCol->affinity==SQLITE_AFF_BLOB
1616             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1617     memcpy(&zStmt[k], zType, len);
1618     k += len;
1619     assert( k<=n );
1620   }
1621   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1622   return zStmt;
1623 }
1624 
1625 /*
1626 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1627 ** on success and SQLITE_NOMEM on an OOM error.
1628 */
1629 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1630   char *zExtra;
1631   int nByte;
1632   if( pIdx->nColumn>=N ) return SQLITE_OK;
1633   assert( pIdx->isResized==0 );
1634   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1635   zExtra = sqlite3DbMallocZero(db, nByte);
1636   if( zExtra==0 ) return SQLITE_NOMEM;
1637   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1638   pIdx->azColl = (char**)zExtra;
1639   zExtra += sizeof(char*)*N;
1640   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1641   pIdx->aiColumn = (i16*)zExtra;
1642   zExtra += sizeof(i16)*N;
1643   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1644   pIdx->aSortOrder = (u8*)zExtra;
1645   pIdx->nColumn = N;
1646   pIdx->isResized = 1;
1647   return SQLITE_OK;
1648 }
1649 
1650 /*
1651 ** Estimate the total row width for a table.
1652 */
1653 static void estimateTableWidth(Table *pTab){
1654   unsigned wTable = 0;
1655   const Column *pTabCol;
1656   int i;
1657   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1658     wTable += pTabCol->szEst;
1659   }
1660   if( pTab->iPKey<0 ) wTable++;
1661   pTab->szTabRow = sqlite3LogEst(wTable*4);
1662 }
1663 
1664 /*
1665 ** Estimate the average size of a row for an index.
1666 */
1667 static void estimateIndexWidth(Index *pIdx){
1668   unsigned wIndex = 0;
1669   int i;
1670   const Column *aCol = pIdx->pTable->aCol;
1671   for(i=0; i<pIdx->nColumn; i++){
1672     i16 x = pIdx->aiColumn[i];
1673     assert( x<pIdx->pTable->nCol );
1674     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1675   }
1676   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1677 }
1678 
1679 /* Return true if value x is found any of the first nCol entries of aiCol[]
1680 */
1681 static int hasColumn(const i16 *aiCol, int nCol, int x){
1682   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1683   return 0;
1684 }
1685 
1686 /*
1687 ** This routine runs at the end of parsing a CREATE TABLE statement that
1688 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1689 ** internal schema data structures and the generated VDBE code so that they
1690 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1691 ** Changes include:
1692 **
1693 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1694 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1695 **          data storage is a covering index btree.
1696 **     (2)  Bypass the creation of the sqlite_master table entry
1697 **          for the PRIMARY KEY as the primary key index is now
1698 **          identified by the sqlite_master table entry of the table itself.
1699 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1700 **          schema to the rootpage from the main table.
1701 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1702 **     (5)  Add all table columns to the PRIMARY KEY Index object
1703 **          so that the PRIMARY KEY is a covering index.  The surplus
1704 **          columns are part of KeyInfo.nXField and are not used for
1705 **          sorting or lookup or uniqueness checks.
1706 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1707 **          indices with the PRIMARY KEY columns.
1708 */
1709 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1710   Index *pIdx;
1711   Index *pPk;
1712   int nPk;
1713   int i, j;
1714   sqlite3 *db = pParse->db;
1715   Vdbe *v = pParse->pVdbe;
1716 
1717   /* Convert the OP_CreateTable opcode that would normally create the
1718   ** root-page for the table into an OP_CreateIndex opcode.  The index
1719   ** created will become the PRIMARY KEY index.
1720   */
1721   if( pParse->addrCrTab ){
1722     assert( v );
1723     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1724   }
1725 
1726   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1727   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1728   */
1729   if( pTab->iPKey>=0 ){
1730     ExprList *pList;
1731     Token ipkToken;
1732     ipkToken.z = pTab->aCol[pTab->iPKey].zName;
1733     ipkToken.n = sqlite3Strlen30(ipkToken.z);
1734     pList = sqlite3ExprListAppend(pParse, 0,
1735                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1736     if( pList==0 ) return;
1737     pList->a[0].sortOrder = pParse->iPkSortOrder;
1738     assert( pParse->pNewTable==pTab );
1739     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1740     if( pPk==0 ) return;
1741     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1742     pTab->iPKey = -1;
1743   }else{
1744     pPk = sqlite3PrimaryKeyIndex(pTab);
1745 
1746     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1747     ** table entry. This is only required if currently generating VDBE
1748     ** code for a CREATE TABLE (not when parsing one as part of reading
1749     ** a database schema).  */
1750     if( v ){
1751       assert( db->init.busy==0 );
1752       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1753     }
1754 
1755     /*
1756     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1757     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1758     ** code assumes the PRIMARY KEY contains no repeated columns.
1759     */
1760     for(i=j=1; i<pPk->nKeyCol; i++){
1761       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1762         pPk->nColumn--;
1763       }else{
1764         pPk->aiColumn[j++] = pPk->aiColumn[i];
1765       }
1766     }
1767     pPk->nKeyCol = j;
1768   }
1769   pPk->isCovering = 1;
1770   assert( pPk!=0 );
1771   nPk = pPk->nKeyCol;
1772 
1773   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1774   ** do not enforce this for imposter tables.) */
1775   if( !db->init.imposterTable ){
1776     for(i=0; i<nPk; i++){
1777       pTab->aCol[pPk->aiColumn[i]].notNull = 1;
1778     }
1779     pPk->uniqNotNull = 1;
1780   }
1781 
1782   /* The root page of the PRIMARY KEY is the table root page */
1783   pPk->tnum = pTab->tnum;
1784 
1785   /* Update the in-memory representation of all UNIQUE indices by converting
1786   ** the final rowid column into one or more columns of the PRIMARY KEY.
1787   */
1788   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1789     int n;
1790     if( IsPrimaryKeyIndex(pIdx) ) continue;
1791     for(i=n=0; i<nPk; i++){
1792       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1793     }
1794     if( n==0 ){
1795       /* This index is a superset of the primary key */
1796       pIdx->nColumn = pIdx->nKeyCol;
1797       continue;
1798     }
1799     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1800     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1801       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1802         pIdx->aiColumn[j] = pPk->aiColumn[i];
1803         pIdx->azColl[j] = pPk->azColl[i];
1804         j++;
1805       }
1806     }
1807     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1808     assert( pIdx->nColumn>=j );
1809   }
1810 
1811   /* Add all table columns to the PRIMARY KEY index
1812   */
1813   if( nPk<pTab->nCol ){
1814     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1815     for(i=0, j=nPk; i<pTab->nCol; i++){
1816       if( !hasColumn(pPk->aiColumn, j, i) ){
1817         assert( j<pPk->nColumn );
1818         pPk->aiColumn[j] = i;
1819         pPk->azColl[j] = "BINARY";
1820         j++;
1821       }
1822     }
1823     assert( pPk->nColumn==j );
1824     assert( pTab->nCol==j );
1825   }else{
1826     pPk->nColumn = pTab->nCol;
1827   }
1828 }
1829 
1830 /*
1831 ** This routine is called to report the final ")" that terminates
1832 ** a CREATE TABLE statement.
1833 **
1834 ** The table structure that other action routines have been building
1835 ** is added to the internal hash tables, assuming no errors have
1836 ** occurred.
1837 **
1838 ** An entry for the table is made in the master table on disk, unless
1839 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1840 ** it means we are reading the sqlite_master table because we just
1841 ** connected to the database or because the sqlite_master table has
1842 ** recently changed, so the entry for this table already exists in
1843 ** the sqlite_master table.  We do not want to create it again.
1844 **
1845 ** If the pSelect argument is not NULL, it means that this routine
1846 ** was called to create a table generated from a
1847 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1848 ** the new table will match the result set of the SELECT.
1849 */
1850 void sqlite3EndTable(
1851   Parse *pParse,          /* Parse context */
1852   Token *pCons,           /* The ',' token after the last column defn. */
1853   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1854   u8 tabOpts,             /* Extra table options. Usually 0. */
1855   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1856 ){
1857   Table *p;                 /* The new table */
1858   sqlite3 *db = pParse->db; /* The database connection */
1859   int iDb;                  /* Database in which the table lives */
1860   Index *pIdx;              /* An implied index of the table */
1861 
1862   if( pEnd==0 && pSelect==0 ){
1863     return;
1864   }
1865   assert( !db->mallocFailed );
1866   p = pParse->pNewTable;
1867   if( p==0 ) return;
1868 
1869   assert( !db->init.busy || !pSelect );
1870 
1871   /* If the db->init.busy is 1 it means we are reading the SQL off the
1872   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1873   ** So do not write to the disk again.  Extract the root page number
1874   ** for the table from the db->init.newTnum field.  (The page number
1875   ** should have been put there by the sqliteOpenCb routine.)
1876   */
1877   if( db->init.busy ){
1878     p->tnum = db->init.newTnum;
1879   }
1880 
1881   /* Special processing for WITHOUT ROWID Tables */
1882   if( tabOpts & TF_WithoutRowid ){
1883     if( (p->tabFlags & TF_Autoincrement) ){
1884       sqlite3ErrorMsg(pParse,
1885           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1886       return;
1887     }
1888     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1889       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1890     }else{
1891       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1892       convertToWithoutRowidTable(pParse, p);
1893     }
1894   }
1895 
1896   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1897 
1898 #ifndef SQLITE_OMIT_CHECK
1899   /* Resolve names in all CHECK constraint expressions.
1900   */
1901   if( p->pCheck ){
1902     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1903   }
1904 #endif /* !defined(SQLITE_OMIT_CHECK) */
1905 
1906   /* Estimate the average row size for the table and for all implied indices */
1907   estimateTableWidth(p);
1908   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1909     estimateIndexWidth(pIdx);
1910   }
1911 
1912   /* If not initializing, then create a record for the new table
1913   ** in the SQLITE_MASTER table of the database.
1914   **
1915   ** If this is a TEMPORARY table, write the entry into the auxiliary
1916   ** file instead of into the main database file.
1917   */
1918   if( !db->init.busy ){
1919     int n;
1920     Vdbe *v;
1921     char *zType;    /* "view" or "table" */
1922     char *zType2;   /* "VIEW" or "TABLE" */
1923     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1924 
1925     v = sqlite3GetVdbe(pParse);
1926     if( NEVER(v==0) ) return;
1927 
1928     sqlite3VdbeAddOp1(v, OP_Close, 0);
1929 
1930     /*
1931     ** Initialize zType for the new view or table.
1932     */
1933     if( p->pSelect==0 ){
1934       /* A regular table */
1935       zType = "table";
1936       zType2 = "TABLE";
1937 #ifndef SQLITE_OMIT_VIEW
1938     }else{
1939       /* A view */
1940       zType = "view";
1941       zType2 = "VIEW";
1942 #endif
1943     }
1944 
1945     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1946     ** statement to populate the new table. The root-page number for the
1947     ** new table is in register pParse->regRoot.
1948     **
1949     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1950     ** suitable state to query for the column names and types to be used
1951     ** by the new table.
1952     **
1953     ** A shared-cache write-lock is not required to write to the new table,
1954     ** as a schema-lock must have already been obtained to create it. Since
1955     ** a schema-lock excludes all other database users, the write-lock would
1956     ** be redundant.
1957     */
1958     if( pSelect ){
1959       SelectDest dest;    /* Where the SELECT should store results */
1960       int regYield;       /* Register holding co-routine entry-point */
1961       int addrTop;        /* Top of the co-routine */
1962       int regRec;         /* A record to be insert into the new table */
1963       int regRowid;       /* Rowid of the next row to insert */
1964       int addrInsLoop;    /* Top of the loop for inserting rows */
1965       Table *pSelTab;     /* A table that describes the SELECT results */
1966 
1967       regYield = ++pParse->nMem;
1968       regRec = ++pParse->nMem;
1969       regRowid = ++pParse->nMem;
1970       assert(pParse->nTab==1);
1971       sqlite3MayAbort(pParse);
1972       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1973       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1974       pParse->nTab = 2;
1975       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1976       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1977       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1978       sqlite3Select(pParse, pSelect, &dest);
1979       sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1980       sqlite3VdbeJumpHere(v, addrTop - 1);
1981       if( pParse->nErr ) return;
1982       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1983       if( pSelTab==0 ) return;
1984       assert( p->aCol==0 );
1985       p->nCol = pSelTab->nCol;
1986       p->aCol = pSelTab->aCol;
1987       pSelTab->nCol = 0;
1988       pSelTab->aCol = 0;
1989       sqlite3DeleteTable(db, pSelTab);
1990       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1991       VdbeCoverage(v);
1992       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1993       sqlite3TableAffinity(v, p, 0);
1994       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1995       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1996       sqlite3VdbeGoto(v, addrInsLoop);
1997       sqlite3VdbeJumpHere(v, addrInsLoop);
1998       sqlite3VdbeAddOp1(v, OP_Close, 1);
1999     }
2000 
2001     /* Compute the complete text of the CREATE statement */
2002     if( pSelect ){
2003       zStmt = createTableStmt(db, p);
2004     }else{
2005       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2006       n = (int)(pEnd2->z - pParse->sNameToken.z);
2007       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2008       zStmt = sqlite3MPrintf(db,
2009           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2010       );
2011     }
2012 
2013     /* A slot for the record has already been allocated in the
2014     ** SQLITE_MASTER table.  We just need to update that slot with all
2015     ** the information we've collected.
2016     */
2017     sqlite3NestedParse(pParse,
2018       "UPDATE %Q.%s "
2019          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2020        "WHERE rowid=#%d",
2021       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2022       zType,
2023       p->zName,
2024       p->zName,
2025       pParse->regRoot,
2026       zStmt,
2027       pParse->regRowid
2028     );
2029     sqlite3DbFree(db, zStmt);
2030     sqlite3ChangeCookie(pParse, iDb);
2031 
2032 #ifndef SQLITE_OMIT_AUTOINCREMENT
2033     /* Check to see if we need to create an sqlite_sequence table for
2034     ** keeping track of autoincrement keys.
2035     */
2036     if( p->tabFlags & TF_Autoincrement ){
2037       Db *pDb = &db->aDb[iDb];
2038       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2039       if( pDb->pSchema->pSeqTab==0 ){
2040         sqlite3NestedParse(pParse,
2041           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2042           pDb->zName
2043         );
2044       }
2045     }
2046 #endif
2047 
2048     /* Reparse everything to update our internal data structures */
2049     sqlite3VdbeAddParseSchemaOp(v, iDb,
2050            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2051   }
2052 
2053 
2054   /* Add the table to the in-memory representation of the database.
2055   */
2056   if( db->init.busy ){
2057     Table *pOld;
2058     Schema *pSchema = p->pSchema;
2059     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2060     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2061     if( pOld ){
2062       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2063       db->mallocFailed = 1;
2064       return;
2065     }
2066     pParse->pNewTable = 0;
2067     db->flags |= SQLITE_InternChanges;
2068 
2069 #ifndef SQLITE_OMIT_ALTERTABLE
2070     if( !p->pSelect ){
2071       const char *zName = (const char *)pParse->sNameToken.z;
2072       int nName;
2073       assert( !pSelect && pCons && pEnd );
2074       if( pCons->z==0 ){
2075         pCons = pEnd;
2076       }
2077       nName = (int)((const char *)pCons->z - zName);
2078       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2079     }
2080 #endif
2081   }
2082 }
2083 
2084 #ifndef SQLITE_OMIT_VIEW
2085 /*
2086 ** The parser calls this routine in order to create a new VIEW
2087 */
2088 void sqlite3CreateView(
2089   Parse *pParse,     /* The parsing context */
2090   Token *pBegin,     /* The CREATE token that begins the statement */
2091   Token *pName1,     /* The token that holds the name of the view */
2092   Token *pName2,     /* The token that holds the name of the view */
2093   ExprList *pCNames, /* Optional list of view column names */
2094   Select *pSelect,   /* A SELECT statement that will become the new view */
2095   int isTemp,        /* TRUE for a TEMPORARY view */
2096   int noErr          /* Suppress error messages if VIEW already exists */
2097 ){
2098   Table *p;
2099   int n;
2100   const char *z;
2101   Token sEnd;
2102   DbFixer sFix;
2103   Token *pName = 0;
2104   int iDb;
2105   sqlite3 *db = pParse->db;
2106 
2107   if( pParse->nVar>0 ){
2108     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2109     goto create_view_fail;
2110   }
2111   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2112   p = pParse->pNewTable;
2113   if( p==0 || pParse->nErr ) goto create_view_fail;
2114   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2115   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2116   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2117   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2118 
2119   /* Make a copy of the entire SELECT statement that defines the view.
2120   ** This will force all the Expr.token.z values to be dynamically
2121   ** allocated rather than point to the input string - which means that
2122   ** they will persist after the current sqlite3_exec() call returns.
2123   */
2124   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2125   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2126   if( db->mallocFailed ) goto create_view_fail;
2127 
2128   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2129   ** the end.
2130   */
2131   sEnd = pParse->sLastToken;
2132   assert( sEnd.z[0]!=0 );
2133   if( sEnd.z[0]!=';' ){
2134     sEnd.z += sEnd.n;
2135   }
2136   sEnd.n = 0;
2137   n = (int)(sEnd.z - pBegin->z);
2138   assert( n>0 );
2139   z = pBegin->z;
2140   while( sqlite3Isspace(z[n-1]) ){ n--; }
2141   sEnd.z = &z[n-1];
2142   sEnd.n = 1;
2143 
2144   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2145   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2146 
2147 create_view_fail:
2148   sqlite3SelectDelete(db, pSelect);
2149   sqlite3ExprListDelete(db, pCNames);
2150   return;
2151 }
2152 #endif /* SQLITE_OMIT_VIEW */
2153 
2154 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2155 /*
2156 ** The Table structure pTable is really a VIEW.  Fill in the names of
2157 ** the columns of the view in the pTable structure.  Return the number
2158 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2159 */
2160 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2161   Table *pSelTab;   /* A fake table from which we get the result set */
2162   Select *pSel;     /* Copy of the SELECT that implements the view */
2163   int nErr = 0;     /* Number of errors encountered */
2164   int n;            /* Temporarily holds the number of cursors assigned */
2165   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2166   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2167   u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */
2168 
2169   assert( pTable );
2170 
2171 #ifndef SQLITE_OMIT_VIRTUALTABLE
2172   if( sqlite3VtabCallConnect(pParse, pTable) ){
2173     return SQLITE_ERROR;
2174   }
2175   if( IsVirtual(pTable) ) return 0;
2176 #endif
2177 
2178 #ifndef SQLITE_OMIT_VIEW
2179   /* A positive nCol means the columns names for this view are
2180   ** already known.
2181   */
2182   if( pTable->nCol>0 ) return 0;
2183 
2184   /* A negative nCol is a special marker meaning that we are currently
2185   ** trying to compute the column names.  If we enter this routine with
2186   ** a negative nCol, it means two or more views form a loop, like this:
2187   **
2188   **     CREATE VIEW one AS SELECT * FROM two;
2189   **     CREATE VIEW two AS SELECT * FROM one;
2190   **
2191   ** Actually, the error above is now caught prior to reaching this point.
2192   ** But the following test is still important as it does come up
2193   ** in the following:
2194   **
2195   **     CREATE TABLE main.ex1(a);
2196   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2197   **     SELECT * FROM temp.ex1;
2198   */
2199   if( pTable->nCol<0 ){
2200     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2201     return 1;
2202   }
2203   assert( pTable->nCol>=0 );
2204 
2205   /* If we get this far, it means we need to compute the table names.
2206   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2207   ** "*" elements in the results set of the view and will assign cursors
2208   ** to the elements of the FROM clause.  But we do not want these changes
2209   ** to be permanent.  So the computation is done on a copy of the SELECT
2210   ** statement that defines the view.
2211   */
2212   assert( pTable->pSelect );
2213   bEnabledLA = db->lookaside.bEnabled;
2214   if( pTable->pCheck ){
2215     db->lookaside.bEnabled = 0;
2216     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2217                                &pTable->nCol, &pTable->aCol);
2218   }else{
2219     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2220     if( pSel ){
2221       n = pParse->nTab;
2222       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2223       pTable->nCol = -1;
2224       db->lookaside.bEnabled = 0;
2225 #ifndef SQLITE_OMIT_AUTHORIZATION
2226       xAuth = db->xAuth;
2227       db->xAuth = 0;
2228       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2229       db->xAuth = xAuth;
2230 #else
2231       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2232 #endif
2233       pParse->nTab = n;
2234       if( pSelTab ){
2235         assert( pTable->aCol==0 );
2236         pTable->nCol = pSelTab->nCol;
2237         pTable->aCol = pSelTab->aCol;
2238         pSelTab->nCol = 0;
2239         pSelTab->aCol = 0;
2240         sqlite3DeleteTable(db, pSelTab);
2241         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2242       }else{
2243         pTable->nCol = 0;
2244         nErr++;
2245       }
2246       sqlite3SelectDelete(db, pSel);
2247     } else {
2248       nErr++;
2249     }
2250   }
2251   db->lookaside.bEnabled = bEnabledLA;
2252   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2253 #endif /* SQLITE_OMIT_VIEW */
2254   return nErr;
2255 }
2256 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2257 
2258 #ifndef SQLITE_OMIT_VIEW
2259 /*
2260 ** Clear the column names from every VIEW in database idx.
2261 */
2262 static void sqliteViewResetAll(sqlite3 *db, int idx){
2263   HashElem *i;
2264   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2265   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2266   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2267     Table *pTab = sqliteHashData(i);
2268     if( pTab->pSelect ){
2269       sqlite3DeleteColumnNames(db, pTab);
2270       pTab->aCol = 0;
2271       pTab->nCol = 0;
2272     }
2273   }
2274   DbClearProperty(db, idx, DB_UnresetViews);
2275 }
2276 #else
2277 # define sqliteViewResetAll(A,B)
2278 #endif /* SQLITE_OMIT_VIEW */
2279 
2280 /*
2281 ** This function is called by the VDBE to adjust the internal schema
2282 ** used by SQLite when the btree layer moves a table root page. The
2283 ** root-page of a table or index in database iDb has changed from iFrom
2284 ** to iTo.
2285 **
2286 ** Ticket #1728:  The symbol table might still contain information
2287 ** on tables and/or indices that are the process of being deleted.
2288 ** If you are unlucky, one of those deleted indices or tables might
2289 ** have the same rootpage number as the real table or index that is
2290 ** being moved.  So we cannot stop searching after the first match
2291 ** because the first match might be for one of the deleted indices
2292 ** or tables and not the table/index that is actually being moved.
2293 ** We must continue looping until all tables and indices with
2294 ** rootpage==iFrom have been converted to have a rootpage of iTo
2295 ** in order to be certain that we got the right one.
2296 */
2297 #ifndef SQLITE_OMIT_AUTOVACUUM
2298 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2299   HashElem *pElem;
2300   Hash *pHash;
2301   Db *pDb;
2302 
2303   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2304   pDb = &db->aDb[iDb];
2305   pHash = &pDb->pSchema->tblHash;
2306   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2307     Table *pTab = sqliteHashData(pElem);
2308     if( pTab->tnum==iFrom ){
2309       pTab->tnum = iTo;
2310     }
2311   }
2312   pHash = &pDb->pSchema->idxHash;
2313   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2314     Index *pIdx = sqliteHashData(pElem);
2315     if( pIdx->tnum==iFrom ){
2316       pIdx->tnum = iTo;
2317     }
2318   }
2319 }
2320 #endif
2321 
2322 /*
2323 ** Write code to erase the table with root-page iTable from database iDb.
2324 ** Also write code to modify the sqlite_master table and internal schema
2325 ** if a root-page of another table is moved by the btree-layer whilst
2326 ** erasing iTable (this can happen with an auto-vacuum database).
2327 */
2328 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2329   Vdbe *v = sqlite3GetVdbe(pParse);
2330   int r1 = sqlite3GetTempReg(pParse);
2331   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2332   sqlite3MayAbort(pParse);
2333 #ifndef SQLITE_OMIT_AUTOVACUUM
2334   /* OP_Destroy stores an in integer r1. If this integer
2335   ** is non-zero, then it is the root page number of a table moved to
2336   ** location iTable. The following code modifies the sqlite_master table to
2337   ** reflect this.
2338   **
2339   ** The "#NNN" in the SQL is a special constant that means whatever value
2340   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2341   ** token for additional information.
2342   */
2343   sqlite3NestedParse(pParse,
2344      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2345      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2346 #endif
2347   sqlite3ReleaseTempReg(pParse, r1);
2348 }
2349 
2350 /*
2351 ** Write VDBE code to erase table pTab and all associated indices on disk.
2352 ** Code to update the sqlite_master tables and internal schema definitions
2353 ** in case a root-page belonging to another table is moved by the btree layer
2354 ** is also added (this can happen with an auto-vacuum database).
2355 */
2356 static void destroyTable(Parse *pParse, Table *pTab){
2357 #ifdef SQLITE_OMIT_AUTOVACUUM
2358   Index *pIdx;
2359   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2360   destroyRootPage(pParse, pTab->tnum, iDb);
2361   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2362     destroyRootPage(pParse, pIdx->tnum, iDb);
2363   }
2364 #else
2365   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2366   ** is not defined), then it is important to call OP_Destroy on the
2367   ** table and index root-pages in order, starting with the numerically
2368   ** largest root-page number. This guarantees that none of the root-pages
2369   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2370   ** following were coded:
2371   **
2372   ** OP_Destroy 4 0
2373   ** ...
2374   ** OP_Destroy 5 0
2375   **
2376   ** and root page 5 happened to be the largest root-page number in the
2377   ** database, then root page 5 would be moved to page 4 by the
2378   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2379   ** a free-list page.
2380   */
2381   int iTab = pTab->tnum;
2382   int iDestroyed = 0;
2383 
2384   while( 1 ){
2385     Index *pIdx;
2386     int iLargest = 0;
2387 
2388     if( iDestroyed==0 || iTab<iDestroyed ){
2389       iLargest = iTab;
2390     }
2391     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2392       int iIdx = pIdx->tnum;
2393       assert( pIdx->pSchema==pTab->pSchema );
2394       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2395         iLargest = iIdx;
2396       }
2397     }
2398     if( iLargest==0 ){
2399       return;
2400     }else{
2401       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2402       assert( iDb>=0 && iDb<pParse->db->nDb );
2403       destroyRootPage(pParse, iLargest, iDb);
2404       iDestroyed = iLargest;
2405     }
2406   }
2407 #endif
2408 }
2409 
2410 /*
2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2412 ** after a DROP INDEX or DROP TABLE command.
2413 */
2414 static void sqlite3ClearStatTables(
2415   Parse *pParse,         /* The parsing context */
2416   int iDb,               /* The database number */
2417   const char *zType,     /* "idx" or "tbl" */
2418   const char *zName      /* Name of index or table */
2419 ){
2420   int i;
2421   const char *zDbName = pParse->db->aDb[iDb].zName;
2422   for(i=1; i<=4; i++){
2423     char zTab[24];
2424     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2425     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2426       sqlite3NestedParse(pParse,
2427         "DELETE FROM %Q.%s WHERE %s=%Q",
2428         zDbName, zTab, zType, zName
2429       );
2430     }
2431   }
2432 }
2433 
2434 /*
2435 ** Generate code to drop a table.
2436 */
2437 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2438   Vdbe *v;
2439   sqlite3 *db = pParse->db;
2440   Trigger *pTrigger;
2441   Db *pDb = &db->aDb[iDb];
2442 
2443   v = sqlite3GetVdbe(pParse);
2444   assert( v!=0 );
2445   sqlite3BeginWriteOperation(pParse, 1, iDb);
2446 
2447 #ifndef SQLITE_OMIT_VIRTUALTABLE
2448   if( IsVirtual(pTab) ){
2449     sqlite3VdbeAddOp0(v, OP_VBegin);
2450   }
2451 #endif
2452 
2453   /* Drop all triggers associated with the table being dropped. Code
2454   ** is generated to remove entries from sqlite_master and/or
2455   ** sqlite_temp_master if required.
2456   */
2457   pTrigger = sqlite3TriggerList(pParse, pTab);
2458   while( pTrigger ){
2459     assert( pTrigger->pSchema==pTab->pSchema ||
2460         pTrigger->pSchema==db->aDb[1].pSchema );
2461     sqlite3DropTriggerPtr(pParse, pTrigger);
2462     pTrigger = pTrigger->pNext;
2463   }
2464 
2465 #ifndef SQLITE_OMIT_AUTOINCREMENT
2466   /* Remove any entries of the sqlite_sequence table associated with
2467   ** the table being dropped. This is done before the table is dropped
2468   ** at the btree level, in case the sqlite_sequence table needs to
2469   ** move as a result of the drop (can happen in auto-vacuum mode).
2470   */
2471   if( pTab->tabFlags & TF_Autoincrement ){
2472     sqlite3NestedParse(pParse,
2473       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2474       pDb->zName, pTab->zName
2475     );
2476   }
2477 #endif
2478 
2479   /* Drop all SQLITE_MASTER table and index entries that refer to the
2480   ** table. The program name loops through the master table and deletes
2481   ** every row that refers to a table of the same name as the one being
2482   ** dropped. Triggers are handled separately because a trigger can be
2483   ** created in the temp database that refers to a table in another
2484   ** database.
2485   */
2486   sqlite3NestedParse(pParse,
2487       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2488       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2489   if( !isView && !IsVirtual(pTab) ){
2490     destroyTable(pParse, pTab);
2491   }
2492 
2493   /* Remove the table entry from SQLite's internal schema and modify
2494   ** the schema cookie.
2495   */
2496   if( IsVirtual(pTab) ){
2497     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2498   }
2499   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2500   sqlite3ChangeCookie(pParse, iDb);
2501   sqliteViewResetAll(db, iDb);
2502 }
2503 
2504 /*
2505 ** This routine is called to do the work of a DROP TABLE statement.
2506 ** pName is the name of the table to be dropped.
2507 */
2508 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2509   Table *pTab;
2510   Vdbe *v;
2511   sqlite3 *db = pParse->db;
2512   int iDb;
2513 
2514   if( db->mallocFailed ){
2515     goto exit_drop_table;
2516   }
2517   assert( pParse->nErr==0 );
2518   assert( pName->nSrc==1 );
2519   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2520   if( noErr ) db->suppressErr++;
2521   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2522   if( noErr ) db->suppressErr--;
2523 
2524   if( pTab==0 ){
2525     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2526     goto exit_drop_table;
2527   }
2528   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2529   assert( iDb>=0 && iDb<db->nDb );
2530 
2531   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2532   ** it is initialized.
2533   */
2534   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2535     goto exit_drop_table;
2536   }
2537 #ifndef SQLITE_OMIT_AUTHORIZATION
2538   {
2539     int code;
2540     const char *zTab = SCHEMA_TABLE(iDb);
2541     const char *zDb = db->aDb[iDb].zName;
2542     const char *zArg2 = 0;
2543     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2544       goto exit_drop_table;
2545     }
2546     if( isView ){
2547       if( !OMIT_TEMPDB && iDb==1 ){
2548         code = SQLITE_DROP_TEMP_VIEW;
2549       }else{
2550         code = SQLITE_DROP_VIEW;
2551       }
2552 #ifndef SQLITE_OMIT_VIRTUALTABLE
2553     }else if( IsVirtual(pTab) ){
2554       code = SQLITE_DROP_VTABLE;
2555       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2556 #endif
2557     }else{
2558       if( !OMIT_TEMPDB && iDb==1 ){
2559         code = SQLITE_DROP_TEMP_TABLE;
2560       }else{
2561         code = SQLITE_DROP_TABLE;
2562       }
2563     }
2564     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2565       goto exit_drop_table;
2566     }
2567     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2568       goto exit_drop_table;
2569     }
2570   }
2571 #endif
2572   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2573     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2574     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2575     goto exit_drop_table;
2576   }
2577 
2578 #ifndef SQLITE_OMIT_VIEW
2579   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2580   ** on a table.
2581   */
2582   if( isView && pTab->pSelect==0 ){
2583     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2584     goto exit_drop_table;
2585   }
2586   if( !isView && pTab->pSelect ){
2587     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2588     goto exit_drop_table;
2589   }
2590 #endif
2591 
2592   /* Generate code to remove the table from the master table
2593   ** on disk.
2594   */
2595   v = sqlite3GetVdbe(pParse);
2596   if( v ){
2597     sqlite3BeginWriteOperation(pParse, 1, iDb);
2598     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2599     sqlite3FkDropTable(pParse, pName, pTab);
2600     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2601   }
2602 
2603 exit_drop_table:
2604   sqlite3SrcListDelete(db, pName);
2605 }
2606 
2607 /*
2608 ** This routine is called to create a new foreign key on the table
2609 ** currently under construction.  pFromCol determines which columns
2610 ** in the current table point to the foreign key.  If pFromCol==0 then
2611 ** connect the key to the last column inserted.  pTo is the name of
2612 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2613 ** of tables in the parent pTo table.  flags contains all
2614 ** information about the conflict resolution algorithms specified
2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2616 **
2617 ** An FKey structure is created and added to the table currently
2618 ** under construction in the pParse->pNewTable field.
2619 **
2620 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2622 */
2623 void sqlite3CreateForeignKey(
2624   Parse *pParse,       /* Parsing context */
2625   ExprList *pFromCol,  /* Columns in this table that point to other table */
2626   Token *pTo,          /* Name of the other table */
2627   ExprList *pToCol,    /* Columns in the other table */
2628   int flags            /* Conflict resolution algorithms. */
2629 ){
2630   sqlite3 *db = pParse->db;
2631 #ifndef SQLITE_OMIT_FOREIGN_KEY
2632   FKey *pFKey = 0;
2633   FKey *pNextTo;
2634   Table *p = pParse->pNewTable;
2635   int nByte;
2636   int i;
2637   int nCol;
2638   char *z;
2639 
2640   assert( pTo!=0 );
2641   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2642   if( pFromCol==0 ){
2643     int iCol = p->nCol-1;
2644     if( NEVER(iCol<0) ) goto fk_end;
2645     if( pToCol && pToCol->nExpr!=1 ){
2646       sqlite3ErrorMsg(pParse, "foreign key on %s"
2647          " should reference only one column of table %T",
2648          p->aCol[iCol].zName, pTo);
2649       goto fk_end;
2650     }
2651     nCol = 1;
2652   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2653     sqlite3ErrorMsg(pParse,
2654         "number of columns in foreign key does not match the number of "
2655         "columns in the referenced table");
2656     goto fk_end;
2657   }else{
2658     nCol = pFromCol->nExpr;
2659   }
2660   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2661   if( pToCol ){
2662     for(i=0; i<pToCol->nExpr; i++){
2663       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2664     }
2665   }
2666   pFKey = sqlite3DbMallocZero(db, nByte );
2667   if( pFKey==0 ){
2668     goto fk_end;
2669   }
2670   pFKey->pFrom = p;
2671   pFKey->pNextFrom = p->pFKey;
2672   z = (char*)&pFKey->aCol[nCol];
2673   pFKey->zTo = z;
2674   memcpy(z, pTo->z, pTo->n);
2675   z[pTo->n] = 0;
2676   sqlite3Dequote(z);
2677   z += pTo->n+1;
2678   pFKey->nCol = nCol;
2679   if( pFromCol==0 ){
2680     pFKey->aCol[0].iFrom = p->nCol-1;
2681   }else{
2682     for(i=0; i<nCol; i++){
2683       int j;
2684       for(j=0; j<p->nCol; j++){
2685         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2686           pFKey->aCol[i].iFrom = j;
2687           break;
2688         }
2689       }
2690       if( j>=p->nCol ){
2691         sqlite3ErrorMsg(pParse,
2692           "unknown column \"%s\" in foreign key definition",
2693           pFromCol->a[i].zName);
2694         goto fk_end;
2695       }
2696     }
2697   }
2698   if( pToCol ){
2699     for(i=0; i<nCol; i++){
2700       int n = sqlite3Strlen30(pToCol->a[i].zName);
2701       pFKey->aCol[i].zCol = z;
2702       memcpy(z, pToCol->a[i].zName, n);
2703       z[n] = 0;
2704       z += n+1;
2705     }
2706   }
2707   pFKey->isDeferred = 0;
2708   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2709   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2710 
2711   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2712   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2713       pFKey->zTo, (void *)pFKey
2714   );
2715   if( pNextTo==pFKey ){
2716     db->mallocFailed = 1;
2717     goto fk_end;
2718   }
2719   if( pNextTo ){
2720     assert( pNextTo->pPrevTo==0 );
2721     pFKey->pNextTo = pNextTo;
2722     pNextTo->pPrevTo = pFKey;
2723   }
2724 
2725   /* Link the foreign key to the table as the last step.
2726   */
2727   p->pFKey = pFKey;
2728   pFKey = 0;
2729 
2730 fk_end:
2731   sqlite3DbFree(db, pFKey);
2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2733   sqlite3ExprListDelete(db, pFromCol);
2734   sqlite3ExprListDelete(db, pToCol);
2735 }
2736 
2737 /*
2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2739 ** clause is seen as part of a foreign key definition.  The isDeferred
2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2741 ** The behavior of the most recently created foreign key is adjusted
2742 ** accordingly.
2743 */
2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2745 #ifndef SQLITE_OMIT_FOREIGN_KEY
2746   Table *pTab;
2747   FKey *pFKey;
2748   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2749   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2750   pFKey->isDeferred = (u8)isDeferred;
2751 #endif
2752 }
2753 
2754 /*
2755 ** Generate code that will erase and refill index *pIdx.  This is
2756 ** used to initialize a newly created index or to recompute the
2757 ** content of an index in response to a REINDEX command.
2758 **
2759 ** if memRootPage is not negative, it means that the index is newly
2760 ** created.  The register specified by memRootPage contains the
2761 ** root page number of the index.  If memRootPage is negative, then
2762 ** the index already exists and must be cleared before being refilled and
2763 ** the root page number of the index is taken from pIndex->tnum.
2764 */
2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2766   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2767   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2768   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2769   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2770   int addr1;                     /* Address of top of loop */
2771   int addr2;                     /* Address to jump to for next iteration */
2772   int tnum;                      /* Root page of index */
2773   int iPartIdxLabel;             /* Jump to this label to skip a row */
2774   Vdbe *v;                       /* Generate code into this virtual machine */
2775   KeyInfo *pKey;                 /* KeyInfo for index */
2776   int regRecord;                 /* Register holding assembled index record */
2777   sqlite3 *db = pParse->db;      /* The database connection */
2778   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2779 
2780 #ifndef SQLITE_OMIT_AUTHORIZATION
2781   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2782       db->aDb[iDb].zName ) ){
2783     return;
2784   }
2785 #endif
2786 
2787   /* Require a write-lock on the table to perform this operation */
2788   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2789 
2790   v = sqlite3GetVdbe(pParse);
2791   if( v==0 ) return;
2792   if( memRootPage>=0 ){
2793     tnum = memRootPage;
2794   }else{
2795     tnum = pIndex->tnum;
2796   }
2797   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2798 
2799   /* Open the sorter cursor if we are to use one. */
2800   iSorter = pParse->nTab++;
2801   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2802                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2803 
2804   /* Open the table. Loop through all rows of the table, inserting index
2805   ** records into the sorter. */
2806   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2807   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2808   regRecord = sqlite3GetTempReg(pParse);
2809 
2810   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2811   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2812   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2813   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2814   sqlite3VdbeJumpHere(v, addr1);
2815   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2816   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2817                     (char *)pKey, P4_KEYINFO);
2818   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2819 
2820   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2821   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2822   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2823     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2824     sqlite3VdbeGoto(v, j2);
2825     addr2 = sqlite3VdbeCurrentAddr(v);
2826     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2827                          pIndex->nKeyCol); VdbeCoverage(v);
2828     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2829   }else{
2830     addr2 = sqlite3VdbeCurrentAddr(v);
2831   }
2832   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2833   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2834   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2835   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2836   sqlite3ReleaseTempReg(pParse, regRecord);
2837   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2838   sqlite3VdbeJumpHere(v, addr1);
2839 
2840   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2841   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2842   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2843 }
2844 
2845 /*
2846 ** Allocate heap space to hold an Index object with nCol columns.
2847 **
2848 ** Increase the allocation size to provide an extra nExtra bytes
2849 ** of 8-byte aligned space after the Index object and return a
2850 ** pointer to this extra space in *ppExtra.
2851 */
2852 Index *sqlite3AllocateIndexObject(
2853   sqlite3 *db,         /* Database connection */
2854   i16 nCol,            /* Total number of columns in the index */
2855   int nExtra,          /* Number of bytes of extra space to alloc */
2856   char **ppExtra       /* Pointer to the "extra" space */
2857 ){
2858   Index *p;            /* Allocated index object */
2859   int nByte;           /* Bytes of space for Index object + arrays */
2860 
2861   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2862           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2863           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2864                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2865                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2866   p = sqlite3DbMallocZero(db, nByte + nExtra);
2867   if( p ){
2868     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2869     p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
2870     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2871     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2872     p->aSortOrder = (u8*)pExtra;
2873     p->nColumn = nCol;
2874     p->nKeyCol = nCol - 1;
2875     *ppExtra = ((char*)p) + nByte;
2876   }
2877   return p;
2878 }
2879 
2880 /*
2881 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2882 ** and pTblList is the name of the table that is to be indexed.  Both will
2883 ** be NULL for a primary key or an index that is created to satisfy a
2884 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2885 ** as the table to be indexed.  pParse->pNewTable is a table that is
2886 ** currently being constructed by a CREATE TABLE statement.
2887 **
2888 ** pList is a list of columns to be indexed.  pList will be NULL if this
2889 ** is a primary key or unique-constraint on the most recent column added
2890 ** to the table currently under construction.
2891 **
2892 ** If the index is created successfully, return a pointer to the new Index
2893 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2894 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2895 */
2896 Index *sqlite3CreateIndex(
2897   Parse *pParse,     /* All information about this parse */
2898   Token *pName1,     /* First part of index name. May be NULL */
2899   Token *pName2,     /* Second part of index name. May be NULL */
2900   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2901   ExprList *pList,   /* A list of columns to be indexed */
2902   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2903   Token *pStart,     /* The CREATE token that begins this statement */
2904   Expr *pPIWhere,    /* WHERE clause for partial indices */
2905   int sortOrder,     /* Sort order of primary key when pList==NULL */
2906   int ifNotExist     /* Omit error if index already exists */
2907 ){
2908   Index *pRet = 0;     /* Pointer to return */
2909   Table *pTab = 0;     /* Table to be indexed */
2910   Index *pIndex = 0;   /* The index to be created */
2911   char *zName = 0;     /* Name of the index */
2912   int nName;           /* Number of characters in zName */
2913   int i, j;
2914   DbFixer sFix;        /* For assigning database names to pTable */
2915   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2916   sqlite3 *db = pParse->db;
2917   Db *pDb;             /* The specific table containing the indexed database */
2918   int iDb;             /* Index of the database that is being written */
2919   Token *pName = 0;    /* Unqualified name of the index to create */
2920   struct ExprList_item *pListItem; /* For looping over pList */
2921   int nExtra = 0;                  /* Space allocated for zExtra[] */
2922   int nExtraCol;                   /* Number of extra columns needed */
2923   char *zExtra = 0;                /* Extra space after the Index object */
2924   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2925 
2926   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2927     goto exit_create_index;
2928   }
2929   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2930     goto exit_create_index;
2931   }
2932 
2933   /*
2934   ** Find the table that is to be indexed.  Return early if not found.
2935   */
2936   if( pTblName!=0 ){
2937 
2938     /* Use the two-part index name to determine the database
2939     ** to search for the table. 'Fix' the table name to this db
2940     ** before looking up the table.
2941     */
2942     assert( pName1 && pName2 );
2943     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2944     if( iDb<0 ) goto exit_create_index;
2945     assert( pName && pName->z );
2946 
2947 #ifndef SQLITE_OMIT_TEMPDB
2948     /* If the index name was unqualified, check if the table
2949     ** is a temp table. If so, set the database to 1. Do not do this
2950     ** if initialising a database schema.
2951     */
2952     if( !db->init.busy ){
2953       pTab = sqlite3SrcListLookup(pParse, pTblName);
2954       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2955         iDb = 1;
2956       }
2957     }
2958 #endif
2959 
2960     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2961     if( sqlite3FixSrcList(&sFix, pTblName) ){
2962       /* Because the parser constructs pTblName from a single identifier,
2963       ** sqlite3FixSrcList can never fail. */
2964       assert(0);
2965     }
2966     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2967     assert( db->mallocFailed==0 || pTab==0 );
2968     if( pTab==0 ) goto exit_create_index;
2969     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2970       sqlite3ErrorMsg(pParse,
2971            "cannot create a TEMP index on non-TEMP table \"%s\"",
2972            pTab->zName);
2973       goto exit_create_index;
2974     }
2975     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2976   }else{
2977     assert( pName==0 );
2978     assert( pStart==0 );
2979     pTab = pParse->pNewTable;
2980     if( !pTab ) goto exit_create_index;
2981     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2982   }
2983   pDb = &db->aDb[iDb];
2984 
2985   assert( pTab!=0 );
2986   assert( pParse->nErr==0 );
2987   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2988        && db->init.busy==0
2989 #if SQLITE_USER_AUTHENTICATION
2990        && sqlite3UserAuthTable(pTab->zName)==0
2991 #endif
2992        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2993     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2994     goto exit_create_index;
2995   }
2996 #ifndef SQLITE_OMIT_VIEW
2997   if( pTab->pSelect ){
2998     sqlite3ErrorMsg(pParse, "views may not be indexed");
2999     goto exit_create_index;
3000   }
3001 #endif
3002 #ifndef SQLITE_OMIT_VIRTUALTABLE
3003   if( IsVirtual(pTab) ){
3004     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3005     goto exit_create_index;
3006   }
3007 #endif
3008 
3009   /*
3010   ** Find the name of the index.  Make sure there is not already another
3011   ** index or table with the same name.
3012   **
3013   ** Exception:  If we are reading the names of permanent indices from the
3014   ** sqlite_master table (because some other process changed the schema) and
3015   ** one of the index names collides with the name of a temporary table or
3016   ** index, then we will continue to process this index.
3017   **
3018   ** If pName==0 it means that we are
3019   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3020   ** own name.
3021   */
3022   if( pName ){
3023     zName = sqlite3NameFromToken(db, pName);
3024     if( zName==0 ) goto exit_create_index;
3025     assert( pName->z!=0 );
3026     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3027       goto exit_create_index;
3028     }
3029     if( !db->init.busy ){
3030       if( sqlite3FindTable(db, zName, 0)!=0 ){
3031         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3032         goto exit_create_index;
3033       }
3034     }
3035     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3036       if( !ifNotExist ){
3037         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3038       }else{
3039         assert( !db->init.busy );
3040         sqlite3CodeVerifySchema(pParse, iDb);
3041       }
3042       goto exit_create_index;
3043     }
3044   }else{
3045     int n;
3046     Index *pLoop;
3047     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3048     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3049     if( zName==0 ){
3050       goto exit_create_index;
3051     }
3052   }
3053 
3054   /* Check for authorization to create an index.
3055   */
3056 #ifndef SQLITE_OMIT_AUTHORIZATION
3057   {
3058     const char *zDb = pDb->zName;
3059     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3060       goto exit_create_index;
3061     }
3062     i = SQLITE_CREATE_INDEX;
3063     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3064     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3065       goto exit_create_index;
3066     }
3067   }
3068 #endif
3069 
3070   /* If pList==0, it means this routine was called to make a primary
3071   ** key out of the last column added to the table under construction.
3072   ** So create a fake list to simulate this.
3073   */
3074   if( pList==0 ){
3075     Token prevCol;
3076     prevCol.z = pTab->aCol[pTab->nCol-1].zName;
3077     prevCol.n = sqlite3Strlen30(prevCol.z);
3078     pList = sqlite3ExprListAppend(pParse, 0,
3079               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3080     if( pList==0 ) goto exit_create_index;
3081     assert( pList->nExpr==1 );
3082     sqlite3ExprListSetSortOrder(pList, sortOrder);
3083   }else{
3084     sqlite3ExprListCheckLength(pParse, pList, "index");
3085   }
3086 
3087   /* Figure out how many bytes of space are required to store explicitly
3088   ** specified collation sequence names.
3089   */
3090   for(i=0; i<pList->nExpr; i++){
3091     Expr *pExpr = pList->a[i].pExpr;
3092     assert( pExpr!=0 );
3093     if( pExpr->op==TK_COLLATE ){
3094       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3095     }
3096   }
3097 
3098   /*
3099   ** Allocate the index structure.
3100   */
3101   nName = sqlite3Strlen30(zName);
3102   nExtraCol = pPk ? pPk->nKeyCol : 1;
3103   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3104                                       nName + nExtra + 1, &zExtra);
3105   if( db->mallocFailed ){
3106     goto exit_create_index;
3107   }
3108   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3109   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3110   pIndex->zName = zExtra;
3111   zExtra += nName + 1;
3112   memcpy(pIndex->zName, zName, nName+1);
3113   pIndex->pTable = pTab;
3114   pIndex->onError = (u8)onError;
3115   pIndex->uniqNotNull = onError!=OE_None;
3116   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3117   pIndex->pSchema = db->aDb[iDb].pSchema;
3118   pIndex->nKeyCol = pList->nExpr;
3119   if( pPIWhere ){
3120     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3121     pIndex->pPartIdxWhere = pPIWhere;
3122     pPIWhere = 0;
3123   }
3124   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3125 
3126   /* Check to see if we should honor DESC requests on index columns
3127   */
3128   if( pDb->pSchema->file_format>=4 ){
3129     sortOrderMask = -1;   /* Honor DESC */
3130   }else{
3131     sortOrderMask = 0;    /* Ignore DESC */
3132   }
3133 
3134   /* Analyze the list of expressions that form the terms of the index and
3135   ** report any errors.  In the common case where the expression is exactly
3136   ** a table column, store that column in aiColumn[].  For general expressions,
3137   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3138   **
3139   ** TODO: Issue a warning if two or more columns of the index are identical.
3140   ** TODO: Issue a warning if the table primary key is used as part of the
3141   ** index key.
3142   */
3143   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3144     Expr *pCExpr;                  /* The i-th index expression */
3145     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3146     char *zColl;                   /* Collation sequence name */
3147 
3148     sqlite3StringToId(pListItem->pExpr);
3149     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3150     if( pParse->nErr ) goto exit_create_index;
3151     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3152     if( pCExpr->op!=TK_COLUMN ){
3153       if( pTab==pParse->pNewTable ){
3154         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3155                                 "UNIQUE constraints");
3156         goto exit_create_index;
3157       }
3158       if( pIndex->aColExpr==0 ){
3159         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3160         pIndex->aColExpr = pCopy;
3161         if( !db->mallocFailed ){
3162           assert( pCopy!=0 );
3163           pListItem = &pCopy->a[i];
3164         }
3165       }
3166       j = XN_EXPR;
3167       pIndex->aiColumn[i] = XN_EXPR;
3168       pIndex->uniqNotNull = 0;
3169     }else{
3170       j = pCExpr->iColumn;
3171       assert( j<=0x7fff );
3172       if( j<0 ){
3173         j = pTab->iPKey;
3174       }else if( pTab->aCol[j].notNull==0 ){
3175         pIndex->uniqNotNull = 0;
3176       }
3177       pIndex->aiColumn[i] = (i16)j;
3178     }
3179     zColl = 0;
3180     if( pListItem->pExpr->op==TK_COLLATE ){
3181       int nColl;
3182       zColl = pListItem->pExpr->u.zToken;
3183       nColl = sqlite3Strlen30(zColl) + 1;
3184       assert( nExtra>=nColl );
3185       memcpy(zExtra, zColl, nColl);
3186       zColl = zExtra;
3187       zExtra += nColl;
3188       nExtra -= nColl;
3189     }else if( j>=0 ){
3190       zColl = pTab->aCol[j].zColl;
3191     }
3192     if( !zColl ) zColl = "BINARY";
3193     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3194       goto exit_create_index;
3195     }
3196     pIndex->azColl[i] = zColl;
3197     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3198     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3199   }
3200 
3201   /* Append the table key to the end of the index.  For WITHOUT ROWID
3202   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3203   ** normal tables (when pPk==0) this will be the rowid.
3204   */
3205   if( pPk ){
3206     for(j=0; j<pPk->nKeyCol; j++){
3207       int x = pPk->aiColumn[j];
3208       assert( x>=0 );
3209       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3210         pIndex->nColumn--;
3211       }else{
3212         pIndex->aiColumn[i] = x;
3213         pIndex->azColl[i] = pPk->azColl[j];
3214         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3215         i++;
3216       }
3217     }
3218     assert( i==pIndex->nColumn );
3219   }else{
3220     pIndex->aiColumn[i] = XN_ROWID;
3221     pIndex->azColl[i] = "BINARY";
3222   }
3223   sqlite3DefaultRowEst(pIndex);
3224   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3225 
3226   if( pTab==pParse->pNewTable ){
3227     /* This routine has been called to create an automatic index as a
3228     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3229     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3230     ** i.e. one of:
3231     **
3232     ** CREATE TABLE t(x PRIMARY KEY, y);
3233     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3234     **
3235     ** Either way, check to see if the table already has such an index. If
3236     ** so, don't bother creating this one. This only applies to
3237     ** automatically created indices. Users can do as they wish with
3238     ** explicit indices.
3239     **
3240     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3241     ** (and thus suppressing the second one) even if they have different
3242     ** sort orders.
3243     **
3244     ** If there are different collating sequences or if the columns of
3245     ** the constraint occur in different orders, then the constraints are
3246     ** considered distinct and both result in separate indices.
3247     */
3248     Index *pIdx;
3249     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3250       int k;
3251       assert( IsUniqueIndex(pIdx) );
3252       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3253       assert( IsUniqueIndex(pIndex) );
3254 
3255       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3256       for(k=0; k<pIdx->nKeyCol; k++){
3257         const char *z1;
3258         const char *z2;
3259         assert( pIdx->aiColumn[k]>=0 );
3260         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3261         z1 = pIdx->azColl[k];
3262         z2 = pIndex->azColl[k];
3263         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3264       }
3265       if( k==pIdx->nKeyCol ){
3266         if( pIdx->onError!=pIndex->onError ){
3267           /* This constraint creates the same index as a previous
3268           ** constraint specified somewhere in the CREATE TABLE statement.
3269           ** However the ON CONFLICT clauses are different. If both this
3270           ** constraint and the previous equivalent constraint have explicit
3271           ** ON CONFLICT clauses this is an error. Otherwise, use the
3272           ** explicitly specified behavior for the index.
3273           */
3274           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3275             sqlite3ErrorMsg(pParse,
3276                 "conflicting ON CONFLICT clauses specified", 0);
3277           }
3278           if( pIdx->onError==OE_Default ){
3279             pIdx->onError = pIndex->onError;
3280           }
3281         }
3282         pRet = pIdx;
3283         goto exit_create_index;
3284       }
3285     }
3286   }
3287 
3288   /* Link the new Index structure to its table and to the other
3289   ** in-memory database structures.
3290   */
3291   assert( pParse->nErr==0 );
3292   if( db->init.busy ){
3293     Index *p;
3294     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3295     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3296                           pIndex->zName, pIndex);
3297     if( p ){
3298       assert( p==pIndex );  /* Malloc must have failed */
3299       db->mallocFailed = 1;
3300       goto exit_create_index;
3301     }
3302     db->flags |= SQLITE_InternChanges;
3303     if( pTblName!=0 ){
3304       pIndex->tnum = db->init.newTnum;
3305     }
3306   }
3307 
3308   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3309   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3310   ** emit code to allocate the index rootpage on disk and make an entry for
3311   ** the index in the sqlite_master table and populate the index with
3312   ** content.  But, do not do this if we are simply reading the sqlite_master
3313   ** table to parse the schema, or if this index is the PRIMARY KEY index
3314   ** of a WITHOUT ROWID table.
3315   **
3316   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3317   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3318   ** has just been created, it contains no data and the index initialization
3319   ** step can be skipped.
3320   */
3321   else if( HasRowid(pTab) || pTblName!=0 ){
3322     Vdbe *v;
3323     char *zStmt;
3324     int iMem = ++pParse->nMem;
3325 
3326     v = sqlite3GetVdbe(pParse);
3327     if( v==0 ) goto exit_create_index;
3328 
3329     sqlite3BeginWriteOperation(pParse, 1, iDb);
3330 
3331     /* Create the rootpage for the index using CreateIndex. But before
3332     ** doing so, code a Noop instruction and store its address in
3333     ** Index.tnum. This is required in case this index is actually a
3334     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3335     ** that case the convertToWithoutRowidTable() routine will replace
3336     ** the Noop with a Goto to jump over the VDBE code generated below. */
3337     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3338     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3339 
3340     /* Gather the complete text of the CREATE INDEX statement into
3341     ** the zStmt variable
3342     */
3343     if( pStart ){
3344       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3345       if( pName->z[n-1]==';' ) n--;
3346       /* A named index with an explicit CREATE INDEX statement */
3347       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3348         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3349     }else{
3350       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3351       /* zStmt = sqlite3MPrintf(""); */
3352       zStmt = 0;
3353     }
3354 
3355     /* Add an entry in sqlite_master for this index
3356     */
3357     sqlite3NestedParse(pParse,
3358         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3359         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3360         pIndex->zName,
3361         pTab->zName,
3362         iMem,
3363         zStmt
3364     );
3365     sqlite3DbFree(db, zStmt);
3366 
3367     /* Fill the index with data and reparse the schema. Code an OP_Expire
3368     ** to invalidate all pre-compiled statements.
3369     */
3370     if( pTblName ){
3371       sqlite3RefillIndex(pParse, pIndex, iMem);
3372       sqlite3ChangeCookie(pParse, iDb);
3373       sqlite3VdbeAddParseSchemaOp(v, iDb,
3374          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3375       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3376     }
3377 
3378     sqlite3VdbeJumpHere(v, pIndex->tnum);
3379   }
3380 
3381   /* When adding an index to the list of indices for a table, make
3382   ** sure all indices labeled OE_Replace come after all those labeled
3383   ** OE_Ignore.  This is necessary for the correct constraint check
3384   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3385   ** UPDATE and INSERT statements.
3386   */
3387   if( db->init.busy || pTblName==0 ){
3388     if( onError!=OE_Replace || pTab->pIndex==0
3389          || pTab->pIndex->onError==OE_Replace){
3390       pIndex->pNext = pTab->pIndex;
3391       pTab->pIndex = pIndex;
3392     }else{
3393       Index *pOther = pTab->pIndex;
3394       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3395         pOther = pOther->pNext;
3396       }
3397       pIndex->pNext = pOther->pNext;
3398       pOther->pNext = pIndex;
3399     }
3400     pRet = pIndex;
3401     pIndex = 0;
3402   }
3403 
3404   /* Clean up before exiting */
3405 exit_create_index:
3406   if( pIndex ) freeIndex(db, pIndex);
3407   sqlite3ExprDelete(db, pPIWhere);
3408   sqlite3ExprListDelete(db, pList);
3409   sqlite3SrcListDelete(db, pTblName);
3410   sqlite3DbFree(db, zName);
3411   return pRet;
3412 }
3413 
3414 /*
3415 ** Fill the Index.aiRowEst[] array with default information - information
3416 ** to be used when we have not run the ANALYZE command.
3417 **
3418 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3419 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3420 ** number of rows in the table that match any particular value of the
3421 ** first column of the index.  aiRowEst[2] is an estimate of the number
3422 ** of rows that match any particular combination of the first 2 columns
3423 ** of the index.  And so forth.  It must always be the case that
3424 *
3425 **           aiRowEst[N]<=aiRowEst[N-1]
3426 **           aiRowEst[N]>=1
3427 **
3428 ** Apart from that, we have little to go on besides intuition as to
3429 ** how aiRowEst[] should be initialized.  The numbers generated here
3430 ** are based on typical values found in actual indices.
3431 */
3432 void sqlite3DefaultRowEst(Index *pIdx){
3433   /*                10,  9,  8,  7,  6 */
3434   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3435   LogEst *a = pIdx->aiRowLogEst;
3436   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3437   int i;
3438 
3439   /* Set the first entry (number of rows in the index) to the estimated
3440   ** number of rows in the table. Or 10, if the estimated number of rows
3441   ** in the table is less than that.  */
3442   a[0] = pIdx->pTable->nRowLogEst;
3443   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3444 
3445   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3446   ** 6 and each subsequent value (if any) is 5.  */
3447   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3448   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3449     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3450   }
3451 
3452   assert( 0==sqlite3LogEst(1) );
3453   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3454 }
3455 
3456 /*
3457 ** This routine will drop an existing named index.  This routine
3458 ** implements the DROP INDEX statement.
3459 */
3460 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3461   Index *pIndex;
3462   Vdbe *v;
3463   sqlite3 *db = pParse->db;
3464   int iDb;
3465 
3466   assert( pParse->nErr==0 );   /* Never called with prior errors */
3467   if( db->mallocFailed ){
3468     goto exit_drop_index;
3469   }
3470   assert( pName->nSrc==1 );
3471   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3472     goto exit_drop_index;
3473   }
3474   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3475   if( pIndex==0 ){
3476     if( !ifExists ){
3477       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3478     }else{
3479       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3480     }
3481     pParse->checkSchema = 1;
3482     goto exit_drop_index;
3483   }
3484   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3485     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3486       "or PRIMARY KEY constraint cannot be dropped", 0);
3487     goto exit_drop_index;
3488   }
3489   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3490 #ifndef SQLITE_OMIT_AUTHORIZATION
3491   {
3492     int code = SQLITE_DROP_INDEX;
3493     Table *pTab = pIndex->pTable;
3494     const char *zDb = db->aDb[iDb].zName;
3495     const char *zTab = SCHEMA_TABLE(iDb);
3496     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3497       goto exit_drop_index;
3498     }
3499     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3500     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3501       goto exit_drop_index;
3502     }
3503   }
3504 #endif
3505 
3506   /* Generate code to remove the index and from the master table */
3507   v = sqlite3GetVdbe(pParse);
3508   if( v ){
3509     sqlite3BeginWriteOperation(pParse, 1, iDb);
3510     sqlite3NestedParse(pParse,
3511        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3512        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3513     );
3514     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3515     sqlite3ChangeCookie(pParse, iDb);
3516     destroyRootPage(pParse, pIndex->tnum, iDb);
3517     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3518   }
3519 
3520 exit_drop_index:
3521   sqlite3SrcListDelete(db, pName);
3522 }
3523 
3524 /*
3525 ** pArray is a pointer to an array of objects. Each object in the
3526 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3527 ** to extend the array so that there is space for a new object at the end.
3528 **
3529 ** When this function is called, *pnEntry contains the current size of
3530 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3531 ** in total).
3532 **
3533 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3534 ** space allocated for the new object is zeroed, *pnEntry updated to
3535 ** reflect the new size of the array and a pointer to the new allocation
3536 ** returned. *pIdx is set to the index of the new array entry in this case.
3537 **
3538 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3539 ** unchanged and a copy of pArray returned.
3540 */
3541 void *sqlite3ArrayAllocate(
3542   sqlite3 *db,      /* Connection to notify of malloc failures */
3543   void *pArray,     /* Array of objects.  Might be reallocated */
3544   int szEntry,      /* Size of each object in the array */
3545   int *pnEntry,     /* Number of objects currently in use */
3546   int *pIdx         /* Write the index of a new slot here */
3547 ){
3548   char *z;
3549   int n = *pnEntry;
3550   if( (n & (n-1))==0 ){
3551     int sz = (n==0) ? 1 : 2*n;
3552     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3553     if( pNew==0 ){
3554       *pIdx = -1;
3555       return pArray;
3556     }
3557     pArray = pNew;
3558   }
3559   z = (char*)pArray;
3560   memset(&z[n * szEntry], 0, szEntry);
3561   *pIdx = n;
3562   ++*pnEntry;
3563   return pArray;
3564 }
3565 
3566 /*
3567 ** Append a new element to the given IdList.  Create a new IdList if
3568 ** need be.
3569 **
3570 ** A new IdList is returned, or NULL if malloc() fails.
3571 */
3572 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3573   int i;
3574   if( pList==0 ){
3575     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3576     if( pList==0 ) return 0;
3577   }
3578   pList->a = sqlite3ArrayAllocate(
3579       db,
3580       pList->a,
3581       sizeof(pList->a[0]),
3582       &pList->nId,
3583       &i
3584   );
3585   if( i<0 ){
3586     sqlite3IdListDelete(db, pList);
3587     return 0;
3588   }
3589   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3590   return pList;
3591 }
3592 
3593 /*
3594 ** Delete an IdList.
3595 */
3596 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3597   int i;
3598   if( pList==0 ) return;
3599   for(i=0; i<pList->nId; i++){
3600     sqlite3DbFree(db, pList->a[i].zName);
3601   }
3602   sqlite3DbFree(db, pList->a);
3603   sqlite3DbFree(db, pList);
3604 }
3605 
3606 /*
3607 ** Return the index in pList of the identifier named zId.  Return -1
3608 ** if not found.
3609 */
3610 int sqlite3IdListIndex(IdList *pList, const char *zName){
3611   int i;
3612   if( pList==0 ) return -1;
3613   for(i=0; i<pList->nId; i++){
3614     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3615   }
3616   return -1;
3617 }
3618 
3619 /*
3620 ** Expand the space allocated for the given SrcList object by
3621 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3622 ** New slots are zeroed.
3623 **
3624 ** For example, suppose a SrcList initially contains two entries: A,B.
3625 ** To append 3 new entries onto the end, do this:
3626 **
3627 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3628 **
3629 ** After the call above it would contain:  A, B, nil, nil, nil.
3630 ** If the iStart argument had been 1 instead of 2, then the result
3631 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3632 ** the iStart value would be 0.  The result then would
3633 ** be: nil, nil, nil, A, B.
3634 **
3635 ** If a memory allocation fails the SrcList is unchanged.  The
3636 ** db->mallocFailed flag will be set to true.
3637 */
3638 SrcList *sqlite3SrcListEnlarge(
3639   sqlite3 *db,       /* Database connection to notify of OOM errors */
3640   SrcList *pSrc,     /* The SrcList to be enlarged */
3641   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3642   int iStart         /* Index in pSrc->a[] of first new slot */
3643 ){
3644   int i;
3645 
3646   /* Sanity checking on calling parameters */
3647   assert( iStart>=0 );
3648   assert( nExtra>=1 );
3649   assert( pSrc!=0 );
3650   assert( iStart<=pSrc->nSrc );
3651 
3652   /* Allocate additional space if needed */
3653   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3654     SrcList *pNew;
3655     int nAlloc = pSrc->nSrc+nExtra;
3656     int nGot;
3657     pNew = sqlite3DbRealloc(db, pSrc,
3658                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3659     if( pNew==0 ){
3660       assert( db->mallocFailed );
3661       return pSrc;
3662     }
3663     pSrc = pNew;
3664     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3665     pSrc->nAlloc = nGot;
3666   }
3667 
3668   /* Move existing slots that come after the newly inserted slots
3669   ** out of the way */
3670   for(i=pSrc->nSrc-1; i>=iStart; i--){
3671     pSrc->a[i+nExtra] = pSrc->a[i];
3672   }
3673   pSrc->nSrc += nExtra;
3674 
3675   /* Zero the newly allocated slots */
3676   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3677   for(i=iStart; i<iStart+nExtra; i++){
3678     pSrc->a[i].iCursor = -1;
3679   }
3680 
3681   /* Return a pointer to the enlarged SrcList */
3682   return pSrc;
3683 }
3684 
3685 
3686 /*
3687 ** Append a new table name to the given SrcList.  Create a new SrcList if
3688 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3689 **
3690 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3691 ** SrcList might be the same as the SrcList that was input or it might be
3692 ** a new one.  If an OOM error does occurs, then the prior value of pList
3693 ** that is input to this routine is automatically freed.
3694 **
3695 ** If pDatabase is not null, it means that the table has an optional
3696 ** database name prefix.  Like this:  "database.table".  The pDatabase
3697 ** points to the table name and the pTable points to the database name.
3698 ** The SrcList.a[].zName field is filled with the table name which might
3699 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3700 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3701 ** or with NULL if no database is specified.
3702 **
3703 ** In other words, if call like this:
3704 **
3705 **         sqlite3SrcListAppend(D,A,B,0);
3706 **
3707 ** Then B is a table name and the database name is unspecified.  If called
3708 ** like this:
3709 **
3710 **         sqlite3SrcListAppend(D,A,B,C);
3711 **
3712 ** Then C is the table name and B is the database name.  If C is defined
3713 ** then so is B.  In other words, we never have a case where:
3714 **
3715 **         sqlite3SrcListAppend(D,A,0,C);
3716 **
3717 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3718 ** before being added to the SrcList.
3719 */
3720 SrcList *sqlite3SrcListAppend(
3721   sqlite3 *db,        /* Connection to notify of malloc failures */
3722   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3723   Token *pTable,      /* Table to append */
3724   Token *pDatabase    /* Database of the table */
3725 ){
3726   struct SrcList_item *pItem;
3727   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3728   if( pList==0 ){
3729     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3730     if( pList==0 ) return 0;
3731     pList->nAlloc = 1;
3732   }
3733   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3734   if( db->mallocFailed ){
3735     sqlite3SrcListDelete(db, pList);
3736     return 0;
3737   }
3738   pItem = &pList->a[pList->nSrc-1];
3739   if( pDatabase && pDatabase->z==0 ){
3740     pDatabase = 0;
3741   }
3742   if( pDatabase ){
3743     Token *pTemp = pDatabase;
3744     pDatabase = pTable;
3745     pTable = pTemp;
3746   }
3747   pItem->zName = sqlite3NameFromToken(db, pTable);
3748   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3749   return pList;
3750 }
3751 
3752 /*
3753 ** Assign VdbeCursor index numbers to all tables in a SrcList
3754 */
3755 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3756   int i;
3757   struct SrcList_item *pItem;
3758   assert(pList || pParse->db->mallocFailed );
3759   if( pList ){
3760     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3761       if( pItem->iCursor>=0 ) break;
3762       pItem->iCursor = pParse->nTab++;
3763       if( pItem->pSelect ){
3764         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3765       }
3766     }
3767   }
3768 }
3769 
3770 /*
3771 ** Delete an entire SrcList including all its substructure.
3772 */
3773 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3774   int i;
3775   struct SrcList_item *pItem;
3776   if( pList==0 ) return;
3777   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3778     sqlite3DbFree(db, pItem->zDatabase);
3779     sqlite3DbFree(db, pItem->zName);
3780     sqlite3DbFree(db, pItem->zAlias);
3781     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3782     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3783     sqlite3DeleteTable(db, pItem->pTab);
3784     sqlite3SelectDelete(db, pItem->pSelect);
3785     sqlite3ExprDelete(db, pItem->pOn);
3786     sqlite3IdListDelete(db, pItem->pUsing);
3787   }
3788   sqlite3DbFree(db, pList);
3789 }
3790 
3791 /*
3792 ** This routine is called by the parser to add a new term to the
3793 ** end of a growing FROM clause.  The "p" parameter is the part of
3794 ** the FROM clause that has already been constructed.  "p" is NULL
3795 ** if this is the first term of the FROM clause.  pTable and pDatabase
3796 ** are the name of the table and database named in the FROM clause term.
3797 ** pDatabase is NULL if the database name qualifier is missing - the
3798 ** usual case.  If the term has an alias, then pAlias points to the
3799 ** alias token.  If the term is a subquery, then pSubquery is the
3800 ** SELECT statement that the subquery encodes.  The pTable and
3801 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3802 ** parameters are the content of the ON and USING clauses.
3803 **
3804 ** Return a new SrcList which encodes is the FROM with the new
3805 ** term added.
3806 */
3807 SrcList *sqlite3SrcListAppendFromTerm(
3808   Parse *pParse,          /* Parsing context */
3809   SrcList *p,             /* The left part of the FROM clause already seen */
3810   Token *pTable,          /* Name of the table to add to the FROM clause */
3811   Token *pDatabase,       /* Name of the database containing pTable */
3812   Token *pAlias,          /* The right-hand side of the AS subexpression */
3813   Select *pSubquery,      /* A subquery used in place of a table name */
3814   Expr *pOn,              /* The ON clause of a join */
3815   IdList *pUsing          /* The USING clause of a join */
3816 ){
3817   struct SrcList_item *pItem;
3818   sqlite3 *db = pParse->db;
3819   if( !p && (pOn || pUsing) ){
3820     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3821       (pOn ? "ON" : "USING")
3822     );
3823     goto append_from_error;
3824   }
3825   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3826   if( p==0 || NEVER(p->nSrc==0) ){
3827     goto append_from_error;
3828   }
3829   pItem = &p->a[p->nSrc-1];
3830   assert( pAlias!=0 );
3831   if( pAlias->n ){
3832     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3833   }
3834   pItem->pSelect = pSubquery;
3835   pItem->pOn = pOn;
3836   pItem->pUsing = pUsing;
3837   return p;
3838 
3839  append_from_error:
3840   assert( p==0 );
3841   sqlite3ExprDelete(db, pOn);
3842   sqlite3IdListDelete(db, pUsing);
3843   sqlite3SelectDelete(db, pSubquery);
3844   return 0;
3845 }
3846 
3847 /*
3848 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3849 ** element of the source-list passed as the second argument.
3850 */
3851 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3852   assert( pIndexedBy!=0 );
3853   if( p && ALWAYS(p->nSrc>0) ){
3854     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3855     assert( pItem->fg.notIndexed==0 );
3856     assert( pItem->fg.isIndexedBy==0 );
3857     assert( pItem->fg.isTabFunc==0 );
3858     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3859       /* A "NOT INDEXED" clause was supplied. See parse.y
3860       ** construct "indexed_opt" for details. */
3861       pItem->fg.notIndexed = 1;
3862     }else{
3863       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3864       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3865     }
3866   }
3867 }
3868 
3869 /*
3870 ** Add the list of function arguments to the SrcList entry for a
3871 ** table-valued-function.
3872 */
3873 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3874   if( p ){
3875     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3876     assert( pItem->fg.notIndexed==0 );
3877     assert( pItem->fg.isIndexedBy==0 );
3878     assert( pItem->fg.isTabFunc==0 );
3879     pItem->u1.pFuncArg = pList;
3880     pItem->fg.isTabFunc = 1;
3881   }else{
3882     sqlite3ExprListDelete(pParse->db, pList);
3883   }
3884 }
3885 
3886 /*
3887 ** When building up a FROM clause in the parser, the join operator
3888 ** is initially attached to the left operand.  But the code generator
3889 ** expects the join operator to be on the right operand.  This routine
3890 ** Shifts all join operators from left to right for an entire FROM
3891 ** clause.
3892 **
3893 ** Example: Suppose the join is like this:
3894 **
3895 **           A natural cross join B
3896 **
3897 ** The operator is "natural cross join".  The A and B operands are stored
3898 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3899 ** operator with A.  This routine shifts that operator over to B.
3900 */
3901 void sqlite3SrcListShiftJoinType(SrcList *p){
3902   if( p ){
3903     int i;
3904     for(i=p->nSrc-1; i>0; i--){
3905       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3906     }
3907     p->a[0].fg.jointype = 0;
3908   }
3909 }
3910 
3911 /*
3912 ** Begin a transaction
3913 */
3914 void sqlite3BeginTransaction(Parse *pParse, int type){
3915   sqlite3 *db;
3916   Vdbe *v;
3917   int i;
3918 
3919   assert( pParse!=0 );
3920   db = pParse->db;
3921   assert( db!=0 );
3922 /*  if( db->aDb[0].pBt==0 ) return; */
3923   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3924     return;
3925   }
3926   v = sqlite3GetVdbe(pParse);
3927   if( !v ) return;
3928   if( type!=TK_DEFERRED ){
3929     for(i=0; i<db->nDb; i++){
3930       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3931       sqlite3VdbeUsesBtree(v, i);
3932     }
3933   }
3934   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3935 }
3936 
3937 /*
3938 ** Commit a transaction
3939 */
3940 void sqlite3CommitTransaction(Parse *pParse){
3941   Vdbe *v;
3942 
3943   assert( pParse!=0 );
3944   assert( pParse->db!=0 );
3945   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3946     return;
3947   }
3948   v = sqlite3GetVdbe(pParse);
3949   if( v ){
3950     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3951   }
3952 }
3953 
3954 /*
3955 ** Rollback a transaction
3956 */
3957 void sqlite3RollbackTransaction(Parse *pParse){
3958   Vdbe *v;
3959 
3960   assert( pParse!=0 );
3961   assert( pParse->db!=0 );
3962   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3963     return;
3964   }
3965   v = sqlite3GetVdbe(pParse);
3966   if( v ){
3967     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3968   }
3969 }
3970 
3971 /*
3972 ** This function is called by the parser when it parses a command to create,
3973 ** release or rollback an SQL savepoint.
3974 */
3975 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3976   char *zName = sqlite3NameFromToken(pParse->db, pName);
3977   if( zName ){
3978     Vdbe *v = sqlite3GetVdbe(pParse);
3979 #ifndef SQLITE_OMIT_AUTHORIZATION
3980     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3981     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3982 #endif
3983     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3984       sqlite3DbFree(pParse->db, zName);
3985       return;
3986     }
3987     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3988   }
3989 }
3990 
3991 /*
3992 ** Make sure the TEMP database is open and available for use.  Return
3993 ** the number of errors.  Leave any error messages in the pParse structure.
3994 */
3995 int sqlite3OpenTempDatabase(Parse *pParse){
3996   sqlite3 *db = pParse->db;
3997   if( db->aDb[1].pBt==0 && !pParse->explain ){
3998     int rc;
3999     Btree *pBt;
4000     static const int flags =
4001           SQLITE_OPEN_READWRITE |
4002           SQLITE_OPEN_CREATE |
4003           SQLITE_OPEN_EXCLUSIVE |
4004           SQLITE_OPEN_DELETEONCLOSE |
4005           SQLITE_OPEN_TEMP_DB;
4006 
4007     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4008     if( rc!=SQLITE_OK ){
4009       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4010         "file for storing temporary tables");
4011       pParse->rc = rc;
4012       return 1;
4013     }
4014     db->aDb[1].pBt = pBt;
4015     assert( db->aDb[1].pSchema );
4016     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4017       db->mallocFailed = 1;
4018       return 1;
4019     }
4020   }
4021   return 0;
4022 }
4023 
4024 /*
4025 ** Record the fact that the schema cookie will need to be verified
4026 ** for database iDb.  The code to actually verify the schema cookie
4027 ** will occur at the end of the top-level VDBE and will be generated
4028 ** later, by sqlite3FinishCoding().
4029 */
4030 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4031   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4032   sqlite3 *db = pToplevel->db;
4033 
4034   assert( iDb>=0 && iDb<db->nDb );
4035   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4036   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4037   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4038   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4039     DbMaskSet(pToplevel->cookieMask, iDb);
4040     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4041     if( !OMIT_TEMPDB && iDb==1 ){
4042       sqlite3OpenTempDatabase(pToplevel);
4043     }
4044   }
4045 }
4046 
4047 /*
4048 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4049 ** attached database. Otherwise, invoke it for the database named zDb only.
4050 */
4051 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4052   sqlite3 *db = pParse->db;
4053   int i;
4054   for(i=0; i<db->nDb; i++){
4055     Db *pDb = &db->aDb[i];
4056     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4057       sqlite3CodeVerifySchema(pParse, i);
4058     }
4059   }
4060 }
4061 
4062 /*
4063 ** Generate VDBE code that prepares for doing an operation that
4064 ** might change the database.
4065 **
4066 ** This routine starts a new transaction if we are not already within
4067 ** a transaction.  If we are already within a transaction, then a checkpoint
4068 ** is set if the setStatement parameter is true.  A checkpoint should
4069 ** be set for operations that might fail (due to a constraint) part of
4070 ** the way through and which will need to undo some writes without having to
4071 ** rollback the whole transaction.  For operations where all constraints
4072 ** can be checked before any changes are made to the database, it is never
4073 ** necessary to undo a write and the checkpoint should not be set.
4074 */
4075 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4076   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4077   sqlite3CodeVerifySchema(pParse, iDb);
4078   DbMaskSet(pToplevel->writeMask, iDb);
4079   pToplevel->isMultiWrite |= setStatement;
4080 }
4081 
4082 /*
4083 ** Indicate that the statement currently under construction might write
4084 ** more than one entry (example: deleting one row then inserting another,
4085 ** inserting multiple rows in a table, or inserting a row and index entries.)
4086 ** If an abort occurs after some of these writes have completed, then it will
4087 ** be necessary to undo the completed writes.
4088 */
4089 void sqlite3MultiWrite(Parse *pParse){
4090   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4091   pToplevel->isMultiWrite = 1;
4092 }
4093 
4094 /*
4095 ** The code generator calls this routine if is discovers that it is
4096 ** possible to abort a statement prior to completion.  In order to
4097 ** perform this abort without corrupting the database, we need to make
4098 ** sure that the statement is protected by a statement transaction.
4099 **
4100 ** Technically, we only need to set the mayAbort flag if the
4101 ** isMultiWrite flag was previously set.  There is a time dependency
4102 ** such that the abort must occur after the multiwrite.  This makes
4103 ** some statements involving the REPLACE conflict resolution algorithm
4104 ** go a little faster.  But taking advantage of this time dependency
4105 ** makes it more difficult to prove that the code is correct (in
4106 ** particular, it prevents us from writing an effective
4107 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4108 ** to take the safe route and skip the optimization.
4109 */
4110 void sqlite3MayAbort(Parse *pParse){
4111   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4112   pToplevel->mayAbort = 1;
4113 }
4114 
4115 /*
4116 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4117 ** error. The onError parameter determines which (if any) of the statement
4118 ** and/or current transaction is rolled back.
4119 */
4120 void sqlite3HaltConstraint(
4121   Parse *pParse,    /* Parsing context */
4122   int errCode,      /* extended error code */
4123   int onError,      /* Constraint type */
4124   char *p4,         /* Error message */
4125   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4126   u8 p5Errmsg       /* P5_ErrMsg type */
4127 ){
4128   Vdbe *v = sqlite3GetVdbe(pParse);
4129   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4130   if( onError==OE_Abort ){
4131     sqlite3MayAbort(pParse);
4132   }
4133   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4134   if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
4135 }
4136 
4137 /*
4138 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4139 */
4140 void sqlite3UniqueConstraint(
4141   Parse *pParse,    /* Parsing context */
4142   int onError,      /* Constraint type */
4143   Index *pIdx       /* The index that triggers the constraint */
4144 ){
4145   char *zErr;
4146   int j;
4147   StrAccum errMsg;
4148   Table *pTab = pIdx->pTable;
4149 
4150   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4151   if( pIdx->aColExpr ){
4152     sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
4153   }else{
4154     for(j=0; j<pIdx->nKeyCol; j++){
4155       char *zCol;
4156       assert( pIdx->aiColumn[j]>=0 );
4157       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4158       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4159       sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
4160     }
4161   }
4162   zErr = sqlite3StrAccumFinish(&errMsg);
4163   sqlite3HaltConstraint(pParse,
4164     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4165                             : SQLITE_CONSTRAINT_UNIQUE,
4166     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4167 }
4168 
4169 
4170 /*
4171 ** Code an OP_Halt due to non-unique rowid.
4172 */
4173 void sqlite3RowidConstraint(
4174   Parse *pParse,    /* Parsing context */
4175   int onError,      /* Conflict resolution algorithm */
4176   Table *pTab       /* The table with the non-unique rowid */
4177 ){
4178   char *zMsg;
4179   int rc;
4180   if( pTab->iPKey>=0 ){
4181     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4182                           pTab->aCol[pTab->iPKey].zName);
4183     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4184   }else{
4185     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4186     rc = SQLITE_CONSTRAINT_ROWID;
4187   }
4188   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4189                         P5_ConstraintUnique);
4190 }
4191 
4192 /*
4193 ** Check to see if pIndex uses the collating sequence pColl.  Return
4194 ** true if it does and false if it does not.
4195 */
4196 #ifndef SQLITE_OMIT_REINDEX
4197 static int collationMatch(const char *zColl, Index *pIndex){
4198   int i;
4199   assert( zColl!=0 );
4200   for(i=0; i<pIndex->nColumn; i++){
4201     const char *z = pIndex->azColl[i];
4202     assert( z!=0 || pIndex->aiColumn[i]<0 );
4203     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4204       return 1;
4205     }
4206   }
4207   return 0;
4208 }
4209 #endif
4210 
4211 /*
4212 ** Recompute all indices of pTab that use the collating sequence pColl.
4213 ** If pColl==0 then recompute all indices of pTab.
4214 */
4215 #ifndef SQLITE_OMIT_REINDEX
4216 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4217   Index *pIndex;              /* An index associated with pTab */
4218 
4219   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4220     if( zColl==0 || collationMatch(zColl, pIndex) ){
4221       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4222       sqlite3BeginWriteOperation(pParse, 0, iDb);
4223       sqlite3RefillIndex(pParse, pIndex, -1);
4224     }
4225   }
4226 }
4227 #endif
4228 
4229 /*
4230 ** Recompute all indices of all tables in all databases where the
4231 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4232 ** all indices everywhere.
4233 */
4234 #ifndef SQLITE_OMIT_REINDEX
4235 static void reindexDatabases(Parse *pParse, char const *zColl){
4236   Db *pDb;                    /* A single database */
4237   int iDb;                    /* The database index number */
4238   sqlite3 *db = pParse->db;   /* The database connection */
4239   HashElem *k;                /* For looping over tables in pDb */
4240   Table *pTab;                /* A table in the database */
4241 
4242   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4243   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4244     assert( pDb!=0 );
4245     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4246       pTab = (Table*)sqliteHashData(k);
4247       reindexTable(pParse, pTab, zColl);
4248     }
4249   }
4250 }
4251 #endif
4252 
4253 /*
4254 ** Generate code for the REINDEX command.
4255 **
4256 **        REINDEX                            -- 1
4257 **        REINDEX  <collation>               -- 2
4258 **        REINDEX  ?<database>.?<tablename>  -- 3
4259 **        REINDEX  ?<database>.?<indexname>  -- 4
4260 **
4261 ** Form 1 causes all indices in all attached databases to be rebuilt.
4262 ** Form 2 rebuilds all indices in all databases that use the named
4263 ** collating function.  Forms 3 and 4 rebuild the named index or all
4264 ** indices associated with the named table.
4265 */
4266 #ifndef SQLITE_OMIT_REINDEX
4267 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4268   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4269   char *z;                    /* Name of a table or index */
4270   const char *zDb;            /* Name of the database */
4271   Table *pTab;                /* A table in the database */
4272   Index *pIndex;              /* An index associated with pTab */
4273   int iDb;                    /* The database index number */
4274   sqlite3 *db = pParse->db;   /* The database connection */
4275   Token *pObjName;            /* Name of the table or index to be reindexed */
4276 
4277   /* Read the database schema. If an error occurs, leave an error message
4278   ** and code in pParse and return NULL. */
4279   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4280     return;
4281   }
4282 
4283   if( pName1==0 ){
4284     reindexDatabases(pParse, 0);
4285     return;
4286   }else if( NEVER(pName2==0) || pName2->z==0 ){
4287     char *zColl;
4288     assert( pName1->z );
4289     zColl = sqlite3NameFromToken(pParse->db, pName1);
4290     if( !zColl ) return;
4291     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4292     if( pColl ){
4293       reindexDatabases(pParse, zColl);
4294       sqlite3DbFree(db, zColl);
4295       return;
4296     }
4297     sqlite3DbFree(db, zColl);
4298   }
4299   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4300   if( iDb<0 ) return;
4301   z = sqlite3NameFromToken(db, pObjName);
4302   if( z==0 ) return;
4303   zDb = db->aDb[iDb].zName;
4304   pTab = sqlite3FindTable(db, z, zDb);
4305   if( pTab ){
4306     reindexTable(pParse, pTab, 0);
4307     sqlite3DbFree(db, z);
4308     return;
4309   }
4310   pIndex = sqlite3FindIndex(db, z, zDb);
4311   sqlite3DbFree(db, z);
4312   if( pIndex ){
4313     sqlite3BeginWriteOperation(pParse, 0, iDb);
4314     sqlite3RefillIndex(pParse, pIndex, -1);
4315     return;
4316   }
4317   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4318 }
4319 #endif
4320 
4321 /*
4322 ** Return a KeyInfo structure that is appropriate for the given Index.
4323 **
4324 ** The KeyInfo structure for an index is cached in the Index object.
4325 ** So there might be multiple references to the returned pointer.  The
4326 ** caller should not try to modify the KeyInfo object.
4327 **
4328 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4329 ** when it has finished using it.
4330 */
4331 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4332   int i;
4333   int nCol = pIdx->nColumn;
4334   int nKey = pIdx->nKeyCol;
4335   KeyInfo *pKey;
4336   if( pParse->nErr ) return 0;
4337   if( pIdx->uniqNotNull ){
4338     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4339   }else{
4340     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4341   }
4342   if( pKey ){
4343     assert( sqlite3KeyInfoIsWriteable(pKey) );
4344     for(i=0; i<nCol; i++){
4345       char *zColl = pIdx->azColl[i];
4346       assert( zColl!=0 );
4347       pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
4348                         sqlite3LocateCollSeq(pParse, zColl);
4349       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4350     }
4351     if( pParse->nErr ){
4352       sqlite3KeyInfoUnref(pKey);
4353       pKey = 0;
4354     }
4355   }
4356   return pKey;
4357 }
4358 
4359 #ifndef SQLITE_OMIT_CTE
4360 /*
4361 ** This routine is invoked once per CTE by the parser while parsing a
4362 ** WITH clause.
4363 */
4364 With *sqlite3WithAdd(
4365   Parse *pParse,          /* Parsing context */
4366   With *pWith,            /* Existing WITH clause, or NULL */
4367   Token *pName,           /* Name of the common-table */
4368   ExprList *pArglist,     /* Optional column name list for the table */
4369   Select *pQuery          /* Query used to initialize the table */
4370 ){
4371   sqlite3 *db = pParse->db;
4372   With *pNew;
4373   char *zName;
4374 
4375   /* Check that the CTE name is unique within this WITH clause. If
4376   ** not, store an error in the Parse structure. */
4377   zName = sqlite3NameFromToken(pParse->db, pName);
4378   if( zName && pWith ){
4379     int i;
4380     for(i=0; i<pWith->nCte; i++){
4381       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4382         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4383       }
4384     }
4385   }
4386 
4387   if( pWith ){
4388     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4389     pNew = sqlite3DbRealloc(db, pWith, nByte);
4390   }else{
4391     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4392   }
4393   assert( zName!=0 || pNew==0 );
4394   assert( db->mallocFailed==0 || pNew==0 );
4395 
4396   if( pNew==0 ){
4397     sqlite3ExprListDelete(db, pArglist);
4398     sqlite3SelectDelete(db, pQuery);
4399     sqlite3DbFree(db, zName);
4400     pNew = pWith;
4401   }else{
4402     pNew->a[pNew->nCte].pSelect = pQuery;
4403     pNew->a[pNew->nCte].pCols = pArglist;
4404     pNew->a[pNew->nCte].zName = zName;
4405     pNew->a[pNew->nCte].zCteErr = 0;
4406     pNew->nCte++;
4407   }
4408 
4409   return pNew;
4410 }
4411 
4412 /*
4413 ** Free the contents of the With object passed as the second argument.
4414 */
4415 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4416   if( pWith ){
4417     int i;
4418     for(i=0; i<pWith->nCte; i++){
4419       struct Cte *pCte = &pWith->a[i];
4420       sqlite3ExprListDelete(db, pCte->pCols);
4421       sqlite3SelectDelete(db, pCte->pSelect);
4422       sqlite3DbFree(db, pCte->zName);
4423     }
4424     sqlite3DbFree(db, pWith);
4425   }
4426 }
4427 #endif /* !defined(SQLITE_OMIT_CTE) */
4428