xref: /sqlite-3.40.0/src/build.c (revision 87f500ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
229     /* A minimum of one cursor is required if autoincrement is used
230     *  See ticket [a696379c1f08866] */
231     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232     sqlite3VdbeMakeReady(v, pParse);
233     pParse->rc = SQLITE_DONE;
234   }else{
235     pParse->rc = SQLITE_ERROR;
236   }
237 }
238 
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction.  When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable.  This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252   va_list ap;
253   char *zSql;
254   char *zErrMsg = 0;
255   sqlite3 *db = pParse->db;
256   char saveBuf[PARSE_TAIL_SZ];
257 
258   if( pParse->nErr ) return;
259   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
260   va_start(ap, zFormat);
261   zSql = sqlite3VMPrintf(db, zFormat, ap);
262   va_end(ap);
263   if( zSql==0 ){
264     return;   /* A malloc must have failed */
265   }
266   pParse->nested++;
267   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269   sqlite3RunParser(pParse, zSql, &zErrMsg);
270   sqlite3DbFree(db, zErrMsg);
271   sqlite3DbFree(db, zSql);
272   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273   pParse->nested--;
274 }
275 
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
281 int sqlite3UserAuthTable(const char *zTable){
282   return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285 
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table.  Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned.  (No checking for duplicate table
293 ** names is done.)  The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299   Table *p = 0;
300   int i;
301 
302   /* All mutexes are required for schema access.  Make sure we hold them. */
303   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305   /* Only the admin user is allowed to know that the sqlite_user table
306   ** exists */
307   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308     return 0;
309   }
310 #endif
311   while(1){
312     for(i=OMIT_TEMPDB; i<db->nDb; i++){
313       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
314       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315         assert( sqlite3SchemaMutexHeld(db, j, 0) );
316         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317         if( p ) return p;
318       }
319     }
320     /* Not found.  If the name we were looking for was temp.sqlite_master
321     ** then change the name to sqlite_temp_master and try again. */
322     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324     zName = TEMP_MASTER_NAME;
325   }
326   return 0;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363         pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364       }
365       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366         return pMod->pEpoTab;
367       }
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->flags |= SQLITE_InternChanges;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.
518 */
519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520   Db *pDb;
521   assert( iDb<db->nDb );
522 
523   /* Case 1:  Reset the single schema identified by iDb */
524   pDb = &db->aDb[iDb];
525   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526   assert( pDb->pSchema!=0 );
527   sqlite3SchemaClear(pDb->pSchema);
528 
529   /* If any database other than TEMP is reset, then also reset TEMP
530   ** since TEMP might be holding triggers that reference tables in the
531   ** other database.
532   */
533   if( iDb!=1 ){
534     pDb = &db->aDb[1];
535     assert( pDb->pSchema!=0 );
536     sqlite3SchemaClear(pDb->pSchema);
537   }
538   return;
539 }
540 
541 /*
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
544 */
545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546   int i;
547   sqlite3BtreeEnterAll(db);
548   for(i=0; i<db->nDb; i++){
549     Db *pDb = &db->aDb[i];
550     if( pDb->pSchema ){
551       sqlite3SchemaClear(pDb->pSchema);
552     }
553   }
554   db->flags &= ~SQLITE_InternChanges;
555   sqlite3VtabUnlockList(db);
556   sqlite3BtreeLeaveAll(db);
557   sqlite3CollapseDatabaseArray(db);
558 }
559 
560 /*
561 ** This routine is called when a commit occurs.
562 */
563 void sqlite3CommitInternalChanges(sqlite3 *db){
564   db->flags &= ~SQLITE_InternChanges;
565 }
566 
567 /*
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
570 */
571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572   int i;
573   Column *pCol;
574   assert( pTable!=0 );
575   if( (pCol = pTable->aCol)!=0 ){
576     for(i=0; i<pTable->nCol; i++, pCol++){
577       sqlite3DbFree(db, pCol->zName);
578       sqlite3ExprDelete(db, pCol->pDflt);
579       sqlite3DbFree(db, pCol->zColl);
580     }
581     sqlite3DbFree(db, pTable->aCol);
582   }
583 }
584 
585 /*
586 ** Remove the memory data structures associated with the given
587 ** Table.  No changes are made to disk by this routine.
588 **
589 ** This routine just deletes the data structure.  It does not unlink
590 ** the table data structure from the hash table.  But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
593 **
594 ** The db parameter is optional.  It is needed if the Table object
595 ** contains lookaside memory.  (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.)  Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
599 */
600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601   Index *pIndex, *pNext;
602   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
603 
604   /* Record the number of outstanding lookaside allocations in schema Tables
605   ** prior to doing any free() operations.  Since schema Tables do not use
606   ** lookaside, this number should not change. */
607   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608                          db->lookaside.nOut : 0 );
609 
610   /* Delete all indices associated with this table. */
611   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612     pNext = pIndex->pNext;
613     assert( pIndex->pSchema==pTable->pSchema
614          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616       char *zName = pIndex->zName;
617       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618          &pIndex->pSchema->idxHash, zName, 0
619       );
620       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621       assert( pOld==pIndex || pOld==0 );
622     }
623     freeIndex(db, pIndex);
624   }
625 
626   /* Delete any foreign keys attached to this table. */
627   sqlite3FkDelete(db, pTable);
628 
629   /* Delete the Table structure itself.
630   */
631   sqlite3DeleteColumnNames(db, pTable);
632   sqlite3DbFree(db, pTable->zName);
633   sqlite3DbFree(db, pTable->zColAff);
634   sqlite3SelectDelete(db, pTable->pSelect);
635   sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637   sqlite3VtabClear(db, pTable);
638 #endif
639   sqlite3DbFree(db, pTable);
640 
641   /* Verify that no lookaside memory was used by schema tables */
642   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645   /* Do not delete the table until the reference count reaches zero. */
646   if( !pTable ) return;
647   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648   deleteTable(db, pTable);
649 }
650 
651 
652 /*
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
655 */
656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657   Table *p;
658   Db *pDb;
659 
660   assert( db!=0 );
661   assert( iDb>=0 && iDb<db->nDb );
662   assert( zTabName );
663   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
665   pDb = &db->aDb[iDb];
666   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667   sqlite3DeleteTable(db, p);
668   db->flags |= SQLITE_InternChanges;
669 }
670 
671 /*
672 ** Given a token, return a string that consists of the text of that
673 ** token.  Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
676 **
677 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
679 **
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent.  The returned string
682 ** is \000 terminated and is persistent.
683 */
684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685   char *zName;
686   if( pName ){
687     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688     sqlite3Dequote(zName);
689   }else{
690     zName = 0;
691   }
692   return zName;
693 }
694 
695 /*
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
698 */
699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700   Vdbe *v = sqlite3GetVdbe(p);
701   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703   if( p->nTab==0 ){
704     p->nTab = 1;
705   }
706 }
707 
708 /*
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
713 */
714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715   int i = -1;         /* Database number */
716   if( zName ){
717     Db *pDb;
718     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720       /* "main" is always an acceptable alias for the primary database
721       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
723     }
724   }
725   return i;
726 }
727 
728 /*
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
733 */
734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735   int i;                               /* Database number */
736   char *zName;                         /* Name we are searching for */
737   zName = sqlite3NameFromToken(db, pName);
738   i = sqlite3FindDbName(db, zName);
739   sqlite3DbFree(db, zName);
740   return i;
741 }
742 
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
745 **
746 ** CREATE TABLE xxx.yyy (...);
747 **
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
750 **
751 ** CREATE TABLE yyy(...);
752 **
753 ** Then pName1 is set to "yyy" and pName2 is "".
754 **
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name.  The index of the
757 ** database "xxx" is returned.
758 */
759 int sqlite3TwoPartName(
760   Parse *pParse,      /* Parsing and code generating context */
761   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
762   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
763   Token **pUnqual     /* Write the unqualified object name here */
764 ){
765   int iDb;                    /* Database holding the object */
766   sqlite3 *db = pParse->db;
767 
768   assert( pName2!=0 );
769   if( pName2->n>0 ){
770     if( db->init.busy ) {
771       sqlite3ErrorMsg(pParse, "corrupt database");
772       return -1;
773     }
774     *pUnqual = pName2;
775     iDb = sqlite3FindDb(db, pName1);
776     if( iDb<0 ){
777       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778       return -1;
779     }
780   }else{
781     assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
782     iDb = db->init.iDb;
783     *pUnqual = pName1;
784   }
785   return iDb;
786 }
787 
788 /*
789 ** This routine is used to check if the UTF-8 string zName is a legal
790 ** unqualified name for a new schema object (table, index, view or
791 ** trigger). All names are legal except those that begin with the string
792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
793 ** is reserved for internal use.
794 */
795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
796   if( !pParse->db->init.busy && pParse->nested==0
797           && (pParse->db->flags & SQLITE_WriteSchema)==0
798           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
799     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
800     return SQLITE_ERROR;
801   }
802   return SQLITE_OK;
803 }
804 
805 /*
806 ** Return the PRIMARY KEY index of a table
807 */
808 Index *sqlite3PrimaryKeyIndex(Table *pTab){
809   Index *p;
810   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
811   return p;
812 }
813 
814 /*
815 ** Return the column of index pIdx that corresponds to table
816 ** column iCol.  Return -1 if not found.
817 */
818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
819   int i;
820   for(i=0; i<pIdx->nColumn; i++){
821     if( iCol==pIdx->aiColumn[i] ) return i;
822   }
823   return -1;
824 }
825 
826 /*
827 ** Begin constructing a new table representation in memory.  This is
828 ** the first of several action routines that get called in response
829 ** to a CREATE TABLE statement.  In particular, this routine is called
830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
831 ** flag is true if the table should be stored in the auxiliary database
832 ** file instead of in the main database file.  This is normally the case
833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
834 ** CREATE and TABLE.
835 **
836 ** The new table record is initialized and put in pParse->pNewTable.
837 ** As more of the CREATE TABLE statement is parsed, additional action
838 ** routines will be called to add more information to this record.
839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
840 ** is called to complete the construction of the new table record.
841 */
842 void sqlite3StartTable(
843   Parse *pParse,   /* Parser context */
844   Token *pName1,   /* First part of the name of the table or view */
845   Token *pName2,   /* Second part of the name of the table or view */
846   int isTemp,      /* True if this is a TEMP table */
847   int isView,      /* True if this is a VIEW */
848   int isVirtual,   /* True if this is a VIRTUAL table */
849   int noErr        /* Do nothing if table already exists */
850 ){
851   Table *pTable;
852   char *zName = 0; /* The name of the new table */
853   sqlite3 *db = pParse->db;
854   Vdbe *v;
855   int iDb;         /* Database number to create the table in */
856   Token *pName;    /* Unqualified name of the table to create */
857 
858   if( db->init.busy && db->init.newTnum==1 ){
859     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
860     iDb = db->init.iDb;
861     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
862     pName = pName1;
863   }else{
864     /* The common case */
865     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
866     if( iDb<0 ) return;
867     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
868       /* If creating a temp table, the name may not be qualified. Unless
869       ** the database name is "temp" anyway.  */
870       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
871       return;
872     }
873     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
874     zName = sqlite3NameFromToken(db, pName);
875   }
876   pParse->sNameToken = *pName;
877   if( zName==0 ) return;
878   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
879     goto begin_table_error;
880   }
881   if( db->init.iDb==1 ) isTemp = 1;
882 #ifndef SQLITE_OMIT_AUTHORIZATION
883   assert( isTemp==0 || isTemp==1 );
884   assert( isView==0 || isView==1 );
885   {
886     static const u8 aCode[] = {
887        SQLITE_CREATE_TABLE,
888        SQLITE_CREATE_TEMP_TABLE,
889        SQLITE_CREATE_VIEW,
890        SQLITE_CREATE_TEMP_VIEW
891     };
892     char *zDb = db->aDb[iDb].zDbSName;
893     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
894       goto begin_table_error;
895     }
896     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
897                                        zName, 0, zDb) ){
898       goto begin_table_error;
899     }
900   }
901 #endif
902 
903   /* Make sure the new table name does not collide with an existing
904   ** index or table name in the same database.  Issue an error message if
905   ** it does. The exception is if the statement being parsed was passed
906   ** to an sqlite3_declare_vtab() call. In that case only the column names
907   ** and types will be used, so there is no need to test for namespace
908   ** collisions.
909   */
910   if( !IN_DECLARE_VTAB ){
911     char *zDb = db->aDb[iDb].zDbSName;
912     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
913       goto begin_table_error;
914     }
915     pTable = sqlite3FindTable(db, zName, zDb);
916     if( pTable ){
917       if( !noErr ){
918         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
919       }else{
920         assert( !db->init.busy || CORRUPT_DB );
921         sqlite3CodeVerifySchema(pParse, iDb);
922       }
923       goto begin_table_error;
924     }
925     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
926       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
927       goto begin_table_error;
928     }
929   }
930 
931   pTable = sqlite3DbMallocZero(db, sizeof(Table));
932   if( pTable==0 ){
933     assert( db->mallocFailed );
934     pParse->rc = SQLITE_NOMEM_BKPT;
935     pParse->nErr++;
936     goto begin_table_error;
937   }
938   pTable->zName = zName;
939   pTable->iPKey = -1;
940   pTable->pSchema = db->aDb[iDb].pSchema;
941   pTable->nTabRef = 1;
942   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
943   assert( pParse->pNewTable==0 );
944   pParse->pNewTable = pTable;
945 
946   /* If this is the magic sqlite_sequence table used by autoincrement,
947   ** then record a pointer to this table in the main database structure
948   ** so that INSERT can find the table easily.
949   */
950 #ifndef SQLITE_OMIT_AUTOINCREMENT
951   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
952     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
953     pTable->pSchema->pSeqTab = pTable;
954   }
955 #endif
956 
957   /* Begin generating the code that will insert the table record into
958   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
959   ** and allocate the record number for the table entry now.  Before any
960   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
961   ** indices to be created and the table record must come before the
962   ** indices.  Hence, the record number for the table must be allocated
963   ** now.
964   */
965   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
966     int addr1;
967     int fileFormat;
968     int reg1, reg2, reg3;
969     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
970     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
971     sqlite3BeginWriteOperation(pParse, 1, iDb);
972 
973 #ifndef SQLITE_OMIT_VIRTUALTABLE
974     if( isVirtual ){
975       sqlite3VdbeAddOp0(v, OP_VBegin);
976     }
977 #endif
978 
979     /* If the file format and encoding in the database have not been set,
980     ** set them now.
981     */
982     reg1 = pParse->regRowid = ++pParse->nMem;
983     reg2 = pParse->regRoot = ++pParse->nMem;
984     reg3 = ++pParse->nMem;
985     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
986     sqlite3VdbeUsesBtree(v, iDb);
987     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
988     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
989                   1 : SQLITE_MAX_FILE_FORMAT;
990     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
991     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
992     sqlite3VdbeJumpHere(v, addr1);
993 
994     /* This just creates a place-holder record in the sqlite_master table.
995     ** The record created does not contain anything yet.  It will be replaced
996     ** by the real entry in code generated at sqlite3EndTable().
997     **
998     ** The rowid for the new entry is left in register pParse->regRowid.
999     ** The root page number of the new table is left in reg pParse->regRoot.
1000     ** The rowid and root page number values are needed by the code that
1001     ** sqlite3EndTable will generate.
1002     */
1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1004     if( isView || isVirtual ){
1005       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1006     }else
1007 #endif
1008     {
1009       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1010     }
1011     sqlite3OpenMasterTable(pParse, iDb);
1012     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1013     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1014     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1015     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1016     sqlite3VdbeAddOp0(v, OP_Close);
1017   }
1018 
1019   /* Normal (non-error) return. */
1020   return;
1021 
1022   /* If an error occurs, we jump here */
1023 begin_table_error:
1024   sqlite3DbFree(db, zName);
1025   return;
1026 }
1027 
1028 /* Set properties of a table column based on the (magical)
1029 ** name of the column.
1030 */
1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1033   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1034     pCol->colFlags |= COLFLAG_HIDDEN;
1035   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1036     pTab->tabFlags |= TF_OOOHidden;
1037   }
1038 }
1039 #endif
1040 
1041 
1042 /*
1043 ** Add a new column to the table currently being constructed.
1044 **
1045 ** The parser calls this routine once for each column declaration
1046 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1047 ** first to get things going.  Then this routine is called for each
1048 ** column.
1049 */
1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1051   Table *p;
1052   int i;
1053   char *z;
1054   char *zType;
1055   Column *pCol;
1056   sqlite3 *db = pParse->db;
1057   if( (p = pParse->pNewTable)==0 ) return;
1058 #if SQLITE_MAX_COLUMN
1059   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1060     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1061     return;
1062   }
1063 #endif
1064   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1065   if( z==0 ) return;
1066   memcpy(z, pName->z, pName->n);
1067   z[pName->n] = 0;
1068   sqlite3Dequote(z);
1069   for(i=0; i<p->nCol; i++){
1070     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1071       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1072       sqlite3DbFree(db, z);
1073       return;
1074     }
1075   }
1076   if( (p->nCol & 0x7)==0 ){
1077     Column *aNew;
1078     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1079     if( aNew==0 ){
1080       sqlite3DbFree(db, z);
1081       return;
1082     }
1083     p->aCol = aNew;
1084   }
1085   pCol = &p->aCol[p->nCol];
1086   memset(pCol, 0, sizeof(p->aCol[0]));
1087   pCol->zName = z;
1088   sqlite3ColumnPropertiesFromName(p, pCol);
1089 
1090   if( pType->n==0 ){
1091     /* If there is no type specified, columns have the default affinity
1092     ** 'BLOB'. */
1093     pCol->affinity = SQLITE_AFF_BLOB;
1094     pCol->szEst = 1;
1095   }else{
1096     zType = z + sqlite3Strlen30(z) + 1;
1097     memcpy(zType, pType->z, pType->n);
1098     zType[pType->n] = 0;
1099     sqlite3Dequote(zType);
1100     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1101     pCol->colFlags |= COLFLAG_HASTYPE;
1102   }
1103   p->nCol++;
1104   pParse->constraintName.n = 0;
1105 }
1106 
1107 /*
1108 ** This routine is called by the parser while in the middle of
1109 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1110 ** been seen on a column.  This routine sets the notNull flag on
1111 ** the column currently under construction.
1112 */
1113 void sqlite3AddNotNull(Parse *pParse, int onError){
1114   Table *p;
1115   p = pParse->pNewTable;
1116   if( p==0 || NEVER(p->nCol<1) ) return;
1117   p->aCol[p->nCol-1].notNull = (u8)onError;
1118 }
1119 
1120 /*
1121 ** Scan the column type name zType (length nType) and return the
1122 ** associated affinity type.
1123 **
1124 ** This routine does a case-independent search of zType for the
1125 ** substrings in the following table. If one of the substrings is
1126 ** found, the corresponding affinity is returned. If zType contains
1127 ** more than one of the substrings, entries toward the top of
1128 ** the table take priority. For example, if zType is 'BLOBINT',
1129 ** SQLITE_AFF_INTEGER is returned.
1130 **
1131 ** Substring     | Affinity
1132 ** --------------------------------
1133 ** 'INT'         | SQLITE_AFF_INTEGER
1134 ** 'CHAR'        | SQLITE_AFF_TEXT
1135 ** 'CLOB'        | SQLITE_AFF_TEXT
1136 ** 'TEXT'        | SQLITE_AFF_TEXT
1137 ** 'BLOB'        | SQLITE_AFF_BLOB
1138 ** 'REAL'        | SQLITE_AFF_REAL
1139 ** 'FLOA'        | SQLITE_AFF_REAL
1140 ** 'DOUB'        | SQLITE_AFF_REAL
1141 **
1142 ** If none of the substrings in the above table are found,
1143 ** SQLITE_AFF_NUMERIC is returned.
1144 */
1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1146   u32 h = 0;
1147   char aff = SQLITE_AFF_NUMERIC;
1148   const char *zChar = 0;
1149 
1150   assert( zIn!=0 );
1151   while( zIn[0] ){
1152     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1153     zIn++;
1154     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1155       aff = SQLITE_AFF_TEXT;
1156       zChar = zIn;
1157     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1158       aff = SQLITE_AFF_TEXT;
1159     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1160       aff = SQLITE_AFF_TEXT;
1161     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1162         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1163       aff = SQLITE_AFF_BLOB;
1164       if( zIn[0]=='(' ) zChar = zIn;
1165 #ifndef SQLITE_OMIT_FLOATING_POINT
1166     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1167         && aff==SQLITE_AFF_NUMERIC ){
1168       aff = SQLITE_AFF_REAL;
1169     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1170         && aff==SQLITE_AFF_NUMERIC ){
1171       aff = SQLITE_AFF_REAL;
1172     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1173         && aff==SQLITE_AFF_NUMERIC ){
1174       aff = SQLITE_AFF_REAL;
1175 #endif
1176     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1177       aff = SQLITE_AFF_INTEGER;
1178       break;
1179     }
1180   }
1181 
1182   /* If pszEst is not NULL, store an estimate of the field size.  The
1183   ** estimate is scaled so that the size of an integer is 1.  */
1184   if( pszEst ){
1185     *pszEst = 1;   /* default size is approx 4 bytes */
1186     if( aff<SQLITE_AFF_NUMERIC ){
1187       if( zChar ){
1188         while( zChar[0] ){
1189           if( sqlite3Isdigit(zChar[0]) ){
1190             int v = 0;
1191             sqlite3GetInt32(zChar, &v);
1192             v = v/4 + 1;
1193             if( v>255 ) v = 255;
1194             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1195             break;
1196           }
1197           zChar++;
1198         }
1199       }else{
1200         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1201       }
1202     }
1203   }
1204   return aff;
1205 }
1206 
1207 /*
1208 ** The expression is the default value for the most recently added column
1209 ** of the table currently under construction.
1210 **
1211 ** Default value expressions must be constant.  Raise an exception if this
1212 ** is not the case.
1213 **
1214 ** This routine is called by the parser while in the middle of
1215 ** parsing a CREATE TABLE statement.
1216 */
1217 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1218   Table *p;
1219   Column *pCol;
1220   sqlite3 *db = pParse->db;
1221   p = pParse->pNewTable;
1222   if( p!=0 ){
1223     pCol = &(p->aCol[p->nCol-1]);
1224     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1225       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1226           pCol->zName);
1227     }else{
1228       /* A copy of pExpr is used instead of the original, as pExpr contains
1229       ** tokens that point to volatile memory. The 'span' of the expression
1230       ** is required by pragma table_info.
1231       */
1232       Expr x;
1233       sqlite3ExprDelete(db, pCol->pDflt);
1234       memset(&x, 0, sizeof(x));
1235       x.op = TK_SPAN;
1236       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1237                                     (int)(pSpan->zEnd - pSpan->zStart));
1238       x.pLeft = pSpan->pExpr;
1239       x.flags = EP_Skip;
1240       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1241       sqlite3DbFree(db, x.u.zToken);
1242     }
1243   }
1244   sqlite3ExprDelete(db, pSpan->pExpr);
1245 }
1246 
1247 /*
1248 ** Backwards Compatibility Hack:
1249 **
1250 ** Historical versions of SQLite accepted strings as column names in
1251 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1252 **
1253 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1254 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1255 **
1256 ** This is goofy.  But to preserve backwards compatibility we continue to
1257 ** accept it.  This routine does the necessary conversion.  It converts
1258 ** the expression given in its argument from a TK_STRING into a TK_ID
1259 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1260 ** If the epxression is anything other than TK_STRING, the expression is
1261 ** unchanged.
1262 */
1263 static void sqlite3StringToId(Expr *p){
1264   if( p->op==TK_STRING ){
1265     p->op = TK_ID;
1266   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1267     p->pLeft->op = TK_ID;
1268   }
1269 }
1270 
1271 /*
1272 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1273 ** of columns that form the primary key.  If pList is NULL, then the
1274 ** most recently added column of the table is the primary key.
1275 **
1276 ** A table can have at most one primary key.  If the table already has
1277 ** a primary key (and this is the second primary key) then create an
1278 ** error.
1279 **
1280 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1281 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1282 ** field of the table under construction to be the index of the
1283 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1284 ** no INTEGER PRIMARY KEY.
1285 **
1286 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1287 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1288 */
1289 void sqlite3AddPrimaryKey(
1290   Parse *pParse,    /* Parsing context */
1291   ExprList *pList,  /* List of field names to be indexed */
1292   int onError,      /* What to do with a uniqueness conflict */
1293   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1294   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1295 ){
1296   Table *pTab = pParse->pNewTable;
1297   Column *pCol = 0;
1298   int iCol = -1, i;
1299   int nTerm;
1300   if( pTab==0 ) goto primary_key_exit;
1301   if( pTab->tabFlags & TF_HasPrimaryKey ){
1302     sqlite3ErrorMsg(pParse,
1303       "table \"%s\" has more than one primary key", pTab->zName);
1304     goto primary_key_exit;
1305   }
1306   pTab->tabFlags |= TF_HasPrimaryKey;
1307   if( pList==0 ){
1308     iCol = pTab->nCol - 1;
1309     pCol = &pTab->aCol[iCol];
1310     pCol->colFlags |= COLFLAG_PRIMKEY;
1311     nTerm = 1;
1312   }else{
1313     nTerm = pList->nExpr;
1314     for(i=0; i<nTerm; i++){
1315       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1316       assert( pCExpr!=0 );
1317       sqlite3StringToId(pCExpr);
1318       if( pCExpr->op==TK_ID ){
1319         const char *zCName = pCExpr->u.zToken;
1320         for(iCol=0; iCol<pTab->nCol; iCol++){
1321           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1322             pCol = &pTab->aCol[iCol];
1323             pCol->colFlags |= COLFLAG_PRIMKEY;
1324             break;
1325           }
1326         }
1327       }
1328     }
1329   }
1330   if( nTerm==1
1331    && pCol
1332    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1333    && sortOrder!=SQLITE_SO_DESC
1334   ){
1335     pTab->iPKey = iCol;
1336     pTab->keyConf = (u8)onError;
1337     assert( autoInc==0 || autoInc==1 );
1338     pTab->tabFlags |= autoInc*TF_Autoincrement;
1339     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1340   }else if( autoInc ){
1341 #ifndef SQLITE_OMIT_AUTOINCREMENT
1342     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1343        "INTEGER PRIMARY KEY");
1344 #endif
1345   }else{
1346     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1347                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1348     pList = 0;
1349   }
1350 
1351 primary_key_exit:
1352   sqlite3ExprListDelete(pParse->db, pList);
1353   return;
1354 }
1355 
1356 /*
1357 ** Add a new CHECK constraint to the table currently under construction.
1358 */
1359 void sqlite3AddCheckConstraint(
1360   Parse *pParse,    /* Parsing context */
1361   Expr *pCheckExpr  /* The check expression */
1362 ){
1363 #ifndef SQLITE_OMIT_CHECK
1364   Table *pTab = pParse->pNewTable;
1365   sqlite3 *db = pParse->db;
1366   if( pTab && !IN_DECLARE_VTAB
1367    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1368   ){
1369     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1370     if( pParse->constraintName.n ){
1371       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1372     }
1373   }else
1374 #endif
1375   {
1376     sqlite3ExprDelete(pParse->db, pCheckExpr);
1377   }
1378 }
1379 
1380 /*
1381 ** Set the collation function of the most recently parsed table column
1382 ** to the CollSeq given.
1383 */
1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1385   Table *p;
1386   int i;
1387   char *zColl;              /* Dequoted name of collation sequence */
1388   sqlite3 *db;
1389 
1390   if( (p = pParse->pNewTable)==0 ) return;
1391   i = p->nCol-1;
1392   db = pParse->db;
1393   zColl = sqlite3NameFromToken(db, pToken);
1394   if( !zColl ) return;
1395 
1396   if( sqlite3LocateCollSeq(pParse, zColl) ){
1397     Index *pIdx;
1398     sqlite3DbFree(db, p->aCol[i].zColl);
1399     p->aCol[i].zColl = zColl;
1400 
1401     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1402     ** then an index may have been created on this column before the
1403     ** collation type was added. Correct this if it is the case.
1404     */
1405     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1406       assert( pIdx->nKeyCol==1 );
1407       if( pIdx->aiColumn[0]==i ){
1408         pIdx->azColl[0] = p->aCol[i].zColl;
1409       }
1410     }
1411   }else{
1412     sqlite3DbFree(db, zColl);
1413   }
1414 }
1415 
1416 /*
1417 ** This function returns the collation sequence for database native text
1418 ** encoding identified by the string zName, length nName.
1419 **
1420 ** If the requested collation sequence is not available, or not available
1421 ** in the database native encoding, the collation factory is invoked to
1422 ** request it. If the collation factory does not supply such a sequence,
1423 ** and the sequence is available in another text encoding, then that is
1424 ** returned instead.
1425 **
1426 ** If no versions of the requested collations sequence are available, or
1427 ** another error occurs, NULL is returned and an error message written into
1428 ** pParse.
1429 **
1430 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1431 ** invokes the collation factory if the named collation cannot be found
1432 ** and generates an error message.
1433 **
1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1435 */
1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1437   sqlite3 *db = pParse->db;
1438   u8 enc = ENC(db);
1439   u8 initbusy = db->init.busy;
1440   CollSeq *pColl;
1441 
1442   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1443   if( !initbusy && (!pColl || !pColl->xCmp) ){
1444     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1445   }
1446 
1447   return pColl;
1448 }
1449 
1450 
1451 /*
1452 ** Generate code that will increment the schema cookie.
1453 **
1454 ** The schema cookie is used to determine when the schema for the
1455 ** database changes.  After each schema change, the cookie value
1456 ** changes.  When a process first reads the schema it records the
1457 ** cookie.  Thereafter, whenever it goes to access the database,
1458 ** it checks the cookie to make sure the schema has not changed
1459 ** since it was last read.
1460 **
1461 ** This plan is not completely bullet-proof.  It is possible for
1462 ** the schema to change multiple times and for the cookie to be
1463 ** set back to prior value.  But schema changes are infrequent
1464 ** and the probability of hitting the same cookie value is only
1465 ** 1 chance in 2^32.  So we're safe enough.
1466 **
1467 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1468 ** the schema-version whenever the schema changes.
1469 */
1470 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1471   sqlite3 *db = pParse->db;
1472   Vdbe *v = pParse->pVdbe;
1473   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1474   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1475                     db->aDb[iDb].pSchema->schema_cookie+1);
1476 }
1477 
1478 /*
1479 ** Measure the number of characters needed to output the given
1480 ** identifier.  The number returned includes any quotes used
1481 ** but does not include the null terminator.
1482 **
1483 ** The estimate is conservative.  It might be larger that what is
1484 ** really needed.
1485 */
1486 static int identLength(const char *z){
1487   int n;
1488   for(n=0; *z; n++, z++){
1489     if( *z=='"' ){ n++; }
1490   }
1491   return n + 2;
1492 }
1493 
1494 /*
1495 ** The first parameter is a pointer to an output buffer. The second
1496 ** parameter is a pointer to an integer that contains the offset at
1497 ** which to write into the output buffer. This function copies the
1498 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1499 ** to the specified offset in the buffer and updates *pIdx to refer
1500 ** to the first byte after the last byte written before returning.
1501 **
1502 ** If the string zSignedIdent consists entirely of alpha-numeric
1503 ** characters, does not begin with a digit and is not an SQL keyword,
1504 ** then it is copied to the output buffer exactly as it is. Otherwise,
1505 ** it is quoted using double-quotes.
1506 */
1507 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1508   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1509   int i, j, needQuote;
1510   i = *pIdx;
1511 
1512   for(j=0; zIdent[j]; j++){
1513     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1514   }
1515   needQuote = sqlite3Isdigit(zIdent[0])
1516             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1517             || zIdent[j]!=0
1518             || j==0;
1519 
1520   if( needQuote ) z[i++] = '"';
1521   for(j=0; zIdent[j]; j++){
1522     z[i++] = zIdent[j];
1523     if( zIdent[j]=='"' ) z[i++] = '"';
1524   }
1525   if( needQuote ) z[i++] = '"';
1526   z[i] = 0;
1527   *pIdx = i;
1528 }
1529 
1530 /*
1531 ** Generate a CREATE TABLE statement appropriate for the given
1532 ** table.  Memory to hold the text of the statement is obtained
1533 ** from sqliteMalloc() and must be freed by the calling function.
1534 */
1535 static char *createTableStmt(sqlite3 *db, Table *p){
1536   int i, k, n;
1537   char *zStmt;
1538   char *zSep, *zSep2, *zEnd;
1539   Column *pCol;
1540   n = 0;
1541   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1542     n += identLength(pCol->zName) + 5;
1543   }
1544   n += identLength(p->zName);
1545   if( n<50 ){
1546     zSep = "";
1547     zSep2 = ",";
1548     zEnd = ")";
1549   }else{
1550     zSep = "\n  ";
1551     zSep2 = ",\n  ";
1552     zEnd = "\n)";
1553   }
1554   n += 35 + 6*p->nCol;
1555   zStmt = sqlite3DbMallocRaw(0, n);
1556   if( zStmt==0 ){
1557     sqlite3OomFault(db);
1558     return 0;
1559   }
1560   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1561   k = sqlite3Strlen30(zStmt);
1562   identPut(zStmt, &k, p->zName);
1563   zStmt[k++] = '(';
1564   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1565     static const char * const azType[] = {
1566         /* SQLITE_AFF_BLOB    */ "",
1567         /* SQLITE_AFF_TEXT    */ " TEXT",
1568         /* SQLITE_AFF_NUMERIC */ " NUM",
1569         /* SQLITE_AFF_INTEGER */ " INT",
1570         /* SQLITE_AFF_REAL    */ " REAL"
1571     };
1572     int len;
1573     const char *zType;
1574 
1575     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1576     k += sqlite3Strlen30(&zStmt[k]);
1577     zSep = zSep2;
1578     identPut(zStmt, &k, pCol->zName);
1579     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1580     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1581     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1582     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1583     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1584     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1585     testcase( pCol->affinity==SQLITE_AFF_REAL );
1586 
1587     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1588     len = sqlite3Strlen30(zType);
1589     assert( pCol->affinity==SQLITE_AFF_BLOB
1590             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1591     memcpy(&zStmt[k], zType, len);
1592     k += len;
1593     assert( k<=n );
1594   }
1595   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1596   return zStmt;
1597 }
1598 
1599 /*
1600 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1601 ** on success and SQLITE_NOMEM on an OOM error.
1602 */
1603 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1604   char *zExtra;
1605   int nByte;
1606   if( pIdx->nColumn>=N ) return SQLITE_OK;
1607   assert( pIdx->isResized==0 );
1608   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1609   zExtra = sqlite3DbMallocZero(db, nByte);
1610   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1611   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1612   pIdx->azColl = (const char**)zExtra;
1613   zExtra += sizeof(char*)*N;
1614   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1615   pIdx->aiColumn = (i16*)zExtra;
1616   zExtra += sizeof(i16)*N;
1617   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1618   pIdx->aSortOrder = (u8*)zExtra;
1619   pIdx->nColumn = N;
1620   pIdx->isResized = 1;
1621   return SQLITE_OK;
1622 }
1623 
1624 /*
1625 ** Estimate the total row width for a table.
1626 */
1627 static void estimateTableWidth(Table *pTab){
1628   unsigned wTable = 0;
1629   const Column *pTabCol;
1630   int i;
1631   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1632     wTable += pTabCol->szEst;
1633   }
1634   if( pTab->iPKey<0 ) wTable++;
1635   pTab->szTabRow = sqlite3LogEst(wTable*4);
1636 }
1637 
1638 /*
1639 ** Estimate the average size of a row for an index.
1640 */
1641 static void estimateIndexWidth(Index *pIdx){
1642   unsigned wIndex = 0;
1643   int i;
1644   const Column *aCol = pIdx->pTable->aCol;
1645   for(i=0; i<pIdx->nColumn; i++){
1646     i16 x = pIdx->aiColumn[i];
1647     assert( x<pIdx->pTable->nCol );
1648     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1649   }
1650   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1651 }
1652 
1653 /* Return true if value x is found any of the first nCol entries of aiCol[]
1654 */
1655 static int hasColumn(const i16 *aiCol, int nCol, int x){
1656   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1657   return 0;
1658 }
1659 
1660 /*
1661 ** This routine runs at the end of parsing a CREATE TABLE statement that
1662 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1663 ** internal schema data structures and the generated VDBE code so that they
1664 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1665 ** Changes include:
1666 **
1667 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1668 **     (2)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1669 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1670 **          data storage is a covering index btree.
1671 **     (3)  Bypass the creation of the sqlite_master table entry
1672 **          for the PRIMARY KEY as the primary key index is now
1673 **          identified by the sqlite_master table entry of the table itself.
1674 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1675 **          schema to the rootpage from the main table.
1676 **     (5)  Add all table columns to the PRIMARY KEY Index object
1677 **          so that the PRIMARY KEY is a covering index.  The surplus
1678 **          columns are part of KeyInfo.nXField and are not used for
1679 **          sorting or lookup or uniqueness checks.
1680 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1681 **          indices with the PRIMARY KEY columns.
1682 **
1683 ** For virtual tables, only (1) is performed.
1684 */
1685 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1686   Index *pIdx;
1687   Index *pPk;
1688   int nPk;
1689   int i, j;
1690   sqlite3 *db = pParse->db;
1691   Vdbe *v = pParse->pVdbe;
1692 
1693   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1694   */
1695   if( !db->init.imposterTable ){
1696     for(i=0; i<pTab->nCol; i++){
1697       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1698         pTab->aCol[i].notNull = OE_Abort;
1699       }
1700     }
1701   }
1702 
1703   /* The remaining transformations only apply to b-tree tables, not to
1704   ** virtual tables */
1705   if( IN_DECLARE_VTAB ) return;
1706 
1707   /* Convert the OP_CreateTable opcode that would normally create the
1708   ** root-page for the table into an OP_CreateIndex opcode.  The index
1709   ** created will become the PRIMARY KEY index.
1710   */
1711   if( pParse->addrCrTab ){
1712     assert( v );
1713     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1714   }
1715 
1716   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1717   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1718   */
1719   if( pTab->iPKey>=0 ){
1720     ExprList *pList;
1721     Token ipkToken;
1722     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1723     pList = sqlite3ExprListAppend(pParse, 0,
1724                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1725     if( pList==0 ) return;
1726     pList->a[0].sortOrder = pParse->iPkSortOrder;
1727     assert( pParse->pNewTable==pTab );
1728     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1729                        SQLITE_IDXTYPE_PRIMARYKEY);
1730     if( db->mallocFailed ) return;
1731     pPk = sqlite3PrimaryKeyIndex(pTab);
1732     pTab->iPKey = -1;
1733   }else{
1734     pPk = sqlite3PrimaryKeyIndex(pTab);
1735 
1736     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1737     ** table entry. This is only required if currently generating VDBE
1738     ** code for a CREATE TABLE (not when parsing one as part of reading
1739     ** a database schema).  */
1740     if( v ){
1741       assert( db->init.busy==0 );
1742       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1743     }
1744 
1745     /*
1746     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1747     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1748     ** code assumes the PRIMARY KEY contains no repeated columns.
1749     */
1750     for(i=j=1; i<pPk->nKeyCol; i++){
1751       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1752         pPk->nColumn--;
1753       }else{
1754         pPk->aiColumn[j++] = pPk->aiColumn[i];
1755       }
1756     }
1757     pPk->nKeyCol = j;
1758   }
1759   assert( pPk!=0 );
1760   pPk->isCovering = 1;
1761   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1762   nPk = pPk->nKeyCol;
1763 
1764   /* The root page of the PRIMARY KEY is the table root page */
1765   pPk->tnum = pTab->tnum;
1766 
1767   /* Update the in-memory representation of all UNIQUE indices by converting
1768   ** the final rowid column into one or more columns of the PRIMARY KEY.
1769   */
1770   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1771     int n;
1772     if( IsPrimaryKeyIndex(pIdx) ) continue;
1773     for(i=n=0; i<nPk; i++){
1774       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1775     }
1776     if( n==0 ){
1777       /* This index is a superset of the primary key */
1778       pIdx->nColumn = pIdx->nKeyCol;
1779       continue;
1780     }
1781     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1782     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1783       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1784         pIdx->aiColumn[j] = pPk->aiColumn[i];
1785         pIdx->azColl[j] = pPk->azColl[i];
1786         j++;
1787       }
1788     }
1789     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1790     assert( pIdx->nColumn>=j );
1791   }
1792 
1793   /* Add all table columns to the PRIMARY KEY index
1794   */
1795   if( nPk<pTab->nCol ){
1796     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1797     for(i=0, j=nPk; i<pTab->nCol; i++){
1798       if( !hasColumn(pPk->aiColumn, j, i) ){
1799         assert( j<pPk->nColumn );
1800         pPk->aiColumn[j] = i;
1801         pPk->azColl[j] = sqlite3StrBINARY;
1802         j++;
1803       }
1804     }
1805     assert( pPk->nColumn==j );
1806     assert( pTab->nCol==j );
1807   }else{
1808     pPk->nColumn = pTab->nCol;
1809   }
1810 }
1811 
1812 /*
1813 ** This routine is called to report the final ")" that terminates
1814 ** a CREATE TABLE statement.
1815 **
1816 ** The table structure that other action routines have been building
1817 ** is added to the internal hash tables, assuming no errors have
1818 ** occurred.
1819 **
1820 ** An entry for the table is made in the master table on disk, unless
1821 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1822 ** it means we are reading the sqlite_master table because we just
1823 ** connected to the database or because the sqlite_master table has
1824 ** recently changed, so the entry for this table already exists in
1825 ** the sqlite_master table.  We do not want to create it again.
1826 **
1827 ** If the pSelect argument is not NULL, it means that this routine
1828 ** was called to create a table generated from a
1829 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1830 ** the new table will match the result set of the SELECT.
1831 */
1832 void sqlite3EndTable(
1833   Parse *pParse,          /* Parse context */
1834   Token *pCons,           /* The ',' token after the last column defn. */
1835   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1836   u8 tabOpts,             /* Extra table options. Usually 0. */
1837   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1838 ){
1839   Table *p;                 /* The new table */
1840   sqlite3 *db = pParse->db; /* The database connection */
1841   int iDb;                  /* Database in which the table lives */
1842   Index *pIdx;              /* An implied index of the table */
1843 
1844   if( pEnd==0 && pSelect==0 ){
1845     return;
1846   }
1847   assert( !db->mallocFailed );
1848   p = pParse->pNewTable;
1849   if( p==0 ) return;
1850 
1851   assert( !db->init.busy || !pSelect );
1852 
1853   /* If the db->init.busy is 1 it means we are reading the SQL off the
1854   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1855   ** So do not write to the disk again.  Extract the root page number
1856   ** for the table from the db->init.newTnum field.  (The page number
1857   ** should have been put there by the sqliteOpenCb routine.)
1858   **
1859   ** If the root page number is 1, that means this is the sqlite_master
1860   ** table itself.  So mark it read-only.
1861   */
1862   if( db->init.busy ){
1863     p->tnum = db->init.newTnum;
1864     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1865   }
1866 
1867   /* Special processing for WITHOUT ROWID Tables */
1868   if( tabOpts & TF_WithoutRowid ){
1869     if( (p->tabFlags & TF_Autoincrement) ){
1870       sqlite3ErrorMsg(pParse,
1871           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1872       return;
1873     }
1874     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1875       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1876     }else{
1877       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1878       convertToWithoutRowidTable(pParse, p);
1879     }
1880   }
1881 
1882   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1883 
1884 #ifndef SQLITE_OMIT_CHECK
1885   /* Resolve names in all CHECK constraint expressions.
1886   */
1887   if( p->pCheck ){
1888     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1889   }
1890 #endif /* !defined(SQLITE_OMIT_CHECK) */
1891 
1892   /* Estimate the average row size for the table and for all implied indices */
1893   estimateTableWidth(p);
1894   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1895     estimateIndexWidth(pIdx);
1896   }
1897 
1898   /* If not initializing, then create a record for the new table
1899   ** in the SQLITE_MASTER table of the database.
1900   **
1901   ** If this is a TEMPORARY table, write the entry into the auxiliary
1902   ** file instead of into the main database file.
1903   */
1904   if( !db->init.busy ){
1905     int n;
1906     Vdbe *v;
1907     char *zType;    /* "view" or "table" */
1908     char *zType2;   /* "VIEW" or "TABLE" */
1909     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1910 
1911     v = sqlite3GetVdbe(pParse);
1912     if( NEVER(v==0) ) return;
1913 
1914     sqlite3VdbeAddOp1(v, OP_Close, 0);
1915 
1916     /*
1917     ** Initialize zType for the new view or table.
1918     */
1919     if( p->pSelect==0 ){
1920       /* A regular table */
1921       zType = "table";
1922       zType2 = "TABLE";
1923 #ifndef SQLITE_OMIT_VIEW
1924     }else{
1925       /* A view */
1926       zType = "view";
1927       zType2 = "VIEW";
1928 #endif
1929     }
1930 
1931     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1932     ** statement to populate the new table. The root-page number for the
1933     ** new table is in register pParse->regRoot.
1934     **
1935     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1936     ** suitable state to query for the column names and types to be used
1937     ** by the new table.
1938     **
1939     ** A shared-cache write-lock is not required to write to the new table,
1940     ** as a schema-lock must have already been obtained to create it. Since
1941     ** a schema-lock excludes all other database users, the write-lock would
1942     ** be redundant.
1943     */
1944     if( pSelect ){
1945       SelectDest dest;    /* Where the SELECT should store results */
1946       int regYield;       /* Register holding co-routine entry-point */
1947       int addrTop;        /* Top of the co-routine */
1948       int regRec;         /* A record to be insert into the new table */
1949       int regRowid;       /* Rowid of the next row to insert */
1950       int addrInsLoop;    /* Top of the loop for inserting rows */
1951       Table *pSelTab;     /* A table that describes the SELECT results */
1952 
1953       regYield = ++pParse->nMem;
1954       regRec = ++pParse->nMem;
1955       regRowid = ++pParse->nMem;
1956       assert(pParse->nTab==1);
1957       sqlite3MayAbort(pParse);
1958       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1959       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1960       pParse->nTab = 2;
1961       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1962       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1963       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1964       sqlite3Select(pParse, pSelect, &dest);
1965       sqlite3VdbeEndCoroutine(v, regYield);
1966       sqlite3VdbeJumpHere(v, addrTop - 1);
1967       if( pParse->nErr ) return;
1968       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1969       if( pSelTab==0 ) return;
1970       assert( p->aCol==0 );
1971       p->nCol = pSelTab->nCol;
1972       p->aCol = pSelTab->aCol;
1973       pSelTab->nCol = 0;
1974       pSelTab->aCol = 0;
1975       sqlite3DeleteTable(db, pSelTab);
1976       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1977       VdbeCoverage(v);
1978       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1979       sqlite3TableAffinity(v, p, 0);
1980       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1981       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1982       sqlite3VdbeGoto(v, addrInsLoop);
1983       sqlite3VdbeJumpHere(v, addrInsLoop);
1984       sqlite3VdbeAddOp1(v, OP_Close, 1);
1985     }
1986 
1987     /* Compute the complete text of the CREATE statement */
1988     if( pSelect ){
1989       zStmt = createTableStmt(db, p);
1990     }else{
1991       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1992       n = (int)(pEnd2->z - pParse->sNameToken.z);
1993       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1994       zStmt = sqlite3MPrintf(db,
1995           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1996       );
1997     }
1998 
1999     /* A slot for the record has already been allocated in the
2000     ** SQLITE_MASTER table.  We just need to update that slot with all
2001     ** the information we've collected.
2002     */
2003     sqlite3NestedParse(pParse,
2004       "UPDATE %Q.%s "
2005          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2006        "WHERE rowid=#%d",
2007       db->aDb[iDb].zDbSName, MASTER_NAME,
2008       zType,
2009       p->zName,
2010       p->zName,
2011       pParse->regRoot,
2012       zStmt,
2013       pParse->regRowid
2014     );
2015     sqlite3DbFree(db, zStmt);
2016     sqlite3ChangeCookie(pParse, iDb);
2017 
2018 #ifndef SQLITE_OMIT_AUTOINCREMENT
2019     /* Check to see if we need to create an sqlite_sequence table for
2020     ** keeping track of autoincrement keys.
2021     */
2022     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2023       Db *pDb = &db->aDb[iDb];
2024       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2025       if( pDb->pSchema->pSeqTab==0 ){
2026         sqlite3NestedParse(pParse,
2027           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2028           pDb->zDbSName
2029         );
2030       }
2031     }
2032 #endif
2033 
2034     /* Reparse everything to update our internal data structures */
2035     sqlite3VdbeAddParseSchemaOp(v, iDb,
2036            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2037   }
2038 
2039 
2040   /* Add the table to the in-memory representation of the database.
2041   */
2042   if( db->init.busy ){
2043     Table *pOld;
2044     Schema *pSchema = p->pSchema;
2045     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2046     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2047     if( pOld ){
2048       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2049       sqlite3OomFault(db);
2050       return;
2051     }
2052     pParse->pNewTable = 0;
2053     db->flags |= SQLITE_InternChanges;
2054 
2055 #ifndef SQLITE_OMIT_ALTERTABLE
2056     if( !p->pSelect ){
2057       const char *zName = (const char *)pParse->sNameToken.z;
2058       int nName;
2059       assert( !pSelect && pCons && pEnd );
2060       if( pCons->z==0 ){
2061         pCons = pEnd;
2062       }
2063       nName = (int)((const char *)pCons->z - zName);
2064       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2065     }
2066 #endif
2067   }
2068 }
2069 
2070 #ifndef SQLITE_OMIT_VIEW
2071 /*
2072 ** The parser calls this routine in order to create a new VIEW
2073 */
2074 void sqlite3CreateView(
2075   Parse *pParse,     /* The parsing context */
2076   Token *pBegin,     /* The CREATE token that begins the statement */
2077   Token *pName1,     /* The token that holds the name of the view */
2078   Token *pName2,     /* The token that holds the name of the view */
2079   ExprList *pCNames, /* Optional list of view column names */
2080   Select *pSelect,   /* A SELECT statement that will become the new view */
2081   int isTemp,        /* TRUE for a TEMPORARY view */
2082   int noErr          /* Suppress error messages if VIEW already exists */
2083 ){
2084   Table *p;
2085   int n;
2086   const char *z;
2087   Token sEnd;
2088   DbFixer sFix;
2089   Token *pName = 0;
2090   int iDb;
2091   sqlite3 *db = pParse->db;
2092 
2093   if( pParse->nVar>0 ){
2094     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2095     goto create_view_fail;
2096   }
2097   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2098   p = pParse->pNewTable;
2099   if( p==0 || pParse->nErr ) goto create_view_fail;
2100   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2101   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2102   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2103   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2104 
2105   /* Make a copy of the entire SELECT statement that defines the view.
2106   ** This will force all the Expr.token.z values to be dynamically
2107   ** allocated rather than point to the input string - which means that
2108   ** they will persist after the current sqlite3_exec() call returns.
2109   */
2110   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2111   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2112   if( db->mallocFailed ) goto create_view_fail;
2113 
2114   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2115   ** the end.
2116   */
2117   sEnd = pParse->sLastToken;
2118   assert( sEnd.z[0]!=0 );
2119   if( sEnd.z[0]!=';' ){
2120     sEnd.z += sEnd.n;
2121   }
2122   sEnd.n = 0;
2123   n = (int)(sEnd.z - pBegin->z);
2124   assert( n>0 );
2125   z = pBegin->z;
2126   while( sqlite3Isspace(z[n-1]) ){ n--; }
2127   sEnd.z = &z[n-1];
2128   sEnd.n = 1;
2129 
2130   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2131   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2132 
2133 create_view_fail:
2134   sqlite3SelectDelete(db, pSelect);
2135   sqlite3ExprListDelete(db, pCNames);
2136   return;
2137 }
2138 #endif /* SQLITE_OMIT_VIEW */
2139 
2140 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2141 /*
2142 ** The Table structure pTable is really a VIEW.  Fill in the names of
2143 ** the columns of the view in the pTable structure.  Return the number
2144 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2145 */
2146 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2147   Table *pSelTab;   /* A fake table from which we get the result set */
2148   Select *pSel;     /* Copy of the SELECT that implements the view */
2149   int nErr = 0;     /* Number of errors encountered */
2150   int n;            /* Temporarily holds the number of cursors assigned */
2151   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2152 #ifndef SQLITE_OMIT_AUTHORIZATION
2153   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2154 #endif
2155 
2156   assert( pTable );
2157 
2158 #ifndef SQLITE_OMIT_VIRTUALTABLE
2159   if( sqlite3VtabCallConnect(pParse, pTable) ){
2160     return SQLITE_ERROR;
2161   }
2162   if( IsVirtual(pTable) ) return 0;
2163 #endif
2164 
2165 #ifndef SQLITE_OMIT_VIEW
2166   /* A positive nCol means the columns names for this view are
2167   ** already known.
2168   */
2169   if( pTable->nCol>0 ) return 0;
2170 
2171   /* A negative nCol is a special marker meaning that we are currently
2172   ** trying to compute the column names.  If we enter this routine with
2173   ** a negative nCol, it means two or more views form a loop, like this:
2174   **
2175   **     CREATE VIEW one AS SELECT * FROM two;
2176   **     CREATE VIEW two AS SELECT * FROM one;
2177   **
2178   ** Actually, the error above is now caught prior to reaching this point.
2179   ** But the following test is still important as it does come up
2180   ** in the following:
2181   **
2182   **     CREATE TABLE main.ex1(a);
2183   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2184   **     SELECT * FROM temp.ex1;
2185   */
2186   if( pTable->nCol<0 ){
2187     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2188     return 1;
2189   }
2190   assert( pTable->nCol>=0 );
2191 
2192   /* If we get this far, it means we need to compute the table names.
2193   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2194   ** "*" elements in the results set of the view and will assign cursors
2195   ** to the elements of the FROM clause.  But we do not want these changes
2196   ** to be permanent.  So the computation is done on a copy of the SELECT
2197   ** statement that defines the view.
2198   */
2199   assert( pTable->pSelect );
2200   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2201   if( pSel ){
2202     n = pParse->nTab;
2203     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2204     pTable->nCol = -1;
2205     db->lookaside.bDisable++;
2206 #ifndef SQLITE_OMIT_AUTHORIZATION
2207     xAuth = db->xAuth;
2208     db->xAuth = 0;
2209     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2210     db->xAuth = xAuth;
2211 #else
2212     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2213 #endif
2214     pParse->nTab = n;
2215     if( pTable->pCheck ){
2216       /* CREATE VIEW name(arglist) AS ...
2217       ** The names of the columns in the table are taken from
2218       ** arglist which is stored in pTable->pCheck.  The pCheck field
2219       ** normally holds CHECK constraints on an ordinary table, but for
2220       ** a VIEW it holds the list of column names.
2221       */
2222       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2223                                  &pTable->nCol, &pTable->aCol);
2224       if( db->mallocFailed==0
2225        && pParse->nErr==0
2226        && pTable->nCol==pSel->pEList->nExpr
2227       ){
2228         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2229       }
2230     }else if( pSelTab ){
2231       /* CREATE VIEW name AS...  without an argument list.  Construct
2232       ** the column names from the SELECT statement that defines the view.
2233       */
2234       assert( pTable->aCol==0 );
2235       pTable->nCol = pSelTab->nCol;
2236       pTable->aCol = pSelTab->aCol;
2237       pSelTab->nCol = 0;
2238       pSelTab->aCol = 0;
2239       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2240     }else{
2241       pTable->nCol = 0;
2242       nErr++;
2243     }
2244     sqlite3DeleteTable(db, pSelTab);
2245     sqlite3SelectDelete(db, pSel);
2246     db->lookaside.bDisable--;
2247   } else {
2248     nErr++;
2249   }
2250   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2251 #endif /* SQLITE_OMIT_VIEW */
2252   return nErr;
2253 }
2254 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2255 
2256 #ifndef SQLITE_OMIT_VIEW
2257 /*
2258 ** Clear the column names from every VIEW in database idx.
2259 */
2260 static void sqliteViewResetAll(sqlite3 *db, int idx){
2261   HashElem *i;
2262   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2263   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2264   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2265     Table *pTab = sqliteHashData(i);
2266     if( pTab->pSelect ){
2267       sqlite3DeleteColumnNames(db, pTab);
2268       pTab->aCol = 0;
2269       pTab->nCol = 0;
2270     }
2271   }
2272   DbClearProperty(db, idx, DB_UnresetViews);
2273 }
2274 #else
2275 # define sqliteViewResetAll(A,B)
2276 #endif /* SQLITE_OMIT_VIEW */
2277 
2278 /*
2279 ** This function is called by the VDBE to adjust the internal schema
2280 ** used by SQLite when the btree layer moves a table root page. The
2281 ** root-page of a table or index in database iDb has changed from iFrom
2282 ** to iTo.
2283 **
2284 ** Ticket #1728:  The symbol table might still contain information
2285 ** on tables and/or indices that are the process of being deleted.
2286 ** If you are unlucky, one of those deleted indices or tables might
2287 ** have the same rootpage number as the real table or index that is
2288 ** being moved.  So we cannot stop searching after the first match
2289 ** because the first match might be for one of the deleted indices
2290 ** or tables and not the table/index that is actually being moved.
2291 ** We must continue looping until all tables and indices with
2292 ** rootpage==iFrom have been converted to have a rootpage of iTo
2293 ** in order to be certain that we got the right one.
2294 */
2295 #ifndef SQLITE_OMIT_AUTOVACUUM
2296 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2297   HashElem *pElem;
2298   Hash *pHash;
2299   Db *pDb;
2300 
2301   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2302   pDb = &db->aDb[iDb];
2303   pHash = &pDb->pSchema->tblHash;
2304   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2305     Table *pTab = sqliteHashData(pElem);
2306     if( pTab->tnum==iFrom ){
2307       pTab->tnum = iTo;
2308     }
2309   }
2310   pHash = &pDb->pSchema->idxHash;
2311   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2312     Index *pIdx = sqliteHashData(pElem);
2313     if( pIdx->tnum==iFrom ){
2314       pIdx->tnum = iTo;
2315     }
2316   }
2317 }
2318 #endif
2319 
2320 /*
2321 ** Write code to erase the table with root-page iTable from database iDb.
2322 ** Also write code to modify the sqlite_master table and internal schema
2323 ** if a root-page of another table is moved by the btree-layer whilst
2324 ** erasing iTable (this can happen with an auto-vacuum database).
2325 */
2326 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2327   Vdbe *v = sqlite3GetVdbe(pParse);
2328   int r1 = sqlite3GetTempReg(pParse);
2329   assert( iTable>1 );
2330   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2331   sqlite3MayAbort(pParse);
2332 #ifndef SQLITE_OMIT_AUTOVACUUM
2333   /* OP_Destroy stores an in integer r1. If this integer
2334   ** is non-zero, then it is the root page number of a table moved to
2335   ** location iTable. The following code modifies the sqlite_master table to
2336   ** reflect this.
2337   **
2338   ** The "#NNN" in the SQL is a special constant that means whatever value
2339   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2340   ** token for additional information.
2341   */
2342   sqlite3NestedParse(pParse,
2343      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2344      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2345 #endif
2346   sqlite3ReleaseTempReg(pParse, r1);
2347 }
2348 
2349 /*
2350 ** Write VDBE code to erase table pTab and all associated indices on disk.
2351 ** Code to update the sqlite_master tables and internal schema definitions
2352 ** in case a root-page belonging to another table is moved by the btree layer
2353 ** is also added (this can happen with an auto-vacuum database).
2354 */
2355 static void destroyTable(Parse *pParse, Table *pTab){
2356 #ifdef SQLITE_OMIT_AUTOVACUUM
2357   Index *pIdx;
2358   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2359   destroyRootPage(pParse, pTab->tnum, iDb);
2360   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2361     destroyRootPage(pParse, pIdx->tnum, iDb);
2362   }
2363 #else
2364   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2365   ** is not defined), then it is important to call OP_Destroy on the
2366   ** table and index root-pages in order, starting with the numerically
2367   ** largest root-page number. This guarantees that none of the root-pages
2368   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2369   ** following were coded:
2370   **
2371   ** OP_Destroy 4 0
2372   ** ...
2373   ** OP_Destroy 5 0
2374   **
2375   ** and root page 5 happened to be the largest root-page number in the
2376   ** database, then root page 5 would be moved to page 4 by the
2377   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2378   ** a free-list page.
2379   */
2380   int iTab = pTab->tnum;
2381   int iDestroyed = 0;
2382 
2383   while( 1 ){
2384     Index *pIdx;
2385     int iLargest = 0;
2386 
2387     if( iDestroyed==0 || iTab<iDestroyed ){
2388       iLargest = iTab;
2389     }
2390     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2391       int iIdx = pIdx->tnum;
2392       assert( pIdx->pSchema==pTab->pSchema );
2393       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2394         iLargest = iIdx;
2395       }
2396     }
2397     if( iLargest==0 ){
2398       return;
2399     }else{
2400       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2401       assert( iDb>=0 && iDb<pParse->db->nDb );
2402       destroyRootPage(pParse, iLargest, iDb);
2403       iDestroyed = iLargest;
2404     }
2405   }
2406 #endif
2407 }
2408 
2409 /*
2410 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2411 ** after a DROP INDEX or DROP TABLE command.
2412 */
2413 static void sqlite3ClearStatTables(
2414   Parse *pParse,         /* The parsing context */
2415   int iDb,               /* The database number */
2416   const char *zType,     /* "idx" or "tbl" */
2417   const char *zName      /* Name of index or table */
2418 ){
2419   int i;
2420   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2421   for(i=1; i<=4; i++){
2422     char zTab[24];
2423     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2424     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2425       sqlite3NestedParse(pParse,
2426         "DELETE FROM %Q.%s WHERE %s=%Q",
2427         zDbName, zTab, zType, zName
2428       );
2429     }
2430   }
2431 }
2432 
2433 /*
2434 ** Generate code to drop a table.
2435 */
2436 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2437   Vdbe *v;
2438   sqlite3 *db = pParse->db;
2439   Trigger *pTrigger;
2440   Db *pDb = &db->aDb[iDb];
2441 
2442   v = sqlite3GetVdbe(pParse);
2443   assert( v!=0 );
2444   sqlite3BeginWriteOperation(pParse, 1, iDb);
2445 
2446 #ifndef SQLITE_OMIT_VIRTUALTABLE
2447   if( IsVirtual(pTab) ){
2448     sqlite3VdbeAddOp0(v, OP_VBegin);
2449   }
2450 #endif
2451 
2452   /* Drop all triggers associated with the table being dropped. Code
2453   ** is generated to remove entries from sqlite_master and/or
2454   ** sqlite_temp_master if required.
2455   */
2456   pTrigger = sqlite3TriggerList(pParse, pTab);
2457   while( pTrigger ){
2458     assert( pTrigger->pSchema==pTab->pSchema ||
2459         pTrigger->pSchema==db->aDb[1].pSchema );
2460     sqlite3DropTriggerPtr(pParse, pTrigger);
2461     pTrigger = pTrigger->pNext;
2462   }
2463 
2464 #ifndef SQLITE_OMIT_AUTOINCREMENT
2465   /* Remove any entries of the sqlite_sequence table associated with
2466   ** the table being dropped. This is done before the table is dropped
2467   ** at the btree level, in case the sqlite_sequence table needs to
2468   ** move as a result of the drop (can happen in auto-vacuum mode).
2469   */
2470   if( pTab->tabFlags & TF_Autoincrement ){
2471     sqlite3NestedParse(pParse,
2472       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2473       pDb->zDbSName, pTab->zName
2474     );
2475   }
2476 #endif
2477 
2478   /* Drop all SQLITE_MASTER table and index entries that refer to the
2479   ** table. The program name loops through the master table and deletes
2480   ** every row that refers to a table of the same name as the one being
2481   ** dropped. Triggers are handled separately because a trigger can be
2482   ** created in the temp database that refers to a table in another
2483   ** database.
2484   */
2485   sqlite3NestedParse(pParse,
2486       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2487       pDb->zDbSName, MASTER_NAME, pTab->zName);
2488   if( !isView && !IsVirtual(pTab) ){
2489     destroyTable(pParse, pTab);
2490   }
2491 
2492   /* Remove the table entry from SQLite's internal schema and modify
2493   ** the schema cookie.
2494   */
2495   if( IsVirtual(pTab) ){
2496     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2497   }
2498   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2499   sqlite3ChangeCookie(pParse, iDb);
2500   sqliteViewResetAll(db, iDb);
2501 }
2502 
2503 /*
2504 ** This routine is called to do the work of a DROP TABLE statement.
2505 ** pName is the name of the table to be dropped.
2506 */
2507 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2508   Table *pTab;
2509   Vdbe *v;
2510   sqlite3 *db = pParse->db;
2511   int iDb;
2512 
2513   if( db->mallocFailed ){
2514     goto exit_drop_table;
2515   }
2516   assert( pParse->nErr==0 );
2517   assert( pName->nSrc==1 );
2518   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2519   if( noErr ) db->suppressErr++;
2520   assert( isView==0 || isView==LOCATE_VIEW );
2521   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2522   if( noErr ) db->suppressErr--;
2523 
2524   if( pTab==0 ){
2525     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2526     goto exit_drop_table;
2527   }
2528   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2529   assert( iDb>=0 && iDb<db->nDb );
2530 
2531   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2532   ** it is initialized.
2533   */
2534   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2535     goto exit_drop_table;
2536   }
2537 #ifndef SQLITE_OMIT_AUTHORIZATION
2538   {
2539     int code;
2540     const char *zTab = SCHEMA_TABLE(iDb);
2541     const char *zDb = db->aDb[iDb].zDbSName;
2542     const char *zArg2 = 0;
2543     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2544       goto exit_drop_table;
2545     }
2546     if( isView ){
2547       if( !OMIT_TEMPDB && iDb==1 ){
2548         code = SQLITE_DROP_TEMP_VIEW;
2549       }else{
2550         code = SQLITE_DROP_VIEW;
2551       }
2552 #ifndef SQLITE_OMIT_VIRTUALTABLE
2553     }else if( IsVirtual(pTab) ){
2554       code = SQLITE_DROP_VTABLE;
2555       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2556 #endif
2557     }else{
2558       if( !OMIT_TEMPDB && iDb==1 ){
2559         code = SQLITE_DROP_TEMP_TABLE;
2560       }else{
2561         code = SQLITE_DROP_TABLE;
2562       }
2563     }
2564     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2565       goto exit_drop_table;
2566     }
2567     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2568       goto exit_drop_table;
2569     }
2570   }
2571 #endif
2572   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2573     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2574     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2575     goto exit_drop_table;
2576   }
2577 
2578 #ifndef SQLITE_OMIT_VIEW
2579   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2580   ** on a table.
2581   */
2582   if( isView && pTab->pSelect==0 ){
2583     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2584     goto exit_drop_table;
2585   }
2586   if( !isView && pTab->pSelect ){
2587     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2588     goto exit_drop_table;
2589   }
2590 #endif
2591 
2592   /* Generate code to remove the table from the master table
2593   ** on disk.
2594   */
2595   v = sqlite3GetVdbe(pParse);
2596   if( v ){
2597     sqlite3BeginWriteOperation(pParse, 1, iDb);
2598     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2599     sqlite3FkDropTable(pParse, pName, pTab);
2600     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2601   }
2602 
2603 exit_drop_table:
2604   sqlite3SrcListDelete(db, pName);
2605 }
2606 
2607 /*
2608 ** This routine is called to create a new foreign key on the table
2609 ** currently under construction.  pFromCol determines which columns
2610 ** in the current table point to the foreign key.  If pFromCol==0 then
2611 ** connect the key to the last column inserted.  pTo is the name of
2612 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2613 ** of tables in the parent pTo table.  flags contains all
2614 ** information about the conflict resolution algorithms specified
2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2616 **
2617 ** An FKey structure is created and added to the table currently
2618 ** under construction in the pParse->pNewTable field.
2619 **
2620 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2622 */
2623 void sqlite3CreateForeignKey(
2624   Parse *pParse,       /* Parsing context */
2625   ExprList *pFromCol,  /* Columns in this table that point to other table */
2626   Token *pTo,          /* Name of the other table */
2627   ExprList *pToCol,    /* Columns in the other table */
2628   int flags            /* Conflict resolution algorithms. */
2629 ){
2630   sqlite3 *db = pParse->db;
2631 #ifndef SQLITE_OMIT_FOREIGN_KEY
2632   FKey *pFKey = 0;
2633   FKey *pNextTo;
2634   Table *p = pParse->pNewTable;
2635   int nByte;
2636   int i;
2637   int nCol;
2638   char *z;
2639 
2640   assert( pTo!=0 );
2641   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2642   if( pFromCol==0 ){
2643     int iCol = p->nCol-1;
2644     if( NEVER(iCol<0) ) goto fk_end;
2645     if( pToCol && pToCol->nExpr!=1 ){
2646       sqlite3ErrorMsg(pParse, "foreign key on %s"
2647          " should reference only one column of table %T",
2648          p->aCol[iCol].zName, pTo);
2649       goto fk_end;
2650     }
2651     nCol = 1;
2652   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2653     sqlite3ErrorMsg(pParse,
2654         "number of columns in foreign key does not match the number of "
2655         "columns in the referenced table");
2656     goto fk_end;
2657   }else{
2658     nCol = pFromCol->nExpr;
2659   }
2660   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2661   if( pToCol ){
2662     for(i=0; i<pToCol->nExpr; i++){
2663       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2664     }
2665   }
2666   pFKey = sqlite3DbMallocZero(db, nByte );
2667   if( pFKey==0 ){
2668     goto fk_end;
2669   }
2670   pFKey->pFrom = p;
2671   pFKey->pNextFrom = p->pFKey;
2672   z = (char*)&pFKey->aCol[nCol];
2673   pFKey->zTo = z;
2674   memcpy(z, pTo->z, pTo->n);
2675   z[pTo->n] = 0;
2676   sqlite3Dequote(z);
2677   z += pTo->n+1;
2678   pFKey->nCol = nCol;
2679   if( pFromCol==0 ){
2680     pFKey->aCol[0].iFrom = p->nCol-1;
2681   }else{
2682     for(i=0; i<nCol; i++){
2683       int j;
2684       for(j=0; j<p->nCol; j++){
2685         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2686           pFKey->aCol[i].iFrom = j;
2687           break;
2688         }
2689       }
2690       if( j>=p->nCol ){
2691         sqlite3ErrorMsg(pParse,
2692           "unknown column \"%s\" in foreign key definition",
2693           pFromCol->a[i].zName);
2694         goto fk_end;
2695       }
2696     }
2697   }
2698   if( pToCol ){
2699     for(i=0; i<nCol; i++){
2700       int n = sqlite3Strlen30(pToCol->a[i].zName);
2701       pFKey->aCol[i].zCol = z;
2702       memcpy(z, pToCol->a[i].zName, n);
2703       z[n] = 0;
2704       z += n+1;
2705     }
2706   }
2707   pFKey->isDeferred = 0;
2708   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2709   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2710 
2711   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2712   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2713       pFKey->zTo, (void *)pFKey
2714   );
2715   if( pNextTo==pFKey ){
2716     sqlite3OomFault(db);
2717     goto fk_end;
2718   }
2719   if( pNextTo ){
2720     assert( pNextTo->pPrevTo==0 );
2721     pFKey->pNextTo = pNextTo;
2722     pNextTo->pPrevTo = pFKey;
2723   }
2724 
2725   /* Link the foreign key to the table as the last step.
2726   */
2727   p->pFKey = pFKey;
2728   pFKey = 0;
2729 
2730 fk_end:
2731   sqlite3DbFree(db, pFKey);
2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2733   sqlite3ExprListDelete(db, pFromCol);
2734   sqlite3ExprListDelete(db, pToCol);
2735 }
2736 
2737 /*
2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2739 ** clause is seen as part of a foreign key definition.  The isDeferred
2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2741 ** The behavior of the most recently created foreign key is adjusted
2742 ** accordingly.
2743 */
2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2745 #ifndef SQLITE_OMIT_FOREIGN_KEY
2746   Table *pTab;
2747   FKey *pFKey;
2748   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2749   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2750   pFKey->isDeferred = (u8)isDeferred;
2751 #endif
2752 }
2753 
2754 /*
2755 ** Generate code that will erase and refill index *pIdx.  This is
2756 ** used to initialize a newly created index or to recompute the
2757 ** content of an index in response to a REINDEX command.
2758 **
2759 ** if memRootPage is not negative, it means that the index is newly
2760 ** created.  The register specified by memRootPage contains the
2761 ** root page number of the index.  If memRootPage is negative, then
2762 ** the index already exists and must be cleared before being refilled and
2763 ** the root page number of the index is taken from pIndex->tnum.
2764 */
2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2766   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2767   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2768   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2769   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2770   int addr1;                     /* Address of top of loop */
2771   int addr2;                     /* Address to jump to for next iteration */
2772   int tnum;                      /* Root page of index */
2773   int iPartIdxLabel;             /* Jump to this label to skip a row */
2774   Vdbe *v;                       /* Generate code into this virtual machine */
2775   KeyInfo *pKey;                 /* KeyInfo for index */
2776   int regRecord;                 /* Register holding assembled index record */
2777   sqlite3 *db = pParse->db;      /* The database connection */
2778   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2779 
2780 #ifndef SQLITE_OMIT_AUTHORIZATION
2781   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2782       db->aDb[iDb].zDbSName ) ){
2783     return;
2784   }
2785 #endif
2786 
2787   /* Require a write-lock on the table to perform this operation */
2788   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2789 
2790   v = sqlite3GetVdbe(pParse);
2791   if( v==0 ) return;
2792   if( memRootPage>=0 ){
2793     tnum = memRootPage;
2794   }else{
2795     tnum = pIndex->tnum;
2796   }
2797   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2798   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2799 
2800   /* Open the sorter cursor if we are to use one. */
2801   iSorter = pParse->nTab++;
2802   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2803                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2804 
2805   /* Open the table. Loop through all rows of the table, inserting index
2806   ** records into the sorter. */
2807   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2808   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2809   regRecord = sqlite3GetTempReg(pParse);
2810 
2811   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2812   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2813   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2814   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2815   sqlite3VdbeJumpHere(v, addr1);
2816   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2817   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2818                     (char *)pKey, P4_KEYINFO);
2819   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2820 
2821   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2822   if( IsUniqueIndex(pIndex) ){
2823     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2824     sqlite3VdbeGoto(v, j2);
2825     addr2 = sqlite3VdbeCurrentAddr(v);
2826     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2827                          pIndex->nKeyCol); VdbeCoverage(v);
2828     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2829   }else{
2830     addr2 = sqlite3VdbeCurrentAddr(v);
2831   }
2832   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2833   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2834   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2835   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2836   sqlite3ReleaseTempReg(pParse, regRecord);
2837   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2838   sqlite3VdbeJumpHere(v, addr1);
2839 
2840   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2841   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2842   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2843 }
2844 
2845 /*
2846 ** Allocate heap space to hold an Index object with nCol columns.
2847 **
2848 ** Increase the allocation size to provide an extra nExtra bytes
2849 ** of 8-byte aligned space after the Index object and return a
2850 ** pointer to this extra space in *ppExtra.
2851 */
2852 Index *sqlite3AllocateIndexObject(
2853   sqlite3 *db,         /* Database connection */
2854   i16 nCol,            /* Total number of columns in the index */
2855   int nExtra,          /* Number of bytes of extra space to alloc */
2856   char **ppExtra       /* Pointer to the "extra" space */
2857 ){
2858   Index *p;            /* Allocated index object */
2859   int nByte;           /* Bytes of space for Index object + arrays */
2860 
2861   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2862           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2863           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2864                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2865                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2866   p = sqlite3DbMallocZero(db, nByte + nExtra);
2867   if( p ){
2868     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2869     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2870     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2871     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2872     p->aSortOrder = (u8*)pExtra;
2873     p->nColumn = nCol;
2874     p->nKeyCol = nCol - 1;
2875     *ppExtra = ((char*)p) + nByte;
2876   }
2877   return p;
2878 }
2879 
2880 /*
2881 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2882 ** and pTblList is the name of the table that is to be indexed.  Both will
2883 ** be NULL for a primary key or an index that is created to satisfy a
2884 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2885 ** as the table to be indexed.  pParse->pNewTable is a table that is
2886 ** currently being constructed by a CREATE TABLE statement.
2887 **
2888 ** pList is a list of columns to be indexed.  pList will be NULL if this
2889 ** is a primary key or unique-constraint on the most recent column added
2890 ** to the table currently under construction.
2891 */
2892 void sqlite3CreateIndex(
2893   Parse *pParse,     /* All information about this parse */
2894   Token *pName1,     /* First part of index name. May be NULL */
2895   Token *pName2,     /* Second part of index name. May be NULL */
2896   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2897   ExprList *pList,   /* A list of columns to be indexed */
2898   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2899   Token *pStart,     /* The CREATE token that begins this statement */
2900   Expr *pPIWhere,    /* WHERE clause for partial indices */
2901   int sortOrder,     /* Sort order of primary key when pList==NULL */
2902   int ifNotExist,    /* Omit error if index already exists */
2903   u8 idxType         /* The index type */
2904 ){
2905   Table *pTab = 0;     /* Table to be indexed */
2906   Index *pIndex = 0;   /* The index to be created */
2907   char *zName = 0;     /* Name of the index */
2908   int nName;           /* Number of characters in zName */
2909   int i, j;
2910   DbFixer sFix;        /* For assigning database names to pTable */
2911   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2912   sqlite3 *db = pParse->db;
2913   Db *pDb;             /* The specific table containing the indexed database */
2914   int iDb;             /* Index of the database that is being written */
2915   Token *pName = 0;    /* Unqualified name of the index to create */
2916   struct ExprList_item *pListItem; /* For looping over pList */
2917   int nExtra = 0;                  /* Space allocated for zExtra[] */
2918   int nExtraCol;                   /* Number of extra columns needed */
2919   char *zExtra = 0;                /* Extra space after the Index object */
2920   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2921 
2922   if( db->mallocFailed || pParse->nErr>0 ){
2923     goto exit_create_index;
2924   }
2925   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2926     goto exit_create_index;
2927   }
2928   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2929     goto exit_create_index;
2930   }
2931 
2932   /*
2933   ** Find the table that is to be indexed.  Return early if not found.
2934   */
2935   if( pTblName!=0 ){
2936 
2937     /* Use the two-part index name to determine the database
2938     ** to search for the table. 'Fix' the table name to this db
2939     ** before looking up the table.
2940     */
2941     assert( pName1 && pName2 );
2942     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2943     if( iDb<0 ) goto exit_create_index;
2944     assert( pName && pName->z );
2945 
2946 #ifndef SQLITE_OMIT_TEMPDB
2947     /* If the index name was unqualified, check if the table
2948     ** is a temp table. If so, set the database to 1. Do not do this
2949     ** if initialising a database schema.
2950     */
2951     if( !db->init.busy ){
2952       pTab = sqlite3SrcListLookup(pParse, pTblName);
2953       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2954         iDb = 1;
2955       }
2956     }
2957 #endif
2958 
2959     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2960     if( sqlite3FixSrcList(&sFix, pTblName) ){
2961       /* Because the parser constructs pTblName from a single identifier,
2962       ** sqlite3FixSrcList can never fail. */
2963       assert(0);
2964     }
2965     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2966     assert( db->mallocFailed==0 || pTab==0 );
2967     if( pTab==0 ) goto exit_create_index;
2968     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2969       sqlite3ErrorMsg(pParse,
2970            "cannot create a TEMP index on non-TEMP table \"%s\"",
2971            pTab->zName);
2972       goto exit_create_index;
2973     }
2974     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2975   }else{
2976     assert( pName==0 );
2977     assert( pStart==0 );
2978     pTab = pParse->pNewTable;
2979     if( !pTab ) goto exit_create_index;
2980     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2981   }
2982   pDb = &db->aDb[iDb];
2983 
2984   assert( pTab!=0 );
2985   assert( pParse->nErr==0 );
2986   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2987        && db->init.busy==0
2988 #if SQLITE_USER_AUTHENTICATION
2989        && sqlite3UserAuthTable(pTab->zName)==0
2990 #endif
2991        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2992     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2993     goto exit_create_index;
2994   }
2995 #ifndef SQLITE_OMIT_VIEW
2996   if( pTab->pSelect ){
2997     sqlite3ErrorMsg(pParse, "views may not be indexed");
2998     goto exit_create_index;
2999   }
3000 #endif
3001 #ifndef SQLITE_OMIT_VIRTUALTABLE
3002   if( IsVirtual(pTab) ){
3003     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3004     goto exit_create_index;
3005   }
3006 #endif
3007 
3008   /*
3009   ** Find the name of the index.  Make sure there is not already another
3010   ** index or table with the same name.
3011   **
3012   ** Exception:  If we are reading the names of permanent indices from the
3013   ** sqlite_master table (because some other process changed the schema) and
3014   ** one of the index names collides with the name of a temporary table or
3015   ** index, then we will continue to process this index.
3016   **
3017   ** If pName==0 it means that we are
3018   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3019   ** own name.
3020   */
3021   if( pName ){
3022     zName = sqlite3NameFromToken(db, pName);
3023     if( zName==0 ) goto exit_create_index;
3024     assert( pName->z!=0 );
3025     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3026       goto exit_create_index;
3027     }
3028     if( !db->init.busy ){
3029       if( sqlite3FindTable(db, zName, 0)!=0 ){
3030         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3031         goto exit_create_index;
3032       }
3033     }
3034     if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3035       if( !ifNotExist ){
3036         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3037       }else{
3038         assert( !db->init.busy );
3039         sqlite3CodeVerifySchema(pParse, iDb);
3040       }
3041       goto exit_create_index;
3042     }
3043   }else{
3044     int n;
3045     Index *pLoop;
3046     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3047     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3048     if( zName==0 ){
3049       goto exit_create_index;
3050     }
3051 
3052     /* Automatic index names generated from within sqlite3_declare_vtab()
3053     ** must have names that are distinct from normal automatic index names.
3054     ** The following statement converts "sqlite3_autoindex..." into
3055     ** "sqlite3_butoindex..." in order to make the names distinct.
3056     ** The "vtab_err.test" test demonstrates the need of this statement. */
3057     if( IN_DECLARE_VTAB ) zName[7]++;
3058   }
3059 
3060   /* Check for authorization to create an index.
3061   */
3062 #ifndef SQLITE_OMIT_AUTHORIZATION
3063   {
3064     const char *zDb = pDb->zDbSName;
3065     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3066       goto exit_create_index;
3067     }
3068     i = SQLITE_CREATE_INDEX;
3069     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3070     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3071       goto exit_create_index;
3072     }
3073   }
3074 #endif
3075 
3076   /* If pList==0, it means this routine was called to make a primary
3077   ** key out of the last column added to the table under construction.
3078   ** So create a fake list to simulate this.
3079   */
3080   if( pList==0 ){
3081     Token prevCol;
3082     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3083     pList = sqlite3ExprListAppend(pParse, 0,
3084               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3085     if( pList==0 ) goto exit_create_index;
3086     assert( pList->nExpr==1 );
3087     sqlite3ExprListSetSortOrder(pList, sortOrder);
3088   }else{
3089     sqlite3ExprListCheckLength(pParse, pList, "index");
3090   }
3091 
3092   /* Figure out how many bytes of space are required to store explicitly
3093   ** specified collation sequence names.
3094   */
3095   for(i=0; i<pList->nExpr; i++){
3096     Expr *pExpr = pList->a[i].pExpr;
3097     assert( pExpr!=0 );
3098     if( pExpr->op==TK_COLLATE ){
3099       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3100     }
3101   }
3102 
3103   /*
3104   ** Allocate the index structure.
3105   */
3106   nName = sqlite3Strlen30(zName);
3107   nExtraCol = pPk ? pPk->nKeyCol : 1;
3108   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3109                                       nName + nExtra + 1, &zExtra);
3110   if( db->mallocFailed ){
3111     goto exit_create_index;
3112   }
3113   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3114   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3115   pIndex->zName = zExtra;
3116   zExtra += nName + 1;
3117   memcpy(pIndex->zName, zName, nName+1);
3118   pIndex->pTable = pTab;
3119   pIndex->onError = (u8)onError;
3120   pIndex->uniqNotNull = onError!=OE_None;
3121   pIndex->idxType = idxType;
3122   pIndex->pSchema = db->aDb[iDb].pSchema;
3123   pIndex->nKeyCol = pList->nExpr;
3124   if( pPIWhere ){
3125     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3126     pIndex->pPartIdxWhere = pPIWhere;
3127     pPIWhere = 0;
3128   }
3129   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3130 
3131   /* Check to see if we should honor DESC requests on index columns
3132   */
3133   if( pDb->pSchema->file_format>=4 ){
3134     sortOrderMask = -1;   /* Honor DESC */
3135   }else{
3136     sortOrderMask = 0;    /* Ignore DESC */
3137   }
3138 
3139   /* Analyze the list of expressions that form the terms of the index and
3140   ** report any errors.  In the common case where the expression is exactly
3141   ** a table column, store that column in aiColumn[].  For general expressions,
3142   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3143   **
3144   ** TODO: Issue a warning if two or more columns of the index are identical.
3145   ** TODO: Issue a warning if the table primary key is used as part of the
3146   ** index key.
3147   */
3148   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3149     Expr *pCExpr;                  /* The i-th index expression */
3150     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3151     const char *zColl;             /* Collation sequence name */
3152 
3153     sqlite3StringToId(pListItem->pExpr);
3154     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3155     if( pParse->nErr ) goto exit_create_index;
3156     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3157     if( pCExpr->op!=TK_COLUMN ){
3158       if( pTab==pParse->pNewTable ){
3159         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3160                                 "UNIQUE constraints");
3161         goto exit_create_index;
3162       }
3163       if( pIndex->aColExpr==0 ){
3164         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3165         pIndex->aColExpr = pCopy;
3166         if( !db->mallocFailed ){
3167           assert( pCopy!=0 );
3168           pListItem = &pCopy->a[i];
3169         }
3170       }
3171       j = XN_EXPR;
3172       pIndex->aiColumn[i] = XN_EXPR;
3173       pIndex->uniqNotNull = 0;
3174     }else{
3175       j = pCExpr->iColumn;
3176       assert( j<=0x7fff );
3177       if( j<0 ){
3178         j = pTab->iPKey;
3179       }else if( pTab->aCol[j].notNull==0 ){
3180         pIndex->uniqNotNull = 0;
3181       }
3182       pIndex->aiColumn[i] = (i16)j;
3183     }
3184     zColl = 0;
3185     if( pListItem->pExpr->op==TK_COLLATE ){
3186       int nColl;
3187       zColl = pListItem->pExpr->u.zToken;
3188       nColl = sqlite3Strlen30(zColl) + 1;
3189       assert( nExtra>=nColl );
3190       memcpy(zExtra, zColl, nColl);
3191       zColl = zExtra;
3192       zExtra += nColl;
3193       nExtra -= nColl;
3194     }else if( j>=0 ){
3195       zColl = pTab->aCol[j].zColl;
3196     }
3197     if( !zColl ) zColl = sqlite3StrBINARY;
3198     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3199       goto exit_create_index;
3200     }
3201     pIndex->azColl[i] = zColl;
3202     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3203     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3204   }
3205 
3206   /* Append the table key to the end of the index.  For WITHOUT ROWID
3207   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3208   ** normal tables (when pPk==0) this will be the rowid.
3209   */
3210   if( pPk ){
3211     for(j=0; j<pPk->nKeyCol; j++){
3212       int x = pPk->aiColumn[j];
3213       assert( x>=0 );
3214       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3215         pIndex->nColumn--;
3216       }else{
3217         pIndex->aiColumn[i] = x;
3218         pIndex->azColl[i] = pPk->azColl[j];
3219         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3220         i++;
3221       }
3222     }
3223     assert( i==pIndex->nColumn );
3224   }else{
3225     pIndex->aiColumn[i] = XN_ROWID;
3226     pIndex->azColl[i] = sqlite3StrBINARY;
3227   }
3228   sqlite3DefaultRowEst(pIndex);
3229   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3230 
3231   /* If this index contains every column of its table, then mark
3232   ** it as a covering index */
3233   assert( HasRowid(pTab)
3234       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3235   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3236     pIndex->isCovering = 1;
3237     for(j=0; j<pTab->nCol; j++){
3238       if( j==pTab->iPKey ) continue;
3239       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3240       pIndex->isCovering = 0;
3241       break;
3242     }
3243   }
3244 
3245   if( pTab==pParse->pNewTable ){
3246     /* This routine has been called to create an automatic index as a
3247     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3248     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3249     ** i.e. one of:
3250     **
3251     ** CREATE TABLE t(x PRIMARY KEY, y);
3252     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3253     **
3254     ** Either way, check to see if the table already has such an index. If
3255     ** so, don't bother creating this one. This only applies to
3256     ** automatically created indices. Users can do as they wish with
3257     ** explicit indices.
3258     **
3259     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3260     ** (and thus suppressing the second one) even if they have different
3261     ** sort orders.
3262     **
3263     ** If there are different collating sequences or if the columns of
3264     ** the constraint occur in different orders, then the constraints are
3265     ** considered distinct and both result in separate indices.
3266     */
3267     Index *pIdx;
3268     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3269       int k;
3270       assert( IsUniqueIndex(pIdx) );
3271       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3272       assert( IsUniqueIndex(pIndex) );
3273 
3274       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3275       for(k=0; k<pIdx->nKeyCol; k++){
3276         const char *z1;
3277         const char *z2;
3278         assert( pIdx->aiColumn[k]>=0 );
3279         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3280         z1 = pIdx->azColl[k];
3281         z2 = pIndex->azColl[k];
3282         if( sqlite3StrICmp(z1, z2) ) break;
3283       }
3284       if( k==pIdx->nKeyCol ){
3285         if( pIdx->onError!=pIndex->onError ){
3286           /* This constraint creates the same index as a previous
3287           ** constraint specified somewhere in the CREATE TABLE statement.
3288           ** However the ON CONFLICT clauses are different. If both this
3289           ** constraint and the previous equivalent constraint have explicit
3290           ** ON CONFLICT clauses this is an error. Otherwise, use the
3291           ** explicitly specified behavior for the index.
3292           */
3293           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3294             sqlite3ErrorMsg(pParse,
3295                 "conflicting ON CONFLICT clauses specified", 0);
3296           }
3297           if( pIdx->onError==OE_Default ){
3298             pIdx->onError = pIndex->onError;
3299           }
3300         }
3301         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3302         goto exit_create_index;
3303       }
3304     }
3305   }
3306 
3307   /* Link the new Index structure to its table and to the other
3308   ** in-memory database structures.
3309   */
3310   assert( pParse->nErr==0 );
3311   if( db->init.busy ){
3312     Index *p;
3313     assert( !IN_DECLARE_VTAB );
3314     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3315     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3316                           pIndex->zName, pIndex);
3317     if( p ){
3318       assert( p==pIndex );  /* Malloc must have failed */
3319       sqlite3OomFault(db);
3320       goto exit_create_index;
3321     }
3322     db->flags |= SQLITE_InternChanges;
3323     if( pTblName!=0 ){
3324       pIndex->tnum = db->init.newTnum;
3325     }
3326   }
3327 
3328   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3329   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3330   ** emit code to allocate the index rootpage on disk and make an entry for
3331   ** the index in the sqlite_master table and populate the index with
3332   ** content.  But, do not do this if we are simply reading the sqlite_master
3333   ** table to parse the schema, or if this index is the PRIMARY KEY index
3334   ** of a WITHOUT ROWID table.
3335   **
3336   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3337   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3338   ** has just been created, it contains no data and the index initialization
3339   ** step can be skipped.
3340   */
3341   else if( HasRowid(pTab) || pTblName!=0 ){
3342     Vdbe *v;
3343     char *zStmt;
3344     int iMem = ++pParse->nMem;
3345 
3346     v = sqlite3GetVdbe(pParse);
3347     if( v==0 ) goto exit_create_index;
3348 
3349     sqlite3BeginWriteOperation(pParse, 1, iDb);
3350 
3351     /* Create the rootpage for the index using CreateIndex. But before
3352     ** doing so, code a Noop instruction and store its address in
3353     ** Index.tnum. This is required in case this index is actually a
3354     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3355     ** that case the convertToWithoutRowidTable() routine will replace
3356     ** the Noop with a Goto to jump over the VDBE code generated below. */
3357     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3358     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3359 
3360     /* Gather the complete text of the CREATE INDEX statement into
3361     ** the zStmt variable
3362     */
3363     if( pStart ){
3364       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3365       if( pName->z[n-1]==';' ) n--;
3366       /* A named index with an explicit CREATE INDEX statement */
3367       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3368         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3369     }else{
3370       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3371       /* zStmt = sqlite3MPrintf(""); */
3372       zStmt = 0;
3373     }
3374 
3375     /* Add an entry in sqlite_master for this index
3376     */
3377     sqlite3NestedParse(pParse,
3378         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3379         db->aDb[iDb].zDbSName, MASTER_NAME,
3380         pIndex->zName,
3381         pTab->zName,
3382         iMem,
3383         zStmt
3384     );
3385     sqlite3DbFree(db, zStmt);
3386 
3387     /* Fill the index with data and reparse the schema. Code an OP_Expire
3388     ** to invalidate all pre-compiled statements.
3389     */
3390     if( pTblName ){
3391       sqlite3RefillIndex(pParse, pIndex, iMem);
3392       sqlite3ChangeCookie(pParse, iDb);
3393       sqlite3VdbeAddParseSchemaOp(v, iDb,
3394          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3395       sqlite3VdbeAddOp0(v, OP_Expire);
3396     }
3397 
3398     sqlite3VdbeJumpHere(v, pIndex->tnum);
3399   }
3400 
3401   /* When adding an index to the list of indices for a table, make
3402   ** sure all indices labeled OE_Replace come after all those labeled
3403   ** OE_Ignore.  This is necessary for the correct constraint check
3404   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3405   ** UPDATE and INSERT statements.
3406   */
3407   if( db->init.busy || pTblName==0 ){
3408     if( onError!=OE_Replace || pTab->pIndex==0
3409          || pTab->pIndex->onError==OE_Replace){
3410       pIndex->pNext = pTab->pIndex;
3411       pTab->pIndex = pIndex;
3412     }else{
3413       Index *pOther = pTab->pIndex;
3414       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3415         pOther = pOther->pNext;
3416       }
3417       pIndex->pNext = pOther->pNext;
3418       pOther->pNext = pIndex;
3419     }
3420     pIndex = 0;
3421   }
3422 
3423   /* Clean up before exiting */
3424 exit_create_index:
3425   if( pIndex ) freeIndex(db, pIndex);
3426   sqlite3ExprDelete(db, pPIWhere);
3427   sqlite3ExprListDelete(db, pList);
3428   sqlite3SrcListDelete(db, pTblName);
3429   sqlite3DbFree(db, zName);
3430 }
3431 
3432 /*
3433 ** Fill the Index.aiRowEst[] array with default information - information
3434 ** to be used when we have not run the ANALYZE command.
3435 **
3436 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3437 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3438 ** number of rows in the table that match any particular value of the
3439 ** first column of the index.  aiRowEst[2] is an estimate of the number
3440 ** of rows that match any particular combination of the first 2 columns
3441 ** of the index.  And so forth.  It must always be the case that
3442 *
3443 **           aiRowEst[N]<=aiRowEst[N-1]
3444 **           aiRowEst[N]>=1
3445 **
3446 ** Apart from that, we have little to go on besides intuition as to
3447 ** how aiRowEst[] should be initialized.  The numbers generated here
3448 ** are based on typical values found in actual indices.
3449 */
3450 void sqlite3DefaultRowEst(Index *pIdx){
3451   /*                10,  9,  8,  7,  6 */
3452   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3453   LogEst *a = pIdx->aiRowLogEst;
3454   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3455   int i;
3456 
3457   /* Set the first entry (number of rows in the index) to the estimated
3458   ** number of rows in the table, or half the number of rows in the table
3459   ** for a partial index.   But do not let the estimate drop below 10. */
3460   a[0] = pIdx->pTable->nRowLogEst;
3461   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3462   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3463 
3464   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3465   ** 6 and each subsequent value (if any) is 5.  */
3466   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3467   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3468     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3469   }
3470 
3471   assert( 0==sqlite3LogEst(1) );
3472   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3473 }
3474 
3475 /*
3476 ** This routine will drop an existing named index.  This routine
3477 ** implements the DROP INDEX statement.
3478 */
3479 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3480   Index *pIndex;
3481   Vdbe *v;
3482   sqlite3 *db = pParse->db;
3483   int iDb;
3484 
3485   assert( pParse->nErr==0 );   /* Never called with prior errors */
3486   if( db->mallocFailed ){
3487     goto exit_drop_index;
3488   }
3489   assert( pName->nSrc==1 );
3490   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3491     goto exit_drop_index;
3492   }
3493   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3494   if( pIndex==0 ){
3495     if( !ifExists ){
3496       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3497     }else{
3498       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3499     }
3500     pParse->checkSchema = 1;
3501     goto exit_drop_index;
3502   }
3503   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3504     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3505       "or PRIMARY KEY constraint cannot be dropped", 0);
3506     goto exit_drop_index;
3507   }
3508   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3509 #ifndef SQLITE_OMIT_AUTHORIZATION
3510   {
3511     int code = SQLITE_DROP_INDEX;
3512     Table *pTab = pIndex->pTable;
3513     const char *zDb = db->aDb[iDb].zDbSName;
3514     const char *zTab = SCHEMA_TABLE(iDb);
3515     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3516       goto exit_drop_index;
3517     }
3518     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3519     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3520       goto exit_drop_index;
3521     }
3522   }
3523 #endif
3524 
3525   /* Generate code to remove the index and from the master table */
3526   v = sqlite3GetVdbe(pParse);
3527   if( v ){
3528     sqlite3BeginWriteOperation(pParse, 1, iDb);
3529     sqlite3NestedParse(pParse,
3530        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3531        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3532     );
3533     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3534     sqlite3ChangeCookie(pParse, iDb);
3535     destroyRootPage(pParse, pIndex->tnum, iDb);
3536     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3537   }
3538 
3539 exit_drop_index:
3540   sqlite3SrcListDelete(db, pName);
3541 }
3542 
3543 /*
3544 ** pArray is a pointer to an array of objects. Each object in the
3545 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3546 ** to extend the array so that there is space for a new object at the end.
3547 **
3548 ** When this function is called, *pnEntry contains the current size of
3549 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3550 ** in total).
3551 **
3552 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3553 ** space allocated for the new object is zeroed, *pnEntry updated to
3554 ** reflect the new size of the array and a pointer to the new allocation
3555 ** returned. *pIdx is set to the index of the new array entry in this case.
3556 **
3557 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3558 ** unchanged and a copy of pArray returned.
3559 */
3560 void *sqlite3ArrayAllocate(
3561   sqlite3 *db,      /* Connection to notify of malloc failures */
3562   void *pArray,     /* Array of objects.  Might be reallocated */
3563   int szEntry,      /* Size of each object in the array */
3564   int *pnEntry,     /* Number of objects currently in use */
3565   int *pIdx         /* Write the index of a new slot here */
3566 ){
3567   char *z;
3568   int n = *pnEntry;
3569   if( (n & (n-1))==0 ){
3570     int sz = (n==0) ? 1 : 2*n;
3571     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3572     if( pNew==0 ){
3573       *pIdx = -1;
3574       return pArray;
3575     }
3576     pArray = pNew;
3577   }
3578   z = (char*)pArray;
3579   memset(&z[n * szEntry], 0, szEntry);
3580   *pIdx = n;
3581   ++*pnEntry;
3582   return pArray;
3583 }
3584 
3585 /*
3586 ** Append a new element to the given IdList.  Create a new IdList if
3587 ** need be.
3588 **
3589 ** A new IdList is returned, or NULL if malloc() fails.
3590 */
3591 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3592   int i;
3593   if( pList==0 ){
3594     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3595     if( pList==0 ) return 0;
3596   }
3597   pList->a = sqlite3ArrayAllocate(
3598       db,
3599       pList->a,
3600       sizeof(pList->a[0]),
3601       &pList->nId,
3602       &i
3603   );
3604   if( i<0 ){
3605     sqlite3IdListDelete(db, pList);
3606     return 0;
3607   }
3608   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3609   return pList;
3610 }
3611 
3612 /*
3613 ** Delete an IdList.
3614 */
3615 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3616   int i;
3617   if( pList==0 ) return;
3618   for(i=0; i<pList->nId; i++){
3619     sqlite3DbFree(db, pList->a[i].zName);
3620   }
3621   sqlite3DbFree(db, pList->a);
3622   sqlite3DbFree(db, pList);
3623 }
3624 
3625 /*
3626 ** Return the index in pList of the identifier named zId.  Return -1
3627 ** if not found.
3628 */
3629 int sqlite3IdListIndex(IdList *pList, const char *zName){
3630   int i;
3631   if( pList==0 ) return -1;
3632   for(i=0; i<pList->nId; i++){
3633     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3634   }
3635   return -1;
3636 }
3637 
3638 /*
3639 ** Expand the space allocated for the given SrcList object by
3640 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3641 ** New slots are zeroed.
3642 **
3643 ** For example, suppose a SrcList initially contains two entries: A,B.
3644 ** To append 3 new entries onto the end, do this:
3645 **
3646 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3647 **
3648 ** After the call above it would contain:  A, B, nil, nil, nil.
3649 ** If the iStart argument had been 1 instead of 2, then the result
3650 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3651 ** the iStart value would be 0.  The result then would
3652 ** be: nil, nil, nil, A, B.
3653 **
3654 ** If a memory allocation fails the SrcList is unchanged.  The
3655 ** db->mallocFailed flag will be set to true.
3656 */
3657 SrcList *sqlite3SrcListEnlarge(
3658   sqlite3 *db,       /* Database connection to notify of OOM errors */
3659   SrcList *pSrc,     /* The SrcList to be enlarged */
3660   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3661   int iStart         /* Index in pSrc->a[] of first new slot */
3662 ){
3663   int i;
3664 
3665   /* Sanity checking on calling parameters */
3666   assert( iStart>=0 );
3667   assert( nExtra>=1 );
3668   assert( pSrc!=0 );
3669   assert( iStart<=pSrc->nSrc );
3670 
3671   /* Allocate additional space if needed */
3672   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3673     SrcList *pNew;
3674     int nAlloc = pSrc->nSrc*2+nExtra;
3675     int nGot;
3676     pNew = sqlite3DbRealloc(db, pSrc,
3677                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3678     if( pNew==0 ){
3679       assert( db->mallocFailed );
3680       return pSrc;
3681     }
3682     pSrc = pNew;
3683     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3684     pSrc->nAlloc = nGot;
3685   }
3686 
3687   /* Move existing slots that come after the newly inserted slots
3688   ** out of the way */
3689   for(i=pSrc->nSrc-1; i>=iStart; i--){
3690     pSrc->a[i+nExtra] = pSrc->a[i];
3691   }
3692   pSrc->nSrc += nExtra;
3693 
3694   /* Zero the newly allocated slots */
3695   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3696   for(i=iStart; i<iStart+nExtra; i++){
3697     pSrc->a[i].iCursor = -1;
3698   }
3699 
3700   /* Return a pointer to the enlarged SrcList */
3701   return pSrc;
3702 }
3703 
3704 
3705 /*
3706 ** Append a new table name to the given SrcList.  Create a new SrcList if
3707 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3708 **
3709 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3710 ** SrcList might be the same as the SrcList that was input or it might be
3711 ** a new one.  If an OOM error does occurs, then the prior value of pList
3712 ** that is input to this routine is automatically freed.
3713 **
3714 ** If pDatabase is not null, it means that the table has an optional
3715 ** database name prefix.  Like this:  "database.table".  The pDatabase
3716 ** points to the table name and the pTable points to the database name.
3717 ** The SrcList.a[].zName field is filled with the table name which might
3718 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3719 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3720 ** or with NULL if no database is specified.
3721 **
3722 ** In other words, if call like this:
3723 **
3724 **         sqlite3SrcListAppend(D,A,B,0);
3725 **
3726 ** Then B is a table name and the database name is unspecified.  If called
3727 ** like this:
3728 **
3729 **         sqlite3SrcListAppend(D,A,B,C);
3730 **
3731 ** Then C is the table name and B is the database name.  If C is defined
3732 ** then so is B.  In other words, we never have a case where:
3733 **
3734 **         sqlite3SrcListAppend(D,A,0,C);
3735 **
3736 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3737 ** before being added to the SrcList.
3738 */
3739 SrcList *sqlite3SrcListAppend(
3740   sqlite3 *db,        /* Connection to notify of malloc failures */
3741   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3742   Token *pTable,      /* Table to append */
3743   Token *pDatabase    /* Database of the table */
3744 ){
3745   struct SrcList_item *pItem;
3746   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3747   assert( db!=0 );
3748   if( pList==0 ){
3749     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3750     if( pList==0 ) return 0;
3751     pList->nAlloc = 1;
3752     pList->nSrc = 1;
3753     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3754     pList->a[0].iCursor = -1;
3755   }else{
3756     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3757   }
3758   if( db->mallocFailed ){
3759     sqlite3SrcListDelete(db, pList);
3760     return 0;
3761   }
3762   pItem = &pList->a[pList->nSrc-1];
3763   if( pDatabase && pDatabase->z==0 ){
3764     pDatabase = 0;
3765   }
3766   if( pDatabase ){
3767     Token *pTemp = pDatabase;
3768     pDatabase = pTable;
3769     pTable = pTemp;
3770   }
3771   pItem->zName = sqlite3NameFromToken(db, pTable);
3772   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3773   return pList;
3774 }
3775 
3776 /*
3777 ** Assign VdbeCursor index numbers to all tables in a SrcList
3778 */
3779 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3780   int i;
3781   struct SrcList_item *pItem;
3782   assert(pList || pParse->db->mallocFailed );
3783   if( pList ){
3784     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3785       if( pItem->iCursor>=0 ) break;
3786       pItem->iCursor = pParse->nTab++;
3787       if( pItem->pSelect ){
3788         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3789       }
3790     }
3791   }
3792 }
3793 
3794 /*
3795 ** Delete an entire SrcList including all its substructure.
3796 */
3797 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3798   int i;
3799   struct SrcList_item *pItem;
3800   if( pList==0 ) return;
3801   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3802     sqlite3DbFree(db, pItem->zDatabase);
3803     sqlite3DbFree(db, pItem->zName);
3804     sqlite3DbFree(db, pItem->zAlias);
3805     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3806     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3807     sqlite3DeleteTable(db, pItem->pTab);
3808     sqlite3SelectDelete(db, pItem->pSelect);
3809     sqlite3ExprDelete(db, pItem->pOn);
3810     sqlite3IdListDelete(db, pItem->pUsing);
3811   }
3812   sqlite3DbFree(db, pList);
3813 }
3814 
3815 /*
3816 ** This routine is called by the parser to add a new term to the
3817 ** end of a growing FROM clause.  The "p" parameter is the part of
3818 ** the FROM clause that has already been constructed.  "p" is NULL
3819 ** if this is the first term of the FROM clause.  pTable and pDatabase
3820 ** are the name of the table and database named in the FROM clause term.
3821 ** pDatabase is NULL if the database name qualifier is missing - the
3822 ** usual case.  If the term has an alias, then pAlias points to the
3823 ** alias token.  If the term is a subquery, then pSubquery is the
3824 ** SELECT statement that the subquery encodes.  The pTable and
3825 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3826 ** parameters are the content of the ON and USING clauses.
3827 **
3828 ** Return a new SrcList which encodes is the FROM with the new
3829 ** term added.
3830 */
3831 SrcList *sqlite3SrcListAppendFromTerm(
3832   Parse *pParse,          /* Parsing context */
3833   SrcList *p,             /* The left part of the FROM clause already seen */
3834   Token *pTable,          /* Name of the table to add to the FROM clause */
3835   Token *pDatabase,       /* Name of the database containing pTable */
3836   Token *pAlias,          /* The right-hand side of the AS subexpression */
3837   Select *pSubquery,      /* A subquery used in place of a table name */
3838   Expr *pOn,              /* The ON clause of a join */
3839   IdList *pUsing          /* The USING clause of a join */
3840 ){
3841   struct SrcList_item *pItem;
3842   sqlite3 *db = pParse->db;
3843   if( !p && (pOn || pUsing) ){
3844     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3845       (pOn ? "ON" : "USING")
3846     );
3847     goto append_from_error;
3848   }
3849   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3850   if( p==0 || NEVER(p->nSrc==0) ){
3851     goto append_from_error;
3852   }
3853   pItem = &p->a[p->nSrc-1];
3854   assert( pAlias!=0 );
3855   if( pAlias->n ){
3856     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3857   }
3858   pItem->pSelect = pSubquery;
3859   pItem->pOn = pOn;
3860   pItem->pUsing = pUsing;
3861   return p;
3862 
3863  append_from_error:
3864   assert( p==0 );
3865   sqlite3ExprDelete(db, pOn);
3866   sqlite3IdListDelete(db, pUsing);
3867   sqlite3SelectDelete(db, pSubquery);
3868   return 0;
3869 }
3870 
3871 /*
3872 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3873 ** element of the source-list passed as the second argument.
3874 */
3875 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3876   assert( pIndexedBy!=0 );
3877   if( p && ALWAYS(p->nSrc>0) ){
3878     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3879     assert( pItem->fg.notIndexed==0 );
3880     assert( pItem->fg.isIndexedBy==0 );
3881     assert( pItem->fg.isTabFunc==0 );
3882     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3883       /* A "NOT INDEXED" clause was supplied. See parse.y
3884       ** construct "indexed_opt" for details. */
3885       pItem->fg.notIndexed = 1;
3886     }else{
3887       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3888       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3889     }
3890   }
3891 }
3892 
3893 /*
3894 ** Add the list of function arguments to the SrcList entry for a
3895 ** table-valued-function.
3896 */
3897 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3898   if( p ){
3899     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3900     assert( pItem->fg.notIndexed==0 );
3901     assert( pItem->fg.isIndexedBy==0 );
3902     assert( pItem->fg.isTabFunc==0 );
3903     pItem->u1.pFuncArg = pList;
3904     pItem->fg.isTabFunc = 1;
3905   }else{
3906     sqlite3ExprListDelete(pParse->db, pList);
3907   }
3908 }
3909 
3910 /*
3911 ** When building up a FROM clause in the parser, the join operator
3912 ** is initially attached to the left operand.  But the code generator
3913 ** expects the join operator to be on the right operand.  This routine
3914 ** Shifts all join operators from left to right for an entire FROM
3915 ** clause.
3916 **
3917 ** Example: Suppose the join is like this:
3918 **
3919 **           A natural cross join B
3920 **
3921 ** The operator is "natural cross join".  The A and B operands are stored
3922 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3923 ** operator with A.  This routine shifts that operator over to B.
3924 */
3925 void sqlite3SrcListShiftJoinType(SrcList *p){
3926   if( p ){
3927     int i;
3928     for(i=p->nSrc-1; i>0; i--){
3929       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3930     }
3931     p->a[0].fg.jointype = 0;
3932   }
3933 }
3934 
3935 /*
3936 ** Generate VDBE code for a BEGIN statement.
3937 */
3938 void sqlite3BeginTransaction(Parse *pParse, int type){
3939   sqlite3 *db;
3940   Vdbe *v;
3941   int i;
3942 
3943   assert( pParse!=0 );
3944   db = pParse->db;
3945   assert( db!=0 );
3946   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3947     return;
3948   }
3949   v = sqlite3GetVdbe(pParse);
3950   if( !v ) return;
3951   if( type!=TK_DEFERRED ){
3952     for(i=0; i<db->nDb; i++){
3953       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3954       sqlite3VdbeUsesBtree(v, i);
3955     }
3956   }
3957   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3958 }
3959 
3960 /*
3961 ** Generate VDBE code for a COMMIT statement.
3962 */
3963 void sqlite3CommitTransaction(Parse *pParse){
3964   Vdbe *v;
3965 
3966   assert( pParse!=0 );
3967   assert( pParse->db!=0 );
3968   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3969     return;
3970   }
3971   v = sqlite3GetVdbe(pParse);
3972   if( v ){
3973     sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3974   }
3975 }
3976 
3977 /*
3978 ** Generate VDBE code for a ROLLBACK statement.
3979 */
3980 void sqlite3RollbackTransaction(Parse *pParse){
3981   Vdbe *v;
3982 
3983   assert( pParse!=0 );
3984   assert( pParse->db!=0 );
3985   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3986     return;
3987   }
3988   v = sqlite3GetVdbe(pParse);
3989   if( v ){
3990     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3991   }
3992 }
3993 
3994 /*
3995 ** This function is called by the parser when it parses a command to create,
3996 ** release or rollback an SQL savepoint.
3997 */
3998 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3999   char *zName = sqlite3NameFromToken(pParse->db, pName);
4000   if( zName ){
4001     Vdbe *v = sqlite3GetVdbe(pParse);
4002 #ifndef SQLITE_OMIT_AUTHORIZATION
4003     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4004     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4005 #endif
4006     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4007       sqlite3DbFree(pParse->db, zName);
4008       return;
4009     }
4010     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4011   }
4012 }
4013 
4014 /*
4015 ** Make sure the TEMP database is open and available for use.  Return
4016 ** the number of errors.  Leave any error messages in the pParse structure.
4017 */
4018 int sqlite3OpenTempDatabase(Parse *pParse){
4019   sqlite3 *db = pParse->db;
4020   if( db->aDb[1].pBt==0 && !pParse->explain ){
4021     int rc;
4022     Btree *pBt;
4023     static const int flags =
4024           SQLITE_OPEN_READWRITE |
4025           SQLITE_OPEN_CREATE |
4026           SQLITE_OPEN_EXCLUSIVE |
4027           SQLITE_OPEN_DELETEONCLOSE |
4028           SQLITE_OPEN_TEMP_DB;
4029 
4030     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4031     if( rc!=SQLITE_OK ){
4032       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4033         "file for storing temporary tables");
4034       pParse->rc = rc;
4035       return 1;
4036     }
4037     db->aDb[1].pBt = pBt;
4038     assert( db->aDb[1].pSchema );
4039     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4040       sqlite3OomFault(db);
4041       return 1;
4042     }
4043   }
4044   return 0;
4045 }
4046 
4047 /*
4048 ** Record the fact that the schema cookie will need to be verified
4049 ** for database iDb.  The code to actually verify the schema cookie
4050 ** will occur at the end of the top-level VDBE and will be generated
4051 ** later, by sqlite3FinishCoding().
4052 */
4053 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4054   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4055 
4056   assert( iDb>=0 && iDb<pParse->db->nDb );
4057   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4058   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4059   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4060   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4061     DbMaskSet(pToplevel->cookieMask, iDb);
4062     if( !OMIT_TEMPDB && iDb==1 ){
4063       sqlite3OpenTempDatabase(pToplevel);
4064     }
4065   }
4066 }
4067 
4068 /*
4069 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4070 ** attached database. Otherwise, invoke it for the database named zDb only.
4071 */
4072 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4073   sqlite3 *db = pParse->db;
4074   int i;
4075   for(i=0; i<db->nDb; i++){
4076     Db *pDb = &db->aDb[i];
4077     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4078       sqlite3CodeVerifySchema(pParse, i);
4079     }
4080   }
4081 }
4082 
4083 /*
4084 ** Generate VDBE code that prepares for doing an operation that
4085 ** might change the database.
4086 **
4087 ** This routine starts a new transaction if we are not already within
4088 ** a transaction.  If we are already within a transaction, then a checkpoint
4089 ** is set if the setStatement parameter is true.  A checkpoint should
4090 ** be set for operations that might fail (due to a constraint) part of
4091 ** the way through and which will need to undo some writes without having to
4092 ** rollback the whole transaction.  For operations where all constraints
4093 ** can be checked before any changes are made to the database, it is never
4094 ** necessary to undo a write and the checkpoint should not be set.
4095 */
4096 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4097   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4098   sqlite3CodeVerifySchema(pParse, iDb);
4099   DbMaskSet(pToplevel->writeMask, iDb);
4100   pToplevel->isMultiWrite |= setStatement;
4101 }
4102 
4103 /*
4104 ** Indicate that the statement currently under construction might write
4105 ** more than one entry (example: deleting one row then inserting another,
4106 ** inserting multiple rows in a table, or inserting a row and index entries.)
4107 ** If an abort occurs after some of these writes have completed, then it will
4108 ** be necessary to undo the completed writes.
4109 */
4110 void sqlite3MultiWrite(Parse *pParse){
4111   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4112   pToplevel->isMultiWrite = 1;
4113 }
4114 
4115 /*
4116 ** The code generator calls this routine if is discovers that it is
4117 ** possible to abort a statement prior to completion.  In order to
4118 ** perform this abort without corrupting the database, we need to make
4119 ** sure that the statement is protected by a statement transaction.
4120 **
4121 ** Technically, we only need to set the mayAbort flag if the
4122 ** isMultiWrite flag was previously set.  There is a time dependency
4123 ** such that the abort must occur after the multiwrite.  This makes
4124 ** some statements involving the REPLACE conflict resolution algorithm
4125 ** go a little faster.  But taking advantage of this time dependency
4126 ** makes it more difficult to prove that the code is correct (in
4127 ** particular, it prevents us from writing an effective
4128 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4129 ** to take the safe route and skip the optimization.
4130 */
4131 void sqlite3MayAbort(Parse *pParse){
4132   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4133   pToplevel->mayAbort = 1;
4134 }
4135 
4136 /*
4137 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4138 ** error. The onError parameter determines which (if any) of the statement
4139 ** and/or current transaction is rolled back.
4140 */
4141 void sqlite3HaltConstraint(
4142   Parse *pParse,    /* Parsing context */
4143   int errCode,      /* extended error code */
4144   int onError,      /* Constraint type */
4145   char *p4,         /* Error message */
4146   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4147   u8 p5Errmsg       /* P5_ErrMsg type */
4148 ){
4149   Vdbe *v = sqlite3GetVdbe(pParse);
4150   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4151   if( onError==OE_Abort ){
4152     sqlite3MayAbort(pParse);
4153   }
4154   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4155   sqlite3VdbeChangeP5(v, p5Errmsg);
4156 }
4157 
4158 /*
4159 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4160 */
4161 void sqlite3UniqueConstraint(
4162   Parse *pParse,    /* Parsing context */
4163   int onError,      /* Constraint type */
4164   Index *pIdx       /* The index that triggers the constraint */
4165 ){
4166   char *zErr;
4167   int j;
4168   StrAccum errMsg;
4169   Table *pTab = pIdx->pTable;
4170 
4171   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4172   if( pIdx->aColExpr ){
4173     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4174   }else{
4175     for(j=0; j<pIdx->nKeyCol; j++){
4176       char *zCol;
4177       assert( pIdx->aiColumn[j]>=0 );
4178       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4179       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4180       sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4181     }
4182   }
4183   zErr = sqlite3StrAccumFinish(&errMsg);
4184   sqlite3HaltConstraint(pParse,
4185     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4186                             : SQLITE_CONSTRAINT_UNIQUE,
4187     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4188 }
4189 
4190 
4191 /*
4192 ** Code an OP_Halt due to non-unique rowid.
4193 */
4194 void sqlite3RowidConstraint(
4195   Parse *pParse,    /* Parsing context */
4196   int onError,      /* Conflict resolution algorithm */
4197   Table *pTab       /* The table with the non-unique rowid */
4198 ){
4199   char *zMsg;
4200   int rc;
4201   if( pTab->iPKey>=0 ){
4202     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4203                           pTab->aCol[pTab->iPKey].zName);
4204     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4205   }else{
4206     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4207     rc = SQLITE_CONSTRAINT_ROWID;
4208   }
4209   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4210                         P5_ConstraintUnique);
4211 }
4212 
4213 /*
4214 ** Check to see if pIndex uses the collating sequence pColl.  Return
4215 ** true if it does and false if it does not.
4216 */
4217 #ifndef SQLITE_OMIT_REINDEX
4218 static int collationMatch(const char *zColl, Index *pIndex){
4219   int i;
4220   assert( zColl!=0 );
4221   for(i=0; i<pIndex->nColumn; i++){
4222     const char *z = pIndex->azColl[i];
4223     assert( z!=0 || pIndex->aiColumn[i]<0 );
4224     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4225       return 1;
4226     }
4227   }
4228   return 0;
4229 }
4230 #endif
4231 
4232 /*
4233 ** Recompute all indices of pTab that use the collating sequence pColl.
4234 ** If pColl==0 then recompute all indices of pTab.
4235 */
4236 #ifndef SQLITE_OMIT_REINDEX
4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4238   Index *pIndex;              /* An index associated with pTab */
4239 
4240   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4241     if( zColl==0 || collationMatch(zColl, pIndex) ){
4242       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4243       sqlite3BeginWriteOperation(pParse, 0, iDb);
4244       sqlite3RefillIndex(pParse, pIndex, -1);
4245     }
4246   }
4247 }
4248 #endif
4249 
4250 /*
4251 ** Recompute all indices of all tables in all databases where the
4252 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4253 ** all indices everywhere.
4254 */
4255 #ifndef SQLITE_OMIT_REINDEX
4256 static void reindexDatabases(Parse *pParse, char const *zColl){
4257   Db *pDb;                    /* A single database */
4258   int iDb;                    /* The database index number */
4259   sqlite3 *db = pParse->db;   /* The database connection */
4260   HashElem *k;                /* For looping over tables in pDb */
4261   Table *pTab;                /* A table in the database */
4262 
4263   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4264   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4265     assert( pDb!=0 );
4266     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4267       pTab = (Table*)sqliteHashData(k);
4268       reindexTable(pParse, pTab, zColl);
4269     }
4270   }
4271 }
4272 #endif
4273 
4274 /*
4275 ** Generate code for the REINDEX command.
4276 **
4277 **        REINDEX                            -- 1
4278 **        REINDEX  <collation>               -- 2
4279 **        REINDEX  ?<database>.?<tablename>  -- 3
4280 **        REINDEX  ?<database>.?<indexname>  -- 4
4281 **
4282 ** Form 1 causes all indices in all attached databases to be rebuilt.
4283 ** Form 2 rebuilds all indices in all databases that use the named
4284 ** collating function.  Forms 3 and 4 rebuild the named index or all
4285 ** indices associated with the named table.
4286 */
4287 #ifndef SQLITE_OMIT_REINDEX
4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4289   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4290   char *z;                    /* Name of a table or index */
4291   const char *zDb;            /* Name of the database */
4292   Table *pTab;                /* A table in the database */
4293   Index *pIndex;              /* An index associated with pTab */
4294   int iDb;                    /* The database index number */
4295   sqlite3 *db = pParse->db;   /* The database connection */
4296   Token *pObjName;            /* Name of the table or index to be reindexed */
4297 
4298   /* Read the database schema. If an error occurs, leave an error message
4299   ** and code in pParse and return NULL. */
4300   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4301     return;
4302   }
4303 
4304   if( pName1==0 ){
4305     reindexDatabases(pParse, 0);
4306     return;
4307   }else if( NEVER(pName2==0) || pName2->z==0 ){
4308     char *zColl;
4309     assert( pName1->z );
4310     zColl = sqlite3NameFromToken(pParse->db, pName1);
4311     if( !zColl ) return;
4312     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4313     if( pColl ){
4314       reindexDatabases(pParse, zColl);
4315       sqlite3DbFree(db, zColl);
4316       return;
4317     }
4318     sqlite3DbFree(db, zColl);
4319   }
4320   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4321   if( iDb<0 ) return;
4322   z = sqlite3NameFromToken(db, pObjName);
4323   if( z==0 ) return;
4324   zDb = db->aDb[iDb].zDbSName;
4325   pTab = sqlite3FindTable(db, z, zDb);
4326   if( pTab ){
4327     reindexTable(pParse, pTab, 0);
4328     sqlite3DbFree(db, z);
4329     return;
4330   }
4331   pIndex = sqlite3FindIndex(db, z, zDb);
4332   sqlite3DbFree(db, z);
4333   if( pIndex ){
4334     sqlite3BeginWriteOperation(pParse, 0, iDb);
4335     sqlite3RefillIndex(pParse, pIndex, -1);
4336     return;
4337   }
4338   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4339 }
4340 #endif
4341 
4342 /*
4343 ** Return a KeyInfo structure that is appropriate for the given Index.
4344 **
4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4346 ** when it has finished using it.
4347 */
4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4349   int i;
4350   int nCol = pIdx->nColumn;
4351   int nKey = pIdx->nKeyCol;
4352   KeyInfo *pKey;
4353   if( pParse->nErr ) return 0;
4354   if( pIdx->uniqNotNull ){
4355     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4356   }else{
4357     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4358   }
4359   if( pKey ){
4360     assert( sqlite3KeyInfoIsWriteable(pKey) );
4361     for(i=0; i<nCol; i++){
4362       const char *zColl = pIdx->azColl[i];
4363       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4364                         sqlite3LocateCollSeq(pParse, zColl);
4365       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4366     }
4367     if( pParse->nErr ){
4368       sqlite3KeyInfoUnref(pKey);
4369       pKey = 0;
4370     }
4371   }
4372   return pKey;
4373 }
4374 
4375 #ifndef SQLITE_OMIT_CTE
4376 /*
4377 ** This routine is invoked once per CTE by the parser while parsing a
4378 ** WITH clause.
4379 */
4380 With *sqlite3WithAdd(
4381   Parse *pParse,          /* Parsing context */
4382   With *pWith,            /* Existing WITH clause, or NULL */
4383   Token *pName,           /* Name of the common-table */
4384   ExprList *pArglist,     /* Optional column name list for the table */
4385   Select *pQuery          /* Query used to initialize the table */
4386 ){
4387   sqlite3 *db = pParse->db;
4388   With *pNew;
4389   char *zName;
4390 
4391   /* Check that the CTE name is unique within this WITH clause. If
4392   ** not, store an error in the Parse structure. */
4393   zName = sqlite3NameFromToken(pParse->db, pName);
4394   if( zName && pWith ){
4395     int i;
4396     for(i=0; i<pWith->nCte; i++){
4397       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4398         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4399       }
4400     }
4401   }
4402 
4403   if( pWith ){
4404     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4405     pNew = sqlite3DbRealloc(db, pWith, nByte);
4406   }else{
4407     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4408   }
4409   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4410 
4411   if( db->mallocFailed ){
4412     sqlite3ExprListDelete(db, pArglist);
4413     sqlite3SelectDelete(db, pQuery);
4414     sqlite3DbFree(db, zName);
4415     pNew = pWith;
4416   }else{
4417     pNew->a[pNew->nCte].pSelect = pQuery;
4418     pNew->a[pNew->nCte].pCols = pArglist;
4419     pNew->a[pNew->nCte].zName = zName;
4420     pNew->a[pNew->nCte].zCteErr = 0;
4421     pNew->nCte++;
4422   }
4423 
4424   return pNew;
4425 }
4426 
4427 /*
4428 ** Free the contents of the With object passed as the second argument.
4429 */
4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4431   if( pWith ){
4432     int i;
4433     for(i=0; i<pWith->nCte; i++){
4434       struct Cte *pCte = &pWith->a[i];
4435       sqlite3ExprListDelete(db, pCte->pCols);
4436       sqlite3SelectDelete(db, pCte->pSelect);
4437       sqlite3DbFree(db, pCte->zName);
4438     }
4439     sqlite3DbFree(db, pWith);
4440   }
4441 }
4442 #endif /* !defined(SQLITE_OMIT_CTE) */
4443