1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); 364 } 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 366 return pMod->pEpoTab; 367 } 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->flags |= SQLITE_InternChanges; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. 518 */ 519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 520 Db *pDb; 521 assert( iDb<db->nDb ); 522 523 /* Case 1: Reset the single schema identified by iDb */ 524 pDb = &db->aDb[iDb]; 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 assert( pDb->pSchema!=0 ); 527 sqlite3SchemaClear(pDb->pSchema); 528 529 /* If any database other than TEMP is reset, then also reset TEMP 530 ** since TEMP might be holding triggers that reference tables in the 531 ** other database. 532 */ 533 if( iDb!=1 ){ 534 pDb = &db->aDb[1]; 535 assert( pDb->pSchema!=0 ); 536 sqlite3SchemaClear(pDb->pSchema); 537 } 538 return; 539 } 540 541 /* 542 ** Erase all schema information from all attached databases (including 543 ** "main" and "temp") for a single database connection. 544 */ 545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 546 int i; 547 sqlite3BtreeEnterAll(db); 548 for(i=0; i<db->nDb; i++){ 549 Db *pDb = &db->aDb[i]; 550 if( pDb->pSchema ){ 551 sqlite3SchemaClear(pDb->pSchema); 552 } 553 } 554 db->flags &= ~SQLITE_InternChanges; 555 sqlite3VtabUnlockList(db); 556 sqlite3BtreeLeaveAll(db); 557 sqlite3CollapseDatabaseArray(db); 558 } 559 560 /* 561 ** This routine is called when a commit occurs. 562 */ 563 void sqlite3CommitInternalChanges(sqlite3 *db){ 564 db->flags &= ~SQLITE_InternChanges; 565 } 566 567 /* 568 ** Delete memory allocated for the column names of a table or view (the 569 ** Table.aCol[] array). 570 */ 571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 572 int i; 573 Column *pCol; 574 assert( pTable!=0 ); 575 if( (pCol = pTable->aCol)!=0 ){ 576 for(i=0; i<pTable->nCol; i++, pCol++){ 577 sqlite3DbFree(db, pCol->zName); 578 sqlite3ExprDelete(db, pCol->pDflt); 579 sqlite3DbFree(db, pCol->zColl); 580 } 581 sqlite3DbFree(db, pTable->aCol); 582 } 583 } 584 585 /* 586 ** Remove the memory data structures associated with the given 587 ** Table. No changes are made to disk by this routine. 588 ** 589 ** This routine just deletes the data structure. It does not unlink 590 ** the table data structure from the hash table. But it does destroy 591 ** memory structures of the indices and foreign keys associated with 592 ** the table. 593 ** 594 ** The db parameter is optional. It is needed if the Table object 595 ** contains lookaside memory. (Table objects in the schema do not use 596 ** lookaside memory, but some ephemeral Table objects do.) Or the 597 ** db parameter can be used with db->pnBytesFreed to measure the memory 598 ** used by the Table object. 599 */ 600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 601 Index *pIndex, *pNext; 602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 603 604 /* Record the number of outstanding lookaside allocations in schema Tables 605 ** prior to doing any free() operations. Since schema Tables do not use 606 ** lookaside, this number should not change. */ 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 608 db->lookaside.nOut : 0 ); 609 610 /* Delete all indices associated with this table. */ 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 612 pNext = pIndex->pNext; 613 assert( pIndex->pSchema==pTable->pSchema 614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 616 char *zName = pIndex->zName; 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 618 &pIndex->pSchema->idxHash, zName, 0 619 ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 621 assert( pOld==pIndex || pOld==0 ); 622 } 623 freeIndex(db, pIndex); 624 } 625 626 /* Delete any foreign keys attached to this table. */ 627 sqlite3FkDelete(db, pTable); 628 629 /* Delete the Table structure itself. 630 */ 631 sqlite3DeleteColumnNames(db, pTable); 632 sqlite3DbFree(db, pTable->zName); 633 sqlite3DbFree(db, pTable->zColAff); 634 sqlite3SelectDelete(db, pTable->pSelect); 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #ifndef SQLITE_OMIT_VIRTUALTABLE 637 sqlite3VtabClear(db, pTable); 638 #endif 639 sqlite3DbFree(db, pTable); 640 641 /* Verify that no lookaside memory was used by schema tables */ 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 643 } 644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 645 /* Do not delete the table until the reference count reaches zero. */ 646 if( !pTable ) return; 647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 648 deleteTable(db, pTable); 649 } 650 651 652 /* 653 ** Unlink the given table from the hash tables and the delete the 654 ** table structure with all its indices and foreign keys. 655 */ 656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 657 Table *p; 658 Db *pDb; 659 660 assert( db!=0 ); 661 assert( iDb>=0 && iDb<db->nDb ); 662 assert( zTabName ); 663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 665 pDb = &db->aDb[iDb]; 666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 667 sqlite3DeleteTable(db, p); 668 db->flags |= SQLITE_InternChanges; 669 } 670 671 /* 672 ** Given a token, return a string that consists of the text of that 673 ** token. Space to hold the returned string 674 ** is obtained from sqliteMalloc() and must be freed by the calling 675 ** function. 676 ** 677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 678 ** surround the body of the token are removed. 679 ** 680 ** Tokens are often just pointers into the original SQL text and so 681 ** are not \000 terminated and are not persistent. The returned string 682 ** is \000 terminated and is persistent. 683 */ 684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 685 char *zName; 686 if( pName ){ 687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 688 sqlite3Dequote(zName); 689 }else{ 690 zName = 0; 691 } 692 return zName; 693 } 694 695 /* 696 ** Open the sqlite_master table stored in database number iDb for 697 ** writing. The table is opened using cursor 0. 698 */ 699 void sqlite3OpenMasterTable(Parse *p, int iDb){ 700 Vdbe *v = sqlite3GetVdbe(p); 701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 703 if( p->nTab==0 ){ 704 p->nTab = 1; 705 } 706 } 707 708 /* 709 ** Parameter zName points to a nul-terminated buffer containing the name 710 ** of a database ("main", "temp" or the name of an attached db). This 711 ** function returns the index of the named database in db->aDb[], or 712 ** -1 if the named db cannot be found. 713 */ 714 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 715 int i = -1; /* Database number */ 716 if( zName ){ 717 Db *pDb; 718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 720 /* "main" is always an acceptable alias for the primary database 721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 723 } 724 } 725 return i; 726 } 727 728 /* 729 ** The token *pName contains the name of a database (either "main" or 730 ** "temp" or the name of an attached db). This routine returns the 731 ** index of the named database in db->aDb[], or -1 if the named db 732 ** does not exist. 733 */ 734 int sqlite3FindDb(sqlite3 *db, Token *pName){ 735 int i; /* Database number */ 736 char *zName; /* Name we are searching for */ 737 zName = sqlite3NameFromToken(db, pName); 738 i = sqlite3FindDbName(db, zName); 739 sqlite3DbFree(db, zName); 740 return i; 741 } 742 743 /* The table or view or trigger name is passed to this routine via tokens 744 ** pName1 and pName2. If the table name was fully qualified, for example: 745 ** 746 ** CREATE TABLE xxx.yyy (...); 747 ** 748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 749 ** the table name is not fully qualified, i.e.: 750 ** 751 ** CREATE TABLE yyy(...); 752 ** 753 ** Then pName1 is set to "yyy" and pName2 is "". 754 ** 755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 756 ** pName2) that stores the unqualified table name. The index of the 757 ** database "xxx" is returned. 758 */ 759 int sqlite3TwoPartName( 760 Parse *pParse, /* Parsing and code generating context */ 761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 763 Token **pUnqual /* Write the unqualified object name here */ 764 ){ 765 int iDb; /* Database holding the object */ 766 sqlite3 *db = pParse->db; 767 768 assert( pName2!=0 ); 769 if( pName2->n>0 ){ 770 if( db->init.busy ) { 771 sqlite3ErrorMsg(pParse, "corrupt database"); 772 return -1; 773 } 774 *pUnqual = pName2; 775 iDb = sqlite3FindDb(db, pName1); 776 if( iDb<0 ){ 777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 778 return -1; 779 } 780 }else{ 781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0); 782 iDb = db->init.iDb; 783 *pUnqual = pName1; 784 } 785 return iDb; 786 } 787 788 /* 789 ** This routine is used to check if the UTF-8 string zName is a legal 790 ** unqualified name for a new schema object (table, index, view or 791 ** trigger). All names are legal except those that begin with the string 792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 793 ** is reserved for internal use. 794 */ 795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 796 if( !pParse->db->init.busy && pParse->nested==0 797 && (pParse->db->flags & SQLITE_WriteSchema)==0 798 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 799 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 800 return SQLITE_ERROR; 801 } 802 return SQLITE_OK; 803 } 804 805 /* 806 ** Return the PRIMARY KEY index of a table 807 */ 808 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 809 Index *p; 810 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 811 return p; 812 } 813 814 /* 815 ** Return the column of index pIdx that corresponds to table 816 ** column iCol. Return -1 if not found. 817 */ 818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 819 int i; 820 for(i=0; i<pIdx->nColumn; i++){ 821 if( iCol==pIdx->aiColumn[i] ) return i; 822 } 823 return -1; 824 } 825 826 /* 827 ** Begin constructing a new table representation in memory. This is 828 ** the first of several action routines that get called in response 829 ** to a CREATE TABLE statement. In particular, this routine is called 830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 831 ** flag is true if the table should be stored in the auxiliary database 832 ** file instead of in the main database file. This is normally the case 833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 834 ** CREATE and TABLE. 835 ** 836 ** The new table record is initialized and put in pParse->pNewTable. 837 ** As more of the CREATE TABLE statement is parsed, additional action 838 ** routines will be called to add more information to this record. 839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 840 ** is called to complete the construction of the new table record. 841 */ 842 void sqlite3StartTable( 843 Parse *pParse, /* Parser context */ 844 Token *pName1, /* First part of the name of the table or view */ 845 Token *pName2, /* Second part of the name of the table or view */ 846 int isTemp, /* True if this is a TEMP table */ 847 int isView, /* True if this is a VIEW */ 848 int isVirtual, /* True if this is a VIRTUAL table */ 849 int noErr /* Do nothing if table already exists */ 850 ){ 851 Table *pTable; 852 char *zName = 0; /* The name of the new table */ 853 sqlite3 *db = pParse->db; 854 Vdbe *v; 855 int iDb; /* Database number to create the table in */ 856 Token *pName; /* Unqualified name of the table to create */ 857 858 if( db->init.busy && db->init.newTnum==1 ){ 859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 860 iDb = db->init.iDb; 861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 862 pName = pName1; 863 }else{ 864 /* The common case */ 865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 866 if( iDb<0 ) return; 867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 868 /* If creating a temp table, the name may not be qualified. Unless 869 ** the database name is "temp" anyway. */ 870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 871 return; 872 } 873 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 874 zName = sqlite3NameFromToken(db, pName); 875 } 876 pParse->sNameToken = *pName; 877 if( zName==0 ) return; 878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 879 goto begin_table_error; 880 } 881 if( db->init.iDb==1 ) isTemp = 1; 882 #ifndef SQLITE_OMIT_AUTHORIZATION 883 assert( isTemp==0 || isTemp==1 ); 884 assert( isView==0 || isView==1 ); 885 { 886 static const u8 aCode[] = { 887 SQLITE_CREATE_TABLE, 888 SQLITE_CREATE_TEMP_TABLE, 889 SQLITE_CREATE_VIEW, 890 SQLITE_CREATE_TEMP_VIEW 891 }; 892 char *zDb = db->aDb[iDb].zDbSName; 893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 894 goto begin_table_error; 895 } 896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 897 zName, 0, zDb) ){ 898 goto begin_table_error; 899 } 900 } 901 #endif 902 903 /* Make sure the new table name does not collide with an existing 904 ** index or table name in the same database. Issue an error message if 905 ** it does. The exception is if the statement being parsed was passed 906 ** to an sqlite3_declare_vtab() call. In that case only the column names 907 ** and types will be used, so there is no need to test for namespace 908 ** collisions. 909 */ 910 if( !IN_DECLARE_VTAB ){ 911 char *zDb = db->aDb[iDb].zDbSName; 912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 913 goto begin_table_error; 914 } 915 pTable = sqlite3FindTable(db, zName, zDb); 916 if( pTable ){ 917 if( !noErr ){ 918 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 919 }else{ 920 assert( !db->init.busy || CORRUPT_DB ); 921 sqlite3CodeVerifySchema(pParse, iDb); 922 } 923 goto begin_table_error; 924 } 925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 927 goto begin_table_error; 928 } 929 } 930 931 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 932 if( pTable==0 ){ 933 assert( db->mallocFailed ); 934 pParse->rc = SQLITE_NOMEM_BKPT; 935 pParse->nErr++; 936 goto begin_table_error; 937 } 938 pTable->zName = zName; 939 pTable->iPKey = -1; 940 pTable->pSchema = db->aDb[iDb].pSchema; 941 pTable->nTabRef = 1; 942 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 943 assert( pParse->pNewTable==0 ); 944 pParse->pNewTable = pTable; 945 946 /* If this is the magic sqlite_sequence table used by autoincrement, 947 ** then record a pointer to this table in the main database structure 948 ** so that INSERT can find the table easily. 949 */ 950 #ifndef SQLITE_OMIT_AUTOINCREMENT 951 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 952 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 953 pTable->pSchema->pSeqTab = pTable; 954 } 955 #endif 956 957 /* Begin generating the code that will insert the table record into 958 ** the SQLITE_MASTER table. Note in particular that we must go ahead 959 ** and allocate the record number for the table entry now. Before any 960 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 961 ** indices to be created and the table record must come before the 962 ** indices. Hence, the record number for the table must be allocated 963 ** now. 964 */ 965 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 966 int addr1; 967 int fileFormat; 968 int reg1, reg2, reg3; 969 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 970 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 971 sqlite3BeginWriteOperation(pParse, 1, iDb); 972 973 #ifndef SQLITE_OMIT_VIRTUALTABLE 974 if( isVirtual ){ 975 sqlite3VdbeAddOp0(v, OP_VBegin); 976 } 977 #endif 978 979 /* If the file format and encoding in the database have not been set, 980 ** set them now. 981 */ 982 reg1 = pParse->regRowid = ++pParse->nMem; 983 reg2 = pParse->regRoot = ++pParse->nMem; 984 reg3 = ++pParse->nMem; 985 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 986 sqlite3VdbeUsesBtree(v, iDb); 987 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 988 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 989 1 : SQLITE_MAX_FILE_FORMAT; 990 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 991 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 992 sqlite3VdbeJumpHere(v, addr1); 993 994 /* This just creates a place-holder record in the sqlite_master table. 995 ** The record created does not contain anything yet. It will be replaced 996 ** by the real entry in code generated at sqlite3EndTable(). 997 ** 998 ** The rowid for the new entry is left in register pParse->regRowid. 999 ** The root page number of the new table is left in reg pParse->regRoot. 1000 ** The rowid and root page number values are needed by the code that 1001 ** sqlite3EndTable will generate. 1002 */ 1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1004 if( isView || isVirtual ){ 1005 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1006 }else 1007 #endif 1008 { 1009 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1010 } 1011 sqlite3OpenMasterTable(pParse, iDb); 1012 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1013 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1014 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1015 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1016 sqlite3VdbeAddOp0(v, OP_Close); 1017 } 1018 1019 /* Normal (non-error) return. */ 1020 return; 1021 1022 /* If an error occurs, we jump here */ 1023 begin_table_error: 1024 sqlite3DbFree(db, zName); 1025 return; 1026 } 1027 1028 /* Set properties of a table column based on the (magical) 1029 ** name of the column. 1030 */ 1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1033 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1034 pCol->colFlags |= COLFLAG_HIDDEN; 1035 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1036 pTab->tabFlags |= TF_OOOHidden; 1037 } 1038 } 1039 #endif 1040 1041 1042 /* 1043 ** Add a new column to the table currently being constructed. 1044 ** 1045 ** The parser calls this routine once for each column declaration 1046 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1047 ** first to get things going. Then this routine is called for each 1048 ** column. 1049 */ 1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1051 Table *p; 1052 int i; 1053 char *z; 1054 char *zType; 1055 Column *pCol; 1056 sqlite3 *db = pParse->db; 1057 if( (p = pParse->pNewTable)==0 ) return; 1058 #if SQLITE_MAX_COLUMN 1059 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1060 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1061 return; 1062 } 1063 #endif 1064 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1065 if( z==0 ) return; 1066 memcpy(z, pName->z, pName->n); 1067 z[pName->n] = 0; 1068 sqlite3Dequote(z); 1069 for(i=0; i<p->nCol; i++){ 1070 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1071 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1072 sqlite3DbFree(db, z); 1073 return; 1074 } 1075 } 1076 if( (p->nCol & 0x7)==0 ){ 1077 Column *aNew; 1078 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1079 if( aNew==0 ){ 1080 sqlite3DbFree(db, z); 1081 return; 1082 } 1083 p->aCol = aNew; 1084 } 1085 pCol = &p->aCol[p->nCol]; 1086 memset(pCol, 0, sizeof(p->aCol[0])); 1087 pCol->zName = z; 1088 sqlite3ColumnPropertiesFromName(p, pCol); 1089 1090 if( pType->n==0 ){ 1091 /* If there is no type specified, columns have the default affinity 1092 ** 'BLOB'. */ 1093 pCol->affinity = SQLITE_AFF_BLOB; 1094 pCol->szEst = 1; 1095 }else{ 1096 zType = z + sqlite3Strlen30(z) + 1; 1097 memcpy(zType, pType->z, pType->n); 1098 zType[pType->n] = 0; 1099 sqlite3Dequote(zType); 1100 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1101 pCol->colFlags |= COLFLAG_HASTYPE; 1102 } 1103 p->nCol++; 1104 pParse->constraintName.n = 0; 1105 } 1106 1107 /* 1108 ** This routine is called by the parser while in the middle of 1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1110 ** been seen on a column. This routine sets the notNull flag on 1111 ** the column currently under construction. 1112 */ 1113 void sqlite3AddNotNull(Parse *pParse, int onError){ 1114 Table *p; 1115 p = pParse->pNewTable; 1116 if( p==0 || NEVER(p->nCol<1) ) return; 1117 p->aCol[p->nCol-1].notNull = (u8)onError; 1118 } 1119 1120 /* 1121 ** Scan the column type name zType (length nType) and return the 1122 ** associated affinity type. 1123 ** 1124 ** This routine does a case-independent search of zType for the 1125 ** substrings in the following table. If one of the substrings is 1126 ** found, the corresponding affinity is returned. If zType contains 1127 ** more than one of the substrings, entries toward the top of 1128 ** the table take priority. For example, if zType is 'BLOBINT', 1129 ** SQLITE_AFF_INTEGER is returned. 1130 ** 1131 ** Substring | Affinity 1132 ** -------------------------------- 1133 ** 'INT' | SQLITE_AFF_INTEGER 1134 ** 'CHAR' | SQLITE_AFF_TEXT 1135 ** 'CLOB' | SQLITE_AFF_TEXT 1136 ** 'TEXT' | SQLITE_AFF_TEXT 1137 ** 'BLOB' | SQLITE_AFF_BLOB 1138 ** 'REAL' | SQLITE_AFF_REAL 1139 ** 'FLOA' | SQLITE_AFF_REAL 1140 ** 'DOUB' | SQLITE_AFF_REAL 1141 ** 1142 ** If none of the substrings in the above table are found, 1143 ** SQLITE_AFF_NUMERIC is returned. 1144 */ 1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1146 u32 h = 0; 1147 char aff = SQLITE_AFF_NUMERIC; 1148 const char *zChar = 0; 1149 1150 assert( zIn!=0 ); 1151 while( zIn[0] ){ 1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1153 zIn++; 1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1155 aff = SQLITE_AFF_TEXT; 1156 zChar = zIn; 1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1158 aff = SQLITE_AFF_TEXT; 1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1160 aff = SQLITE_AFF_TEXT; 1161 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1162 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1163 aff = SQLITE_AFF_BLOB; 1164 if( zIn[0]=='(' ) zChar = zIn; 1165 #ifndef SQLITE_OMIT_FLOATING_POINT 1166 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1167 && aff==SQLITE_AFF_NUMERIC ){ 1168 aff = SQLITE_AFF_REAL; 1169 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1170 && aff==SQLITE_AFF_NUMERIC ){ 1171 aff = SQLITE_AFF_REAL; 1172 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1173 && aff==SQLITE_AFF_NUMERIC ){ 1174 aff = SQLITE_AFF_REAL; 1175 #endif 1176 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1177 aff = SQLITE_AFF_INTEGER; 1178 break; 1179 } 1180 } 1181 1182 /* If pszEst is not NULL, store an estimate of the field size. The 1183 ** estimate is scaled so that the size of an integer is 1. */ 1184 if( pszEst ){ 1185 *pszEst = 1; /* default size is approx 4 bytes */ 1186 if( aff<SQLITE_AFF_NUMERIC ){ 1187 if( zChar ){ 1188 while( zChar[0] ){ 1189 if( sqlite3Isdigit(zChar[0]) ){ 1190 int v = 0; 1191 sqlite3GetInt32(zChar, &v); 1192 v = v/4 + 1; 1193 if( v>255 ) v = 255; 1194 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1195 break; 1196 } 1197 zChar++; 1198 } 1199 }else{ 1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1201 } 1202 } 1203 } 1204 return aff; 1205 } 1206 1207 /* 1208 ** The expression is the default value for the most recently added column 1209 ** of the table currently under construction. 1210 ** 1211 ** Default value expressions must be constant. Raise an exception if this 1212 ** is not the case. 1213 ** 1214 ** This routine is called by the parser while in the middle of 1215 ** parsing a CREATE TABLE statement. 1216 */ 1217 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1218 Table *p; 1219 Column *pCol; 1220 sqlite3 *db = pParse->db; 1221 p = pParse->pNewTable; 1222 if( p!=0 ){ 1223 pCol = &(p->aCol[p->nCol-1]); 1224 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1225 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1226 pCol->zName); 1227 }else{ 1228 /* A copy of pExpr is used instead of the original, as pExpr contains 1229 ** tokens that point to volatile memory. The 'span' of the expression 1230 ** is required by pragma table_info. 1231 */ 1232 Expr x; 1233 sqlite3ExprDelete(db, pCol->pDflt); 1234 memset(&x, 0, sizeof(x)); 1235 x.op = TK_SPAN; 1236 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1237 (int)(pSpan->zEnd - pSpan->zStart)); 1238 x.pLeft = pSpan->pExpr; 1239 x.flags = EP_Skip; 1240 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1241 sqlite3DbFree(db, x.u.zToken); 1242 } 1243 } 1244 sqlite3ExprDelete(db, pSpan->pExpr); 1245 } 1246 1247 /* 1248 ** Backwards Compatibility Hack: 1249 ** 1250 ** Historical versions of SQLite accepted strings as column names in 1251 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1252 ** 1253 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1254 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1255 ** 1256 ** This is goofy. But to preserve backwards compatibility we continue to 1257 ** accept it. This routine does the necessary conversion. It converts 1258 ** the expression given in its argument from a TK_STRING into a TK_ID 1259 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1260 ** If the epxression is anything other than TK_STRING, the expression is 1261 ** unchanged. 1262 */ 1263 static void sqlite3StringToId(Expr *p){ 1264 if( p->op==TK_STRING ){ 1265 p->op = TK_ID; 1266 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1267 p->pLeft->op = TK_ID; 1268 } 1269 } 1270 1271 /* 1272 ** Designate the PRIMARY KEY for the table. pList is a list of names 1273 ** of columns that form the primary key. If pList is NULL, then the 1274 ** most recently added column of the table is the primary key. 1275 ** 1276 ** A table can have at most one primary key. If the table already has 1277 ** a primary key (and this is the second primary key) then create an 1278 ** error. 1279 ** 1280 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1281 ** then we will try to use that column as the rowid. Set the Table.iPKey 1282 ** field of the table under construction to be the index of the 1283 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1284 ** no INTEGER PRIMARY KEY. 1285 ** 1286 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1287 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1288 */ 1289 void sqlite3AddPrimaryKey( 1290 Parse *pParse, /* Parsing context */ 1291 ExprList *pList, /* List of field names to be indexed */ 1292 int onError, /* What to do with a uniqueness conflict */ 1293 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1294 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1295 ){ 1296 Table *pTab = pParse->pNewTable; 1297 Column *pCol = 0; 1298 int iCol = -1, i; 1299 int nTerm; 1300 if( pTab==0 ) goto primary_key_exit; 1301 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1302 sqlite3ErrorMsg(pParse, 1303 "table \"%s\" has more than one primary key", pTab->zName); 1304 goto primary_key_exit; 1305 } 1306 pTab->tabFlags |= TF_HasPrimaryKey; 1307 if( pList==0 ){ 1308 iCol = pTab->nCol - 1; 1309 pCol = &pTab->aCol[iCol]; 1310 pCol->colFlags |= COLFLAG_PRIMKEY; 1311 nTerm = 1; 1312 }else{ 1313 nTerm = pList->nExpr; 1314 for(i=0; i<nTerm; i++){ 1315 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1316 assert( pCExpr!=0 ); 1317 sqlite3StringToId(pCExpr); 1318 if( pCExpr->op==TK_ID ){ 1319 const char *zCName = pCExpr->u.zToken; 1320 for(iCol=0; iCol<pTab->nCol; iCol++){ 1321 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1322 pCol = &pTab->aCol[iCol]; 1323 pCol->colFlags |= COLFLAG_PRIMKEY; 1324 break; 1325 } 1326 } 1327 } 1328 } 1329 } 1330 if( nTerm==1 1331 && pCol 1332 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1333 && sortOrder!=SQLITE_SO_DESC 1334 ){ 1335 pTab->iPKey = iCol; 1336 pTab->keyConf = (u8)onError; 1337 assert( autoInc==0 || autoInc==1 ); 1338 pTab->tabFlags |= autoInc*TF_Autoincrement; 1339 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1340 }else if( autoInc ){ 1341 #ifndef SQLITE_OMIT_AUTOINCREMENT 1342 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1343 "INTEGER PRIMARY KEY"); 1344 #endif 1345 }else{ 1346 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1347 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1348 pList = 0; 1349 } 1350 1351 primary_key_exit: 1352 sqlite3ExprListDelete(pParse->db, pList); 1353 return; 1354 } 1355 1356 /* 1357 ** Add a new CHECK constraint to the table currently under construction. 1358 */ 1359 void sqlite3AddCheckConstraint( 1360 Parse *pParse, /* Parsing context */ 1361 Expr *pCheckExpr /* The check expression */ 1362 ){ 1363 #ifndef SQLITE_OMIT_CHECK 1364 Table *pTab = pParse->pNewTable; 1365 sqlite3 *db = pParse->db; 1366 if( pTab && !IN_DECLARE_VTAB 1367 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1368 ){ 1369 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1370 if( pParse->constraintName.n ){ 1371 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1372 } 1373 }else 1374 #endif 1375 { 1376 sqlite3ExprDelete(pParse->db, pCheckExpr); 1377 } 1378 } 1379 1380 /* 1381 ** Set the collation function of the most recently parsed table column 1382 ** to the CollSeq given. 1383 */ 1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1385 Table *p; 1386 int i; 1387 char *zColl; /* Dequoted name of collation sequence */ 1388 sqlite3 *db; 1389 1390 if( (p = pParse->pNewTable)==0 ) return; 1391 i = p->nCol-1; 1392 db = pParse->db; 1393 zColl = sqlite3NameFromToken(db, pToken); 1394 if( !zColl ) return; 1395 1396 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1397 Index *pIdx; 1398 sqlite3DbFree(db, p->aCol[i].zColl); 1399 p->aCol[i].zColl = zColl; 1400 1401 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1402 ** then an index may have been created on this column before the 1403 ** collation type was added. Correct this if it is the case. 1404 */ 1405 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1406 assert( pIdx->nKeyCol==1 ); 1407 if( pIdx->aiColumn[0]==i ){ 1408 pIdx->azColl[0] = p->aCol[i].zColl; 1409 } 1410 } 1411 }else{ 1412 sqlite3DbFree(db, zColl); 1413 } 1414 } 1415 1416 /* 1417 ** This function returns the collation sequence for database native text 1418 ** encoding identified by the string zName, length nName. 1419 ** 1420 ** If the requested collation sequence is not available, or not available 1421 ** in the database native encoding, the collation factory is invoked to 1422 ** request it. If the collation factory does not supply such a sequence, 1423 ** and the sequence is available in another text encoding, then that is 1424 ** returned instead. 1425 ** 1426 ** If no versions of the requested collations sequence are available, or 1427 ** another error occurs, NULL is returned and an error message written into 1428 ** pParse. 1429 ** 1430 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1431 ** invokes the collation factory if the named collation cannot be found 1432 ** and generates an error message. 1433 ** 1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1435 */ 1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1437 sqlite3 *db = pParse->db; 1438 u8 enc = ENC(db); 1439 u8 initbusy = db->init.busy; 1440 CollSeq *pColl; 1441 1442 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1443 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1444 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1445 } 1446 1447 return pColl; 1448 } 1449 1450 1451 /* 1452 ** Generate code that will increment the schema cookie. 1453 ** 1454 ** The schema cookie is used to determine when the schema for the 1455 ** database changes. After each schema change, the cookie value 1456 ** changes. When a process first reads the schema it records the 1457 ** cookie. Thereafter, whenever it goes to access the database, 1458 ** it checks the cookie to make sure the schema has not changed 1459 ** since it was last read. 1460 ** 1461 ** This plan is not completely bullet-proof. It is possible for 1462 ** the schema to change multiple times and for the cookie to be 1463 ** set back to prior value. But schema changes are infrequent 1464 ** and the probability of hitting the same cookie value is only 1465 ** 1 chance in 2^32. So we're safe enough. 1466 ** 1467 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1468 ** the schema-version whenever the schema changes. 1469 */ 1470 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1471 sqlite3 *db = pParse->db; 1472 Vdbe *v = pParse->pVdbe; 1473 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1474 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1475 db->aDb[iDb].pSchema->schema_cookie+1); 1476 } 1477 1478 /* 1479 ** Measure the number of characters needed to output the given 1480 ** identifier. The number returned includes any quotes used 1481 ** but does not include the null terminator. 1482 ** 1483 ** The estimate is conservative. It might be larger that what is 1484 ** really needed. 1485 */ 1486 static int identLength(const char *z){ 1487 int n; 1488 for(n=0; *z; n++, z++){ 1489 if( *z=='"' ){ n++; } 1490 } 1491 return n + 2; 1492 } 1493 1494 /* 1495 ** The first parameter is a pointer to an output buffer. The second 1496 ** parameter is a pointer to an integer that contains the offset at 1497 ** which to write into the output buffer. This function copies the 1498 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1499 ** to the specified offset in the buffer and updates *pIdx to refer 1500 ** to the first byte after the last byte written before returning. 1501 ** 1502 ** If the string zSignedIdent consists entirely of alpha-numeric 1503 ** characters, does not begin with a digit and is not an SQL keyword, 1504 ** then it is copied to the output buffer exactly as it is. Otherwise, 1505 ** it is quoted using double-quotes. 1506 */ 1507 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1508 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1509 int i, j, needQuote; 1510 i = *pIdx; 1511 1512 for(j=0; zIdent[j]; j++){ 1513 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1514 } 1515 needQuote = sqlite3Isdigit(zIdent[0]) 1516 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1517 || zIdent[j]!=0 1518 || j==0; 1519 1520 if( needQuote ) z[i++] = '"'; 1521 for(j=0; zIdent[j]; j++){ 1522 z[i++] = zIdent[j]; 1523 if( zIdent[j]=='"' ) z[i++] = '"'; 1524 } 1525 if( needQuote ) z[i++] = '"'; 1526 z[i] = 0; 1527 *pIdx = i; 1528 } 1529 1530 /* 1531 ** Generate a CREATE TABLE statement appropriate for the given 1532 ** table. Memory to hold the text of the statement is obtained 1533 ** from sqliteMalloc() and must be freed by the calling function. 1534 */ 1535 static char *createTableStmt(sqlite3 *db, Table *p){ 1536 int i, k, n; 1537 char *zStmt; 1538 char *zSep, *zSep2, *zEnd; 1539 Column *pCol; 1540 n = 0; 1541 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1542 n += identLength(pCol->zName) + 5; 1543 } 1544 n += identLength(p->zName); 1545 if( n<50 ){ 1546 zSep = ""; 1547 zSep2 = ","; 1548 zEnd = ")"; 1549 }else{ 1550 zSep = "\n "; 1551 zSep2 = ",\n "; 1552 zEnd = "\n)"; 1553 } 1554 n += 35 + 6*p->nCol; 1555 zStmt = sqlite3DbMallocRaw(0, n); 1556 if( zStmt==0 ){ 1557 sqlite3OomFault(db); 1558 return 0; 1559 } 1560 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1561 k = sqlite3Strlen30(zStmt); 1562 identPut(zStmt, &k, p->zName); 1563 zStmt[k++] = '('; 1564 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1565 static const char * const azType[] = { 1566 /* SQLITE_AFF_BLOB */ "", 1567 /* SQLITE_AFF_TEXT */ " TEXT", 1568 /* SQLITE_AFF_NUMERIC */ " NUM", 1569 /* SQLITE_AFF_INTEGER */ " INT", 1570 /* SQLITE_AFF_REAL */ " REAL" 1571 }; 1572 int len; 1573 const char *zType; 1574 1575 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1576 k += sqlite3Strlen30(&zStmt[k]); 1577 zSep = zSep2; 1578 identPut(zStmt, &k, pCol->zName); 1579 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1580 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1581 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1582 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1583 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1584 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1585 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1586 1587 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1588 len = sqlite3Strlen30(zType); 1589 assert( pCol->affinity==SQLITE_AFF_BLOB 1590 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1591 memcpy(&zStmt[k], zType, len); 1592 k += len; 1593 assert( k<=n ); 1594 } 1595 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1596 return zStmt; 1597 } 1598 1599 /* 1600 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1601 ** on success and SQLITE_NOMEM on an OOM error. 1602 */ 1603 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1604 char *zExtra; 1605 int nByte; 1606 if( pIdx->nColumn>=N ) return SQLITE_OK; 1607 assert( pIdx->isResized==0 ); 1608 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1609 zExtra = sqlite3DbMallocZero(db, nByte); 1610 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1611 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1612 pIdx->azColl = (const char**)zExtra; 1613 zExtra += sizeof(char*)*N; 1614 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1615 pIdx->aiColumn = (i16*)zExtra; 1616 zExtra += sizeof(i16)*N; 1617 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1618 pIdx->aSortOrder = (u8*)zExtra; 1619 pIdx->nColumn = N; 1620 pIdx->isResized = 1; 1621 return SQLITE_OK; 1622 } 1623 1624 /* 1625 ** Estimate the total row width for a table. 1626 */ 1627 static void estimateTableWidth(Table *pTab){ 1628 unsigned wTable = 0; 1629 const Column *pTabCol; 1630 int i; 1631 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1632 wTable += pTabCol->szEst; 1633 } 1634 if( pTab->iPKey<0 ) wTable++; 1635 pTab->szTabRow = sqlite3LogEst(wTable*4); 1636 } 1637 1638 /* 1639 ** Estimate the average size of a row for an index. 1640 */ 1641 static void estimateIndexWidth(Index *pIdx){ 1642 unsigned wIndex = 0; 1643 int i; 1644 const Column *aCol = pIdx->pTable->aCol; 1645 for(i=0; i<pIdx->nColumn; i++){ 1646 i16 x = pIdx->aiColumn[i]; 1647 assert( x<pIdx->pTable->nCol ); 1648 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1649 } 1650 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1651 } 1652 1653 /* Return true if value x is found any of the first nCol entries of aiCol[] 1654 */ 1655 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1656 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1657 return 0; 1658 } 1659 1660 /* 1661 ** This routine runs at the end of parsing a CREATE TABLE statement that 1662 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1663 ** internal schema data structures and the generated VDBE code so that they 1664 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1665 ** Changes include: 1666 ** 1667 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1668 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is 1669 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1670 ** data storage is a covering index btree. 1671 ** (3) Bypass the creation of the sqlite_master table entry 1672 ** for the PRIMARY KEY as the primary key index is now 1673 ** identified by the sqlite_master table entry of the table itself. 1674 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1675 ** schema to the rootpage from the main table. 1676 ** (5) Add all table columns to the PRIMARY KEY Index object 1677 ** so that the PRIMARY KEY is a covering index. The surplus 1678 ** columns are part of KeyInfo.nXField and are not used for 1679 ** sorting or lookup or uniqueness checks. 1680 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1681 ** indices with the PRIMARY KEY columns. 1682 ** 1683 ** For virtual tables, only (1) is performed. 1684 */ 1685 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1686 Index *pIdx; 1687 Index *pPk; 1688 int nPk; 1689 int i, j; 1690 sqlite3 *db = pParse->db; 1691 Vdbe *v = pParse->pVdbe; 1692 1693 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1694 */ 1695 if( !db->init.imposterTable ){ 1696 for(i=0; i<pTab->nCol; i++){ 1697 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1698 pTab->aCol[i].notNull = OE_Abort; 1699 } 1700 } 1701 } 1702 1703 /* The remaining transformations only apply to b-tree tables, not to 1704 ** virtual tables */ 1705 if( IN_DECLARE_VTAB ) return; 1706 1707 /* Convert the OP_CreateTable opcode that would normally create the 1708 ** root-page for the table into an OP_CreateIndex opcode. The index 1709 ** created will become the PRIMARY KEY index. 1710 */ 1711 if( pParse->addrCrTab ){ 1712 assert( v ); 1713 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1714 } 1715 1716 /* Locate the PRIMARY KEY index. Or, if this table was originally 1717 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1718 */ 1719 if( pTab->iPKey>=0 ){ 1720 ExprList *pList; 1721 Token ipkToken; 1722 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1723 pList = sqlite3ExprListAppend(pParse, 0, 1724 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1725 if( pList==0 ) return; 1726 pList->a[0].sortOrder = pParse->iPkSortOrder; 1727 assert( pParse->pNewTable==pTab ); 1728 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1729 SQLITE_IDXTYPE_PRIMARYKEY); 1730 if( db->mallocFailed ) return; 1731 pPk = sqlite3PrimaryKeyIndex(pTab); 1732 pTab->iPKey = -1; 1733 }else{ 1734 pPk = sqlite3PrimaryKeyIndex(pTab); 1735 1736 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1737 ** table entry. This is only required if currently generating VDBE 1738 ** code for a CREATE TABLE (not when parsing one as part of reading 1739 ** a database schema). */ 1740 if( v ){ 1741 assert( db->init.busy==0 ); 1742 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1743 } 1744 1745 /* 1746 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1747 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1748 ** code assumes the PRIMARY KEY contains no repeated columns. 1749 */ 1750 for(i=j=1; i<pPk->nKeyCol; i++){ 1751 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1752 pPk->nColumn--; 1753 }else{ 1754 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1755 } 1756 } 1757 pPk->nKeyCol = j; 1758 } 1759 assert( pPk!=0 ); 1760 pPk->isCovering = 1; 1761 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1762 nPk = pPk->nKeyCol; 1763 1764 /* The root page of the PRIMARY KEY is the table root page */ 1765 pPk->tnum = pTab->tnum; 1766 1767 /* Update the in-memory representation of all UNIQUE indices by converting 1768 ** the final rowid column into one or more columns of the PRIMARY KEY. 1769 */ 1770 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1771 int n; 1772 if( IsPrimaryKeyIndex(pIdx) ) continue; 1773 for(i=n=0; i<nPk; i++){ 1774 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1775 } 1776 if( n==0 ){ 1777 /* This index is a superset of the primary key */ 1778 pIdx->nColumn = pIdx->nKeyCol; 1779 continue; 1780 } 1781 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1782 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1783 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1784 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1785 pIdx->azColl[j] = pPk->azColl[i]; 1786 j++; 1787 } 1788 } 1789 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1790 assert( pIdx->nColumn>=j ); 1791 } 1792 1793 /* Add all table columns to the PRIMARY KEY index 1794 */ 1795 if( nPk<pTab->nCol ){ 1796 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1797 for(i=0, j=nPk; i<pTab->nCol; i++){ 1798 if( !hasColumn(pPk->aiColumn, j, i) ){ 1799 assert( j<pPk->nColumn ); 1800 pPk->aiColumn[j] = i; 1801 pPk->azColl[j] = sqlite3StrBINARY; 1802 j++; 1803 } 1804 } 1805 assert( pPk->nColumn==j ); 1806 assert( pTab->nCol==j ); 1807 }else{ 1808 pPk->nColumn = pTab->nCol; 1809 } 1810 } 1811 1812 /* 1813 ** This routine is called to report the final ")" that terminates 1814 ** a CREATE TABLE statement. 1815 ** 1816 ** The table structure that other action routines have been building 1817 ** is added to the internal hash tables, assuming no errors have 1818 ** occurred. 1819 ** 1820 ** An entry for the table is made in the master table on disk, unless 1821 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1822 ** it means we are reading the sqlite_master table because we just 1823 ** connected to the database or because the sqlite_master table has 1824 ** recently changed, so the entry for this table already exists in 1825 ** the sqlite_master table. We do not want to create it again. 1826 ** 1827 ** If the pSelect argument is not NULL, it means that this routine 1828 ** was called to create a table generated from a 1829 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1830 ** the new table will match the result set of the SELECT. 1831 */ 1832 void sqlite3EndTable( 1833 Parse *pParse, /* Parse context */ 1834 Token *pCons, /* The ',' token after the last column defn. */ 1835 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1836 u8 tabOpts, /* Extra table options. Usually 0. */ 1837 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1838 ){ 1839 Table *p; /* The new table */ 1840 sqlite3 *db = pParse->db; /* The database connection */ 1841 int iDb; /* Database in which the table lives */ 1842 Index *pIdx; /* An implied index of the table */ 1843 1844 if( pEnd==0 && pSelect==0 ){ 1845 return; 1846 } 1847 assert( !db->mallocFailed ); 1848 p = pParse->pNewTable; 1849 if( p==0 ) return; 1850 1851 assert( !db->init.busy || !pSelect ); 1852 1853 /* If the db->init.busy is 1 it means we are reading the SQL off the 1854 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1855 ** So do not write to the disk again. Extract the root page number 1856 ** for the table from the db->init.newTnum field. (The page number 1857 ** should have been put there by the sqliteOpenCb routine.) 1858 ** 1859 ** If the root page number is 1, that means this is the sqlite_master 1860 ** table itself. So mark it read-only. 1861 */ 1862 if( db->init.busy ){ 1863 p->tnum = db->init.newTnum; 1864 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1865 } 1866 1867 /* Special processing for WITHOUT ROWID Tables */ 1868 if( tabOpts & TF_WithoutRowid ){ 1869 if( (p->tabFlags & TF_Autoincrement) ){ 1870 sqlite3ErrorMsg(pParse, 1871 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1872 return; 1873 } 1874 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1875 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1876 }else{ 1877 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1878 convertToWithoutRowidTable(pParse, p); 1879 } 1880 } 1881 1882 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1883 1884 #ifndef SQLITE_OMIT_CHECK 1885 /* Resolve names in all CHECK constraint expressions. 1886 */ 1887 if( p->pCheck ){ 1888 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1889 } 1890 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1891 1892 /* Estimate the average row size for the table and for all implied indices */ 1893 estimateTableWidth(p); 1894 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1895 estimateIndexWidth(pIdx); 1896 } 1897 1898 /* If not initializing, then create a record for the new table 1899 ** in the SQLITE_MASTER table of the database. 1900 ** 1901 ** If this is a TEMPORARY table, write the entry into the auxiliary 1902 ** file instead of into the main database file. 1903 */ 1904 if( !db->init.busy ){ 1905 int n; 1906 Vdbe *v; 1907 char *zType; /* "view" or "table" */ 1908 char *zType2; /* "VIEW" or "TABLE" */ 1909 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1910 1911 v = sqlite3GetVdbe(pParse); 1912 if( NEVER(v==0) ) return; 1913 1914 sqlite3VdbeAddOp1(v, OP_Close, 0); 1915 1916 /* 1917 ** Initialize zType for the new view or table. 1918 */ 1919 if( p->pSelect==0 ){ 1920 /* A regular table */ 1921 zType = "table"; 1922 zType2 = "TABLE"; 1923 #ifndef SQLITE_OMIT_VIEW 1924 }else{ 1925 /* A view */ 1926 zType = "view"; 1927 zType2 = "VIEW"; 1928 #endif 1929 } 1930 1931 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1932 ** statement to populate the new table. The root-page number for the 1933 ** new table is in register pParse->regRoot. 1934 ** 1935 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1936 ** suitable state to query for the column names and types to be used 1937 ** by the new table. 1938 ** 1939 ** A shared-cache write-lock is not required to write to the new table, 1940 ** as a schema-lock must have already been obtained to create it. Since 1941 ** a schema-lock excludes all other database users, the write-lock would 1942 ** be redundant. 1943 */ 1944 if( pSelect ){ 1945 SelectDest dest; /* Where the SELECT should store results */ 1946 int regYield; /* Register holding co-routine entry-point */ 1947 int addrTop; /* Top of the co-routine */ 1948 int regRec; /* A record to be insert into the new table */ 1949 int regRowid; /* Rowid of the next row to insert */ 1950 int addrInsLoop; /* Top of the loop for inserting rows */ 1951 Table *pSelTab; /* A table that describes the SELECT results */ 1952 1953 regYield = ++pParse->nMem; 1954 regRec = ++pParse->nMem; 1955 regRowid = ++pParse->nMem; 1956 assert(pParse->nTab==1); 1957 sqlite3MayAbort(pParse); 1958 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1959 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1960 pParse->nTab = 2; 1961 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1962 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1963 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1964 sqlite3Select(pParse, pSelect, &dest); 1965 sqlite3VdbeEndCoroutine(v, regYield); 1966 sqlite3VdbeJumpHere(v, addrTop - 1); 1967 if( pParse->nErr ) return; 1968 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1969 if( pSelTab==0 ) return; 1970 assert( p->aCol==0 ); 1971 p->nCol = pSelTab->nCol; 1972 p->aCol = pSelTab->aCol; 1973 pSelTab->nCol = 0; 1974 pSelTab->aCol = 0; 1975 sqlite3DeleteTable(db, pSelTab); 1976 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1977 VdbeCoverage(v); 1978 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1979 sqlite3TableAffinity(v, p, 0); 1980 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1981 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1982 sqlite3VdbeGoto(v, addrInsLoop); 1983 sqlite3VdbeJumpHere(v, addrInsLoop); 1984 sqlite3VdbeAddOp1(v, OP_Close, 1); 1985 } 1986 1987 /* Compute the complete text of the CREATE statement */ 1988 if( pSelect ){ 1989 zStmt = createTableStmt(db, p); 1990 }else{ 1991 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1992 n = (int)(pEnd2->z - pParse->sNameToken.z); 1993 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1994 zStmt = sqlite3MPrintf(db, 1995 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1996 ); 1997 } 1998 1999 /* A slot for the record has already been allocated in the 2000 ** SQLITE_MASTER table. We just need to update that slot with all 2001 ** the information we've collected. 2002 */ 2003 sqlite3NestedParse(pParse, 2004 "UPDATE %Q.%s " 2005 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2006 "WHERE rowid=#%d", 2007 db->aDb[iDb].zDbSName, MASTER_NAME, 2008 zType, 2009 p->zName, 2010 p->zName, 2011 pParse->regRoot, 2012 zStmt, 2013 pParse->regRowid 2014 ); 2015 sqlite3DbFree(db, zStmt); 2016 sqlite3ChangeCookie(pParse, iDb); 2017 2018 #ifndef SQLITE_OMIT_AUTOINCREMENT 2019 /* Check to see if we need to create an sqlite_sequence table for 2020 ** keeping track of autoincrement keys. 2021 */ 2022 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2023 Db *pDb = &db->aDb[iDb]; 2024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2025 if( pDb->pSchema->pSeqTab==0 ){ 2026 sqlite3NestedParse(pParse, 2027 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2028 pDb->zDbSName 2029 ); 2030 } 2031 } 2032 #endif 2033 2034 /* Reparse everything to update our internal data structures */ 2035 sqlite3VdbeAddParseSchemaOp(v, iDb, 2036 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2037 } 2038 2039 2040 /* Add the table to the in-memory representation of the database. 2041 */ 2042 if( db->init.busy ){ 2043 Table *pOld; 2044 Schema *pSchema = p->pSchema; 2045 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2046 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2047 if( pOld ){ 2048 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2049 sqlite3OomFault(db); 2050 return; 2051 } 2052 pParse->pNewTable = 0; 2053 db->flags |= SQLITE_InternChanges; 2054 2055 #ifndef SQLITE_OMIT_ALTERTABLE 2056 if( !p->pSelect ){ 2057 const char *zName = (const char *)pParse->sNameToken.z; 2058 int nName; 2059 assert( !pSelect && pCons && pEnd ); 2060 if( pCons->z==0 ){ 2061 pCons = pEnd; 2062 } 2063 nName = (int)((const char *)pCons->z - zName); 2064 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2065 } 2066 #endif 2067 } 2068 } 2069 2070 #ifndef SQLITE_OMIT_VIEW 2071 /* 2072 ** The parser calls this routine in order to create a new VIEW 2073 */ 2074 void sqlite3CreateView( 2075 Parse *pParse, /* The parsing context */ 2076 Token *pBegin, /* The CREATE token that begins the statement */ 2077 Token *pName1, /* The token that holds the name of the view */ 2078 Token *pName2, /* The token that holds the name of the view */ 2079 ExprList *pCNames, /* Optional list of view column names */ 2080 Select *pSelect, /* A SELECT statement that will become the new view */ 2081 int isTemp, /* TRUE for a TEMPORARY view */ 2082 int noErr /* Suppress error messages if VIEW already exists */ 2083 ){ 2084 Table *p; 2085 int n; 2086 const char *z; 2087 Token sEnd; 2088 DbFixer sFix; 2089 Token *pName = 0; 2090 int iDb; 2091 sqlite3 *db = pParse->db; 2092 2093 if( pParse->nVar>0 ){ 2094 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2095 goto create_view_fail; 2096 } 2097 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2098 p = pParse->pNewTable; 2099 if( p==0 || pParse->nErr ) goto create_view_fail; 2100 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2101 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2102 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2103 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2104 2105 /* Make a copy of the entire SELECT statement that defines the view. 2106 ** This will force all the Expr.token.z values to be dynamically 2107 ** allocated rather than point to the input string - which means that 2108 ** they will persist after the current sqlite3_exec() call returns. 2109 */ 2110 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2111 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2112 if( db->mallocFailed ) goto create_view_fail; 2113 2114 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2115 ** the end. 2116 */ 2117 sEnd = pParse->sLastToken; 2118 assert( sEnd.z[0]!=0 ); 2119 if( sEnd.z[0]!=';' ){ 2120 sEnd.z += sEnd.n; 2121 } 2122 sEnd.n = 0; 2123 n = (int)(sEnd.z - pBegin->z); 2124 assert( n>0 ); 2125 z = pBegin->z; 2126 while( sqlite3Isspace(z[n-1]) ){ n--; } 2127 sEnd.z = &z[n-1]; 2128 sEnd.n = 1; 2129 2130 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2131 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2132 2133 create_view_fail: 2134 sqlite3SelectDelete(db, pSelect); 2135 sqlite3ExprListDelete(db, pCNames); 2136 return; 2137 } 2138 #endif /* SQLITE_OMIT_VIEW */ 2139 2140 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2141 /* 2142 ** The Table structure pTable is really a VIEW. Fill in the names of 2143 ** the columns of the view in the pTable structure. Return the number 2144 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2145 */ 2146 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2147 Table *pSelTab; /* A fake table from which we get the result set */ 2148 Select *pSel; /* Copy of the SELECT that implements the view */ 2149 int nErr = 0; /* Number of errors encountered */ 2150 int n; /* Temporarily holds the number of cursors assigned */ 2151 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2152 #ifndef SQLITE_OMIT_AUTHORIZATION 2153 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2154 #endif 2155 2156 assert( pTable ); 2157 2158 #ifndef SQLITE_OMIT_VIRTUALTABLE 2159 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2160 return SQLITE_ERROR; 2161 } 2162 if( IsVirtual(pTable) ) return 0; 2163 #endif 2164 2165 #ifndef SQLITE_OMIT_VIEW 2166 /* A positive nCol means the columns names for this view are 2167 ** already known. 2168 */ 2169 if( pTable->nCol>0 ) return 0; 2170 2171 /* A negative nCol is a special marker meaning that we are currently 2172 ** trying to compute the column names. If we enter this routine with 2173 ** a negative nCol, it means two or more views form a loop, like this: 2174 ** 2175 ** CREATE VIEW one AS SELECT * FROM two; 2176 ** CREATE VIEW two AS SELECT * FROM one; 2177 ** 2178 ** Actually, the error above is now caught prior to reaching this point. 2179 ** But the following test is still important as it does come up 2180 ** in the following: 2181 ** 2182 ** CREATE TABLE main.ex1(a); 2183 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2184 ** SELECT * FROM temp.ex1; 2185 */ 2186 if( pTable->nCol<0 ){ 2187 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2188 return 1; 2189 } 2190 assert( pTable->nCol>=0 ); 2191 2192 /* If we get this far, it means we need to compute the table names. 2193 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2194 ** "*" elements in the results set of the view and will assign cursors 2195 ** to the elements of the FROM clause. But we do not want these changes 2196 ** to be permanent. So the computation is done on a copy of the SELECT 2197 ** statement that defines the view. 2198 */ 2199 assert( pTable->pSelect ); 2200 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2201 if( pSel ){ 2202 n = pParse->nTab; 2203 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2204 pTable->nCol = -1; 2205 db->lookaside.bDisable++; 2206 #ifndef SQLITE_OMIT_AUTHORIZATION 2207 xAuth = db->xAuth; 2208 db->xAuth = 0; 2209 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2210 db->xAuth = xAuth; 2211 #else 2212 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2213 #endif 2214 pParse->nTab = n; 2215 if( pTable->pCheck ){ 2216 /* CREATE VIEW name(arglist) AS ... 2217 ** The names of the columns in the table are taken from 2218 ** arglist which is stored in pTable->pCheck. The pCheck field 2219 ** normally holds CHECK constraints on an ordinary table, but for 2220 ** a VIEW it holds the list of column names. 2221 */ 2222 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2223 &pTable->nCol, &pTable->aCol); 2224 if( db->mallocFailed==0 2225 && pParse->nErr==0 2226 && pTable->nCol==pSel->pEList->nExpr 2227 ){ 2228 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2229 } 2230 }else if( pSelTab ){ 2231 /* CREATE VIEW name AS... without an argument list. Construct 2232 ** the column names from the SELECT statement that defines the view. 2233 */ 2234 assert( pTable->aCol==0 ); 2235 pTable->nCol = pSelTab->nCol; 2236 pTable->aCol = pSelTab->aCol; 2237 pSelTab->nCol = 0; 2238 pSelTab->aCol = 0; 2239 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2240 }else{ 2241 pTable->nCol = 0; 2242 nErr++; 2243 } 2244 sqlite3DeleteTable(db, pSelTab); 2245 sqlite3SelectDelete(db, pSel); 2246 db->lookaside.bDisable--; 2247 } else { 2248 nErr++; 2249 } 2250 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2251 #endif /* SQLITE_OMIT_VIEW */ 2252 return nErr; 2253 } 2254 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2255 2256 #ifndef SQLITE_OMIT_VIEW 2257 /* 2258 ** Clear the column names from every VIEW in database idx. 2259 */ 2260 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2261 HashElem *i; 2262 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2263 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2264 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2265 Table *pTab = sqliteHashData(i); 2266 if( pTab->pSelect ){ 2267 sqlite3DeleteColumnNames(db, pTab); 2268 pTab->aCol = 0; 2269 pTab->nCol = 0; 2270 } 2271 } 2272 DbClearProperty(db, idx, DB_UnresetViews); 2273 } 2274 #else 2275 # define sqliteViewResetAll(A,B) 2276 #endif /* SQLITE_OMIT_VIEW */ 2277 2278 /* 2279 ** This function is called by the VDBE to adjust the internal schema 2280 ** used by SQLite when the btree layer moves a table root page. The 2281 ** root-page of a table or index in database iDb has changed from iFrom 2282 ** to iTo. 2283 ** 2284 ** Ticket #1728: The symbol table might still contain information 2285 ** on tables and/or indices that are the process of being deleted. 2286 ** If you are unlucky, one of those deleted indices or tables might 2287 ** have the same rootpage number as the real table or index that is 2288 ** being moved. So we cannot stop searching after the first match 2289 ** because the first match might be for one of the deleted indices 2290 ** or tables and not the table/index that is actually being moved. 2291 ** We must continue looping until all tables and indices with 2292 ** rootpage==iFrom have been converted to have a rootpage of iTo 2293 ** in order to be certain that we got the right one. 2294 */ 2295 #ifndef SQLITE_OMIT_AUTOVACUUM 2296 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2297 HashElem *pElem; 2298 Hash *pHash; 2299 Db *pDb; 2300 2301 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2302 pDb = &db->aDb[iDb]; 2303 pHash = &pDb->pSchema->tblHash; 2304 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2305 Table *pTab = sqliteHashData(pElem); 2306 if( pTab->tnum==iFrom ){ 2307 pTab->tnum = iTo; 2308 } 2309 } 2310 pHash = &pDb->pSchema->idxHash; 2311 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2312 Index *pIdx = sqliteHashData(pElem); 2313 if( pIdx->tnum==iFrom ){ 2314 pIdx->tnum = iTo; 2315 } 2316 } 2317 } 2318 #endif 2319 2320 /* 2321 ** Write code to erase the table with root-page iTable from database iDb. 2322 ** Also write code to modify the sqlite_master table and internal schema 2323 ** if a root-page of another table is moved by the btree-layer whilst 2324 ** erasing iTable (this can happen with an auto-vacuum database). 2325 */ 2326 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2327 Vdbe *v = sqlite3GetVdbe(pParse); 2328 int r1 = sqlite3GetTempReg(pParse); 2329 assert( iTable>1 ); 2330 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2331 sqlite3MayAbort(pParse); 2332 #ifndef SQLITE_OMIT_AUTOVACUUM 2333 /* OP_Destroy stores an in integer r1. If this integer 2334 ** is non-zero, then it is the root page number of a table moved to 2335 ** location iTable. The following code modifies the sqlite_master table to 2336 ** reflect this. 2337 ** 2338 ** The "#NNN" in the SQL is a special constant that means whatever value 2339 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2340 ** token for additional information. 2341 */ 2342 sqlite3NestedParse(pParse, 2343 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2344 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2345 #endif 2346 sqlite3ReleaseTempReg(pParse, r1); 2347 } 2348 2349 /* 2350 ** Write VDBE code to erase table pTab and all associated indices on disk. 2351 ** Code to update the sqlite_master tables and internal schema definitions 2352 ** in case a root-page belonging to another table is moved by the btree layer 2353 ** is also added (this can happen with an auto-vacuum database). 2354 */ 2355 static void destroyTable(Parse *pParse, Table *pTab){ 2356 #ifdef SQLITE_OMIT_AUTOVACUUM 2357 Index *pIdx; 2358 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2359 destroyRootPage(pParse, pTab->tnum, iDb); 2360 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2361 destroyRootPage(pParse, pIdx->tnum, iDb); 2362 } 2363 #else 2364 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2365 ** is not defined), then it is important to call OP_Destroy on the 2366 ** table and index root-pages in order, starting with the numerically 2367 ** largest root-page number. This guarantees that none of the root-pages 2368 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2369 ** following were coded: 2370 ** 2371 ** OP_Destroy 4 0 2372 ** ... 2373 ** OP_Destroy 5 0 2374 ** 2375 ** and root page 5 happened to be the largest root-page number in the 2376 ** database, then root page 5 would be moved to page 4 by the 2377 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2378 ** a free-list page. 2379 */ 2380 int iTab = pTab->tnum; 2381 int iDestroyed = 0; 2382 2383 while( 1 ){ 2384 Index *pIdx; 2385 int iLargest = 0; 2386 2387 if( iDestroyed==0 || iTab<iDestroyed ){ 2388 iLargest = iTab; 2389 } 2390 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2391 int iIdx = pIdx->tnum; 2392 assert( pIdx->pSchema==pTab->pSchema ); 2393 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2394 iLargest = iIdx; 2395 } 2396 } 2397 if( iLargest==0 ){ 2398 return; 2399 }else{ 2400 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2401 assert( iDb>=0 && iDb<pParse->db->nDb ); 2402 destroyRootPage(pParse, iLargest, iDb); 2403 iDestroyed = iLargest; 2404 } 2405 } 2406 #endif 2407 } 2408 2409 /* 2410 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2411 ** after a DROP INDEX or DROP TABLE command. 2412 */ 2413 static void sqlite3ClearStatTables( 2414 Parse *pParse, /* The parsing context */ 2415 int iDb, /* The database number */ 2416 const char *zType, /* "idx" or "tbl" */ 2417 const char *zName /* Name of index or table */ 2418 ){ 2419 int i; 2420 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2421 for(i=1; i<=4; i++){ 2422 char zTab[24]; 2423 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2424 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2425 sqlite3NestedParse(pParse, 2426 "DELETE FROM %Q.%s WHERE %s=%Q", 2427 zDbName, zTab, zType, zName 2428 ); 2429 } 2430 } 2431 } 2432 2433 /* 2434 ** Generate code to drop a table. 2435 */ 2436 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2437 Vdbe *v; 2438 sqlite3 *db = pParse->db; 2439 Trigger *pTrigger; 2440 Db *pDb = &db->aDb[iDb]; 2441 2442 v = sqlite3GetVdbe(pParse); 2443 assert( v!=0 ); 2444 sqlite3BeginWriteOperation(pParse, 1, iDb); 2445 2446 #ifndef SQLITE_OMIT_VIRTUALTABLE 2447 if( IsVirtual(pTab) ){ 2448 sqlite3VdbeAddOp0(v, OP_VBegin); 2449 } 2450 #endif 2451 2452 /* Drop all triggers associated with the table being dropped. Code 2453 ** is generated to remove entries from sqlite_master and/or 2454 ** sqlite_temp_master if required. 2455 */ 2456 pTrigger = sqlite3TriggerList(pParse, pTab); 2457 while( pTrigger ){ 2458 assert( pTrigger->pSchema==pTab->pSchema || 2459 pTrigger->pSchema==db->aDb[1].pSchema ); 2460 sqlite3DropTriggerPtr(pParse, pTrigger); 2461 pTrigger = pTrigger->pNext; 2462 } 2463 2464 #ifndef SQLITE_OMIT_AUTOINCREMENT 2465 /* Remove any entries of the sqlite_sequence table associated with 2466 ** the table being dropped. This is done before the table is dropped 2467 ** at the btree level, in case the sqlite_sequence table needs to 2468 ** move as a result of the drop (can happen in auto-vacuum mode). 2469 */ 2470 if( pTab->tabFlags & TF_Autoincrement ){ 2471 sqlite3NestedParse(pParse, 2472 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2473 pDb->zDbSName, pTab->zName 2474 ); 2475 } 2476 #endif 2477 2478 /* Drop all SQLITE_MASTER table and index entries that refer to the 2479 ** table. The program name loops through the master table and deletes 2480 ** every row that refers to a table of the same name as the one being 2481 ** dropped. Triggers are handled separately because a trigger can be 2482 ** created in the temp database that refers to a table in another 2483 ** database. 2484 */ 2485 sqlite3NestedParse(pParse, 2486 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2487 pDb->zDbSName, MASTER_NAME, pTab->zName); 2488 if( !isView && !IsVirtual(pTab) ){ 2489 destroyTable(pParse, pTab); 2490 } 2491 2492 /* Remove the table entry from SQLite's internal schema and modify 2493 ** the schema cookie. 2494 */ 2495 if( IsVirtual(pTab) ){ 2496 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2497 } 2498 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2499 sqlite3ChangeCookie(pParse, iDb); 2500 sqliteViewResetAll(db, iDb); 2501 } 2502 2503 /* 2504 ** This routine is called to do the work of a DROP TABLE statement. 2505 ** pName is the name of the table to be dropped. 2506 */ 2507 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2508 Table *pTab; 2509 Vdbe *v; 2510 sqlite3 *db = pParse->db; 2511 int iDb; 2512 2513 if( db->mallocFailed ){ 2514 goto exit_drop_table; 2515 } 2516 assert( pParse->nErr==0 ); 2517 assert( pName->nSrc==1 ); 2518 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2519 if( noErr ) db->suppressErr++; 2520 assert( isView==0 || isView==LOCATE_VIEW ); 2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2522 if( noErr ) db->suppressErr--; 2523 2524 if( pTab==0 ){ 2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2526 goto exit_drop_table; 2527 } 2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2529 assert( iDb>=0 && iDb<db->nDb ); 2530 2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2532 ** it is initialized. 2533 */ 2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2535 goto exit_drop_table; 2536 } 2537 #ifndef SQLITE_OMIT_AUTHORIZATION 2538 { 2539 int code; 2540 const char *zTab = SCHEMA_TABLE(iDb); 2541 const char *zDb = db->aDb[iDb].zDbSName; 2542 const char *zArg2 = 0; 2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2544 goto exit_drop_table; 2545 } 2546 if( isView ){ 2547 if( !OMIT_TEMPDB && iDb==1 ){ 2548 code = SQLITE_DROP_TEMP_VIEW; 2549 }else{ 2550 code = SQLITE_DROP_VIEW; 2551 } 2552 #ifndef SQLITE_OMIT_VIRTUALTABLE 2553 }else if( IsVirtual(pTab) ){ 2554 code = SQLITE_DROP_VTABLE; 2555 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2556 #endif 2557 }else{ 2558 if( !OMIT_TEMPDB && iDb==1 ){ 2559 code = SQLITE_DROP_TEMP_TABLE; 2560 }else{ 2561 code = SQLITE_DROP_TABLE; 2562 } 2563 } 2564 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2565 goto exit_drop_table; 2566 } 2567 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2568 goto exit_drop_table; 2569 } 2570 } 2571 #endif 2572 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2573 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2574 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2575 goto exit_drop_table; 2576 } 2577 2578 #ifndef SQLITE_OMIT_VIEW 2579 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2580 ** on a table. 2581 */ 2582 if( isView && pTab->pSelect==0 ){ 2583 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2584 goto exit_drop_table; 2585 } 2586 if( !isView && pTab->pSelect ){ 2587 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2588 goto exit_drop_table; 2589 } 2590 #endif 2591 2592 /* Generate code to remove the table from the master table 2593 ** on disk. 2594 */ 2595 v = sqlite3GetVdbe(pParse); 2596 if( v ){ 2597 sqlite3BeginWriteOperation(pParse, 1, iDb); 2598 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2599 sqlite3FkDropTable(pParse, pName, pTab); 2600 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2601 } 2602 2603 exit_drop_table: 2604 sqlite3SrcListDelete(db, pName); 2605 } 2606 2607 /* 2608 ** This routine is called to create a new foreign key on the table 2609 ** currently under construction. pFromCol determines which columns 2610 ** in the current table point to the foreign key. If pFromCol==0 then 2611 ** connect the key to the last column inserted. pTo is the name of 2612 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2613 ** of tables in the parent pTo table. flags contains all 2614 ** information about the conflict resolution algorithms specified 2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2616 ** 2617 ** An FKey structure is created and added to the table currently 2618 ** under construction in the pParse->pNewTable field. 2619 ** 2620 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2622 */ 2623 void sqlite3CreateForeignKey( 2624 Parse *pParse, /* Parsing context */ 2625 ExprList *pFromCol, /* Columns in this table that point to other table */ 2626 Token *pTo, /* Name of the other table */ 2627 ExprList *pToCol, /* Columns in the other table */ 2628 int flags /* Conflict resolution algorithms. */ 2629 ){ 2630 sqlite3 *db = pParse->db; 2631 #ifndef SQLITE_OMIT_FOREIGN_KEY 2632 FKey *pFKey = 0; 2633 FKey *pNextTo; 2634 Table *p = pParse->pNewTable; 2635 int nByte; 2636 int i; 2637 int nCol; 2638 char *z; 2639 2640 assert( pTo!=0 ); 2641 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2642 if( pFromCol==0 ){ 2643 int iCol = p->nCol-1; 2644 if( NEVER(iCol<0) ) goto fk_end; 2645 if( pToCol && pToCol->nExpr!=1 ){ 2646 sqlite3ErrorMsg(pParse, "foreign key on %s" 2647 " should reference only one column of table %T", 2648 p->aCol[iCol].zName, pTo); 2649 goto fk_end; 2650 } 2651 nCol = 1; 2652 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2653 sqlite3ErrorMsg(pParse, 2654 "number of columns in foreign key does not match the number of " 2655 "columns in the referenced table"); 2656 goto fk_end; 2657 }else{ 2658 nCol = pFromCol->nExpr; 2659 } 2660 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2661 if( pToCol ){ 2662 for(i=0; i<pToCol->nExpr; i++){ 2663 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2664 } 2665 } 2666 pFKey = sqlite3DbMallocZero(db, nByte ); 2667 if( pFKey==0 ){ 2668 goto fk_end; 2669 } 2670 pFKey->pFrom = p; 2671 pFKey->pNextFrom = p->pFKey; 2672 z = (char*)&pFKey->aCol[nCol]; 2673 pFKey->zTo = z; 2674 memcpy(z, pTo->z, pTo->n); 2675 z[pTo->n] = 0; 2676 sqlite3Dequote(z); 2677 z += pTo->n+1; 2678 pFKey->nCol = nCol; 2679 if( pFromCol==0 ){ 2680 pFKey->aCol[0].iFrom = p->nCol-1; 2681 }else{ 2682 for(i=0; i<nCol; i++){ 2683 int j; 2684 for(j=0; j<p->nCol; j++){ 2685 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2686 pFKey->aCol[i].iFrom = j; 2687 break; 2688 } 2689 } 2690 if( j>=p->nCol ){ 2691 sqlite3ErrorMsg(pParse, 2692 "unknown column \"%s\" in foreign key definition", 2693 pFromCol->a[i].zName); 2694 goto fk_end; 2695 } 2696 } 2697 } 2698 if( pToCol ){ 2699 for(i=0; i<nCol; i++){ 2700 int n = sqlite3Strlen30(pToCol->a[i].zName); 2701 pFKey->aCol[i].zCol = z; 2702 memcpy(z, pToCol->a[i].zName, n); 2703 z[n] = 0; 2704 z += n+1; 2705 } 2706 } 2707 pFKey->isDeferred = 0; 2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2710 2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2713 pFKey->zTo, (void *)pFKey 2714 ); 2715 if( pNextTo==pFKey ){ 2716 sqlite3OomFault(db); 2717 goto fk_end; 2718 } 2719 if( pNextTo ){ 2720 assert( pNextTo->pPrevTo==0 ); 2721 pFKey->pNextTo = pNextTo; 2722 pNextTo->pPrevTo = pFKey; 2723 } 2724 2725 /* Link the foreign key to the table as the last step. 2726 */ 2727 p->pFKey = pFKey; 2728 pFKey = 0; 2729 2730 fk_end: 2731 sqlite3DbFree(db, pFKey); 2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2733 sqlite3ExprListDelete(db, pFromCol); 2734 sqlite3ExprListDelete(db, pToCol); 2735 } 2736 2737 /* 2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2739 ** clause is seen as part of a foreign key definition. The isDeferred 2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2741 ** The behavior of the most recently created foreign key is adjusted 2742 ** accordingly. 2743 */ 2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2745 #ifndef SQLITE_OMIT_FOREIGN_KEY 2746 Table *pTab; 2747 FKey *pFKey; 2748 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2749 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2750 pFKey->isDeferred = (u8)isDeferred; 2751 #endif 2752 } 2753 2754 /* 2755 ** Generate code that will erase and refill index *pIdx. This is 2756 ** used to initialize a newly created index or to recompute the 2757 ** content of an index in response to a REINDEX command. 2758 ** 2759 ** if memRootPage is not negative, it means that the index is newly 2760 ** created. The register specified by memRootPage contains the 2761 ** root page number of the index. If memRootPage is negative, then 2762 ** the index already exists and must be cleared before being refilled and 2763 ** the root page number of the index is taken from pIndex->tnum. 2764 */ 2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2766 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2767 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2768 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2769 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2770 int addr1; /* Address of top of loop */ 2771 int addr2; /* Address to jump to for next iteration */ 2772 int tnum; /* Root page of index */ 2773 int iPartIdxLabel; /* Jump to this label to skip a row */ 2774 Vdbe *v; /* Generate code into this virtual machine */ 2775 KeyInfo *pKey; /* KeyInfo for index */ 2776 int regRecord; /* Register holding assembled index record */ 2777 sqlite3 *db = pParse->db; /* The database connection */ 2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2779 2780 #ifndef SQLITE_OMIT_AUTHORIZATION 2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2782 db->aDb[iDb].zDbSName ) ){ 2783 return; 2784 } 2785 #endif 2786 2787 /* Require a write-lock on the table to perform this operation */ 2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2789 2790 v = sqlite3GetVdbe(pParse); 2791 if( v==0 ) return; 2792 if( memRootPage>=0 ){ 2793 tnum = memRootPage; 2794 }else{ 2795 tnum = pIndex->tnum; 2796 } 2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2798 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2799 2800 /* Open the sorter cursor if we are to use one. */ 2801 iSorter = pParse->nTab++; 2802 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2803 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2804 2805 /* Open the table. Loop through all rows of the table, inserting index 2806 ** records into the sorter. */ 2807 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2808 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2809 regRecord = sqlite3GetTempReg(pParse); 2810 2811 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2812 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2813 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2814 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2815 sqlite3VdbeJumpHere(v, addr1); 2816 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2817 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2818 (char *)pKey, P4_KEYINFO); 2819 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2820 2821 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2822 if( IsUniqueIndex(pIndex) ){ 2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2824 sqlite3VdbeGoto(v, j2); 2825 addr2 = sqlite3VdbeCurrentAddr(v); 2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2827 pIndex->nKeyCol); VdbeCoverage(v); 2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2829 }else{ 2830 addr2 = sqlite3VdbeCurrentAddr(v); 2831 } 2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2834 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2836 sqlite3ReleaseTempReg(pParse, regRecord); 2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2838 sqlite3VdbeJumpHere(v, addr1); 2839 2840 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2843 } 2844 2845 /* 2846 ** Allocate heap space to hold an Index object with nCol columns. 2847 ** 2848 ** Increase the allocation size to provide an extra nExtra bytes 2849 ** of 8-byte aligned space after the Index object and return a 2850 ** pointer to this extra space in *ppExtra. 2851 */ 2852 Index *sqlite3AllocateIndexObject( 2853 sqlite3 *db, /* Database connection */ 2854 i16 nCol, /* Total number of columns in the index */ 2855 int nExtra, /* Number of bytes of extra space to alloc */ 2856 char **ppExtra /* Pointer to the "extra" space */ 2857 ){ 2858 Index *p; /* Allocated index object */ 2859 int nByte; /* Bytes of space for Index object + arrays */ 2860 2861 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2862 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2863 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2864 sizeof(i16)*nCol + /* Index.aiColumn */ 2865 sizeof(u8)*nCol); /* Index.aSortOrder */ 2866 p = sqlite3DbMallocZero(db, nByte + nExtra); 2867 if( p ){ 2868 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2869 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2870 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2871 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2872 p->aSortOrder = (u8*)pExtra; 2873 p->nColumn = nCol; 2874 p->nKeyCol = nCol - 1; 2875 *ppExtra = ((char*)p) + nByte; 2876 } 2877 return p; 2878 } 2879 2880 /* 2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2882 ** and pTblList is the name of the table that is to be indexed. Both will 2883 ** be NULL for a primary key or an index that is created to satisfy a 2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2885 ** as the table to be indexed. pParse->pNewTable is a table that is 2886 ** currently being constructed by a CREATE TABLE statement. 2887 ** 2888 ** pList is a list of columns to be indexed. pList will be NULL if this 2889 ** is a primary key or unique-constraint on the most recent column added 2890 ** to the table currently under construction. 2891 */ 2892 void sqlite3CreateIndex( 2893 Parse *pParse, /* All information about this parse */ 2894 Token *pName1, /* First part of index name. May be NULL */ 2895 Token *pName2, /* Second part of index name. May be NULL */ 2896 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2897 ExprList *pList, /* A list of columns to be indexed */ 2898 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2899 Token *pStart, /* The CREATE token that begins this statement */ 2900 Expr *pPIWhere, /* WHERE clause for partial indices */ 2901 int sortOrder, /* Sort order of primary key when pList==NULL */ 2902 int ifNotExist, /* Omit error if index already exists */ 2903 u8 idxType /* The index type */ 2904 ){ 2905 Table *pTab = 0; /* Table to be indexed */ 2906 Index *pIndex = 0; /* The index to be created */ 2907 char *zName = 0; /* Name of the index */ 2908 int nName; /* Number of characters in zName */ 2909 int i, j; 2910 DbFixer sFix; /* For assigning database names to pTable */ 2911 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2912 sqlite3 *db = pParse->db; 2913 Db *pDb; /* The specific table containing the indexed database */ 2914 int iDb; /* Index of the database that is being written */ 2915 Token *pName = 0; /* Unqualified name of the index to create */ 2916 struct ExprList_item *pListItem; /* For looping over pList */ 2917 int nExtra = 0; /* Space allocated for zExtra[] */ 2918 int nExtraCol; /* Number of extra columns needed */ 2919 char *zExtra = 0; /* Extra space after the Index object */ 2920 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2921 2922 if( db->mallocFailed || pParse->nErr>0 ){ 2923 goto exit_create_index; 2924 } 2925 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2926 goto exit_create_index; 2927 } 2928 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2929 goto exit_create_index; 2930 } 2931 2932 /* 2933 ** Find the table that is to be indexed. Return early if not found. 2934 */ 2935 if( pTblName!=0 ){ 2936 2937 /* Use the two-part index name to determine the database 2938 ** to search for the table. 'Fix' the table name to this db 2939 ** before looking up the table. 2940 */ 2941 assert( pName1 && pName2 ); 2942 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2943 if( iDb<0 ) goto exit_create_index; 2944 assert( pName && pName->z ); 2945 2946 #ifndef SQLITE_OMIT_TEMPDB 2947 /* If the index name was unqualified, check if the table 2948 ** is a temp table. If so, set the database to 1. Do not do this 2949 ** if initialising a database schema. 2950 */ 2951 if( !db->init.busy ){ 2952 pTab = sqlite3SrcListLookup(pParse, pTblName); 2953 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2954 iDb = 1; 2955 } 2956 } 2957 #endif 2958 2959 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2960 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2961 /* Because the parser constructs pTblName from a single identifier, 2962 ** sqlite3FixSrcList can never fail. */ 2963 assert(0); 2964 } 2965 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2966 assert( db->mallocFailed==0 || pTab==0 ); 2967 if( pTab==0 ) goto exit_create_index; 2968 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2969 sqlite3ErrorMsg(pParse, 2970 "cannot create a TEMP index on non-TEMP table \"%s\"", 2971 pTab->zName); 2972 goto exit_create_index; 2973 } 2974 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2975 }else{ 2976 assert( pName==0 ); 2977 assert( pStart==0 ); 2978 pTab = pParse->pNewTable; 2979 if( !pTab ) goto exit_create_index; 2980 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2981 } 2982 pDb = &db->aDb[iDb]; 2983 2984 assert( pTab!=0 ); 2985 assert( pParse->nErr==0 ); 2986 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2987 && db->init.busy==0 2988 #if SQLITE_USER_AUTHENTICATION 2989 && sqlite3UserAuthTable(pTab->zName)==0 2990 #endif 2991 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2992 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2993 goto exit_create_index; 2994 } 2995 #ifndef SQLITE_OMIT_VIEW 2996 if( pTab->pSelect ){ 2997 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2998 goto exit_create_index; 2999 } 3000 #endif 3001 #ifndef SQLITE_OMIT_VIRTUALTABLE 3002 if( IsVirtual(pTab) ){ 3003 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3004 goto exit_create_index; 3005 } 3006 #endif 3007 3008 /* 3009 ** Find the name of the index. Make sure there is not already another 3010 ** index or table with the same name. 3011 ** 3012 ** Exception: If we are reading the names of permanent indices from the 3013 ** sqlite_master table (because some other process changed the schema) and 3014 ** one of the index names collides with the name of a temporary table or 3015 ** index, then we will continue to process this index. 3016 ** 3017 ** If pName==0 it means that we are 3018 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3019 ** own name. 3020 */ 3021 if( pName ){ 3022 zName = sqlite3NameFromToken(db, pName); 3023 if( zName==0 ) goto exit_create_index; 3024 assert( pName->z!=0 ); 3025 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3026 goto exit_create_index; 3027 } 3028 if( !db->init.busy ){ 3029 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3030 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3031 goto exit_create_index; 3032 } 3033 } 3034 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3035 if( !ifNotExist ){ 3036 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3037 }else{ 3038 assert( !db->init.busy ); 3039 sqlite3CodeVerifySchema(pParse, iDb); 3040 } 3041 goto exit_create_index; 3042 } 3043 }else{ 3044 int n; 3045 Index *pLoop; 3046 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3047 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3048 if( zName==0 ){ 3049 goto exit_create_index; 3050 } 3051 3052 /* Automatic index names generated from within sqlite3_declare_vtab() 3053 ** must have names that are distinct from normal automatic index names. 3054 ** The following statement converts "sqlite3_autoindex..." into 3055 ** "sqlite3_butoindex..." in order to make the names distinct. 3056 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3057 if( IN_DECLARE_VTAB ) zName[7]++; 3058 } 3059 3060 /* Check for authorization to create an index. 3061 */ 3062 #ifndef SQLITE_OMIT_AUTHORIZATION 3063 { 3064 const char *zDb = pDb->zDbSName; 3065 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3066 goto exit_create_index; 3067 } 3068 i = SQLITE_CREATE_INDEX; 3069 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3070 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3071 goto exit_create_index; 3072 } 3073 } 3074 #endif 3075 3076 /* If pList==0, it means this routine was called to make a primary 3077 ** key out of the last column added to the table under construction. 3078 ** So create a fake list to simulate this. 3079 */ 3080 if( pList==0 ){ 3081 Token prevCol; 3082 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3083 pList = sqlite3ExprListAppend(pParse, 0, 3084 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3085 if( pList==0 ) goto exit_create_index; 3086 assert( pList->nExpr==1 ); 3087 sqlite3ExprListSetSortOrder(pList, sortOrder); 3088 }else{ 3089 sqlite3ExprListCheckLength(pParse, pList, "index"); 3090 } 3091 3092 /* Figure out how many bytes of space are required to store explicitly 3093 ** specified collation sequence names. 3094 */ 3095 for(i=0; i<pList->nExpr; i++){ 3096 Expr *pExpr = pList->a[i].pExpr; 3097 assert( pExpr!=0 ); 3098 if( pExpr->op==TK_COLLATE ){ 3099 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3100 } 3101 } 3102 3103 /* 3104 ** Allocate the index structure. 3105 */ 3106 nName = sqlite3Strlen30(zName); 3107 nExtraCol = pPk ? pPk->nKeyCol : 1; 3108 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3109 nName + nExtra + 1, &zExtra); 3110 if( db->mallocFailed ){ 3111 goto exit_create_index; 3112 } 3113 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3114 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3115 pIndex->zName = zExtra; 3116 zExtra += nName + 1; 3117 memcpy(pIndex->zName, zName, nName+1); 3118 pIndex->pTable = pTab; 3119 pIndex->onError = (u8)onError; 3120 pIndex->uniqNotNull = onError!=OE_None; 3121 pIndex->idxType = idxType; 3122 pIndex->pSchema = db->aDb[iDb].pSchema; 3123 pIndex->nKeyCol = pList->nExpr; 3124 if( pPIWhere ){ 3125 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3126 pIndex->pPartIdxWhere = pPIWhere; 3127 pPIWhere = 0; 3128 } 3129 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3130 3131 /* Check to see if we should honor DESC requests on index columns 3132 */ 3133 if( pDb->pSchema->file_format>=4 ){ 3134 sortOrderMask = -1; /* Honor DESC */ 3135 }else{ 3136 sortOrderMask = 0; /* Ignore DESC */ 3137 } 3138 3139 /* Analyze the list of expressions that form the terms of the index and 3140 ** report any errors. In the common case where the expression is exactly 3141 ** a table column, store that column in aiColumn[]. For general expressions, 3142 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3143 ** 3144 ** TODO: Issue a warning if two or more columns of the index are identical. 3145 ** TODO: Issue a warning if the table primary key is used as part of the 3146 ** index key. 3147 */ 3148 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3149 Expr *pCExpr; /* The i-th index expression */ 3150 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3151 const char *zColl; /* Collation sequence name */ 3152 3153 sqlite3StringToId(pListItem->pExpr); 3154 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3155 if( pParse->nErr ) goto exit_create_index; 3156 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3157 if( pCExpr->op!=TK_COLUMN ){ 3158 if( pTab==pParse->pNewTable ){ 3159 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3160 "UNIQUE constraints"); 3161 goto exit_create_index; 3162 } 3163 if( pIndex->aColExpr==0 ){ 3164 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3165 pIndex->aColExpr = pCopy; 3166 if( !db->mallocFailed ){ 3167 assert( pCopy!=0 ); 3168 pListItem = &pCopy->a[i]; 3169 } 3170 } 3171 j = XN_EXPR; 3172 pIndex->aiColumn[i] = XN_EXPR; 3173 pIndex->uniqNotNull = 0; 3174 }else{ 3175 j = pCExpr->iColumn; 3176 assert( j<=0x7fff ); 3177 if( j<0 ){ 3178 j = pTab->iPKey; 3179 }else if( pTab->aCol[j].notNull==0 ){ 3180 pIndex->uniqNotNull = 0; 3181 } 3182 pIndex->aiColumn[i] = (i16)j; 3183 } 3184 zColl = 0; 3185 if( pListItem->pExpr->op==TK_COLLATE ){ 3186 int nColl; 3187 zColl = pListItem->pExpr->u.zToken; 3188 nColl = sqlite3Strlen30(zColl) + 1; 3189 assert( nExtra>=nColl ); 3190 memcpy(zExtra, zColl, nColl); 3191 zColl = zExtra; 3192 zExtra += nColl; 3193 nExtra -= nColl; 3194 }else if( j>=0 ){ 3195 zColl = pTab->aCol[j].zColl; 3196 } 3197 if( !zColl ) zColl = sqlite3StrBINARY; 3198 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3199 goto exit_create_index; 3200 } 3201 pIndex->azColl[i] = zColl; 3202 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3203 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3204 } 3205 3206 /* Append the table key to the end of the index. For WITHOUT ROWID 3207 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3208 ** normal tables (when pPk==0) this will be the rowid. 3209 */ 3210 if( pPk ){ 3211 for(j=0; j<pPk->nKeyCol; j++){ 3212 int x = pPk->aiColumn[j]; 3213 assert( x>=0 ); 3214 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3215 pIndex->nColumn--; 3216 }else{ 3217 pIndex->aiColumn[i] = x; 3218 pIndex->azColl[i] = pPk->azColl[j]; 3219 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3220 i++; 3221 } 3222 } 3223 assert( i==pIndex->nColumn ); 3224 }else{ 3225 pIndex->aiColumn[i] = XN_ROWID; 3226 pIndex->azColl[i] = sqlite3StrBINARY; 3227 } 3228 sqlite3DefaultRowEst(pIndex); 3229 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3230 3231 /* If this index contains every column of its table, then mark 3232 ** it as a covering index */ 3233 assert( HasRowid(pTab) 3234 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3235 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3236 pIndex->isCovering = 1; 3237 for(j=0; j<pTab->nCol; j++){ 3238 if( j==pTab->iPKey ) continue; 3239 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3240 pIndex->isCovering = 0; 3241 break; 3242 } 3243 } 3244 3245 if( pTab==pParse->pNewTable ){ 3246 /* This routine has been called to create an automatic index as a 3247 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3248 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3249 ** i.e. one of: 3250 ** 3251 ** CREATE TABLE t(x PRIMARY KEY, y); 3252 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3253 ** 3254 ** Either way, check to see if the table already has such an index. If 3255 ** so, don't bother creating this one. This only applies to 3256 ** automatically created indices. Users can do as they wish with 3257 ** explicit indices. 3258 ** 3259 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3260 ** (and thus suppressing the second one) even if they have different 3261 ** sort orders. 3262 ** 3263 ** If there are different collating sequences or if the columns of 3264 ** the constraint occur in different orders, then the constraints are 3265 ** considered distinct and both result in separate indices. 3266 */ 3267 Index *pIdx; 3268 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3269 int k; 3270 assert( IsUniqueIndex(pIdx) ); 3271 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3272 assert( IsUniqueIndex(pIndex) ); 3273 3274 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3275 for(k=0; k<pIdx->nKeyCol; k++){ 3276 const char *z1; 3277 const char *z2; 3278 assert( pIdx->aiColumn[k]>=0 ); 3279 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3280 z1 = pIdx->azColl[k]; 3281 z2 = pIndex->azColl[k]; 3282 if( sqlite3StrICmp(z1, z2) ) break; 3283 } 3284 if( k==pIdx->nKeyCol ){ 3285 if( pIdx->onError!=pIndex->onError ){ 3286 /* This constraint creates the same index as a previous 3287 ** constraint specified somewhere in the CREATE TABLE statement. 3288 ** However the ON CONFLICT clauses are different. If both this 3289 ** constraint and the previous equivalent constraint have explicit 3290 ** ON CONFLICT clauses this is an error. Otherwise, use the 3291 ** explicitly specified behavior for the index. 3292 */ 3293 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3294 sqlite3ErrorMsg(pParse, 3295 "conflicting ON CONFLICT clauses specified", 0); 3296 } 3297 if( pIdx->onError==OE_Default ){ 3298 pIdx->onError = pIndex->onError; 3299 } 3300 } 3301 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3302 goto exit_create_index; 3303 } 3304 } 3305 } 3306 3307 /* Link the new Index structure to its table and to the other 3308 ** in-memory database structures. 3309 */ 3310 assert( pParse->nErr==0 ); 3311 if( db->init.busy ){ 3312 Index *p; 3313 assert( !IN_DECLARE_VTAB ); 3314 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3315 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3316 pIndex->zName, pIndex); 3317 if( p ){ 3318 assert( p==pIndex ); /* Malloc must have failed */ 3319 sqlite3OomFault(db); 3320 goto exit_create_index; 3321 } 3322 db->flags |= SQLITE_InternChanges; 3323 if( pTblName!=0 ){ 3324 pIndex->tnum = db->init.newTnum; 3325 } 3326 } 3327 3328 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3329 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3330 ** emit code to allocate the index rootpage on disk and make an entry for 3331 ** the index in the sqlite_master table and populate the index with 3332 ** content. But, do not do this if we are simply reading the sqlite_master 3333 ** table to parse the schema, or if this index is the PRIMARY KEY index 3334 ** of a WITHOUT ROWID table. 3335 ** 3336 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3337 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3338 ** has just been created, it contains no data and the index initialization 3339 ** step can be skipped. 3340 */ 3341 else if( HasRowid(pTab) || pTblName!=0 ){ 3342 Vdbe *v; 3343 char *zStmt; 3344 int iMem = ++pParse->nMem; 3345 3346 v = sqlite3GetVdbe(pParse); 3347 if( v==0 ) goto exit_create_index; 3348 3349 sqlite3BeginWriteOperation(pParse, 1, iDb); 3350 3351 /* Create the rootpage for the index using CreateIndex. But before 3352 ** doing so, code a Noop instruction and store its address in 3353 ** Index.tnum. This is required in case this index is actually a 3354 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3355 ** that case the convertToWithoutRowidTable() routine will replace 3356 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3357 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3358 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3359 3360 /* Gather the complete text of the CREATE INDEX statement into 3361 ** the zStmt variable 3362 */ 3363 if( pStart ){ 3364 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3365 if( pName->z[n-1]==';' ) n--; 3366 /* A named index with an explicit CREATE INDEX statement */ 3367 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3368 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3369 }else{ 3370 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3371 /* zStmt = sqlite3MPrintf(""); */ 3372 zStmt = 0; 3373 } 3374 3375 /* Add an entry in sqlite_master for this index 3376 */ 3377 sqlite3NestedParse(pParse, 3378 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3379 db->aDb[iDb].zDbSName, MASTER_NAME, 3380 pIndex->zName, 3381 pTab->zName, 3382 iMem, 3383 zStmt 3384 ); 3385 sqlite3DbFree(db, zStmt); 3386 3387 /* Fill the index with data and reparse the schema. Code an OP_Expire 3388 ** to invalidate all pre-compiled statements. 3389 */ 3390 if( pTblName ){ 3391 sqlite3RefillIndex(pParse, pIndex, iMem); 3392 sqlite3ChangeCookie(pParse, iDb); 3393 sqlite3VdbeAddParseSchemaOp(v, iDb, 3394 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3395 sqlite3VdbeAddOp0(v, OP_Expire); 3396 } 3397 3398 sqlite3VdbeJumpHere(v, pIndex->tnum); 3399 } 3400 3401 /* When adding an index to the list of indices for a table, make 3402 ** sure all indices labeled OE_Replace come after all those labeled 3403 ** OE_Ignore. This is necessary for the correct constraint check 3404 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3405 ** UPDATE and INSERT statements. 3406 */ 3407 if( db->init.busy || pTblName==0 ){ 3408 if( onError!=OE_Replace || pTab->pIndex==0 3409 || pTab->pIndex->onError==OE_Replace){ 3410 pIndex->pNext = pTab->pIndex; 3411 pTab->pIndex = pIndex; 3412 }else{ 3413 Index *pOther = pTab->pIndex; 3414 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3415 pOther = pOther->pNext; 3416 } 3417 pIndex->pNext = pOther->pNext; 3418 pOther->pNext = pIndex; 3419 } 3420 pIndex = 0; 3421 } 3422 3423 /* Clean up before exiting */ 3424 exit_create_index: 3425 if( pIndex ) freeIndex(db, pIndex); 3426 sqlite3ExprDelete(db, pPIWhere); 3427 sqlite3ExprListDelete(db, pList); 3428 sqlite3SrcListDelete(db, pTblName); 3429 sqlite3DbFree(db, zName); 3430 } 3431 3432 /* 3433 ** Fill the Index.aiRowEst[] array with default information - information 3434 ** to be used when we have not run the ANALYZE command. 3435 ** 3436 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3437 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3438 ** number of rows in the table that match any particular value of the 3439 ** first column of the index. aiRowEst[2] is an estimate of the number 3440 ** of rows that match any particular combination of the first 2 columns 3441 ** of the index. And so forth. It must always be the case that 3442 * 3443 ** aiRowEst[N]<=aiRowEst[N-1] 3444 ** aiRowEst[N]>=1 3445 ** 3446 ** Apart from that, we have little to go on besides intuition as to 3447 ** how aiRowEst[] should be initialized. The numbers generated here 3448 ** are based on typical values found in actual indices. 3449 */ 3450 void sqlite3DefaultRowEst(Index *pIdx){ 3451 /* 10, 9, 8, 7, 6 */ 3452 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3453 LogEst *a = pIdx->aiRowLogEst; 3454 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3455 int i; 3456 3457 /* Set the first entry (number of rows in the index) to the estimated 3458 ** number of rows in the table, or half the number of rows in the table 3459 ** for a partial index. But do not let the estimate drop below 10. */ 3460 a[0] = pIdx->pTable->nRowLogEst; 3461 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3462 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3463 3464 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3465 ** 6 and each subsequent value (if any) is 5. */ 3466 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3467 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3468 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3469 } 3470 3471 assert( 0==sqlite3LogEst(1) ); 3472 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3473 } 3474 3475 /* 3476 ** This routine will drop an existing named index. This routine 3477 ** implements the DROP INDEX statement. 3478 */ 3479 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3480 Index *pIndex; 3481 Vdbe *v; 3482 sqlite3 *db = pParse->db; 3483 int iDb; 3484 3485 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3486 if( db->mallocFailed ){ 3487 goto exit_drop_index; 3488 } 3489 assert( pName->nSrc==1 ); 3490 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3491 goto exit_drop_index; 3492 } 3493 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3494 if( pIndex==0 ){ 3495 if( !ifExists ){ 3496 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3497 }else{ 3498 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3499 } 3500 pParse->checkSchema = 1; 3501 goto exit_drop_index; 3502 } 3503 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3504 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3505 "or PRIMARY KEY constraint cannot be dropped", 0); 3506 goto exit_drop_index; 3507 } 3508 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3509 #ifndef SQLITE_OMIT_AUTHORIZATION 3510 { 3511 int code = SQLITE_DROP_INDEX; 3512 Table *pTab = pIndex->pTable; 3513 const char *zDb = db->aDb[iDb].zDbSName; 3514 const char *zTab = SCHEMA_TABLE(iDb); 3515 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3516 goto exit_drop_index; 3517 } 3518 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3519 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3520 goto exit_drop_index; 3521 } 3522 } 3523 #endif 3524 3525 /* Generate code to remove the index and from the master table */ 3526 v = sqlite3GetVdbe(pParse); 3527 if( v ){ 3528 sqlite3BeginWriteOperation(pParse, 1, iDb); 3529 sqlite3NestedParse(pParse, 3530 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3531 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3532 ); 3533 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3534 sqlite3ChangeCookie(pParse, iDb); 3535 destroyRootPage(pParse, pIndex->tnum, iDb); 3536 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3537 } 3538 3539 exit_drop_index: 3540 sqlite3SrcListDelete(db, pName); 3541 } 3542 3543 /* 3544 ** pArray is a pointer to an array of objects. Each object in the 3545 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3546 ** to extend the array so that there is space for a new object at the end. 3547 ** 3548 ** When this function is called, *pnEntry contains the current size of 3549 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3550 ** in total). 3551 ** 3552 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3553 ** space allocated for the new object is zeroed, *pnEntry updated to 3554 ** reflect the new size of the array and a pointer to the new allocation 3555 ** returned. *pIdx is set to the index of the new array entry in this case. 3556 ** 3557 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3558 ** unchanged and a copy of pArray returned. 3559 */ 3560 void *sqlite3ArrayAllocate( 3561 sqlite3 *db, /* Connection to notify of malloc failures */ 3562 void *pArray, /* Array of objects. Might be reallocated */ 3563 int szEntry, /* Size of each object in the array */ 3564 int *pnEntry, /* Number of objects currently in use */ 3565 int *pIdx /* Write the index of a new slot here */ 3566 ){ 3567 char *z; 3568 int n = *pnEntry; 3569 if( (n & (n-1))==0 ){ 3570 int sz = (n==0) ? 1 : 2*n; 3571 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3572 if( pNew==0 ){ 3573 *pIdx = -1; 3574 return pArray; 3575 } 3576 pArray = pNew; 3577 } 3578 z = (char*)pArray; 3579 memset(&z[n * szEntry], 0, szEntry); 3580 *pIdx = n; 3581 ++*pnEntry; 3582 return pArray; 3583 } 3584 3585 /* 3586 ** Append a new element to the given IdList. Create a new IdList if 3587 ** need be. 3588 ** 3589 ** A new IdList is returned, or NULL if malloc() fails. 3590 */ 3591 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3592 int i; 3593 if( pList==0 ){ 3594 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3595 if( pList==0 ) return 0; 3596 } 3597 pList->a = sqlite3ArrayAllocate( 3598 db, 3599 pList->a, 3600 sizeof(pList->a[0]), 3601 &pList->nId, 3602 &i 3603 ); 3604 if( i<0 ){ 3605 sqlite3IdListDelete(db, pList); 3606 return 0; 3607 } 3608 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3609 return pList; 3610 } 3611 3612 /* 3613 ** Delete an IdList. 3614 */ 3615 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3616 int i; 3617 if( pList==0 ) return; 3618 for(i=0; i<pList->nId; i++){ 3619 sqlite3DbFree(db, pList->a[i].zName); 3620 } 3621 sqlite3DbFree(db, pList->a); 3622 sqlite3DbFree(db, pList); 3623 } 3624 3625 /* 3626 ** Return the index in pList of the identifier named zId. Return -1 3627 ** if not found. 3628 */ 3629 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3630 int i; 3631 if( pList==0 ) return -1; 3632 for(i=0; i<pList->nId; i++){ 3633 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3634 } 3635 return -1; 3636 } 3637 3638 /* 3639 ** Expand the space allocated for the given SrcList object by 3640 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3641 ** New slots are zeroed. 3642 ** 3643 ** For example, suppose a SrcList initially contains two entries: A,B. 3644 ** To append 3 new entries onto the end, do this: 3645 ** 3646 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3647 ** 3648 ** After the call above it would contain: A, B, nil, nil, nil. 3649 ** If the iStart argument had been 1 instead of 2, then the result 3650 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3651 ** the iStart value would be 0. The result then would 3652 ** be: nil, nil, nil, A, B. 3653 ** 3654 ** If a memory allocation fails the SrcList is unchanged. The 3655 ** db->mallocFailed flag will be set to true. 3656 */ 3657 SrcList *sqlite3SrcListEnlarge( 3658 sqlite3 *db, /* Database connection to notify of OOM errors */ 3659 SrcList *pSrc, /* The SrcList to be enlarged */ 3660 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3661 int iStart /* Index in pSrc->a[] of first new slot */ 3662 ){ 3663 int i; 3664 3665 /* Sanity checking on calling parameters */ 3666 assert( iStart>=0 ); 3667 assert( nExtra>=1 ); 3668 assert( pSrc!=0 ); 3669 assert( iStart<=pSrc->nSrc ); 3670 3671 /* Allocate additional space if needed */ 3672 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3673 SrcList *pNew; 3674 int nAlloc = pSrc->nSrc*2+nExtra; 3675 int nGot; 3676 pNew = sqlite3DbRealloc(db, pSrc, 3677 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3678 if( pNew==0 ){ 3679 assert( db->mallocFailed ); 3680 return pSrc; 3681 } 3682 pSrc = pNew; 3683 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3684 pSrc->nAlloc = nGot; 3685 } 3686 3687 /* Move existing slots that come after the newly inserted slots 3688 ** out of the way */ 3689 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3690 pSrc->a[i+nExtra] = pSrc->a[i]; 3691 } 3692 pSrc->nSrc += nExtra; 3693 3694 /* Zero the newly allocated slots */ 3695 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3696 for(i=iStart; i<iStart+nExtra; i++){ 3697 pSrc->a[i].iCursor = -1; 3698 } 3699 3700 /* Return a pointer to the enlarged SrcList */ 3701 return pSrc; 3702 } 3703 3704 3705 /* 3706 ** Append a new table name to the given SrcList. Create a new SrcList if 3707 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3708 ** 3709 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3710 ** SrcList might be the same as the SrcList that was input or it might be 3711 ** a new one. If an OOM error does occurs, then the prior value of pList 3712 ** that is input to this routine is automatically freed. 3713 ** 3714 ** If pDatabase is not null, it means that the table has an optional 3715 ** database name prefix. Like this: "database.table". The pDatabase 3716 ** points to the table name and the pTable points to the database name. 3717 ** The SrcList.a[].zName field is filled with the table name which might 3718 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3719 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3720 ** or with NULL if no database is specified. 3721 ** 3722 ** In other words, if call like this: 3723 ** 3724 ** sqlite3SrcListAppend(D,A,B,0); 3725 ** 3726 ** Then B is a table name and the database name is unspecified. If called 3727 ** like this: 3728 ** 3729 ** sqlite3SrcListAppend(D,A,B,C); 3730 ** 3731 ** Then C is the table name and B is the database name. If C is defined 3732 ** then so is B. In other words, we never have a case where: 3733 ** 3734 ** sqlite3SrcListAppend(D,A,0,C); 3735 ** 3736 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3737 ** before being added to the SrcList. 3738 */ 3739 SrcList *sqlite3SrcListAppend( 3740 sqlite3 *db, /* Connection to notify of malloc failures */ 3741 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3742 Token *pTable, /* Table to append */ 3743 Token *pDatabase /* Database of the table */ 3744 ){ 3745 struct SrcList_item *pItem; 3746 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3747 assert( db!=0 ); 3748 if( pList==0 ){ 3749 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3750 if( pList==0 ) return 0; 3751 pList->nAlloc = 1; 3752 pList->nSrc = 1; 3753 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3754 pList->a[0].iCursor = -1; 3755 }else{ 3756 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3757 } 3758 if( db->mallocFailed ){ 3759 sqlite3SrcListDelete(db, pList); 3760 return 0; 3761 } 3762 pItem = &pList->a[pList->nSrc-1]; 3763 if( pDatabase && pDatabase->z==0 ){ 3764 pDatabase = 0; 3765 } 3766 if( pDatabase ){ 3767 Token *pTemp = pDatabase; 3768 pDatabase = pTable; 3769 pTable = pTemp; 3770 } 3771 pItem->zName = sqlite3NameFromToken(db, pTable); 3772 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3773 return pList; 3774 } 3775 3776 /* 3777 ** Assign VdbeCursor index numbers to all tables in a SrcList 3778 */ 3779 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3780 int i; 3781 struct SrcList_item *pItem; 3782 assert(pList || pParse->db->mallocFailed ); 3783 if( pList ){ 3784 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3785 if( pItem->iCursor>=0 ) break; 3786 pItem->iCursor = pParse->nTab++; 3787 if( pItem->pSelect ){ 3788 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3789 } 3790 } 3791 } 3792 } 3793 3794 /* 3795 ** Delete an entire SrcList including all its substructure. 3796 */ 3797 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3798 int i; 3799 struct SrcList_item *pItem; 3800 if( pList==0 ) return; 3801 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3802 sqlite3DbFree(db, pItem->zDatabase); 3803 sqlite3DbFree(db, pItem->zName); 3804 sqlite3DbFree(db, pItem->zAlias); 3805 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3806 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3807 sqlite3DeleteTable(db, pItem->pTab); 3808 sqlite3SelectDelete(db, pItem->pSelect); 3809 sqlite3ExprDelete(db, pItem->pOn); 3810 sqlite3IdListDelete(db, pItem->pUsing); 3811 } 3812 sqlite3DbFree(db, pList); 3813 } 3814 3815 /* 3816 ** This routine is called by the parser to add a new term to the 3817 ** end of a growing FROM clause. The "p" parameter is the part of 3818 ** the FROM clause that has already been constructed. "p" is NULL 3819 ** if this is the first term of the FROM clause. pTable and pDatabase 3820 ** are the name of the table and database named in the FROM clause term. 3821 ** pDatabase is NULL if the database name qualifier is missing - the 3822 ** usual case. If the term has an alias, then pAlias points to the 3823 ** alias token. If the term is a subquery, then pSubquery is the 3824 ** SELECT statement that the subquery encodes. The pTable and 3825 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3826 ** parameters are the content of the ON and USING clauses. 3827 ** 3828 ** Return a new SrcList which encodes is the FROM with the new 3829 ** term added. 3830 */ 3831 SrcList *sqlite3SrcListAppendFromTerm( 3832 Parse *pParse, /* Parsing context */ 3833 SrcList *p, /* The left part of the FROM clause already seen */ 3834 Token *pTable, /* Name of the table to add to the FROM clause */ 3835 Token *pDatabase, /* Name of the database containing pTable */ 3836 Token *pAlias, /* The right-hand side of the AS subexpression */ 3837 Select *pSubquery, /* A subquery used in place of a table name */ 3838 Expr *pOn, /* The ON clause of a join */ 3839 IdList *pUsing /* The USING clause of a join */ 3840 ){ 3841 struct SrcList_item *pItem; 3842 sqlite3 *db = pParse->db; 3843 if( !p && (pOn || pUsing) ){ 3844 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3845 (pOn ? "ON" : "USING") 3846 ); 3847 goto append_from_error; 3848 } 3849 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3850 if( p==0 || NEVER(p->nSrc==0) ){ 3851 goto append_from_error; 3852 } 3853 pItem = &p->a[p->nSrc-1]; 3854 assert( pAlias!=0 ); 3855 if( pAlias->n ){ 3856 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3857 } 3858 pItem->pSelect = pSubquery; 3859 pItem->pOn = pOn; 3860 pItem->pUsing = pUsing; 3861 return p; 3862 3863 append_from_error: 3864 assert( p==0 ); 3865 sqlite3ExprDelete(db, pOn); 3866 sqlite3IdListDelete(db, pUsing); 3867 sqlite3SelectDelete(db, pSubquery); 3868 return 0; 3869 } 3870 3871 /* 3872 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3873 ** element of the source-list passed as the second argument. 3874 */ 3875 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3876 assert( pIndexedBy!=0 ); 3877 if( p && ALWAYS(p->nSrc>0) ){ 3878 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3879 assert( pItem->fg.notIndexed==0 ); 3880 assert( pItem->fg.isIndexedBy==0 ); 3881 assert( pItem->fg.isTabFunc==0 ); 3882 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3883 /* A "NOT INDEXED" clause was supplied. See parse.y 3884 ** construct "indexed_opt" for details. */ 3885 pItem->fg.notIndexed = 1; 3886 }else{ 3887 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3888 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3889 } 3890 } 3891 } 3892 3893 /* 3894 ** Add the list of function arguments to the SrcList entry for a 3895 ** table-valued-function. 3896 */ 3897 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3898 if( p ){ 3899 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3900 assert( pItem->fg.notIndexed==0 ); 3901 assert( pItem->fg.isIndexedBy==0 ); 3902 assert( pItem->fg.isTabFunc==0 ); 3903 pItem->u1.pFuncArg = pList; 3904 pItem->fg.isTabFunc = 1; 3905 }else{ 3906 sqlite3ExprListDelete(pParse->db, pList); 3907 } 3908 } 3909 3910 /* 3911 ** When building up a FROM clause in the parser, the join operator 3912 ** is initially attached to the left operand. But the code generator 3913 ** expects the join operator to be on the right operand. This routine 3914 ** Shifts all join operators from left to right for an entire FROM 3915 ** clause. 3916 ** 3917 ** Example: Suppose the join is like this: 3918 ** 3919 ** A natural cross join B 3920 ** 3921 ** The operator is "natural cross join". The A and B operands are stored 3922 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3923 ** operator with A. This routine shifts that operator over to B. 3924 */ 3925 void sqlite3SrcListShiftJoinType(SrcList *p){ 3926 if( p ){ 3927 int i; 3928 for(i=p->nSrc-1; i>0; i--){ 3929 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3930 } 3931 p->a[0].fg.jointype = 0; 3932 } 3933 } 3934 3935 /* 3936 ** Generate VDBE code for a BEGIN statement. 3937 */ 3938 void sqlite3BeginTransaction(Parse *pParse, int type){ 3939 sqlite3 *db; 3940 Vdbe *v; 3941 int i; 3942 3943 assert( pParse!=0 ); 3944 db = pParse->db; 3945 assert( db!=0 ); 3946 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3947 return; 3948 } 3949 v = sqlite3GetVdbe(pParse); 3950 if( !v ) return; 3951 if( type!=TK_DEFERRED ){ 3952 for(i=0; i<db->nDb; i++){ 3953 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3954 sqlite3VdbeUsesBtree(v, i); 3955 } 3956 } 3957 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3958 } 3959 3960 /* 3961 ** Generate VDBE code for a COMMIT statement. 3962 */ 3963 void sqlite3CommitTransaction(Parse *pParse){ 3964 Vdbe *v; 3965 3966 assert( pParse!=0 ); 3967 assert( pParse->db!=0 ); 3968 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3969 return; 3970 } 3971 v = sqlite3GetVdbe(pParse); 3972 if( v ){ 3973 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3974 } 3975 } 3976 3977 /* 3978 ** Generate VDBE code for a ROLLBACK statement. 3979 */ 3980 void sqlite3RollbackTransaction(Parse *pParse){ 3981 Vdbe *v; 3982 3983 assert( pParse!=0 ); 3984 assert( pParse->db!=0 ); 3985 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3986 return; 3987 } 3988 v = sqlite3GetVdbe(pParse); 3989 if( v ){ 3990 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3991 } 3992 } 3993 3994 /* 3995 ** This function is called by the parser when it parses a command to create, 3996 ** release or rollback an SQL savepoint. 3997 */ 3998 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3999 char *zName = sqlite3NameFromToken(pParse->db, pName); 4000 if( zName ){ 4001 Vdbe *v = sqlite3GetVdbe(pParse); 4002 #ifndef SQLITE_OMIT_AUTHORIZATION 4003 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4004 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4005 #endif 4006 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4007 sqlite3DbFree(pParse->db, zName); 4008 return; 4009 } 4010 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4011 } 4012 } 4013 4014 /* 4015 ** Make sure the TEMP database is open and available for use. Return 4016 ** the number of errors. Leave any error messages in the pParse structure. 4017 */ 4018 int sqlite3OpenTempDatabase(Parse *pParse){ 4019 sqlite3 *db = pParse->db; 4020 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4021 int rc; 4022 Btree *pBt; 4023 static const int flags = 4024 SQLITE_OPEN_READWRITE | 4025 SQLITE_OPEN_CREATE | 4026 SQLITE_OPEN_EXCLUSIVE | 4027 SQLITE_OPEN_DELETEONCLOSE | 4028 SQLITE_OPEN_TEMP_DB; 4029 4030 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4031 if( rc!=SQLITE_OK ){ 4032 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4033 "file for storing temporary tables"); 4034 pParse->rc = rc; 4035 return 1; 4036 } 4037 db->aDb[1].pBt = pBt; 4038 assert( db->aDb[1].pSchema ); 4039 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4040 sqlite3OomFault(db); 4041 return 1; 4042 } 4043 } 4044 return 0; 4045 } 4046 4047 /* 4048 ** Record the fact that the schema cookie will need to be verified 4049 ** for database iDb. The code to actually verify the schema cookie 4050 ** will occur at the end of the top-level VDBE and will be generated 4051 ** later, by sqlite3FinishCoding(). 4052 */ 4053 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4054 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4055 4056 assert( iDb>=0 && iDb<pParse->db->nDb ); 4057 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4058 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4059 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4060 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4061 DbMaskSet(pToplevel->cookieMask, iDb); 4062 if( !OMIT_TEMPDB && iDb==1 ){ 4063 sqlite3OpenTempDatabase(pToplevel); 4064 } 4065 } 4066 } 4067 4068 /* 4069 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4070 ** attached database. Otherwise, invoke it for the database named zDb only. 4071 */ 4072 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4073 sqlite3 *db = pParse->db; 4074 int i; 4075 for(i=0; i<db->nDb; i++){ 4076 Db *pDb = &db->aDb[i]; 4077 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4078 sqlite3CodeVerifySchema(pParse, i); 4079 } 4080 } 4081 } 4082 4083 /* 4084 ** Generate VDBE code that prepares for doing an operation that 4085 ** might change the database. 4086 ** 4087 ** This routine starts a new transaction if we are not already within 4088 ** a transaction. If we are already within a transaction, then a checkpoint 4089 ** is set if the setStatement parameter is true. A checkpoint should 4090 ** be set for operations that might fail (due to a constraint) part of 4091 ** the way through and which will need to undo some writes without having to 4092 ** rollback the whole transaction. For operations where all constraints 4093 ** can be checked before any changes are made to the database, it is never 4094 ** necessary to undo a write and the checkpoint should not be set. 4095 */ 4096 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4097 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4098 sqlite3CodeVerifySchema(pParse, iDb); 4099 DbMaskSet(pToplevel->writeMask, iDb); 4100 pToplevel->isMultiWrite |= setStatement; 4101 } 4102 4103 /* 4104 ** Indicate that the statement currently under construction might write 4105 ** more than one entry (example: deleting one row then inserting another, 4106 ** inserting multiple rows in a table, or inserting a row and index entries.) 4107 ** If an abort occurs after some of these writes have completed, then it will 4108 ** be necessary to undo the completed writes. 4109 */ 4110 void sqlite3MultiWrite(Parse *pParse){ 4111 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4112 pToplevel->isMultiWrite = 1; 4113 } 4114 4115 /* 4116 ** The code generator calls this routine if is discovers that it is 4117 ** possible to abort a statement prior to completion. In order to 4118 ** perform this abort without corrupting the database, we need to make 4119 ** sure that the statement is protected by a statement transaction. 4120 ** 4121 ** Technically, we only need to set the mayAbort flag if the 4122 ** isMultiWrite flag was previously set. There is a time dependency 4123 ** such that the abort must occur after the multiwrite. This makes 4124 ** some statements involving the REPLACE conflict resolution algorithm 4125 ** go a little faster. But taking advantage of this time dependency 4126 ** makes it more difficult to prove that the code is correct (in 4127 ** particular, it prevents us from writing an effective 4128 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4129 ** to take the safe route and skip the optimization. 4130 */ 4131 void sqlite3MayAbort(Parse *pParse){ 4132 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4133 pToplevel->mayAbort = 1; 4134 } 4135 4136 /* 4137 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4138 ** error. The onError parameter determines which (if any) of the statement 4139 ** and/or current transaction is rolled back. 4140 */ 4141 void sqlite3HaltConstraint( 4142 Parse *pParse, /* Parsing context */ 4143 int errCode, /* extended error code */ 4144 int onError, /* Constraint type */ 4145 char *p4, /* Error message */ 4146 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4147 u8 p5Errmsg /* P5_ErrMsg type */ 4148 ){ 4149 Vdbe *v = sqlite3GetVdbe(pParse); 4150 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4151 if( onError==OE_Abort ){ 4152 sqlite3MayAbort(pParse); 4153 } 4154 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4155 sqlite3VdbeChangeP5(v, p5Errmsg); 4156 } 4157 4158 /* 4159 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4160 */ 4161 void sqlite3UniqueConstraint( 4162 Parse *pParse, /* Parsing context */ 4163 int onError, /* Constraint type */ 4164 Index *pIdx /* The index that triggers the constraint */ 4165 ){ 4166 char *zErr; 4167 int j; 4168 StrAccum errMsg; 4169 Table *pTab = pIdx->pTable; 4170 4171 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4172 if( pIdx->aColExpr ){ 4173 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4174 }else{ 4175 for(j=0; j<pIdx->nKeyCol; j++){ 4176 char *zCol; 4177 assert( pIdx->aiColumn[j]>=0 ); 4178 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4179 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4180 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4181 } 4182 } 4183 zErr = sqlite3StrAccumFinish(&errMsg); 4184 sqlite3HaltConstraint(pParse, 4185 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4186 : SQLITE_CONSTRAINT_UNIQUE, 4187 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4188 } 4189 4190 4191 /* 4192 ** Code an OP_Halt due to non-unique rowid. 4193 */ 4194 void sqlite3RowidConstraint( 4195 Parse *pParse, /* Parsing context */ 4196 int onError, /* Conflict resolution algorithm */ 4197 Table *pTab /* The table with the non-unique rowid */ 4198 ){ 4199 char *zMsg; 4200 int rc; 4201 if( pTab->iPKey>=0 ){ 4202 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4203 pTab->aCol[pTab->iPKey].zName); 4204 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4205 }else{ 4206 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4207 rc = SQLITE_CONSTRAINT_ROWID; 4208 } 4209 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4210 P5_ConstraintUnique); 4211 } 4212 4213 /* 4214 ** Check to see if pIndex uses the collating sequence pColl. Return 4215 ** true if it does and false if it does not. 4216 */ 4217 #ifndef SQLITE_OMIT_REINDEX 4218 static int collationMatch(const char *zColl, Index *pIndex){ 4219 int i; 4220 assert( zColl!=0 ); 4221 for(i=0; i<pIndex->nColumn; i++){ 4222 const char *z = pIndex->azColl[i]; 4223 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4224 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4225 return 1; 4226 } 4227 } 4228 return 0; 4229 } 4230 #endif 4231 4232 /* 4233 ** Recompute all indices of pTab that use the collating sequence pColl. 4234 ** If pColl==0 then recompute all indices of pTab. 4235 */ 4236 #ifndef SQLITE_OMIT_REINDEX 4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4238 Index *pIndex; /* An index associated with pTab */ 4239 4240 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4241 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4242 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4243 sqlite3BeginWriteOperation(pParse, 0, iDb); 4244 sqlite3RefillIndex(pParse, pIndex, -1); 4245 } 4246 } 4247 } 4248 #endif 4249 4250 /* 4251 ** Recompute all indices of all tables in all databases where the 4252 ** indices use the collating sequence pColl. If pColl==0 then recompute 4253 ** all indices everywhere. 4254 */ 4255 #ifndef SQLITE_OMIT_REINDEX 4256 static void reindexDatabases(Parse *pParse, char const *zColl){ 4257 Db *pDb; /* A single database */ 4258 int iDb; /* The database index number */ 4259 sqlite3 *db = pParse->db; /* The database connection */ 4260 HashElem *k; /* For looping over tables in pDb */ 4261 Table *pTab; /* A table in the database */ 4262 4263 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4264 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4265 assert( pDb!=0 ); 4266 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4267 pTab = (Table*)sqliteHashData(k); 4268 reindexTable(pParse, pTab, zColl); 4269 } 4270 } 4271 } 4272 #endif 4273 4274 /* 4275 ** Generate code for the REINDEX command. 4276 ** 4277 ** REINDEX -- 1 4278 ** REINDEX <collation> -- 2 4279 ** REINDEX ?<database>.?<tablename> -- 3 4280 ** REINDEX ?<database>.?<indexname> -- 4 4281 ** 4282 ** Form 1 causes all indices in all attached databases to be rebuilt. 4283 ** Form 2 rebuilds all indices in all databases that use the named 4284 ** collating function. Forms 3 and 4 rebuild the named index or all 4285 ** indices associated with the named table. 4286 */ 4287 #ifndef SQLITE_OMIT_REINDEX 4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4289 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4290 char *z; /* Name of a table or index */ 4291 const char *zDb; /* Name of the database */ 4292 Table *pTab; /* A table in the database */ 4293 Index *pIndex; /* An index associated with pTab */ 4294 int iDb; /* The database index number */ 4295 sqlite3 *db = pParse->db; /* The database connection */ 4296 Token *pObjName; /* Name of the table or index to be reindexed */ 4297 4298 /* Read the database schema. If an error occurs, leave an error message 4299 ** and code in pParse and return NULL. */ 4300 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4301 return; 4302 } 4303 4304 if( pName1==0 ){ 4305 reindexDatabases(pParse, 0); 4306 return; 4307 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4308 char *zColl; 4309 assert( pName1->z ); 4310 zColl = sqlite3NameFromToken(pParse->db, pName1); 4311 if( !zColl ) return; 4312 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4313 if( pColl ){ 4314 reindexDatabases(pParse, zColl); 4315 sqlite3DbFree(db, zColl); 4316 return; 4317 } 4318 sqlite3DbFree(db, zColl); 4319 } 4320 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4321 if( iDb<0 ) return; 4322 z = sqlite3NameFromToken(db, pObjName); 4323 if( z==0 ) return; 4324 zDb = db->aDb[iDb].zDbSName; 4325 pTab = sqlite3FindTable(db, z, zDb); 4326 if( pTab ){ 4327 reindexTable(pParse, pTab, 0); 4328 sqlite3DbFree(db, z); 4329 return; 4330 } 4331 pIndex = sqlite3FindIndex(db, z, zDb); 4332 sqlite3DbFree(db, z); 4333 if( pIndex ){ 4334 sqlite3BeginWriteOperation(pParse, 0, iDb); 4335 sqlite3RefillIndex(pParse, pIndex, -1); 4336 return; 4337 } 4338 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4339 } 4340 #endif 4341 4342 /* 4343 ** Return a KeyInfo structure that is appropriate for the given Index. 4344 ** 4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4346 ** when it has finished using it. 4347 */ 4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4349 int i; 4350 int nCol = pIdx->nColumn; 4351 int nKey = pIdx->nKeyCol; 4352 KeyInfo *pKey; 4353 if( pParse->nErr ) return 0; 4354 if( pIdx->uniqNotNull ){ 4355 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4356 }else{ 4357 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4358 } 4359 if( pKey ){ 4360 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4361 for(i=0; i<nCol; i++){ 4362 const char *zColl = pIdx->azColl[i]; 4363 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4364 sqlite3LocateCollSeq(pParse, zColl); 4365 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4366 } 4367 if( pParse->nErr ){ 4368 sqlite3KeyInfoUnref(pKey); 4369 pKey = 0; 4370 } 4371 } 4372 return pKey; 4373 } 4374 4375 #ifndef SQLITE_OMIT_CTE 4376 /* 4377 ** This routine is invoked once per CTE by the parser while parsing a 4378 ** WITH clause. 4379 */ 4380 With *sqlite3WithAdd( 4381 Parse *pParse, /* Parsing context */ 4382 With *pWith, /* Existing WITH clause, or NULL */ 4383 Token *pName, /* Name of the common-table */ 4384 ExprList *pArglist, /* Optional column name list for the table */ 4385 Select *pQuery /* Query used to initialize the table */ 4386 ){ 4387 sqlite3 *db = pParse->db; 4388 With *pNew; 4389 char *zName; 4390 4391 /* Check that the CTE name is unique within this WITH clause. If 4392 ** not, store an error in the Parse structure. */ 4393 zName = sqlite3NameFromToken(pParse->db, pName); 4394 if( zName && pWith ){ 4395 int i; 4396 for(i=0; i<pWith->nCte; i++){ 4397 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4398 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4399 } 4400 } 4401 } 4402 4403 if( pWith ){ 4404 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4405 pNew = sqlite3DbRealloc(db, pWith, nByte); 4406 }else{ 4407 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4408 } 4409 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4410 4411 if( db->mallocFailed ){ 4412 sqlite3ExprListDelete(db, pArglist); 4413 sqlite3SelectDelete(db, pQuery); 4414 sqlite3DbFree(db, zName); 4415 pNew = pWith; 4416 }else{ 4417 pNew->a[pNew->nCte].pSelect = pQuery; 4418 pNew->a[pNew->nCte].pCols = pArglist; 4419 pNew->a[pNew->nCte].zName = zName; 4420 pNew->a[pNew->nCte].zCteErr = 0; 4421 pNew->nCte++; 4422 } 4423 4424 return pNew; 4425 } 4426 4427 /* 4428 ** Free the contents of the With object passed as the second argument. 4429 */ 4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4431 if( pWith ){ 4432 int i; 4433 for(i=0; i<pWith->nCte; i++){ 4434 struct Cte *pCte = &pWith->a[i]; 4435 sqlite3ExprListDelete(db, pCte->pCols); 4436 sqlite3SelectDelete(db, pCte->pSelect); 4437 sqlite3DbFree(db, pCte->zName); 4438 } 4439 sqlite3DbFree(db, pWith); 4440 } 4441 } 4442 #endif /* !defined(SQLITE_OMIT_CTE) */ 4443