xref: /sqlite-3.40.0/src/build.c (revision 8c53b4e7)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     /* A minimum of one cursor is required if autoincrement is used
229     *  See ticket [a696379c1f08866] */
230     assert( pParse->pAinc==0 || pParse->nTab>0 );
231     sqlite3VdbeMakeReady(v, pParse);
232     pParse->rc = SQLITE_DONE;
233   }else{
234     pParse->rc = SQLITE_ERROR;
235   }
236 }
237 
238 /*
239 ** Run the parser and code generator recursively in order to generate
240 ** code for the SQL statement given onto the end of the pParse context
241 ** currently under construction.  When the parser is run recursively
242 ** this way, the final OP_Halt is not appended and other initialization
243 ** and finalization steps are omitted because those are handling by the
244 ** outermost parser.
245 **
246 ** Not everything is nestable.  This facility is designed to permit
247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
248 ** care if you decide to try to use this routine for some other purposes.
249 */
250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
251   va_list ap;
252   char *zSql;
253   char *zErrMsg = 0;
254   sqlite3 *db = pParse->db;
255   char saveBuf[PARSE_TAIL_SZ];
256 
257   if( pParse->nErr ) return;
258   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
259   va_start(ap, zFormat);
260   zSql = sqlite3VMPrintf(db, zFormat, ap);
261   va_end(ap);
262   if( zSql==0 ){
263     return;   /* A malloc must have failed */
264   }
265   pParse->nested++;
266   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
267   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
268   sqlite3RunParser(pParse, zSql, &zErrMsg);
269   sqlite3DbFree(db, zErrMsg);
270   sqlite3DbFree(db, zSql);
271   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
272   pParse->nested--;
273 }
274 
275 #if SQLITE_USER_AUTHENTICATION
276 /*
277 ** Return TRUE if zTable is the name of the system table that stores the
278 ** list of users and their access credentials.
279 */
280 int sqlite3UserAuthTable(const char *zTable){
281   return sqlite3_stricmp(zTable, "sqlite_user")==0;
282 }
283 #endif
284 
285 /*
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table.  Return NULL if not found.
289 **
290 ** If zDatabase is 0, all databases are searched for the table and the
291 ** first matching table is returned.  (No checking for duplicate table
292 ** names is done.)  The search order is TEMP first, then MAIN, then any
293 ** auxiliary databases added using the ATTACH command.
294 **
295 ** See also sqlite3LocateTable().
296 */
297 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
298   Table *p = 0;
299   int i;
300 
301   /* All mutexes are required for schema access.  Make sure we hold them. */
302   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
303 #if SQLITE_USER_AUTHENTICATION
304   /* Only the admin user is allowed to know that the sqlite_user table
305   ** exists */
306   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
307     return 0;
308   }
309 #endif
310   while(1){
311     for(i=OMIT_TEMPDB; i<db->nDb; i++){
312       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
313       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
314         assert( sqlite3SchemaMutexHeld(db, j, 0) );
315         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
316         if( p ) return p;
317       }
318     }
319     /* Not found.  If the name we were looking for was temp.sqlite_master
320     ** then change the name to sqlite_temp_master and try again. */
321     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
322     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
323     zName = TEMP_MASTER_NAME;
324   }
325   return 0;
326 }
327 
328 /*
329 ** Locate the in-memory structure that describes a particular database
330 ** table given the name of that table and (optionally) the name of the
331 ** database containing the table.  Return NULL if not found.  Also leave an
332 ** error message in pParse->zErrMsg.
333 **
334 ** The difference between this routine and sqlite3FindTable() is that this
335 ** routine leaves an error message in pParse->zErrMsg where
336 ** sqlite3FindTable() does not.
337 */
338 Table *sqlite3LocateTable(
339   Parse *pParse,         /* context in which to report errors */
340   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
341   const char *zName,     /* Name of the table we are looking for */
342   const char *zDbase     /* Name of the database.  Might be NULL */
343 ){
344   Table *p;
345   sqlite3 *db = pParse->db;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
350    && SQLITE_OK!=sqlite3ReadSchema(pParse)
351   ){
352     return 0;
353   }
354 
355   p = sqlite3FindTable(db, zName, zDbase);
356   if( p==0 ){
357     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
358 #ifndef SQLITE_OMIT_VIRTUALTABLE
359     /* If zName is the not the name of a table in the schema created using
360     ** CREATE, then check to see if it is the name of an virtual table that
361     ** can be an eponymous virtual table. */
362     Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
363     if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
364       pMod = sqlite3PragmaVtabRegister(db, zName);
365     }
366     if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
367       return pMod->pEpoTab;
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 void sqlite3FreeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     sqlite3FreeIndex(db, pIndex);
481   }
482   db->mDbFlags |= DBFLAG_SchemaChange;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
518 ** Deferred resets may be run by calling with iDb<0.
519 */
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521   int i;
522   assert( iDb<db->nDb );
523 
524   if( iDb>=0 ){
525     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526     DbSetProperty(db, iDb, DB_ResetWanted);
527     DbSetProperty(db, 1, DB_ResetWanted);
528     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
529   }
530 
531   if( db->nSchemaLock==0 ){
532     for(i=0; i<db->nDb; i++){
533       if( DbHasProperty(db, i, DB_ResetWanted) ){
534         sqlite3SchemaClear(db->aDb[i].pSchema);
535       }
536     }
537   }
538 }
539 
540 /*
541 ** Erase all schema information from all attached databases (including
542 ** "main" and "temp") for a single database connection.
543 */
544 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
545   int i;
546   sqlite3BtreeEnterAll(db);
547   for(i=0; i<db->nDb; i++){
548     Db *pDb = &db->aDb[i];
549     if( pDb->pSchema ){
550       if( db->nSchemaLock==0 ){
551         sqlite3SchemaClear(pDb->pSchema);
552       }else{
553         DbSetProperty(db, i, DB_ResetWanted);
554       }
555     }
556   }
557   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
558   sqlite3VtabUnlockList(db);
559   sqlite3BtreeLeaveAll(db);
560   if( db->nSchemaLock==0 ){
561     sqlite3CollapseDatabaseArray(db);
562   }
563 }
564 
565 /*
566 ** This routine is called when a commit occurs.
567 */
568 void sqlite3CommitInternalChanges(sqlite3 *db){
569   db->mDbFlags &= ~DBFLAG_SchemaChange;
570 }
571 
572 /*
573 ** Delete memory allocated for the column names of a table or view (the
574 ** Table.aCol[] array).
575 */
576 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
577   int i;
578   Column *pCol;
579   assert( pTable!=0 );
580   if( (pCol = pTable->aCol)!=0 ){
581     for(i=0; i<pTable->nCol; i++, pCol++){
582       sqlite3DbFree(db, pCol->zName);
583       sqlite3ExprDelete(db, pCol->pDflt);
584       sqlite3DbFree(db, pCol->zColl);
585     }
586     sqlite3DbFree(db, pTable->aCol);
587   }
588 }
589 
590 /*
591 ** Remove the memory data structures associated with the given
592 ** Table.  No changes are made to disk by this routine.
593 **
594 ** This routine just deletes the data structure.  It does not unlink
595 ** the table data structure from the hash table.  But it does destroy
596 ** memory structures of the indices and foreign keys associated with
597 ** the table.
598 **
599 ** The db parameter is optional.  It is needed if the Table object
600 ** contains lookaside memory.  (Table objects in the schema do not use
601 ** lookaside memory, but some ephemeral Table objects do.)  Or the
602 ** db parameter can be used with db->pnBytesFreed to measure the memory
603 ** used by the Table object.
604 */
605 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
606   Index *pIndex, *pNext;
607 
608 #ifdef SQLITE_DEBUG
609   /* Record the number of outstanding lookaside allocations in schema Tables
610   ** prior to doing any free() operations.  Since schema Tables do not use
611   ** lookaside, this number should not change. */
612   int nLookaside = 0;
613   if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
614     nLookaside = sqlite3LookasideUsed(db, 0);
615   }
616 #endif
617 
618   /* Delete all indices associated with this table. */
619   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
620     pNext = pIndex->pNext;
621     assert( pIndex->pSchema==pTable->pSchema
622          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
623     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
624       char *zName = pIndex->zName;
625       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
626          &pIndex->pSchema->idxHash, zName, 0
627       );
628       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
629       assert( pOld==pIndex || pOld==0 );
630     }
631     sqlite3FreeIndex(db, pIndex);
632   }
633 
634   /* Delete any foreign keys attached to this table. */
635   sqlite3FkDelete(db, pTable);
636 
637   /* Delete the Table structure itself.
638   */
639 #ifdef SQLITE_ENABLE_NORMALIZE
640   if( pTable->pColHash ){
641     sqlite3HashClear(pTable->pColHash);
642     sqlite3_free(pTable->pColHash);
643   }
644 #endif
645   sqlite3DeleteColumnNames(db, pTable);
646   sqlite3DbFree(db, pTable->zName);
647   sqlite3DbFree(db, pTable->zColAff);
648   sqlite3SelectDelete(db, pTable->pSelect);
649   sqlite3ExprListDelete(db, pTable->pCheck);
650 #ifndef SQLITE_OMIT_VIRTUALTABLE
651   sqlite3VtabClear(db, pTable);
652 #endif
653   sqlite3DbFree(db, pTable);
654 
655   /* Verify that no lookaside memory was used by schema tables */
656   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
657 }
658 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
659   /* Do not delete the table until the reference count reaches zero. */
660   if( !pTable ) return;
661   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
662   deleteTable(db, pTable);
663 }
664 
665 
666 /*
667 ** Unlink the given table from the hash tables and the delete the
668 ** table structure with all its indices and foreign keys.
669 */
670 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
671   Table *p;
672   Db *pDb;
673 
674   assert( db!=0 );
675   assert( iDb>=0 && iDb<db->nDb );
676   assert( zTabName );
677   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
678   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
679   pDb = &db->aDb[iDb];
680   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
681   sqlite3DeleteTable(db, p);
682   db->mDbFlags |= DBFLAG_SchemaChange;
683 }
684 
685 /*
686 ** Given a token, return a string that consists of the text of that
687 ** token.  Space to hold the returned string
688 ** is obtained from sqliteMalloc() and must be freed by the calling
689 ** function.
690 **
691 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
692 ** surround the body of the token are removed.
693 **
694 ** Tokens are often just pointers into the original SQL text and so
695 ** are not \000 terminated and are not persistent.  The returned string
696 ** is \000 terminated and is persistent.
697 */
698 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
699   char *zName;
700   if( pName ){
701     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
702     sqlite3Dequote(zName);
703   }else{
704     zName = 0;
705   }
706   return zName;
707 }
708 
709 /*
710 ** Open the sqlite_master table stored in database number iDb for
711 ** writing. The table is opened using cursor 0.
712 */
713 void sqlite3OpenMasterTable(Parse *p, int iDb){
714   Vdbe *v = sqlite3GetVdbe(p);
715   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
716   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
717   if( p->nTab==0 ){
718     p->nTab = 1;
719   }
720 }
721 
722 /*
723 ** Parameter zName points to a nul-terminated buffer containing the name
724 ** of a database ("main", "temp" or the name of an attached db). This
725 ** function returns the index of the named database in db->aDb[], or
726 ** -1 if the named db cannot be found.
727 */
728 int sqlite3FindDbName(sqlite3 *db, const char *zName){
729   int i = -1;         /* Database number */
730   if( zName ){
731     Db *pDb;
732     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
733       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
734       /* "main" is always an acceptable alias for the primary database
735       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
736       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
737     }
738   }
739   return i;
740 }
741 
742 /*
743 ** The token *pName contains the name of a database (either "main" or
744 ** "temp" or the name of an attached db). This routine returns the
745 ** index of the named database in db->aDb[], or -1 if the named db
746 ** does not exist.
747 */
748 int sqlite3FindDb(sqlite3 *db, Token *pName){
749   int i;                               /* Database number */
750   char *zName;                         /* Name we are searching for */
751   zName = sqlite3NameFromToken(db, pName);
752   i = sqlite3FindDbName(db, zName);
753   sqlite3DbFree(db, zName);
754   return i;
755 }
756 
757 /* The table or view or trigger name is passed to this routine via tokens
758 ** pName1 and pName2. If the table name was fully qualified, for example:
759 **
760 ** CREATE TABLE xxx.yyy (...);
761 **
762 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
763 ** the table name is not fully qualified, i.e.:
764 **
765 ** CREATE TABLE yyy(...);
766 **
767 ** Then pName1 is set to "yyy" and pName2 is "".
768 **
769 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
770 ** pName2) that stores the unqualified table name.  The index of the
771 ** database "xxx" is returned.
772 */
773 int sqlite3TwoPartName(
774   Parse *pParse,      /* Parsing and code generating context */
775   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
776   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
777   Token **pUnqual     /* Write the unqualified object name here */
778 ){
779   int iDb;                    /* Database holding the object */
780   sqlite3 *db = pParse->db;
781 
782   assert( pName2!=0 );
783   if( pName2->n>0 ){
784     if( db->init.busy ) {
785       sqlite3ErrorMsg(pParse, "corrupt database");
786       return -1;
787     }
788     *pUnqual = pName2;
789     iDb = sqlite3FindDb(db, pName1);
790     if( iDb<0 ){
791       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
792       return -1;
793     }
794   }else{
795     assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT
796              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
797     iDb = db->init.iDb;
798     *pUnqual = pName1;
799   }
800   return iDb;
801 }
802 
803 /*
804 ** True if PRAGMA writable_schema is ON
805 */
806 int sqlite3WritableSchema(sqlite3 *db){
807   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
808   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
809                SQLITE_WriteSchema );
810   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
811                SQLITE_Defensive );
812   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
813                (SQLITE_WriteSchema|SQLITE_Defensive) );
814   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
815 }
816 
817 /*
818 ** This routine is used to check if the UTF-8 string zName is a legal
819 ** unqualified name for a new schema object (table, index, view or
820 ** trigger). All names are legal except those that begin with the string
821 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
822 ** is reserved for internal use.
823 */
824 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
825   if( !pParse->db->init.busy && pParse->nested==0
826           && sqlite3WritableSchema(pParse->db)==0
827           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
828     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
829     return SQLITE_ERROR;
830   }
831   return SQLITE_OK;
832 }
833 
834 /*
835 ** Return the PRIMARY KEY index of a table
836 */
837 Index *sqlite3PrimaryKeyIndex(Table *pTab){
838   Index *p;
839   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
840   return p;
841 }
842 
843 /*
844 ** Return the column of index pIdx that corresponds to table
845 ** column iCol.  Return -1 if not found.
846 */
847 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
848   int i;
849   for(i=0; i<pIdx->nColumn; i++){
850     if( iCol==pIdx->aiColumn[i] ) return i;
851   }
852   return -1;
853 }
854 
855 /*
856 ** Begin constructing a new table representation in memory.  This is
857 ** the first of several action routines that get called in response
858 ** to a CREATE TABLE statement.  In particular, this routine is called
859 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
860 ** flag is true if the table should be stored in the auxiliary database
861 ** file instead of in the main database file.  This is normally the case
862 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
863 ** CREATE and TABLE.
864 **
865 ** The new table record is initialized and put in pParse->pNewTable.
866 ** As more of the CREATE TABLE statement is parsed, additional action
867 ** routines will be called to add more information to this record.
868 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
869 ** is called to complete the construction of the new table record.
870 */
871 void sqlite3StartTable(
872   Parse *pParse,   /* Parser context */
873   Token *pName1,   /* First part of the name of the table or view */
874   Token *pName2,   /* Second part of the name of the table or view */
875   int isTemp,      /* True if this is a TEMP table */
876   int isView,      /* True if this is a VIEW */
877   int isVirtual,   /* True if this is a VIRTUAL table */
878   int noErr        /* Do nothing if table already exists */
879 ){
880   Table *pTable;
881   char *zName = 0; /* The name of the new table */
882   sqlite3 *db = pParse->db;
883   Vdbe *v;
884   int iDb;         /* Database number to create the table in */
885   Token *pName;    /* Unqualified name of the table to create */
886 
887   if( db->init.busy && db->init.newTnum==1 ){
888     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
889     iDb = db->init.iDb;
890     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
891     pName = pName1;
892   }else{
893     /* The common case */
894     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
895     if( iDb<0 ) return;
896     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
897       /* If creating a temp table, the name may not be qualified. Unless
898       ** the database name is "temp" anyway.  */
899       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
900       return;
901     }
902     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
903     zName = sqlite3NameFromToken(db, pName);
904     if( IN_RENAME_OBJECT ){
905       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
906     }
907   }
908   pParse->sNameToken = *pName;
909   if( zName==0 ) return;
910   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
911     goto begin_table_error;
912   }
913   if( db->init.iDb==1 ) isTemp = 1;
914 #ifndef SQLITE_OMIT_AUTHORIZATION
915   assert( isTemp==0 || isTemp==1 );
916   assert( isView==0 || isView==1 );
917   {
918     static const u8 aCode[] = {
919        SQLITE_CREATE_TABLE,
920        SQLITE_CREATE_TEMP_TABLE,
921        SQLITE_CREATE_VIEW,
922        SQLITE_CREATE_TEMP_VIEW
923     };
924     char *zDb = db->aDb[iDb].zDbSName;
925     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
926       goto begin_table_error;
927     }
928     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
929                                        zName, 0, zDb) ){
930       goto begin_table_error;
931     }
932   }
933 #endif
934 
935   /* Make sure the new table name does not collide with an existing
936   ** index or table name in the same database.  Issue an error message if
937   ** it does. The exception is if the statement being parsed was passed
938   ** to an sqlite3_declare_vtab() call. In that case only the column names
939   ** and types will be used, so there is no need to test for namespace
940   ** collisions.
941   */
942   if( !IN_SPECIAL_PARSE ){
943     char *zDb = db->aDb[iDb].zDbSName;
944     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
945       goto begin_table_error;
946     }
947     pTable = sqlite3FindTable(db, zName, zDb);
948     if( pTable ){
949       if( !noErr ){
950         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
951       }else{
952         assert( !db->init.busy || CORRUPT_DB );
953         sqlite3CodeVerifySchema(pParse, iDb);
954       }
955       goto begin_table_error;
956     }
957     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
958       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
959       goto begin_table_error;
960     }
961   }
962 
963   pTable = sqlite3DbMallocZero(db, sizeof(Table));
964   if( pTable==0 ){
965     assert( db->mallocFailed );
966     pParse->rc = SQLITE_NOMEM_BKPT;
967     pParse->nErr++;
968     goto begin_table_error;
969   }
970   pTable->zName = zName;
971   pTable->iPKey = -1;
972   pTable->pSchema = db->aDb[iDb].pSchema;
973   pTable->nTabRef = 1;
974 #ifdef SQLITE_DEFAULT_ROWEST
975   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
976 #else
977   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
978 #endif
979   assert( pParse->pNewTable==0 );
980   pParse->pNewTable = pTable;
981 
982   /* If this is the magic sqlite_sequence table used by autoincrement,
983   ** then record a pointer to this table in the main database structure
984   ** so that INSERT can find the table easily.
985   */
986 #ifndef SQLITE_OMIT_AUTOINCREMENT
987   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
988     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
989     pTable->pSchema->pSeqTab = pTable;
990   }
991 #endif
992 
993   /* Begin generating the code that will insert the table record into
994   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
995   ** and allocate the record number for the table entry now.  Before any
996   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
997   ** indices to be created and the table record must come before the
998   ** indices.  Hence, the record number for the table must be allocated
999   ** now.
1000   */
1001   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1002     int addr1;
1003     int fileFormat;
1004     int reg1, reg2, reg3;
1005     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1006     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1007     sqlite3BeginWriteOperation(pParse, 1, iDb);
1008 
1009 #ifndef SQLITE_OMIT_VIRTUALTABLE
1010     if( isVirtual ){
1011       sqlite3VdbeAddOp0(v, OP_VBegin);
1012     }
1013 #endif
1014 
1015     /* If the file format and encoding in the database have not been set,
1016     ** set them now.
1017     */
1018     reg1 = pParse->regRowid = ++pParse->nMem;
1019     reg2 = pParse->regRoot = ++pParse->nMem;
1020     reg3 = ++pParse->nMem;
1021     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1022     sqlite3VdbeUsesBtree(v, iDb);
1023     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1024     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1025                   1 : SQLITE_MAX_FILE_FORMAT;
1026     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1027     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1028     sqlite3VdbeJumpHere(v, addr1);
1029 
1030     /* This just creates a place-holder record in the sqlite_master table.
1031     ** The record created does not contain anything yet.  It will be replaced
1032     ** by the real entry in code generated at sqlite3EndTable().
1033     **
1034     ** The rowid for the new entry is left in register pParse->regRowid.
1035     ** The root page number of the new table is left in reg pParse->regRoot.
1036     ** The rowid and root page number values are needed by the code that
1037     ** sqlite3EndTable will generate.
1038     */
1039 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1040     if( isView || isVirtual ){
1041       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1042     }else
1043 #endif
1044     {
1045       pParse->addrCrTab =
1046          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1047     }
1048     sqlite3OpenMasterTable(pParse, iDb);
1049     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1050     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1051     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1052     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1053     sqlite3VdbeAddOp0(v, OP_Close);
1054   }
1055 
1056   /* Normal (non-error) return. */
1057   return;
1058 
1059   /* If an error occurs, we jump here */
1060 begin_table_error:
1061   sqlite3DbFree(db, zName);
1062   return;
1063 }
1064 
1065 /* Set properties of a table column based on the (magical)
1066 ** name of the column.
1067 */
1068 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1069 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1070   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1071     pCol->colFlags |= COLFLAG_HIDDEN;
1072   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1073     pTab->tabFlags |= TF_OOOHidden;
1074   }
1075 }
1076 #endif
1077 
1078 
1079 /*
1080 ** Add a new column to the table currently being constructed.
1081 **
1082 ** The parser calls this routine once for each column declaration
1083 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1084 ** first to get things going.  Then this routine is called for each
1085 ** column.
1086 */
1087 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1088   Table *p;
1089   int i;
1090   char *z;
1091   char *zType;
1092   Column *pCol;
1093   sqlite3 *db = pParse->db;
1094   if( (p = pParse->pNewTable)==0 ) return;
1095   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1096     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1097     return;
1098   }
1099   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1100   if( z==0 ) return;
1101   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName);
1102   memcpy(z, pName->z, pName->n);
1103   z[pName->n] = 0;
1104   sqlite3Dequote(z);
1105   for(i=0; i<p->nCol; i++){
1106     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1107       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1108       sqlite3DbFree(db, z);
1109       return;
1110     }
1111   }
1112   if( (p->nCol & 0x7)==0 ){
1113     Column *aNew;
1114     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1115     if( aNew==0 ){
1116       sqlite3DbFree(db, z);
1117       return;
1118     }
1119     p->aCol = aNew;
1120   }
1121   pCol = &p->aCol[p->nCol];
1122   memset(pCol, 0, sizeof(p->aCol[0]));
1123   pCol->zName = z;
1124   sqlite3ColumnPropertiesFromName(p, pCol);
1125 
1126   if( pType->n==0 ){
1127     /* If there is no type specified, columns have the default affinity
1128     ** 'BLOB' with a default size of 4 bytes. */
1129     pCol->affinity = SQLITE_AFF_BLOB;
1130     pCol->szEst = 1;
1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1132     if( 4>=sqlite3GlobalConfig.szSorterRef ){
1133       pCol->colFlags |= COLFLAG_SORTERREF;
1134     }
1135 #endif
1136   }else{
1137     zType = z + sqlite3Strlen30(z) + 1;
1138     memcpy(zType, pType->z, pType->n);
1139     zType[pType->n] = 0;
1140     sqlite3Dequote(zType);
1141     pCol->affinity = sqlite3AffinityType(zType, pCol);
1142     pCol->colFlags |= COLFLAG_HASTYPE;
1143   }
1144   p->nCol++;
1145   pParse->constraintName.n = 0;
1146 }
1147 
1148 /*
1149 ** This routine is called by the parser while in the middle of
1150 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1151 ** been seen on a column.  This routine sets the notNull flag on
1152 ** the column currently under construction.
1153 */
1154 void sqlite3AddNotNull(Parse *pParse, int onError){
1155   Table *p;
1156   Column *pCol;
1157   p = pParse->pNewTable;
1158   if( p==0 || NEVER(p->nCol<1) ) return;
1159   pCol = &p->aCol[p->nCol-1];
1160   pCol->notNull = (u8)onError;
1161   p->tabFlags |= TF_HasNotNull;
1162 
1163   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1164   ** on this column.  */
1165   if( pCol->colFlags & COLFLAG_UNIQUE ){
1166     Index *pIdx;
1167     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1168       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1169       if( pIdx->aiColumn[0]==p->nCol-1 ){
1170         pIdx->uniqNotNull = 1;
1171       }
1172     }
1173   }
1174 }
1175 
1176 /*
1177 ** Scan the column type name zType (length nType) and return the
1178 ** associated affinity type.
1179 **
1180 ** This routine does a case-independent search of zType for the
1181 ** substrings in the following table. If one of the substrings is
1182 ** found, the corresponding affinity is returned. If zType contains
1183 ** more than one of the substrings, entries toward the top of
1184 ** the table take priority. For example, if zType is 'BLOBINT',
1185 ** SQLITE_AFF_INTEGER is returned.
1186 **
1187 ** Substring     | Affinity
1188 ** --------------------------------
1189 ** 'INT'         | SQLITE_AFF_INTEGER
1190 ** 'CHAR'        | SQLITE_AFF_TEXT
1191 ** 'CLOB'        | SQLITE_AFF_TEXT
1192 ** 'TEXT'        | SQLITE_AFF_TEXT
1193 ** 'BLOB'        | SQLITE_AFF_BLOB
1194 ** 'REAL'        | SQLITE_AFF_REAL
1195 ** 'FLOA'        | SQLITE_AFF_REAL
1196 ** 'DOUB'        | SQLITE_AFF_REAL
1197 **
1198 ** If none of the substrings in the above table are found,
1199 ** SQLITE_AFF_NUMERIC is returned.
1200 */
1201 char sqlite3AffinityType(const char *zIn, Column *pCol){
1202   u32 h = 0;
1203   char aff = SQLITE_AFF_NUMERIC;
1204   const char *zChar = 0;
1205 
1206   assert( zIn!=0 );
1207   while( zIn[0] ){
1208     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1209     zIn++;
1210     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1211       aff = SQLITE_AFF_TEXT;
1212       zChar = zIn;
1213     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1214       aff = SQLITE_AFF_TEXT;
1215     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1216       aff = SQLITE_AFF_TEXT;
1217     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1218         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1219       aff = SQLITE_AFF_BLOB;
1220       if( zIn[0]=='(' ) zChar = zIn;
1221 #ifndef SQLITE_OMIT_FLOATING_POINT
1222     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1223         && aff==SQLITE_AFF_NUMERIC ){
1224       aff = SQLITE_AFF_REAL;
1225     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1226         && aff==SQLITE_AFF_NUMERIC ){
1227       aff = SQLITE_AFF_REAL;
1228     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1229         && aff==SQLITE_AFF_NUMERIC ){
1230       aff = SQLITE_AFF_REAL;
1231 #endif
1232     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1233       aff = SQLITE_AFF_INTEGER;
1234       break;
1235     }
1236   }
1237 
1238   /* If pCol is not NULL, store an estimate of the field size.  The
1239   ** estimate is scaled so that the size of an integer is 1.  */
1240   if( pCol ){
1241     int v = 0;   /* default size is approx 4 bytes */
1242     if( aff<SQLITE_AFF_NUMERIC ){
1243       if( zChar ){
1244         while( zChar[0] ){
1245           if( sqlite3Isdigit(zChar[0]) ){
1246             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1247             sqlite3GetInt32(zChar, &v);
1248             break;
1249           }
1250           zChar++;
1251         }
1252       }else{
1253         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1254       }
1255     }
1256 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1257     if( v>=sqlite3GlobalConfig.szSorterRef ){
1258       pCol->colFlags |= COLFLAG_SORTERREF;
1259     }
1260 #endif
1261     v = v/4 + 1;
1262     if( v>255 ) v = 255;
1263     pCol->szEst = v;
1264   }
1265   return aff;
1266 }
1267 
1268 /*
1269 ** The expression is the default value for the most recently added column
1270 ** of the table currently under construction.
1271 **
1272 ** Default value expressions must be constant.  Raise an exception if this
1273 ** is not the case.
1274 **
1275 ** This routine is called by the parser while in the middle of
1276 ** parsing a CREATE TABLE statement.
1277 */
1278 void sqlite3AddDefaultValue(
1279   Parse *pParse,           /* Parsing context */
1280   Expr *pExpr,             /* The parsed expression of the default value */
1281   const char *zStart,      /* Start of the default value text */
1282   const char *zEnd         /* First character past end of defaut value text */
1283 ){
1284   Table *p;
1285   Column *pCol;
1286   sqlite3 *db = pParse->db;
1287   p = pParse->pNewTable;
1288   if( p!=0 ){
1289     pCol = &(p->aCol[p->nCol-1]);
1290     if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1291       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1292           pCol->zName);
1293     }else{
1294       /* A copy of pExpr is used instead of the original, as pExpr contains
1295       ** tokens that point to volatile memory.
1296       */
1297       Expr x;
1298       sqlite3ExprDelete(db, pCol->pDflt);
1299       memset(&x, 0, sizeof(x));
1300       x.op = TK_SPAN;
1301       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1302       x.pLeft = pExpr;
1303       x.flags = EP_Skip;
1304       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1305       sqlite3DbFree(db, x.u.zToken);
1306     }
1307   }
1308   if( IN_RENAME_OBJECT ){
1309     sqlite3RenameExprUnmap(pParse, pExpr);
1310   }
1311   sqlite3ExprDelete(db, pExpr);
1312 }
1313 
1314 /*
1315 ** Backwards Compatibility Hack:
1316 **
1317 ** Historical versions of SQLite accepted strings as column names in
1318 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1319 **
1320 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1321 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1322 **
1323 ** This is goofy.  But to preserve backwards compatibility we continue to
1324 ** accept it.  This routine does the necessary conversion.  It converts
1325 ** the expression given in its argument from a TK_STRING into a TK_ID
1326 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1327 ** If the epxression is anything other than TK_STRING, the expression is
1328 ** unchanged.
1329 */
1330 static void sqlite3StringToId(Expr *p){
1331   if( p->op==TK_STRING ){
1332     p->op = TK_ID;
1333   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1334     p->pLeft->op = TK_ID;
1335   }
1336 }
1337 
1338 /*
1339 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1340 ** of columns that form the primary key.  If pList is NULL, then the
1341 ** most recently added column of the table is the primary key.
1342 **
1343 ** A table can have at most one primary key.  If the table already has
1344 ** a primary key (and this is the second primary key) then create an
1345 ** error.
1346 **
1347 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1348 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1349 ** field of the table under construction to be the index of the
1350 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1351 ** no INTEGER PRIMARY KEY.
1352 **
1353 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1354 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1355 */
1356 void sqlite3AddPrimaryKey(
1357   Parse *pParse,    /* Parsing context */
1358   ExprList *pList,  /* List of field names to be indexed */
1359   int onError,      /* What to do with a uniqueness conflict */
1360   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1361   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1362 ){
1363   Table *pTab = pParse->pNewTable;
1364   Column *pCol = 0;
1365   int iCol = -1, i;
1366   int nTerm;
1367   if( pTab==0 ) goto primary_key_exit;
1368   if( pTab->tabFlags & TF_HasPrimaryKey ){
1369     sqlite3ErrorMsg(pParse,
1370       "table \"%s\" has more than one primary key", pTab->zName);
1371     goto primary_key_exit;
1372   }
1373   pTab->tabFlags |= TF_HasPrimaryKey;
1374   if( pList==0 ){
1375     iCol = pTab->nCol - 1;
1376     pCol = &pTab->aCol[iCol];
1377     pCol->colFlags |= COLFLAG_PRIMKEY;
1378     nTerm = 1;
1379   }else{
1380     nTerm = pList->nExpr;
1381     for(i=0; i<nTerm; i++){
1382       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1383       assert( pCExpr!=0 );
1384       sqlite3StringToId(pCExpr);
1385       if( pCExpr->op==TK_ID ){
1386         const char *zCName = pCExpr->u.zToken;
1387         for(iCol=0; iCol<pTab->nCol; iCol++){
1388           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1389             pCol = &pTab->aCol[iCol];
1390             pCol->colFlags |= COLFLAG_PRIMKEY;
1391             break;
1392           }
1393         }
1394       }
1395     }
1396   }
1397   if( nTerm==1
1398    && pCol
1399    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1400    && sortOrder!=SQLITE_SO_DESC
1401   ){
1402     if( IN_RENAME_OBJECT && pList ){
1403       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pList->a[0].pExpr);
1404     }
1405     pTab->iPKey = iCol;
1406     pTab->keyConf = (u8)onError;
1407     assert( autoInc==0 || autoInc==1 );
1408     pTab->tabFlags |= autoInc*TF_Autoincrement;
1409     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1410   }else if( autoInc ){
1411 #ifndef SQLITE_OMIT_AUTOINCREMENT
1412     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1413        "INTEGER PRIMARY KEY");
1414 #endif
1415   }else{
1416     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1417                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1418     pList = 0;
1419   }
1420 
1421 primary_key_exit:
1422   sqlite3ExprListDelete(pParse->db, pList);
1423   return;
1424 }
1425 
1426 /*
1427 ** Add a new CHECK constraint to the table currently under construction.
1428 */
1429 void sqlite3AddCheckConstraint(
1430   Parse *pParse,    /* Parsing context */
1431   Expr *pCheckExpr  /* The check expression */
1432 ){
1433 #ifndef SQLITE_OMIT_CHECK
1434   Table *pTab = pParse->pNewTable;
1435   sqlite3 *db = pParse->db;
1436   if( pTab && !IN_DECLARE_VTAB
1437    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1438   ){
1439     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1440     if( pParse->constraintName.n ){
1441       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1442     }
1443   }else
1444 #endif
1445   {
1446     sqlite3ExprDelete(pParse->db, pCheckExpr);
1447   }
1448 }
1449 
1450 /*
1451 ** Set the collation function of the most recently parsed table column
1452 ** to the CollSeq given.
1453 */
1454 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1455   Table *p;
1456   int i;
1457   char *zColl;              /* Dequoted name of collation sequence */
1458   sqlite3 *db;
1459 
1460   if( (p = pParse->pNewTable)==0 ) return;
1461   i = p->nCol-1;
1462   db = pParse->db;
1463   zColl = sqlite3NameFromToken(db, pToken);
1464   if( !zColl ) return;
1465 
1466   if( sqlite3LocateCollSeq(pParse, zColl) ){
1467     Index *pIdx;
1468     sqlite3DbFree(db, p->aCol[i].zColl);
1469     p->aCol[i].zColl = zColl;
1470 
1471     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1472     ** then an index may have been created on this column before the
1473     ** collation type was added. Correct this if it is the case.
1474     */
1475     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1476       assert( pIdx->nKeyCol==1 );
1477       if( pIdx->aiColumn[0]==i ){
1478         pIdx->azColl[0] = p->aCol[i].zColl;
1479       }
1480     }
1481   }else{
1482     sqlite3DbFree(db, zColl);
1483   }
1484 }
1485 
1486 /*
1487 ** This function returns the collation sequence for database native text
1488 ** encoding identified by the string zName, length nName.
1489 **
1490 ** If the requested collation sequence is not available, or not available
1491 ** in the database native encoding, the collation factory is invoked to
1492 ** request it. If the collation factory does not supply such a sequence,
1493 ** and the sequence is available in another text encoding, then that is
1494 ** returned instead.
1495 **
1496 ** If no versions of the requested collations sequence are available, or
1497 ** another error occurs, NULL is returned and an error message written into
1498 ** pParse.
1499 **
1500 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1501 ** invokes the collation factory if the named collation cannot be found
1502 ** and generates an error message.
1503 **
1504 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1505 */
1506 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1507   sqlite3 *db = pParse->db;
1508   u8 enc = ENC(db);
1509   u8 initbusy = db->init.busy;
1510   CollSeq *pColl;
1511 
1512   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1513   if( !initbusy && (!pColl || !pColl->xCmp) ){
1514     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1515   }
1516 
1517   return pColl;
1518 }
1519 
1520 
1521 /*
1522 ** Generate code that will increment the schema cookie.
1523 **
1524 ** The schema cookie is used to determine when the schema for the
1525 ** database changes.  After each schema change, the cookie value
1526 ** changes.  When a process first reads the schema it records the
1527 ** cookie.  Thereafter, whenever it goes to access the database,
1528 ** it checks the cookie to make sure the schema has not changed
1529 ** since it was last read.
1530 **
1531 ** This plan is not completely bullet-proof.  It is possible for
1532 ** the schema to change multiple times and for the cookie to be
1533 ** set back to prior value.  But schema changes are infrequent
1534 ** and the probability of hitting the same cookie value is only
1535 ** 1 chance in 2^32.  So we're safe enough.
1536 **
1537 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1538 ** the schema-version whenever the schema changes.
1539 */
1540 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1541   sqlite3 *db = pParse->db;
1542   Vdbe *v = pParse->pVdbe;
1543   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1544   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1545                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1546 }
1547 
1548 /*
1549 ** Measure the number of characters needed to output the given
1550 ** identifier.  The number returned includes any quotes used
1551 ** but does not include the null terminator.
1552 **
1553 ** The estimate is conservative.  It might be larger that what is
1554 ** really needed.
1555 */
1556 static int identLength(const char *z){
1557   int n;
1558   for(n=0; *z; n++, z++){
1559     if( *z=='"' ){ n++; }
1560   }
1561   return n + 2;
1562 }
1563 
1564 /*
1565 ** The first parameter is a pointer to an output buffer. The second
1566 ** parameter is a pointer to an integer that contains the offset at
1567 ** which to write into the output buffer. This function copies the
1568 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1569 ** to the specified offset in the buffer and updates *pIdx to refer
1570 ** to the first byte after the last byte written before returning.
1571 **
1572 ** If the string zSignedIdent consists entirely of alpha-numeric
1573 ** characters, does not begin with a digit and is not an SQL keyword,
1574 ** then it is copied to the output buffer exactly as it is. Otherwise,
1575 ** it is quoted using double-quotes.
1576 */
1577 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1578   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1579   int i, j, needQuote;
1580   i = *pIdx;
1581 
1582   for(j=0; zIdent[j]; j++){
1583     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1584   }
1585   needQuote = sqlite3Isdigit(zIdent[0])
1586             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1587             || zIdent[j]!=0
1588             || j==0;
1589 
1590   if( needQuote ) z[i++] = '"';
1591   for(j=0; zIdent[j]; j++){
1592     z[i++] = zIdent[j];
1593     if( zIdent[j]=='"' ) z[i++] = '"';
1594   }
1595   if( needQuote ) z[i++] = '"';
1596   z[i] = 0;
1597   *pIdx = i;
1598 }
1599 
1600 /*
1601 ** Generate a CREATE TABLE statement appropriate for the given
1602 ** table.  Memory to hold the text of the statement is obtained
1603 ** from sqliteMalloc() and must be freed by the calling function.
1604 */
1605 static char *createTableStmt(sqlite3 *db, Table *p){
1606   int i, k, n;
1607   char *zStmt;
1608   char *zSep, *zSep2, *zEnd;
1609   Column *pCol;
1610   n = 0;
1611   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1612     n += identLength(pCol->zName) + 5;
1613   }
1614   n += identLength(p->zName);
1615   if( n<50 ){
1616     zSep = "";
1617     zSep2 = ",";
1618     zEnd = ")";
1619   }else{
1620     zSep = "\n  ";
1621     zSep2 = ",\n  ";
1622     zEnd = "\n)";
1623   }
1624   n += 35 + 6*p->nCol;
1625   zStmt = sqlite3DbMallocRaw(0, n);
1626   if( zStmt==0 ){
1627     sqlite3OomFault(db);
1628     return 0;
1629   }
1630   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1631   k = sqlite3Strlen30(zStmt);
1632   identPut(zStmt, &k, p->zName);
1633   zStmt[k++] = '(';
1634   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1635     static const char * const azType[] = {
1636         /* SQLITE_AFF_BLOB    */ "",
1637         /* SQLITE_AFF_TEXT    */ " TEXT",
1638         /* SQLITE_AFF_NUMERIC */ " NUM",
1639         /* SQLITE_AFF_INTEGER */ " INT",
1640         /* SQLITE_AFF_REAL    */ " REAL"
1641     };
1642     int len;
1643     const char *zType;
1644 
1645     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1646     k += sqlite3Strlen30(&zStmt[k]);
1647     zSep = zSep2;
1648     identPut(zStmt, &k, pCol->zName);
1649     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1650     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1651     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1652     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1653     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1654     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1655     testcase( pCol->affinity==SQLITE_AFF_REAL );
1656 
1657     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1658     len = sqlite3Strlen30(zType);
1659     assert( pCol->affinity==SQLITE_AFF_BLOB
1660             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1661     memcpy(&zStmt[k], zType, len);
1662     k += len;
1663     assert( k<=n );
1664   }
1665   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1666   return zStmt;
1667 }
1668 
1669 /*
1670 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1671 ** on success and SQLITE_NOMEM on an OOM error.
1672 */
1673 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1674   char *zExtra;
1675   int nByte;
1676   if( pIdx->nColumn>=N ) return SQLITE_OK;
1677   assert( pIdx->isResized==0 );
1678   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1679   zExtra = sqlite3DbMallocZero(db, nByte);
1680   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1681   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1682   pIdx->azColl = (const char**)zExtra;
1683   zExtra += sizeof(char*)*N;
1684   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1685   pIdx->aiColumn = (i16*)zExtra;
1686   zExtra += sizeof(i16)*N;
1687   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1688   pIdx->aSortOrder = (u8*)zExtra;
1689   pIdx->nColumn = N;
1690   pIdx->isResized = 1;
1691   return SQLITE_OK;
1692 }
1693 
1694 /*
1695 ** Estimate the total row width for a table.
1696 */
1697 static void estimateTableWidth(Table *pTab){
1698   unsigned wTable = 0;
1699   const Column *pTabCol;
1700   int i;
1701   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1702     wTable += pTabCol->szEst;
1703   }
1704   if( pTab->iPKey<0 ) wTable++;
1705   pTab->szTabRow = sqlite3LogEst(wTable*4);
1706 }
1707 
1708 /*
1709 ** Estimate the average size of a row for an index.
1710 */
1711 static void estimateIndexWidth(Index *pIdx){
1712   unsigned wIndex = 0;
1713   int i;
1714   const Column *aCol = pIdx->pTable->aCol;
1715   for(i=0; i<pIdx->nColumn; i++){
1716     i16 x = pIdx->aiColumn[i];
1717     assert( x<pIdx->pTable->nCol );
1718     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1719   }
1720   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1721 }
1722 
1723 /* Return true if value x is found any of the first nCol entries of aiCol[]
1724 */
1725 static int hasColumn(const i16 *aiCol, int nCol, int x){
1726   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1727   return 0;
1728 }
1729 
1730 /* Recompute the colNotIdxed field of the Index.
1731 **
1732 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
1733 ** columns that are within the first 63 columns of the table.  The
1734 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
1735 ** of the table have a 1.
1736 **
1737 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
1738 ** to determine if the index is covering index.
1739 */
1740 static void recomputeColumnsNotIndexed(Index *pIdx){
1741   Bitmask m = 0;
1742   int j;
1743   for(j=pIdx->nColumn-1; j>=0; j--){
1744     int x = pIdx->aiColumn[j];
1745     if( x>=0 ){
1746       testcase( x==BMS-1 );
1747       testcase( x==BMS-2 );
1748       if( x<BMS-1 ) m |= MASKBIT(x);
1749     }
1750   }
1751   pIdx->colNotIdxed = ~m;
1752   assert( (pIdx->colNotIdxed>>63)==1 );
1753 }
1754 
1755 /*
1756 ** This routine runs at the end of parsing a CREATE TABLE statement that
1757 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1758 ** internal schema data structures and the generated VDBE code so that they
1759 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1760 ** Changes include:
1761 **
1762 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1763 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1764 **          into BTREE_BLOBKEY.
1765 **     (3)  Bypass the creation of the sqlite_master table entry
1766 **          for the PRIMARY KEY as the primary key index is now
1767 **          identified by the sqlite_master table entry of the table itself.
1768 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1769 **          schema to the rootpage from the main table.
1770 **     (5)  Add all table columns to the PRIMARY KEY Index object
1771 **          so that the PRIMARY KEY is a covering index.  The surplus
1772 **          columns are part of KeyInfo.nAllField and are not used for
1773 **          sorting or lookup or uniqueness checks.
1774 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1775 **          indices with the PRIMARY KEY columns.
1776 **
1777 ** For virtual tables, only (1) is performed.
1778 */
1779 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1780   Index *pIdx;
1781   Index *pPk;
1782   int nPk;
1783   int i, j;
1784   sqlite3 *db = pParse->db;
1785   Vdbe *v = pParse->pVdbe;
1786 
1787   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1788   */
1789   if( !db->init.imposterTable ){
1790     for(i=0; i<pTab->nCol; i++){
1791       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1792         pTab->aCol[i].notNull = OE_Abort;
1793       }
1794     }
1795   }
1796 
1797   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1798   ** into BTREE_BLOBKEY.
1799   */
1800   if( pParse->addrCrTab ){
1801     assert( v );
1802     sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1803   }
1804 
1805   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1806   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1807   */
1808   if( pTab->iPKey>=0 ){
1809     ExprList *pList;
1810     Token ipkToken;
1811     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1812     pList = sqlite3ExprListAppend(pParse, 0,
1813                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1814     if( pList==0 ) return;
1815     pList->a[0].sortOrder = pParse->iPkSortOrder;
1816     assert( pParse->pNewTable==pTab );
1817     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1818                        SQLITE_IDXTYPE_PRIMARYKEY);
1819     if( db->mallocFailed || pParse->nErr ) return;
1820     pPk = sqlite3PrimaryKeyIndex(pTab);
1821     pTab->iPKey = -1;
1822   }else{
1823     pPk = sqlite3PrimaryKeyIndex(pTab);
1824 
1825     /*
1826     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1827     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1828     ** code assumes the PRIMARY KEY contains no repeated columns.
1829     */
1830     for(i=j=1; i<pPk->nKeyCol; i++){
1831       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1832         pPk->nColumn--;
1833       }else{
1834         pPk->aiColumn[j++] = pPk->aiColumn[i];
1835       }
1836     }
1837     pPk->nKeyCol = j;
1838   }
1839   assert( pPk!=0 );
1840   pPk->isCovering = 1;
1841   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1842   nPk = pPk->nKeyCol;
1843 
1844   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1845   ** table entry. This is only required if currently generating VDBE
1846   ** code for a CREATE TABLE (not when parsing one as part of reading
1847   ** a database schema).  */
1848   if( v && pPk->tnum>0 ){
1849     assert( db->init.busy==0 );
1850     sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1851   }
1852 
1853   /* The root page of the PRIMARY KEY is the table root page */
1854   pPk->tnum = pTab->tnum;
1855 
1856   /* Update the in-memory representation of all UNIQUE indices by converting
1857   ** the final rowid column into one or more columns of the PRIMARY KEY.
1858   */
1859   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1860     int n;
1861     if( IsPrimaryKeyIndex(pIdx) ) continue;
1862     for(i=n=0; i<nPk; i++){
1863       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1864     }
1865     if( n==0 ){
1866       /* This index is a superset of the primary key */
1867       pIdx->nColumn = pIdx->nKeyCol;
1868       continue;
1869     }
1870     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1871     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1872       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1873         pIdx->aiColumn[j] = pPk->aiColumn[i];
1874         pIdx->azColl[j] = pPk->azColl[i];
1875         j++;
1876       }
1877     }
1878     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1879     assert( pIdx->nColumn>=j );
1880   }
1881 
1882   /* Add all table columns to the PRIMARY KEY index
1883   */
1884   if( nPk<pTab->nCol ){
1885     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1886     for(i=0, j=nPk; i<pTab->nCol; i++){
1887       if( !hasColumn(pPk->aiColumn, j, i) ){
1888         assert( j<pPk->nColumn );
1889         pPk->aiColumn[j] = i;
1890         pPk->azColl[j] = sqlite3StrBINARY;
1891         j++;
1892       }
1893     }
1894     assert( pPk->nColumn==j );
1895     assert( pTab->nCol==j );
1896   }else{
1897     pPk->nColumn = pTab->nCol;
1898   }
1899   recomputeColumnsNotIndexed(pPk);
1900 }
1901 
1902 #ifndef SQLITE_OMIT_VIRTUALTABLE
1903 /*
1904 ** Return true if zName is a shadow table name in the current database
1905 ** connection.
1906 **
1907 ** zName is temporarily modified while this routine is running, but is
1908 ** restored to its original value prior to this routine returning.
1909 */
1910 static int isShadowTableName(sqlite3 *db, char *zName){
1911   char *zTail;                  /* Pointer to the last "_" in zName */
1912   Table *pTab;                  /* Table that zName is a shadow of */
1913   Module *pMod;                 /* Module for the virtual table */
1914 
1915   zTail = strrchr(zName, '_');
1916   if( zTail==0 ) return 0;
1917   *zTail = 0;
1918   pTab = sqlite3FindTable(db, zName, 0);
1919   *zTail = '_';
1920   if( pTab==0 ) return 0;
1921   if( !IsVirtual(pTab) ) return 0;
1922   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]);
1923   if( pMod==0 ) return 0;
1924   if( pMod->pModule->iVersion<3 ) return 0;
1925   if( pMod->pModule->xShadowName==0 ) return 0;
1926   return pMod->pModule->xShadowName(zTail+1);
1927 }
1928 #else
1929 # define isShadowTableName(x,y) 0
1930 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
1931 
1932 /*
1933 ** This routine is called to report the final ")" that terminates
1934 ** a CREATE TABLE statement.
1935 **
1936 ** The table structure that other action routines have been building
1937 ** is added to the internal hash tables, assuming no errors have
1938 ** occurred.
1939 **
1940 ** An entry for the table is made in the master table on disk, unless
1941 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1942 ** it means we are reading the sqlite_master table because we just
1943 ** connected to the database or because the sqlite_master table has
1944 ** recently changed, so the entry for this table already exists in
1945 ** the sqlite_master table.  We do not want to create it again.
1946 **
1947 ** If the pSelect argument is not NULL, it means that this routine
1948 ** was called to create a table generated from a
1949 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1950 ** the new table will match the result set of the SELECT.
1951 */
1952 void sqlite3EndTable(
1953   Parse *pParse,          /* Parse context */
1954   Token *pCons,           /* The ',' token after the last column defn. */
1955   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1956   u8 tabOpts,             /* Extra table options. Usually 0. */
1957   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1958 ){
1959   Table *p;                 /* The new table */
1960   sqlite3 *db = pParse->db; /* The database connection */
1961   int iDb;                  /* Database in which the table lives */
1962   Index *pIdx;              /* An implied index of the table */
1963 
1964   if( pEnd==0 && pSelect==0 ){
1965     return;
1966   }
1967   assert( !db->mallocFailed );
1968   p = pParse->pNewTable;
1969   if( p==0 ) return;
1970 
1971   if( pSelect==0 && isShadowTableName(db, p->zName) ){
1972     p->tabFlags |= TF_Shadow;
1973   }
1974 
1975   /* If the db->init.busy is 1 it means we are reading the SQL off the
1976   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1977   ** So do not write to the disk again.  Extract the root page number
1978   ** for the table from the db->init.newTnum field.  (The page number
1979   ** should have been put there by the sqliteOpenCb routine.)
1980   **
1981   ** If the root page number is 1, that means this is the sqlite_master
1982   ** table itself.  So mark it read-only.
1983   */
1984   if( db->init.busy ){
1985     if( pSelect ){
1986       sqlite3ErrorMsg(pParse, "");
1987       return;
1988     }
1989     p->tnum = db->init.newTnum;
1990     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1991   }
1992 
1993   /* Special processing for WITHOUT ROWID Tables */
1994   if( tabOpts & TF_WithoutRowid ){
1995     if( (p->tabFlags & TF_Autoincrement) ){
1996       sqlite3ErrorMsg(pParse,
1997           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1998       return;
1999     }
2000     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2001       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2002     }else{
2003       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2004       convertToWithoutRowidTable(pParse, p);
2005     }
2006   }
2007 
2008   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2009 
2010 #ifndef SQLITE_OMIT_CHECK
2011   /* Resolve names in all CHECK constraint expressions.
2012   */
2013   if( p->pCheck ){
2014     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2015   }
2016 #endif /* !defined(SQLITE_OMIT_CHECK) */
2017 
2018   /* Estimate the average row size for the table and for all implied indices */
2019   estimateTableWidth(p);
2020   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2021     estimateIndexWidth(pIdx);
2022   }
2023 
2024   /* If not initializing, then create a record for the new table
2025   ** in the SQLITE_MASTER table of the database.
2026   **
2027   ** If this is a TEMPORARY table, write the entry into the auxiliary
2028   ** file instead of into the main database file.
2029   */
2030   if( !db->init.busy ){
2031     int n;
2032     Vdbe *v;
2033     char *zType;    /* "view" or "table" */
2034     char *zType2;   /* "VIEW" or "TABLE" */
2035     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2036 
2037     v = sqlite3GetVdbe(pParse);
2038     if( NEVER(v==0) ) return;
2039 
2040     sqlite3VdbeAddOp1(v, OP_Close, 0);
2041 
2042     /*
2043     ** Initialize zType for the new view or table.
2044     */
2045     if( p->pSelect==0 ){
2046       /* A regular table */
2047       zType = "table";
2048       zType2 = "TABLE";
2049 #ifndef SQLITE_OMIT_VIEW
2050     }else{
2051       /* A view */
2052       zType = "view";
2053       zType2 = "VIEW";
2054 #endif
2055     }
2056 
2057     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2058     ** statement to populate the new table. The root-page number for the
2059     ** new table is in register pParse->regRoot.
2060     **
2061     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2062     ** suitable state to query for the column names and types to be used
2063     ** by the new table.
2064     **
2065     ** A shared-cache write-lock is not required to write to the new table,
2066     ** as a schema-lock must have already been obtained to create it. Since
2067     ** a schema-lock excludes all other database users, the write-lock would
2068     ** be redundant.
2069     */
2070     if( pSelect ){
2071       SelectDest dest;    /* Where the SELECT should store results */
2072       int regYield;       /* Register holding co-routine entry-point */
2073       int addrTop;        /* Top of the co-routine */
2074       int regRec;         /* A record to be insert into the new table */
2075       int regRowid;       /* Rowid of the next row to insert */
2076       int addrInsLoop;    /* Top of the loop for inserting rows */
2077       Table *pSelTab;     /* A table that describes the SELECT results */
2078 
2079       regYield = ++pParse->nMem;
2080       regRec = ++pParse->nMem;
2081       regRowid = ++pParse->nMem;
2082       assert(pParse->nTab==1);
2083       sqlite3MayAbort(pParse);
2084       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2085       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2086       pParse->nTab = 2;
2087       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2088       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2089       if( pParse->nErr ) return;
2090       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
2091       if( pSelTab==0 ) return;
2092       assert( p->aCol==0 );
2093       p->nCol = pSelTab->nCol;
2094       p->aCol = pSelTab->aCol;
2095       pSelTab->nCol = 0;
2096       pSelTab->aCol = 0;
2097       sqlite3DeleteTable(db, pSelTab);
2098       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2099       sqlite3Select(pParse, pSelect, &dest);
2100       if( pParse->nErr ) return;
2101       sqlite3VdbeEndCoroutine(v, regYield);
2102       sqlite3VdbeJumpHere(v, addrTop - 1);
2103       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2104       VdbeCoverage(v);
2105       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2106       sqlite3TableAffinity(v, p, 0);
2107       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2108       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2109       sqlite3VdbeGoto(v, addrInsLoop);
2110       sqlite3VdbeJumpHere(v, addrInsLoop);
2111       sqlite3VdbeAddOp1(v, OP_Close, 1);
2112     }
2113 
2114     /* Compute the complete text of the CREATE statement */
2115     if( pSelect ){
2116       zStmt = createTableStmt(db, p);
2117     }else{
2118       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2119       n = (int)(pEnd2->z - pParse->sNameToken.z);
2120       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2121       zStmt = sqlite3MPrintf(db,
2122           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2123       );
2124     }
2125 
2126     /* A slot for the record has already been allocated in the
2127     ** SQLITE_MASTER table.  We just need to update that slot with all
2128     ** the information we've collected.
2129     */
2130     sqlite3NestedParse(pParse,
2131       "UPDATE %Q.%s "
2132          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2133        "WHERE rowid=#%d",
2134       db->aDb[iDb].zDbSName, MASTER_NAME,
2135       zType,
2136       p->zName,
2137       p->zName,
2138       pParse->regRoot,
2139       zStmt,
2140       pParse->regRowid
2141     );
2142     sqlite3DbFree(db, zStmt);
2143     sqlite3ChangeCookie(pParse, iDb);
2144 
2145 #ifndef SQLITE_OMIT_AUTOINCREMENT
2146     /* Check to see if we need to create an sqlite_sequence table for
2147     ** keeping track of autoincrement keys.
2148     */
2149     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2150       Db *pDb = &db->aDb[iDb];
2151       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2152       if( pDb->pSchema->pSeqTab==0 ){
2153         sqlite3NestedParse(pParse,
2154           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2155           pDb->zDbSName
2156         );
2157       }
2158     }
2159 #endif
2160 
2161     /* Reparse everything to update our internal data structures */
2162     sqlite3VdbeAddParseSchemaOp(v, iDb,
2163            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2164   }
2165 
2166 
2167   /* Add the table to the in-memory representation of the database.
2168   */
2169   if( db->init.busy ){
2170     Table *pOld;
2171     Schema *pSchema = p->pSchema;
2172     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2173     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2174     if( pOld ){
2175       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2176       sqlite3OomFault(db);
2177       return;
2178     }
2179     pParse->pNewTable = 0;
2180     db->mDbFlags |= DBFLAG_SchemaChange;
2181 
2182 #ifndef SQLITE_OMIT_ALTERTABLE
2183     if( !p->pSelect ){
2184       const char *zName = (const char *)pParse->sNameToken.z;
2185       int nName;
2186       assert( !pSelect && pCons && pEnd );
2187       if( pCons->z==0 ){
2188         pCons = pEnd;
2189       }
2190       nName = (int)((const char *)pCons->z - zName);
2191       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2192     }
2193 #endif
2194   }
2195 }
2196 
2197 #ifndef SQLITE_OMIT_VIEW
2198 /*
2199 ** The parser calls this routine in order to create a new VIEW
2200 */
2201 void sqlite3CreateView(
2202   Parse *pParse,     /* The parsing context */
2203   Token *pBegin,     /* The CREATE token that begins the statement */
2204   Token *pName1,     /* The token that holds the name of the view */
2205   Token *pName2,     /* The token that holds the name of the view */
2206   ExprList *pCNames, /* Optional list of view column names */
2207   Select *pSelect,   /* A SELECT statement that will become the new view */
2208   int isTemp,        /* TRUE for a TEMPORARY view */
2209   int noErr          /* Suppress error messages if VIEW already exists */
2210 ){
2211   Table *p;
2212   int n;
2213   const char *z;
2214   Token sEnd;
2215   DbFixer sFix;
2216   Token *pName = 0;
2217   int iDb;
2218   sqlite3 *db = pParse->db;
2219 
2220   if( pParse->nVar>0 ){
2221     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2222     goto create_view_fail;
2223   }
2224   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2225   p = pParse->pNewTable;
2226   if( p==0 || pParse->nErr ) goto create_view_fail;
2227   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2228   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2229   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2230   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2231 
2232   /* Make a copy of the entire SELECT statement that defines the view.
2233   ** This will force all the Expr.token.z values to be dynamically
2234   ** allocated rather than point to the input string - which means that
2235   ** they will persist after the current sqlite3_exec() call returns.
2236   */
2237   if( IN_RENAME_OBJECT ){
2238     p->pSelect = pSelect;
2239     pSelect = 0;
2240   }else{
2241     p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2242   }
2243   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2244   if( db->mallocFailed ) goto create_view_fail;
2245 
2246   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2247   ** the end.
2248   */
2249   sEnd = pParse->sLastToken;
2250   assert( sEnd.z[0]!=0 || sEnd.n==0 );
2251   if( sEnd.z[0]!=';' ){
2252     sEnd.z += sEnd.n;
2253   }
2254   sEnd.n = 0;
2255   n = (int)(sEnd.z - pBegin->z);
2256   assert( n>0 );
2257   z = pBegin->z;
2258   while( sqlite3Isspace(z[n-1]) ){ n--; }
2259   sEnd.z = &z[n-1];
2260   sEnd.n = 1;
2261 
2262   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2263   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2264 
2265 create_view_fail:
2266   sqlite3SelectDelete(db, pSelect);
2267   if( IN_RENAME_OBJECT ){
2268     sqlite3RenameExprlistUnmap(pParse, pCNames);
2269   }
2270   sqlite3ExprListDelete(db, pCNames);
2271   return;
2272 }
2273 #endif /* SQLITE_OMIT_VIEW */
2274 
2275 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2276 /*
2277 ** The Table structure pTable is really a VIEW.  Fill in the names of
2278 ** the columns of the view in the pTable structure.  Return the number
2279 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2280 */
2281 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2282   Table *pSelTab;   /* A fake table from which we get the result set */
2283   Select *pSel;     /* Copy of the SELECT that implements the view */
2284   int nErr = 0;     /* Number of errors encountered */
2285   int n;            /* Temporarily holds the number of cursors assigned */
2286   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2287 #ifndef SQLITE_OMIT_VIRTUALTABLE
2288   int rc;
2289 #endif
2290 #ifndef SQLITE_OMIT_AUTHORIZATION
2291   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2292 #endif
2293 
2294   assert( pTable );
2295 
2296 #ifndef SQLITE_OMIT_VIRTUALTABLE
2297   db->nSchemaLock++;
2298   rc = sqlite3VtabCallConnect(pParse, pTable);
2299   db->nSchemaLock--;
2300   if( rc ){
2301     return 1;
2302   }
2303   if( IsVirtual(pTable) ) return 0;
2304 #endif
2305 
2306 #ifndef SQLITE_OMIT_VIEW
2307   /* A positive nCol means the columns names for this view are
2308   ** already known.
2309   */
2310   if( pTable->nCol>0 ) return 0;
2311 
2312   /* A negative nCol is a special marker meaning that we are currently
2313   ** trying to compute the column names.  If we enter this routine with
2314   ** a negative nCol, it means two or more views form a loop, like this:
2315   **
2316   **     CREATE VIEW one AS SELECT * FROM two;
2317   **     CREATE VIEW two AS SELECT * FROM one;
2318   **
2319   ** Actually, the error above is now caught prior to reaching this point.
2320   ** But the following test is still important as it does come up
2321   ** in the following:
2322   **
2323   **     CREATE TABLE main.ex1(a);
2324   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2325   **     SELECT * FROM temp.ex1;
2326   */
2327   if( pTable->nCol<0 ){
2328     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2329     return 1;
2330   }
2331   assert( pTable->nCol>=0 );
2332 
2333   /* If we get this far, it means we need to compute the table names.
2334   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2335   ** "*" elements in the results set of the view and will assign cursors
2336   ** to the elements of the FROM clause.  But we do not want these changes
2337   ** to be permanent.  So the computation is done on a copy of the SELECT
2338   ** statement that defines the view.
2339   */
2340   assert( pTable->pSelect );
2341   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2342   if( pSel ){
2343 #ifndef SQLITE_OMIT_ALTERTABLE
2344     u8 eParseMode = pParse->eParseMode;
2345     pParse->eParseMode = PARSE_MODE_NORMAL;
2346 #endif
2347     n = pParse->nTab;
2348     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2349     pTable->nCol = -1;
2350     db->lookaside.bDisable++;
2351 #ifndef SQLITE_OMIT_AUTHORIZATION
2352     xAuth = db->xAuth;
2353     db->xAuth = 0;
2354     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2355     db->xAuth = xAuth;
2356 #else
2357     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2358 #endif
2359     pParse->nTab = n;
2360     if( pTable->pCheck ){
2361       /* CREATE VIEW name(arglist) AS ...
2362       ** The names of the columns in the table are taken from
2363       ** arglist which is stored in pTable->pCheck.  The pCheck field
2364       ** normally holds CHECK constraints on an ordinary table, but for
2365       ** a VIEW it holds the list of column names.
2366       */
2367       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2368                                  &pTable->nCol, &pTable->aCol);
2369       if( db->mallocFailed==0
2370        && pParse->nErr==0
2371        && pTable->nCol==pSel->pEList->nExpr
2372       ){
2373         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2374       }
2375     }else if( pSelTab ){
2376       /* CREATE VIEW name AS...  without an argument list.  Construct
2377       ** the column names from the SELECT statement that defines the view.
2378       */
2379       assert( pTable->aCol==0 );
2380       pTable->nCol = pSelTab->nCol;
2381       pTable->aCol = pSelTab->aCol;
2382       pSelTab->nCol = 0;
2383       pSelTab->aCol = 0;
2384       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2385     }else{
2386       pTable->nCol = 0;
2387       nErr++;
2388     }
2389     sqlite3DeleteTable(db, pSelTab);
2390     sqlite3SelectDelete(db, pSel);
2391     db->lookaside.bDisable--;
2392 #ifndef SQLITE_OMIT_ALTERTABLE
2393     pParse->eParseMode = eParseMode;
2394 #endif
2395   } else {
2396     nErr++;
2397   }
2398   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2399   if( db->mallocFailed ){
2400     sqlite3DeleteColumnNames(db, pTable);
2401     pTable->aCol = 0;
2402     pTable->nCol = 0;
2403   }
2404 #endif /* SQLITE_OMIT_VIEW */
2405   return nErr;
2406 }
2407 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2408 
2409 #ifndef SQLITE_OMIT_VIEW
2410 /*
2411 ** Clear the column names from every VIEW in database idx.
2412 */
2413 static void sqliteViewResetAll(sqlite3 *db, int idx){
2414   HashElem *i;
2415   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2416   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2417   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2418     Table *pTab = sqliteHashData(i);
2419     if( pTab->pSelect ){
2420       sqlite3DeleteColumnNames(db, pTab);
2421       pTab->aCol = 0;
2422       pTab->nCol = 0;
2423     }
2424   }
2425   DbClearProperty(db, idx, DB_UnresetViews);
2426 }
2427 #else
2428 # define sqliteViewResetAll(A,B)
2429 #endif /* SQLITE_OMIT_VIEW */
2430 
2431 /*
2432 ** This function is called by the VDBE to adjust the internal schema
2433 ** used by SQLite when the btree layer moves a table root page. The
2434 ** root-page of a table or index in database iDb has changed from iFrom
2435 ** to iTo.
2436 **
2437 ** Ticket #1728:  The symbol table might still contain information
2438 ** on tables and/or indices that are the process of being deleted.
2439 ** If you are unlucky, one of those deleted indices or tables might
2440 ** have the same rootpage number as the real table or index that is
2441 ** being moved.  So we cannot stop searching after the first match
2442 ** because the first match might be for one of the deleted indices
2443 ** or tables and not the table/index that is actually being moved.
2444 ** We must continue looping until all tables and indices with
2445 ** rootpage==iFrom have been converted to have a rootpage of iTo
2446 ** in order to be certain that we got the right one.
2447 */
2448 #ifndef SQLITE_OMIT_AUTOVACUUM
2449 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2450   HashElem *pElem;
2451   Hash *pHash;
2452   Db *pDb;
2453 
2454   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2455   pDb = &db->aDb[iDb];
2456   pHash = &pDb->pSchema->tblHash;
2457   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2458     Table *pTab = sqliteHashData(pElem);
2459     if( pTab->tnum==iFrom ){
2460       pTab->tnum = iTo;
2461     }
2462   }
2463   pHash = &pDb->pSchema->idxHash;
2464   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2465     Index *pIdx = sqliteHashData(pElem);
2466     if( pIdx->tnum==iFrom ){
2467       pIdx->tnum = iTo;
2468     }
2469   }
2470 }
2471 #endif
2472 
2473 /*
2474 ** Write code to erase the table with root-page iTable from database iDb.
2475 ** Also write code to modify the sqlite_master table and internal schema
2476 ** if a root-page of another table is moved by the btree-layer whilst
2477 ** erasing iTable (this can happen with an auto-vacuum database).
2478 */
2479 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2480   Vdbe *v = sqlite3GetVdbe(pParse);
2481   int r1 = sqlite3GetTempReg(pParse);
2482   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
2483   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2484   sqlite3MayAbort(pParse);
2485 #ifndef SQLITE_OMIT_AUTOVACUUM
2486   /* OP_Destroy stores an in integer r1. If this integer
2487   ** is non-zero, then it is the root page number of a table moved to
2488   ** location iTable. The following code modifies the sqlite_master table to
2489   ** reflect this.
2490   **
2491   ** The "#NNN" in the SQL is a special constant that means whatever value
2492   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2493   ** token for additional information.
2494   */
2495   sqlite3NestedParse(pParse,
2496      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2497      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2498 #endif
2499   sqlite3ReleaseTempReg(pParse, r1);
2500 }
2501 
2502 /*
2503 ** Write VDBE code to erase table pTab and all associated indices on disk.
2504 ** Code to update the sqlite_master tables and internal schema definitions
2505 ** in case a root-page belonging to another table is moved by the btree layer
2506 ** is also added (this can happen with an auto-vacuum database).
2507 */
2508 static void destroyTable(Parse *pParse, Table *pTab){
2509   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2510   ** is not defined), then it is important to call OP_Destroy on the
2511   ** table and index root-pages in order, starting with the numerically
2512   ** largest root-page number. This guarantees that none of the root-pages
2513   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2514   ** following were coded:
2515   **
2516   ** OP_Destroy 4 0
2517   ** ...
2518   ** OP_Destroy 5 0
2519   **
2520   ** and root page 5 happened to be the largest root-page number in the
2521   ** database, then root page 5 would be moved to page 4 by the
2522   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2523   ** a free-list page.
2524   */
2525   int iTab = pTab->tnum;
2526   int iDestroyed = 0;
2527 
2528   while( 1 ){
2529     Index *pIdx;
2530     int iLargest = 0;
2531 
2532     if( iDestroyed==0 || iTab<iDestroyed ){
2533       iLargest = iTab;
2534     }
2535     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2536       int iIdx = pIdx->tnum;
2537       assert( pIdx->pSchema==pTab->pSchema );
2538       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2539         iLargest = iIdx;
2540       }
2541     }
2542     if( iLargest==0 ){
2543       return;
2544     }else{
2545       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2546       assert( iDb>=0 && iDb<pParse->db->nDb );
2547       destroyRootPage(pParse, iLargest, iDb);
2548       iDestroyed = iLargest;
2549     }
2550   }
2551 }
2552 
2553 /*
2554 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2555 ** after a DROP INDEX or DROP TABLE command.
2556 */
2557 static void sqlite3ClearStatTables(
2558   Parse *pParse,         /* The parsing context */
2559   int iDb,               /* The database number */
2560   const char *zType,     /* "idx" or "tbl" */
2561   const char *zName      /* Name of index or table */
2562 ){
2563   int i;
2564   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2565   for(i=1; i<=4; i++){
2566     char zTab[24];
2567     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2568     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2569       sqlite3NestedParse(pParse,
2570         "DELETE FROM %Q.%s WHERE %s=%Q",
2571         zDbName, zTab, zType, zName
2572       );
2573     }
2574   }
2575 }
2576 
2577 /*
2578 ** Generate code to drop a table.
2579 */
2580 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2581   Vdbe *v;
2582   sqlite3 *db = pParse->db;
2583   Trigger *pTrigger;
2584   Db *pDb = &db->aDb[iDb];
2585 
2586   v = sqlite3GetVdbe(pParse);
2587   assert( v!=0 );
2588   sqlite3BeginWriteOperation(pParse, 1, iDb);
2589 
2590 #ifndef SQLITE_OMIT_VIRTUALTABLE
2591   if( IsVirtual(pTab) ){
2592     sqlite3VdbeAddOp0(v, OP_VBegin);
2593   }
2594 #endif
2595 
2596   /* Drop all triggers associated with the table being dropped. Code
2597   ** is generated to remove entries from sqlite_master and/or
2598   ** sqlite_temp_master if required.
2599   */
2600   pTrigger = sqlite3TriggerList(pParse, pTab);
2601   while( pTrigger ){
2602     assert( pTrigger->pSchema==pTab->pSchema ||
2603         pTrigger->pSchema==db->aDb[1].pSchema );
2604     sqlite3DropTriggerPtr(pParse, pTrigger);
2605     pTrigger = pTrigger->pNext;
2606   }
2607 
2608 #ifndef SQLITE_OMIT_AUTOINCREMENT
2609   /* Remove any entries of the sqlite_sequence table associated with
2610   ** the table being dropped. This is done before the table is dropped
2611   ** at the btree level, in case the sqlite_sequence table needs to
2612   ** move as a result of the drop (can happen in auto-vacuum mode).
2613   */
2614   if( pTab->tabFlags & TF_Autoincrement ){
2615     sqlite3NestedParse(pParse,
2616       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2617       pDb->zDbSName, pTab->zName
2618     );
2619   }
2620 #endif
2621 
2622   /* Drop all SQLITE_MASTER table and index entries that refer to the
2623   ** table. The program name loops through the master table and deletes
2624   ** every row that refers to a table of the same name as the one being
2625   ** dropped. Triggers are handled separately because a trigger can be
2626   ** created in the temp database that refers to a table in another
2627   ** database.
2628   */
2629   sqlite3NestedParse(pParse,
2630       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2631       pDb->zDbSName, MASTER_NAME, pTab->zName);
2632   if( !isView && !IsVirtual(pTab) ){
2633     destroyTable(pParse, pTab);
2634   }
2635 
2636   /* Remove the table entry from SQLite's internal schema and modify
2637   ** the schema cookie.
2638   */
2639   if( IsVirtual(pTab) ){
2640     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2641   }
2642   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2643   sqlite3ChangeCookie(pParse, iDb);
2644   sqliteViewResetAll(db, iDb);
2645 }
2646 
2647 /*
2648 ** This routine is called to do the work of a DROP TABLE statement.
2649 ** pName is the name of the table to be dropped.
2650 */
2651 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2652   Table *pTab;
2653   Vdbe *v;
2654   sqlite3 *db = pParse->db;
2655   int iDb;
2656 
2657   if( db->mallocFailed ){
2658     goto exit_drop_table;
2659   }
2660   assert( pParse->nErr==0 );
2661   assert( pName->nSrc==1 );
2662   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2663   if( noErr ) db->suppressErr++;
2664   assert( isView==0 || isView==LOCATE_VIEW );
2665   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2666   if( noErr ) db->suppressErr--;
2667 
2668   if( pTab==0 ){
2669     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2670     goto exit_drop_table;
2671   }
2672   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2673   assert( iDb>=0 && iDb<db->nDb );
2674 
2675   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2676   ** it is initialized.
2677   */
2678   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2679     goto exit_drop_table;
2680   }
2681 #ifndef SQLITE_OMIT_AUTHORIZATION
2682   {
2683     int code;
2684     const char *zTab = SCHEMA_TABLE(iDb);
2685     const char *zDb = db->aDb[iDb].zDbSName;
2686     const char *zArg2 = 0;
2687     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2688       goto exit_drop_table;
2689     }
2690     if( isView ){
2691       if( !OMIT_TEMPDB && iDb==1 ){
2692         code = SQLITE_DROP_TEMP_VIEW;
2693       }else{
2694         code = SQLITE_DROP_VIEW;
2695       }
2696 #ifndef SQLITE_OMIT_VIRTUALTABLE
2697     }else if( IsVirtual(pTab) ){
2698       code = SQLITE_DROP_VTABLE;
2699       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2700 #endif
2701     }else{
2702       if( !OMIT_TEMPDB && iDb==1 ){
2703         code = SQLITE_DROP_TEMP_TABLE;
2704       }else{
2705         code = SQLITE_DROP_TABLE;
2706       }
2707     }
2708     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2709       goto exit_drop_table;
2710     }
2711     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2712       goto exit_drop_table;
2713     }
2714   }
2715 #endif
2716   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2717     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2718     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2719     goto exit_drop_table;
2720   }
2721 
2722 #ifndef SQLITE_OMIT_VIEW
2723   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2724   ** on a table.
2725   */
2726   if( isView && pTab->pSelect==0 ){
2727     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2728     goto exit_drop_table;
2729   }
2730   if( !isView && pTab->pSelect ){
2731     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2732     goto exit_drop_table;
2733   }
2734 #endif
2735 
2736   /* Generate code to remove the table from the master table
2737   ** on disk.
2738   */
2739   v = sqlite3GetVdbe(pParse);
2740   if( v ){
2741     sqlite3BeginWriteOperation(pParse, 1, iDb);
2742     if( !isView ){
2743       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2744       sqlite3FkDropTable(pParse, pName, pTab);
2745     }
2746     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2747   }
2748 
2749 exit_drop_table:
2750   sqlite3SrcListDelete(db, pName);
2751 }
2752 
2753 /*
2754 ** This routine is called to create a new foreign key on the table
2755 ** currently under construction.  pFromCol determines which columns
2756 ** in the current table point to the foreign key.  If pFromCol==0 then
2757 ** connect the key to the last column inserted.  pTo is the name of
2758 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2759 ** of tables in the parent pTo table.  flags contains all
2760 ** information about the conflict resolution algorithms specified
2761 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2762 **
2763 ** An FKey structure is created and added to the table currently
2764 ** under construction in the pParse->pNewTable field.
2765 **
2766 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2767 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2768 */
2769 void sqlite3CreateForeignKey(
2770   Parse *pParse,       /* Parsing context */
2771   ExprList *pFromCol,  /* Columns in this table that point to other table */
2772   Token *pTo,          /* Name of the other table */
2773   ExprList *pToCol,    /* Columns in the other table */
2774   int flags            /* Conflict resolution algorithms. */
2775 ){
2776   sqlite3 *db = pParse->db;
2777 #ifndef SQLITE_OMIT_FOREIGN_KEY
2778   FKey *pFKey = 0;
2779   FKey *pNextTo;
2780   Table *p = pParse->pNewTable;
2781   int nByte;
2782   int i;
2783   int nCol;
2784   char *z;
2785 
2786   assert( pTo!=0 );
2787   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2788   if( pFromCol==0 ){
2789     int iCol = p->nCol-1;
2790     if( NEVER(iCol<0) ) goto fk_end;
2791     if( pToCol && pToCol->nExpr!=1 ){
2792       sqlite3ErrorMsg(pParse, "foreign key on %s"
2793          " should reference only one column of table %T",
2794          p->aCol[iCol].zName, pTo);
2795       goto fk_end;
2796     }
2797     nCol = 1;
2798   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2799     sqlite3ErrorMsg(pParse,
2800         "number of columns in foreign key does not match the number of "
2801         "columns in the referenced table");
2802     goto fk_end;
2803   }else{
2804     nCol = pFromCol->nExpr;
2805   }
2806   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2807   if( pToCol ){
2808     for(i=0; i<pToCol->nExpr; i++){
2809       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2810     }
2811   }
2812   pFKey = sqlite3DbMallocZero(db, nByte );
2813   if( pFKey==0 ){
2814     goto fk_end;
2815   }
2816   pFKey->pFrom = p;
2817   pFKey->pNextFrom = p->pFKey;
2818   z = (char*)&pFKey->aCol[nCol];
2819   pFKey->zTo = z;
2820   if( IN_RENAME_OBJECT ){
2821     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
2822   }
2823   memcpy(z, pTo->z, pTo->n);
2824   z[pTo->n] = 0;
2825   sqlite3Dequote(z);
2826   z += pTo->n+1;
2827   pFKey->nCol = nCol;
2828   if( pFromCol==0 ){
2829     pFKey->aCol[0].iFrom = p->nCol-1;
2830   }else{
2831     for(i=0; i<nCol; i++){
2832       int j;
2833       for(j=0; j<p->nCol; j++){
2834         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2835           pFKey->aCol[i].iFrom = j;
2836           break;
2837         }
2838       }
2839       if( j>=p->nCol ){
2840         sqlite3ErrorMsg(pParse,
2841           "unknown column \"%s\" in foreign key definition",
2842           pFromCol->a[i].zName);
2843         goto fk_end;
2844       }
2845       if( IN_RENAME_OBJECT ){
2846         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName);
2847       }
2848     }
2849   }
2850   if( pToCol ){
2851     for(i=0; i<nCol; i++){
2852       int n = sqlite3Strlen30(pToCol->a[i].zName);
2853       pFKey->aCol[i].zCol = z;
2854       if( IN_RENAME_OBJECT ){
2855         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName);
2856       }
2857       memcpy(z, pToCol->a[i].zName, n);
2858       z[n] = 0;
2859       z += n+1;
2860     }
2861   }
2862   pFKey->isDeferred = 0;
2863   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2864   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2865 
2866   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2867   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2868       pFKey->zTo, (void *)pFKey
2869   );
2870   if( pNextTo==pFKey ){
2871     sqlite3OomFault(db);
2872     goto fk_end;
2873   }
2874   if( pNextTo ){
2875     assert( pNextTo->pPrevTo==0 );
2876     pFKey->pNextTo = pNextTo;
2877     pNextTo->pPrevTo = pFKey;
2878   }
2879 
2880   /* Link the foreign key to the table as the last step.
2881   */
2882   p->pFKey = pFKey;
2883   pFKey = 0;
2884 
2885 fk_end:
2886   sqlite3DbFree(db, pFKey);
2887 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2888   sqlite3ExprListDelete(db, pFromCol);
2889   sqlite3ExprListDelete(db, pToCol);
2890 }
2891 
2892 /*
2893 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2894 ** clause is seen as part of a foreign key definition.  The isDeferred
2895 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2896 ** The behavior of the most recently created foreign key is adjusted
2897 ** accordingly.
2898 */
2899 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2900 #ifndef SQLITE_OMIT_FOREIGN_KEY
2901   Table *pTab;
2902   FKey *pFKey;
2903   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2904   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2905   pFKey->isDeferred = (u8)isDeferred;
2906 #endif
2907 }
2908 
2909 /*
2910 ** Generate code that will erase and refill index *pIdx.  This is
2911 ** used to initialize a newly created index or to recompute the
2912 ** content of an index in response to a REINDEX command.
2913 **
2914 ** if memRootPage is not negative, it means that the index is newly
2915 ** created.  The register specified by memRootPage contains the
2916 ** root page number of the index.  If memRootPage is negative, then
2917 ** the index already exists and must be cleared before being refilled and
2918 ** the root page number of the index is taken from pIndex->tnum.
2919 */
2920 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2921   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2922   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2923   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2924   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2925   int addr1;                     /* Address of top of loop */
2926   int addr2;                     /* Address to jump to for next iteration */
2927   int tnum;                      /* Root page of index */
2928   int iPartIdxLabel;             /* Jump to this label to skip a row */
2929   Vdbe *v;                       /* Generate code into this virtual machine */
2930   KeyInfo *pKey;                 /* KeyInfo for index */
2931   int regRecord;                 /* Register holding assembled index record */
2932   sqlite3 *db = pParse->db;      /* The database connection */
2933   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2934 
2935 #ifndef SQLITE_OMIT_AUTHORIZATION
2936   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2937       db->aDb[iDb].zDbSName ) ){
2938     return;
2939   }
2940 #endif
2941 
2942   /* Require a write-lock on the table to perform this operation */
2943   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2944 
2945   v = sqlite3GetVdbe(pParse);
2946   if( v==0 ) return;
2947   if( memRootPage>=0 ){
2948     tnum = memRootPage;
2949   }else{
2950     tnum = pIndex->tnum;
2951   }
2952   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2953   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2954 
2955   /* Open the sorter cursor if we are to use one. */
2956   iSorter = pParse->nTab++;
2957   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2958                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2959 
2960   /* Open the table. Loop through all rows of the table, inserting index
2961   ** records into the sorter. */
2962   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2963   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2964   regRecord = sqlite3GetTempReg(pParse);
2965   sqlite3MultiWrite(pParse);
2966 
2967   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2968   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2969   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2970   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2971   sqlite3VdbeJumpHere(v, addr1);
2972   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2973   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2974                     (char *)pKey, P4_KEYINFO);
2975   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2976 
2977   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2978   if( IsUniqueIndex(pIndex) ){
2979     int j2 = sqlite3VdbeGoto(v, 1);
2980     addr2 = sqlite3VdbeCurrentAddr(v);
2981     sqlite3VdbeVerifyAbortable(v, OE_Abort);
2982     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2983                          pIndex->nKeyCol); VdbeCoverage(v);
2984     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2985     sqlite3VdbeJumpHere(v, j2);
2986   }else{
2987     addr2 = sqlite3VdbeCurrentAddr(v);
2988   }
2989   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2990   sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2991   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2992   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2993   sqlite3ReleaseTempReg(pParse, regRecord);
2994   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2995   sqlite3VdbeJumpHere(v, addr1);
2996 
2997   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2998   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2999   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3000 }
3001 
3002 /*
3003 ** Allocate heap space to hold an Index object with nCol columns.
3004 **
3005 ** Increase the allocation size to provide an extra nExtra bytes
3006 ** of 8-byte aligned space after the Index object and return a
3007 ** pointer to this extra space in *ppExtra.
3008 */
3009 Index *sqlite3AllocateIndexObject(
3010   sqlite3 *db,         /* Database connection */
3011   i16 nCol,            /* Total number of columns in the index */
3012   int nExtra,          /* Number of bytes of extra space to alloc */
3013   char **ppExtra       /* Pointer to the "extra" space */
3014 ){
3015   Index *p;            /* Allocated index object */
3016   int nByte;           /* Bytes of space for Index object + arrays */
3017 
3018   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3019           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3020           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3021                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3022                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3023   p = sqlite3DbMallocZero(db, nByte + nExtra);
3024   if( p ){
3025     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3026     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3027     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3028     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3029     p->aSortOrder = (u8*)pExtra;
3030     p->nColumn = nCol;
3031     p->nKeyCol = nCol - 1;
3032     *ppExtra = ((char*)p) + nByte;
3033   }
3034   return p;
3035 }
3036 
3037 /*
3038 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3039 ** and pTblList is the name of the table that is to be indexed.  Both will
3040 ** be NULL for a primary key or an index that is created to satisfy a
3041 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3042 ** as the table to be indexed.  pParse->pNewTable is a table that is
3043 ** currently being constructed by a CREATE TABLE statement.
3044 **
3045 ** pList is a list of columns to be indexed.  pList will be NULL if this
3046 ** is a primary key or unique-constraint on the most recent column added
3047 ** to the table currently under construction.
3048 */
3049 void sqlite3CreateIndex(
3050   Parse *pParse,     /* All information about this parse */
3051   Token *pName1,     /* First part of index name. May be NULL */
3052   Token *pName2,     /* Second part of index name. May be NULL */
3053   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3054   ExprList *pList,   /* A list of columns to be indexed */
3055   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3056   Token *pStart,     /* The CREATE token that begins this statement */
3057   Expr *pPIWhere,    /* WHERE clause for partial indices */
3058   int sortOrder,     /* Sort order of primary key when pList==NULL */
3059   int ifNotExist,    /* Omit error if index already exists */
3060   u8 idxType         /* The index type */
3061 ){
3062   Table *pTab = 0;     /* Table to be indexed */
3063   Index *pIndex = 0;   /* The index to be created */
3064   char *zName = 0;     /* Name of the index */
3065   int nName;           /* Number of characters in zName */
3066   int i, j;
3067   DbFixer sFix;        /* For assigning database names to pTable */
3068   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3069   sqlite3 *db = pParse->db;
3070   Db *pDb;             /* The specific table containing the indexed database */
3071   int iDb;             /* Index of the database that is being written */
3072   Token *pName = 0;    /* Unqualified name of the index to create */
3073   struct ExprList_item *pListItem; /* For looping over pList */
3074   int nExtra = 0;                  /* Space allocated for zExtra[] */
3075   int nExtraCol;                   /* Number of extra columns needed */
3076   char *zExtra = 0;                /* Extra space after the Index object */
3077   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3078 
3079   if( db->mallocFailed || pParse->nErr>0 ){
3080     goto exit_create_index;
3081   }
3082   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3083     goto exit_create_index;
3084   }
3085   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3086     goto exit_create_index;
3087   }
3088 
3089   /*
3090   ** Find the table that is to be indexed.  Return early if not found.
3091   */
3092   if( pTblName!=0 ){
3093 
3094     /* Use the two-part index name to determine the database
3095     ** to search for the table. 'Fix' the table name to this db
3096     ** before looking up the table.
3097     */
3098     assert( pName1 && pName2 );
3099     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3100     if( iDb<0 ) goto exit_create_index;
3101     assert( pName && pName->z );
3102 
3103 #ifndef SQLITE_OMIT_TEMPDB
3104     /* If the index name was unqualified, check if the table
3105     ** is a temp table. If so, set the database to 1. Do not do this
3106     ** if initialising a database schema.
3107     */
3108     if( !db->init.busy ){
3109       pTab = sqlite3SrcListLookup(pParse, pTblName);
3110       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3111         iDb = 1;
3112       }
3113     }
3114 #endif
3115 
3116     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3117     if( sqlite3FixSrcList(&sFix, pTblName) ){
3118       /* Because the parser constructs pTblName from a single identifier,
3119       ** sqlite3FixSrcList can never fail. */
3120       assert(0);
3121     }
3122     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3123     assert( db->mallocFailed==0 || pTab==0 );
3124     if( pTab==0 ) goto exit_create_index;
3125     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3126       sqlite3ErrorMsg(pParse,
3127            "cannot create a TEMP index on non-TEMP table \"%s\"",
3128            pTab->zName);
3129       goto exit_create_index;
3130     }
3131     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3132   }else{
3133     assert( pName==0 );
3134     assert( pStart==0 );
3135     pTab = pParse->pNewTable;
3136     if( !pTab ) goto exit_create_index;
3137     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3138   }
3139   pDb = &db->aDb[iDb];
3140 
3141   assert( pTab!=0 );
3142   assert( pParse->nErr==0 );
3143   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3144        && db->init.busy==0
3145 #if SQLITE_USER_AUTHENTICATION
3146        && sqlite3UserAuthTable(pTab->zName)==0
3147 #endif
3148 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
3149        && sqlite3StrICmp(&pTab->zName[7],"master")!=0
3150 #endif
3151        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
3152  ){
3153     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3154     goto exit_create_index;
3155   }
3156 #ifndef SQLITE_OMIT_VIEW
3157   if( pTab->pSelect ){
3158     sqlite3ErrorMsg(pParse, "views may not be indexed");
3159     goto exit_create_index;
3160   }
3161 #endif
3162 #ifndef SQLITE_OMIT_VIRTUALTABLE
3163   if( IsVirtual(pTab) ){
3164     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3165     goto exit_create_index;
3166   }
3167 #endif
3168 
3169   /*
3170   ** Find the name of the index.  Make sure there is not already another
3171   ** index or table with the same name.
3172   **
3173   ** Exception:  If we are reading the names of permanent indices from the
3174   ** sqlite_master table (because some other process changed the schema) and
3175   ** one of the index names collides with the name of a temporary table or
3176   ** index, then we will continue to process this index.
3177   **
3178   ** If pName==0 it means that we are
3179   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3180   ** own name.
3181   */
3182   if( pName ){
3183     zName = sqlite3NameFromToken(db, pName);
3184     if( zName==0 ) goto exit_create_index;
3185     assert( pName->z!=0 );
3186     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3187       goto exit_create_index;
3188     }
3189     if( !IN_RENAME_OBJECT ){
3190       if( !db->init.busy ){
3191         if( sqlite3FindTable(db, zName, 0)!=0 ){
3192           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3193           goto exit_create_index;
3194         }
3195       }
3196       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3197         if( !ifNotExist ){
3198           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3199         }else{
3200           assert( !db->init.busy );
3201           sqlite3CodeVerifySchema(pParse, iDb);
3202         }
3203         goto exit_create_index;
3204       }
3205     }
3206   }else{
3207     int n;
3208     Index *pLoop;
3209     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3210     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3211     if( zName==0 ){
3212       goto exit_create_index;
3213     }
3214 
3215     /* Automatic index names generated from within sqlite3_declare_vtab()
3216     ** must have names that are distinct from normal automatic index names.
3217     ** The following statement converts "sqlite3_autoindex..." into
3218     ** "sqlite3_butoindex..." in order to make the names distinct.
3219     ** The "vtab_err.test" test demonstrates the need of this statement. */
3220     if( IN_SPECIAL_PARSE ) zName[7]++;
3221   }
3222 
3223   /* Check for authorization to create an index.
3224   */
3225 #ifndef SQLITE_OMIT_AUTHORIZATION
3226   if( !IN_RENAME_OBJECT ){
3227     const char *zDb = pDb->zDbSName;
3228     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3229       goto exit_create_index;
3230     }
3231     i = SQLITE_CREATE_INDEX;
3232     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3233     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3234       goto exit_create_index;
3235     }
3236   }
3237 #endif
3238 
3239   /* If pList==0, it means this routine was called to make a primary
3240   ** key out of the last column added to the table under construction.
3241   ** So create a fake list to simulate this.
3242   */
3243   if( pList==0 ){
3244     Token prevCol;
3245     Column *pCol = &pTab->aCol[pTab->nCol-1];
3246     pCol->colFlags |= COLFLAG_UNIQUE;
3247     sqlite3TokenInit(&prevCol, pCol->zName);
3248     pList = sqlite3ExprListAppend(pParse, 0,
3249               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3250     if( pList==0 ) goto exit_create_index;
3251     assert( pList->nExpr==1 );
3252     sqlite3ExprListSetSortOrder(pList, sortOrder);
3253   }else{
3254     sqlite3ExprListCheckLength(pParse, pList, "index");
3255   }
3256 
3257   /* Figure out how many bytes of space are required to store explicitly
3258   ** specified collation sequence names.
3259   */
3260   for(i=0; i<pList->nExpr; i++){
3261     Expr *pExpr = pList->a[i].pExpr;
3262     assert( pExpr!=0 );
3263     if( pExpr->op==TK_COLLATE ){
3264       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3265     }
3266   }
3267 
3268   /*
3269   ** Allocate the index structure.
3270   */
3271   nName = sqlite3Strlen30(zName);
3272   nExtraCol = pPk ? pPk->nKeyCol : 1;
3273   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3274                                       nName + nExtra + 1, &zExtra);
3275   if( db->mallocFailed ){
3276     goto exit_create_index;
3277   }
3278   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3279   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3280   pIndex->zName = zExtra;
3281   zExtra += nName + 1;
3282   memcpy(pIndex->zName, zName, nName+1);
3283   pIndex->pTable = pTab;
3284   pIndex->onError = (u8)onError;
3285   pIndex->uniqNotNull = onError!=OE_None;
3286   pIndex->idxType = idxType;
3287   pIndex->pSchema = db->aDb[iDb].pSchema;
3288   pIndex->nKeyCol = pList->nExpr;
3289   if( pPIWhere ){
3290     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3291     pIndex->pPartIdxWhere = pPIWhere;
3292     pPIWhere = 0;
3293   }
3294   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3295 
3296   /* Check to see if we should honor DESC requests on index columns
3297   */
3298   if( pDb->pSchema->file_format>=4 ){
3299     sortOrderMask = -1;   /* Honor DESC */
3300   }else{
3301     sortOrderMask = 0;    /* Ignore DESC */
3302   }
3303 
3304   /* Analyze the list of expressions that form the terms of the index and
3305   ** report any errors.  In the common case where the expression is exactly
3306   ** a table column, store that column in aiColumn[].  For general expressions,
3307   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3308   **
3309   ** TODO: Issue a warning if two or more columns of the index are identical.
3310   ** TODO: Issue a warning if the table primary key is used as part of the
3311   ** index key.
3312   */
3313   pListItem = pList->a;
3314   if( IN_RENAME_OBJECT ){
3315     pIndex->aColExpr = pList;
3316     pList = 0;
3317   }
3318   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
3319     Expr *pCExpr;                  /* The i-th index expression */
3320     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3321     const char *zColl;             /* Collation sequence name */
3322 
3323     sqlite3StringToId(pListItem->pExpr);
3324     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3325     if( pParse->nErr ) goto exit_create_index;
3326     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3327     if( pCExpr->op!=TK_COLUMN ){
3328       if( pTab==pParse->pNewTable ){
3329         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3330                                 "UNIQUE constraints");
3331         goto exit_create_index;
3332       }
3333       if( pIndex->aColExpr==0 ){
3334         pIndex->aColExpr = pList;
3335         pList = 0;
3336       }
3337       j = XN_EXPR;
3338       pIndex->aiColumn[i] = XN_EXPR;
3339       pIndex->uniqNotNull = 0;
3340     }else{
3341       j = pCExpr->iColumn;
3342       assert( j<=0x7fff );
3343       if( j<0 ){
3344         j = pTab->iPKey;
3345       }else if( pTab->aCol[j].notNull==0 ){
3346         pIndex->uniqNotNull = 0;
3347       }
3348       pIndex->aiColumn[i] = (i16)j;
3349     }
3350     zColl = 0;
3351     if( pListItem->pExpr->op==TK_COLLATE ){
3352       int nColl;
3353       zColl = pListItem->pExpr->u.zToken;
3354       nColl = sqlite3Strlen30(zColl) + 1;
3355       assert( nExtra>=nColl );
3356       memcpy(zExtra, zColl, nColl);
3357       zColl = zExtra;
3358       zExtra += nColl;
3359       nExtra -= nColl;
3360     }else if( j>=0 ){
3361       zColl = pTab->aCol[j].zColl;
3362     }
3363     if( !zColl ) zColl = sqlite3StrBINARY;
3364     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3365       goto exit_create_index;
3366     }
3367     pIndex->azColl[i] = zColl;
3368     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3369     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3370   }
3371 
3372   /* Append the table key to the end of the index.  For WITHOUT ROWID
3373   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3374   ** normal tables (when pPk==0) this will be the rowid.
3375   */
3376   if( pPk ){
3377     for(j=0; j<pPk->nKeyCol; j++){
3378       int x = pPk->aiColumn[j];
3379       assert( x>=0 );
3380       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3381         pIndex->nColumn--;
3382       }else{
3383         pIndex->aiColumn[i] = x;
3384         pIndex->azColl[i] = pPk->azColl[j];
3385         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3386         i++;
3387       }
3388     }
3389     assert( i==pIndex->nColumn );
3390   }else{
3391     pIndex->aiColumn[i] = XN_ROWID;
3392     pIndex->azColl[i] = sqlite3StrBINARY;
3393   }
3394   sqlite3DefaultRowEst(pIndex);
3395   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3396 
3397   /* If this index contains every column of its table, then mark
3398   ** it as a covering index */
3399   assert( HasRowid(pTab)
3400       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3401   recomputeColumnsNotIndexed(pIndex);
3402   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3403     pIndex->isCovering = 1;
3404     for(j=0; j<pTab->nCol; j++){
3405       if( j==pTab->iPKey ) continue;
3406       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3407       pIndex->isCovering = 0;
3408       break;
3409     }
3410   }
3411 
3412   if( pTab==pParse->pNewTable ){
3413     /* This routine has been called to create an automatic index as a
3414     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3415     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3416     ** i.e. one of:
3417     **
3418     ** CREATE TABLE t(x PRIMARY KEY, y);
3419     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3420     **
3421     ** Either way, check to see if the table already has such an index. If
3422     ** so, don't bother creating this one. This only applies to
3423     ** automatically created indices. Users can do as they wish with
3424     ** explicit indices.
3425     **
3426     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3427     ** (and thus suppressing the second one) even if they have different
3428     ** sort orders.
3429     **
3430     ** If there are different collating sequences or if the columns of
3431     ** the constraint occur in different orders, then the constraints are
3432     ** considered distinct and both result in separate indices.
3433     */
3434     Index *pIdx;
3435     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3436       int k;
3437       assert( IsUniqueIndex(pIdx) );
3438       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3439       assert( IsUniqueIndex(pIndex) );
3440 
3441       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3442       for(k=0; k<pIdx->nKeyCol; k++){
3443         const char *z1;
3444         const char *z2;
3445         assert( pIdx->aiColumn[k]>=0 );
3446         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3447         z1 = pIdx->azColl[k];
3448         z2 = pIndex->azColl[k];
3449         if( sqlite3StrICmp(z1, z2) ) break;
3450       }
3451       if( k==pIdx->nKeyCol ){
3452         if( pIdx->onError!=pIndex->onError ){
3453           /* This constraint creates the same index as a previous
3454           ** constraint specified somewhere in the CREATE TABLE statement.
3455           ** However the ON CONFLICT clauses are different. If both this
3456           ** constraint and the previous equivalent constraint have explicit
3457           ** ON CONFLICT clauses this is an error. Otherwise, use the
3458           ** explicitly specified behavior for the index.
3459           */
3460           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3461             sqlite3ErrorMsg(pParse,
3462                 "conflicting ON CONFLICT clauses specified", 0);
3463           }
3464           if( pIdx->onError==OE_Default ){
3465             pIdx->onError = pIndex->onError;
3466           }
3467         }
3468         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3469         goto exit_create_index;
3470       }
3471     }
3472   }
3473 
3474   if( !IN_RENAME_OBJECT ){
3475 
3476     /* Link the new Index structure to its table and to the other
3477     ** in-memory database structures.
3478     */
3479     assert( pParse->nErr==0 );
3480     if( db->init.busy ){
3481       Index *p;
3482       assert( !IN_SPECIAL_PARSE );
3483       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3484       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3485           pIndex->zName, pIndex);
3486       if( p ){
3487         assert( p==pIndex );  /* Malloc must have failed */
3488         sqlite3OomFault(db);
3489         goto exit_create_index;
3490       }
3491       db->mDbFlags |= DBFLAG_SchemaChange;
3492       if( pTblName!=0 ){
3493         pIndex->tnum = db->init.newTnum;
3494       }
3495     }
3496 
3497     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3498     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3499     ** emit code to allocate the index rootpage on disk and make an entry for
3500     ** the index in the sqlite_master table and populate the index with
3501     ** content.  But, do not do this if we are simply reading the sqlite_master
3502     ** table to parse the schema, or if this index is the PRIMARY KEY index
3503     ** of a WITHOUT ROWID table.
3504     **
3505     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3506     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3507     ** has just been created, it contains no data and the index initialization
3508     ** step can be skipped.
3509     */
3510     else if( HasRowid(pTab) || pTblName!=0 ){
3511       Vdbe *v;
3512       char *zStmt;
3513       int iMem = ++pParse->nMem;
3514 
3515       v = sqlite3GetVdbe(pParse);
3516       if( v==0 ) goto exit_create_index;
3517 
3518       sqlite3BeginWriteOperation(pParse, 1, iDb);
3519 
3520       /* Create the rootpage for the index using CreateIndex. But before
3521       ** doing so, code a Noop instruction and store its address in
3522       ** Index.tnum. This is required in case this index is actually a
3523       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3524       ** that case the convertToWithoutRowidTable() routine will replace
3525       ** the Noop with a Goto to jump over the VDBE code generated below. */
3526       pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3527       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3528 
3529       /* Gather the complete text of the CREATE INDEX statement into
3530       ** the zStmt variable
3531       */
3532       if( pStart ){
3533         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3534         if( pName->z[n-1]==';' ) n--;
3535         /* A named index with an explicit CREATE INDEX statement */
3536         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3537             onError==OE_None ? "" : " UNIQUE", n, pName->z);
3538       }else{
3539         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3540         /* zStmt = sqlite3MPrintf(""); */
3541         zStmt = 0;
3542       }
3543 
3544       /* Add an entry in sqlite_master for this index
3545       */
3546       sqlite3NestedParse(pParse,
3547           "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3548           db->aDb[iDb].zDbSName, MASTER_NAME,
3549           pIndex->zName,
3550           pTab->zName,
3551           iMem,
3552           zStmt
3553           );
3554       sqlite3DbFree(db, zStmt);
3555 
3556       /* Fill the index with data and reparse the schema. Code an OP_Expire
3557       ** to invalidate all pre-compiled statements.
3558       */
3559       if( pTblName ){
3560         sqlite3RefillIndex(pParse, pIndex, iMem);
3561         sqlite3ChangeCookie(pParse, iDb);
3562         sqlite3VdbeAddParseSchemaOp(v, iDb,
3563             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3564         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
3565       }
3566 
3567       sqlite3VdbeJumpHere(v, pIndex->tnum);
3568     }
3569   }
3570 
3571   /* When adding an index to the list of indices for a table, make
3572   ** sure all indices labeled OE_Replace come after all those labeled
3573   ** OE_Ignore.  This is necessary for the correct constraint check
3574   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3575   ** UPDATE and INSERT statements.
3576   */
3577   if( db->init.busy || pTblName==0 ){
3578     if( onError!=OE_Replace || pTab->pIndex==0
3579          || pTab->pIndex->onError==OE_Replace){
3580       pIndex->pNext = pTab->pIndex;
3581       pTab->pIndex = pIndex;
3582     }else{
3583       Index *pOther = pTab->pIndex;
3584       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3585         pOther = pOther->pNext;
3586       }
3587       pIndex->pNext = pOther->pNext;
3588       pOther->pNext = pIndex;
3589     }
3590     pIndex = 0;
3591   }
3592   else if( IN_RENAME_OBJECT ){
3593     assert( pParse->pNewIndex==0 );
3594     pParse->pNewIndex = pIndex;
3595     pIndex = 0;
3596   }
3597 
3598   /* Clean up before exiting */
3599 exit_create_index:
3600   if( pIndex ) sqlite3FreeIndex(db, pIndex);
3601   sqlite3ExprDelete(db, pPIWhere);
3602   sqlite3ExprListDelete(db, pList);
3603   sqlite3SrcListDelete(db, pTblName);
3604   sqlite3DbFree(db, zName);
3605 }
3606 
3607 /*
3608 ** Fill the Index.aiRowEst[] array with default information - information
3609 ** to be used when we have not run the ANALYZE command.
3610 **
3611 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3612 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3613 ** number of rows in the table that match any particular value of the
3614 ** first column of the index.  aiRowEst[2] is an estimate of the number
3615 ** of rows that match any particular combination of the first 2 columns
3616 ** of the index.  And so forth.  It must always be the case that
3617 *
3618 **           aiRowEst[N]<=aiRowEst[N-1]
3619 **           aiRowEst[N]>=1
3620 **
3621 ** Apart from that, we have little to go on besides intuition as to
3622 ** how aiRowEst[] should be initialized.  The numbers generated here
3623 ** are based on typical values found in actual indices.
3624 */
3625 void sqlite3DefaultRowEst(Index *pIdx){
3626   /*                10,  9,  8,  7,  6 */
3627   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3628   LogEst *a = pIdx->aiRowLogEst;
3629   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3630   int i;
3631 
3632   /* Indexes with default row estimates should not have stat1 data */
3633   assert( !pIdx->hasStat1 );
3634 
3635   /* Set the first entry (number of rows in the index) to the estimated
3636   ** number of rows in the table, or half the number of rows in the table
3637   ** for a partial index.   But do not let the estimate drop below 10. */
3638   a[0] = pIdx->pTable->nRowLogEst;
3639   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3640   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3641 
3642   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3643   ** 6 and each subsequent value (if any) is 5.  */
3644   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3645   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3646     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3647   }
3648 
3649   assert( 0==sqlite3LogEst(1) );
3650   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3651 }
3652 
3653 /*
3654 ** This routine will drop an existing named index.  This routine
3655 ** implements the DROP INDEX statement.
3656 */
3657 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3658   Index *pIndex;
3659   Vdbe *v;
3660   sqlite3 *db = pParse->db;
3661   int iDb;
3662 
3663   assert( pParse->nErr==0 );   /* Never called with prior errors */
3664   if( db->mallocFailed ){
3665     goto exit_drop_index;
3666   }
3667   assert( pName->nSrc==1 );
3668   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3669     goto exit_drop_index;
3670   }
3671   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3672   if( pIndex==0 ){
3673     if( !ifExists ){
3674       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3675     }else{
3676       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3677     }
3678     pParse->checkSchema = 1;
3679     goto exit_drop_index;
3680   }
3681   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3682     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3683       "or PRIMARY KEY constraint cannot be dropped", 0);
3684     goto exit_drop_index;
3685   }
3686   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3687 #ifndef SQLITE_OMIT_AUTHORIZATION
3688   {
3689     int code = SQLITE_DROP_INDEX;
3690     Table *pTab = pIndex->pTable;
3691     const char *zDb = db->aDb[iDb].zDbSName;
3692     const char *zTab = SCHEMA_TABLE(iDb);
3693     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3694       goto exit_drop_index;
3695     }
3696     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3697     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3698       goto exit_drop_index;
3699     }
3700   }
3701 #endif
3702 
3703   /* Generate code to remove the index and from the master table */
3704   v = sqlite3GetVdbe(pParse);
3705   if( v ){
3706     sqlite3BeginWriteOperation(pParse, 1, iDb);
3707     sqlite3NestedParse(pParse,
3708        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3709        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3710     );
3711     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3712     sqlite3ChangeCookie(pParse, iDb);
3713     destroyRootPage(pParse, pIndex->tnum, iDb);
3714     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3715   }
3716 
3717 exit_drop_index:
3718   sqlite3SrcListDelete(db, pName);
3719 }
3720 
3721 /*
3722 ** pArray is a pointer to an array of objects. Each object in the
3723 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3724 ** to extend the array so that there is space for a new object at the end.
3725 **
3726 ** When this function is called, *pnEntry contains the current size of
3727 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3728 ** in total).
3729 **
3730 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3731 ** space allocated for the new object is zeroed, *pnEntry updated to
3732 ** reflect the new size of the array and a pointer to the new allocation
3733 ** returned. *pIdx is set to the index of the new array entry in this case.
3734 **
3735 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3736 ** unchanged and a copy of pArray returned.
3737 */
3738 void *sqlite3ArrayAllocate(
3739   sqlite3 *db,      /* Connection to notify of malloc failures */
3740   void *pArray,     /* Array of objects.  Might be reallocated */
3741   int szEntry,      /* Size of each object in the array */
3742   int *pnEntry,     /* Number of objects currently in use */
3743   int *pIdx         /* Write the index of a new slot here */
3744 ){
3745   char *z;
3746   int n = *pnEntry;
3747   if( (n & (n-1))==0 ){
3748     int sz = (n==0) ? 1 : 2*n;
3749     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3750     if( pNew==0 ){
3751       *pIdx = -1;
3752       return pArray;
3753     }
3754     pArray = pNew;
3755   }
3756   z = (char*)pArray;
3757   memset(&z[n * szEntry], 0, szEntry);
3758   *pIdx = n;
3759   ++*pnEntry;
3760   return pArray;
3761 }
3762 
3763 /*
3764 ** Append a new element to the given IdList.  Create a new IdList if
3765 ** need be.
3766 **
3767 ** A new IdList is returned, or NULL if malloc() fails.
3768 */
3769 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
3770   sqlite3 *db = pParse->db;
3771   int i;
3772   if( pList==0 ){
3773     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3774     if( pList==0 ) return 0;
3775   }
3776   pList->a = sqlite3ArrayAllocate(
3777       db,
3778       pList->a,
3779       sizeof(pList->a[0]),
3780       &pList->nId,
3781       &i
3782   );
3783   if( i<0 ){
3784     sqlite3IdListDelete(db, pList);
3785     return 0;
3786   }
3787   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3788   if( IN_RENAME_OBJECT && pList->a[i].zName ){
3789     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
3790   }
3791   return pList;
3792 }
3793 
3794 /*
3795 ** Delete an IdList.
3796 */
3797 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3798   int i;
3799   if( pList==0 ) return;
3800   for(i=0; i<pList->nId; i++){
3801     sqlite3DbFree(db, pList->a[i].zName);
3802   }
3803   sqlite3DbFree(db, pList->a);
3804   sqlite3DbFreeNN(db, pList);
3805 }
3806 
3807 /*
3808 ** Return the index in pList of the identifier named zId.  Return -1
3809 ** if not found.
3810 */
3811 int sqlite3IdListIndex(IdList *pList, const char *zName){
3812   int i;
3813   if( pList==0 ) return -1;
3814   for(i=0; i<pList->nId; i++){
3815     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3816   }
3817   return -1;
3818 }
3819 
3820 /*
3821 ** Expand the space allocated for the given SrcList object by
3822 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3823 ** New slots are zeroed.
3824 **
3825 ** For example, suppose a SrcList initially contains two entries: A,B.
3826 ** To append 3 new entries onto the end, do this:
3827 **
3828 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3829 **
3830 ** After the call above it would contain:  A, B, nil, nil, nil.
3831 ** If the iStart argument had been 1 instead of 2, then the result
3832 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3833 ** the iStart value would be 0.  The result then would
3834 ** be: nil, nil, nil, A, B.
3835 **
3836 ** If a memory allocation fails the SrcList is unchanged.  The
3837 ** db->mallocFailed flag will be set to true.
3838 */
3839 SrcList *sqlite3SrcListEnlarge(
3840   sqlite3 *db,       /* Database connection to notify of OOM errors */
3841   SrcList *pSrc,     /* The SrcList to be enlarged */
3842   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3843   int iStart         /* Index in pSrc->a[] of first new slot */
3844 ){
3845   int i;
3846 
3847   /* Sanity checking on calling parameters */
3848   assert( iStart>=0 );
3849   assert( nExtra>=1 );
3850   assert( pSrc!=0 );
3851   assert( iStart<=pSrc->nSrc );
3852 
3853   /* Allocate additional space if needed */
3854   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3855     SrcList *pNew;
3856     int nAlloc = pSrc->nSrc*2+nExtra;
3857     int nGot;
3858     pNew = sqlite3DbRealloc(db, pSrc,
3859                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3860     if( pNew==0 ){
3861       assert( db->mallocFailed );
3862       return pSrc;
3863     }
3864     pSrc = pNew;
3865     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3866     pSrc->nAlloc = nGot;
3867   }
3868 
3869   /* Move existing slots that come after the newly inserted slots
3870   ** out of the way */
3871   for(i=pSrc->nSrc-1; i>=iStart; i--){
3872     pSrc->a[i+nExtra] = pSrc->a[i];
3873   }
3874   pSrc->nSrc += nExtra;
3875 
3876   /* Zero the newly allocated slots */
3877   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3878   for(i=iStart; i<iStart+nExtra; i++){
3879     pSrc->a[i].iCursor = -1;
3880   }
3881 
3882   /* Return a pointer to the enlarged SrcList */
3883   return pSrc;
3884 }
3885 
3886 
3887 /*
3888 ** Append a new table name to the given SrcList.  Create a new SrcList if
3889 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3890 **
3891 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3892 ** SrcList might be the same as the SrcList that was input or it might be
3893 ** a new one.  If an OOM error does occurs, then the prior value of pList
3894 ** that is input to this routine is automatically freed.
3895 **
3896 ** If pDatabase is not null, it means that the table has an optional
3897 ** database name prefix.  Like this:  "database.table".  The pDatabase
3898 ** points to the table name and the pTable points to the database name.
3899 ** The SrcList.a[].zName field is filled with the table name which might
3900 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3901 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3902 ** or with NULL if no database is specified.
3903 **
3904 ** In other words, if call like this:
3905 **
3906 **         sqlite3SrcListAppend(D,A,B,0);
3907 **
3908 ** Then B is a table name and the database name is unspecified.  If called
3909 ** like this:
3910 **
3911 **         sqlite3SrcListAppend(D,A,B,C);
3912 **
3913 ** Then C is the table name and B is the database name.  If C is defined
3914 ** then so is B.  In other words, we never have a case where:
3915 **
3916 **         sqlite3SrcListAppend(D,A,0,C);
3917 **
3918 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3919 ** before being added to the SrcList.
3920 */
3921 SrcList *sqlite3SrcListAppend(
3922   sqlite3 *db,        /* Connection to notify of malloc failures */
3923   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3924   Token *pTable,      /* Table to append */
3925   Token *pDatabase    /* Database of the table */
3926 ){
3927   struct SrcList_item *pItem;
3928   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3929   assert( db!=0 );
3930   if( pList==0 ){
3931     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3932     if( pList==0 ) return 0;
3933     pList->nAlloc = 1;
3934     pList->nSrc = 1;
3935     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3936     pList->a[0].iCursor = -1;
3937   }else{
3938     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3939   }
3940   if( db->mallocFailed ){
3941     sqlite3SrcListDelete(db, pList);
3942     return 0;
3943   }
3944   pItem = &pList->a[pList->nSrc-1];
3945   if( pDatabase && pDatabase->z==0 ){
3946     pDatabase = 0;
3947   }
3948   if( pDatabase ){
3949     pItem->zName = sqlite3NameFromToken(db, pDatabase);
3950     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3951   }else{
3952     pItem->zName = sqlite3NameFromToken(db, pTable);
3953     pItem->zDatabase = 0;
3954   }
3955   return pList;
3956 }
3957 
3958 /*
3959 ** Assign VdbeCursor index numbers to all tables in a SrcList
3960 */
3961 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3962   int i;
3963   struct SrcList_item *pItem;
3964   assert(pList || pParse->db->mallocFailed );
3965   if( pList ){
3966     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3967       if( pItem->iCursor>=0 ) break;
3968       pItem->iCursor = pParse->nTab++;
3969       if( pItem->pSelect ){
3970         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3971       }
3972     }
3973   }
3974 }
3975 
3976 /*
3977 ** Delete an entire SrcList including all its substructure.
3978 */
3979 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3980   int i;
3981   struct SrcList_item *pItem;
3982   if( pList==0 ) return;
3983   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3984     sqlite3DbFree(db, pItem->zDatabase);
3985     sqlite3DbFree(db, pItem->zName);
3986     sqlite3DbFree(db, pItem->zAlias);
3987     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3988     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3989     sqlite3DeleteTable(db, pItem->pTab);
3990     sqlite3SelectDelete(db, pItem->pSelect);
3991     sqlite3ExprDelete(db, pItem->pOn);
3992     sqlite3IdListDelete(db, pItem->pUsing);
3993   }
3994   sqlite3DbFreeNN(db, pList);
3995 }
3996 
3997 /*
3998 ** This routine is called by the parser to add a new term to the
3999 ** end of a growing FROM clause.  The "p" parameter is the part of
4000 ** the FROM clause that has already been constructed.  "p" is NULL
4001 ** if this is the first term of the FROM clause.  pTable and pDatabase
4002 ** are the name of the table and database named in the FROM clause term.
4003 ** pDatabase is NULL if the database name qualifier is missing - the
4004 ** usual case.  If the term has an alias, then pAlias points to the
4005 ** alias token.  If the term is a subquery, then pSubquery is the
4006 ** SELECT statement that the subquery encodes.  The pTable and
4007 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4008 ** parameters are the content of the ON and USING clauses.
4009 **
4010 ** Return a new SrcList which encodes is the FROM with the new
4011 ** term added.
4012 */
4013 SrcList *sqlite3SrcListAppendFromTerm(
4014   Parse *pParse,          /* Parsing context */
4015   SrcList *p,             /* The left part of the FROM clause already seen */
4016   Token *pTable,          /* Name of the table to add to the FROM clause */
4017   Token *pDatabase,       /* Name of the database containing pTable */
4018   Token *pAlias,          /* The right-hand side of the AS subexpression */
4019   Select *pSubquery,      /* A subquery used in place of a table name */
4020   Expr *pOn,              /* The ON clause of a join */
4021   IdList *pUsing          /* The USING clause of a join */
4022 ){
4023   struct SrcList_item *pItem;
4024   sqlite3 *db = pParse->db;
4025   if( !p && (pOn || pUsing) ){
4026     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4027       (pOn ? "ON" : "USING")
4028     );
4029     goto append_from_error;
4030   }
4031   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
4032   if( p==0 ){
4033     goto append_from_error;
4034   }
4035   assert( p->nSrc>0 );
4036   pItem = &p->a[p->nSrc-1];
4037   assert( (pTable==0)==(pDatabase==0) );
4038   assert( pItem->zName==0 || pDatabase!=0 );
4039   if( IN_RENAME_OBJECT && pItem->zName ){
4040     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4041     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4042   }
4043   assert( pAlias!=0 );
4044   if( pAlias->n ){
4045     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4046   }
4047   pItem->pSelect = pSubquery;
4048   pItem->pOn = pOn;
4049   pItem->pUsing = pUsing;
4050   return p;
4051 
4052  append_from_error:
4053   assert( p==0 );
4054   sqlite3ExprDelete(db, pOn);
4055   sqlite3IdListDelete(db, pUsing);
4056   sqlite3SelectDelete(db, pSubquery);
4057   return 0;
4058 }
4059 
4060 /*
4061 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4062 ** element of the source-list passed as the second argument.
4063 */
4064 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4065   assert( pIndexedBy!=0 );
4066   if( p && pIndexedBy->n>0 ){
4067     struct SrcList_item *pItem;
4068     assert( p->nSrc>0 );
4069     pItem = &p->a[p->nSrc-1];
4070     assert( pItem->fg.notIndexed==0 );
4071     assert( pItem->fg.isIndexedBy==0 );
4072     assert( pItem->fg.isTabFunc==0 );
4073     if( pIndexedBy->n==1 && !pIndexedBy->z ){
4074       /* A "NOT INDEXED" clause was supplied. See parse.y
4075       ** construct "indexed_opt" for details. */
4076       pItem->fg.notIndexed = 1;
4077     }else{
4078       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4079       pItem->fg.isIndexedBy = 1;
4080     }
4081   }
4082 }
4083 
4084 /*
4085 ** Add the list of function arguments to the SrcList entry for a
4086 ** table-valued-function.
4087 */
4088 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
4089   if( p ){
4090     struct SrcList_item *pItem = &p->a[p->nSrc-1];
4091     assert( pItem->fg.notIndexed==0 );
4092     assert( pItem->fg.isIndexedBy==0 );
4093     assert( pItem->fg.isTabFunc==0 );
4094     pItem->u1.pFuncArg = pList;
4095     pItem->fg.isTabFunc = 1;
4096   }else{
4097     sqlite3ExprListDelete(pParse->db, pList);
4098   }
4099 }
4100 
4101 /*
4102 ** When building up a FROM clause in the parser, the join operator
4103 ** is initially attached to the left operand.  But the code generator
4104 ** expects the join operator to be on the right operand.  This routine
4105 ** Shifts all join operators from left to right for an entire FROM
4106 ** clause.
4107 **
4108 ** Example: Suppose the join is like this:
4109 **
4110 **           A natural cross join B
4111 **
4112 ** The operator is "natural cross join".  The A and B operands are stored
4113 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
4114 ** operator with A.  This routine shifts that operator over to B.
4115 */
4116 void sqlite3SrcListShiftJoinType(SrcList *p){
4117   if( p ){
4118     int i;
4119     for(i=p->nSrc-1; i>0; i--){
4120       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
4121     }
4122     p->a[0].fg.jointype = 0;
4123   }
4124 }
4125 
4126 /*
4127 ** Generate VDBE code for a BEGIN statement.
4128 */
4129 void sqlite3BeginTransaction(Parse *pParse, int type){
4130   sqlite3 *db;
4131   Vdbe *v;
4132   int i;
4133 
4134   assert( pParse!=0 );
4135   db = pParse->db;
4136   assert( db!=0 );
4137   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
4138     return;
4139   }
4140   v = sqlite3GetVdbe(pParse);
4141   if( !v ) return;
4142   if( type!=TK_DEFERRED ){
4143     for(i=0; i<db->nDb; i++){
4144       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
4145       sqlite3VdbeUsesBtree(v, i);
4146     }
4147   }
4148   sqlite3VdbeAddOp0(v, OP_AutoCommit);
4149 }
4150 
4151 /*
4152 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4153 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
4154 ** code is generated for a COMMIT.
4155 */
4156 void sqlite3EndTransaction(Parse *pParse, int eType){
4157   Vdbe *v;
4158   int isRollback;
4159 
4160   assert( pParse!=0 );
4161   assert( pParse->db!=0 );
4162   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4163   isRollback = eType==TK_ROLLBACK;
4164   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4165        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4166     return;
4167   }
4168   v = sqlite3GetVdbe(pParse);
4169   if( v ){
4170     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4171   }
4172 }
4173 
4174 /*
4175 ** This function is called by the parser when it parses a command to create,
4176 ** release or rollback an SQL savepoint.
4177 */
4178 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4179   char *zName = sqlite3NameFromToken(pParse->db, pName);
4180   if( zName ){
4181     Vdbe *v = sqlite3GetVdbe(pParse);
4182 #ifndef SQLITE_OMIT_AUTHORIZATION
4183     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4184     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4185 #endif
4186     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4187       sqlite3DbFree(pParse->db, zName);
4188       return;
4189     }
4190     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4191   }
4192 }
4193 
4194 /*
4195 ** Make sure the TEMP database is open and available for use.  Return
4196 ** the number of errors.  Leave any error messages in the pParse structure.
4197 */
4198 int sqlite3OpenTempDatabase(Parse *pParse){
4199   sqlite3 *db = pParse->db;
4200   if( db->aDb[1].pBt==0 && !pParse->explain ){
4201     int rc;
4202     Btree *pBt;
4203     static const int flags =
4204           SQLITE_OPEN_READWRITE |
4205           SQLITE_OPEN_CREATE |
4206           SQLITE_OPEN_EXCLUSIVE |
4207           SQLITE_OPEN_DELETEONCLOSE |
4208           SQLITE_OPEN_TEMP_DB;
4209 
4210     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4211     if( rc!=SQLITE_OK ){
4212       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4213         "file for storing temporary tables");
4214       pParse->rc = rc;
4215       return 1;
4216     }
4217     db->aDb[1].pBt = pBt;
4218     assert( db->aDb[1].pSchema );
4219     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4220       sqlite3OomFault(db);
4221       return 1;
4222     }
4223   }
4224   return 0;
4225 }
4226 
4227 /*
4228 ** Record the fact that the schema cookie will need to be verified
4229 ** for database iDb.  The code to actually verify the schema cookie
4230 ** will occur at the end of the top-level VDBE and will be generated
4231 ** later, by sqlite3FinishCoding().
4232 */
4233 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4234   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4235 
4236   assert( iDb>=0 && iDb<pParse->db->nDb );
4237   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4238   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4239   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4240   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4241     DbMaskSet(pToplevel->cookieMask, iDb);
4242     if( !OMIT_TEMPDB && iDb==1 ){
4243       sqlite3OpenTempDatabase(pToplevel);
4244     }
4245   }
4246 }
4247 
4248 /*
4249 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4250 ** attached database. Otherwise, invoke it for the database named zDb only.
4251 */
4252 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4253   sqlite3 *db = pParse->db;
4254   int i;
4255   for(i=0; i<db->nDb; i++){
4256     Db *pDb = &db->aDb[i];
4257     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4258       sqlite3CodeVerifySchema(pParse, i);
4259     }
4260   }
4261 }
4262 
4263 /*
4264 ** Generate VDBE code that prepares for doing an operation that
4265 ** might change the database.
4266 **
4267 ** This routine starts a new transaction if we are not already within
4268 ** a transaction.  If we are already within a transaction, then a checkpoint
4269 ** is set if the setStatement parameter is true.  A checkpoint should
4270 ** be set for operations that might fail (due to a constraint) part of
4271 ** the way through and which will need to undo some writes without having to
4272 ** rollback the whole transaction.  For operations where all constraints
4273 ** can be checked before any changes are made to the database, it is never
4274 ** necessary to undo a write and the checkpoint should not be set.
4275 */
4276 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4277   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4278   sqlite3CodeVerifySchema(pParse, iDb);
4279   DbMaskSet(pToplevel->writeMask, iDb);
4280   pToplevel->isMultiWrite |= setStatement;
4281 }
4282 
4283 /*
4284 ** Indicate that the statement currently under construction might write
4285 ** more than one entry (example: deleting one row then inserting another,
4286 ** inserting multiple rows in a table, or inserting a row and index entries.)
4287 ** If an abort occurs after some of these writes have completed, then it will
4288 ** be necessary to undo the completed writes.
4289 */
4290 void sqlite3MultiWrite(Parse *pParse){
4291   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4292   pToplevel->isMultiWrite = 1;
4293 }
4294 
4295 /*
4296 ** The code generator calls this routine if is discovers that it is
4297 ** possible to abort a statement prior to completion.  In order to
4298 ** perform this abort without corrupting the database, we need to make
4299 ** sure that the statement is protected by a statement transaction.
4300 **
4301 ** Technically, we only need to set the mayAbort flag if the
4302 ** isMultiWrite flag was previously set.  There is a time dependency
4303 ** such that the abort must occur after the multiwrite.  This makes
4304 ** some statements involving the REPLACE conflict resolution algorithm
4305 ** go a little faster.  But taking advantage of this time dependency
4306 ** makes it more difficult to prove that the code is correct (in
4307 ** particular, it prevents us from writing an effective
4308 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4309 ** to take the safe route and skip the optimization.
4310 */
4311 void sqlite3MayAbort(Parse *pParse){
4312   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4313   pToplevel->mayAbort = 1;
4314 }
4315 
4316 /*
4317 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4318 ** error. The onError parameter determines which (if any) of the statement
4319 ** and/or current transaction is rolled back.
4320 */
4321 void sqlite3HaltConstraint(
4322   Parse *pParse,    /* Parsing context */
4323   int errCode,      /* extended error code */
4324   int onError,      /* Constraint type */
4325   char *p4,         /* Error message */
4326   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4327   u8 p5Errmsg       /* P5_ErrMsg type */
4328 ){
4329   Vdbe *v = sqlite3GetVdbe(pParse);
4330   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4331   if( onError==OE_Abort ){
4332     sqlite3MayAbort(pParse);
4333   }
4334   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4335   sqlite3VdbeChangeP5(v, p5Errmsg);
4336 }
4337 
4338 /*
4339 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4340 */
4341 void sqlite3UniqueConstraint(
4342   Parse *pParse,    /* Parsing context */
4343   int onError,      /* Constraint type */
4344   Index *pIdx       /* The index that triggers the constraint */
4345 ){
4346   char *zErr;
4347   int j;
4348   StrAccum errMsg;
4349   Table *pTab = pIdx->pTable;
4350 
4351   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4352   if( pIdx->aColExpr ){
4353     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
4354   }else{
4355     for(j=0; j<pIdx->nKeyCol; j++){
4356       char *zCol;
4357       assert( pIdx->aiColumn[j]>=0 );
4358       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4359       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
4360       sqlite3_str_appendall(&errMsg, pTab->zName);
4361       sqlite3_str_append(&errMsg, ".", 1);
4362       sqlite3_str_appendall(&errMsg, zCol);
4363     }
4364   }
4365   zErr = sqlite3StrAccumFinish(&errMsg);
4366   sqlite3HaltConstraint(pParse,
4367     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4368                             : SQLITE_CONSTRAINT_UNIQUE,
4369     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4370 }
4371 
4372 
4373 /*
4374 ** Code an OP_Halt due to non-unique rowid.
4375 */
4376 void sqlite3RowidConstraint(
4377   Parse *pParse,    /* Parsing context */
4378   int onError,      /* Conflict resolution algorithm */
4379   Table *pTab       /* The table with the non-unique rowid */
4380 ){
4381   char *zMsg;
4382   int rc;
4383   if( pTab->iPKey>=0 ){
4384     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4385                           pTab->aCol[pTab->iPKey].zName);
4386     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4387   }else{
4388     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4389     rc = SQLITE_CONSTRAINT_ROWID;
4390   }
4391   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4392                         P5_ConstraintUnique);
4393 }
4394 
4395 /*
4396 ** Check to see if pIndex uses the collating sequence pColl.  Return
4397 ** true if it does and false if it does not.
4398 */
4399 #ifndef SQLITE_OMIT_REINDEX
4400 static int collationMatch(const char *zColl, Index *pIndex){
4401   int i;
4402   assert( zColl!=0 );
4403   for(i=0; i<pIndex->nColumn; i++){
4404     const char *z = pIndex->azColl[i];
4405     assert( z!=0 || pIndex->aiColumn[i]<0 );
4406     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4407       return 1;
4408     }
4409   }
4410   return 0;
4411 }
4412 #endif
4413 
4414 /*
4415 ** Recompute all indices of pTab that use the collating sequence pColl.
4416 ** If pColl==0 then recompute all indices of pTab.
4417 */
4418 #ifndef SQLITE_OMIT_REINDEX
4419 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4420   Index *pIndex;              /* An index associated with pTab */
4421 
4422   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4423     if( zColl==0 || collationMatch(zColl, pIndex) ){
4424       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4425       sqlite3BeginWriteOperation(pParse, 0, iDb);
4426       sqlite3RefillIndex(pParse, pIndex, -1);
4427     }
4428   }
4429 }
4430 #endif
4431 
4432 /*
4433 ** Recompute all indices of all tables in all databases where the
4434 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4435 ** all indices everywhere.
4436 */
4437 #ifndef SQLITE_OMIT_REINDEX
4438 static void reindexDatabases(Parse *pParse, char const *zColl){
4439   Db *pDb;                    /* A single database */
4440   int iDb;                    /* The database index number */
4441   sqlite3 *db = pParse->db;   /* The database connection */
4442   HashElem *k;                /* For looping over tables in pDb */
4443   Table *pTab;                /* A table in the database */
4444 
4445   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4446   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4447     assert( pDb!=0 );
4448     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4449       pTab = (Table*)sqliteHashData(k);
4450       reindexTable(pParse, pTab, zColl);
4451     }
4452   }
4453 }
4454 #endif
4455 
4456 /*
4457 ** Generate code for the REINDEX command.
4458 **
4459 **        REINDEX                            -- 1
4460 **        REINDEX  <collation>               -- 2
4461 **        REINDEX  ?<database>.?<tablename>  -- 3
4462 **        REINDEX  ?<database>.?<indexname>  -- 4
4463 **
4464 ** Form 1 causes all indices in all attached databases to be rebuilt.
4465 ** Form 2 rebuilds all indices in all databases that use the named
4466 ** collating function.  Forms 3 and 4 rebuild the named index or all
4467 ** indices associated with the named table.
4468 */
4469 #ifndef SQLITE_OMIT_REINDEX
4470 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4471   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4472   char *z;                    /* Name of a table or index */
4473   const char *zDb;            /* Name of the database */
4474   Table *pTab;                /* A table in the database */
4475   Index *pIndex;              /* An index associated with pTab */
4476   int iDb;                    /* The database index number */
4477   sqlite3 *db = pParse->db;   /* The database connection */
4478   Token *pObjName;            /* Name of the table or index to be reindexed */
4479 
4480   /* Read the database schema. If an error occurs, leave an error message
4481   ** and code in pParse and return NULL. */
4482   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4483     return;
4484   }
4485 
4486   if( pName1==0 ){
4487     reindexDatabases(pParse, 0);
4488     return;
4489   }else if( NEVER(pName2==0) || pName2->z==0 ){
4490     char *zColl;
4491     assert( pName1->z );
4492     zColl = sqlite3NameFromToken(pParse->db, pName1);
4493     if( !zColl ) return;
4494     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4495     if( pColl ){
4496       reindexDatabases(pParse, zColl);
4497       sqlite3DbFree(db, zColl);
4498       return;
4499     }
4500     sqlite3DbFree(db, zColl);
4501   }
4502   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4503   if( iDb<0 ) return;
4504   z = sqlite3NameFromToken(db, pObjName);
4505   if( z==0 ) return;
4506   zDb = db->aDb[iDb].zDbSName;
4507   pTab = sqlite3FindTable(db, z, zDb);
4508   if( pTab ){
4509     reindexTable(pParse, pTab, 0);
4510     sqlite3DbFree(db, z);
4511     return;
4512   }
4513   pIndex = sqlite3FindIndex(db, z, zDb);
4514   sqlite3DbFree(db, z);
4515   if( pIndex ){
4516     sqlite3BeginWriteOperation(pParse, 0, iDb);
4517     sqlite3RefillIndex(pParse, pIndex, -1);
4518     return;
4519   }
4520   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4521 }
4522 #endif
4523 
4524 /*
4525 ** Return a KeyInfo structure that is appropriate for the given Index.
4526 **
4527 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4528 ** when it has finished using it.
4529 */
4530 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4531   int i;
4532   int nCol = pIdx->nColumn;
4533   int nKey = pIdx->nKeyCol;
4534   KeyInfo *pKey;
4535   if( pParse->nErr ) return 0;
4536   if( pIdx->uniqNotNull ){
4537     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4538   }else{
4539     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4540   }
4541   if( pKey ){
4542     assert( sqlite3KeyInfoIsWriteable(pKey) );
4543     for(i=0; i<nCol; i++){
4544       const char *zColl = pIdx->azColl[i];
4545       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4546                         sqlite3LocateCollSeq(pParse, zColl);
4547       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4548     }
4549     if( pParse->nErr ){
4550       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4551       if( pIdx->bNoQuery==0 ){
4552         /* Deactivate the index because it contains an unknown collating
4553         ** sequence.  The only way to reactive the index is to reload the
4554         ** schema.  Adding the missing collating sequence later does not
4555         ** reactive the index.  The application had the chance to register
4556         ** the missing index using the collation-needed callback.  For
4557         ** simplicity, SQLite will not give the application a second chance.
4558         */
4559         pIdx->bNoQuery = 1;
4560         pParse->rc = SQLITE_ERROR_RETRY;
4561       }
4562       sqlite3KeyInfoUnref(pKey);
4563       pKey = 0;
4564     }
4565   }
4566   return pKey;
4567 }
4568 
4569 #ifndef SQLITE_OMIT_CTE
4570 /*
4571 ** This routine is invoked once per CTE by the parser while parsing a
4572 ** WITH clause.
4573 */
4574 With *sqlite3WithAdd(
4575   Parse *pParse,          /* Parsing context */
4576   With *pWith,            /* Existing WITH clause, or NULL */
4577   Token *pName,           /* Name of the common-table */
4578   ExprList *pArglist,     /* Optional column name list for the table */
4579   Select *pQuery          /* Query used to initialize the table */
4580 ){
4581   sqlite3 *db = pParse->db;
4582   With *pNew;
4583   char *zName;
4584 
4585   /* Check that the CTE name is unique within this WITH clause. If
4586   ** not, store an error in the Parse structure. */
4587   zName = sqlite3NameFromToken(pParse->db, pName);
4588   if( zName && pWith ){
4589     int i;
4590     for(i=0; i<pWith->nCte; i++){
4591       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4592         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4593       }
4594     }
4595   }
4596 
4597   if( pWith ){
4598     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4599     pNew = sqlite3DbRealloc(db, pWith, nByte);
4600   }else{
4601     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4602   }
4603   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4604 
4605   if( db->mallocFailed ){
4606     sqlite3ExprListDelete(db, pArglist);
4607     sqlite3SelectDelete(db, pQuery);
4608     sqlite3DbFree(db, zName);
4609     pNew = pWith;
4610   }else{
4611     pNew->a[pNew->nCte].pSelect = pQuery;
4612     pNew->a[pNew->nCte].pCols = pArglist;
4613     pNew->a[pNew->nCte].zName = zName;
4614     pNew->a[pNew->nCte].zCteErr = 0;
4615     pNew->nCte++;
4616   }
4617 
4618   return pNew;
4619 }
4620 
4621 /*
4622 ** Free the contents of the With object passed as the second argument.
4623 */
4624 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4625   if( pWith ){
4626     int i;
4627     for(i=0; i<pWith->nCte; i++){
4628       struct Cte *pCte = &pWith->a[i];
4629       sqlite3ExprListDelete(db, pCte->pCols);
4630       sqlite3SelectDelete(db, pCte->pSelect);
4631       sqlite3DbFree(db, pCte->zName);
4632     }
4633     sqlite3DbFree(db, pWith);
4634   }
4635 }
4636 #endif /* !defined(SQLITE_OMIT_CTE) */
4637