1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 pToplevel = sqlite3ParseToplevel(pParse); 65 for(i=0; i<pToplevel->nTableLock; i++){ 66 p = &pToplevel->aTableLock[i]; 67 if( p->iDb==iDb && p->iTab==iTab ){ 68 p->isWriteLock = (p->isWriteLock || isWriteLock); 69 return; 70 } 71 } 72 73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 74 pToplevel->aTableLock = 75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 76 if( pToplevel->aTableLock ){ 77 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 78 p->iDb = iDb; 79 p->iTab = iTab; 80 p->isWriteLock = isWriteLock; 81 p->zLockName = zName; 82 }else{ 83 pToplevel->nTableLock = 0; 84 sqlite3OomFault(pToplevel->db); 85 } 86 } 87 88 /* 89 ** Code an OP_TableLock instruction for each table locked by the 90 ** statement (configured by calls to sqlite3TableLock()). 91 */ 92 static void codeTableLocks(Parse *pParse){ 93 int i; 94 Vdbe *pVdbe = pParse->pVdbe; 95 assert( pVdbe!=0 ); 96 97 for(i=0; i<pParse->nTableLock; i++){ 98 TableLock *p = &pParse->aTableLock[i]; 99 int p1 = p->iDb; 100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 p->zLockName, P4_STATIC); 102 } 103 } 104 #else 105 #define codeTableLocks(x) 106 #endif 107 108 /* 109 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 */ 113 #if SQLITE_MAX_ATTACHED>30 114 int sqlite3DbMaskAllZero(yDbMask m){ 115 int i; 116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 117 return 1; 118 } 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 assert( pParse->pToplevel==0 ); 136 db = pParse->db; 137 if( pParse->nested ) return; 138 if( db->mallocFailed || pParse->nErr ){ 139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 143 /* Begin by generating some termination code at the end of the 144 ** vdbe program 145 */ 146 v = pParse->pVdbe; 147 if( v==0 ){ 148 if( db->init.busy ){ 149 pParse->rc = SQLITE_DONE; 150 return; 151 } 152 v = sqlite3GetVdbe(pParse); 153 if( v==0 ) pParse->rc = SQLITE_ERROR; 154 } 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 if( pParse->bReturning ){ 159 Returning *pReturning = pParse->u1.pReturning; 160 int addrRewind; 161 int i; 162 int reg; 163 164 addrRewind = 165 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 166 reg = pReturning->iRetReg; 167 for(i=0; i<pReturning->nRetCol; i++){ 168 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 169 } 170 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 171 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 172 sqlite3VdbeJumpHere(v, addrRewind); 173 } 174 sqlite3VdbeAddOp0(v, OP_Halt); 175 176 #if SQLITE_USER_AUTHENTICATION 177 if( pParse->nTableLock>0 && db->init.busy==0 ){ 178 sqlite3UserAuthInit(db); 179 if( db->auth.authLevel<UAUTH_User ){ 180 sqlite3ErrorMsg(pParse, "user not authenticated"); 181 pParse->rc = SQLITE_AUTH_USER; 182 return; 183 } 184 } 185 #endif 186 187 /* The cookie mask contains one bit for each database file open. 188 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 189 ** set for each database that is used. Generate code to start a 190 ** transaction on each used database and to verify the schema cookie 191 ** on each used database. 192 */ 193 if( db->mallocFailed==0 194 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 195 ){ 196 int iDb, i; 197 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 198 sqlite3VdbeJumpHere(v, 0); 199 for(iDb=0; iDb<db->nDb; iDb++){ 200 Schema *pSchema; 201 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 202 sqlite3VdbeUsesBtree(v, iDb); 203 pSchema = db->aDb[iDb].pSchema; 204 sqlite3VdbeAddOp4Int(v, 205 OP_Transaction, /* Opcode */ 206 iDb, /* P1 */ 207 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 208 pSchema->schema_cookie, /* P3 */ 209 pSchema->iGeneration /* P4 */ 210 ); 211 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 212 VdbeComment((v, 213 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 214 } 215 #ifndef SQLITE_OMIT_VIRTUALTABLE 216 for(i=0; i<pParse->nVtabLock; i++){ 217 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 218 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 219 } 220 pParse->nVtabLock = 0; 221 #endif 222 223 /* Once all the cookies have been verified and transactions opened, 224 ** obtain the required table-locks. This is a no-op unless the 225 ** shared-cache feature is enabled. 226 */ 227 codeTableLocks(pParse); 228 229 /* Initialize any AUTOINCREMENT data structures required. 230 */ 231 sqlite3AutoincrementBegin(pParse); 232 233 /* Code constant expressions that where factored out of inner loops. 234 ** 235 ** The pConstExpr list might also contain expressions that we simply 236 ** want to keep around until the Parse object is deleted. Such 237 ** expressions have iConstExprReg==0. Do not generate code for 238 ** those expressions, of course. 239 */ 240 if( pParse->pConstExpr ){ 241 ExprList *pEL = pParse->pConstExpr; 242 pParse->okConstFactor = 0; 243 for(i=0; i<pEL->nExpr; i++){ 244 int iReg = pEL->a[i].u.iConstExprReg; 245 if( iReg>0 ){ 246 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 247 } 248 } 249 } 250 251 if( pParse->bReturning ){ 252 Returning *pRet = pParse->u1.pReturning; 253 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 254 } 255 256 /* Finally, jump back to the beginning of the executable code. */ 257 sqlite3VdbeGoto(v, 1); 258 } 259 } 260 261 /* Get the VDBE program ready for execution 262 */ 263 if( v && pParse->nErr==0 && !db->mallocFailed ){ 264 /* A minimum of one cursor is required if autoincrement is used 265 * See ticket [a696379c1f08866] */ 266 assert( pParse->pAinc==0 || pParse->nTab>0 ); 267 sqlite3VdbeMakeReady(v, pParse); 268 pParse->rc = SQLITE_DONE; 269 }else{ 270 pParse->rc = SQLITE_ERROR; 271 } 272 } 273 274 /* 275 ** Run the parser and code generator recursively in order to generate 276 ** code for the SQL statement given onto the end of the pParse context 277 ** currently under construction. When the parser is run recursively 278 ** this way, the final OP_Halt is not appended and other initialization 279 ** and finalization steps are omitted because those are handling by the 280 ** outermost parser. 281 ** 282 ** Not everything is nestable. This facility is designed to permit 283 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 284 ** care if you decide to try to use this routine for some other purposes. 285 */ 286 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 287 va_list ap; 288 char *zSql; 289 char *zErrMsg = 0; 290 sqlite3 *db = pParse->db; 291 char saveBuf[PARSE_TAIL_SZ]; 292 293 if( pParse->nErr ) return; 294 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 295 va_start(ap, zFormat); 296 zSql = sqlite3VMPrintf(db, zFormat, ap); 297 va_end(ap); 298 if( zSql==0 ){ 299 /* This can result either from an OOM or because the formatted string 300 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 301 ** an error */ 302 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 303 pParse->nErr++; 304 return; 305 } 306 pParse->nested++; 307 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 308 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 309 sqlite3RunParser(pParse, zSql, &zErrMsg); 310 sqlite3DbFree(db, zErrMsg); 311 sqlite3DbFree(db, zSql); 312 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 313 pParse->nested--; 314 } 315 316 #if SQLITE_USER_AUTHENTICATION 317 /* 318 ** Return TRUE if zTable is the name of the system table that stores the 319 ** list of users and their access credentials. 320 */ 321 int sqlite3UserAuthTable(const char *zTable){ 322 return sqlite3_stricmp(zTable, "sqlite_user")==0; 323 } 324 #endif 325 326 /* 327 ** Locate the in-memory structure that describes a particular database 328 ** table given the name of that table and (optionally) the name of the 329 ** database containing the table. Return NULL if not found. 330 ** 331 ** If zDatabase is 0, all databases are searched for the table and the 332 ** first matching table is returned. (No checking for duplicate table 333 ** names is done.) The search order is TEMP first, then MAIN, then any 334 ** auxiliary databases added using the ATTACH command. 335 ** 336 ** See also sqlite3LocateTable(). 337 */ 338 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 339 Table *p = 0; 340 int i; 341 342 /* All mutexes are required for schema access. Make sure we hold them. */ 343 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 344 #if SQLITE_USER_AUTHENTICATION 345 /* Only the admin user is allowed to know that the sqlite_user table 346 ** exists */ 347 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 348 return 0; 349 } 350 #endif 351 if( zDatabase ){ 352 for(i=0; i<db->nDb; i++){ 353 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 354 } 355 if( i>=db->nDb ){ 356 /* No match against the official names. But always match "main" 357 ** to schema 0 as a legacy fallback. */ 358 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 359 i = 0; 360 }else{ 361 return 0; 362 } 363 } 364 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 365 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 366 if( i==1 ){ 367 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 368 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 369 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 370 ){ 371 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 372 DFLT_TEMP_SCHEMA_TABLE); 373 } 374 }else{ 375 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 376 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 377 DFLT_SCHEMA_TABLE); 378 } 379 } 380 } 381 }else{ 382 /* Match against TEMP first */ 383 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 384 if( p ) return p; 385 /* The main database is second */ 386 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 387 if( p ) return p; 388 /* Attached databases are in order of attachment */ 389 for(i=2; i<db->nDb; i++){ 390 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 391 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 392 if( p ) break; 393 } 394 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 395 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 396 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 397 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 398 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 399 DFLT_TEMP_SCHEMA_TABLE); 400 } 401 } 402 } 403 return p; 404 } 405 406 /* 407 ** Locate the in-memory structure that describes a particular database 408 ** table given the name of that table and (optionally) the name of the 409 ** database containing the table. Return NULL if not found. Also leave an 410 ** error message in pParse->zErrMsg. 411 ** 412 ** The difference between this routine and sqlite3FindTable() is that this 413 ** routine leaves an error message in pParse->zErrMsg where 414 ** sqlite3FindTable() does not. 415 */ 416 Table *sqlite3LocateTable( 417 Parse *pParse, /* context in which to report errors */ 418 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 419 const char *zName, /* Name of the table we are looking for */ 420 const char *zDbase /* Name of the database. Might be NULL */ 421 ){ 422 Table *p; 423 sqlite3 *db = pParse->db; 424 425 /* Read the database schema. If an error occurs, leave an error message 426 ** and code in pParse and return NULL. */ 427 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 428 && SQLITE_OK!=sqlite3ReadSchema(pParse) 429 ){ 430 return 0; 431 } 432 433 p = sqlite3FindTable(db, zName, zDbase); 434 if( p==0 ){ 435 #ifndef SQLITE_OMIT_VIRTUALTABLE 436 /* If zName is the not the name of a table in the schema created using 437 ** CREATE, then check to see if it is the name of an virtual table that 438 ** can be an eponymous virtual table. */ 439 if( pParse->disableVtab==0 ){ 440 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 441 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 442 pMod = sqlite3PragmaVtabRegister(db, zName); 443 } 444 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 445 return pMod->pEpoTab; 446 } 447 } 448 #endif 449 if( flags & LOCATE_NOERR ) return 0; 450 pParse->checkSchema = 1; 451 }else if( IsVirtual(p) && pParse->disableVtab ){ 452 p = 0; 453 } 454 455 if( p==0 ){ 456 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 457 if( zDbase ){ 458 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 459 }else{ 460 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 461 } 462 } 463 464 return p; 465 } 466 467 /* 468 ** Locate the table identified by *p. 469 ** 470 ** This is a wrapper around sqlite3LocateTable(). The difference between 471 ** sqlite3LocateTable() and this function is that this function restricts 472 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 473 ** non-NULL if it is part of a view or trigger program definition. See 474 ** sqlite3FixSrcList() for details. 475 */ 476 Table *sqlite3LocateTableItem( 477 Parse *pParse, 478 u32 flags, 479 struct SrcList_item *p 480 ){ 481 const char *zDb; 482 assert( p->pSchema==0 || p->zDatabase==0 ); 483 if( p->pSchema ){ 484 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 485 zDb = pParse->db->aDb[iDb].zDbSName; 486 }else{ 487 zDb = p->zDatabase; 488 } 489 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 490 } 491 492 /* 493 ** Locate the in-memory structure that describes 494 ** a particular index given the name of that index 495 ** and the name of the database that contains the index. 496 ** Return NULL if not found. 497 ** 498 ** If zDatabase is 0, all databases are searched for the 499 ** table and the first matching index is returned. (No checking 500 ** for duplicate index names is done.) The search order is 501 ** TEMP first, then MAIN, then any auxiliary databases added 502 ** using the ATTACH command. 503 */ 504 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 505 Index *p = 0; 506 int i; 507 /* All mutexes are required for schema access. Make sure we hold them. */ 508 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 509 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 510 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 511 Schema *pSchema = db->aDb[j].pSchema; 512 assert( pSchema ); 513 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 514 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 515 p = sqlite3HashFind(&pSchema->idxHash, zName); 516 if( p ) break; 517 } 518 return p; 519 } 520 521 /* 522 ** Reclaim the memory used by an index 523 */ 524 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 525 #ifndef SQLITE_OMIT_ANALYZE 526 sqlite3DeleteIndexSamples(db, p); 527 #endif 528 sqlite3ExprDelete(db, p->pPartIdxWhere); 529 sqlite3ExprListDelete(db, p->aColExpr); 530 sqlite3DbFree(db, p->zColAff); 531 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 532 #ifdef SQLITE_ENABLE_STAT4 533 sqlite3_free(p->aiRowEst); 534 #endif 535 sqlite3DbFree(db, p); 536 } 537 538 /* 539 ** For the index called zIdxName which is found in the database iDb, 540 ** unlike that index from its Table then remove the index from 541 ** the index hash table and free all memory structures associated 542 ** with the index. 543 */ 544 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 545 Index *pIndex; 546 Hash *pHash; 547 548 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 549 pHash = &db->aDb[iDb].pSchema->idxHash; 550 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 551 if( ALWAYS(pIndex) ){ 552 if( pIndex->pTable->pIndex==pIndex ){ 553 pIndex->pTable->pIndex = pIndex->pNext; 554 }else{ 555 Index *p; 556 /* Justification of ALWAYS(); The index must be on the list of 557 ** indices. */ 558 p = pIndex->pTable->pIndex; 559 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 560 if( ALWAYS(p && p->pNext==pIndex) ){ 561 p->pNext = pIndex->pNext; 562 } 563 } 564 sqlite3FreeIndex(db, pIndex); 565 } 566 db->mDbFlags |= DBFLAG_SchemaChange; 567 } 568 569 /* 570 ** Look through the list of open database files in db->aDb[] and if 571 ** any have been closed, remove them from the list. Reallocate the 572 ** db->aDb[] structure to a smaller size, if possible. 573 ** 574 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 575 ** are never candidates for being collapsed. 576 */ 577 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 578 int i, j; 579 for(i=j=2; i<db->nDb; i++){ 580 struct Db *pDb = &db->aDb[i]; 581 if( pDb->pBt==0 ){ 582 sqlite3DbFree(db, pDb->zDbSName); 583 pDb->zDbSName = 0; 584 continue; 585 } 586 if( j<i ){ 587 db->aDb[j] = db->aDb[i]; 588 } 589 j++; 590 } 591 db->nDb = j; 592 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 593 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 594 sqlite3DbFree(db, db->aDb); 595 db->aDb = db->aDbStatic; 596 } 597 } 598 599 /* 600 ** Reset the schema for the database at index iDb. Also reset the 601 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 602 ** Deferred resets may be run by calling with iDb<0. 603 */ 604 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 605 int i; 606 assert( iDb<db->nDb ); 607 608 if( iDb>=0 ){ 609 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 610 DbSetProperty(db, iDb, DB_ResetWanted); 611 DbSetProperty(db, 1, DB_ResetWanted); 612 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 613 } 614 615 if( db->nSchemaLock==0 ){ 616 for(i=0; i<db->nDb; i++){ 617 if( DbHasProperty(db, i, DB_ResetWanted) ){ 618 sqlite3SchemaClear(db->aDb[i].pSchema); 619 } 620 } 621 } 622 } 623 624 /* 625 ** Erase all schema information from all attached databases (including 626 ** "main" and "temp") for a single database connection. 627 */ 628 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 629 int i; 630 sqlite3BtreeEnterAll(db); 631 for(i=0; i<db->nDb; i++){ 632 Db *pDb = &db->aDb[i]; 633 if( pDb->pSchema ){ 634 if( db->nSchemaLock==0 ){ 635 sqlite3SchemaClear(pDb->pSchema); 636 }else{ 637 DbSetProperty(db, i, DB_ResetWanted); 638 } 639 } 640 } 641 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 642 sqlite3VtabUnlockList(db); 643 sqlite3BtreeLeaveAll(db); 644 if( db->nSchemaLock==0 ){ 645 sqlite3CollapseDatabaseArray(db); 646 } 647 } 648 649 /* 650 ** This routine is called when a commit occurs. 651 */ 652 void sqlite3CommitInternalChanges(sqlite3 *db){ 653 db->mDbFlags &= ~DBFLAG_SchemaChange; 654 } 655 656 /* 657 ** Delete memory allocated for the column names of a table or view (the 658 ** Table.aCol[] array). 659 */ 660 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 661 int i; 662 Column *pCol; 663 assert( pTable!=0 ); 664 if( (pCol = pTable->aCol)!=0 ){ 665 for(i=0; i<pTable->nCol; i++, pCol++){ 666 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 667 sqlite3DbFree(db, pCol->zName); 668 sqlite3ExprDelete(db, pCol->pDflt); 669 sqlite3DbFree(db, pCol->zColl); 670 } 671 sqlite3DbFree(db, pTable->aCol); 672 } 673 } 674 675 /* 676 ** Remove the memory data structures associated with the given 677 ** Table. No changes are made to disk by this routine. 678 ** 679 ** This routine just deletes the data structure. It does not unlink 680 ** the table data structure from the hash table. But it does destroy 681 ** memory structures of the indices and foreign keys associated with 682 ** the table. 683 ** 684 ** The db parameter is optional. It is needed if the Table object 685 ** contains lookaside memory. (Table objects in the schema do not use 686 ** lookaside memory, but some ephemeral Table objects do.) Or the 687 ** db parameter can be used with db->pnBytesFreed to measure the memory 688 ** used by the Table object. 689 */ 690 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 691 Index *pIndex, *pNext; 692 693 #ifdef SQLITE_DEBUG 694 /* Record the number of outstanding lookaside allocations in schema Tables 695 ** prior to doing any free() operations. Since schema Tables do not use 696 ** lookaside, this number should not change. 697 ** 698 ** If malloc has already failed, it may be that it failed while allocating 699 ** a Table object that was going to be marked ephemeral. So do not check 700 ** that no lookaside memory is used in this case either. */ 701 int nLookaside = 0; 702 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 703 nLookaside = sqlite3LookasideUsed(db, 0); 704 } 705 #endif 706 707 /* Delete all indices associated with this table. */ 708 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 709 pNext = pIndex->pNext; 710 assert( pIndex->pSchema==pTable->pSchema 711 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 712 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 713 char *zName = pIndex->zName; 714 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 715 &pIndex->pSchema->idxHash, zName, 0 716 ); 717 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 718 assert( pOld==pIndex || pOld==0 ); 719 } 720 sqlite3FreeIndex(db, pIndex); 721 } 722 723 /* Delete any foreign keys attached to this table. */ 724 sqlite3FkDelete(db, pTable); 725 726 /* Delete the Table structure itself. 727 */ 728 sqlite3DeleteColumnNames(db, pTable); 729 sqlite3DbFree(db, pTable->zName); 730 sqlite3DbFree(db, pTable->zColAff); 731 sqlite3SelectDelete(db, pTable->pSelect); 732 sqlite3ExprListDelete(db, pTable->pCheck); 733 #ifndef SQLITE_OMIT_VIRTUALTABLE 734 sqlite3VtabClear(db, pTable); 735 #endif 736 sqlite3DbFree(db, pTable); 737 738 /* Verify that no lookaside memory was used by schema tables */ 739 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 740 } 741 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 742 /* Do not delete the table until the reference count reaches zero. */ 743 if( !pTable ) return; 744 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 745 deleteTable(db, pTable); 746 } 747 748 749 /* 750 ** Unlink the given table from the hash tables and the delete the 751 ** table structure with all its indices and foreign keys. 752 */ 753 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 754 Table *p; 755 Db *pDb; 756 757 assert( db!=0 ); 758 assert( iDb>=0 && iDb<db->nDb ); 759 assert( zTabName ); 760 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 761 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 762 pDb = &db->aDb[iDb]; 763 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 764 sqlite3DeleteTable(db, p); 765 db->mDbFlags |= DBFLAG_SchemaChange; 766 } 767 768 /* 769 ** Given a token, return a string that consists of the text of that 770 ** token. Space to hold the returned string 771 ** is obtained from sqliteMalloc() and must be freed by the calling 772 ** function. 773 ** 774 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 775 ** surround the body of the token are removed. 776 ** 777 ** Tokens are often just pointers into the original SQL text and so 778 ** are not \000 terminated and are not persistent. The returned string 779 ** is \000 terminated and is persistent. 780 */ 781 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 782 char *zName; 783 if( pName ){ 784 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 785 sqlite3Dequote(zName); 786 }else{ 787 zName = 0; 788 } 789 return zName; 790 } 791 792 /* 793 ** Open the sqlite_schema table stored in database number iDb for 794 ** writing. The table is opened using cursor 0. 795 */ 796 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 797 Vdbe *v = sqlite3GetVdbe(p); 798 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 799 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 800 if( p->nTab==0 ){ 801 p->nTab = 1; 802 } 803 } 804 805 /* 806 ** Parameter zName points to a nul-terminated buffer containing the name 807 ** of a database ("main", "temp" or the name of an attached db). This 808 ** function returns the index of the named database in db->aDb[], or 809 ** -1 if the named db cannot be found. 810 */ 811 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 812 int i = -1; /* Database number */ 813 if( zName ){ 814 Db *pDb; 815 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 816 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 817 /* "main" is always an acceptable alias for the primary database 818 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 819 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 820 } 821 } 822 return i; 823 } 824 825 /* 826 ** The token *pName contains the name of a database (either "main" or 827 ** "temp" or the name of an attached db). This routine returns the 828 ** index of the named database in db->aDb[], or -1 if the named db 829 ** does not exist. 830 */ 831 int sqlite3FindDb(sqlite3 *db, Token *pName){ 832 int i; /* Database number */ 833 char *zName; /* Name we are searching for */ 834 zName = sqlite3NameFromToken(db, pName); 835 i = sqlite3FindDbName(db, zName); 836 sqlite3DbFree(db, zName); 837 return i; 838 } 839 840 /* The table or view or trigger name is passed to this routine via tokens 841 ** pName1 and pName2. If the table name was fully qualified, for example: 842 ** 843 ** CREATE TABLE xxx.yyy (...); 844 ** 845 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 846 ** the table name is not fully qualified, i.e.: 847 ** 848 ** CREATE TABLE yyy(...); 849 ** 850 ** Then pName1 is set to "yyy" and pName2 is "". 851 ** 852 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 853 ** pName2) that stores the unqualified table name. The index of the 854 ** database "xxx" is returned. 855 */ 856 int sqlite3TwoPartName( 857 Parse *pParse, /* Parsing and code generating context */ 858 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 859 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 860 Token **pUnqual /* Write the unqualified object name here */ 861 ){ 862 int iDb; /* Database holding the object */ 863 sqlite3 *db = pParse->db; 864 865 assert( pName2!=0 ); 866 if( pName2->n>0 ){ 867 if( db->init.busy ) { 868 sqlite3ErrorMsg(pParse, "corrupt database"); 869 return -1; 870 } 871 *pUnqual = pName2; 872 iDb = sqlite3FindDb(db, pName1); 873 if( iDb<0 ){ 874 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 875 return -1; 876 } 877 }else{ 878 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 879 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 880 iDb = db->init.iDb; 881 *pUnqual = pName1; 882 } 883 return iDb; 884 } 885 886 /* 887 ** True if PRAGMA writable_schema is ON 888 */ 889 int sqlite3WritableSchema(sqlite3 *db){ 890 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 891 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 892 SQLITE_WriteSchema ); 893 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 894 SQLITE_Defensive ); 895 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 896 (SQLITE_WriteSchema|SQLITE_Defensive) ); 897 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 898 } 899 900 /* 901 ** This routine is used to check if the UTF-8 string zName is a legal 902 ** unqualified name for a new schema object (table, index, view or 903 ** trigger). All names are legal except those that begin with the string 904 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 905 ** is reserved for internal use. 906 ** 907 ** When parsing the sqlite_schema table, this routine also checks to 908 ** make sure the "type", "name", and "tbl_name" columns are consistent 909 ** with the SQL. 910 */ 911 int sqlite3CheckObjectName( 912 Parse *pParse, /* Parsing context */ 913 const char *zName, /* Name of the object to check */ 914 const char *zType, /* Type of this object */ 915 const char *zTblName /* Parent table name for triggers and indexes */ 916 ){ 917 sqlite3 *db = pParse->db; 918 if( sqlite3WritableSchema(db) 919 || db->init.imposterTable 920 || !sqlite3Config.bExtraSchemaChecks 921 ){ 922 /* Skip these error checks for writable_schema=ON */ 923 return SQLITE_OK; 924 } 925 if( db->init.busy ){ 926 if( sqlite3_stricmp(zType, db->init.azInit[0]) 927 || sqlite3_stricmp(zName, db->init.azInit[1]) 928 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 929 ){ 930 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 931 return SQLITE_ERROR; 932 } 933 }else{ 934 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 935 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 936 ){ 937 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 938 zName); 939 return SQLITE_ERROR; 940 } 941 942 } 943 return SQLITE_OK; 944 } 945 946 /* 947 ** Return the PRIMARY KEY index of a table 948 */ 949 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 950 Index *p; 951 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 952 return p; 953 } 954 955 /* 956 ** Convert an table column number into a index column number. That is, 957 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 958 ** find the (first) offset of that column in index pIdx. Or return -1 959 ** if column iCol is not used in index pIdx. 960 */ 961 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 962 int i; 963 for(i=0; i<pIdx->nColumn; i++){ 964 if( iCol==pIdx->aiColumn[i] ) return i; 965 } 966 return -1; 967 } 968 969 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 970 /* Convert a storage column number into a table column number. 971 ** 972 ** The storage column number (0,1,2,....) is the index of the value 973 ** as it appears in the record on disk. The true column number 974 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 975 ** 976 ** The storage column number is less than the table column number if 977 ** and only there are VIRTUAL columns to the left. 978 ** 979 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 980 */ 981 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 982 if( pTab->tabFlags & TF_HasVirtual ){ 983 int i; 984 for(i=0; i<=iCol; i++){ 985 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 986 } 987 } 988 return iCol; 989 } 990 #endif 991 992 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 993 /* Convert a table column number into a storage column number. 994 ** 995 ** The storage column number (0,1,2,....) is the index of the value 996 ** as it appears in the record on disk. Or, if the input column is 997 ** the N-th virtual column (zero-based) then the storage number is 998 ** the number of non-virtual columns in the table plus N. 999 ** 1000 ** The true column number is the index (0,1,2,...) of the column in 1001 ** the CREATE TABLE statement. 1002 ** 1003 ** If the input column is a VIRTUAL column, then it should not appear 1004 ** in storage. But the value sometimes is cached in registers that 1005 ** follow the range of registers used to construct storage. This 1006 ** avoids computing the same VIRTUAL column multiple times, and provides 1007 ** values for use by OP_Param opcodes in triggers. Hence, if the 1008 ** input column is a VIRTUAL table, put it after all the other columns. 1009 ** 1010 ** In the following, N means "normal column", S means STORED, and 1011 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1012 ** 1013 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1014 ** -- 0 1 2 3 4 5 6 7 8 1015 ** 1016 ** Then the mapping from this function is as follows: 1017 ** 1018 ** INPUTS: 0 1 2 3 4 5 6 7 8 1019 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1020 ** 1021 ** So, in other words, this routine shifts all the virtual columns to 1022 ** the end. 1023 ** 1024 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1025 ** this routine is a no-op macro. If the pTab does not have any virtual 1026 ** columns, then this routine is no-op that always return iCol. If iCol 1027 ** is negative (indicating the ROWID column) then this routine return iCol. 1028 */ 1029 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1030 int i; 1031 i16 n; 1032 assert( iCol<pTab->nCol ); 1033 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1034 for(i=0, n=0; i<iCol; i++){ 1035 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1036 } 1037 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1038 /* iCol is a virtual column itself */ 1039 return pTab->nNVCol + i - n; 1040 }else{ 1041 /* iCol is a normal or stored column */ 1042 return n; 1043 } 1044 } 1045 #endif 1046 1047 /* 1048 ** Begin constructing a new table representation in memory. This is 1049 ** the first of several action routines that get called in response 1050 ** to a CREATE TABLE statement. In particular, this routine is called 1051 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1052 ** flag is true if the table should be stored in the auxiliary database 1053 ** file instead of in the main database file. This is normally the case 1054 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1055 ** CREATE and TABLE. 1056 ** 1057 ** The new table record is initialized and put in pParse->pNewTable. 1058 ** As more of the CREATE TABLE statement is parsed, additional action 1059 ** routines will be called to add more information to this record. 1060 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1061 ** is called to complete the construction of the new table record. 1062 */ 1063 void sqlite3StartTable( 1064 Parse *pParse, /* Parser context */ 1065 Token *pName1, /* First part of the name of the table or view */ 1066 Token *pName2, /* Second part of the name of the table or view */ 1067 int isTemp, /* True if this is a TEMP table */ 1068 int isView, /* True if this is a VIEW */ 1069 int isVirtual, /* True if this is a VIRTUAL table */ 1070 int noErr /* Do nothing if table already exists */ 1071 ){ 1072 Table *pTable; 1073 char *zName = 0; /* The name of the new table */ 1074 sqlite3 *db = pParse->db; 1075 Vdbe *v; 1076 int iDb; /* Database number to create the table in */ 1077 Token *pName; /* Unqualified name of the table to create */ 1078 1079 if( db->init.busy && db->init.newTnum==1 ){ 1080 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1081 iDb = db->init.iDb; 1082 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1083 pName = pName1; 1084 }else{ 1085 /* The common case */ 1086 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1087 if( iDb<0 ) return; 1088 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1089 /* If creating a temp table, the name may not be qualified. Unless 1090 ** the database name is "temp" anyway. */ 1091 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1092 return; 1093 } 1094 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1095 zName = sqlite3NameFromToken(db, pName); 1096 if( IN_RENAME_OBJECT ){ 1097 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1098 } 1099 } 1100 pParse->sNameToken = *pName; 1101 if( zName==0 ) return; 1102 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1103 goto begin_table_error; 1104 } 1105 if( db->init.iDb==1 ) isTemp = 1; 1106 #ifndef SQLITE_OMIT_AUTHORIZATION 1107 assert( isTemp==0 || isTemp==1 ); 1108 assert( isView==0 || isView==1 ); 1109 { 1110 static const u8 aCode[] = { 1111 SQLITE_CREATE_TABLE, 1112 SQLITE_CREATE_TEMP_TABLE, 1113 SQLITE_CREATE_VIEW, 1114 SQLITE_CREATE_TEMP_VIEW 1115 }; 1116 char *zDb = db->aDb[iDb].zDbSName; 1117 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1118 goto begin_table_error; 1119 } 1120 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1121 zName, 0, zDb) ){ 1122 goto begin_table_error; 1123 } 1124 } 1125 #endif 1126 1127 /* Make sure the new table name does not collide with an existing 1128 ** index or table name in the same database. Issue an error message if 1129 ** it does. The exception is if the statement being parsed was passed 1130 ** to an sqlite3_declare_vtab() call. In that case only the column names 1131 ** and types will be used, so there is no need to test for namespace 1132 ** collisions. 1133 */ 1134 if( !IN_SPECIAL_PARSE ){ 1135 char *zDb = db->aDb[iDb].zDbSName; 1136 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1137 goto begin_table_error; 1138 } 1139 pTable = sqlite3FindTable(db, zName, zDb); 1140 if( pTable ){ 1141 if( !noErr ){ 1142 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1143 }else{ 1144 assert( !db->init.busy || CORRUPT_DB ); 1145 sqlite3CodeVerifySchema(pParse, iDb); 1146 } 1147 goto begin_table_error; 1148 } 1149 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1150 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1151 goto begin_table_error; 1152 } 1153 } 1154 1155 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1156 if( pTable==0 ){ 1157 assert( db->mallocFailed ); 1158 pParse->rc = SQLITE_NOMEM_BKPT; 1159 pParse->nErr++; 1160 goto begin_table_error; 1161 } 1162 pTable->zName = zName; 1163 pTable->iPKey = -1; 1164 pTable->pSchema = db->aDb[iDb].pSchema; 1165 pTable->nTabRef = 1; 1166 #ifdef SQLITE_DEFAULT_ROWEST 1167 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1168 #else 1169 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1170 #endif 1171 assert( pParse->pNewTable==0 ); 1172 pParse->pNewTable = pTable; 1173 1174 /* If this is the magic sqlite_sequence table used by autoincrement, 1175 ** then record a pointer to this table in the main database structure 1176 ** so that INSERT can find the table easily. 1177 */ 1178 #ifndef SQLITE_OMIT_AUTOINCREMENT 1179 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1180 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1181 pTable->pSchema->pSeqTab = pTable; 1182 } 1183 #endif 1184 1185 /* Begin generating the code that will insert the table record into 1186 ** the schema table. Note in particular that we must go ahead 1187 ** and allocate the record number for the table entry now. Before any 1188 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1189 ** indices to be created and the table record must come before the 1190 ** indices. Hence, the record number for the table must be allocated 1191 ** now. 1192 */ 1193 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1194 int addr1; 1195 int fileFormat; 1196 int reg1, reg2, reg3; 1197 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1198 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1199 sqlite3BeginWriteOperation(pParse, 1, iDb); 1200 1201 #ifndef SQLITE_OMIT_VIRTUALTABLE 1202 if( isVirtual ){ 1203 sqlite3VdbeAddOp0(v, OP_VBegin); 1204 } 1205 #endif 1206 1207 /* If the file format and encoding in the database have not been set, 1208 ** set them now. 1209 */ 1210 reg1 = pParse->regRowid = ++pParse->nMem; 1211 reg2 = pParse->regRoot = ++pParse->nMem; 1212 reg3 = ++pParse->nMem; 1213 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1214 sqlite3VdbeUsesBtree(v, iDb); 1215 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1216 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1217 1 : SQLITE_MAX_FILE_FORMAT; 1218 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1219 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1220 sqlite3VdbeJumpHere(v, addr1); 1221 1222 /* This just creates a place-holder record in the sqlite_schema table. 1223 ** The record created does not contain anything yet. It will be replaced 1224 ** by the real entry in code generated at sqlite3EndTable(). 1225 ** 1226 ** The rowid for the new entry is left in register pParse->regRowid. 1227 ** The root page number of the new table is left in reg pParse->regRoot. 1228 ** The rowid and root page number values are needed by the code that 1229 ** sqlite3EndTable will generate. 1230 */ 1231 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1232 if( isView || isVirtual ){ 1233 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1234 }else 1235 #endif 1236 { 1237 assert( !pParse->bReturning ); 1238 pParse->u1.addrCrTab = 1239 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1240 } 1241 sqlite3OpenSchemaTable(pParse, iDb); 1242 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1243 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1244 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1245 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1246 sqlite3VdbeAddOp0(v, OP_Close); 1247 } 1248 1249 /* Normal (non-error) return. */ 1250 return; 1251 1252 /* If an error occurs, we jump here */ 1253 begin_table_error: 1254 sqlite3DbFree(db, zName); 1255 return; 1256 } 1257 1258 /* Set properties of a table column based on the (magical) 1259 ** name of the column. 1260 */ 1261 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1262 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1263 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1264 pCol->colFlags |= COLFLAG_HIDDEN; 1265 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1266 pTab->tabFlags |= TF_OOOHidden; 1267 } 1268 } 1269 #endif 1270 1271 /* 1272 ** Name of the special TEMP trigger used to implement RETURNING. The 1273 ** name begins with "sqlite_" so that it is guaranteed not to collide 1274 ** with any application-generated triggers. 1275 */ 1276 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1277 1278 /* 1279 ** Clean up the data structures associated with the RETURNING clause. 1280 */ 1281 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1282 Hash *pHash; 1283 pHash = &(db->aDb[1].pSchema->trigHash); 1284 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1285 sqlite3ExprListDelete(db, pRet->pReturnEL); 1286 sqlite3DbFree(db, pRet); 1287 } 1288 1289 /* 1290 ** Add the RETURNING clause to the parse currently underway. 1291 ** 1292 ** This routine creates a special TEMP trigger that will fire for each row 1293 ** of the DML statement. That TEMP trigger contains a single SELECT 1294 ** statement with a result set that is the argument of the RETURNING clause. 1295 ** The trigger has the Trigger.bReturning flag and an opcode of 1296 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1297 ** knows to handle it specially. The TEMP trigger is automatically 1298 ** removed at the end of the parse. 1299 ** 1300 ** When this routine is called, we do not yet know if the RETURNING clause 1301 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1302 ** RETURNING trigger instead. It will then be converted into the appropriate 1303 ** type on the first call to sqlite3TriggersExist(). 1304 */ 1305 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1306 Returning *pRet; 1307 Hash *pHash; 1308 sqlite3 *db = pParse->db; 1309 if( pParse->pNewTrigger ){ 1310 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1311 }else{ 1312 assert( pParse->bReturning==0 ); 1313 } 1314 pParse->bReturning = 1; 1315 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1316 if( pRet==0 ){ 1317 sqlite3ExprListDelete(db, pList); 1318 return; 1319 } 1320 pParse->u1.pReturning = pRet; 1321 pRet->pParse = pParse; 1322 pRet->pReturnEL = pList; 1323 sqlite3ParserAddCleanup(pParse, 1324 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1325 if( db->mallocFailed ) return; 1326 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1327 pRet->retTrig.op = TK_RETURNING; 1328 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1329 pRet->retTrig.bReturning = 1; 1330 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1331 pRet->retTrig.step_list = &pRet->retTStep; 1332 pRet->retTStep.op = TK_RETURNING; 1333 pRet->retTStep.pTrig = &pRet->retTrig; 1334 pRet->retTStep.pExprList = pList; 1335 pHash = &(db->aDb[1].pSchema->trigHash); 1336 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1337 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1338 ==&pRet->retTrig ){ 1339 sqlite3OomFault(db); 1340 } 1341 } 1342 1343 /* 1344 ** Add a new column to the table currently being constructed. 1345 ** 1346 ** The parser calls this routine once for each column declaration 1347 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1348 ** first to get things going. Then this routine is called for each 1349 ** column. 1350 */ 1351 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1352 Table *p; 1353 int i; 1354 char *z; 1355 char *zType; 1356 Column *pCol; 1357 sqlite3 *db = pParse->db; 1358 u8 hName; 1359 1360 if( (p = pParse->pNewTable)==0 ) return; 1361 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1362 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1363 return; 1364 } 1365 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1366 if( z==0 ) return; 1367 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1368 memcpy(z, pName->z, pName->n); 1369 z[pName->n] = 0; 1370 sqlite3Dequote(z); 1371 hName = sqlite3StrIHash(z); 1372 for(i=0; i<p->nCol; i++){ 1373 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1374 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1375 sqlite3DbFree(db, z); 1376 return; 1377 } 1378 } 1379 if( (p->nCol & 0x7)==0 ){ 1380 Column *aNew; 1381 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1382 if( aNew==0 ){ 1383 sqlite3DbFree(db, z); 1384 return; 1385 } 1386 p->aCol = aNew; 1387 } 1388 pCol = &p->aCol[p->nCol]; 1389 memset(pCol, 0, sizeof(p->aCol[0])); 1390 pCol->zName = z; 1391 pCol->hName = hName; 1392 sqlite3ColumnPropertiesFromName(p, pCol); 1393 1394 if( pType->n==0 ){ 1395 /* If there is no type specified, columns have the default affinity 1396 ** 'BLOB' with a default size of 4 bytes. */ 1397 pCol->affinity = SQLITE_AFF_BLOB; 1398 pCol->szEst = 1; 1399 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1400 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1401 pCol->colFlags |= COLFLAG_SORTERREF; 1402 } 1403 #endif 1404 }else{ 1405 zType = z + sqlite3Strlen30(z) + 1; 1406 memcpy(zType, pType->z, pType->n); 1407 zType[pType->n] = 0; 1408 sqlite3Dequote(zType); 1409 pCol->affinity = sqlite3AffinityType(zType, pCol); 1410 pCol->colFlags |= COLFLAG_HASTYPE; 1411 } 1412 p->nCol++; 1413 p->nNVCol++; 1414 pParse->constraintName.n = 0; 1415 } 1416 1417 /* 1418 ** This routine is called by the parser while in the middle of 1419 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1420 ** been seen on a column. This routine sets the notNull flag on 1421 ** the column currently under construction. 1422 */ 1423 void sqlite3AddNotNull(Parse *pParse, int onError){ 1424 Table *p; 1425 Column *pCol; 1426 p = pParse->pNewTable; 1427 if( p==0 || NEVER(p->nCol<1) ) return; 1428 pCol = &p->aCol[p->nCol-1]; 1429 pCol->notNull = (u8)onError; 1430 p->tabFlags |= TF_HasNotNull; 1431 1432 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1433 ** on this column. */ 1434 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1435 Index *pIdx; 1436 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1437 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1438 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1439 pIdx->uniqNotNull = 1; 1440 } 1441 } 1442 } 1443 } 1444 1445 /* 1446 ** Scan the column type name zType (length nType) and return the 1447 ** associated affinity type. 1448 ** 1449 ** This routine does a case-independent search of zType for the 1450 ** substrings in the following table. If one of the substrings is 1451 ** found, the corresponding affinity is returned. If zType contains 1452 ** more than one of the substrings, entries toward the top of 1453 ** the table take priority. For example, if zType is 'BLOBINT', 1454 ** SQLITE_AFF_INTEGER is returned. 1455 ** 1456 ** Substring | Affinity 1457 ** -------------------------------- 1458 ** 'INT' | SQLITE_AFF_INTEGER 1459 ** 'CHAR' | SQLITE_AFF_TEXT 1460 ** 'CLOB' | SQLITE_AFF_TEXT 1461 ** 'TEXT' | SQLITE_AFF_TEXT 1462 ** 'BLOB' | SQLITE_AFF_BLOB 1463 ** 'REAL' | SQLITE_AFF_REAL 1464 ** 'FLOA' | SQLITE_AFF_REAL 1465 ** 'DOUB' | SQLITE_AFF_REAL 1466 ** 1467 ** If none of the substrings in the above table are found, 1468 ** SQLITE_AFF_NUMERIC is returned. 1469 */ 1470 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1471 u32 h = 0; 1472 char aff = SQLITE_AFF_NUMERIC; 1473 const char *zChar = 0; 1474 1475 assert( zIn!=0 ); 1476 while( zIn[0] ){ 1477 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1478 zIn++; 1479 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1480 aff = SQLITE_AFF_TEXT; 1481 zChar = zIn; 1482 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1483 aff = SQLITE_AFF_TEXT; 1484 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1485 aff = SQLITE_AFF_TEXT; 1486 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1487 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1488 aff = SQLITE_AFF_BLOB; 1489 if( zIn[0]=='(' ) zChar = zIn; 1490 #ifndef SQLITE_OMIT_FLOATING_POINT 1491 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1492 && aff==SQLITE_AFF_NUMERIC ){ 1493 aff = SQLITE_AFF_REAL; 1494 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1495 && aff==SQLITE_AFF_NUMERIC ){ 1496 aff = SQLITE_AFF_REAL; 1497 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1498 && aff==SQLITE_AFF_NUMERIC ){ 1499 aff = SQLITE_AFF_REAL; 1500 #endif 1501 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1502 aff = SQLITE_AFF_INTEGER; 1503 break; 1504 } 1505 } 1506 1507 /* If pCol is not NULL, store an estimate of the field size. The 1508 ** estimate is scaled so that the size of an integer is 1. */ 1509 if( pCol ){ 1510 int v = 0; /* default size is approx 4 bytes */ 1511 if( aff<SQLITE_AFF_NUMERIC ){ 1512 if( zChar ){ 1513 while( zChar[0] ){ 1514 if( sqlite3Isdigit(zChar[0]) ){ 1515 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1516 sqlite3GetInt32(zChar, &v); 1517 break; 1518 } 1519 zChar++; 1520 } 1521 }else{ 1522 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1523 } 1524 } 1525 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1526 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1527 pCol->colFlags |= COLFLAG_SORTERREF; 1528 } 1529 #endif 1530 v = v/4 + 1; 1531 if( v>255 ) v = 255; 1532 pCol->szEst = v; 1533 } 1534 return aff; 1535 } 1536 1537 /* 1538 ** The expression is the default value for the most recently added column 1539 ** of the table currently under construction. 1540 ** 1541 ** Default value expressions must be constant. Raise an exception if this 1542 ** is not the case. 1543 ** 1544 ** This routine is called by the parser while in the middle of 1545 ** parsing a CREATE TABLE statement. 1546 */ 1547 void sqlite3AddDefaultValue( 1548 Parse *pParse, /* Parsing context */ 1549 Expr *pExpr, /* The parsed expression of the default value */ 1550 const char *zStart, /* Start of the default value text */ 1551 const char *zEnd /* First character past end of defaut value text */ 1552 ){ 1553 Table *p; 1554 Column *pCol; 1555 sqlite3 *db = pParse->db; 1556 p = pParse->pNewTable; 1557 if( p!=0 ){ 1558 int isInit = db->init.busy && db->init.iDb!=1; 1559 pCol = &(p->aCol[p->nCol-1]); 1560 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1561 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1562 pCol->zName); 1563 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1564 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1565 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1566 testcase( pCol->colFlags & COLFLAG_STORED ); 1567 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1568 #endif 1569 }else{ 1570 /* A copy of pExpr is used instead of the original, as pExpr contains 1571 ** tokens that point to volatile memory. 1572 */ 1573 Expr x; 1574 sqlite3ExprDelete(db, pCol->pDflt); 1575 memset(&x, 0, sizeof(x)); 1576 x.op = TK_SPAN; 1577 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1578 x.pLeft = pExpr; 1579 x.flags = EP_Skip; 1580 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1581 sqlite3DbFree(db, x.u.zToken); 1582 } 1583 } 1584 if( IN_RENAME_OBJECT ){ 1585 sqlite3RenameExprUnmap(pParse, pExpr); 1586 } 1587 sqlite3ExprDelete(db, pExpr); 1588 } 1589 1590 /* 1591 ** Backwards Compatibility Hack: 1592 ** 1593 ** Historical versions of SQLite accepted strings as column names in 1594 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1595 ** 1596 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1597 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1598 ** 1599 ** This is goofy. But to preserve backwards compatibility we continue to 1600 ** accept it. This routine does the necessary conversion. It converts 1601 ** the expression given in its argument from a TK_STRING into a TK_ID 1602 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1603 ** If the expression is anything other than TK_STRING, the expression is 1604 ** unchanged. 1605 */ 1606 static void sqlite3StringToId(Expr *p){ 1607 if( p->op==TK_STRING ){ 1608 p->op = TK_ID; 1609 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1610 p->pLeft->op = TK_ID; 1611 } 1612 } 1613 1614 /* 1615 ** Tag the given column as being part of the PRIMARY KEY 1616 */ 1617 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1618 pCol->colFlags |= COLFLAG_PRIMKEY; 1619 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1620 if( pCol->colFlags & COLFLAG_GENERATED ){ 1621 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1622 testcase( pCol->colFlags & COLFLAG_STORED ); 1623 sqlite3ErrorMsg(pParse, 1624 "generated columns cannot be part of the PRIMARY KEY"); 1625 } 1626 #endif 1627 } 1628 1629 /* 1630 ** Designate the PRIMARY KEY for the table. pList is a list of names 1631 ** of columns that form the primary key. If pList is NULL, then the 1632 ** most recently added column of the table is the primary key. 1633 ** 1634 ** A table can have at most one primary key. If the table already has 1635 ** a primary key (and this is the second primary key) then create an 1636 ** error. 1637 ** 1638 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1639 ** then we will try to use that column as the rowid. Set the Table.iPKey 1640 ** field of the table under construction to be the index of the 1641 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1642 ** no INTEGER PRIMARY KEY. 1643 ** 1644 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1645 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1646 */ 1647 void sqlite3AddPrimaryKey( 1648 Parse *pParse, /* Parsing context */ 1649 ExprList *pList, /* List of field names to be indexed */ 1650 int onError, /* What to do with a uniqueness conflict */ 1651 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1652 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1653 ){ 1654 Table *pTab = pParse->pNewTable; 1655 Column *pCol = 0; 1656 int iCol = -1, i; 1657 int nTerm; 1658 if( pTab==0 ) goto primary_key_exit; 1659 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1660 sqlite3ErrorMsg(pParse, 1661 "table \"%s\" has more than one primary key", pTab->zName); 1662 goto primary_key_exit; 1663 } 1664 pTab->tabFlags |= TF_HasPrimaryKey; 1665 if( pList==0 ){ 1666 iCol = pTab->nCol - 1; 1667 pCol = &pTab->aCol[iCol]; 1668 makeColumnPartOfPrimaryKey(pParse, pCol); 1669 nTerm = 1; 1670 }else{ 1671 nTerm = pList->nExpr; 1672 for(i=0; i<nTerm; i++){ 1673 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1674 assert( pCExpr!=0 ); 1675 sqlite3StringToId(pCExpr); 1676 if( pCExpr->op==TK_ID ){ 1677 const char *zCName = pCExpr->u.zToken; 1678 for(iCol=0; iCol<pTab->nCol; iCol++){ 1679 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1680 pCol = &pTab->aCol[iCol]; 1681 makeColumnPartOfPrimaryKey(pParse, pCol); 1682 break; 1683 } 1684 } 1685 } 1686 } 1687 } 1688 if( nTerm==1 1689 && pCol 1690 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1691 && sortOrder!=SQLITE_SO_DESC 1692 ){ 1693 if( IN_RENAME_OBJECT && pList ){ 1694 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1695 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1696 } 1697 pTab->iPKey = iCol; 1698 pTab->keyConf = (u8)onError; 1699 assert( autoInc==0 || autoInc==1 ); 1700 pTab->tabFlags |= autoInc*TF_Autoincrement; 1701 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1702 (void)sqlite3HasExplicitNulls(pParse, pList); 1703 }else if( autoInc ){ 1704 #ifndef SQLITE_OMIT_AUTOINCREMENT 1705 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1706 "INTEGER PRIMARY KEY"); 1707 #endif 1708 }else{ 1709 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1710 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1711 pList = 0; 1712 } 1713 1714 primary_key_exit: 1715 sqlite3ExprListDelete(pParse->db, pList); 1716 return; 1717 } 1718 1719 /* 1720 ** Add a new CHECK constraint to the table currently under construction. 1721 */ 1722 void sqlite3AddCheckConstraint( 1723 Parse *pParse, /* Parsing context */ 1724 Expr *pCheckExpr, /* The check expression */ 1725 const char *zStart, /* Opening "(" */ 1726 const char *zEnd /* Closing ")" */ 1727 ){ 1728 #ifndef SQLITE_OMIT_CHECK 1729 Table *pTab = pParse->pNewTable; 1730 sqlite3 *db = pParse->db; 1731 if( pTab && !IN_DECLARE_VTAB 1732 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1733 ){ 1734 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1735 if( pParse->constraintName.n ){ 1736 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1737 }else{ 1738 Token t; 1739 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1740 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1741 t.z = zStart; 1742 t.n = (int)(zEnd - t.z); 1743 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1744 } 1745 }else 1746 #endif 1747 { 1748 sqlite3ExprDelete(pParse->db, pCheckExpr); 1749 } 1750 } 1751 1752 /* 1753 ** Set the collation function of the most recently parsed table column 1754 ** to the CollSeq given. 1755 */ 1756 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1757 Table *p; 1758 int i; 1759 char *zColl; /* Dequoted name of collation sequence */ 1760 sqlite3 *db; 1761 1762 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1763 i = p->nCol-1; 1764 db = pParse->db; 1765 zColl = sqlite3NameFromToken(db, pToken); 1766 if( !zColl ) return; 1767 1768 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1769 Index *pIdx; 1770 sqlite3DbFree(db, p->aCol[i].zColl); 1771 p->aCol[i].zColl = zColl; 1772 1773 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1774 ** then an index may have been created on this column before the 1775 ** collation type was added. Correct this if it is the case. 1776 */ 1777 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1778 assert( pIdx->nKeyCol==1 ); 1779 if( pIdx->aiColumn[0]==i ){ 1780 pIdx->azColl[0] = p->aCol[i].zColl; 1781 } 1782 } 1783 }else{ 1784 sqlite3DbFree(db, zColl); 1785 } 1786 } 1787 1788 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1789 ** column. 1790 */ 1791 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1792 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1793 u8 eType = COLFLAG_VIRTUAL; 1794 Table *pTab = pParse->pNewTable; 1795 Column *pCol; 1796 if( pTab==0 ){ 1797 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1798 goto generated_done; 1799 } 1800 pCol = &(pTab->aCol[pTab->nCol-1]); 1801 if( IN_DECLARE_VTAB ){ 1802 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1803 goto generated_done; 1804 } 1805 if( pCol->pDflt ) goto generated_error; 1806 if( pType ){ 1807 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1808 /* no-op */ 1809 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1810 eType = COLFLAG_STORED; 1811 }else{ 1812 goto generated_error; 1813 } 1814 } 1815 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1816 pCol->colFlags |= eType; 1817 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1818 assert( TF_HasStored==COLFLAG_STORED ); 1819 pTab->tabFlags |= eType; 1820 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1821 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1822 } 1823 pCol->pDflt = pExpr; 1824 pExpr = 0; 1825 goto generated_done; 1826 1827 generated_error: 1828 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1829 pCol->zName); 1830 generated_done: 1831 sqlite3ExprDelete(pParse->db, pExpr); 1832 #else 1833 /* Throw and error for the GENERATED ALWAYS AS clause if the 1834 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1835 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1836 sqlite3ExprDelete(pParse->db, pExpr); 1837 #endif 1838 } 1839 1840 /* 1841 ** Generate code that will increment the schema cookie. 1842 ** 1843 ** The schema cookie is used to determine when the schema for the 1844 ** database changes. After each schema change, the cookie value 1845 ** changes. When a process first reads the schema it records the 1846 ** cookie. Thereafter, whenever it goes to access the database, 1847 ** it checks the cookie to make sure the schema has not changed 1848 ** since it was last read. 1849 ** 1850 ** This plan is not completely bullet-proof. It is possible for 1851 ** the schema to change multiple times and for the cookie to be 1852 ** set back to prior value. But schema changes are infrequent 1853 ** and the probability of hitting the same cookie value is only 1854 ** 1 chance in 2^32. So we're safe enough. 1855 ** 1856 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1857 ** the schema-version whenever the schema changes. 1858 */ 1859 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1860 sqlite3 *db = pParse->db; 1861 Vdbe *v = pParse->pVdbe; 1862 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1863 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1864 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1865 } 1866 1867 /* 1868 ** Measure the number of characters needed to output the given 1869 ** identifier. The number returned includes any quotes used 1870 ** but does not include the null terminator. 1871 ** 1872 ** The estimate is conservative. It might be larger that what is 1873 ** really needed. 1874 */ 1875 static int identLength(const char *z){ 1876 int n; 1877 for(n=0; *z; n++, z++){ 1878 if( *z=='"' ){ n++; } 1879 } 1880 return n + 2; 1881 } 1882 1883 /* 1884 ** The first parameter is a pointer to an output buffer. The second 1885 ** parameter is a pointer to an integer that contains the offset at 1886 ** which to write into the output buffer. This function copies the 1887 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1888 ** to the specified offset in the buffer and updates *pIdx to refer 1889 ** to the first byte after the last byte written before returning. 1890 ** 1891 ** If the string zSignedIdent consists entirely of alpha-numeric 1892 ** characters, does not begin with a digit and is not an SQL keyword, 1893 ** then it is copied to the output buffer exactly as it is. Otherwise, 1894 ** it is quoted using double-quotes. 1895 */ 1896 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1897 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1898 int i, j, needQuote; 1899 i = *pIdx; 1900 1901 for(j=0; zIdent[j]; j++){ 1902 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1903 } 1904 needQuote = sqlite3Isdigit(zIdent[0]) 1905 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1906 || zIdent[j]!=0 1907 || j==0; 1908 1909 if( needQuote ) z[i++] = '"'; 1910 for(j=0; zIdent[j]; j++){ 1911 z[i++] = zIdent[j]; 1912 if( zIdent[j]=='"' ) z[i++] = '"'; 1913 } 1914 if( needQuote ) z[i++] = '"'; 1915 z[i] = 0; 1916 *pIdx = i; 1917 } 1918 1919 /* 1920 ** Generate a CREATE TABLE statement appropriate for the given 1921 ** table. Memory to hold the text of the statement is obtained 1922 ** from sqliteMalloc() and must be freed by the calling function. 1923 */ 1924 static char *createTableStmt(sqlite3 *db, Table *p){ 1925 int i, k, n; 1926 char *zStmt; 1927 char *zSep, *zSep2, *zEnd; 1928 Column *pCol; 1929 n = 0; 1930 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1931 n += identLength(pCol->zName) + 5; 1932 } 1933 n += identLength(p->zName); 1934 if( n<50 ){ 1935 zSep = ""; 1936 zSep2 = ","; 1937 zEnd = ")"; 1938 }else{ 1939 zSep = "\n "; 1940 zSep2 = ",\n "; 1941 zEnd = "\n)"; 1942 } 1943 n += 35 + 6*p->nCol; 1944 zStmt = sqlite3DbMallocRaw(0, n); 1945 if( zStmt==0 ){ 1946 sqlite3OomFault(db); 1947 return 0; 1948 } 1949 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1950 k = sqlite3Strlen30(zStmt); 1951 identPut(zStmt, &k, p->zName); 1952 zStmt[k++] = '('; 1953 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1954 static const char * const azType[] = { 1955 /* SQLITE_AFF_BLOB */ "", 1956 /* SQLITE_AFF_TEXT */ " TEXT", 1957 /* SQLITE_AFF_NUMERIC */ " NUM", 1958 /* SQLITE_AFF_INTEGER */ " INT", 1959 /* SQLITE_AFF_REAL */ " REAL" 1960 }; 1961 int len; 1962 const char *zType; 1963 1964 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1965 k += sqlite3Strlen30(&zStmt[k]); 1966 zSep = zSep2; 1967 identPut(zStmt, &k, pCol->zName); 1968 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1969 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1970 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1971 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1972 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1973 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1974 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1975 1976 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1977 len = sqlite3Strlen30(zType); 1978 assert( pCol->affinity==SQLITE_AFF_BLOB 1979 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1980 memcpy(&zStmt[k], zType, len); 1981 k += len; 1982 assert( k<=n ); 1983 } 1984 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1985 return zStmt; 1986 } 1987 1988 /* 1989 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1990 ** on success and SQLITE_NOMEM on an OOM error. 1991 */ 1992 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1993 char *zExtra; 1994 int nByte; 1995 if( pIdx->nColumn>=N ) return SQLITE_OK; 1996 assert( pIdx->isResized==0 ); 1997 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 1998 zExtra = sqlite3DbMallocZero(db, nByte); 1999 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2000 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2001 pIdx->azColl = (const char**)zExtra; 2002 zExtra += sizeof(char*)*N; 2003 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2004 pIdx->aiRowLogEst = (LogEst*)zExtra; 2005 zExtra += sizeof(LogEst)*N; 2006 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2007 pIdx->aiColumn = (i16*)zExtra; 2008 zExtra += sizeof(i16)*N; 2009 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2010 pIdx->aSortOrder = (u8*)zExtra; 2011 pIdx->nColumn = N; 2012 pIdx->isResized = 1; 2013 return SQLITE_OK; 2014 } 2015 2016 /* 2017 ** Estimate the total row width for a table. 2018 */ 2019 static void estimateTableWidth(Table *pTab){ 2020 unsigned wTable = 0; 2021 const Column *pTabCol; 2022 int i; 2023 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2024 wTable += pTabCol->szEst; 2025 } 2026 if( pTab->iPKey<0 ) wTable++; 2027 pTab->szTabRow = sqlite3LogEst(wTable*4); 2028 } 2029 2030 /* 2031 ** Estimate the average size of a row for an index. 2032 */ 2033 static void estimateIndexWidth(Index *pIdx){ 2034 unsigned wIndex = 0; 2035 int i; 2036 const Column *aCol = pIdx->pTable->aCol; 2037 for(i=0; i<pIdx->nColumn; i++){ 2038 i16 x = pIdx->aiColumn[i]; 2039 assert( x<pIdx->pTable->nCol ); 2040 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2041 } 2042 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2043 } 2044 2045 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2046 ** This is used to determine if the column number x appears in any of the 2047 ** first nCol entries of an index. 2048 */ 2049 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2050 while( nCol-- > 0 ){ 2051 assert( aiCol[0]>=0 ); 2052 if( x==*(aiCol++) ){ 2053 return 1; 2054 } 2055 } 2056 return 0; 2057 } 2058 2059 /* 2060 ** Return true if any of the first nKey entries of index pIdx exactly 2061 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2062 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2063 ** or may not be the same index as pPk. 2064 ** 2065 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2066 ** not a rowid or expression. 2067 ** 2068 ** This routine differs from hasColumn() in that both the column and the 2069 ** collating sequence must match for this routine, but for hasColumn() only 2070 ** the column name must match. 2071 */ 2072 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2073 int i, j; 2074 assert( nKey<=pIdx->nColumn ); 2075 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2076 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2077 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2078 assert( pPk->pTable==pIdx->pTable ); 2079 testcase( pPk==pIdx ); 2080 j = pPk->aiColumn[iCol]; 2081 assert( j!=XN_ROWID && j!=XN_EXPR ); 2082 for(i=0; i<nKey; i++){ 2083 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2084 if( pIdx->aiColumn[i]==j 2085 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2086 ){ 2087 return 1; 2088 } 2089 } 2090 return 0; 2091 } 2092 2093 /* Recompute the colNotIdxed field of the Index. 2094 ** 2095 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2096 ** columns that are within the first 63 columns of the table. The 2097 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2098 ** of the table have a 1. 2099 ** 2100 ** 2019-10-24: For the purpose of this computation, virtual columns are 2101 ** not considered to be covered by the index, even if they are in the 2102 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2103 ** able to find all instances of a reference to the indexed table column 2104 ** and convert them into references to the index. Hence we always want 2105 ** the actual table at hand in order to recompute the virtual column, if 2106 ** necessary. 2107 ** 2108 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2109 ** to determine if the index is covering index. 2110 */ 2111 static void recomputeColumnsNotIndexed(Index *pIdx){ 2112 Bitmask m = 0; 2113 int j; 2114 Table *pTab = pIdx->pTable; 2115 for(j=pIdx->nColumn-1; j>=0; j--){ 2116 int x = pIdx->aiColumn[j]; 2117 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2118 testcase( x==BMS-1 ); 2119 testcase( x==BMS-2 ); 2120 if( x<BMS-1 ) m |= MASKBIT(x); 2121 } 2122 } 2123 pIdx->colNotIdxed = ~m; 2124 assert( (pIdx->colNotIdxed>>63)==1 ); 2125 } 2126 2127 /* 2128 ** This routine runs at the end of parsing a CREATE TABLE statement that 2129 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2130 ** internal schema data structures and the generated VDBE code so that they 2131 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2132 ** Changes include: 2133 ** 2134 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2135 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2136 ** into BTREE_BLOBKEY. 2137 ** (3) Bypass the creation of the sqlite_schema table entry 2138 ** for the PRIMARY KEY as the primary key index is now 2139 ** identified by the sqlite_schema table entry of the table itself. 2140 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2141 ** schema to the rootpage from the main table. 2142 ** (5) Add all table columns to the PRIMARY KEY Index object 2143 ** so that the PRIMARY KEY is a covering index. The surplus 2144 ** columns are part of KeyInfo.nAllField and are not used for 2145 ** sorting or lookup or uniqueness checks. 2146 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2147 ** indices with the PRIMARY KEY columns. 2148 ** 2149 ** For virtual tables, only (1) is performed. 2150 */ 2151 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2152 Index *pIdx; 2153 Index *pPk; 2154 int nPk; 2155 int nExtra; 2156 int i, j; 2157 sqlite3 *db = pParse->db; 2158 Vdbe *v = pParse->pVdbe; 2159 2160 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2161 */ 2162 if( !db->init.imposterTable ){ 2163 for(i=0; i<pTab->nCol; i++){ 2164 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2165 pTab->aCol[i].notNull = OE_Abort; 2166 } 2167 } 2168 pTab->tabFlags |= TF_HasNotNull; 2169 } 2170 2171 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2172 ** into BTREE_BLOBKEY. 2173 */ 2174 assert( !pParse->bReturning ); 2175 if( pParse->u1.addrCrTab ){ 2176 assert( v ); 2177 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2178 } 2179 2180 /* Locate the PRIMARY KEY index. Or, if this table was originally 2181 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2182 */ 2183 if( pTab->iPKey>=0 ){ 2184 ExprList *pList; 2185 Token ipkToken; 2186 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2187 pList = sqlite3ExprListAppend(pParse, 0, 2188 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2189 if( pList==0 ) return; 2190 if( IN_RENAME_OBJECT ){ 2191 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2192 } 2193 pList->a[0].sortFlags = pParse->iPkSortOrder; 2194 assert( pParse->pNewTable==pTab ); 2195 pTab->iPKey = -1; 2196 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2197 SQLITE_IDXTYPE_PRIMARYKEY); 2198 if( db->mallocFailed || pParse->nErr ) return; 2199 pPk = sqlite3PrimaryKeyIndex(pTab); 2200 assert( pPk->nKeyCol==1 ); 2201 }else{ 2202 pPk = sqlite3PrimaryKeyIndex(pTab); 2203 assert( pPk!=0 ); 2204 2205 /* 2206 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2207 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2208 ** code assumes the PRIMARY KEY contains no repeated columns. 2209 */ 2210 for(i=j=1; i<pPk->nKeyCol; i++){ 2211 if( isDupColumn(pPk, j, pPk, i) ){ 2212 pPk->nColumn--; 2213 }else{ 2214 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2215 pPk->azColl[j] = pPk->azColl[i]; 2216 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2217 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2218 } 2219 } 2220 pPk->nKeyCol = j; 2221 } 2222 assert( pPk!=0 ); 2223 pPk->isCovering = 1; 2224 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2225 nPk = pPk->nColumn = pPk->nKeyCol; 2226 2227 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2228 ** table entry. This is only required if currently generating VDBE 2229 ** code for a CREATE TABLE (not when parsing one as part of reading 2230 ** a database schema). */ 2231 if( v && pPk->tnum>0 ){ 2232 assert( db->init.busy==0 ); 2233 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2234 } 2235 2236 /* The root page of the PRIMARY KEY is the table root page */ 2237 pPk->tnum = pTab->tnum; 2238 2239 /* Update the in-memory representation of all UNIQUE indices by converting 2240 ** the final rowid column into one or more columns of the PRIMARY KEY. 2241 */ 2242 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2243 int n; 2244 if( IsPrimaryKeyIndex(pIdx) ) continue; 2245 for(i=n=0; i<nPk; i++){ 2246 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2247 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2248 n++; 2249 } 2250 } 2251 if( n==0 ){ 2252 /* This index is a superset of the primary key */ 2253 pIdx->nColumn = pIdx->nKeyCol; 2254 continue; 2255 } 2256 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2257 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2258 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2259 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2260 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2261 pIdx->azColl[j] = pPk->azColl[i]; 2262 if( pPk->aSortOrder[i] ){ 2263 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2264 pIdx->bAscKeyBug = 1; 2265 } 2266 j++; 2267 } 2268 } 2269 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2270 assert( pIdx->nColumn>=j ); 2271 } 2272 2273 /* Add all table columns to the PRIMARY KEY index 2274 */ 2275 nExtra = 0; 2276 for(i=0; i<pTab->nCol; i++){ 2277 if( !hasColumn(pPk->aiColumn, nPk, i) 2278 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2279 } 2280 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2281 for(i=0, j=nPk; i<pTab->nCol; i++){ 2282 if( !hasColumn(pPk->aiColumn, j, i) 2283 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2284 ){ 2285 assert( j<pPk->nColumn ); 2286 pPk->aiColumn[j] = i; 2287 pPk->azColl[j] = sqlite3StrBINARY; 2288 j++; 2289 } 2290 } 2291 assert( pPk->nColumn==j ); 2292 assert( pTab->nNVCol<=j ); 2293 recomputeColumnsNotIndexed(pPk); 2294 } 2295 2296 2297 #ifndef SQLITE_OMIT_VIRTUALTABLE 2298 /* 2299 ** Return true if pTab is a virtual table and zName is a shadow table name 2300 ** for that virtual table. 2301 */ 2302 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2303 int nName; /* Length of zName */ 2304 Module *pMod; /* Module for the virtual table */ 2305 2306 if( !IsVirtual(pTab) ) return 0; 2307 nName = sqlite3Strlen30(pTab->zName); 2308 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2309 if( zName[nName]!='_' ) return 0; 2310 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2311 if( pMod==0 ) return 0; 2312 if( pMod->pModule->iVersion<3 ) return 0; 2313 if( pMod->pModule->xShadowName==0 ) return 0; 2314 return pMod->pModule->xShadowName(zName+nName+1); 2315 } 2316 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2317 2318 #ifndef SQLITE_OMIT_VIRTUALTABLE 2319 /* 2320 ** Return true if zName is a shadow table name in the current database 2321 ** connection. 2322 ** 2323 ** zName is temporarily modified while this routine is running, but is 2324 ** restored to its original value prior to this routine returning. 2325 */ 2326 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2327 char *zTail; /* Pointer to the last "_" in zName */ 2328 Table *pTab; /* Table that zName is a shadow of */ 2329 zTail = strrchr(zName, '_'); 2330 if( zTail==0 ) return 0; 2331 *zTail = 0; 2332 pTab = sqlite3FindTable(db, zName, 0); 2333 *zTail = '_'; 2334 if( pTab==0 ) return 0; 2335 if( !IsVirtual(pTab) ) return 0; 2336 return sqlite3IsShadowTableOf(db, pTab, zName); 2337 } 2338 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2339 2340 2341 #ifdef SQLITE_DEBUG 2342 /* 2343 ** Mark all nodes of an expression as EP_Immutable, indicating that 2344 ** they should not be changed. Expressions attached to a table or 2345 ** index definition are tagged this way to help ensure that we do 2346 ** not pass them into code generator routines by mistake. 2347 */ 2348 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2349 ExprSetVVAProperty(pExpr, EP_Immutable); 2350 return WRC_Continue; 2351 } 2352 static void markExprListImmutable(ExprList *pList){ 2353 if( pList ){ 2354 Walker w; 2355 memset(&w, 0, sizeof(w)); 2356 w.xExprCallback = markImmutableExprStep; 2357 w.xSelectCallback = sqlite3SelectWalkNoop; 2358 w.xSelectCallback2 = 0; 2359 sqlite3WalkExprList(&w, pList); 2360 } 2361 } 2362 #else 2363 #define markExprListImmutable(X) /* no-op */ 2364 #endif /* SQLITE_DEBUG */ 2365 2366 2367 /* 2368 ** This routine is called to report the final ")" that terminates 2369 ** a CREATE TABLE statement. 2370 ** 2371 ** The table structure that other action routines have been building 2372 ** is added to the internal hash tables, assuming no errors have 2373 ** occurred. 2374 ** 2375 ** An entry for the table is made in the schema table on disk, unless 2376 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2377 ** it means we are reading the sqlite_schema table because we just 2378 ** connected to the database or because the sqlite_schema table has 2379 ** recently changed, so the entry for this table already exists in 2380 ** the sqlite_schema table. We do not want to create it again. 2381 ** 2382 ** If the pSelect argument is not NULL, it means that this routine 2383 ** was called to create a table generated from a 2384 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2385 ** the new table will match the result set of the SELECT. 2386 */ 2387 void sqlite3EndTable( 2388 Parse *pParse, /* Parse context */ 2389 Token *pCons, /* The ',' token after the last column defn. */ 2390 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2391 u8 tabOpts, /* Extra table options. Usually 0. */ 2392 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2393 ){ 2394 Table *p; /* The new table */ 2395 sqlite3 *db = pParse->db; /* The database connection */ 2396 int iDb; /* Database in which the table lives */ 2397 Index *pIdx; /* An implied index of the table */ 2398 2399 if( pEnd==0 && pSelect==0 ){ 2400 return; 2401 } 2402 assert( !db->mallocFailed ); 2403 p = pParse->pNewTable; 2404 if( p==0 ) return; 2405 2406 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2407 p->tabFlags |= TF_Shadow; 2408 } 2409 2410 /* If the db->init.busy is 1 it means we are reading the SQL off the 2411 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2412 ** So do not write to the disk again. Extract the root page number 2413 ** for the table from the db->init.newTnum field. (The page number 2414 ** should have been put there by the sqliteOpenCb routine.) 2415 ** 2416 ** If the root page number is 1, that means this is the sqlite_schema 2417 ** table itself. So mark it read-only. 2418 */ 2419 if( db->init.busy ){ 2420 if( pSelect ){ 2421 sqlite3ErrorMsg(pParse, ""); 2422 return; 2423 } 2424 p->tnum = db->init.newTnum; 2425 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2426 } 2427 2428 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2429 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2430 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2431 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2432 2433 /* Special processing for WITHOUT ROWID Tables */ 2434 if( tabOpts & TF_WithoutRowid ){ 2435 if( (p->tabFlags & TF_Autoincrement) ){ 2436 sqlite3ErrorMsg(pParse, 2437 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2438 return; 2439 } 2440 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2441 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2442 return; 2443 } 2444 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2445 convertToWithoutRowidTable(pParse, p); 2446 } 2447 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2448 2449 #ifndef SQLITE_OMIT_CHECK 2450 /* Resolve names in all CHECK constraint expressions. 2451 */ 2452 if( p->pCheck ){ 2453 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2454 if( pParse->nErr ){ 2455 /* If errors are seen, delete the CHECK constraints now, else they might 2456 ** actually be used if PRAGMA writable_schema=ON is set. */ 2457 sqlite3ExprListDelete(db, p->pCheck); 2458 p->pCheck = 0; 2459 }else{ 2460 markExprListImmutable(p->pCheck); 2461 } 2462 } 2463 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2464 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2465 if( p->tabFlags & TF_HasGenerated ){ 2466 int ii, nNG = 0; 2467 testcase( p->tabFlags & TF_HasVirtual ); 2468 testcase( p->tabFlags & TF_HasStored ); 2469 for(ii=0; ii<p->nCol; ii++){ 2470 u32 colFlags = p->aCol[ii].colFlags; 2471 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2472 Expr *pX = p->aCol[ii].pDflt; 2473 testcase( colFlags & COLFLAG_VIRTUAL ); 2474 testcase( colFlags & COLFLAG_STORED ); 2475 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2476 /* If there are errors in resolving the expression, change the 2477 ** expression to a NULL. This prevents code generators that operate 2478 ** on the expression from inserting extra parts into the expression 2479 ** tree that have been allocated from lookaside memory, which is 2480 ** illegal in a schema and will lead to errors or heap corruption 2481 ** when the database connection closes. */ 2482 sqlite3ExprDelete(db, pX); 2483 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2484 } 2485 }else{ 2486 nNG++; 2487 } 2488 } 2489 if( nNG==0 ){ 2490 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2491 return; 2492 } 2493 } 2494 #endif 2495 2496 /* Estimate the average row size for the table and for all implied indices */ 2497 estimateTableWidth(p); 2498 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2499 estimateIndexWidth(pIdx); 2500 } 2501 2502 /* If not initializing, then create a record for the new table 2503 ** in the schema table of the database. 2504 ** 2505 ** If this is a TEMPORARY table, write the entry into the auxiliary 2506 ** file instead of into the main database file. 2507 */ 2508 if( !db->init.busy ){ 2509 int n; 2510 Vdbe *v; 2511 char *zType; /* "view" or "table" */ 2512 char *zType2; /* "VIEW" or "TABLE" */ 2513 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2514 2515 v = sqlite3GetVdbe(pParse); 2516 if( NEVER(v==0) ) return; 2517 2518 sqlite3VdbeAddOp1(v, OP_Close, 0); 2519 2520 /* 2521 ** Initialize zType for the new view or table. 2522 */ 2523 if( p->pSelect==0 ){ 2524 /* A regular table */ 2525 zType = "table"; 2526 zType2 = "TABLE"; 2527 #ifndef SQLITE_OMIT_VIEW 2528 }else{ 2529 /* A view */ 2530 zType = "view"; 2531 zType2 = "VIEW"; 2532 #endif 2533 } 2534 2535 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2536 ** statement to populate the new table. The root-page number for the 2537 ** new table is in register pParse->regRoot. 2538 ** 2539 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2540 ** suitable state to query for the column names and types to be used 2541 ** by the new table. 2542 ** 2543 ** A shared-cache write-lock is not required to write to the new table, 2544 ** as a schema-lock must have already been obtained to create it. Since 2545 ** a schema-lock excludes all other database users, the write-lock would 2546 ** be redundant. 2547 */ 2548 if( pSelect ){ 2549 SelectDest dest; /* Where the SELECT should store results */ 2550 int regYield; /* Register holding co-routine entry-point */ 2551 int addrTop; /* Top of the co-routine */ 2552 int regRec; /* A record to be insert into the new table */ 2553 int regRowid; /* Rowid of the next row to insert */ 2554 int addrInsLoop; /* Top of the loop for inserting rows */ 2555 Table *pSelTab; /* A table that describes the SELECT results */ 2556 2557 regYield = ++pParse->nMem; 2558 regRec = ++pParse->nMem; 2559 regRowid = ++pParse->nMem; 2560 assert(pParse->nTab==1); 2561 sqlite3MayAbort(pParse); 2562 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2563 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2564 pParse->nTab = 2; 2565 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2566 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2567 if( pParse->nErr ) return; 2568 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2569 if( pSelTab==0 ) return; 2570 assert( p->aCol==0 ); 2571 p->nCol = p->nNVCol = pSelTab->nCol; 2572 p->aCol = pSelTab->aCol; 2573 pSelTab->nCol = 0; 2574 pSelTab->aCol = 0; 2575 sqlite3DeleteTable(db, pSelTab); 2576 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2577 sqlite3Select(pParse, pSelect, &dest); 2578 if( pParse->nErr ) return; 2579 sqlite3VdbeEndCoroutine(v, regYield); 2580 sqlite3VdbeJumpHere(v, addrTop - 1); 2581 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2582 VdbeCoverage(v); 2583 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2584 sqlite3TableAffinity(v, p, 0); 2585 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2586 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2587 sqlite3VdbeGoto(v, addrInsLoop); 2588 sqlite3VdbeJumpHere(v, addrInsLoop); 2589 sqlite3VdbeAddOp1(v, OP_Close, 1); 2590 } 2591 2592 /* Compute the complete text of the CREATE statement */ 2593 if( pSelect ){ 2594 zStmt = createTableStmt(db, p); 2595 }else{ 2596 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2597 n = (int)(pEnd2->z - pParse->sNameToken.z); 2598 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2599 zStmt = sqlite3MPrintf(db, 2600 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2601 ); 2602 } 2603 2604 /* A slot for the record has already been allocated in the 2605 ** schema table. We just need to update that slot with all 2606 ** the information we've collected. 2607 */ 2608 sqlite3NestedParse(pParse, 2609 "UPDATE %Q." DFLT_SCHEMA_TABLE 2610 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2611 " WHERE rowid=#%d", 2612 db->aDb[iDb].zDbSName, 2613 zType, 2614 p->zName, 2615 p->zName, 2616 pParse->regRoot, 2617 zStmt, 2618 pParse->regRowid 2619 ); 2620 sqlite3DbFree(db, zStmt); 2621 sqlite3ChangeCookie(pParse, iDb); 2622 2623 #ifndef SQLITE_OMIT_AUTOINCREMENT 2624 /* Check to see if we need to create an sqlite_sequence table for 2625 ** keeping track of autoincrement keys. 2626 */ 2627 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2628 Db *pDb = &db->aDb[iDb]; 2629 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2630 if( pDb->pSchema->pSeqTab==0 ){ 2631 sqlite3NestedParse(pParse, 2632 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2633 pDb->zDbSName 2634 ); 2635 } 2636 } 2637 #endif 2638 2639 /* Reparse everything to update our internal data structures */ 2640 sqlite3VdbeAddParseSchemaOp(v, iDb, 2641 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2642 } 2643 2644 /* Add the table to the in-memory representation of the database. 2645 */ 2646 if( db->init.busy ){ 2647 Table *pOld; 2648 Schema *pSchema = p->pSchema; 2649 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2650 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2651 if( pOld ){ 2652 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2653 sqlite3OomFault(db); 2654 return; 2655 } 2656 pParse->pNewTable = 0; 2657 db->mDbFlags |= DBFLAG_SchemaChange; 2658 2659 #ifndef SQLITE_OMIT_ALTERTABLE 2660 if( !p->pSelect ){ 2661 const char *zName = (const char *)pParse->sNameToken.z; 2662 int nName; 2663 assert( !pSelect && pCons && pEnd ); 2664 if( pCons->z==0 ){ 2665 pCons = pEnd; 2666 } 2667 nName = (int)((const char *)pCons->z - zName); 2668 p->addColOffset = 13 + nName; 2669 } 2670 #endif 2671 } 2672 } 2673 2674 #ifndef SQLITE_OMIT_VIEW 2675 /* 2676 ** The parser calls this routine in order to create a new VIEW 2677 */ 2678 void sqlite3CreateView( 2679 Parse *pParse, /* The parsing context */ 2680 Token *pBegin, /* The CREATE token that begins the statement */ 2681 Token *pName1, /* The token that holds the name of the view */ 2682 Token *pName2, /* The token that holds the name of the view */ 2683 ExprList *pCNames, /* Optional list of view column names */ 2684 Select *pSelect, /* A SELECT statement that will become the new view */ 2685 int isTemp, /* TRUE for a TEMPORARY view */ 2686 int noErr /* Suppress error messages if VIEW already exists */ 2687 ){ 2688 Table *p; 2689 int n; 2690 const char *z; 2691 Token sEnd; 2692 DbFixer sFix; 2693 Token *pName = 0; 2694 int iDb; 2695 sqlite3 *db = pParse->db; 2696 2697 if( pParse->nVar>0 ){ 2698 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2699 goto create_view_fail; 2700 } 2701 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2702 p = pParse->pNewTable; 2703 if( p==0 || pParse->nErr ) goto create_view_fail; 2704 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2705 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2706 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2707 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2708 2709 /* Make a copy of the entire SELECT statement that defines the view. 2710 ** This will force all the Expr.token.z values to be dynamically 2711 ** allocated rather than point to the input string - which means that 2712 ** they will persist after the current sqlite3_exec() call returns. 2713 */ 2714 pSelect->selFlags |= SF_View; 2715 if( IN_RENAME_OBJECT ){ 2716 p->pSelect = pSelect; 2717 pSelect = 0; 2718 }else{ 2719 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2720 } 2721 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2722 if( db->mallocFailed ) goto create_view_fail; 2723 2724 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2725 ** the end. 2726 */ 2727 sEnd = pParse->sLastToken; 2728 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2729 if( sEnd.z[0]!=';' ){ 2730 sEnd.z += sEnd.n; 2731 } 2732 sEnd.n = 0; 2733 n = (int)(sEnd.z - pBegin->z); 2734 assert( n>0 ); 2735 z = pBegin->z; 2736 while( sqlite3Isspace(z[n-1]) ){ n--; } 2737 sEnd.z = &z[n-1]; 2738 sEnd.n = 1; 2739 2740 /* Use sqlite3EndTable() to add the view to the schema table */ 2741 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2742 2743 create_view_fail: 2744 sqlite3SelectDelete(db, pSelect); 2745 if( IN_RENAME_OBJECT ){ 2746 sqlite3RenameExprlistUnmap(pParse, pCNames); 2747 } 2748 sqlite3ExprListDelete(db, pCNames); 2749 return; 2750 } 2751 #endif /* SQLITE_OMIT_VIEW */ 2752 2753 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2754 /* 2755 ** The Table structure pTable is really a VIEW. Fill in the names of 2756 ** the columns of the view in the pTable structure. Return the number 2757 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2758 */ 2759 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2760 Table *pSelTab; /* A fake table from which we get the result set */ 2761 Select *pSel; /* Copy of the SELECT that implements the view */ 2762 int nErr = 0; /* Number of errors encountered */ 2763 int n; /* Temporarily holds the number of cursors assigned */ 2764 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2765 #ifndef SQLITE_OMIT_VIRTUALTABLE 2766 int rc; 2767 #endif 2768 #ifndef SQLITE_OMIT_AUTHORIZATION 2769 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2770 #endif 2771 2772 assert( pTable ); 2773 2774 #ifndef SQLITE_OMIT_VIRTUALTABLE 2775 db->nSchemaLock++; 2776 rc = sqlite3VtabCallConnect(pParse, pTable); 2777 db->nSchemaLock--; 2778 if( rc ){ 2779 return 1; 2780 } 2781 if( IsVirtual(pTable) ) return 0; 2782 #endif 2783 2784 #ifndef SQLITE_OMIT_VIEW 2785 /* A positive nCol means the columns names for this view are 2786 ** already known. 2787 */ 2788 if( pTable->nCol>0 ) return 0; 2789 2790 /* A negative nCol is a special marker meaning that we are currently 2791 ** trying to compute the column names. If we enter this routine with 2792 ** a negative nCol, it means two or more views form a loop, like this: 2793 ** 2794 ** CREATE VIEW one AS SELECT * FROM two; 2795 ** CREATE VIEW two AS SELECT * FROM one; 2796 ** 2797 ** Actually, the error above is now caught prior to reaching this point. 2798 ** But the following test is still important as it does come up 2799 ** in the following: 2800 ** 2801 ** CREATE TABLE main.ex1(a); 2802 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2803 ** SELECT * FROM temp.ex1; 2804 */ 2805 if( pTable->nCol<0 ){ 2806 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2807 return 1; 2808 } 2809 assert( pTable->nCol>=0 ); 2810 2811 /* If we get this far, it means we need to compute the table names. 2812 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2813 ** "*" elements in the results set of the view and will assign cursors 2814 ** to the elements of the FROM clause. But we do not want these changes 2815 ** to be permanent. So the computation is done on a copy of the SELECT 2816 ** statement that defines the view. 2817 */ 2818 assert( pTable->pSelect ); 2819 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2820 if( pSel ){ 2821 u8 eParseMode = pParse->eParseMode; 2822 pParse->eParseMode = PARSE_MODE_NORMAL; 2823 n = pParse->nTab; 2824 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2825 pTable->nCol = -1; 2826 DisableLookaside; 2827 #ifndef SQLITE_OMIT_AUTHORIZATION 2828 xAuth = db->xAuth; 2829 db->xAuth = 0; 2830 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2831 db->xAuth = xAuth; 2832 #else 2833 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2834 #endif 2835 pParse->nTab = n; 2836 if( pSelTab==0 ){ 2837 pTable->nCol = 0; 2838 nErr++; 2839 }else if( pTable->pCheck ){ 2840 /* CREATE VIEW name(arglist) AS ... 2841 ** The names of the columns in the table are taken from 2842 ** arglist which is stored in pTable->pCheck. The pCheck field 2843 ** normally holds CHECK constraints on an ordinary table, but for 2844 ** a VIEW it holds the list of column names. 2845 */ 2846 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2847 &pTable->nCol, &pTable->aCol); 2848 if( db->mallocFailed==0 2849 && pParse->nErr==0 2850 && pTable->nCol==pSel->pEList->nExpr 2851 ){ 2852 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2853 SQLITE_AFF_NONE); 2854 } 2855 }else{ 2856 /* CREATE VIEW name AS... without an argument list. Construct 2857 ** the column names from the SELECT statement that defines the view. 2858 */ 2859 assert( pTable->aCol==0 ); 2860 pTable->nCol = pSelTab->nCol; 2861 pTable->aCol = pSelTab->aCol; 2862 pSelTab->nCol = 0; 2863 pSelTab->aCol = 0; 2864 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2865 } 2866 pTable->nNVCol = pTable->nCol; 2867 sqlite3DeleteTable(db, pSelTab); 2868 sqlite3SelectDelete(db, pSel); 2869 EnableLookaside; 2870 pParse->eParseMode = eParseMode; 2871 } else { 2872 nErr++; 2873 } 2874 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2875 if( db->mallocFailed ){ 2876 sqlite3DeleteColumnNames(db, pTable); 2877 pTable->aCol = 0; 2878 pTable->nCol = 0; 2879 } 2880 #endif /* SQLITE_OMIT_VIEW */ 2881 return nErr; 2882 } 2883 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2884 2885 #ifndef SQLITE_OMIT_VIEW 2886 /* 2887 ** Clear the column names from every VIEW in database idx. 2888 */ 2889 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2890 HashElem *i; 2891 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2892 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2893 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2894 Table *pTab = sqliteHashData(i); 2895 if( pTab->pSelect ){ 2896 sqlite3DeleteColumnNames(db, pTab); 2897 pTab->aCol = 0; 2898 pTab->nCol = 0; 2899 } 2900 } 2901 DbClearProperty(db, idx, DB_UnresetViews); 2902 } 2903 #else 2904 # define sqliteViewResetAll(A,B) 2905 #endif /* SQLITE_OMIT_VIEW */ 2906 2907 /* 2908 ** This function is called by the VDBE to adjust the internal schema 2909 ** used by SQLite when the btree layer moves a table root page. The 2910 ** root-page of a table or index in database iDb has changed from iFrom 2911 ** to iTo. 2912 ** 2913 ** Ticket #1728: The symbol table might still contain information 2914 ** on tables and/or indices that are the process of being deleted. 2915 ** If you are unlucky, one of those deleted indices or tables might 2916 ** have the same rootpage number as the real table or index that is 2917 ** being moved. So we cannot stop searching after the first match 2918 ** because the first match might be for one of the deleted indices 2919 ** or tables and not the table/index that is actually being moved. 2920 ** We must continue looping until all tables and indices with 2921 ** rootpage==iFrom have been converted to have a rootpage of iTo 2922 ** in order to be certain that we got the right one. 2923 */ 2924 #ifndef SQLITE_OMIT_AUTOVACUUM 2925 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2926 HashElem *pElem; 2927 Hash *pHash; 2928 Db *pDb; 2929 2930 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2931 pDb = &db->aDb[iDb]; 2932 pHash = &pDb->pSchema->tblHash; 2933 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2934 Table *pTab = sqliteHashData(pElem); 2935 if( pTab->tnum==iFrom ){ 2936 pTab->tnum = iTo; 2937 } 2938 } 2939 pHash = &pDb->pSchema->idxHash; 2940 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2941 Index *pIdx = sqliteHashData(pElem); 2942 if( pIdx->tnum==iFrom ){ 2943 pIdx->tnum = iTo; 2944 } 2945 } 2946 } 2947 #endif 2948 2949 /* 2950 ** Write code to erase the table with root-page iTable from database iDb. 2951 ** Also write code to modify the sqlite_schema table and internal schema 2952 ** if a root-page of another table is moved by the btree-layer whilst 2953 ** erasing iTable (this can happen with an auto-vacuum database). 2954 */ 2955 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2956 Vdbe *v = sqlite3GetVdbe(pParse); 2957 int r1 = sqlite3GetTempReg(pParse); 2958 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2959 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2960 sqlite3MayAbort(pParse); 2961 #ifndef SQLITE_OMIT_AUTOVACUUM 2962 /* OP_Destroy stores an in integer r1. If this integer 2963 ** is non-zero, then it is the root page number of a table moved to 2964 ** location iTable. The following code modifies the sqlite_schema table to 2965 ** reflect this. 2966 ** 2967 ** The "#NNN" in the SQL is a special constant that means whatever value 2968 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2969 ** token for additional information. 2970 */ 2971 sqlite3NestedParse(pParse, 2972 "UPDATE %Q." DFLT_SCHEMA_TABLE 2973 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2974 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2975 #endif 2976 sqlite3ReleaseTempReg(pParse, r1); 2977 } 2978 2979 /* 2980 ** Write VDBE code to erase table pTab and all associated indices on disk. 2981 ** Code to update the sqlite_schema tables and internal schema definitions 2982 ** in case a root-page belonging to another table is moved by the btree layer 2983 ** is also added (this can happen with an auto-vacuum database). 2984 */ 2985 static void destroyTable(Parse *pParse, Table *pTab){ 2986 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2987 ** is not defined), then it is important to call OP_Destroy on the 2988 ** table and index root-pages in order, starting with the numerically 2989 ** largest root-page number. This guarantees that none of the root-pages 2990 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2991 ** following were coded: 2992 ** 2993 ** OP_Destroy 4 0 2994 ** ... 2995 ** OP_Destroy 5 0 2996 ** 2997 ** and root page 5 happened to be the largest root-page number in the 2998 ** database, then root page 5 would be moved to page 4 by the 2999 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3000 ** a free-list page. 3001 */ 3002 Pgno iTab = pTab->tnum; 3003 Pgno iDestroyed = 0; 3004 3005 while( 1 ){ 3006 Index *pIdx; 3007 Pgno iLargest = 0; 3008 3009 if( iDestroyed==0 || iTab<iDestroyed ){ 3010 iLargest = iTab; 3011 } 3012 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3013 Pgno iIdx = pIdx->tnum; 3014 assert( pIdx->pSchema==pTab->pSchema ); 3015 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3016 iLargest = iIdx; 3017 } 3018 } 3019 if( iLargest==0 ){ 3020 return; 3021 }else{ 3022 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3023 assert( iDb>=0 && iDb<pParse->db->nDb ); 3024 destroyRootPage(pParse, iLargest, iDb); 3025 iDestroyed = iLargest; 3026 } 3027 } 3028 } 3029 3030 /* 3031 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3032 ** after a DROP INDEX or DROP TABLE command. 3033 */ 3034 static void sqlite3ClearStatTables( 3035 Parse *pParse, /* The parsing context */ 3036 int iDb, /* The database number */ 3037 const char *zType, /* "idx" or "tbl" */ 3038 const char *zName /* Name of index or table */ 3039 ){ 3040 int i; 3041 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3042 for(i=1; i<=4; i++){ 3043 char zTab[24]; 3044 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3045 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3046 sqlite3NestedParse(pParse, 3047 "DELETE FROM %Q.%s WHERE %s=%Q", 3048 zDbName, zTab, zType, zName 3049 ); 3050 } 3051 } 3052 } 3053 3054 /* 3055 ** Generate code to drop a table. 3056 */ 3057 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3058 Vdbe *v; 3059 sqlite3 *db = pParse->db; 3060 Trigger *pTrigger; 3061 Db *pDb = &db->aDb[iDb]; 3062 3063 v = sqlite3GetVdbe(pParse); 3064 assert( v!=0 ); 3065 sqlite3BeginWriteOperation(pParse, 1, iDb); 3066 3067 #ifndef SQLITE_OMIT_VIRTUALTABLE 3068 if( IsVirtual(pTab) ){ 3069 sqlite3VdbeAddOp0(v, OP_VBegin); 3070 } 3071 #endif 3072 3073 /* Drop all triggers associated with the table being dropped. Code 3074 ** is generated to remove entries from sqlite_schema and/or 3075 ** sqlite_temp_schema if required. 3076 */ 3077 pTrigger = sqlite3TriggerList(pParse, pTab); 3078 while( pTrigger ){ 3079 assert( pTrigger->pSchema==pTab->pSchema || 3080 pTrigger->pSchema==db->aDb[1].pSchema ); 3081 sqlite3DropTriggerPtr(pParse, pTrigger); 3082 pTrigger = pTrigger->pNext; 3083 } 3084 3085 #ifndef SQLITE_OMIT_AUTOINCREMENT 3086 /* Remove any entries of the sqlite_sequence table associated with 3087 ** the table being dropped. This is done before the table is dropped 3088 ** at the btree level, in case the sqlite_sequence table needs to 3089 ** move as a result of the drop (can happen in auto-vacuum mode). 3090 */ 3091 if( pTab->tabFlags & TF_Autoincrement ){ 3092 sqlite3NestedParse(pParse, 3093 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3094 pDb->zDbSName, pTab->zName 3095 ); 3096 } 3097 #endif 3098 3099 /* Drop all entries in the schema table that refer to the 3100 ** table. The program name loops through the schema table and deletes 3101 ** every row that refers to a table of the same name as the one being 3102 ** dropped. Triggers are handled separately because a trigger can be 3103 ** created in the temp database that refers to a table in another 3104 ** database. 3105 */ 3106 sqlite3NestedParse(pParse, 3107 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3108 " WHERE tbl_name=%Q and type!='trigger'", 3109 pDb->zDbSName, pTab->zName); 3110 if( !isView && !IsVirtual(pTab) ){ 3111 destroyTable(pParse, pTab); 3112 } 3113 3114 /* Remove the table entry from SQLite's internal schema and modify 3115 ** the schema cookie. 3116 */ 3117 if( IsVirtual(pTab) ){ 3118 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3119 sqlite3MayAbort(pParse); 3120 } 3121 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3122 sqlite3ChangeCookie(pParse, iDb); 3123 sqliteViewResetAll(db, iDb); 3124 } 3125 3126 /* 3127 ** Return TRUE if shadow tables should be read-only in the current 3128 ** context. 3129 */ 3130 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3131 #ifndef SQLITE_OMIT_VIRTUALTABLE 3132 if( (db->flags & SQLITE_Defensive)!=0 3133 && db->pVtabCtx==0 3134 && db->nVdbeExec==0 3135 ){ 3136 return 1; 3137 } 3138 #endif 3139 return 0; 3140 } 3141 3142 /* 3143 ** Return true if it is not allowed to drop the given table 3144 */ 3145 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3146 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3147 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3148 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3149 return 1; 3150 } 3151 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3152 return 1; 3153 } 3154 return 0; 3155 } 3156 3157 /* 3158 ** This routine is called to do the work of a DROP TABLE statement. 3159 ** pName is the name of the table to be dropped. 3160 */ 3161 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3162 Table *pTab; 3163 Vdbe *v; 3164 sqlite3 *db = pParse->db; 3165 int iDb; 3166 3167 if( db->mallocFailed ){ 3168 goto exit_drop_table; 3169 } 3170 assert( pParse->nErr==0 ); 3171 assert( pName->nSrc==1 ); 3172 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3173 if( noErr ) db->suppressErr++; 3174 assert( isView==0 || isView==LOCATE_VIEW ); 3175 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3176 if( noErr ) db->suppressErr--; 3177 3178 if( pTab==0 ){ 3179 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3180 goto exit_drop_table; 3181 } 3182 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3183 assert( iDb>=0 && iDb<db->nDb ); 3184 3185 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3186 ** it is initialized. 3187 */ 3188 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3189 goto exit_drop_table; 3190 } 3191 #ifndef SQLITE_OMIT_AUTHORIZATION 3192 { 3193 int code; 3194 const char *zTab = SCHEMA_TABLE(iDb); 3195 const char *zDb = db->aDb[iDb].zDbSName; 3196 const char *zArg2 = 0; 3197 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3198 goto exit_drop_table; 3199 } 3200 if( isView ){ 3201 if( !OMIT_TEMPDB && iDb==1 ){ 3202 code = SQLITE_DROP_TEMP_VIEW; 3203 }else{ 3204 code = SQLITE_DROP_VIEW; 3205 } 3206 #ifndef SQLITE_OMIT_VIRTUALTABLE 3207 }else if( IsVirtual(pTab) ){ 3208 code = SQLITE_DROP_VTABLE; 3209 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3210 #endif 3211 }else{ 3212 if( !OMIT_TEMPDB && iDb==1 ){ 3213 code = SQLITE_DROP_TEMP_TABLE; 3214 }else{ 3215 code = SQLITE_DROP_TABLE; 3216 } 3217 } 3218 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3219 goto exit_drop_table; 3220 } 3221 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3222 goto exit_drop_table; 3223 } 3224 } 3225 #endif 3226 if( tableMayNotBeDropped(db, pTab) ){ 3227 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3228 goto exit_drop_table; 3229 } 3230 3231 #ifndef SQLITE_OMIT_VIEW 3232 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3233 ** on a table. 3234 */ 3235 if( isView && pTab->pSelect==0 ){ 3236 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3237 goto exit_drop_table; 3238 } 3239 if( !isView && pTab->pSelect ){ 3240 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3241 goto exit_drop_table; 3242 } 3243 #endif 3244 3245 /* Generate code to remove the table from the schema table 3246 ** on disk. 3247 */ 3248 v = sqlite3GetVdbe(pParse); 3249 if( v ){ 3250 sqlite3BeginWriteOperation(pParse, 1, iDb); 3251 if( !isView ){ 3252 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3253 sqlite3FkDropTable(pParse, pName, pTab); 3254 } 3255 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3256 } 3257 3258 exit_drop_table: 3259 sqlite3SrcListDelete(db, pName); 3260 } 3261 3262 /* 3263 ** This routine is called to create a new foreign key on the table 3264 ** currently under construction. pFromCol determines which columns 3265 ** in the current table point to the foreign key. If pFromCol==0 then 3266 ** connect the key to the last column inserted. pTo is the name of 3267 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3268 ** of tables in the parent pTo table. flags contains all 3269 ** information about the conflict resolution algorithms specified 3270 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3271 ** 3272 ** An FKey structure is created and added to the table currently 3273 ** under construction in the pParse->pNewTable field. 3274 ** 3275 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3276 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3277 */ 3278 void sqlite3CreateForeignKey( 3279 Parse *pParse, /* Parsing context */ 3280 ExprList *pFromCol, /* Columns in this table that point to other table */ 3281 Token *pTo, /* Name of the other table */ 3282 ExprList *pToCol, /* Columns in the other table */ 3283 int flags /* Conflict resolution algorithms. */ 3284 ){ 3285 sqlite3 *db = pParse->db; 3286 #ifndef SQLITE_OMIT_FOREIGN_KEY 3287 FKey *pFKey = 0; 3288 FKey *pNextTo; 3289 Table *p = pParse->pNewTable; 3290 int nByte; 3291 int i; 3292 int nCol; 3293 char *z; 3294 3295 assert( pTo!=0 ); 3296 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3297 if( pFromCol==0 ){ 3298 int iCol = p->nCol-1; 3299 if( NEVER(iCol<0) ) goto fk_end; 3300 if( pToCol && pToCol->nExpr!=1 ){ 3301 sqlite3ErrorMsg(pParse, "foreign key on %s" 3302 " should reference only one column of table %T", 3303 p->aCol[iCol].zName, pTo); 3304 goto fk_end; 3305 } 3306 nCol = 1; 3307 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3308 sqlite3ErrorMsg(pParse, 3309 "number of columns in foreign key does not match the number of " 3310 "columns in the referenced table"); 3311 goto fk_end; 3312 }else{ 3313 nCol = pFromCol->nExpr; 3314 } 3315 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3316 if( pToCol ){ 3317 for(i=0; i<pToCol->nExpr; i++){ 3318 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3319 } 3320 } 3321 pFKey = sqlite3DbMallocZero(db, nByte ); 3322 if( pFKey==0 ){ 3323 goto fk_end; 3324 } 3325 pFKey->pFrom = p; 3326 pFKey->pNextFrom = p->pFKey; 3327 z = (char*)&pFKey->aCol[nCol]; 3328 pFKey->zTo = z; 3329 if( IN_RENAME_OBJECT ){ 3330 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3331 } 3332 memcpy(z, pTo->z, pTo->n); 3333 z[pTo->n] = 0; 3334 sqlite3Dequote(z); 3335 z += pTo->n+1; 3336 pFKey->nCol = nCol; 3337 if( pFromCol==0 ){ 3338 pFKey->aCol[0].iFrom = p->nCol-1; 3339 }else{ 3340 for(i=0; i<nCol; i++){ 3341 int j; 3342 for(j=0; j<p->nCol; j++){ 3343 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3344 pFKey->aCol[i].iFrom = j; 3345 break; 3346 } 3347 } 3348 if( j>=p->nCol ){ 3349 sqlite3ErrorMsg(pParse, 3350 "unknown column \"%s\" in foreign key definition", 3351 pFromCol->a[i].zEName); 3352 goto fk_end; 3353 } 3354 if( IN_RENAME_OBJECT ){ 3355 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3356 } 3357 } 3358 } 3359 if( pToCol ){ 3360 for(i=0; i<nCol; i++){ 3361 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3362 pFKey->aCol[i].zCol = z; 3363 if( IN_RENAME_OBJECT ){ 3364 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3365 } 3366 memcpy(z, pToCol->a[i].zEName, n); 3367 z[n] = 0; 3368 z += n+1; 3369 } 3370 } 3371 pFKey->isDeferred = 0; 3372 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3373 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3374 3375 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3376 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3377 pFKey->zTo, (void *)pFKey 3378 ); 3379 if( pNextTo==pFKey ){ 3380 sqlite3OomFault(db); 3381 goto fk_end; 3382 } 3383 if( pNextTo ){ 3384 assert( pNextTo->pPrevTo==0 ); 3385 pFKey->pNextTo = pNextTo; 3386 pNextTo->pPrevTo = pFKey; 3387 } 3388 3389 /* Link the foreign key to the table as the last step. 3390 */ 3391 p->pFKey = pFKey; 3392 pFKey = 0; 3393 3394 fk_end: 3395 sqlite3DbFree(db, pFKey); 3396 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3397 sqlite3ExprListDelete(db, pFromCol); 3398 sqlite3ExprListDelete(db, pToCol); 3399 } 3400 3401 /* 3402 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3403 ** clause is seen as part of a foreign key definition. The isDeferred 3404 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3405 ** The behavior of the most recently created foreign key is adjusted 3406 ** accordingly. 3407 */ 3408 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3409 #ifndef SQLITE_OMIT_FOREIGN_KEY 3410 Table *pTab; 3411 FKey *pFKey; 3412 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3413 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3414 pFKey->isDeferred = (u8)isDeferred; 3415 #endif 3416 } 3417 3418 /* 3419 ** Generate code that will erase and refill index *pIdx. This is 3420 ** used to initialize a newly created index or to recompute the 3421 ** content of an index in response to a REINDEX command. 3422 ** 3423 ** if memRootPage is not negative, it means that the index is newly 3424 ** created. The register specified by memRootPage contains the 3425 ** root page number of the index. If memRootPage is negative, then 3426 ** the index already exists and must be cleared before being refilled and 3427 ** the root page number of the index is taken from pIndex->tnum. 3428 */ 3429 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3430 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3431 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3432 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3433 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3434 int addr1; /* Address of top of loop */ 3435 int addr2; /* Address to jump to for next iteration */ 3436 Pgno tnum; /* Root page of index */ 3437 int iPartIdxLabel; /* Jump to this label to skip a row */ 3438 Vdbe *v; /* Generate code into this virtual machine */ 3439 KeyInfo *pKey; /* KeyInfo for index */ 3440 int regRecord; /* Register holding assembled index record */ 3441 sqlite3 *db = pParse->db; /* The database connection */ 3442 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3443 3444 #ifndef SQLITE_OMIT_AUTHORIZATION 3445 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3446 db->aDb[iDb].zDbSName ) ){ 3447 return; 3448 } 3449 #endif 3450 3451 /* Require a write-lock on the table to perform this operation */ 3452 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3453 3454 v = sqlite3GetVdbe(pParse); 3455 if( v==0 ) return; 3456 if( memRootPage>=0 ){ 3457 tnum = (Pgno)memRootPage; 3458 }else{ 3459 tnum = pIndex->tnum; 3460 } 3461 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3462 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3463 3464 /* Open the sorter cursor if we are to use one. */ 3465 iSorter = pParse->nTab++; 3466 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3467 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3468 3469 /* Open the table. Loop through all rows of the table, inserting index 3470 ** records into the sorter. */ 3471 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3472 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3473 regRecord = sqlite3GetTempReg(pParse); 3474 sqlite3MultiWrite(pParse); 3475 3476 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3477 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3478 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3479 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3480 sqlite3VdbeJumpHere(v, addr1); 3481 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3482 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3483 (char *)pKey, P4_KEYINFO); 3484 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3485 3486 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3487 if( IsUniqueIndex(pIndex) ){ 3488 int j2 = sqlite3VdbeGoto(v, 1); 3489 addr2 = sqlite3VdbeCurrentAddr(v); 3490 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3491 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3492 pIndex->nKeyCol); VdbeCoverage(v); 3493 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3494 sqlite3VdbeJumpHere(v, j2); 3495 }else{ 3496 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3497 ** abort. The exception is if one of the indexed expressions contains a 3498 ** user function that throws an exception when it is evaluated. But the 3499 ** overhead of adding a statement journal to a CREATE INDEX statement is 3500 ** very small (since most of the pages written do not contain content that 3501 ** needs to be restored if the statement aborts), so we call 3502 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3503 sqlite3MayAbort(pParse); 3504 addr2 = sqlite3VdbeCurrentAddr(v); 3505 } 3506 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3507 if( !pIndex->bAscKeyBug ){ 3508 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3509 ** faster by avoiding unnecessary seeks. But the optimization does 3510 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3511 ** with DESC primary keys, since those indexes have there keys in 3512 ** a different order from the main table. 3513 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3514 */ 3515 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3516 } 3517 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3518 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3519 sqlite3ReleaseTempReg(pParse, regRecord); 3520 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3521 sqlite3VdbeJumpHere(v, addr1); 3522 3523 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3524 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3525 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3526 } 3527 3528 /* 3529 ** Allocate heap space to hold an Index object with nCol columns. 3530 ** 3531 ** Increase the allocation size to provide an extra nExtra bytes 3532 ** of 8-byte aligned space after the Index object and return a 3533 ** pointer to this extra space in *ppExtra. 3534 */ 3535 Index *sqlite3AllocateIndexObject( 3536 sqlite3 *db, /* Database connection */ 3537 i16 nCol, /* Total number of columns in the index */ 3538 int nExtra, /* Number of bytes of extra space to alloc */ 3539 char **ppExtra /* Pointer to the "extra" space */ 3540 ){ 3541 Index *p; /* Allocated index object */ 3542 int nByte; /* Bytes of space for Index object + arrays */ 3543 3544 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3545 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3546 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3547 sizeof(i16)*nCol + /* Index.aiColumn */ 3548 sizeof(u8)*nCol); /* Index.aSortOrder */ 3549 p = sqlite3DbMallocZero(db, nByte + nExtra); 3550 if( p ){ 3551 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3552 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3553 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3554 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3555 p->aSortOrder = (u8*)pExtra; 3556 p->nColumn = nCol; 3557 p->nKeyCol = nCol - 1; 3558 *ppExtra = ((char*)p) + nByte; 3559 } 3560 return p; 3561 } 3562 3563 /* 3564 ** If expression list pList contains an expression that was parsed with 3565 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3566 ** pParse and return non-zero. Otherwise, return zero. 3567 */ 3568 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3569 if( pList ){ 3570 int i; 3571 for(i=0; i<pList->nExpr; i++){ 3572 if( pList->a[i].bNulls ){ 3573 u8 sf = pList->a[i].sortFlags; 3574 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3575 (sf==0 || sf==3) ? "FIRST" : "LAST" 3576 ); 3577 return 1; 3578 } 3579 } 3580 } 3581 return 0; 3582 } 3583 3584 /* 3585 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3586 ** and pTblList is the name of the table that is to be indexed. Both will 3587 ** be NULL for a primary key or an index that is created to satisfy a 3588 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3589 ** as the table to be indexed. pParse->pNewTable is a table that is 3590 ** currently being constructed by a CREATE TABLE statement. 3591 ** 3592 ** pList is a list of columns to be indexed. pList will be NULL if this 3593 ** is a primary key or unique-constraint on the most recent column added 3594 ** to the table currently under construction. 3595 */ 3596 void sqlite3CreateIndex( 3597 Parse *pParse, /* All information about this parse */ 3598 Token *pName1, /* First part of index name. May be NULL */ 3599 Token *pName2, /* Second part of index name. May be NULL */ 3600 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3601 ExprList *pList, /* A list of columns to be indexed */ 3602 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3603 Token *pStart, /* The CREATE token that begins this statement */ 3604 Expr *pPIWhere, /* WHERE clause for partial indices */ 3605 int sortOrder, /* Sort order of primary key when pList==NULL */ 3606 int ifNotExist, /* Omit error if index already exists */ 3607 u8 idxType /* The index type */ 3608 ){ 3609 Table *pTab = 0; /* Table to be indexed */ 3610 Index *pIndex = 0; /* The index to be created */ 3611 char *zName = 0; /* Name of the index */ 3612 int nName; /* Number of characters in zName */ 3613 int i, j; 3614 DbFixer sFix; /* For assigning database names to pTable */ 3615 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3616 sqlite3 *db = pParse->db; 3617 Db *pDb; /* The specific table containing the indexed database */ 3618 int iDb; /* Index of the database that is being written */ 3619 Token *pName = 0; /* Unqualified name of the index to create */ 3620 struct ExprList_item *pListItem; /* For looping over pList */ 3621 int nExtra = 0; /* Space allocated for zExtra[] */ 3622 int nExtraCol; /* Number of extra columns needed */ 3623 char *zExtra = 0; /* Extra space after the Index object */ 3624 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3625 3626 if( db->mallocFailed || pParse->nErr>0 ){ 3627 goto exit_create_index; 3628 } 3629 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3630 goto exit_create_index; 3631 } 3632 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3633 goto exit_create_index; 3634 } 3635 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3636 goto exit_create_index; 3637 } 3638 3639 /* 3640 ** Find the table that is to be indexed. Return early if not found. 3641 */ 3642 if( pTblName!=0 ){ 3643 3644 /* Use the two-part index name to determine the database 3645 ** to search for the table. 'Fix' the table name to this db 3646 ** before looking up the table. 3647 */ 3648 assert( pName1 && pName2 ); 3649 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3650 if( iDb<0 ) goto exit_create_index; 3651 assert( pName && pName->z ); 3652 3653 #ifndef SQLITE_OMIT_TEMPDB 3654 /* If the index name was unqualified, check if the table 3655 ** is a temp table. If so, set the database to 1. Do not do this 3656 ** if initialising a database schema. 3657 */ 3658 if( !db->init.busy ){ 3659 pTab = sqlite3SrcListLookup(pParse, pTblName); 3660 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3661 iDb = 1; 3662 } 3663 } 3664 #endif 3665 3666 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3667 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3668 /* Because the parser constructs pTblName from a single identifier, 3669 ** sqlite3FixSrcList can never fail. */ 3670 assert(0); 3671 } 3672 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3673 assert( db->mallocFailed==0 || pTab==0 ); 3674 if( pTab==0 ) goto exit_create_index; 3675 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3676 sqlite3ErrorMsg(pParse, 3677 "cannot create a TEMP index on non-TEMP table \"%s\"", 3678 pTab->zName); 3679 goto exit_create_index; 3680 } 3681 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3682 }else{ 3683 assert( pName==0 ); 3684 assert( pStart==0 ); 3685 pTab = pParse->pNewTable; 3686 if( !pTab ) goto exit_create_index; 3687 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3688 } 3689 pDb = &db->aDb[iDb]; 3690 3691 assert( pTab!=0 ); 3692 assert( pParse->nErr==0 ); 3693 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3694 && db->init.busy==0 3695 && pTblName!=0 3696 #if SQLITE_USER_AUTHENTICATION 3697 && sqlite3UserAuthTable(pTab->zName)==0 3698 #endif 3699 ){ 3700 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3701 goto exit_create_index; 3702 } 3703 #ifndef SQLITE_OMIT_VIEW 3704 if( pTab->pSelect ){ 3705 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3706 goto exit_create_index; 3707 } 3708 #endif 3709 #ifndef SQLITE_OMIT_VIRTUALTABLE 3710 if( IsVirtual(pTab) ){ 3711 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3712 goto exit_create_index; 3713 } 3714 #endif 3715 3716 /* 3717 ** Find the name of the index. Make sure there is not already another 3718 ** index or table with the same name. 3719 ** 3720 ** Exception: If we are reading the names of permanent indices from the 3721 ** sqlite_schema table (because some other process changed the schema) and 3722 ** one of the index names collides with the name of a temporary table or 3723 ** index, then we will continue to process this index. 3724 ** 3725 ** If pName==0 it means that we are 3726 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3727 ** own name. 3728 */ 3729 if( pName ){ 3730 zName = sqlite3NameFromToken(db, pName); 3731 if( zName==0 ) goto exit_create_index; 3732 assert( pName->z!=0 ); 3733 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3734 goto exit_create_index; 3735 } 3736 if( !IN_RENAME_OBJECT ){ 3737 if( !db->init.busy ){ 3738 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3739 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3740 goto exit_create_index; 3741 } 3742 } 3743 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3744 if( !ifNotExist ){ 3745 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3746 }else{ 3747 assert( !db->init.busy ); 3748 sqlite3CodeVerifySchema(pParse, iDb); 3749 } 3750 goto exit_create_index; 3751 } 3752 } 3753 }else{ 3754 int n; 3755 Index *pLoop; 3756 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3757 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3758 if( zName==0 ){ 3759 goto exit_create_index; 3760 } 3761 3762 /* Automatic index names generated from within sqlite3_declare_vtab() 3763 ** must have names that are distinct from normal automatic index names. 3764 ** The following statement converts "sqlite3_autoindex..." into 3765 ** "sqlite3_butoindex..." in order to make the names distinct. 3766 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3767 if( IN_SPECIAL_PARSE ) zName[7]++; 3768 } 3769 3770 /* Check for authorization to create an index. 3771 */ 3772 #ifndef SQLITE_OMIT_AUTHORIZATION 3773 if( !IN_RENAME_OBJECT ){ 3774 const char *zDb = pDb->zDbSName; 3775 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3776 goto exit_create_index; 3777 } 3778 i = SQLITE_CREATE_INDEX; 3779 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3780 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3781 goto exit_create_index; 3782 } 3783 } 3784 #endif 3785 3786 /* If pList==0, it means this routine was called to make a primary 3787 ** key out of the last column added to the table under construction. 3788 ** So create a fake list to simulate this. 3789 */ 3790 if( pList==0 ){ 3791 Token prevCol; 3792 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3793 pCol->colFlags |= COLFLAG_UNIQUE; 3794 sqlite3TokenInit(&prevCol, pCol->zName); 3795 pList = sqlite3ExprListAppend(pParse, 0, 3796 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3797 if( pList==0 ) goto exit_create_index; 3798 assert( pList->nExpr==1 ); 3799 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3800 }else{ 3801 sqlite3ExprListCheckLength(pParse, pList, "index"); 3802 if( pParse->nErr ) goto exit_create_index; 3803 } 3804 3805 /* Figure out how many bytes of space are required to store explicitly 3806 ** specified collation sequence names. 3807 */ 3808 for(i=0; i<pList->nExpr; i++){ 3809 Expr *pExpr = pList->a[i].pExpr; 3810 assert( pExpr!=0 ); 3811 if( pExpr->op==TK_COLLATE ){ 3812 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3813 } 3814 } 3815 3816 /* 3817 ** Allocate the index structure. 3818 */ 3819 nName = sqlite3Strlen30(zName); 3820 nExtraCol = pPk ? pPk->nKeyCol : 1; 3821 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3822 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3823 nName + nExtra + 1, &zExtra); 3824 if( db->mallocFailed ){ 3825 goto exit_create_index; 3826 } 3827 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3828 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3829 pIndex->zName = zExtra; 3830 zExtra += nName + 1; 3831 memcpy(pIndex->zName, zName, nName+1); 3832 pIndex->pTable = pTab; 3833 pIndex->onError = (u8)onError; 3834 pIndex->uniqNotNull = onError!=OE_None; 3835 pIndex->idxType = idxType; 3836 pIndex->pSchema = db->aDb[iDb].pSchema; 3837 pIndex->nKeyCol = pList->nExpr; 3838 if( pPIWhere ){ 3839 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3840 pIndex->pPartIdxWhere = pPIWhere; 3841 pPIWhere = 0; 3842 } 3843 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3844 3845 /* Check to see if we should honor DESC requests on index columns 3846 */ 3847 if( pDb->pSchema->file_format>=4 ){ 3848 sortOrderMask = -1; /* Honor DESC */ 3849 }else{ 3850 sortOrderMask = 0; /* Ignore DESC */ 3851 } 3852 3853 /* Analyze the list of expressions that form the terms of the index and 3854 ** report any errors. In the common case where the expression is exactly 3855 ** a table column, store that column in aiColumn[]. For general expressions, 3856 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3857 ** 3858 ** TODO: Issue a warning if two or more columns of the index are identical. 3859 ** TODO: Issue a warning if the table primary key is used as part of the 3860 ** index key. 3861 */ 3862 pListItem = pList->a; 3863 if( IN_RENAME_OBJECT ){ 3864 pIndex->aColExpr = pList; 3865 pList = 0; 3866 } 3867 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3868 Expr *pCExpr; /* The i-th index expression */ 3869 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3870 const char *zColl; /* Collation sequence name */ 3871 3872 sqlite3StringToId(pListItem->pExpr); 3873 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3874 if( pParse->nErr ) goto exit_create_index; 3875 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3876 if( pCExpr->op!=TK_COLUMN ){ 3877 if( pTab==pParse->pNewTable ){ 3878 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3879 "UNIQUE constraints"); 3880 goto exit_create_index; 3881 } 3882 if( pIndex->aColExpr==0 ){ 3883 pIndex->aColExpr = pList; 3884 pList = 0; 3885 } 3886 j = XN_EXPR; 3887 pIndex->aiColumn[i] = XN_EXPR; 3888 pIndex->uniqNotNull = 0; 3889 }else{ 3890 j = pCExpr->iColumn; 3891 assert( j<=0x7fff ); 3892 if( j<0 ){ 3893 j = pTab->iPKey; 3894 }else{ 3895 if( pTab->aCol[j].notNull==0 ){ 3896 pIndex->uniqNotNull = 0; 3897 } 3898 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3899 pIndex->bHasVCol = 1; 3900 } 3901 } 3902 pIndex->aiColumn[i] = (i16)j; 3903 } 3904 zColl = 0; 3905 if( pListItem->pExpr->op==TK_COLLATE ){ 3906 int nColl; 3907 zColl = pListItem->pExpr->u.zToken; 3908 nColl = sqlite3Strlen30(zColl) + 1; 3909 assert( nExtra>=nColl ); 3910 memcpy(zExtra, zColl, nColl); 3911 zColl = zExtra; 3912 zExtra += nColl; 3913 nExtra -= nColl; 3914 }else if( j>=0 ){ 3915 zColl = pTab->aCol[j].zColl; 3916 } 3917 if( !zColl ) zColl = sqlite3StrBINARY; 3918 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3919 goto exit_create_index; 3920 } 3921 pIndex->azColl[i] = zColl; 3922 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3923 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3924 } 3925 3926 /* Append the table key to the end of the index. For WITHOUT ROWID 3927 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3928 ** normal tables (when pPk==0) this will be the rowid. 3929 */ 3930 if( pPk ){ 3931 for(j=0; j<pPk->nKeyCol; j++){ 3932 int x = pPk->aiColumn[j]; 3933 assert( x>=0 ); 3934 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3935 pIndex->nColumn--; 3936 }else{ 3937 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3938 pIndex->aiColumn[i] = x; 3939 pIndex->azColl[i] = pPk->azColl[j]; 3940 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3941 i++; 3942 } 3943 } 3944 assert( i==pIndex->nColumn ); 3945 }else{ 3946 pIndex->aiColumn[i] = XN_ROWID; 3947 pIndex->azColl[i] = sqlite3StrBINARY; 3948 } 3949 sqlite3DefaultRowEst(pIndex); 3950 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3951 3952 /* If this index contains every column of its table, then mark 3953 ** it as a covering index */ 3954 assert( HasRowid(pTab) 3955 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3956 recomputeColumnsNotIndexed(pIndex); 3957 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3958 pIndex->isCovering = 1; 3959 for(j=0; j<pTab->nCol; j++){ 3960 if( j==pTab->iPKey ) continue; 3961 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3962 pIndex->isCovering = 0; 3963 break; 3964 } 3965 } 3966 3967 if( pTab==pParse->pNewTable ){ 3968 /* This routine has been called to create an automatic index as a 3969 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3970 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3971 ** i.e. one of: 3972 ** 3973 ** CREATE TABLE t(x PRIMARY KEY, y); 3974 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3975 ** 3976 ** Either way, check to see if the table already has such an index. If 3977 ** so, don't bother creating this one. This only applies to 3978 ** automatically created indices. Users can do as they wish with 3979 ** explicit indices. 3980 ** 3981 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3982 ** (and thus suppressing the second one) even if they have different 3983 ** sort orders. 3984 ** 3985 ** If there are different collating sequences or if the columns of 3986 ** the constraint occur in different orders, then the constraints are 3987 ** considered distinct and both result in separate indices. 3988 */ 3989 Index *pIdx; 3990 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3991 int k; 3992 assert( IsUniqueIndex(pIdx) ); 3993 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3994 assert( IsUniqueIndex(pIndex) ); 3995 3996 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3997 for(k=0; k<pIdx->nKeyCol; k++){ 3998 const char *z1; 3999 const char *z2; 4000 assert( pIdx->aiColumn[k]>=0 ); 4001 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4002 z1 = pIdx->azColl[k]; 4003 z2 = pIndex->azColl[k]; 4004 if( sqlite3StrICmp(z1, z2) ) break; 4005 } 4006 if( k==pIdx->nKeyCol ){ 4007 if( pIdx->onError!=pIndex->onError ){ 4008 /* This constraint creates the same index as a previous 4009 ** constraint specified somewhere in the CREATE TABLE statement. 4010 ** However the ON CONFLICT clauses are different. If both this 4011 ** constraint and the previous equivalent constraint have explicit 4012 ** ON CONFLICT clauses this is an error. Otherwise, use the 4013 ** explicitly specified behavior for the index. 4014 */ 4015 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4016 sqlite3ErrorMsg(pParse, 4017 "conflicting ON CONFLICT clauses specified", 0); 4018 } 4019 if( pIdx->onError==OE_Default ){ 4020 pIdx->onError = pIndex->onError; 4021 } 4022 } 4023 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4024 if( IN_RENAME_OBJECT ){ 4025 pIndex->pNext = pParse->pNewIndex; 4026 pParse->pNewIndex = pIndex; 4027 pIndex = 0; 4028 } 4029 goto exit_create_index; 4030 } 4031 } 4032 } 4033 4034 if( !IN_RENAME_OBJECT ){ 4035 4036 /* Link the new Index structure to its table and to the other 4037 ** in-memory database structures. 4038 */ 4039 assert( pParse->nErr==0 ); 4040 if( db->init.busy ){ 4041 Index *p; 4042 assert( !IN_SPECIAL_PARSE ); 4043 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4044 if( pTblName!=0 ){ 4045 pIndex->tnum = db->init.newTnum; 4046 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4047 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4048 pParse->rc = SQLITE_CORRUPT_BKPT; 4049 goto exit_create_index; 4050 } 4051 } 4052 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4053 pIndex->zName, pIndex); 4054 if( p ){ 4055 assert( p==pIndex ); /* Malloc must have failed */ 4056 sqlite3OomFault(db); 4057 goto exit_create_index; 4058 } 4059 db->mDbFlags |= DBFLAG_SchemaChange; 4060 } 4061 4062 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4063 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4064 ** emit code to allocate the index rootpage on disk and make an entry for 4065 ** the index in the sqlite_schema table and populate the index with 4066 ** content. But, do not do this if we are simply reading the sqlite_schema 4067 ** table to parse the schema, or if this index is the PRIMARY KEY index 4068 ** of a WITHOUT ROWID table. 4069 ** 4070 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4071 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4072 ** has just been created, it contains no data and the index initialization 4073 ** step can be skipped. 4074 */ 4075 else if( HasRowid(pTab) || pTblName!=0 ){ 4076 Vdbe *v; 4077 char *zStmt; 4078 int iMem = ++pParse->nMem; 4079 4080 v = sqlite3GetVdbe(pParse); 4081 if( v==0 ) goto exit_create_index; 4082 4083 sqlite3BeginWriteOperation(pParse, 1, iDb); 4084 4085 /* Create the rootpage for the index using CreateIndex. But before 4086 ** doing so, code a Noop instruction and store its address in 4087 ** Index.tnum. This is required in case this index is actually a 4088 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4089 ** that case the convertToWithoutRowidTable() routine will replace 4090 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4091 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4092 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4093 4094 /* Gather the complete text of the CREATE INDEX statement into 4095 ** the zStmt variable 4096 */ 4097 assert( pName!=0 || pStart==0 ); 4098 if( pStart ){ 4099 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4100 if( pName->z[n-1]==';' ) n--; 4101 /* A named index with an explicit CREATE INDEX statement */ 4102 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4103 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4104 }else{ 4105 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4106 /* zStmt = sqlite3MPrintf(""); */ 4107 zStmt = 0; 4108 } 4109 4110 /* Add an entry in sqlite_schema for this index 4111 */ 4112 sqlite3NestedParse(pParse, 4113 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4114 db->aDb[iDb].zDbSName, 4115 pIndex->zName, 4116 pTab->zName, 4117 iMem, 4118 zStmt 4119 ); 4120 sqlite3DbFree(db, zStmt); 4121 4122 /* Fill the index with data and reparse the schema. Code an OP_Expire 4123 ** to invalidate all pre-compiled statements. 4124 */ 4125 if( pTblName ){ 4126 sqlite3RefillIndex(pParse, pIndex, iMem); 4127 sqlite3ChangeCookie(pParse, iDb); 4128 sqlite3VdbeAddParseSchemaOp(v, iDb, 4129 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 4130 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4131 } 4132 4133 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4134 } 4135 } 4136 if( db->init.busy || pTblName==0 ){ 4137 pIndex->pNext = pTab->pIndex; 4138 pTab->pIndex = pIndex; 4139 pIndex = 0; 4140 } 4141 else if( IN_RENAME_OBJECT ){ 4142 assert( pParse->pNewIndex==0 ); 4143 pParse->pNewIndex = pIndex; 4144 pIndex = 0; 4145 } 4146 4147 /* Clean up before exiting */ 4148 exit_create_index: 4149 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4150 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 4151 Index **ppFrom = &pTab->pIndex; 4152 Index *pThis; 4153 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4154 Index *pNext; 4155 if( pThis->onError!=OE_Replace ) continue; 4156 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4157 *ppFrom = pNext; 4158 pThis->pNext = pNext->pNext; 4159 pNext->pNext = pThis; 4160 ppFrom = &pNext->pNext; 4161 } 4162 break; 4163 } 4164 } 4165 sqlite3ExprDelete(db, pPIWhere); 4166 sqlite3ExprListDelete(db, pList); 4167 sqlite3SrcListDelete(db, pTblName); 4168 sqlite3DbFree(db, zName); 4169 } 4170 4171 /* 4172 ** Fill the Index.aiRowEst[] array with default information - information 4173 ** to be used when we have not run the ANALYZE command. 4174 ** 4175 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4176 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4177 ** number of rows in the table that match any particular value of the 4178 ** first column of the index. aiRowEst[2] is an estimate of the number 4179 ** of rows that match any particular combination of the first 2 columns 4180 ** of the index. And so forth. It must always be the case that 4181 * 4182 ** aiRowEst[N]<=aiRowEst[N-1] 4183 ** aiRowEst[N]>=1 4184 ** 4185 ** Apart from that, we have little to go on besides intuition as to 4186 ** how aiRowEst[] should be initialized. The numbers generated here 4187 ** are based on typical values found in actual indices. 4188 */ 4189 void sqlite3DefaultRowEst(Index *pIdx){ 4190 /* 10, 9, 8, 7, 6 */ 4191 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4192 LogEst *a = pIdx->aiRowLogEst; 4193 LogEst x; 4194 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4195 int i; 4196 4197 /* Indexes with default row estimates should not have stat1 data */ 4198 assert( !pIdx->hasStat1 ); 4199 4200 /* Set the first entry (number of rows in the index) to the estimated 4201 ** number of rows in the table, or half the number of rows in the table 4202 ** for a partial index. 4203 ** 4204 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4205 ** table but other parts we are having to guess at, then do not let the 4206 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4207 ** Failure to do this can cause the indexes for which we do not have 4208 ** stat1 data to be ignored by the query planner. 4209 */ 4210 x = pIdx->pTable->nRowLogEst; 4211 assert( 99==sqlite3LogEst(1000) ); 4212 if( x<99 ){ 4213 pIdx->pTable->nRowLogEst = x = 99; 4214 } 4215 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) ); 4216 a[0] = x; 4217 4218 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4219 ** 6 and each subsequent value (if any) is 5. */ 4220 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4221 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4222 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4223 } 4224 4225 assert( 0==sqlite3LogEst(1) ); 4226 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4227 } 4228 4229 /* 4230 ** This routine will drop an existing named index. This routine 4231 ** implements the DROP INDEX statement. 4232 */ 4233 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4234 Index *pIndex; 4235 Vdbe *v; 4236 sqlite3 *db = pParse->db; 4237 int iDb; 4238 4239 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4240 if( db->mallocFailed ){ 4241 goto exit_drop_index; 4242 } 4243 assert( pName->nSrc==1 ); 4244 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4245 goto exit_drop_index; 4246 } 4247 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4248 if( pIndex==0 ){ 4249 if( !ifExists ){ 4250 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4251 }else{ 4252 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4253 } 4254 pParse->checkSchema = 1; 4255 goto exit_drop_index; 4256 } 4257 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4258 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4259 "or PRIMARY KEY constraint cannot be dropped", 0); 4260 goto exit_drop_index; 4261 } 4262 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4263 #ifndef SQLITE_OMIT_AUTHORIZATION 4264 { 4265 int code = SQLITE_DROP_INDEX; 4266 Table *pTab = pIndex->pTable; 4267 const char *zDb = db->aDb[iDb].zDbSName; 4268 const char *zTab = SCHEMA_TABLE(iDb); 4269 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4270 goto exit_drop_index; 4271 } 4272 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4273 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4274 goto exit_drop_index; 4275 } 4276 } 4277 #endif 4278 4279 /* Generate code to remove the index and from the schema table */ 4280 v = sqlite3GetVdbe(pParse); 4281 if( v ){ 4282 sqlite3BeginWriteOperation(pParse, 1, iDb); 4283 sqlite3NestedParse(pParse, 4284 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4285 db->aDb[iDb].zDbSName, pIndex->zName 4286 ); 4287 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4288 sqlite3ChangeCookie(pParse, iDb); 4289 destroyRootPage(pParse, pIndex->tnum, iDb); 4290 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4291 } 4292 4293 exit_drop_index: 4294 sqlite3SrcListDelete(db, pName); 4295 } 4296 4297 /* 4298 ** pArray is a pointer to an array of objects. Each object in the 4299 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4300 ** to extend the array so that there is space for a new object at the end. 4301 ** 4302 ** When this function is called, *pnEntry contains the current size of 4303 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4304 ** in total). 4305 ** 4306 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4307 ** space allocated for the new object is zeroed, *pnEntry updated to 4308 ** reflect the new size of the array and a pointer to the new allocation 4309 ** returned. *pIdx is set to the index of the new array entry in this case. 4310 ** 4311 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4312 ** unchanged and a copy of pArray returned. 4313 */ 4314 void *sqlite3ArrayAllocate( 4315 sqlite3 *db, /* Connection to notify of malloc failures */ 4316 void *pArray, /* Array of objects. Might be reallocated */ 4317 int szEntry, /* Size of each object in the array */ 4318 int *pnEntry, /* Number of objects currently in use */ 4319 int *pIdx /* Write the index of a new slot here */ 4320 ){ 4321 char *z; 4322 sqlite3_int64 n = *pIdx = *pnEntry; 4323 if( (n & (n-1))==0 ){ 4324 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4325 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4326 if( pNew==0 ){ 4327 *pIdx = -1; 4328 return pArray; 4329 } 4330 pArray = pNew; 4331 } 4332 z = (char*)pArray; 4333 memset(&z[n * szEntry], 0, szEntry); 4334 ++*pnEntry; 4335 return pArray; 4336 } 4337 4338 /* 4339 ** Append a new element to the given IdList. Create a new IdList if 4340 ** need be. 4341 ** 4342 ** A new IdList is returned, or NULL if malloc() fails. 4343 */ 4344 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4345 sqlite3 *db = pParse->db; 4346 int i; 4347 if( pList==0 ){ 4348 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4349 if( pList==0 ) return 0; 4350 } 4351 pList->a = sqlite3ArrayAllocate( 4352 db, 4353 pList->a, 4354 sizeof(pList->a[0]), 4355 &pList->nId, 4356 &i 4357 ); 4358 if( i<0 ){ 4359 sqlite3IdListDelete(db, pList); 4360 return 0; 4361 } 4362 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4363 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4364 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4365 } 4366 return pList; 4367 } 4368 4369 /* 4370 ** Delete an IdList. 4371 */ 4372 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4373 int i; 4374 if( pList==0 ) return; 4375 for(i=0; i<pList->nId; i++){ 4376 sqlite3DbFree(db, pList->a[i].zName); 4377 } 4378 sqlite3DbFree(db, pList->a); 4379 sqlite3DbFreeNN(db, pList); 4380 } 4381 4382 /* 4383 ** Return the index in pList of the identifier named zId. Return -1 4384 ** if not found. 4385 */ 4386 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4387 int i; 4388 if( pList==0 ) return -1; 4389 for(i=0; i<pList->nId; i++){ 4390 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4391 } 4392 return -1; 4393 } 4394 4395 /* 4396 ** Maximum size of a SrcList object. 4397 ** The SrcList object is used to represent the FROM clause of a 4398 ** SELECT statement, and the query planner cannot deal with more 4399 ** than 64 tables in a join. So any value larger than 64 here 4400 ** is sufficient for most uses. Smaller values, like say 10, are 4401 ** appropriate for small and memory-limited applications. 4402 */ 4403 #ifndef SQLITE_MAX_SRCLIST 4404 # define SQLITE_MAX_SRCLIST 200 4405 #endif 4406 4407 /* 4408 ** Expand the space allocated for the given SrcList object by 4409 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4410 ** New slots are zeroed. 4411 ** 4412 ** For example, suppose a SrcList initially contains two entries: A,B. 4413 ** To append 3 new entries onto the end, do this: 4414 ** 4415 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4416 ** 4417 ** After the call above it would contain: A, B, nil, nil, nil. 4418 ** If the iStart argument had been 1 instead of 2, then the result 4419 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4420 ** the iStart value would be 0. The result then would 4421 ** be: nil, nil, nil, A, B. 4422 ** 4423 ** If a memory allocation fails or the SrcList becomes too large, leave 4424 ** the original SrcList unchanged, return NULL, and leave an error message 4425 ** in pParse. 4426 */ 4427 SrcList *sqlite3SrcListEnlarge( 4428 Parse *pParse, /* Parsing context into which errors are reported */ 4429 SrcList *pSrc, /* The SrcList to be enlarged */ 4430 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4431 int iStart /* Index in pSrc->a[] of first new slot */ 4432 ){ 4433 int i; 4434 4435 /* Sanity checking on calling parameters */ 4436 assert( iStart>=0 ); 4437 assert( nExtra>=1 ); 4438 assert( pSrc!=0 ); 4439 assert( iStart<=pSrc->nSrc ); 4440 4441 /* Allocate additional space if needed */ 4442 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4443 SrcList *pNew; 4444 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4445 sqlite3 *db = pParse->db; 4446 4447 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4448 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4449 SQLITE_MAX_SRCLIST); 4450 return 0; 4451 } 4452 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4453 pNew = sqlite3DbRealloc(db, pSrc, 4454 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4455 if( pNew==0 ){ 4456 assert( db->mallocFailed ); 4457 return 0; 4458 } 4459 pSrc = pNew; 4460 pSrc->nAlloc = nAlloc; 4461 } 4462 4463 /* Move existing slots that come after the newly inserted slots 4464 ** out of the way */ 4465 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4466 pSrc->a[i+nExtra] = pSrc->a[i]; 4467 } 4468 pSrc->nSrc += nExtra; 4469 4470 /* Zero the newly allocated slots */ 4471 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4472 for(i=iStart; i<iStart+nExtra; i++){ 4473 pSrc->a[i].iCursor = -1; 4474 } 4475 4476 /* Return a pointer to the enlarged SrcList */ 4477 return pSrc; 4478 } 4479 4480 4481 /* 4482 ** Append a new table name to the given SrcList. Create a new SrcList if 4483 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4484 ** 4485 ** A SrcList is returned, or NULL if there is an OOM error or if the 4486 ** SrcList grows to large. The returned 4487 ** SrcList might be the same as the SrcList that was input or it might be 4488 ** a new one. If an OOM error does occurs, then the prior value of pList 4489 ** that is input to this routine is automatically freed. 4490 ** 4491 ** If pDatabase is not null, it means that the table has an optional 4492 ** database name prefix. Like this: "database.table". The pDatabase 4493 ** points to the table name and the pTable points to the database name. 4494 ** The SrcList.a[].zName field is filled with the table name which might 4495 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4496 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4497 ** or with NULL if no database is specified. 4498 ** 4499 ** In other words, if call like this: 4500 ** 4501 ** sqlite3SrcListAppend(D,A,B,0); 4502 ** 4503 ** Then B is a table name and the database name is unspecified. If called 4504 ** like this: 4505 ** 4506 ** sqlite3SrcListAppend(D,A,B,C); 4507 ** 4508 ** Then C is the table name and B is the database name. If C is defined 4509 ** then so is B. In other words, we never have a case where: 4510 ** 4511 ** sqlite3SrcListAppend(D,A,0,C); 4512 ** 4513 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4514 ** before being added to the SrcList. 4515 */ 4516 SrcList *sqlite3SrcListAppend( 4517 Parse *pParse, /* Parsing context, in which errors are reported */ 4518 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4519 Token *pTable, /* Table to append */ 4520 Token *pDatabase /* Database of the table */ 4521 ){ 4522 struct SrcList_item *pItem; 4523 sqlite3 *db; 4524 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4525 assert( pParse!=0 ); 4526 assert( pParse->db!=0 ); 4527 db = pParse->db; 4528 if( pList==0 ){ 4529 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4530 if( pList==0 ) return 0; 4531 pList->nAlloc = 1; 4532 pList->nSrc = 1; 4533 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4534 pList->a[0].iCursor = -1; 4535 }else{ 4536 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4537 if( pNew==0 ){ 4538 sqlite3SrcListDelete(db, pList); 4539 return 0; 4540 }else{ 4541 pList = pNew; 4542 } 4543 } 4544 pItem = &pList->a[pList->nSrc-1]; 4545 if( pDatabase && pDatabase->z==0 ){ 4546 pDatabase = 0; 4547 } 4548 if( pDatabase ){ 4549 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4550 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4551 }else{ 4552 pItem->zName = sqlite3NameFromToken(db, pTable); 4553 pItem->zDatabase = 0; 4554 } 4555 return pList; 4556 } 4557 4558 /* 4559 ** Assign VdbeCursor index numbers to all tables in a SrcList 4560 */ 4561 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4562 int i; 4563 struct SrcList_item *pItem; 4564 assert(pList || pParse->db->mallocFailed ); 4565 if( pList ){ 4566 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4567 if( pItem->iCursor>=0 ) continue; 4568 pItem->iCursor = pParse->nTab++; 4569 if( pItem->pSelect ){ 4570 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4571 } 4572 } 4573 } 4574 } 4575 4576 /* 4577 ** Delete an entire SrcList including all its substructure. 4578 */ 4579 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4580 int i; 4581 struct SrcList_item *pItem; 4582 if( pList==0 ) return; 4583 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4584 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4585 sqlite3DbFree(db, pItem->zName); 4586 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4587 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4588 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4589 sqlite3DeleteTable(db, pItem->pTab); 4590 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4591 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4592 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4593 } 4594 sqlite3DbFreeNN(db, pList); 4595 } 4596 4597 /* 4598 ** This routine is called by the parser to add a new term to the 4599 ** end of a growing FROM clause. The "p" parameter is the part of 4600 ** the FROM clause that has already been constructed. "p" is NULL 4601 ** if this is the first term of the FROM clause. pTable and pDatabase 4602 ** are the name of the table and database named in the FROM clause term. 4603 ** pDatabase is NULL if the database name qualifier is missing - the 4604 ** usual case. If the term has an alias, then pAlias points to the 4605 ** alias token. If the term is a subquery, then pSubquery is the 4606 ** SELECT statement that the subquery encodes. The pTable and 4607 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4608 ** parameters are the content of the ON and USING clauses. 4609 ** 4610 ** Return a new SrcList which encodes is the FROM with the new 4611 ** term added. 4612 */ 4613 SrcList *sqlite3SrcListAppendFromTerm( 4614 Parse *pParse, /* Parsing context */ 4615 SrcList *p, /* The left part of the FROM clause already seen */ 4616 Token *pTable, /* Name of the table to add to the FROM clause */ 4617 Token *pDatabase, /* Name of the database containing pTable */ 4618 Token *pAlias, /* The right-hand side of the AS subexpression */ 4619 Select *pSubquery, /* A subquery used in place of a table name */ 4620 Expr *pOn, /* The ON clause of a join */ 4621 IdList *pUsing /* The USING clause of a join */ 4622 ){ 4623 struct SrcList_item *pItem; 4624 sqlite3 *db = pParse->db; 4625 if( !p && (pOn || pUsing) ){ 4626 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4627 (pOn ? "ON" : "USING") 4628 ); 4629 goto append_from_error; 4630 } 4631 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4632 if( p==0 ){ 4633 goto append_from_error; 4634 } 4635 assert( p->nSrc>0 ); 4636 pItem = &p->a[p->nSrc-1]; 4637 assert( (pTable==0)==(pDatabase==0) ); 4638 assert( pItem->zName==0 || pDatabase!=0 ); 4639 if( IN_RENAME_OBJECT && pItem->zName ){ 4640 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4641 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4642 } 4643 assert( pAlias!=0 ); 4644 if( pAlias->n ){ 4645 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4646 } 4647 pItem->pSelect = pSubquery; 4648 pItem->pOn = pOn; 4649 pItem->pUsing = pUsing; 4650 return p; 4651 4652 append_from_error: 4653 assert( p==0 ); 4654 sqlite3ExprDelete(db, pOn); 4655 sqlite3IdListDelete(db, pUsing); 4656 sqlite3SelectDelete(db, pSubquery); 4657 return 0; 4658 } 4659 4660 /* 4661 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4662 ** element of the source-list passed as the second argument. 4663 */ 4664 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4665 assert( pIndexedBy!=0 ); 4666 if( p && pIndexedBy->n>0 ){ 4667 struct SrcList_item *pItem; 4668 assert( p->nSrc>0 ); 4669 pItem = &p->a[p->nSrc-1]; 4670 assert( pItem->fg.notIndexed==0 ); 4671 assert( pItem->fg.isIndexedBy==0 ); 4672 assert( pItem->fg.isTabFunc==0 ); 4673 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4674 /* A "NOT INDEXED" clause was supplied. See parse.y 4675 ** construct "indexed_opt" for details. */ 4676 pItem->fg.notIndexed = 1; 4677 }else{ 4678 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4679 pItem->fg.isIndexedBy = 1; 4680 } 4681 } 4682 } 4683 4684 /* 4685 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4686 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4687 ** are deleted by this function. 4688 */ 4689 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4690 assert( p1 && p1->nSrc==1 ); 4691 if( p2 ){ 4692 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4693 if( pNew==0 ){ 4694 sqlite3SrcListDelete(pParse->db, p2); 4695 }else{ 4696 p1 = pNew; 4697 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(struct SrcList_item)); 4698 sqlite3DbFree(pParse->db, p2); 4699 } 4700 } 4701 return p1; 4702 } 4703 4704 /* 4705 ** Add the list of function arguments to the SrcList entry for a 4706 ** table-valued-function. 4707 */ 4708 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4709 if( p ){ 4710 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4711 assert( pItem->fg.notIndexed==0 ); 4712 assert( pItem->fg.isIndexedBy==0 ); 4713 assert( pItem->fg.isTabFunc==0 ); 4714 pItem->u1.pFuncArg = pList; 4715 pItem->fg.isTabFunc = 1; 4716 }else{ 4717 sqlite3ExprListDelete(pParse->db, pList); 4718 } 4719 } 4720 4721 /* 4722 ** When building up a FROM clause in the parser, the join operator 4723 ** is initially attached to the left operand. But the code generator 4724 ** expects the join operator to be on the right operand. This routine 4725 ** Shifts all join operators from left to right for an entire FROM 4726 ** clause. 4727 ** 4728 ** Example: Suppose the join is like this: 4729 ** 4730 ** A natural cross join B 4731 ** 4732 ** The operator is "natural cross join". The A and B operands are stored 4733 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4734 ** operator with A. This routine shifts that operator over to B. 4735 */ 4736 void sqlite3SrcListShiftJoinType(SrcList *p){ 4737 if( p ){ 4738 int i; 4739 for(i=p->nSrc-1; i>0; i--){ 4740 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4741 } 4742 p->a[0].fg.jointype = 0; 4743 } 4744 } 4745 4746 /* 4747 ** Generate VDBE code for a BEGIN statement. 4748 */ 4749 void sqlite3BeginTransaction(Parse *pParse, int type){ 4750 sqlite3 *db; 4751 Vdbe *v; 4752 int i; 4753 4754 assert( pParse!=0 ); 4755 db = pParse->db; 4756 assert( db!=0 ); 4757 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4758 return; 4759 } 4760 v = sqlite3GetVdbe(pParse); 4761 if( !v ) return; 4762 if( type!=TK_DEFERRED ){ 4763 for(i=0; i<db->nDb; i++){ 4764 int eTxnType; 4765 Btree *pBt = db->aDb[i].pBt; 4766 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4767 eTxnType = 0; /* Read txn */ 4768 }else if( type==TK_EXCLUSIVE ){ 4769 eTxnType = 2; /* Exclusive txn */ 4770 }else{ 4771 eTxnType = 1; /* Write txn */ 4772 } 4773 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4774 sqlite3VdbeUsesBtree(v, i); 4775 } 4776 } 4777 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4778 } 4779 4780 /* 4781 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4782 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4783 ** code is generated for a COMMIT. 4784 */ 4785 void sqlite3EndTransaction(Parse *pParse, int eType){ 4786 Vdbe *v; 4787 int isRollback; 4788 4789 assert( pParse!=0 ); 4790 assert( pParse->db!=0 ); 4791 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4792 isRollback = eType==TK_ROLLBACK; 4793 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4794 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4795 return; 4796 } 4797 v = sqlite3GetVdbe(pParse); 4798 if( v ){ 4799 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4800 } 4801 } 4802 4803 /* 4804 ** This function is called by the parser when it parses a command to create, 4805 ** release or rollback an SQL savepoint. 4806 */ 4807 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4808 char *zName = sqlite3NameFromToken(pParse->db, pName); 4809 if( zName ){ 4810 Vdbe *v = sqlite3GetVdbe(pParse); 4811 #ifndef SQLITE_OMIT_AUTHORIZATION 4812 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4813 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4814 #endif 4815 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4816 sqlite3DbFree(pParse->db, zName); 4817 return; 4818 } 4819 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4820 } 4821 } 4822 4823 /* 4824 ** Make sure the TEMP database is open and available for use. Return 4825 ** the number of errors. Leave any error messages in the pParse structure. 4826 */ 4827 int sqlite3OpenTempDatabase(Parse *pParse){ 4828 sqlite3 *db = pParse->db; 4829 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4830 int rc; 4831 Btree *pBt; 4832 static const int flags = 4833 SQLITE_OPEN_READWRITE | 4834 SQLITE_OPEN_CREATE | 4835 SQLITE_OPEN_EXCLUSIVE | 4836 SQLITE_OPEN_DELETEONCLOSE | 4837 SQLITE_OPEN_TEMP_DB; 4838 4839 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4840 if( rc!=SQLITE_OK ){ 4841 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4842 "file for storing temporary tables"); 4843 pParse->rc = rc; 4844 return 1; 4845 } 4846 db->aDb[1].pBt = pBt; 4847 assert( db->aDb[1].pSchema ); 4848 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4849 sqlite3OomFault(db); 4850 return 1; 4851 } 4852 } 4853 return 0; 4854 } 4855 4856 /* 4857 ** Record the fact that the schema cookie will need to be verified 4858 ** for database iDb. The code to actually verify the schema cookie 4859 ** will occur at the end of the top-level VDBE and will be generated 4860 ** later, by sqlite3FinishCoding(). 4861 */ 4862 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4863 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4864 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4865 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4866 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4867 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4868 DbMaskSet(pToplevel->cookieMask, iDb); 4869 if( !OMIT_TEMPDB && iDb==1 ){ 4870 sqlite3OpenTempDatabase(pToplevel); 4871 } 4872 } 4873 } 4874 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4875 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4876 } 4877 4878 4879 /* 4880 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4881 ** attached database. Otherwise, invoke it for the database named zDb only. 4882 */ 4883 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4884 sqlite3 *db = pParse->db; 4885 int i; 4886 for(i=0; i<db->nDb; i++){ 4887 Db *pDb = &db->aDb[i]; 4888 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4889 sqlite3CodeVerifySchema(pParse, i); 4890 } 4891 } 4892 } 4893 4894 /* 4895 ** Generate VDBE code that prepares for doing an operation that 4896 ** might change the database. 4897 ** 4898 ** This routine starts a new transaction if we are not already within 4899 ** a transaction. If we are already within a transaction, then a checkpoint 4900 ** is set if the setStatement parameter is true. A checkpoint should 4901 ** be set for operations that might fail (due to a constraint) part of 4902 ** the way through and which will need to undo some writes without having to 4903 ** rollback the whole transaction. For operations where all constraints 4904 ** can be checked before any changes are made to the database, it is never 4905 ** necessary to undo a write and the checkpoint should not be set. 4906 */ 4907 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4908 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4909 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4910 DbMaskSet(pToplevel->writeMask, iDb); 4911 pToplevel->isMultiWrite |= setStatement; 4912 } 4913 4914 /* 4915 ** Indicate that the statement currently under construction might write 4916 ** more than one entry (example: deleting one row then inserting another, 4917 ** inserting multiple rows in a table, or inserting a row and index entries.) 4918 ** If an abort occurs after some of these writes have completed, then it will 4919 ** be necessary to undo the completed writes. 4920 */ 4921 void sqlite3MultiWrite(Parse *pParse){ 4922 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4923 pToplevel->isMultiWrite = 1; 4924 } 4925 4926 /* 4927 ** The code generator calls this routine if is discovers that it is 4928 ** possible to abort a statement prior to completion. In order to 4929 ** perform this abort without corrupting the database, we need to make 4930 ** sure that the statement is protected by a statement transaction. 4931 ** 4932 ** Technically, we only need to set the mayAbort flag if the 4933 ** isMultiWrite flag was previously set. There is a time dependency 4934 ** such that the abort must occur after the multiwrite. This makes 4935 ** some statements involving the REPLACE conflict resolution algorithm 4936 ** go a little faster. But taking advantage of this time dependency 4937 ** makes it more difficult to prove that the code is correct (in 4938 ** particular, it prevents us from writing an effective 4939 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4940 ** to take the safe route and skip the optimization. 4941 */ 4942 void sqlite3MayAbort(Parse *pParse){ 4943 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4944 pToplevel->mayAbort = 1; 4945 } 4946 4947 /* 4948 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4949 ** error. The onError parameter determines which (if any) of the statement 4950 ** and/or current transaction is rolled back. 4951 */ 4952 void sqlite3HaltConstraint( 4953 Parse *pParse, /* Parsing context */ 4954 int errCode, /* extended error code */ 4955 int onError, /* Constraint type */ 4956 char *p4, /* Error message */ 4957 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4958 u8 p5Errmsg /* P5_ErrMsg type */ 4959 ){ 4960 Vdbe *v; 4961 assert( pParse->pVdbe!=0 ); 4962 v = sqlite3GetVdbe(pParse); 4963 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4964 if( onError==OE_Abort ){ 4965 sqlite3MayAbort(pParse); 4966 } 4967 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4968 sqlite3VdbeChangeP5(v, p5Errmsg); 4969 } 4970 4971 /* 4972 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4973 */ 4974 void sqlite3UniqueConstraint( 4975 Parse *pParse, /* Parsing context */ 4976 int onError, /* Constraint type */ 4977 Index *pIdx /* The index that triggers the constraint */ 4978 ){ 4979 char *zErr; 4980 int j; 4981 StrAccum errMsg; 4982 Table *pTab = pIdx->pTable; 4983 4984 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4985 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4986 if( pIdx->aColExpr ){ 4987 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4988 }else{ 4989 for(j=0; j<pIdx->nKeyCol; j++){ 4990 char *zCol; 4991 assert( pIdx->aiColumn[j]>=0 ); 4992 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4993 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4994 sqlite3_str_appendall(&errMsg, pTab->zName); 4995 sqlite3_str_append(&errMsg, ".", 1); 4996 sqlite3_str_appendall(&errMsg, zCol); 4997 } 4998 } 4999 zErr = sqlite3StrAccumFinish(&errMsg); 5000 sqlite3HaltConstraint(pParse, 5001 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5002 : SQLITE_CONSTRAINT_UNIQUE, 5003 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5004 } 5005 5006 5007 /* 5008 ** Code an OP_Halt due to non-unique rowid. 5009 */ 5010 void sqlite3RowidConstraint( 5011 Parse *pParse, /* Parsing context */ 5012 int onError, /* Conflict resolution algorithm */ 5013 Table *pTab /* The table with the non-unique rowid */ 5014 ){ 5015 char *zMsg; 5016 int rc; 5017 if( pTab->iPKey>=0 ){ 5018 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5019 pTab->aCol[pTab->iPKey].zName); 5020 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5021 }else{ 5022 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5023 rc = SQLITE_CONSTRAINT_ROWID; 5024 } 5025 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5026 P5_ConstraintUnique); 5027 } 5028 5029 /* 5030 ** Check to see if pIndex uses the collating sequence pColl. Return 5031 ** true if it does and false if it does not. 5032 */ 5033 #ifndef SQLITE_OMIT_REINDEX 5034 static int collationMatch(const char *zColl, Index *pIndex){ 5035 int i; 5036 assert( zColl!=0 ); 5037 for(i=0; i<pIndex->nColumn; i++){ 5038 const char *z = pIndex->azColl[i]; 5039 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5040 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5041 return 1; 5042 } 5043 } 5044 return 0; 5045 } 5046 #endif 5047 5048 /* 5049 ** Recompute all indices of pTab that use the collating sequence pColl. 5050 ** If pColl==0 then recompute all indices of pTab. 5051 */ 5052 #ifndef SQLITE_OMIT_REINDEX 5053 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5054 if( !IsVirtual(pTab) ){ 5055 Index *pIndex; /* An index associated with pTab */ 5056 5057 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5058 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5059 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5060 sqlite3BeginWriteOperation(pParse, 0, iDb); 5061 sqlite3RefillIndex(pParse, pIndex, -1); 5062 } 5063 } 5064 } 5065 } 5066 #endif 5067 5068 /* 5069 ** Recompute all indices of all tables in all databases where the 5070 ** indices use the collating sequence pColl. If pColl==0 then recompute 5071 ** all indices everywhere. 5072 */ 5073 #ifndef SQLITE_OMIT_REINDEX 5074 static void reindexDatabases(Parse *pParse, char const *zColl){ 5075 Db *pDb; /* A single database */ 5076 int iDb; /* The database index number */ 5077 sqlite3 *db = pParse->db; /* The database connection */ 5078 HashElem *k; /* For looping over tables in pDb */ 5079 Table *pTab; /* A table in the database */ 5080 5081 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5082 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5083 assert( pDb!=0 ); 5084 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5085 pTab = (Table*)sqliteHashData(k); 5086 reindexTable(pParse, pTab, zColl); 5087 } 5088 } 5089 } 5090 #endif 5091 5092 /* 5093 ** Generate code for the REINDEX command. 5094 ** 5095 ** REINDEX -- 1 5096 ** REINDEX <collation> -- 2 5097 ** REINDEX ?<database>.?<tablename> -- 3 5098 ** REINDEX ?<database>.?<indexname> -- 4 5099 ** 5100 ** Form 1 causes all indices in all attached databases to be rebuilt. 5101 ** Form 2 rebuilds all indices in all databases that use the named 5102 ** collating function. Forms 3 and 4 rebuild the named index or all 5103 ** indices associated with the named table. 5104 */ 5105 #ifndef SQLITE_OMIT_REINDEX 5106 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5107 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5108 char *z; /* Name of a table or index */ 5109 const char *zDb; /* Name of the database */ 5110 Table *pTab; /* A table in the database */ 5111 Index *pIndex; /* An index associated with pTab */ 5112 int iDb; /* The database index number */ 5113 sqlite3 *db = pParse->db; /* The database connection */ 5114 Token *pObjName; /* Name of the table or index to be reindexed */ 5115 5116 /* Read the database schema. If an error occurs, leave an error message 5117 ** and code in pParse and return NULL. */ 5118 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5119 return; 5120 } 5121 5122 if( pName1==0 ){ 5123 reindexDatabases(pParse, 0); 5124 return; 5125 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5126 char *zColl; 5127 assert( pName1->z ); 5128 zColl = sqlite3NameFromToken(pParse->db, pName1); 5129 if( !zColl ) return; 5130 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5131 if( pColl ){ 5132 reindexDatabases(pParse, zColl); 5133 sqlite3DbFree(db, zColl); 5134 return; 5135 } 5136 sqlite3DbFree(db, zColl); 5137 } 5138 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5139 if( iDb<0 ) return; 5140 z = sqlite3NameFromToken(db, pObjName); 5141 if( z==0 ) return; 5142 zDb = db->aDb[iDb].zDbSName; 5143 pTab = sqlite3FindTable(db, z, zDb); 5144 if( pTab ){ 5145 reindexTable(pParse, pTab, 0); 5146 sqlite3DbFree(db, z); 5147 return; 5148 } 5149 pIndex = sqlite3FindIndex(db, z, zDb); 5150 sqlite3DbFree(db, z); 5151 if( pIndex ){ 5152 sqlite3BeginWriteOperation(pParse, 0, iDb); 5153 sqlite3RefillIndex(pParse, pIndex, -1); 5154 return; 5155 } 5156 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5157 } 5158 #endif 5159 5160 /* 5161 ** Return a KeyInfo structure that is appropriate for the given Index. 5162 ** 5163 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5164 ** when it has finished using it. 5165 */ 5166 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5167 int i; 5168 int nCol = pIdx->nColumn; 5169 int nKey = pIdx->nKeyCol; 5170 KeyInfo *pKey; 5171 if( pParse->nErr ) return 0; 5172 if( pIdx->uniqNotNull ){ 5173 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5174 }else{ 5175 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5176 } 5177 if( pKey ){ 5178 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5179 for(i=0; i<nCol; i++){ 5180 const char *zColl = pIdx->azColl[i]; 5181 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5182 sqlite3LocateCollSeq(pParse, zColl); 5183 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5184 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5185 } 5186 if( pParse->nErr ){ 5187 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5188 if( pIdx->bNoQuery==0 ){ 5189 /* Deactivate the index because it contains an unknown collating 5190 ** sequence. The only way to reactive the index is to reload the 5191 ** schema. Adding the missing collating sequence later does not 5192 ** reactive the index. The application had the chance to register 5193 ** the missing index using the collation-needed callback. For 5194 ** simplicity, SQLite will not give the application a second chance. 5195 */ 5196 pIdx->bNoQuery = 1; 5197 pParse->rc = SQLITE_ERROR_RETRY; 5198 } 5199 sqlite3KeyInfoUnref(pKey); 5200 pKey = 0; 5201 } 5202 } 5203 return pKey; 5204 } 5205 5206 #ifndef SQLITE_OMIT_CTE 5207 /* 5208 ** This routine is invoked once per CTE by the parser while parsing a 5209 ** WITH clause. 5210 */ 5211 With *sqlite3WithAdd( 5212 Parse *pParse, /* Parsing context */ 5213 With *pWith, /* Existing WITH clause, or NULL */ 5214 Token *pName, /* Name of the common-table */ 5215 ExprList *pArglist, /* Optional column name list for the table */ 5216 Select *pQuery /* Query used to initialize the table */ 5217 ){ 5218 sqlite3 *db = pParse->db; 5219 With *pNew; 5220 char *zName; 5221 5222 /* Check that the CTE name is unique within this WITH clause. If 5223 ** not, store an error in the Parse structure. */ 5224 zName = sqlite3NameFromToken(pParse->db, pName); 5225 if( zName && pWith ){ 5226 int i; 5227 for(i=0; i<pWith->nCte; i++){ 5228 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5229 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5230 } 5231 } 5232 } 5233 5234 if( pWith ){ 5235 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5236 pNew = sqlite3DbRealloc(db, pWith, nByte); 5237 }else{ 5238 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5239 } 5240 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5241 5242 if( db->mallocFailed ){ 5243 sqlite3ExprListDelete(db, pArglist); 5244 sqlite3SelectDelete(db, pQuery); 5245 sqlite3DbFree(db, zName); 5246 pNew = pWith; 5247 }else{ 5248 pNew->a[pNew->nCte].pSelect = pQuery; 5249 pNew->a[pNew->nCte].pCols = pArglist; 5250 pNew->a[pNew->nCte].zName = zName; 5251 pNew->a[pNew->nCte].zCteErr = 0; 5252 pNew->nCte++; 5253 } 5254 5255 return pNew; 5256 } 5257 5258 /* 5259 ** Free the contents of the With object passed as the second argument. 5260 */ 5261 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5262 if( pWith ){ 5263 int i; 5264 for(i=0; i<pWith->nCte; i++){ 5265 struct Cte *pCte = &pWith->a[i]; 5266 sqlite3ExprListDelete(db, pCte->pCols); 5267 sqlite3SelectDelete(db, pCte->pSelect); 5268 sqlite3DbFree(db, pCte->zName); 5269 } 5270 sqlite3DbFree(db, pWith); 5271 } 5272 } 5273 #endif /* !defined(SQLITE_OMIT_CTE) */ 5274