1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 return; /* A malloc must have failed */ 264 } 265 pParse->nested++; 266 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 267 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 268 sqlite3RunParser(pParse, zSql, &zErrMsg); 269 sqlite3DbFree(db, zErrMsg); 270 sqlite3DbFree(db, zSql); 271 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 272 pParse->nested--; 273 } 274 275 #if SQLITE_USER_AUTHENTICATION 276 /* 277 ** Return TRUE if zTable is the name of the system table that stores the 278 ** list of users and their access credentials. 279 */ 280 int sqlite3UserAuthTable(const char *zTable){ 281 return sqlite3_stricmp(zTable, "sqlite_user")==0; 282 } 283 #endif 284 285 /* 286 ** Locate the in-memory structure that describes a particular database 287 ** table given the name of that table and (optionally) the name of the 288 ** database containing the table. Return NULL if not found. 289 ** 290 ** If zDatabase is 0, all databases are searched for the table and the 291 ** first matching table is returned. (No checking for duplicate table 292 ** names is done.) The search order is TEMP first, then MAIN, then any 293 ** auxiliary databases added using the ATTACH command. 294 ** 295 ** See also sqlite3LocateTable(). 296 */ 297 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 298 Table *p = 0; 299 int i; 300 301 /* All mutexes are required for schema access. Make sure we hold them. */ 302 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 303 #if SQLITE_USER_AUTHENTICATION 304 /* Only the admin user is allowed to know that the sqlite_user table 305 ** exists */ 306 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 307 return 0; 308 } 309 #endif 310 while(1){ 311 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 312 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 313 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 314 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 315 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 316 if( p ) return p; 317 } 318 } 319 /* Not found. If the name we were looking for was temp.sqlite_master 320 ** then change the name to sqlite_temp_master and try again. */ 321 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 322 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 323 zName = TEMP_MASTER_NAME; 324 } 325 return 0; 326 } 327 328 /* 329 ** Locate the in-memory structure that describes a particular database 330 ** table given the name of that table and (optionally) the name of the 331 ** database containing the table. Return NULL if not found. Also leave an 332 ** error message in pParse->zErrMsg. 333 ** 334 ** The difference between this routine and sqlite3FindTable() is that this 335 ** routine leaves an error message in pParse->zErrMsg where 336 ** sqlite3FindTable() does not. 337 */ 338 Table *sqlite3LocateTable( 339 Parse *pParse, /* context in which to report errors */ 340 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 341 const char *zName, /* Name of the table we are looking for */ 342 const char *zDbase /* Name of the database. Might be NULL */ 343 ){ 344 Table *p; 345 sqlite3 *db = pParse->db; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 350 && SQLITE_OK!=sqlite3ReadSchema(pParse) 351 ){ 352 return 0; 353 } 354 355 p = sqlite3FindTable(db, zName, zDbase); 356 if( p==0 ){ 357 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 358 #ifndef SQLITE_OMIT_VIRTUALTABLE 359 /* If zName is the not the name of a table in the schema created using 360 ** CREATE, then check to see if it is the name of an virtual table that 361 ** can be an eponymous virtual table. */ 362 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 363 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 364 pMod = sqlite3PragmaVtabRegister(db, zName); 365 } 366 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 367 return pMod->pEpoTab; 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 sqlite3FreeIndex(db, pIndex); 481 } 482 db->mDbFlags |= DBFLAG_SchemaChange; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 518 ** Deferred resets may be run by calling with iDb<0. 519 */ 520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 521 int i; 522 assert( iDb<db->nDb ); 523 524 if( iDb>=0 ){ 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 DbSetProperty(db, iDb, DB_ResetWanted); 527 DbSetProperty(db, 1, DB_ResetWanted); 528 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 529 } 530 531 if( db->nSchemaLock==0 ){ 532 for(i=0; i<db->nDb; i++){ 533 if( DbHasProperty(db, i, DB_ResetWanted) ){ 534 sqlite3SchemaClear(db->aDb[i].pSchema); 535 } 536 } 537 } 538 } 539 540 /* 541 ** Erase all schema information from all attached databases (including 542 ** "main" and "temp") for a single database connection. 543 */ 544 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 545 int i; 546 sqlite3BtreeEnterAll(db); 547 for(i=0; i<db->nDb; i++){ 548 Db *pDb = &db->aDb[i]; 549 if( pDb->pSchema ){ 550 if( db->nSchemaLock==0 ){ 551 sqlite3SchemaClear(pDb->pSchema); 552 }else{ 553 DbSetProperty(db, i, DB_ResetWanted); 554 } 555 } 556 } 557 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 558 sqlite3VtabUnlockList(db); 559 sqlite3BtreeLeaveAll(db); 560 if( db->nSchemaLock==0 ){ 561 sqlite3CollapseDatabaseArray(db); 562 } 563 } 564 565 /* 566 ** This routine is called when a commit occurs. 567 */ 568 void sqlite3CommitInternalChanges(sqlite3 *db){ 569 db->mDbFlags &= ~DBFLAG_SchemaChange; 570 } 571 572 /* 573 ** Delete memory allocated for the column names of a table or view (the 574 ** Table.aCol[] array). 575 */ 576 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 577 int i; 578 Column *pCol; 579 assert( pTable!=0 ); 580 if( (pCol = pTable->aCol)!=0 ){ 581 for(i=0; i<pTable->nCol; i++, pCol++){ 582 sqlite3DbFree(db, pCol->zName); 583 sqlite3ExprDelete(db, pCol->pDflt); 584 sqlite3DbFree(db, pCol->zColl); 585 } 586 sqlite3DbFree(db, pTable->aCol); 587 } 588 } 589 590 /* 591 ** Remove the memory data structures associated with the given 592 ** Table. No changes are made to disk by this routine. 593 ** 594 ** This routine just deletes the data structure. It does not unlink 595 ** the table data structure from the hash table. But it does destroy 596 ** memory structures of the indices and foreign keys associated with 597 ** the table. 598 ** 599 ** The db parameter is optional. It is needed if the Table object 600 ** contains lookaside memory. (Table objects in the schema do not use 601 ** lookaside memory, but some ephemeral Table objects do.) Or the 602 ** db parameter can be used with db->pnBytesFreed to measure the memory 603 ** used by the Table object. 604 */ 605 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 606 Index *pIndex, *pNext; 607 608 #ifdef SQLITE_DEBUG 609 /* Record the number of outstanding lookaside allocations in schema Tables 610 ** prior to doing any free() operations. Since schema Tables do not use 611 ** lookaside, this number should not change. */ 612 int nLookaside = 0; 613 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){ 614 nLookaside = sqlite3LookasideUsed(db, 0); 615 } 616 #endif 617 618 /* Delete all indices associated with this table. */ 619 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 620 pNext = pIndex->pNext; 621 assert( pIndex->pSchema==pTable->pSchema 622 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 623 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 624 char *zName = pIndex->zName; 625 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 626 &pIndex->pSchema->idxHash, zName, 0 627 ); 628 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 629 assert( pOld==pIndex || pOld==0 ); 630 } 631 sqlite3FreeIndex(db, pIndex); 632 } 633 634 /* Delete any foreign keys attached to this table. */ 635 sqlite3FkDelete(db, pTable); 636 637 /* Delete the Table structure itself. 638 */ 639 #ifdef SQLITE_ENABLE_NORMALIZE 640 if( pTable->pColHash ){ 641 sqlite3HashClear(pTable->pColHash); 642 sqlite3_free(pTable->pColHash); 643 } 644 #endif 645 sqlite3DeleteColumnNames(db, pTable); 646 sqlite3DbFree(db, pTable->zName); 647 sqlite3DbFree(db, pTable->zColAff); 648 sqlite3SelectDelete(db, pTable->pSelect); 649 sqlite3ExprListDelete(db, pTable->pCheck); 650 #ifndef SQLITE_OMIT_VIRTUALTABLE 651 sqlite3VtabClear(db, pTable); 652 #endif 653 sqlite3DbFree(db, pTable); 654 655 /* Verify that no lookaside memory was used by schema tables */ 656 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 657 } 658 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 659 /* Do not delete the table until the reference count reaches zero. */ 660 if( !pTable ) return; 661 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 662 deleteTable(db, pTable); 663 } 664 665 666 /* 667 ** Unlink the given table from the hash tables and the delete the 668 ** table structure with all its indices and foreign keys. 669 */ 670 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 671 Table *p; 672 Db *pDb; 673 674 assert( db!=0 ); 675 assert( iDb>=0 && iDb<db->nDb ); 676 assert( zTabName ); 677 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 678 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 679 pDb = &db->aDb[iDb]; 680 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 681 sqlite3DeleteTable(db, p); 682 db->mDbFlags |= DBFLAG_SchemaChange; 683 } 684 685 /* 686 ** Given a token, return a string that consists of the text of that 687 ** token. Space to hold the returned string 688 ** is obtained from sqliteMalloc() and must be freed by the calling 689 ** function. 690 ** 691 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 692 ** surround the body of the token are removed. 693 ** 694 ** Tokens are often just pointers into the original SQL text and so 695 ** are not \000 terminated and are not persistent. The returned string 696 ** is \000 terminated and is persistent. 697 */ 698 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 699 char *zName; 700 if( pName ){ 701 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 702 sqlite3Dequote(zName); 703 }else{ 704 zName = 0; 705 } 706 return zName; 707 } 708 709 /* 710 ** Open the sqlite_master table stored in database number iDb for 711 ** writing. The table is opened using cursor 0. 712 */ 713 void sqlite3OpenMasterTable(Parse *p, int iDb){ 714 Vdbe *v = sqlite3GetVdbe(p); 715 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 716 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 717 if( p->nTab==0 ){ 718 p->nTab = 1; 719 } 720 } 721 722 /* 723 ** Parameter zName points to a nul-terminated buffer containing the name 724 ** of a database ("main", "temp" or the name of an attached db). This 725 ** function returns the index of the named database in db->aDb[], or 726 ** -1 if the named db cannot be found. 727 */ 728 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 729 int i = -1; /* Database number */ 730 if( zName ){ 731 Db *pDb; 732 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 733 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 734 /* "main" is always an acceptable alias for the primary database 735 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 736 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 737 } 738 } 739 return i; 740 } 741 742 /* 743 ** The token *pName contains the name of a database (either "main" or 744 ** "temp" or the name of an attached db). This routine returns the 745 ** index of the named database in db->aDb[], or -1 if the named db 746 ** does not exist. 747 */ 748 int sqlite3FindDb(sqlite3 *db, Token *pName){ 749 int i; /* Database number */ 750 char *zName; /* Name we are searching for */ 751 zName = sqlite3NameFromToken(db, pName); 752 i = sqlite3FindDbName(db, zName); 753 sqlite3DbFree(db, zName); 754 return i; 755 } 756 757 /* The table or view or trigger name is passed to this routine via tokens 758 ** pName1 and pName2. If the table name was fully qualified, for example: 759 ** 760 ** CREATE TABLE xxx.yyy (...); 761 ** 762 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 763 ** the table name is not fully qualified, i.e.: 764 ** 765 ** CREATE TABLE yyy(...); 766 ** 767 ** Then pName1 is set to "yyy" and pName2 is "". 768 ** 769 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 770 ** pName2) that stores the unqualified table name. The index of the 771 ** database "xxx" is returned. 772 */ 773 int sqlite3TwoPartName( 774 Parse *pParse, /* Parsing and code generating context */ 775 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 776 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 777 Token **pUnqual /* Write the unqualified object name here */ 778 ){ 779 int iDb; /* Database holding the object */ 780 sqlite3 *db = pParse->db; 781 782 assert( pName2!=0 ); 783 if( pName2->n>0 ){ 784 if( db->init.busy ) { 785 sqlite3ErrorMsg(pParse, "corrupt database"); 786 return -1; 787 } 788 *pUnqual = pName2; 789 iDb = sqlite3FindDb(db, pName1); 790 if( iDb<0 ){ 791 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 792 return -1; 793 } 794 }else{ 795 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 796 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 797 iDb = db->init.iDb; 798 *pUnqual = pName1; 799 } 800 return iDb; 801 } 802 803 /* 804 ** True if PRAGMA writable_schema is ON 805 */ 806 int sqlite3WritableSchema(sqlite3 *db){ 807 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 808 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 809 SQLITE_WriteSchema ); 810 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 811 SQLITE_Defensive ); 812 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 813 (SQLITE_WriteSchema|SQLITE_Defensive) ); 814 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 815 } 816 817 /* 818 ** This routine is used to check if the UTF-8 string zName is a legal 819 ** unqualified name for a new schema object (table, index, view or 820 ** trigger). All names are legal except those that begin with the string 821 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 822 ** is reserved for internal use. 823 */ 824 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 825 if( !pParse->db->init.busy && pParse->nested==0 826 && sqlite3WritableSchema(pParse->db)==0 827 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 828 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 829 return SQLITE_ERROR; 830 } 831 return SQLITE_OK; 832 } 833 834 /* 835 ** Return the PRIMARY KEY index of a table 836 */ 837 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 838 Index *p; 839 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 840 return p; 841 } 842 843 /* 844 ** Return the column of index pIdx that corresponds to table 845 ** column iCol. Return -1 if not found. 846 */ 847 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 848 int i; 849 for(i=0; i<pIdx->nColumn; i++){ 850 if( iCol==pIdx->aiColumn[i] ) return i; 851 } 852 return -1; 853 } 854 855 /* 856 ** Begin constructing a new table representation in memory. This is 857 ** the first of several action routines that get called in response 858 ** to a CREATE TABLE statement. In particular, this routine is called 859 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 860 ** flag is true if the table should be stored in the auxiliary database 861 ** file instead of in the main database file. This is normally the case 862 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 863 ** CREATE and TABLE. 864 ** 865 ** The new table record is initialized and put in pParse->pNewTable. 866 ** As more of the CREATE TABLE statement is parsed, additional action 867 ** routines will be called to add more information to this record. 868 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 869 ** is called to complete the construction of the new table record. 870 */ 871 void sqlite3StartTable( 872 Parse *pParse, /* Parser context */ 873 Token *pName1, /* First part of the name of the table or view */ 874 Token *pName2, /* Second part of the name of the table or view */ 875 int isTemp, /* True if this is a TEMP table */ 876 int isView, /* True if this is a VIEW */ 877 int isVirtual, /* True if this is a VIRTUAL table */ 878 int noErr /* Do nothing if table already exists */ 879 ){ 880 Table *pTable; 881 char *zName = 0; /* The name of the new table */ 882 sqlite3 *db = pParse->db; 883 Vdbe *v; 884 int iDb; /* Database number to create the table in */ 885 Token *pName; /* Unqualified name of the table to create */ 886 887 if( db->init.busy && db->init.newTnum==1 ){ 888 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 889 iDb = db->init.iDb; 890 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 891 pName = pName1; 892 }else{ 893 /* The common case */ 894 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 895 if( iDb<0 ) return; 896 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 897 /* If creating a temp table, the name may not be qualified. Unless 898 ** the database name is "temp" anyway. */ 899 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 900 return; 901 } 902 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 903 zName = sqlite3NameFromToken(db, pName); 904 if( IN_RENAME_OBJECT ){ 905 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 906 } 907 } 908 pParse->sNameToken = *pName; 909 if( zName==0 ) return; 910 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 911 goto begin_table_error; 912 } 913 if( db->init.iDb==1 ) isTemp = 1; 914 #ifndef SQLITE_OMIT_AUTHORIZATION 915 assert( isTemp==0 || isTemp==1 ); 916 assert( isView==0 || isView==1 ); 917 { 918 static const u8 aCode[] = { 919 SQLITE_CREATE_TABLE, 920 SQLITE_CREATE_TEMP_TABLE, 921 SQLITE_CREATE_VIEW, 922 SQLITE_CREATE_TEMP_VIEW 923 }; 924 char *zDb = db->aDb[iDb].zDbSName; 925 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 926 goto begin_table_error; 927 } 928 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 929 zName, 0, zDb) ){ 930 goto begin_table_error; 931 } 932 } 933 #endif 934 935 /* Make sure the new table name does not collide with an existing 936 ** index or table name in the same database. Issue an error message if 937 ** it does. The exception is if the statement being parsed was passed 938 ** to an sqlite3_declare_vtab() call. In that case only the column names 939 ** and types will be used, so there is no need to test for namespace 940 ** collisions. 941 */ 942 if( !IN_SPECIAL_PARSE ){ 943 char *zDb = db->aDb[iDb].zDbSName; 944 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 945 goto begin_table_error; 946 } 947 pTable = sqlite3FindTable(db, zName, zDb); 948 if( pTable ){ 949 if( !noErr ){ 950 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 951 }else{ 952 assert( !db->init.busy || CORRUPT_DB ); 953 sqlite3CodeVerifySchema(pParse, iDb); 954 } 955 goto begin_table_error; 956 } 957 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 958 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 959 goto begin_table_error; 960 } 961 } 962 963 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 964 if( pTable==0 ){ 965 assert( db->mallocFailed ); 966 pParse->rc = SQLITE_NOMEM_BKPT; 967 pParse->nErr++; 968 goto begin_table_error; 969 } 970 pTable->zName = zName; 971 pTable->iPKey = -1; 972 pTable->pSchema = db->aDb[iDb].pSchema; 973 pTable->nTabRef = 1; 974 #ifdef SQLITE_DEFAULT_ROWEST 975 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 976 #else 977 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 978 #endif 979 assert( pParse->pNewTable==0 ); 980 pParse->pNewTable = pTable; 981 982 /* If this is the magic sqlite_sequence table used by autoincrement, 983 ** then record a pointer to this table in the main database structure 984 ** so that INSERT can find the table easily. 985 */ 986 #ifndef SQLITE_OMIT_AUTOINCREMENT 987 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 988 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 989 pTable->pSchema->pSeqTab = pTable; 990 } 991 #endif 992 993 /* Begin generating the code that will insert the table record into 994 ** the SQLITE_MASTER table. Note in particular that we must go ahead 995 ** and allocate the record number for the table entry now. Before any 996 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 997 ** indices to be created and the table record must come before the 998 ** indices. Hence, the record number for the table must be allocated 999 ** now. 1000 */ 1001 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1002 int addr1; 1003 int fileFormat; 1004 int reg1, reg2, reg3; 1005 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1006 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1007 sqlite3BeginWriteOperation(pParse, 1, iDb); 1008 1009 #ifndef SQLITE_OMIT_VIRTUALTABLE 1010 if( isVirtual ){ 1011 sqlite3VdbeAddOp0(v, OP_VBegin); 1012 } 1013 #endif 1014 1015 /* If the file format and encoding in the database have not been set, 1016 ** set them now. 1017 */ 1018 reg1 = pParse->regRowid = ++pParse->nMem; 1019 reg2 = pParse->regRoot = ++pParse->nMem; 1020 reg3 = ++pParse->nMem; 1021 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1022 sqlite3VdbeUsesBtree(v, iDb); 1023 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1024 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1025 1 : SQLITE_MAX_FILE_FORMAT; 1026 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1027 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1028 sqlite3VdbeJumpHere(v, addr1); 1029 1030 /* This just creates a place-holder record in the sqlite_master table. 1031 ** The record created does not contain anything yet. It will be replaced 1032 ** by the real entry in code generated at sqlite3EndTable(). 1033 ** 1034 ** The rowid for the new entry is left in register pParse->regRowid. 1035 ** The root page number of the new table is left in reg pParse->regRoot. 1036 ** The rowid and root page number values are needed by the code that 1037 ** sqlite3EndTable will generate. 1038 */ 1039 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1040 if( isView || isVirtual ){ 1041 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1042 }else 1043 #endif 1044 { 1045 pParse->addrCrTab = 1046 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1047 } 1048 sqlite3OpenMasterTable(pParse, iDb); 1049 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1050 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1051 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1052 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1053 sqlite3VdbeAddOp0(v, OP_Close); 1054 } 1055 1056 /* Normal (non-error) return. */ 1057 return; 1058 1059 /* If an error occurs, we jump here */ 1060 begin_table_error: 1061 sqlite3DbFree(db, zName); 1062 return; 1063 } 1064 1065 /* Set properties of a table column based on the (magical) 1066 ** name of the column. 1067 */ 1068 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1069 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1070 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1071 pCol->colFlags |= COLFLAG_HIDDEN; 1072 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1073 pTab->tabFlags |= TF_OOOHidden; 1074 } 1075 } 1076 #endif 1077 1078 1079 /* 1080 ** Add a new column to the table currently being constructed. 1081 ** 1082 ** The parser calls this routine once for each column declaration 1083 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1084 ** first to get things going. Then this routine is called for each 1085 ** column. 1086 */ 1087 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1088 Table *p; 1089 int i; 1090 char *z; 1091 char *zType; 1092 Column *pCol; 1093 sqlite3 *db = pParse->db; 1094 if( (p = pParse->pNewTable)==0 ) return; 1095 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1096 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1097 return; 1098 } 1099 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1100 if( z==0 ) return; 1101 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1102 memcpy(z, pName->z, pName->n); 1103 z[pName->n] = 0; 1104 sqlite3Dequote(z); 1105 for(i=0; i<p->nCol; i++){ 1106 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1107 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1108 sqlite3DbFree(db, z); 1109 return; 1110 } 1111 } 1112 if( (p->nCol & 0x7)==0 ){ 1113 Column *aNew; 1114 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1115 if( aNew==0 ){ 1116 sqlite3DbFree(db, z); 1117 return; 1118 } 1119 p->aCol = aNew; 1120 } 1121 pCol = &p->aCol[p->nCol]; 1122 memset(pCol, 0, sizeof(p->aCol[0])); 1123 pCol->zName = z; 1124 sqlite3ColumnPropertiesFromName(p, pCol); 1125 1126 if( pType->n==0 ){ 1127 /* If there is no type specified, columns have the default affinity 1128 ** 'BLOB' with a default size of 4 bytes. */ 1129 pCol->affinity = SQLITE_AFF_BLOB; 1130 pCol->szEst = 1; 1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1132 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1133 pCol->colFlags |= COLFLAG_SORTERREF; 1134 } 1135 #endif 1136 }else{ 1137 zType = z + sqlite3Strlen30(z) + 1; 1138 memcpy(zType, pType->z, pType->n); 1139 zType[pType->n] = 0; 1140 sqlite3Dequote(zType); 1141 pCol->affinity = sqlite3AffinityType(zType, pCol); 1142 pCol->colFlags |= COLFLAG_HASTYPE; 1143 } 1144 p->nCol++; 1145 pParse->constraintName.n = 0; 1146 } 1147 1148 /* 1149 ** This routine is called by the parser while in the middle of 1150 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1151 ** been seen on a column. This routine sets the notNull flag on 1152 ** the column currently under construction. 1153 */ 1154 void sqlite3AddNotNull(Parse *pParse, int onError){ 1155 Table *p; 1156 Column *pCol; 1157 p = pParse->pNewTable; 1158 if( p==0 || NEVER(p->nCol<1) ) return; 1159 pCol = &p->aCol[p->nCol-1]; 1160 pCol->notNull = (u8)onError; 1161 p->tabFlags |= TF_HasNotNull; 1162 1163 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1164 ** on this column. */ 1165 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1166 Index *pIdx; 1167 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1168 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1169 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1170 pIdx->uniqNotNull = 1; 1171 } 1172 } 1173 } 1174 } 1175 1176 /* 1177 ** Scan the column type name zType (length nType) and return the 1178 ** associated affinity type. 1179 ** 1180 ** This routine does a case-independent search of zType for the 1181 ** substrings in the following table. If one of the substrings is 1182 ** found, the corresponding affinity is returned. If zType contains 1183 ** more than one of the substrings, entries toward the top of 1184 ** the table take priority. For example, if zType is 'BLOBINT', 1185 ** SQLITE_AFF_INTEGER is returned. 1186 ** 1187 ** Substring | Affinity 1188 ** -------------------------------- 1189 ** 'INT' | SQLITE_AFF_INTEGER 1190 ** 'CHAR' | SQLITE_AFF_TEXT 1191 ** 'CLOB' | SQLITE_AFF_TEXT 1192 ** 'TEXT' | SQLITE_AFF_TEXT 1193 ** 'BLOB' | SQLITE_AFF_BLOB 1194 ** 'REAL' | SQLITE_AFF_REAL 1195 ** 'FLOA' | SQLITE_AFF_REAL 1196 ** 'DOUB' | SQLITE_AFF_REAL 1197 ** 1198 ** If none of the substrings in the above table are found, 1199 ** SQLITE_AFF_NUMERIC is returned. 1200 */ 1201 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1202 u32 h = 0; 1203 char aff = SQLITE_AFF_NUMERIC; 1204 const char *zChar = 0; 1205 1206 assert( zIn!=0 ); 1207 while( zIn[0] ){ 1208 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1209 zIn++; 1210 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1211 aff = SQLITE_AFF_TEXT; 1212 zChar = zIn; 1213 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1214 aff = SQLITE_AFF_TEXT; 1215 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1216 aff = SQLITE_AFF_TEXT; 1217 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1218 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1219 aff = SQLITE_AFF_BLOB; 1220 if( zIn[0]=='(' ) zChar = zIn; 1221 #ifndef SQLITE_OMIT_FLOATING_POINT 1222 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1223 && aff==SQLITE_AFF_NUMERIC ){ 1224 aff = SQLITE_AFF_REAL; 1225 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1226 && aff==SQLITE_AFF_NUMERIC ){ 1227 aff = SQLITE_AFF_REAL; 1228 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1229 && aff==SQLITE_AFF_NUMERIC ){ 1230 aff = SQLITE_AFF_REAL; 1231 #endif 1232 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1233 aff = SQLITE_AFF_INTEGER; 1234 break; 1235 } 1236 } 1237 1238 /* If pCol is not NULL, store an estimate of the field size. The 1239 ** estimate is scaled so that the size of an integer is 1. */ 1240 if( pCol ){ 1241 int v = 0; /* default size is approx 4 bytes */ 1242 if( aff<SQLITE_AFF_NUMERIC ){ 1243 if( zChar ){ 1244 while( zChar[0] ){ 1245 if( sqlite3Isdigit(zChar[0]) ){ 1246 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1247 sqlite3GetInt32(zChar, &v); 1248 break; 1249 } 1250 zChar++; 1251 } 1252 }else{ 1253 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1254 } 1255 } 1256 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1257 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1258 pCol->colFlags |= COLFLAG_SORTERREF; 1259 } 1260 #endif 1261 v = v/4 + 1; 1262 if( v>255 ) v = 255; 1263 pCol->szEst = v; 1264 } 1265 return aff; 1266 } 1267 1268 /* 1269 ** The expression is the default value for the most recently added column 1270 ** of the table currently under construction. 1271 ** 1272 ** Default value expressions must be constant. Raise an exception if this 1273 ** is not the case. 1274 ** 1275 ** This routine is called by the parser while in the middle of 1276 ** parsing a CREATE TABLE statement. 1277 */ 1278 void sqlite3AddDefaultValue( 1279 Parse *pParse, /* Parsing context */ 1280 Expr *pExpr, /* The parsed expression of the default value */ 1281 const char *zStart, /* Start of the default value text */ 1282 const char *zEnd /* First character past end of defaut value text */ 1283 ){ 1284 Table *p; 1285 Column *pCol; 1286 sqlite3 *db = pParse->db; 1287 p = pParse->pNewTable; 1288 if( p!=0 ){ 1289 pCol = &(p->aCol[p->nCol-1]); 1290 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1291 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1292 pCol->zName); 1293 }else{ 1294 /* A copy of pExpr is used instead of the original, as pExpr contains 1295 ** tokens that point to volatile memory. 1296 */ 1297 Expr x; 1298 sqlite3ExprDelete(db, pCol->pDflt); 1299 memset(&x, 0, sizeof(x)); 1300 x.op = TK_SPAN; 1301 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1302 x.pLeft = pExpr; 1303 x.flags = EP_Skip; 1304 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1305 sqlite3DbFree(db, x.u.zToken); 1306 } 1307 } 1308 if( IN_RENAME_OBJECT ){ 1309 sqlite3RenameExprUnmap(pParse, pExpr); 1310 } 1311 sqlite3ExprDelete(db, pExpr); 1312 } 1313 1314 /* 1315 ** Backwards Compatibility Hack: 1316 ** 1317 ** Historical versions of SQLite accepted strings as column names in 1318 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1319 ** 1320 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1321 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1322 ** 1323 ** This is goofy. But to preserve backwards compatibility we continue to 1324 ** accept it. This routine does the necessary conversion. It converts 1325 ** the expression given in its argument from a TK_STRING into a TK_ID 1326 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1327 ** If the epxression is anything other than TK_STRING, the expression is 1328 ** unchanged. 1329 */ 1330 static void sqlite3StringToId(Expr *p){ 1331 if( p->op==TK_STRING ){ 1332 p->op = TK_ID; 1333 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1334 p->pLeft->op = TK_ID; 1335 } 1336 } 1337 1338 /* 1339 ** Designate the PRIMARY KEY for the table. pList is a list of names 1340 ** of columns that form the primary key. If pList is NULL, then the 1341 ** most recently added column of the table is the primary key. 1342 ** 1343 ** A table can have at most one primary key. If the table already has 1344 ** a primary key (and this is the second primary key) then create an 1345 ** error. 1346 ** 1347 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1348 ** then we will try to use that column as the rowid. Set the Table.iPKey 1349 ** field of the table under construction to be the index of the 1350 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1351 ** no INTEGER PRIMARY KEY. 1352 ** 1353 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1354 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1355 */ 1356 void sqlite3AddPrimaryKey( 1357 Parse *pParse, /* Parsing context */ 1358 ExprList *pList, /* List of field names to be indexed */ 1359 int onError, /* What to do with a uniqueness conflict */ 1360 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1361 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1362 ){ 1363 Table *pTab = pParse->pNewTable; 1364 Column *pCol = 0; 1365 int iCol = -1, i; 1366 int nTerm; 1367 if( pTab==0 ) goto primary_key_exit; 1368 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1369 sqlite3ErrorMsg(pParse, 1370 "table \"%s\" has more than one primary key", pTab->zName); 1371 goto primary_key_exit; 1372 } 1373 pTab->tabFlags |= TF_HasPrimaryKey; 1374 if( pList==0 ){ 1375 iCol = pTab->nCol - 1; 1376 pCol = &pTab->aCol[iCol]; 1377 pCol->colFlags |= COLFLAG_PRIMKEY; 1378 nTerm = 1; 1379 }else{ 1380 nTerm = pList->nExpr; 1381 for(i=0; i<nTerm; i++){ 1382 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1383 assert( pCExpr!=0 ); 1384 sqlite3StringToId(pCExpr); 1385 if( pCExpr->op==TK_ID ){ 1386 const char *zCName = pCExpr->u.zToken; 1387 for(iCol=0; iCol<pTab->nCol; iCol++){ 1388 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1389 pCol = &pTab->aCol[iCol]; 1390 pCol->colFlags |= COLFLAG_PRIMKEY; 1391 break; 1392 } 1393 } 1394 } 1395 } 1396 } 1397 if( nTerm==1 1398 && pCol 1399 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1400 && sortOrder!=SQLITE_SO_DESC 1401 ){ 1402 if( IN_RENAME_OBJECT && pList ){ 1403 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pList->a[0].pExpr); 1404 } 1405 pTab->iPKey = iCol; 1406 pTab->keyConf = (u8)onError; 1407 assert( autoInc==0 || autoInc==1 ); 1408 pTab->tabFlags |= autoInc*TF_Autoincrement; 1409 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1410 }else if( autoInc ){ 1411 #ifndef SQLITE_OMIT_AUTOINCREMENT 1412 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1413 "INTEGER PRIMARY KEY"); 1414 #endif 1415 }else{ 1416 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1417 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1418 pList = 0; 1419 } 1420 1421 primary_key_exit: 1422 sqlite3ExprListDelete(pParse->db, pList); 1423 return; 1424 } 1425 1426 /* 1427 ** Add a new CHECK constraint to the table currently under construction. 1428 */ 1429 void sqlite3AddCheckConstraint( 1430 Parse *pParse, /* Parsing context */ 1431 Expr *pCheckExpr /* The check expression */ 1432 ){ 1433 #ifndef SQLITE_OMIT_CHECK 1434 Table *pTab = pParse->pNewTable; 1435 sqlite3 *db = pParse->db; 1436 if( pTab && !IN_DECLARE_VTAB 1437 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1438 ){ 1439 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1440 if( pParse->constraintName.n ){ 1441 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1442 } 1443 }else 1444 #endif 1445 { 1446 sqlite3ExprDelete(pParse->db, pCheckExpr); 1447 } 1448 } 1449 1450 /* 1451 ** Set the collation function of the most recently parsed table column 1452 ** to the CollSeq given. 1453 */ 1454 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1455 Table *p; 1456 int i; 1457 char *zColl; /* Dequoted name of collation sequence */ 1458 sqlite3 *db; 1459 1460 if( (p = pParse->pNewTable)==0 ) return; 1461 i = p->nCol-1; 1462 db = pParse->db; 1463 zColl = sqlite3NameFromToken(db, pToken); 1464 if( !zColl ) return; 1465 1466 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1467 Index *pIdx; 1468 sqlite3DbFree(db, p->aCol[i].zColl); 1469 p->aCol[i].zColl = zColl; 1470 1471 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1472 ** then an index may have been created on this column before the 1473 ** collation type was added. Correct this if it is the case. 1474 */ 1475 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1476 assert( pIdx->nKeyCol==1 ); 1477 if( pIdx->aiColumn[0]==i ){ 1478 pIdx->azColl[0] = p->aCol[i].zColl; 1479 } 1480 } 1481 }else{ 1482 sqlite3DbFree(db, zColl); 1483 } 1484 } 1485 1486 /* 1487 ** This function returns the collation sequence for database native text 1488 ** encoding identified by the string zName, length nName. 1489 ** 1490 ** If the requested collation sequence is not available, or not available 1491 ** in the database native encoding, the collation factory is invoked to 1492 ** request it. If the collation factory does not supply such a sequence, 1493 ** and the sequence is available in another text encoding, then that is 1494 ** returned instead. 1495 ** 1496 ** If no versions of the requested collations sequence are available, or 1497 ** another error occurs, NULL is returned and an error message written into 1498 ** pParse. 1499 ** 1500 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1501 ** invokes the collation factory if the named collation cannot be found 1502 ** and generates an error message. 1503 ** 1504 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1505 */ 1506 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1507 sqlite3 *db = pParse->db; 1508 u8 enc = ENC(db); 1509 u8 initbusy = db->init.busy; 1510 CollSeq *pColl; 1511 1512 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1513 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1514 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1515 } 1516 1517 return pColl; 1518 } 1519 1520 1521 /* 1522 ** Generate code that will increment the schema cookie. 1523 ** 1524 ** The schema cookie is used to determine when the schema for the 1525 ** database changes. After each schema change, the cookie value 1526 ** changes. When a process first reads the schema it records the 1527 ** cookie. Thereafter, whenever it goes to access the database, 1528 ** it checks the cookie to make sure the schema has not changed 1529 ** since it was last read. 1530 ** 1531 ** This plan is not completely bullet-proof. It is possible for 1532 ** the schema to change multiple times and for the cookie to be 1533 ** set back to prior value. But schema changes are infrequent 1534 ** and the probability of hitting the same cookie value is only 1535 ** 1 chance in 2^32. So we're safe enough. 1536 ** 1537 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1538 ** the schema-version whenever the schema changes. 1539 */ 1540 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1541 sqlite3 *db = pParse->db; 1542 Vdbe *v = pParse->pVdbe; 1543 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1544 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1545 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1546 } 1547 1548 /* 1549 ** Measure the number of characters needed to output the given 1550 ** identifier. The number returned includes any quotes used 1551 ** but does not include the null terminator. 1552 ** 1553 ** The estimate is conservative. It might be larger that what is 1554 ** really needed. 1555 */ 1556 static int identLength(const char *z){ 1557 int n; 1558 for(n=0; *z; n++, z++){ 1559 if( *z=='"' ){ n++; } 1560 } 1561 return n + 2; 1562 } 1563 1564 /* 1565 ** The first parameter is a pointer to an output buffer. The second 1566 ** parameter is a pointer to an integer that contains the offset at 1567 ** which to write into the output buffer. This function copies the 1568 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1569 ** to the specified offset in the buffer and updates *pIdx to refer 1570 ** to the first byte after the last byte written before returning. 1571 ** 1572 ** If the string zSignedIdent consists entirely of alpha-numeric 1573 ** characters, does not begin with a digit and is not an SQL keyword, 1574 ** then it is copied to the output buffer exactly as it is. Otherwise, 1575 ** it is quoted using double-quotes. 1576 */ 1577 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1578 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1579 int i, j, needQuote; 1580 i = *pIdx; 1581 1582 for(j=0; zIdent[j]; j++){ 1583 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1584 } 1585 needQuote = sqlite3Isdigit(zIdent[0]) 1586 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1587 || zIdent[j]!=0 1588 || j==0; 1589 1590 if( needQuote ) z[i++] = '"'; 1591 for(j=0; zIdent[j]; j++){ 1592 z[i++] = zIdent[j]; 1593 if( zIdent[j]=='"' ) z[i++] = '"'; 1594 } 1595 if( needQuote ) z[i++] = '"'; 1596 z[i] = 0; 1597 *pIdx = i; 1598 } 1599 1600 /* 1601 ** Generate a CREATE TABLE statement appropriate for the given 1602 ** table. Memory to hold the text of the statement is obtained 1603 ** from sqliteMalloc() and must be freed by the calling function. 1604 */ 1605 static char *createTableStmt(sqlite3 *db, Table *p){ 1606 int i, k, n; 1607 char *zStmt; 1608 char *zSep, *zSep2, *zEnd; 1609 Column *pCol; 1610 n = 0; 1611 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1612 n += identLength(pCol->zName) + 5; 1613 } 1614 n += identLength(p->zName); 1615 if( n<50 ){ 1616 zSep = ""; 1617 zSep2 = ","; 1618 zEnd = ")"; 1619 }else{ 1620 zSep = "\n "; 1621 zSep2 = ",\n "; 1622 zEnd = "\n)"; 1623 } 1624 n += 35 + 6*p->nCol; 1625 zStmt = sqlite3DbMallocRaw(0, n); 1626 if( zStmt==0 ){ 1627 sqlite3OomFault(db); 1628 return 0; 1629 } 1630 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1631 k = sqlite3Strlen30(zStmt); 1632 identPut(zStmt, &k, p->zName); 1633 zStmt[k++] = '('; 1634 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1635 static const char * const azType[] = { 1636 /* SQLITE_AFF_BLOB */ "", 1637 /* SQLITE_AFF_TEXT */ " TEXT", 1638 /* SQLITE_AFF_NUMERIC */ " NUM", 1639 /* SQLITE_AFF_INTEGER */ " INT", 1640 /* SQLITE_AFF_REAL */ " REAL" 1641 }; 1642 int len; 1643 const char *zType; 1644 1645 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1646 k += sqlite3Strlen30(&zStmt[k]); 1647 zSep = zSep2; 1648 identPut(zStmt, &k, pCol->zName); 1649 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1650 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1651 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1652 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1653 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1654 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1655 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1656 1657 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1658 len = sqlite3Strlen30(zType); 1659 assert( pCol->affinity==SQLITE_AFF_BLOB 1660 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1661 memcpy(&zStmt[k], zType, len); 1662 k += len; 1663 assert( k<=n ); 1664 } 1665 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1666 return zStmt; 1667 } 1668 1669 /* 1670 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1671 ** on success and SQLITE_NOMEM on an OOM error. 1672 */ 1673 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1674 char *zExtra; 1675 int nByte; 1676 if( pIdx->nColumn>=N ) return SQLITE_OK; 1677 assert( pIdx->isResized==0 ); 1678 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1679 zExtra = sqlite3DbMallocZero(db, nByte); 1680 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1681 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1682 pIdx->azColl = (const char**)zExtra; 1683 zExtra += sizeof(char*)*N; 1684 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1685 pIdx->aiColumn = (i16*)zExtra; 1686 zExtra += sizeof(i16)*N; 1687 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1688 pIdx->aSortOrder = (u8*)zExtra; 1689 pIdx->nColumn = N; 1690 pIdx->isResized = 1; 1691 return SQLITE_OK; 1692 } 1693 1694 /* 1695 ** Estimate the total row width for a table. 1696 */ 1697 static void estimateTableWidth(Table *pTab){ 1698 unsigned wTable = 0; 1699 const Column *pTabCol; 1700 int i; 1701 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1702 wTable += pTabCol->szEst; 1703 } 1704 if( pTab->iPKey<0 ) wTable++; 1705 pTab->szTabRow = sqlite3LogEst(wTable*4); 1706 } 1707 1708 /* 1709 ** Estimate the average size of a row for an index. 1710 */ 1711 static void estimateIndexWidth(Index *pIdx){ 1712 unsigned wIndex = 0; 1713 int i; 1714 const Column *aCol = pIdx->pTable->aCol; 1715 for(i=0; i<pIdx->nColumn; i++){ 1716 i16 x = pIdx->aiColumn[i]; 1717 assert( x<pIdx->pTable->nCol ); 1718 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1719 } 1720 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1721 } 1722 1723 /* Return true if value x is found any of the first nCol entries of aiCol[] 1724 */ 1725 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1726 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1727 return 0; 1728 } 1729 1730 /* Recompute the colNotIdxed field of the Index. 1731 ** 1732 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1733 ** columns that are within the first 63 columns of the table. The 1734 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1735 ** of the table have a 1. 1736 ** 1737 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1738 ** to determine if the index is covering index. 1739 */ 1740 static void recomputeColumnsNotIndexed(Index *pIdx){ 1741 Bitmask m = 0; 1742 int j; 1743 for(j=pIdx->nColumn-1; j>=0; j--){ 1744 int x = pIdx->aiColumn[j]; 1745 if( x>=0 ){ 1746 testcase( x==BMS-1 ); 1747 testcase( x==BMS-2 ); 1748 if( x<BMS-1 ) m |= MASKBIT(x); 1749 } 1750 } 1751 pIdx->colNotIdxed = ~m; 1752 assert( (pIdx->colNotIdxed>>63)==1 ); 1753 } 1754 1755 /* 1756 ** This routine runs at the end of parsing a CREATE TABLE statement that 1757 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1758 ** internal schema data structures and the generated VDBE code so that they 1759 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1760 ** Changes include: 1761 ** 1762 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1763 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1764 ** into BTREE_BLOBKEY. 1765 ** (3) Bypass the creation of the sqlite_master table entry 1766 ** for the PRIMARY KEY as the primary key index is now 1767 ** identified by the sqlite_master table entry of the table itself. 1768 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1769 ** schema to the rootpage from the main table. 1770 ** (5) Add all table columns to the PRIMARY KEY Index object 1771 ** so that the PRIMARY KEY is a covering index. The surplus 1772 ** columns are part of KeyInfo.nAllField and are not used for 1773 ** sorting or lookup or uniqueness checks. 1774 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1775 ** indices with the PRIMARY KEY columns. 1776 ** 1777 ** For virtual tables, only (1) is performed. 1778 */ 1779 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1780 Index *pIdx; 1781 Index *pPk; 1782 int nPk; 1783 int i, j; 1784 sqlite3 *db = pParse->db; 1785 Vdbe *v = pParse->pVdbe; 1786 1787 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1788 */ 1789 if( !db->init.imposterTable ){ 1790 for(i=0; i<pTab->nCol; i++){ 1791 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1792 pTab->aCol[i].notNull = OE_Abort; 1793 } 1794 } 1795 } 1796 1797 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1798 ** into BTREE_BLOBKEY. 1799 */ 1800 if( pParse->addrCrTab ){ 1801 assert( v ); 1802 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1803 } 1804 1805 /* Locate the PRIMARY KEY index. Or, if this table was originally 1806 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1807 */ 1808 if( pTab->iPKey>=0 ){ 1809 ExprList *pList; 1810 Token ipkToken; 1811 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1812 pList = sqlite3ExprListAppend(pParse, 0, 1813 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1814 if( pList==0 ) return; 1815 pList->a[0].sortOrder = pParse->iPkSortOrder; 1816 assert( pParse->pNewTable==pTab ); 1817 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1818 SQLITE_IDXTYPE_PRIMARYKEY); 1819 if( db->mallocFailed || pParse->nErr ) return; 1820 pPk = sqlite3PrimaryKeyIndex(pTab); 1821 pTab->iPKey = -1; 1822 }else{ 1823 pPk = sqlite3PrimaryKeyIndex(pTab); 1824 1825 /* 1826 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1827 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1828 ** code assumes the PRIMARY KEY contains no repeated columns. 1829 */ 1830 for(i=j=1; i<pPk->nKeyCol; i++){ 1831 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1832 pPk->nColumn--; 1833 }else{ 1834 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1835 } 1836 } 1837 pPk->nKeyCol = j; 1838 } 1839 assert( pPk!=0 ); 1840 pPk->isCovering = 1; 1841 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1842 nPk = pPk->nKeyCol; 1843 1844 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1845 ** table entry. This is only required if currently generating VDBE 1846 ** code for a CREATE TABLE (not when parsing one as part of reading 1847 ** a database schema). */ 1848 if( v && pPk->tnum>0 ){ 1849 assert( db->init.busy==0 ); 1850 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1851 } 1852 1853 /* The root page of the PRIMARY KEY is the table root page */ 1854 pPk->tnum = pTab->tnum; 1855 1856 /* Update the in-memory representation of all UNIQUE indices by converting 1857 ** the final rowid column into one or more columns of the PRIMARY KEY. 1858 */ 1859 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1860 int n; 1861 if( IsPrimaryKeyIndex(pIdx) ) continue; 1862 for(i=n=0; i<nPk; i++){ 1863 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1864 } 1865 if( n==0 ){ 1866 /* This index is a superset of the primary key */ 1867 pIdx->nColumn = pIdx->nKeyCol; 1868 continue; 1869 } 1870 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1871 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1872 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1873 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1874 pIdx->azColl[j] = pPk->azColl[i]; 1875 j++; 1876 } 1877 } 1878 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1879 assert( pIdx->nColumn>=j ); 1880 } 1881 1882 /* Add all table columns to the PRIMARY KEY index 1883 */ 1884 if( nPk<pTab->nCol ){ 1885 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1886 for(i=0, j=nPk; i<pTab->nCol; i++){ 1887 if( !hasColumn(pPk->aiColumn, j, i) ){ 1888 assert( j<pPk->nColumn ); 1889 pPk->aiColumn[j] = i; 1890 pPk->azColl[j] = sqlite3StrBINARY; 1891 j++; 1892 } 1893 } 1894 assert( pPk->nColumn==j ); 1895 assert( pTab->nCol==j ); 1896 }else{ 1897 pPk->nColumn = pTab->nCol; 1898 } 1899 recomputeColumnsNotIndexed(pPk); 1900 } 1901 1902 #ifndef SQLITE_OMIT_VIRTUALTABLE 1903 /* 1904 ** Return true if zName is a shadow table name in the current database 1905 ** connection. 1906 ** 1907 ** zName is temporarily modified while this routine is running, but is 1908 ** restored to its original value prior to this routine returning. 1909 */ 1910 static int isShadowTableName(sqlite3 *db, char *zName){ 1911 char *zTail; /* Pointer to the last "_" in zName */ 1912 Table *pTab; /* Table that zName is a shadow of */ 1913 Module *pMod; /* Module for the virtual table */ 1914 1915 zTail = strrchr(zName, '_'); 1916 if( zTail==0 ) return 0; 1917 *zTail = 0; 1918 pTab = sqlite3FindTable(db, zName, 0); 1919 *zTail = '_'; 1920 if( pTab==0 ) return 0; 1921 if( !IsVirtual(pTab) ) return 0; 1922 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 1923 if( pMod==0 ) return 0; 1924 if( pMod->pModule->iVersion<3 ) return 0; 1925 if( pMod->pModule->xShadowName==0 ) return 0; 1926 return pMod->pModule->xShadowName(zTail+1); 1927 } 1928 #else 1929 # define isShadowTableName(x,y) 0 1930 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 1931 1932 /* 1933 ** This routine is called to report the final ")" that terminates 1934 ** a CREATE TABLE statement. 1935 ** 1936 ** The table structure that other action routines have been building 1937 ** is added to the internal hash tables, assuming no errors have 1938 ** occurred. 1939 ** 1940 ** An entry for the table is made in the master table on disk, unless 1941 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1942 ** it means we are reading the sqlite_master table because we just 1943 ** connected to the database or because the sqlite_master table has 1944 ** recently changed, so the entry for this table already exists in 1945 ** the sqlite_master table. We do not want to create it again. 1946 ** 1947 ** If the pSelect argument is not NULL, it means that this routine 1948 ** was called to create a table generated from a 1949 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1950 ** the new table will match the result set of the SELECT. 1951 */ 1952 void sqlite3EndTable( 1953 Parse *pParse, /* Parse context */ 1954 Token *pCons, /* The ',' token after the last column defn. */ 1955 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1956 u8 tabOpts, /* Extra table options. Usually 0. */ 1957 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1958 ){ 1959 Table *p; /* The new table */ 1960 sqlite3 *db = pParse->db; /* The database connection */ 1961 int iDb; /* Database in which the table lives */ 1962 Index *pIdx; /* An implied index of the table */ 1963 1964 if( pEnd==0 && pSelect==0 ){ 1965 return; 1966 } 1967 assert( !db->mallocFailed ); 1968 p = pParse->pNewTable; 1969 if( p==0 ) return; 1970 1971 if( pSelect==0 && isShadowTableName(db, p->zName) ){ 1972 p->tabFlags |= TF_Shadow; 1973 } 1974 1975 /* If the db->init.busy is 1 it means we are reading the SQL off the 1976 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1977 ** So do not write to the disk again. Extract the root page number 1978 ** for the table from the db->init.newTnum field. (The page number 1979 ** should have been put there by the sqliteOpenCb routine.) 1980 ** 1981 ** If the root page number is 1, that means this is the sqlite_master 1982 ** table itself. So mark it read-only. 1983 */ 1984 if( db->init.busy ){ 1985 if( pSelect ){ 1986 sqlite3ErrorMsg(pParse, ""); 1987 return; 1988 } 1989 p->tnum = db->init.newTnum; 1990 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1991 } 1992 1993 /* Special processing for WITHOUT ROWID Tables */ 1994 if( tabOpts & TF_WithoutRowid ){ 1995 if( (p->tabFlags & TF_Autoincrement) ){ 1996 sqlite3ErrorMsg(pParse, 1997 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1998 return; 1999 } 2000 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2001 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2002 }else{ 2003 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2004 convertToWithoutRowidTable(pParse, p); 2005 } 2006 } 2007 2008 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2009 2010 #ifndef SQLITE_OMIT_CHECK 2011 /* Resolve names in all CHECK constraint expressions. 2012 */ 2013 if( p->pCheck ){ 2014 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2015 } 2016 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2017 2018 /* Estimate the average row size for the table and for all implied indices */ 2019 estimateTableWidth(p); 2020 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2021 estimateIndexWidth(pIdx); 2022 } 2023 2024 /* If not initializing, then create a record for the new table 2025 ** in the SQLITE_MASTER table of the database. 2026 ** 2027 ** If this is a TEMPORARY table, write the entry into the auxiliary 2028 ** file instead of into the main database file. 2029 */ 2030 if( !db->init.busy ){ 2031 int n; 2032 Vdbe *v; 2033 char *zType; /* "view" or "table" */ 2034 char *zType2; /* "VIEW" or "TABLE" */ 2035 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2036 2037 v = sqlite3GetVdbe(pParse); 2038 if( NEVER(v==0) ) return; 2039 2040 sqlite3VdbeAddOp1(v, OP_Close, 0); 2041 2042 /* 2043 ** Initialize zType for the new view or table. 2044 */ 2045 if( p->pSelect==0 ){ 2046 /* A regular table */ 2047 zType = "table"; 2048 zType2 = "TABLE"; 2049 #ifndef SQLITE_OMIT_VIEW 2050 }else{ 2051 /* A view */ 2052 zType = "view"; 2053 zType2 = "VIEW"; 2054 #endif 2055 } 2056 2057 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2058 ** statement to populate the new table. The root-page number for the 2059 ** new table is in register pParse->regRoot. 2060 ** 2061 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2062 ** suitable state to query for the column names and types to be used 2063 ** by the new table. 2064 ** 2065 ** A shared-cache write-lock is not required to write to the new table, 2066 ** as a schema-lock must have already been obtained to create it. Since 2067 ** a schema-lock excludes all other database users, the write-lock would 2068 ** be redundant. 2069 */ 2070 if( pSelect ){ 2071 SelectDest dest; /* Where the SELECT should store results */ 2072 int regYield; /* Register holding co-routine entry-point */ 2073 int addrTop; /* Top of the co-routine */ 2074 int regRec; /* A record to be insert into the new table */ 2075 int regRowid; /* Rowid of the next row to insert */ 2076 int addrInsLoop; /* Top of the loop for inserting rows */ 2077 Table *pSelTab; /* A table that describes the SELECT results */ 2078 2079 regYield = ++pParse->nMem; 2080 regRec = ++pParse->nMem; 2081 regRowid = ++pParse->nMem; 2082 assert(pParse->nTab==1); 2083 sqlite3MayAbort(pParse); 2084 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2085 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2086 pParse->nTab = 2; 2087 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2088 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2089 if( pParse->nErr ) return; 2090 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 2091 if( pSelTab==0 ) return; 2092 assert( p->aCol==0 ); 2093 p->nCol = pSelTab->nCol; 2094 p->aCol = pSelTab->aCol; 2095 pSelTab->nCol = 0; 2096 pSelTab->aCol = 0; 2097 sqlite3DeleteTable(db, pSelTab); 2098 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2099 sqlite3Select(pParse, pSelect, &dest); 2100 if( pParse->nErr ) return; 2101 sqlite3VdbeEndCoroutine(v, regYield); 2102 sqlite3VdbeJumpHere(v, addrTop - 1); 2103 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2104 VdbeCoverage(v); 2105 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2106 sqlite3TableAffinity(v, p, 0); 2107 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2108 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2109 sqlite3VdbeGoto(v, addrInsLoop); 2110 sqlite3VdbeJumpHere(v, addrInsLoop); 2111 sqlite3VdbeAddOp1(v, OP_Close, 1); 2112 } 2113 2114 /* Compute the complete text of the CREATE statement */ 2115 if( pSelect ){ 2116 zStmt = createTableStmt(db, p); 2117 }else{ 2118 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2119 n = (int)(pEnd2->z - pParse->sNameToken.z); 2120 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2121 zStmt = sqlite3MPrintf(db, 2122 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2123 ); 2124 } 2125 2126 /* A slot for the record has already been allocated in the 2127 ** SQLITE_MASTER table. We just need to update that slot with all 2128 ** the information we've collected. 2129 */ 2130 sqlite3NestedParse(pParse, 2131 "UPDATE %Q.%s " 2132 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2133 "WHERE rowid=#%d", 2134 db->aDb[iDb].zDbSName, MASTER_NAME, 2135 zType, 2136 p->zName, 2137 p->zName, 2138 pParse->regRoot, 2139 zStmt, 2140 pParse->regRowid 2141 ); 2142 sqlite3DbFree(db, zStmt); 2143 sqlite3ChangeCookie(pParse, iDb); 2144 2145 #ifndef SQLITE_OMIT_AUTOINCREMENT 2146 /* Check to see if we need to create an sqlite_sequence table for 2147 ** keeping track of autoincrement keys. 2148 */ 2149 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2150 Db *pDb = &db->aDb[iDb]; 2151 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2152 if( pDb->pSchema->pSeqTab==0 ){ 2153 sqlite3NestedParse(pParse, 2154 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2155 pDb->zDbSName 2156 ); 2157 } 2158 } 2159 #endif 2160 2161 /* Reparse everything to update our internal data structures */ 2162 sqlite3VdbeAddParseSchemaOp(v, iDb, 2163 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2164 } 2165 2166 2167 /* Add the table to the in-memory representation of the database. 2168 */ 2169 if( db->init.busy ){ 2170 Table *pOld; 2171 Schema *pSchema = p->pSchema; 2172 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2173 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2174 if( pOld ){ 2175 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2176 sqlite3OomFault(db); 2177 return; 2178 } 2179 pParse->pNewTable = 0; 2180 db->mDbFlags |= DBFLAG_SchemaChange; 2181 2182 #ifndef SQLITE_OMIT_ALTERTABLE 2183 if( !p->pSelect ){ 2184 const char *zName = (const char *)pParse->sNameToken.z; 2185 int nName; 2186 assert( !pSelect && pCons && pEnd ); 2187 if( pCons->z==0 ){ 2188 pCons = pEnd; 2189 } 2190 nName = (int)((const char *)pCons->z - zName); 2191 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2192 } 2193 #endif 2194 } 2195 } 2196 2197 #ifndef SQLITE_OMIT_VIEW 2198 /* 2199 ** The parser calls this routine in order to create a new VIEW 2200 */ 2201 void sqlite3CreateView( 2202 Parse *pParse, /* The parsing context */ 2203 Token *pBegin, /* The CREATE token that begins the statement */ 2204 Token *pName1, /* The token that holds the name of the view */ 2205 Token *pName2, /* The token that holds the name of the view */ 2206 ExprList *pCNames, /* Optional list of view column names */ 2207 Select *pSelect, /* A SELECT statement that will become the new view */ 2208 int isTemp, /* TRUE for a TEMPORARY view */ 2209 int noErr /* Suppress error messages if VIEW already exists */ 2210 ){ 2211 Table *p; 2212 int n; 2213 const char *z; 2214 Token sEnd; 2215 DbFixer sFix; 2216 Token *pName = 0; 2217 int iDb; 2218 sqlite3 *db = pParse->db; 2219 2220 if( pParse->nVar>0 ){ 2221 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2222 goto create_view_fail; 2223 } 2224 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2225 p = pParse->pNewTable; 2226 if( p==0 || pParse->nErr ) goto create_view_fail; 2227 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2228 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2229 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2230 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2231 2232 /* Make a copy of the entire SELECT statement that defines the view. 2233 ** This will force all the Expr.token.z values to be dynamically 2234 ** allocated rather than point to the input string - which means that 2235 ** they will persist after the current sqlite3_exec() call returns. 2236 */ 2237 if( IN_RENAME_OBJECT ){ 2238 p->pSelect = pSelect; 2239 pSelect = 0; 2240 }else{ 2241 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2242 } 2243 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2244 if( db->mallocFailed ) goto create_view_fail; 2245 2246 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2247 ** the end. 2248 */ 2249 sEnd = pParse->sLastToken; 2250 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2251 if( sEnd.z[0]!=';' ){ 2252 sEnd.z += sEnd.n; 2253 } 2254 sEnd.n = 0; 2255 n = (int)(sEnd.z - pBegin->z); 2256 assert( n>0 ); 2257 z = pBegin->z; 2258 while( sqlite3Isspace(z[n-1]) ){ n--; } 2259 sEnd.z = &z[n-1]; 2260 sEnd.n = 1; 2261 2262 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2263 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2264 2265 create_view_fail: 2266 sqlite3SelectDelete(db, pSelect); 2267 if( IN_RENAME_OBJECT ){ 2268 sqlite3RenameExprlistUnmap(pParse, pCNames); 2269 } 2270 sqlite3ExprListDelete(db, pCNames); 2271 return; 2272 } 2273 #endif /* SQLITE_OMIT_VIEW */ 2274 2275 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2276 /* 2277 ** The Table structure pTable is really a VIEW. Fill in the names of 2278 ** the columns of the view in the pTable structure. Return the number 2279 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2280 */ 2281 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2282 Table *pSelTab; /* A fake table from which we get the result set */ 2283 Select *pSel; /* Copy of the SELECT that implements the view */ 2284 int nErr = 0; /* Number of errors encountered */ 2285 int n; /* Temporarily holds the number of cursors assigned */ 2286 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2287 #ifndef SQLITE_OMIT_VIRTUALTABLE 2288 int rc; 2289 #endif 2290 #ifndef SQLITE_OMIT_AUTHORIZATION 2291 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2292 #endif 2293 2294 assert( pTable ); 2295 2296 #ifndef SQLITE_OMIT_VIRTUALTABLE 2297 db->nSchemaLock++; 2298 rc = sqlite3VtabCallConnect(pParse, pTable); 2299 db->nSchemaLock--; 2300 if( rc ){ 2301 return 1; 2302 } 2303 if( IsVirtual(pTable) ) return 0; 2304 #endif 2305 2306 #ifndef SQLITE_OMIT_VIEW 2307 /* A positive nCol means the columns names for this view are 2308 ** already known. 2309 */ 2310 if( pTable->nCol>0 ) return 0; 2311 2312 /* A negative nCol is a special marker meaning that we are currently 2313 ** trying to compute the column names. If we enter this routine with 2314 ** a negative nCol, it means two or more views form a loop, like this: 2315 ** 2316 ** CREATE VIEW one AS SELECT * FROM two; 2317 ** CREATE VIEW two AS SELECT * FROM one; 2318 ** 2319 ** Actually, the error above is now caught prior to reaching this point. 2320 ** But the following test is still important as it does come up 2321 ** in the following: 2322 ** 2323 ** CREATE TABLE main.ex1(a); 2324 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2325 ** SELECT * FROM temp.ex1; 2326 */ 2327 if( pTable->nCol<0 ){ 2328 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2329 return 1; 2330 } 2331 assert( pTable->nCol>=0 ); 2332 2333 /* If we get this far, it means we need to compute the table names. 2334 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2335 ** "*" elements in the results set of the view and will assign cursors 2336 ** to the elements of the FROM clause. But we do not want these changes 2337 ** to be permanent. So the computation is done on a copy of the SELECT 2338 ** statement that defines the view. 2339 */ 2340 assert( pTable->pSelect ); 2341 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2342 if( pSel ){ 2343 #ifndef SQLITE_OMIT_ALTERTABLE 2344 u8 eParseMode = pParse->eParseMode; 2345 pParse->eParseMode = PARSE_MODE_NORMAL; 2346 #endif 2347 n = pParse->nTab; 2348 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2349 pTable->nCol = -1; 2350 db->lookaside.bDisable++; 2351 #ifndef SQLITE_OMIT_AUTHORIZATION 2352 xAuth = db->xAuth; 2353 db->xAuth = 0; 2354 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2355 db->xAuth = xAuth; 2356 #else 2357 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2358 #endif 2359 pParse->nTab = n; 2360 if( pTable->pCheck ){ 2361 /* CREATE VIEW name(arglist) AS ... 2362 ** The names of the columns in the table are taken from 2363 ** arglist which is stored in pTable->pCheck. The pCheck field 2364 ** normally holds CHECK constraints on an ordinary table, but for 2365 ** a VIEW it holds the list of column names. 2366 */ 2367 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2368 &pTable->nCol, &pTable->aCol); 2369 if( db->mallocFailed==0 2370 && pParse->nErr==0 2371 && pTable->nCol==pSel->pEList->nExpr 2372 ){ 2373 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2374 } 2375 }else if( pSelTab ){ 2376 /* CREATE VIEW name AS... without an argument list. Construct 2377 ** the column names from the SELECT statement that defines the view. 2378 */ 2379 assert( pTable->aCol==0 ); 2380 pTable->nCol = pSelTab->nCol; 2381 pTable->aCol = pSelTab->aCol; 2382 pSelTab->nCol = 0; 2383 pSelTab->aCol = 0; 2384 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2385 }else{ 2386 pTable->nCol = 0; 2387 nErr++; 2388 } 2389 sqlite3DeleteTable(db, pSelTab); 2390 sqlite3SelectDelete(db, pSel); 2391 db->lookaside.bDisable--; 2392 #ifndef SQLITE_OMIT_ALTERTABLE 2393 pParse->eParseMode = eParseMode; 2394 #endif 2395 } else { 2396 nErr++; 2397 } 2398 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2399 if( db->mallocFailed ){ 2400 sqlite3DeleteColumnNames(db, pTable); 2401 pTable->aCol = 0; 2402 pTable->nCol = 0; 2403 } 2404 #endif /* SQLITE_OMIT_VIEW */ 2405 return nErr; 2406 } 2407 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2408 2409 #ifndef SQLITE_OMIT_VIEW 2410 /* 2411 ** Clear the column names from every VIEW in database idx. 2412 */ 2413 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2414 HashElem *i; 2415 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2416 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2417 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2418 Table *pTab = sqliteHashData(i); 2419 if( pTab->pSelect ){ 2420 sqlite3DeleteColumnNames(db, pTab); 2421 pTab->aCol = 0; 2422 pTab->nCol = 0; 2423 } 2424 } 2425 DbClearProperty(db, idx, DB_UnresetViews); 2426 } 2427 #else 2428 # define sqliteViewResetAll(A,B) 2429 #endif /* SQLITE_OMIT_VIEW */ 2430 2431 /* 2432 ** This function is called by the VDBE to adjust the internal schema 2433 ** used by SQLite when the btree layer moves a table root page. The 2434 ** root-page of a table or index in database iDb has changed from iFrom 2435 ** to iTo. 2436 ** 2437 ** Ticket #1728: The symbol table might still contain information 2438 ** on tables and/or indices that are the process of being deleted. 2439 ** If you are unlucky, one of those deleted indices or tables might 2440 ** have the same rootpage number as the real table or index that is 2441 ** being moved. So we cannot stop searching after the first match 2442 ** because the first match might be for one of the deleted indices 2443 ** or tables and not the table/index that is actually being moved. 2444 ** We must continue looping until all tables and indices with 2445 ** rootpage==iFrom have been converted to have a rootpage of iTo 2446 ** in order to be certain that we got the right one. 2447 */ 2448 #ifndef SQLITE_OMIT_AUTOVACUUM 2449 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2450 HashElem *pElem; 2451 Hash *pHash; 2452 Db *pDb; 2453 2454 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2455 pDb = &db->aDb[iDb]; 2456 pHash = &pDb->pSchema->tblHash; 2457 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2458 Table *pTab = sqliteHashData(pElem); 2459 if( pTab->tnum==iFrom ){ 2460 pTab->tnum = iTo; 2461 } 2462 } 2463 pHash = &pDb->pSchema->idxHash; 2464 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2465 Index *pIdx = sqliteHashData(pElem); 2466 if( pIdx->tnum==iFrom ){ 2467 pIdx->tnum = iTo; 2468 } 2469 } 2470 } 2471 #endif 2472 2473 /* 2474 ** Write code to erase the table with root-page iTable from database iDb. 2475 ** Also write code to modify the sqlite_master table and internal schema 2476 ** if a root-page of another table is moved by the btree-layer whilst 2477 ** erasing iTable (this can happen with an auto-vacuum database). 2478 */ 2479 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2480 Vdbe *v = sqlite3GetVdbe(pParse); 2481 int r1 = sqlite3GetTempReg(pParse); 2482 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2483 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2484 sqlite3MayAbort(pParse); 2485 #ifndef SQLITE_OMIT_AUTOVACUUM 2486 /* OP_Destroy stores an in integer r1. If this integer 2487 ** is non-zero, then it is the root page number of a table moved to 2488 ** location iTable. The following code modifies the sqlite_master table to 2489 ** reflect this. 2490 ** 2491 ** The "#NNN" in the SQL is a special constant that means whatever value 2492 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2493 ** token for additional information. 2494 */ 2495 sqlite3NestedParse(pParse, 2496 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2497 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2498 #endif 2499 sqlite3ReleaseTempReg(pParse, r1); 2500 } 2501 2502 /* 2503 ** Write VDBE code to erase table pTab and all associated indices on disk. 2504 ** Code to update the sqlite_master tables and internal schema definitions 2505 ** in case a root-page belonging to another table is moved by the btree layer 2506 ** is also added (this can happen with an auto-vacuum database). 2507 */ 2508 static void destroyTable(Parse *pParse, Table *pTab){ 2509 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2510 ** is not defined), then it is important to call OP_Destroy on the 2511 ** table and index root-pages in order, starting with the numerically 2512 ** largest root-page number. This guarantees that none of the root-pages 2513 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2514 ** following were coded: 2515 ** 2516 ** OP_Destroy 4 0 2517 ** ... 2518 ** OP_Destroy 5 0 2519 ** 2520 ** and root page 5 happened to be the largest root-page number in the 2521 ** database, then root page 5 would be moved to page 4 by the 2522 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2523 ** a free-list page. 2524 */ 2525 int iTab = pTab->tnum; 2526 int iDestroyed = 0; 2527 2528 while( 1 ){ 2529 Index *pIdx; 2530 int iLargest = 0; 2531 2532 if( iDestroyed==0 || iTab<iDestroyed ){ 2533 iLargest = iTab; 2534 } 2535 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2536 int iIdx = pIdx->tnum; 2537 assert( pIdx->pSchema==pTab->pSchema ); 2538 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2539 iLargest = iIdx; 2540 } 2541 } 2542 if( iLargest==0 ){ 2543 return; 2544 }else{ 2545 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2546 assert( iDb>=0 && iDb<pParse->db->nDb ); 2547 destroyRootPage(pParse, iLargest, iDb); 2548 iDestroyed = iLargest; 2549 } 2550 } 2551 } 2552 2553 /* 2554 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2555 ** after a DROP INDEX or DROP TABLE command. 2556 */ 2557 static void sqlite3ClearStatTables( 2558 Parse *pParse, /* The parsing context */ 2559 int iDb, /* The database number */ 2560 const char *zType, /* "idx" or "tbl" */ 2561 const char *zName /* Name of index or table */ 2562 ){ 2563 int i; 2564 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2565 for(i=1; i<=4; i++){ 2566 char zTab[24]; 2567 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2568 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2569 sqlite3NestedParse(pParse, 2570 "DELETE FROM %Q.%s WHERE %s=%Q", 2571 zDbName, zTab, zType, zName 2572 ); 2573 } 2574 } 2575 } 2576 2577 /* 2578 ** Generate code to drop a table. 2579 */ 2580 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2581 Vdbe *v; 2582 sqlite3 *db = pParse->db; 2583 Trigger *pTrigger; 2584 Db *pDb = &db->aDb[iDb]; 2585 2586 v = sqlite3GetVdbe(pParse); 2587 assert( v!=0 ); 2588 sqlite3BeginWriteOperation(pParse, 1, iDb); 2589 2590 #ifndef SQLITE_OMIT_VIRTUALTABLE 2591 if( IsVirtual(pTab) ){ 2592 sqlite3VdbeAddOp0(v, OP_VBegin); 2593 } 2594 #endif 2595 2596 /* Drop all triggers associated with the table being dropped. Code 2597 ** is generated to remove entries from sqlite_master and/or 2598 ** sqlite_temp_master if required. 2599 */ 2600 pTrigger = sqlite3TriggerList(pParse, pTab); 2601 while( pTrigger ){ 2602 assert( pTrigger->pSchema==pTab->pSchema || 2603 pTrigger->pSchema==db->aDb[1].pSchema ); 2604 sqlite3DropTriggerPtr(pParse, pTrigger); 2605 pTrigger = pTrigger->pNext; 2606 } 2607 2608 #ifndef SQLITE_OMIT_AUTOINCREMENT 2609 /* Remove any entries of the sqlite_sequence table associated with 2610 ** the table being dropped. This is done before the table is dropped 2611 ** at the btree level, in case the sqlite_sequence table needs to 2612 ** move as a result of the drop (can happen in auto-vacuum mode). 2613 */ 2614 if( pTab->tabFlags & TF_Autoincrement ){ 2615 sqlite3NestedParse(pParse, 2616 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2617 pDb->zDbSName, pTab->zName 2618 ); 2619 } 2620 #endif 2621 2622 /* Drop all SQLITE_MASTER table and index entries that refer to the 2623 ** table. The program name loops through the master table and deletes 2624 ** every row that refers to a table of the same name as the one being 2625 ** dropped. Triggers are handled separately because a trigger can be 2626 ** created in the temp database that refers to a table in another 2627 ** database. 2628 */ 2629 sqlite3NestedParse(pParse, 2630 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2631 pDb->zDbSName, MASTER_NAME, pTab->zName); 2632 if( !isView && !IsVirtual(pTab) ){ 2633 destroyTable(pParse, pTab); 2634 } 2635 2636 /* Remove the table entry from SQLite's internal schema and modify 2637 ** the schema cookie. 2638 */ 2639 if( IsVirtual(pTab) ){ 2640 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2641 } 2642 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2643 sqlite3ChangeCookie(pParse, iDb); 2644 sqliteViewResetAll(db, iDb); 2645 } 2646 2647 /* 2648 ** This routine is called to do the work of a DROP TABLE statement. 2649 ** pName is the name of the table to be dropped. 2650 */ 2651 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2652 Table *pTab; 2653 Vdbe *v; 2654 sqlite3 *db = pParse->db; 2655 int iDb; 2656 2657 if( db->mallocFailed ){ 2658 goto exit_drop_table; 2659 } 2660 assert( pParse->nErr==0 ); 2661 assert( pName->nSrc==1 ); 2662 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2663 if( noErr ) db->suppressErr++; 2664 assert( isView==0 || isView==LOCATE_VIEW ); 2665 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2666 if( noErr ) db->suppressErr--; 2667 2668 if( pTab==0 ){ 2669 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2670 goto exit_drop_table; 2671 } 2672 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2673 assert( iDb>=0 && iDb<db->nDb ); 2674 2675 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2676 ** it is initialized. 2677 */ 2678 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2679 goto exit_drop_table; 2680 } 2681 #ifndef SQLITE_OMIT_AUTHORIZATION 2682 { 2683 int code; 2684 const char *zTab = SCHEMA_TABLE(iDb); 2685 const char *zDb = db->aDb[iDb].zDbSName; 2686 const char *zArg2 = 0; 2687 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2688 goto exit_drop_table; 2689 } 2690 if( isView ){ 2691 if( !OMIT_TEMPDB && iDb==1 ){ 2692 code = SQLITE_DROP_TEMP_VIEW; 2693 }else{ 2694 code = SQLITE_DROP_VIEW; 2695 } 2696 #ifndef SQLITE_OMIT_VIRTUALTABLE 2697 }else if( IsVirtual(pTab) ){ 2698 code = SQLITE_DROP_VTABLE; 2699 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2700 #endif 2701 }else{ 2702 if( !OMIT_TEMPDB && iDb==1 ){ 2703 code = SQLITE_DROP_TEMP_TABLE; 2704 }else{ 2705 code = SQLITE_DROP_TABLE; 2706 } 2707 } 2708 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2709 goto exit_drop_table; 2710 } 2711 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2712 goto exit_drop_table; 2713 } 2714 } 2715 #endif 2716 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2717 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2718 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2719 goto exit_drop_table; 2720 } 2721 2722 #ifndef SQLITE_OMIT_VIEW 2723 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2724 ** on a table. 2725 */ 2726 if( isView && pTab->pSelect==0 ){ 2727 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2728 goto exit_drop_table; 2729 } 2730 if( !isView && pTab->pSelect ){ 2731 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2732 goto exit_drop_table; 2733 } 2734 #endif 2735 2736 /* Generate code to remove the table from the master table 2737 ** on disk. 2738 */ 2739 v = sqlite3GetVdbe(pParse); 2740 if( v ){ 2741 sqlite3BeginWriteOperation(pParse, 1, iDb); 2742 if( !isView ){ 2743 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2744 sqlite3FkDropTable(pParse, pName, pTab); 2745 } 2746 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2747 } 2748 2749 exit_drop_table: 2750 sqlite3SrcListDelete(db, pName); 2751 } 2752 2753 /* 2754 ** This routine is called to create a new foreign key on the table 2755 ** currently under construction. pFromCol determines which columns 2756 ** in the current table point to the foreign key. If pFromCol==0 then 2757 ** connect the key to the last column inserted. pTo is the name of 2758 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2759 ** of tables in the parent pTo table. flags contains all 2760 ** information about the conflict resolution algorithms specified 2761 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2762 ** 2763 ** An FKey structure is created and added to the table currently 2764 ** under construction in the pParse->pNewTable field. 2765 ** 2766 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2767 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2768 */ 2769 void sqlite3CreateForeignKey( 2770 Parse *pParse, /* Parsing context */ 2771 ExprList *pFromCol, /* Columns in this table that point to other table */ 2772 Token *pTo, /* Name of the other table */ 2773 ExprList *pToCol, /* Columns in the other table */ 2774 int flags /* Conflict resolution algorithms. */ 2775 ){ 2776 sqlite3 *db = pParse->db; 2777 #ifndef SQLITE_OMIT_FOREIGN_KEY 2778 FKey *pFKey = 0; 2779 FKey *pNextTo; 2780 Table *p = pParse->pNewTable; 2781 int nByte; 2782 int i; 2783 int nCol; 2784 char *z; 2785 2786 assert( pTo!=0 ); 2787 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2788 if( pFromCol==0 ){ 2789 int iCol = p->nCol-1; 2790 if( NEVER(iCol<0) ) goto fk_end; 2791 if( pToCol && pToCol->nExpr!=1 ){ 2792 sqlite3ErrorMsg(pParse, "foreign key on %s" 2793 " should reference only one column of table %T", 2794 p->aCol[iCol].zName, pTo); 2795 goto fk_end; 2796 } 2797 nCol = 1; 2798 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2799 sqlite3ErrorMsg(pParse, 2800 "number of columns in foreign key does not match the number of " 2801 "columns in the referenced table"); 2802 goto fk_end; 2803 }else{ 2804 nCol = pFromCol->nExpr; 2805 } 2806 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2807 if( pToCol ){ 2808 for(i=0; i<pToCol->nExpr; i++){ 2809 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2810 } 2811 } 2812 pFKey = sqlite3DbMallocZero(db, nByte ); 2813 if( pFKey==0 ){ 2814 goto fk_end; 2815 } 2816 pFKey->pFrom = p; 2817 pFKey->pNextFrom = p->pFKey; 2818 z = (char*)&pFKey->aCol[nCol]; 2819 pFKey->zTo = z; 2820 if( IN_RENAME_OBJECT ){ 2821 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 2822 } 2823 memcpy(z, pTo->z, pTo->n); 2824 z[pTo->n] = 0; 2825 sqlite3Dequote(z); 2826 z += pTo->n+1; 2827 pFKey->nCol = nCol; 2828 if( pFromCol==0 ){ 2829 pFKey->aCol[0].iFrom = p->nCol-1; 2830 }else{ 2831 for(i=0; i<nCol; i++){ 2832 int j; 2833 for(j=0; j<p->nCol; j++){ 2834 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2835 pFKey->aCol[i].iFrom = j; 2836 break; 2837 } 2838 } 2839 if( j>=p->nCol ){ 2840 sqlite3ErrorMsg(pParse, 2841 "unknown column \"%s\" in foreign key definition", 2842 pFromCol->a[i].zName); 2843 goto fk_end; 2844 } 2845 if( IN_RENAME_OBJECT ){ 2846 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName); 2847 } 2848 } 2849 } 2850 if( pToCol ){ 2851 for(i=0; i<nCol; i++){ 2852 int n = sqlite3Strlen30(pToCol->a[i].zName); 2853 pFKey->aCol[i].zCol = z; 2854 if( IN_RENAME_OBJECT ){ 2855 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName); 2856 } 2857 memcpy(z, pToCol->a[i].zName, n); 2858 z[n] = 0; 2859 z += n+1; 2860 } 2861 } 2862 pFKey->isDeferred = 0; 2863 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2864 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2865 2866 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2867 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2868 pFKey->zTo, (void *)pFKey 2869 ); 2870 if( pNextTo==pFKey ){ 2871 sqlite3OomFault(db); 2872 goto fk_end; 2873 } 2874 if( pNextTo ){ 2875 assert( pNextTo->pPrevTo==0 ); 2876 pFKey->pNextTo = pNextTo; 2877 pNextTo->pPrevTo = pFKey; 2878 } 2879 2880 /* Link the foreign key to the table as the last step. 2881 */ 2882 p->pFKey = pFKey; 2883 pFKey = 0; 2884 2885 fk_end: 2886 sqlite3DbFree(db, pFKey); 2887 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2888 sqlite3ExprListDelete(db, pFromCol); 2889 sqlite3ExprListDelete(db, pToCol); 2890 } 2891 2892 /* 2893 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2894 ** clause is seen as part of a foreign key definition. The isDeferred 2895 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2896 ** The behavior of the most recently created foreign key is adjusted 2897 ** accordingly. 2898 */ 2899 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2900 #ifndef SQLITE_OMIT_FOREIGN_KEY 2901 Table *pTab; 2902 FKey *pFKey; 2903 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2904 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2905 pFKey->isDeferred = (u8)isDeferred; 2906 #endif 2907 } 2908 2909 /* 2910 ** Generate code that will erase and refill index *pIdx. This is 2911 ** used to initialize a newly created index or to recompute the 2912 ** content of an index in response to a REINDEX command. 2913 ** 2914 ** if memRootPage is not negative, it means that the index is newly 2915 ** created. The register specified by memRootPage contains the 2916 ** root page number of the index. If memRootPage is negative, then 2917 ** the index already exists and must be cleared before being refilled and 2918 ** the root page number of the index is taken from pIndex->tnum. 2919 */ 2920 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2921 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2922 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2923 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2924 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2925 int addr1; /* Address of top of loop */ 2926 int addr2; /* Address to jump to for next iteration */ 2927 int tnum; /* Root page of index */ 2928 int iPartIdxLabel; /* Jump to this label to skip a row */ 2929 Vdbe *v; /* Generate code into this virtual machine */ 2930 KeyInfo *pKey; /* KeyInfo for index */ 2931 int regRecord; /* Register holding assembled index record */ 2932 sqlite3 *db = pParse->db; /* The database connection */ 2933 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2934 2935 #ifndef SQLITE_OMIT_AUTHORIZATION 2936 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2937 db->aDb[iDb].zDbSName ) ){ 2938 return; 2939 } 2940 #endif 2941 2942 /* Require a write-lock on the table to perform this operation */ 2943 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2944 2945 v = sqlite3GetVdbe(pParse); 2946 if( v==0 ) return; 2947 if( memRootPage>=0 ){ 2948 tnum = memRootPage; 2949 }else{ 2950 tnum = pIndex->tnum; 2951 } 2952 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2953 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2954 2955 /* Open the sorter cursor if we are to use one. */ 2956 iSorter = pParse->nTab++; 2957 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2958 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2959 2960 /* Open the table. Loop through all rows of the table, inserting index 2961 ** records into the sorter. */ 2962 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2963 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2964 regRecord = sqlite3GetTempReg(pParse); 2965 sqlite3MultiWrite(pParse); 2966 2967 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2968 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2969 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2970 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2971 sqlite3VdbeJumpHere(v, addr1); 2972 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2973 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2974 (char *)pKey, P4_KEYINFO); 2975 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2976 2977 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2978 if( IsUniqueIndex(pIndex) ){ 2979 int j2 = sqlite3VdbeGoto(v, 1); 2980 addr2 = sqlite3VdbeCurrentAddr(v); 2981 sqlite3VdbeVerifyAbortable(v, OE_Abort); 2982 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2983 pIndex->nKeyCol); VdbeCoverage(v); 2984 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2985 sqlite3VdbeJumpHere(v, j2); 2986 }else{ 2987 addr2 = sqlite3VdbeCurrentAddr(v); 2988 } 2989 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2990 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 2991 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2992 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2993 sqlite3ReleaseTempReg(pParse, regRecord); 2994 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2995 sqlite3VdbeJumpHere(v, addr1); 2996 2997 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2998 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2999 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3000 } 3001 3002 /* 3003 ** Allocate heap space to hold an Index object with nCol columns. 3004 ** 3005 ** Increase the allocation size to provide an extra nExtra bytes 3006 ** of 8-byte aligned space after the Index object and return a 3007 ** pointer to this extra space in *ppExtra. 3008 */ 3009 Index *sqlite3AllocateIndexObject( 3010 sqlite3 *db, /* Database connection */ 3011 i16 nCol, /* Total number of columns in the index */ 3012 int nExtra, /* Number of bytes of extra space to alloc */ 3013 char **ppExtra /* Pointer to the "extra" space */ 3014 ){ 3015 Index *p; /* Allocated index object */ 3016 int nByte; /* Bytes of space for Index object + arrays */ 3017 3018 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3019 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3020 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3021 sizeof(i16)*nCol + /* Index.aiColumn */ 3022 sizeof(u8)*nCol); /* Index.aSortOrder */ 3023 p = sqlite3DbMallocZero(db, nByte + nExtra); 3024 if( p ){ 3025 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3026 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3027 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3028 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3029 p->aSortOrder = (u8*)pExtra; 3030 p->nColumn = nCol; 3031 p->nKeyCol = nCol - 1; 3032 *ppExtra = ((char*)p) + nByte; 3033 } 3034 return p; 3035 } 3036 3037 /* 3038 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3039 ** and pTblList is the name of the table that is to be indexed. Both will 3040 ** be NULL for a primary key or an index that is created to satisfy a 3041 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3042 ** as the table to be indexed. pParse->pNewTable is a table that is 3043 ** currently being constructed by a CREATE TABLE statement. 3044 ** 3045 ** pList is a list of columns to be indexed. pList will be NULL if this 3046 ** is a primary key or unique-constraint on the most recent column added 3047 ** to the table currently under construction. 3048 */ 3049 void sqlite3CreateIndex( 3050 Parse *pParse, /* All information about this parse */ 3051 Token *pName1, /* First part of index name. May be NULL */ 3052 Token *pName2, /* Second part of index name. May be NULL */ 3053 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3054 ExprList *pList, /* A list of columns to be indexed */ 3055 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3056 Token *pStart, /* The CREATE token that begins this statement */ 3057 Expr *pPIWhere, /* WHERE clause for partial indices */ 3058 int sortOrder, /* Sort order of primary key when pList==NULL */ 3059 int ifNotExist, /* Omit error if index already exists */ 3060 u8 idxType /* The index type */ 3061 ){ 3062 Table *pTab = 0; /* Table to be indexed */ 3063 Index *pIndex = 0; /* The index to be created */ 3064 char *zName = 0; /* Name of the index */ 3065 int nName; /* Number of characters in zName */ 3066 int i, j; 3067 DbFixer sFix; /* For assigning database names to pTable */ 3068 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3069 sqlite3 *db = pParse->db; 3070 Db *pDb; /* The specific table containing the indexed database */ 3071 int iDb; /* Index of the database that is being written */ 3072 Token *pName = 0; /* Unqualified name of the index to create */ 3073 struct ExprList_item *pListItem; /* For looping over pList */ 3074 int nExtra = 0; /* Space allocated for zExtra[] */ 3075 int nExtraCol; /* Number of extra columns needed */ 3076 char *zExtra = 0; /* Extra space after the Index object */ 3077 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3078 3079 if( db->mallocFailed || pParse->nErr>0 ){ 3080 goto exit_create_index; 3081 } 3082 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3083 goto exit_create_index; 3084 } 3085 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3086 goto exit_create_index; 3087 } 3088 3089 /* 3090 ** Find the table that is to be indexed. Return early if not found. 3091 */ 3092 if( pTblName!=0 ){ 3093 3094 /* Use the two-part index name to determine the database 3095 ** to search for the table. 'Fix' the table name to this db 3096 ** before looking up the table. 3097 */ 3098 assert( pName1 && pName2 ); 3099 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3100 if( iDb<0 ) goto exit_create_index; 3101 assert( pName && pName->z ); 3102 3103 #ifndef SQLITE_OMIT_TEMPDB 3104 /* If the index name was unqualified, check if the table 3105 ** is a temp table. If so, set the database to 1. Do not do this 3106 ** if initialising a database schema. 3107 */ 3108 if( !db->init.busy ){ 3109 pTab = sqlite3SrcListLookup(pParse, pTblName); 3110 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3111 iDb = 1; 3112 } 3113 } 3114 #endif 3115 3116 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3117 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3118 /* Because the parser constructs pTblName from a single identifier, 3119 ** sqlite3FixSrcList can never fail. */ 3120 assert(0); 3121 } 3122 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3123 assert( db->mallocFailed==0 || pTab==0 ); 3124 if( pTab==0 ) goto exit_create_index; 3125 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3126 sqlite3ErrorMsg(pParse, 3127 "cannot create a TEMP index on non-TEMP table \"%s\"", 3128 pTab->zName); 3129 goto exit_create_index; 3130 } 3131 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3132 }else{ 3133 assert( pName==0 ); 3134 assert( pStart==0 ); 3135 pTab = pParse->pNewTable; 3136 if( !pTab ) goto exit_create_index; 3137 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3138 } 3139 pDb = &db->aDb[iDb]; 3140 3141 assert( pTab!=0 ); 3142 assert( pParse->nErr==0 ); 3143 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3144 && db->init.busy==0 3145 #if SQLITE_USER_AUTHENTICATION 3146 && sqlite3UserAuthTable(pTab->zName)==0 3147 #endif 3148 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3149 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3150 #endif 3151 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 3152 ){ 3153 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3154 goto exit_create_index; 3155 } 3156 #ifndef SQLITE_OMIT_VIEW 3157 if( pTab->pSelect ){ 3158 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3159 goto exit_create_index; 3160 } 3161 #endif 3162 #ifndef SQLITE_OMIT_VIRTUALTABLE 3163 if( IsVirtual(pTab) ){ 3164 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3165 goto exit_create_index; 3166 } 3167 #endif 3168 3169 /* 3170 ** Find the name of the index. Make sure there is not already another 3171 ** index or table with the same name. 3172 ** 3173 ** Exception: If we are reading the names of permanent indices from the 3174 ** sqlite_master table (because some other process changed the schema) and 3175 ** one of the index names collides with the name of a temporary table or 3176 ** index, then we will continue to process this index. 3177 ** 3178 ** If pName==0 it means that we are 3179 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3180 ** own name. 3181 */ 3182 if( pName ){ 3183 zName = sqlite3NameFromToken(db, pName); 3184 if( zName==0 ) goto exit_create_index; 3185 assert( pName->z!=0 ); 3186 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3187 goto exit_create_index; 3188 } 3189 if( !IN_RENAME_OBJECT ){ 3190 if( !db->init.busy ){ 3191 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3192 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3193 goto exit_create_index; 3194 } 3195 } 3196 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3197 if( !ifNotExist ){ 3198 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3199 }else{ 3200 assert( !db->init.busy ); 3201 sqlite3CodeVerifySchema(pParse, iDb); 3202 } 3203 goto exit_create_index; 3204 } 3205 } 3206 }else{ 3207 int n; 3208 Index *pLoop; 3209 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3210 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3211 if( zName==0 ){ 3212 goto exit_create_index; 3213 } 3214 3215 /* Automatic index names generated from within sqlite3_declare_vtab() 3216 ** must have names that are distinct from normal automatic index names. 3217 ** The following statement converts "sqlite3_autoindex..." into 3218 ** "sqlite3_butoindex..." in order to make the names distinct. 3219 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3220 if( IN_SPECIAL_PARSE ) zName[7]++; 3221 } 3222 3223 /* Check for authorization to create an index. 3224 */ 3225 #ifndef SQLITE_OMIT_AUTHORIZATION 3226 if( !IN_RENAME_OBJECT ){ 3227 const char *zDb = pDb->zDbSName; 3228 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3229 goto exit_create_index; 3230 } 3231 i = SQLITE_CREATE_INDEX; 3232 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3233 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3234 goto exit_create_index; 3235 } 3236 } 3237 #endif 3238 3239 /* If pList==0, it means this routine was called to make a primary 3240 ** key out of the last column added to the table under construction. 3241 ** So create a fake list to simulate this. 3242 */ 3243 if( pList==0 ){ 3244 Token prevCol; 3245 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3246 pCol->colFlags |= COLFLAG_UNIQUE; 3247 sqlite3TokenInit(&prevCol, pCol->zName); 3248 pList = sqlite3ExprListAppend(pParse, 0, 3249 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3250 if( pList==0 ) goto exit_create_index; 3251 assert( pList->nExpr==1 ); 3252 sqlite3ExprListSetSortOrder(pList, sortOrder); 3253 }else{ 3254 sqlite3ExprListCheckLength(pParse, pList, "index"); 3255 } 3256 3257 /* Figure out how many bytes of space are required to store explicitly 3258 ** specified collation sequence names. 3259 */ 3260 for(i=0; i<pList->nExpr; i++){ 3261 Expr *pExpr = pList->a[i].pExpr; 3262 assert( pExpr!=0 ); 3263 if( pExpr->op==TK_COLLATE ){ 3264 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3265 } 3266 } 3267 3268 /* 3269 ** Allocate the index structure. 3270 */ 3271 nName = sqlite3Strlen30(zName); 3272 nExtraCol = pPk ? pPk->nKeyCol : 1; 3273 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3274 nName + nExtra + 1, &zExtra); 3275 if( db->mallocFailed ){ 3276 goto exit_create_index; 3277 } 3278 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3279 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3280 pIndex->zName = zExtra; 3281 zExtra += nName + 1; 3282 memcpy(pIndex->zName, zName, nName+1); 3283 pIndex->pTable = pTab; 3284 pIndex->onError = (u8)onError; 3285 pIndex->uniqNotNull = onError!=OE_None; 3286 pIndex->idxType = idxType; 3287 pIndex->pSchema = db->aDb[iDb].pSchema; 3288 pIndex->nKeyCol = pList->nExpr; 3289 if( pPIWhere ){ 3290 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3291 pIndex->pPartIdxWhere = pPIWhere; 3292 pPIWhere = 0; 3293 } 3294 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3295 3296 /* Check to see if we should honor DESC requests on index columns 3297 */ 3298 if( pDb->pSchema->file_format>=4 ){ 3299 sortOrderMask = -1; /* Honor DESC */ 3300 }else{ 3301 sortOrderMask = 0; /* Ignore DESC */ 3302 } 3303 3304 /* Analyze the list of expressions that form the terms of the index and 3305 ** report any errors. In the common case where the expression is exactly 3306 ** a table column, store that column in aiColumn[]. For general expressions, 3307 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3308 ** 3309 ** TODO: Issue a warning if two or more columns of the index are identical. 3310 ** TODO: Issue a warning if the table primary key is used as part of the 3311 ** index key. 3312 */ 3313 pListItem = pList->a; 3314 if( IN_RENAME_OBJECT ){ 3315 pIndex->aColExpr = pList; 3316 pList = 0; 3317 } 3318 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3319 Expr *pCExpr; /* The i-th index expression */ 3320 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3321 const char *zColl; /* Collation sequence name */ 3322 3323 sqlite3StringToId(pListItem->pExpr); 3324 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3325 if( pParse->nErr ) goto exit_create_index; 3326 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3327 if( pCExpr->op!=TK_COLUMN ){ 3328 if( pTab==pParse->pNewTable ){ 3329 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3330 "UNIQUE constraints"); 3331 goto exit_create_index; 3332 } 3333 if( pIndex->aColExpr==0 ){ 3334 pIndex->aColExpr = pList; 3335 pList = 0; 3336 } 3337 j = XN_EXPR; 3338 pIndex->aiColumn[i] = XN_EXPR; 3339 pIndex->uniqNotNull = 0; 3340 }else{ 3341 j = pCExpr->iColumn; 3342 assert( j<=0x7fff ); 3343 if( j<0 ){ 3344 j = pTab->iPKey; 3345 }else if( pTab->aCol[j].notNull==0 ){ 3346 pIndex->uniqNotNull = 0; 3347 } 3348 pIndex->aiColumn[i] = (i16)j; 3349 } 3350 zColl = 0; 3351 if( pListItem->pExpr->op==TK_COLLATE ){ 3352 int nColl; 3353 zColl = pListItem->pExpr->u.zToken; 3354 nColl = sqlite3Strlen30(zColl) + 1; 3355 assert( nExtra>=nColl ); 3356 memcpy(zExtra, zColl, nColl); 3357 zColl = zExtra; 3358 zExtra += nColl; 3359 nExtra -= nColl; 3360 }else if( j>=0 ){ 3361 zColl = pTab->aCol[j].zColl; 3362 } 3363 if( !zColl ) zColl = sqlite3StrBINARY; 3364 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3365 goto exit_create_index; 3366 } 3367 pIndex->azColl[i] = zColl; 3368 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3369 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3370 } 3371 3372 /* Append the table key to the end of the index. For WITHOUT ROWID 3373 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3374 ** normal tables (when pPk==0) this will be the rowid. 3375 */ 3376 if( pPk ){ 3377 for(j=0; j<pPk->nKeyCol; j++){ 3378 int x = pPk->aiColumn[j]; 3379 assert( x>=0 ); 3380 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3381 pIndex->nColumn--; 3382 }else{ 3383 pIndex->aiColumn[i] = x; 3384 pIndex->azColl[i] = pPk->azColl[j]; 3385 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3386 i++; 3387 } 3388 } 3389 assert( i==pIndex->nColumn ); 3390 }else{ 3391 pIndex->aiColumn[i] = XN_ROWID; 3392 pIndex->azColl[i] = sqlite3StrBINARY; 3393 } 3394 sqlite3DefaultRowEst(pIndex); 3395 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3396 3397 /* If this index contains every column of its table, then mark 3398 ** it as a covering index */ 3399 assert( HasRowid(pTab) 3400 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3401 recomputeColumnsNotIndexed(pIndex); 3402 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3403 pIndex->isCovering = 1; 3404 for(j=0; j<pTab->nCol; j++){ 3405 if( j==pTab->iPKey ) continue; 3406 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3407 pIndex->isCovering = 0; 3408 break; 3409 } 3410 } 3411 3412 if( pTab==pParse->pNewTable ){ 3413 /* This routine has been called to create an automatic index as a 3414 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3415 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3416 ** i.e. one of: 3417 ** 3418 ** CREATE TABLE t(x PRIMARY KEY, y); 3419 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3420 ** 3421 ** Either way, check to see if the table already has such an index. If 3422 ** so, don't bother creating this one. This only applies to 3423 ** automatically created indices. Users can do as they wish with 3424 ** explicit indices. 3425 ** 3426 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3427 ** (and thus suppressing the second one) even if they have different 3428 ** sort orders. 3429 ** 3430 ** If there are different collating sequences or if the columns of 3431 ** the constraint occur in different orders, then the constraints are 3432 ** considered distinct and both result in separate indices. 3433 */ 3434 Index *pIdx; 3435 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3436 int k; 3437 assert( IsUniqueIndex(pIdx) ); 3438 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3439 assert( IsUniqueIndex(pIndex) ); 3440 3441 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3442 for(k=0; k<pIdx->nKeyCol; k++){ 3443 const char *z1; 3444 const char *z2; 3445 assert( pIdx->aiColumn[k]>=0 ); 3446 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3447 z1 = pIdx->azColl[k]; 3448 z2 = pIndex->azColl[k]; 3449 if( sqlite3StrICmp(z1, z2) ) break; 3450 } 3451 if( k==pIdx->nKeyCol ){ 3452 if( pIdx->onError!=pIndex->onError ){ 3453 /* This constraint creates the same index as a previous 3454 ** constraint specified somewhere in the CREATE TABLE statement. 3455 ** However the ON CONFLICT clauses are different. If both this 3456 ** constraint and the previous equivalent constraint have explicit 3457 ** ON CONFLICT clauses this is an error. Otherwise, use the 3458 ** explicitly specified behavior for the index. 3459 */ 3460 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3461 sqlite3ErrorMsg(pParse, 3462 "conflicting ON CONFLICT clauses specified", 0); 3463 } 3464 if( pIdx->onError==OE_Default ){ 3465 pIdx->onError = pIndex->onError; 3466 } 3467 } 3468 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3469 goto exit_create_index; 3470 } 3471 } 3472 } 3473 3474 if( !IN_RENAME_OBJECT ){ 3475 3476 /* Link the new Index structure to its table and to the other 3477 ** in-memory database structures. 3478 */ 3479 assert( pParse->nErr==0 ); 3480 if( db->init.busy ){ 3481 Index *p; 3482 assert( !IN_SPECIAL_PARSE ); 3483 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3484 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3485 pIndex->zName, pIndex); 3486 if( p ){ 3487 assert( p==pIndex ); /* Malloc must have failed */ 3488 sqlite3OomFault(db); 3489 goto exit_create_index; 3490 } 3491 db->mDbFlags |= DBFLAG_SchemaChange; 3492 if( pTblName!=0 ){ 3493 pIndex->tnum = db->init.newTnum; 3494 } 3495 } 3496 3497 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3498 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3499 ** emit code to allocate the index rootpage on disk and make an entry for 3500 ** the index in the sqlite_master table and populate the index with 3501 ** content. But, do not do this if we are simply reading the sqlite_master 3502 ** table to parse the schema, or if this index is the PRIMARY KEY index 3503 ** of a WITHOUT ROWID table. 3504 ** 3505 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3506 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3507 ** has just been created, it contains no data and the index initialization 3508 ** step can be skipped. 3509 */ 3510 else if( HasRowid(pTab) || pTblName!=0 ){ 3511 Vdbe *v; 3512 char *zStmt; 3513 int iMem = ++pParse->nMem; 3514 3515 v = sqlite3GetVdbe(pParse); 3516 if( v==0 ) goto exit_create_index; 3517 3518 sqlite3BeginWriteOperation(pParse, 1, iDb); 3519 3520 /* Create the rootpage for the index using CreateIndex. But before 3521 ** doing so, code a Noop instruction and store its address in 3522 ** Index.tnum. This is required in case this index is actually a 3523 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3524 ** that case the convertToWithoutRowidTable() routine will replace 3525 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3526 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3527 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3528 3529 /* Gather the complete text of the CREATE INDEX statement into 3530 ** the zStmt variable 3531 */ 3532 if( pStart ){ 3533 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3534 if( pName->z[n-1]==';' ) n--; 3535 /* A named index with an explicit CREATE INDEX statement */ 3536 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3537 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3538 }else{ 3539 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3540 /* zStmt = sqlite3MPrintf(""); */ 3541 zStmt = 0; 3542 } 3543 3544 /* Add an entry in sqlite_master for this index 3545 */ 3546 sqlite3NestedParse(pParse, 3547 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3548 db->aDb[iDb].zDbSName, MASTER_NAME, 3549 pIndex->zName, 3550 pTab->zName, 3551 iMem, 3552 zStmt 3553 ); 3554 sqlite3DbFree(db, zStmt); 3555 3556 /* Fill the index with data and reparse the schema. Code an OP_Expire 3557 ** to invalidate all pre-compiled statements. 3558 */ 3559 if( pTblName ){ 3560 sqlite3RefillIndex(pParse, pIndex, iMem); 3561 sqlite3ChangeCookie(pParse, iDb); 3562 sqlite3VdbeAddParseSchemaOp(v, iDb, 3563 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3564 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3565 } 3566 3567 sqlite3VdbeJumpHere(v, pIndex->tnum); 3568 } 3569 } 3570 3571 /* When adding an index to the list of indices for a table, make 3572 ** sure all indices labeled OE_Replace come after all those labeled 3573 ** OE_Ignore. This is necessary for the correct constraint check 3574 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3575 ** UPDATE and INSERT statements. 3576 */ 3577 if( db->init.busy || pTblName==0 ){ 3578 if( onError!=OE_Replace || pTab->pIndex==0 3579 || pTab->pIndex->onError==OE_Replace){ 3580 pIndex->pNext = pTab->pIndex; 3581 pTab->pIndex = pIndex; 3582 }else{ 3583 Index *pOther = pTab->pIndex; 3584 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3585 pOther = pOther->pNext; 3586 } 3587 pIndex->pNext = pOther->pNext; 3588 pOther->pNext = pIndex; 3589 } 3590 pIndex = 0; 3591 } 3592 else if( IN_RENAME_OBJECT ){ 3593 assert( pParse->pNewIndex==0 ); 3594 pParse->pNewIndex = pIndex; 3595 pIndex = 0; 3596 } 3597 3598 /* Clean up before exiting */ 3599 exit_create_index: 3600 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3601 sqlite3ExprDelete(db, pPIWhere); 3602 sqlite3ExprListDelete(db, pList); 3603 sqlite3SrcListDelete(db, pTblName); 3604 sqlite3DbFree(db, zName); 3605 } 3606 3607 /* 3608 ** Fill the Index.aiRowEst[] array with default information - information 3609 ** to be used when we have not run the ANALYZE command. 3610 ** 3611 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3612 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3613 ** number of rows in the table that match any particular value of the 3614 ** first column of the index. aiRowEst[2] is an estimate of the number 3615 ** of rows that match any particular combination of the first 2 columns 3616 ** of the index. And so forth. It must always be the case that 3617 * 3618 ** aiRowEst[N]<=aiRowEst[N-1] 3619 ** aiRowEst[N]>=1 3620 ** 3621 ** Apart from that, we have little to go on besides intuition as to 3622 ** how aiRowEst[] should be initialized. The numbers generated here 3623 ** are based on typical values found in actual indices. 3624 */ 3625 void sqlite3DefaultRowEst(Index *pIdx){ 3626 /* 10, 9, 8, 7, 6 */ 3627 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3628 LogEst *a = pIdx->aiRowLogEst; 3629 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3630 int i; 3631 3632 /* Indexes with default row estimates should not have stat1 data */ 3633 assert( !pIdx->hasStat1 ); 3634 3635 /* Set the first entry (number of rows in the index) to the estimated 3636 ** number of rows in the table, or half the number of rows in the table 3637 ** for a partial index. But do not let the estimate drop below 10. */ 3638 a[0] = pIdx->pTable->nRowLogEst; 3639 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3640 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3641 3642 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3643 ** 6 and each subsequent value (if any) is 5. */ 3644 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3645 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3646 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3647 } 3648 3649 assert( 0==sqlite3LogEst(1) ); 3650 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3651 } 3652 3653 /* 3654 ** This routine will drop an existing named index. This routine 3655 ** implements the DROP INDEX statement. 3656 */ 3657 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3658 Index *pIndex; 3659 Vdbe *v; 3660 sqlite3 *db = pParse->db; 3661 int iDb; 3662 3663 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3664 if( db->mallocFailed ){ 3665 goto exit_drop_index; 3666 } 3667 assert( pName->nSrc==1 ); 3668 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3669 goto exit_drop_index; 3670 } 3671 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3672 if( pIndex==0 ){ 3673 if( !ifExists ){ 3674 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3675 }else{ 3676 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3677 } 3678 pParse->checkSchema = 1; 3679 goto exit_drop_index; 3680 } 3681 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3682 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3683 "or PRIMARY KEY constraint cannot be dropped", 0); 3684 goto exit_drop_index; 3685 } 3686 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3687 #ifndef SQLITE_OMIT_AUTHORIZATION 3688 { 3689 int code = SQLITE_DROP_INDEX; 3690 Table *pTab = pIndex->pTable; 3691 const char *zDb = db->aDb[iDb].zDbSName; 3692 const char *zTab = SCHEMA_TABLE(iDb); 3693 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3694 goto exit_drop_index; 3695 } 3696 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3697 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3698 goto exit_drop_index; 3699 } 3700 } 3701 #endif 3702 3703 /* Generate code to remove the index and from the master table */ 3704 v = sqlite3GetVdbe(pParse); 3705 if( v ){ 3706 sqlite3BeginWriteOperation(pParse, 1, iDb); 3707 sqlite3NestedParse(pParse, 3708 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3709 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3710 ); 3711 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3712 sqlite3ChangeCookie(pParse, iDb); 3713 destroyRootPage(pParse, pIndex->tnum, iDb); 3714 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3715 } 3716 3717 exit_drop_index: 3718 sqlite3SrcListDelete(db, pName); 3719 } 3720 3721 /* 3722 ** pArray is a pointer to an array of objects. Each object in the 3723 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3724 ** to extend the array so that there is space for a new object at the end. 3725 ** 3726 ** When this function is called, *pnEntry contains the current size of 3727 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3728 ** in total). 3729 ** 3730 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3731 ** space allocated for the new object is zeroed, *pnEntry updated to 3732 ** reflect the new size of the array and a pointer to the new allocation 3733 ** returned. *pIdx is set to the index of the new array entry in this case. 3734 ** 3735 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3736 ** unchanged and a copy of pArray returned. 3737 */ 3738 void *sqlite3ArrayAllocate( 3739 sqlite3 *db, /* Connection to notify of malloc failures */ 3740 void *pArray, /* Array of objects. Might be reallocated */ 3741 int szEntry, /* Size of each object in the array */ 3742 int *pnEntry, /* Number of objects currently in use */ 3743 int *pIdx /* Write the index of a new slot here */ 3744 ){ 3745 char *z; 3746 int n = *pnEntry; 3747 if( (n & (n-1))==0 ){ 3748 int sz = (n==0) ? 1 : 2*n; 3749 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3750 if( pNew==0 ){ 3751 *pIdx = -1; 3752 return pArray; 3753 } 3754 pArray = pNew; 3755 } 3756 z = (char*)pArray; 3757 memset(&z[n * szEntry], 0, szEntry); 3758 *pIdx = n; 3759 ++*pnEntry; 3760 return pArray; 3761 } 3762 3763 /* 3764 ** Append a new element to the given IdList. Create a new IdList if 3765 ** need be. 3766 ** 3767 ** A new IdList is returned, or NULL if malloc() fails. 3768 */ 3769 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 3770 sqlite3 *db = pParse->db; 3771 int i; 3772 if( pList==0 ){ 3773 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3774 if( pList==0 ) return 0; 3775 } 3776 pList->a = sqlite3ArrayAllocate( 3777 db, 3778 pList->a, 3779 sizeof(pList->a[0]), 3780 &pList->nId, 3781 &i 3782 ); 3783 if( i<0 ){ 3784 sqlite3IdListDelete(db, pList); 3785 return 0; 3786 } 3787 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3788 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 3789 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 3790 } 3791 return pList; 3792 } 3793 3794 /* 3795 ** Delete an IdList. 3796 */ 3797 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3798 int i; 3799 if( pList==0 ) return; 3800 for(i=0; i<pList->nId; i++){ 3801 sqlite3DbFree(db, pList->a[i].zName); 3802 } 3803 sqlite3DbFree(db, pList->a); 3804 sqlite3DbFreeNN(db, pList); 3805 } 3806 3807 /* 3808 ** Return the index in pList of the identifier named zId. Return -1 3809 ** if not found. 3810 */ 3811 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3812 int i; 3813 if( pList==0 ) return -1; 3814 for(i=0; i<pList->nId; i++){ 3815 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3816 } 3817 return -1; 3818 } 3819 3820 /* 3821 ** Expand the space allocated for the given SrcList object by 3822 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3823 ** New slots are zeroed. 3824 ** 3825 ** For example, suppose a SrcList initially contains two entries: A,B. 3826 ** To append 3 new entries onto the end, do this: 3827 ** 3828 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3829 ** 3830 ** After the call above it would contain: A, B, nil, nil, nil. 3831 ** If the iStart argument had been 1 instead of 2, then the result 3832 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3833 ** the iStart value would be 0. The result then would 3834 ** be: nil, nil, nil, A, B. 3835 ** 3836 ** If a memory allocation fails the SrcList is unchanged. The 3837 ** db->mallocFailed flag will be set to true. 3838 */ 3839 SrcList *sqlite3SrcListEnlarge( 3840 sqlite3 *db, /* Database connection to notify of OOM errors */ 3841 SrcList *pSrc, /* The SrcList to be enlarged */ 3842 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3843 int iStart /* Index in pSrc->a[] of first new slot */ 3844 ){ 3845 int i; 3846 3847 /* Sanity checking on calling parameters */ 3848 assert( iStart>=0 ); 3849 assert( nExtra>=1 ); 3850 assert( pSrc!=0 ); 3851 assert( iStart<=pSrc->nSrc ); 3852 3853 /* Allocate additional space if needed */ 3854 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3855 SrcList *pNew; 3856 int nAlloc = pSrc->nSrc*2+nExtra; 3857 int nGot; 3858 pNew = sqlite3DbRealloc(db, pSrc, 3859 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3860 if( pNew==0 ){ 3861 assert( db->mallocFailed ); 3862 return pSrc; 3863 } 3864 pSrc = pNew; 3865 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3866 pSrc->nAlloc = nGot; 3867 } 3868 3869 /* Move existing slots that come after the newly inserted slots 3870 ** out of the way */ 3871 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3872 pSrc->a[i+nExtra] = pSrc->a[i]; 3873 } 3874 pSrc->nSrc += nExtra; 3875 3876 /* Zero the newly allocated slots */ 3877 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3878 for(i=iStart; i<iStart+nExtra; i++){ 3879 pSrc->a[i].iCursor = -1; 3880 } 3881 3882 /* Return a pointer to the enlarged SrcList */ 3883 return pSrc; 3884 } 3885 3886 3887 /* 3888 ** Append a new table name to the given SrcList. Create a new SrcList if 3889 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3890 ** 3891 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3892 ** SrcList might be the same as the SrcList that was input or it might be 3893 ** a new one. If an OOM error does occurs, then the prior value of pList 3894 ** that is input to this routine is automatically freed. 3895 ** 3896 ** If pDatabase is not null, it means that the table has an optional 3897 ** database name prefix. Like this: "database.table". The pDatabase 3898 ** points to the table name and the pTable points to the database name. 3899 ** The SrcList.a[].zName field is filled with the table name which might 3900 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3901 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3902 ** or with NULL if no database is specified. 3903 ** 3904 ** In other words, if call like this: 3905 ** 3906 ** sqlite3SrcListAppend(D,A,B,0); 3907 ** 3908 ** Then B is a table name and the database name is unspecified. If called 3909 ** like this: 3910 ** 3911 ** sqlite3SrcListAppend(D,A,B,C); 3912 ** 3913 ** Then C is the table name and B is the database name. If C is defined 3914 ** then so is B. In other words, we never have a case where: 3915 ** 3916 ** sqlite3SrcListAppend(D,A,0,C); 3917 ** 3918 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3919 ** before being added to the SrcList. 3920 */ 3921 SrcList *sqlite3SrcListAppend( 3922 sqlite3 *db, /* Connection to notify of malloc failures */ 3923 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3924 Token *pTable, /* Table to append */ 3925 Token *pDatabase /* Database of the table */ 3926 ){ 3927 struct SrcList_item *pItem; 3928 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3929 assert( db!=0 ); 3930 if( pList==0 ){ 3931 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3932 if( pList==0 ) return 0; 3933 pList->nAlloc = 1; 3934 pList->nSrc = 1; 3935 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3936 pList->a[0].iCursor = -1; 3937 }else{ 3938 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3939 } 3940 if( db->mallocFailed ){ 3941 sqlite3SrcListDelete(db, pList); 3942 return 0; 3943 } 3944 pItem = &pList->a[pList->nSrc-1]; 3945 if( pDatabase && pDatabase->z==0 ){ 3946 pDatabase = 0; 3947 } 3948 if( pDatabase ){ 3949 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3950 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3951 }else{ 3952 pItem->zName = sqlite3NameFromToken(db, pTable); 3953 pItem->zDatabase = 0; 3954 } 3955 return pList; 3956 } 3957 3958 /* 3959 ** Assign VdbeCursor index numbers to all tables in a SrcList 3960 */ 3961 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3962 int i; 3963 struct SrcList_item *pItem; 3964 assert(pList || pParse->db->mallocFailed ); 3965 if( pList ){ 3966 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3967 if( pItem->iCursor>=0 ) break; 3968 pItem->iCursor = pParse->nTab++; 3969 if( pItem->pSelect ){ 3970 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3971 } 3972 } 3973 } 3974 } 3975 3976 /* 3977 ** Delete an entire SrcList including all its substructure. 3978 */ 3979 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3980 int i; 3981 struct SrcList_item *pItem; 3982 if( pList==0 ) return; 3983 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3984 sqlite3DbFree(db, pItem->zDatabase); 3985 sqlite3DbFree(db, pItem->zName); 3986 sqlite3DbFree(db, pItem->zAlias); 3987 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3988 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3989 sqlite3DeleteTable(db, pItem->pTab); 3990 sqlite3SelectDelete(db, pItem->pSelect); 3991 sqlite3ExprDelete(db, pItem->pOn); 3992 sqlite3IdListDelete(db, pItem->pUsing); 3993 } 3994 sqlite3DbFreeNN(db, pList); 3995 } 3996 3997 /* 3998 ** This routine is called by the parser to add a new term to the 3999 ** end of a growing FROM clause. The "p" parameter is the part of 4000 ** the FROM clause that has already been constructed. "p" is NULL 4001 ** if this is the first term of the FROM clause. pTable and pDatabase 4002 ** are the name of the table and database named in the FROM clause term. 4003 ** pDatabase is NULL if the database name qualifier is missing - the 4004 ** usual case. If the term has an alias, then pAlias points to the 4005 ** alias token. If the term is a subquery, then pSubquery is the 4006 ** SELECT statement that the subquery encodes. The pTable and 4007 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4008 ** parameters are the content of the ON and USING clauses. 4009 ** 4010 ** Return a new SrcList which encodes is the FROM with the new 4011 ** term added. 4012 */ 4013 SrcList *sqlite3SrcListAppendFromTerm( 4014 Parse *pParse, /* Parsing context */ 4015 SrcList *p, /* The left part of the FROM clause already seen */ 4016 Token *pTable, /* Name of the table to add to the FROM clause */ 4017 Token *pDatabase, /* Name of the database containing pTable */ 4018 Token *pAlias, /* The right-hand side of the AS subexpression */ 4019 Select *pSubquery, /* A subquery used in place of a table name */ 4020 Expr *pOn, /* The ON clause of a join */ 4021 IdList *pUsing /* The USING clause of a join */ 4022 ){ 4023 struct SrcList_item *pItem; 4024 sqlite3 *db = pParse->db; 4025 if( !p && (pOn || pUsing) ){ 4026 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4027 (pOn ? "ON" : "USING") 4028 ); 4029 goto append_from_error; 4030 } 4031 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 4032 if( p==0 ){ 4033 goto append_from_error; 4034 } 4035 assert( p->nSrc>0 ); 4036 pItem = &p->a[p->nSrc-1]; 4037 assert( (pTable==0)==(pDatabase==0) ); 4038 assert( pItem->zName==0 || pDatabase!=0 ); 4039 if( IN_RENAME_OBJECT && pItem->zName ){ 4040 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4041 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4042 } 4043 assert( pAlias!=0 ); 4044 if( pAlias->n ){ 4045 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4046 } 4047 pItem->pSelect = pSubquery; 4048 pItem->pOn = pOn; 4049 pItem->pUsing = pUsing; 4050 return p; 4051 4052 append_from_error: 4053 assert( p==0 ); 4054 sqlite3ExprDelete(db, pOn); 4055 sqlite3IdListDelete(db, pUsing); 4056 sqlite3SelectDelete(db, pSubquery); 4057 return 0; 4058 } 4059 4060 /* 4061 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4062 ** element of the source-list passed as the second argument. 4063 */ 4064 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4065 assert( pIndexedBy!=0 ); 4066 if( p && pIndexedBy->n>0 ){ 4067 struct SrcList_item *pItem; 4068 assert( p->nSrc>0 ); 4069 pItem = &p->a[p->nSrc-1]; 4070 assert( pItem->fg.notIndexed==0 ); 4071 assert( pItem->fg.isIndexedBy==0 ); 4072 assert( pItem->fg.isTabFunc==0 ); 4073 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4074 /* A "NOT INDEXED" clause was supplied. See parse.y 4075 ** construct "indexed_opt" for details. */ 4076 pItem->fg.notIndexed = 1; 4077 }else{ 4078 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4079 pItem->fg.isIndexedBy = 1; 4080 } 4081 } 4082 } 4083 4084 /* 4085 ** Add the list of function arguments to the SrcList entry for a 4086 ** table-valued-function. 4087 */ 4088 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4089 if( p ){ 4090 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4091 assert( pItem->fg.notIndexed==0 ); 4092 assert( pItem->fg.isIndexedBy==0 ); 4093 assert( pItem->fg.isTabFunc==0 ); 4094 pItem->u1.pFuncArg = pList; 4095 pItem->fg.isTabFunc = 1; 4096 }else{ 4097 sqlite3ExprListDelete(pParse->db, pList); 4098 } 4099 } 4100 4101 /* 4102 ** When building up a FROM clause in the parser, the join operator 4103 ** is initially attached to the left operand. But the code generator 4104 ** expects the join operator to be on the right operand. This routine 4105 ** Shifts all join operators from left to right for an entire FROM 4106 ** clause. 4107 ** 4108 ** Example: Suppose the join is like this: 4109 ** 4110 ** A natural cross join B 4111 ** 4112 ** The operator is "natural cross join". The A and B operands are stored 4113 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4114 ** operator with A. This routine shifts that operator over to B. 4115 */ 4116 void sqlite3SrcListShiftJoinType(SrcList *p){ 4117 if( p ){ 4118 int i; 4119 for(i=p->nSrc-1; i>0; i--){ 4120 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4121 } 4122 p->a[0].fg.jointype = 0; 4123 } 4124 } 4125 4126 /* 4127 ** Generate VDBE code for a BEGIN statement. 4128 */ 4129 void sqlite3BeginTransaction(Parse *pParse, int type){ 4130 sqlite3 *db; 4131 Vdbe *v; 4132 int i; 4133 4134 assert( pParse!=0 ); 4135 db = pParse->db; 4136 assert( db!=0 ); 4137 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4138 return; 4139 } 4140 v = sqlite3GetVdbe(pParse); 4141 if( !v ) return; 4142 if( type!=TK_DEFERRED ){ 4143 for(i=0; i<db->nDb; i++){ 4144 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4145 sqlite3VdbeUsesBtree(v, i); 4146 } 4147 } 4148 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4149 } 4150 4151 /* 4152 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4153 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4154 ** code is generated for a COMMIT. 4155 */ 4156 void sqlite3EndTransaction(Parse *pParse, int eType){ 4157 Vdbe *v; 4158 int isRollback; 4159 4160 assert( pParse!=0 ); 4161 assert( pParse->db!=0 ); 4162 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4163 isRollback = eType==TK_ROLLBACK; 4164 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4165 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4166 return; 4167 } 4168 v = sqlite3GetVdbe(pParse); 4169 if( v ){ 4170 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4171 } 4172 } 4173 4174 /* 4175 ** This function is called by the parser when it parses a command to create, 4176 ** release or rollback an SQL savepoint. 4177 */ 4178 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4179 char *zName = sqlite3NameFromToken(pParse->db, pName); 4180 if( zName ){ 4181 Vdbe *v = sqlite3GetVdbe(pParse); 4182 #ifndef SQLITE_OMIT_AUTHORIZATION 4183 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4184 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4185 #endif 4186 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4187 sqlite3DbFree(pParse->db, zName); 4188 return; 4189 } 4190 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4191 } 4192 } 4193 4194 /* 4195 ** Make sure the TEMP database is open and available for use. Return 4196 ** the number of errors. Leave any error messages in the pParse structure. 4197 */ 4198 int sqlite3OpenTempDatabase(Parse *pParse){ 4199 sqlite3 *db = pParse->db; 4200 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4201 int rc; 4202 Btree *pBt; 4203 static const int flags = 4204 SQLITE_OPEN_READWRITE | 4205 SQLITE_OPEN_CREATE | 4206 SQLITE_OPEN_EXCLUSIVE | 4207 SQLITE_OPEN_DELETEONCLOSE | 4208 SQLITE_OPEN_TEMP_DB; 4209 4210 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4211 if( rc!=SQLITE_OK ){ 4212 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4213 "file for storing temporary tables"); 4214 pParse->rc = rc; 4215 return 1; 4216 } 4217 db->aDb[1].pBt = pBt; 4218 assert( db->aDb[1].pSchema ); 4219 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4220 sqlite3OomFault(db); 4221 return 1; 4222 } 4223 } 4224 return 0; 4225 } 4226 4227 /* 4228 ** Record the fact that the schema cookie will need to be verified 4229 ** for database iDb. The code to actually verify the schema cookie 4230 ** will occur at the end of the top-level VDBE and will be generated 4231 ** later, by sqlite3FinishCoding(). 4232 */ 4233 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4234 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4235 4236 assert( iDb>=0 && iDb<pParse->db->nDb ); 4237 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4238 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4239 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4240 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4241 DbMaskSet(pToplevel->cookieMask, iDb); 4242 if( !OMIT_TEMPDB && iDb==1 ){ 4243 sqlite3OpenTempDatabase(pToplevel); 4244 } 4245 } 4246 } 4247 4248 /* 4249 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4250 ** attached database. Otherwise, invoke it for the database named zDb only. 4251 */ 4252 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4253 sqlite3 *db = pParse->db; 4254 int i; 4255 for(i=0; i<db->nDb; i++){ 4256 Db *pDb = &db->aDb[i]; 4257 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4258 sqlite3CodeVerifySchema(pParse, i); 4259 } 4260 } 4261 } 4262 4263 /* 4264 ** Generate VDBE code that prepares for doing an operation that 4265 ** might change the database. 4266 ** 4267 ** This routine starts a new transaction if we are not already within 4268 ** a transaction. If we are already within a transaction, then a checkpoint 4269 ** is set if the setStatement parameter is true. A checkpoint should 4270 ** be set for operations that might fail (due to a constraint) part of 4271 ** the way through and which will need to undo some writes without having to 4272 ** rollback the whole transaction. For operations where all constraints 4273 ** can be checked before any changes are made to the database, it is never 4274 ** necessary to undo a write and the checkpoint should not be set. 4275 */ 4276 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4277 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4278 sqlite3CodeVerifySchema(pParse, iDb); 4279 DbMaskSet(pToplevel->writeMask, iDb); 4280 pToplevel->isMultiWrite |= setStatement; 4281 } 4282 4283 /* 4284 ** Indicate that the statement currently under construction might write 4285 ** more than one entry (example: deleting one row then inserting another, 4286 ** inserting multiple rows in a table, or inserting a row and index entries.) 4287 ** If an abort occurs after some of these writes have completed, then it will 4288 ** be necessary to undo the completed writes. 4289 */ 4290 void sqlite3MultiWrite(Parse *pParse){ 4291 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4292 pToplevel->isMultiWrite = 1; 4293 } 4294 4295 /* 4296 ** The code generator calls this routine if is discovers that it is 4297 ** possible to abort a statement prior to completion. In order to 4298 ** perform this abort without corrupting the database, we need to make 4299 ** sure that the statement is protected by a statement transaction. 4300 ** 4301 ** Technically, we only need to set the mayAbort flag if the 4302 ** isMultiWrite flag was previously set. There is a time dependency 4303 ** such that the abort must occur after the multiwrite. This makes 4304 ** some statements involving the REPLACE conflict resolution algorithm 4305 ** go a little faster. But taking advantage of this time dependency 4306 ** makes it more difficult to prove that the code is correct (in 4307 ** particular, it prevents us from writing an effective 4308 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4309 ** to take the safe route and skip the optimization. 4310 */ 4311 void sqlite3MayAbort(Parse *pParse){ 4312 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4313 pToplevel->mayAbort = 1; 4314 } 4315 4316 /* 4317 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4318 ** error. The onError parameter determines which (if any) of the statement 4319 ** and/or current transaction is rolled back. 4320 */ 4321 void sqlite3HaltConstraint( 4322 Parse *pParse, /* Parsing context */ 4323 int errCode, /* extended error code */ 4324 int onError, /* Constraint type */ 4325 char *p4, /* Error message */ 4326 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4327 u8 p5Errmsg /* P5_ErrMsg type */ 4328 ){ 4329 Vdbe *v = sqlite3GetVdbe(pParse); 4330 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4331 if( onError==OE_Abort ){ 4332 sqlite3MayAbort(pParse); 4333 } 4334 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4335 sqlite3VdbeChangeP5(v, p5Errmsg); 4336 } 4337 4338 /* 4339 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4340 */ 4341 void sqlite3UniqueConstraint( 4342 Parse *pParse, /* Parsing context */ 4343 int onError, /* Constraint type */ 4344 Index *pIdx /* The index that triggers the constraint */ 4345 ){ 4346 char *zErr; 4347 int j; 4348 StrAccum errMsg; 4349 Table *pTab = pIdx->pTable; 4350 4351 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4352 if( pIdx->aColExpr ){ 4353 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4354 }else{ 4355 for(j=0; j<pIdx->nKeyCol; j++){ 4356 char *zCol; 4357 assert( pIdx->aiColumn[j]>=0 ); 4358 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4359 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4360 sqlite3_str_appendall(&errMsg, pTab->zName); 4361 sqlite3_str_append(&errMsg, ".", 1); 4362 sqlite3_str_appendall(&errMsg, zCol); 4363 } 4364 } 4365 zErr = sqlite3StrAccumFinish(&errMsg); 4366 sqlite3HaltConstraint(pParse, 4367 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4368 : SQLITE_CONSTRAINT_UNIQUE, 4369 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4370 } 4371 4372 4373 /* 4374 ** Code an OP_Halt due to non-unique rowid. 4375 */ 4376 void sqlite3RowidConstraint( 4377 Parse *pParse, /* Parsing context */ 4378 int onError, /* Conflict resolution algorithm */ 4379 Table *pTab /* The table with the non-unique rowid */ 4380 ){ 4381 char *zMsg; 4382 int rc; 4383 if( pTab->iPKey>=0 ){ 4384 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4385 pTab->aCol[pTab->iPKey].zName); 4386 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4387 }else{ 4388 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4389 rc = SQLITE_CONSTRAINT_ROWID; 4390 } 4391 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4392 P5_ConstraintUnique); 4393 } 4394 4395 /* 4396 ** Check to see if pIndex uses the collating sequence pColl. Return 4397 ** true if it does and false if it does not. 4398 */ 4399 #ifndef SQLITE_OMIT_REINDEX 4400 static int collationMatch(const char *zColl, Index *pIndex){ 4401 int i; 4402 assert( zColl!=0 ); 4403 for(i=0; i<pIndex->nColumn; i++){ 4404 const char *z = pIndex->azColl[i]; 4405 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4406 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4407 return 1; 4408 } 4409 } 4410 return 0; 4411 } 4412 #endif 4413 4414 /* 4415 ** Recompute all indices of pTab that use the collating sequence pColl. 4416 ** If pColl==0 then recompute all indices of pTab. 4417 */ 4418 #ifndef SQLITE_OMIT_REINDEX 4419 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4420 Index *pIndex; /* An index associated with pTab */ 4421 4422 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4423 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4424 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4425 sqlite3BeginWriteOperation(pParse, 0, iDb); 4426 sqlite3RefillIndex(pParse, pIndex, -1); 4427 } 4428 } 4429 } 4430 #endif 4431 4432 /* 4433 ** Recompute all indices of all tables in all databases where the 4434 ** indices use the collating sequence pColl. If pColl==0 then recompute 4435 ** all indices everywhere. 4436 */ 4437 #ifndef SQLITE_OMIT_REINDEX 4438 static void reindexDatabases(Parse *pParse, char const *zColl){ 4439 Db *pDb; /* A single database */ 4440 int iDb; /* The database index number */ 4441 sqlite3 *db = pParse->db; /* The database connection */ 4442 HashElem *k; /* For looping over tables in pDb */ 4443 Table *pTab; /* A table in the database */ 4444 4445 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4446 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4447 assert( pDb!=0 ); 4448 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4449 pTab = (Table*)sqliteHashData(k); 4450 reindexTable(pParse, pTab, zColl); 4451 } 4452 } 4453 } 4454 #endif 4455 4456 /* 4457 ** Generate code for the REINDEX command. 4458 ** 4459 ** REINDEX -- 1 4460 ** REINDEX <collation> -- 2 4461 ** REINDEX ?<database>.?<tablename> -- 3 4462 ** REINDEX ?<database>.?<indexname> -- 4 4463 ** 4464 ** Form 1 causes all indices in all attached databases to be rebuilt. 4465 ** Form 2 rebuilds all indices in all databases that use the named 4466 ** collating function. Forms 3 and 4 rebuild the named index or all 4467 ** indices associated with the named table. 4468 */ 4469 #ifndef SQLITE_OMIT_REINDEX 4470 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4471 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4472 char *z; /* Name of a table or index */ 4473 const char *zDb; /* Name of the database */ 4474 Table *pTab; /* A table in the database */ 4475 Index *pIndex; /* An index associated with pTab */ 4476 int iDb; /* The database index number */ 4477 sqlite3 *db = pParse->db; /* The database connection */ 4478 Token *pObjName; /* Name of the table or index to be reindexed */ 4479 4480 /* Read the database schema. If an error occurs, leave an error message 4481 ** and code in pParse and return NULL. */ 4482 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4483 return; 4484 } 4485 4486 if( pName1==0 ){ 4487 reindexDatabases(pParse, 0); 4488 return; 4489 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4490 char *zColl; 4491 assert( pName1->z ); 4492 zColl = sqlite3NameFromToken(pParse->db, pName1); 4493 if( !zColl ) return; 4494 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4495 if( pColl ){ 4496 reindexDatabases(pParse, zColl); 4497 sqlite3DbFree(db, zColl); 4498 return; 4499 } 4500 sqlite3DbFree(db, zColl); 4501 } 4502 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4503 if( iDb<0 ) return; 4504 z = sqlite3NameFromToken(db, pObjName); 4505 if( z==0 ) return; 4506 zDb = db->aDb[iDb].zDbSName; 4507 pTab = sqlite3FindTable(db, z, zDb); 4508 if( pTab ){ 4509 reindexTable(pParse, pTab, 0); 4510 sqlite3DbFree(db, z); 4511 return; 4512 } 4513 pIndex = sqlite3FindIndex(db, z, zDb); 4514 sqlite3DbFree(db, z); 4515 if( pIndex ){ 4516 sqlite3BeginWriteOperation(pParse, 0, iDb); 4517 sqlite3RefillIndex(pParse, pIndex, -1); 4518 return; 4519 } 4520 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4521 } 4522 #endif 4523 4524 /* 4525 ** Return a KeyInfo structure that is appropriate for the given Index. 4526 ** 4527 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4528 ** when it has finished using it. 4529 */ 4530 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4531 int i; 4532 int nCol = pIdx->nColumn; 4533 int nKey = pIdx->nKeyCol; 4534 KeyInfo *pKey; 4535 if( pParse->nErr ) return 0; 4536 if( pIdx->uniqNotNull ){ 4537 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4538 }else{ 4539 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4540 } 4541 if( pKey ){ 4542 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4543 for(i=0; i<nCol; i++){ 4544 const char *zColl = pIdx->azColl[i]; 4545 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4546 sqlite3LocateCollSeq(pParse, zColl); 4547 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4548 } 4549 if( pParse->nErr ){ 4550 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4551 if( pIdx->bNoQuery==0 ){ 4552 /* Deactivate the index because it contains an unknown collating 4553 ** sequence. The only way to reactive the index is to reload the 4554 ** schema. Adding the missing collating sequence later does not 4555 ** reactive the index. The application had the chance to register 4556 ** the missing index using the collation-needed callback. For 4557 ** simplicity, SQLite will not give the application a second chance. 4558 */ 4559 pIdx->bNoQuery = 1; 4560 pParse->rc = SQLITE_ERROR_RETRY; 4561 } 4562 sqlite3KeyInfoUnref(pKey); 4563 pKey = 0; 4564 } 4565 } 4566 return pKey; 4567 } 4568 4569 #ifndef SQLITE_OMIT_CTE 4570 /* 4571 ** This routine is invoked once per CTE by the parser while parsing a 4572 ** WITH clause. 4573 */ 4574 With *sqlite3WithAdd( 4575 Parse *pParse, /* Parsing context */ 4576 With *pWith, /* Existing WITH clause, or NULL */ 4577 Token *pName, /* Name of the common-table */ 4578 ExprList *pArglist, /* Optional column name list for the table */ 4579 Select *pQuery /* Query used to initialize the table */ 4580 ){ 4581 sqlite3 *db = pParse->db; 4582 With *pNew; 4583 char *zName; 4584 4585 /* Check that the CTE name is unique within this WITH clause. If 4586 ** not, store an error in the Parse structure. */ 4587 zName = sqlite3NameFromToken(pParse->db, pName); 4588 if( zName && pWith ){ 4589 int i; 4590 for(i=0; i<pWith->nCte; i++){ 4591 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4592 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4593 } 4594 } 4595 } 4596 4597 if( pWith ){ 4598 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4599 pNew = sqlite3DbRealloc(db, pWith, nByte); 4600 }else{ 4601 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4602 } 4603 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4604 4605 if( db->mallocFailed ){ 4606 sqlite3ExprListDelete(db, pArglist); 4607 sqlite3SelectDelete(db, pQuery); 4608 sqlite3DbFree(db, zName); 4609 pNew = pWith; 4610 }else{ 4611 pNew->a[pNew->nCte].pSelect = pQuery; 4612 pNew->a[pNew->nCte].pCols = pArglist; 4613 pNew->a[pNew->nCte].zName = zName; 4614 pNew->a[pNew->nCte].zCteErr = 0; 4615 pNew->nCte++; 4616 } 4617 4618 return pNew; 4619 } 4620 4621 /* 4622 ** Free the contents of the With object passed as the second argument. 4623 */ 4624 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4625 if( pWith ){ 4626 int i; 4627 for(i=0; i<pWith->nCte; i++){ 4628 struct Cte *pCte = &pWith->a[i]; 4629 sqlite3ExprListDelete(db, pCte->pCols); 4630 sqlite3SelectDelete(db, pCte->pSelect); 4631 sqlite3DbFree(db, pCte->zName); 4632 } 4633 sqlite3DbFree(db, pWith); 4634 } 4635 } 4636 #endif /* !defined(SQLITE_OMIT_CTE) */ 4637