xref: /sqlite-3.40.0/src/build.c (revision 7fdb522c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 **
25 ** $Id: build.c,v 1.491 2008/07/28 19:34:53 drh Exp $
26 */
27 #include "sqliteInt.h"
28 #include <ctype.h>
29 
30 /*
31 ** This routine is called when a new SQL statement is beginning to
32 ** be parsed.  Initialize the pParse structure as needed.
33 */
34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
35   pParse->explain = explainFlag;
36   pParse->nVar = 0;
37 }
38 
39 #ifndef SQLITE_OMIT_SHARED_CACHE
40 /*
41 ** The TableLock structure is only used by the sqlite3TableLock() and
42 ** codeTableLocks() functions.
43 */
44 struct TableLock {
45   int iDb;             /* The database containing the table to be locked */
46   int iTab;            /* The root page of the table to be locked */
47   u8 isWriteLock;      /* True for write lock.  False for a read lock */
48   const char *zName;   /* Name of the table */
49 };
50 
51 /*
52 ** Record the fact that we want to lock a table at run-time.
53 **
54 ** The table to be locked has root page iTab and is found in database iDb.
55 ** A read or a write lock can be taken depending on isWritelock.
56 **
57 ** This routine just records the fact that the lock is desired.  The
58 ** code to make the lock occur is generated by a later call to
59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
60 */
61 void sqlite3TableLock(
62   Parse *pParse,     /* Parsing context */
63   int iDb,           /* Index of the database containing the table to lock */
64   int iTab,          /* Root page number of the table to be locked */
65   u8 isWriteLock,    /* True for a write lock */
66   const char *zName  /* Name of the table to be locked */
67 ){
68   int i;
69   int nBytes;
70   TableLock *p;
71 
72   if( iDb<0 ){
73     return;
74   }
75 
76   for(i=0; i<pParse->nTableLock; i++){
77     p = &pParse->aTableLock[i];
78     if( p->iDb==iDb && p->iTab==iTab ){
79       p->isWriteLock = (p->isWriteLock || isWriteLock);
80       return;
81     }
82   }
83 
84   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
85   pParse->aTableLock =
86       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
87   if( pParse->aTableLock ){
88     p = &pParse->aTableLock[pParse->nTableLock++];
89     p->iDb = iDb;
90     p->iTab = iTab;
91     p->isWriteLock = isWriteLock;
92     p->zName = zName;
93   }else{
94     pParse->nTableLock = 0;
95     pParse->db->mallocFailed = 1;
96   }
97 }
98 
99 /*
100 ** Code an OP_TableLock instruction for each table locked by the
101 ** statement (configured by calls to sqlite3TableLock()).
102 */
103 static void codeTableLocks(Parse *pParse){
104   int i;
105   Vdbe *pVdbe;
106 
107   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
108     return;
109   }
110 
111   for(i=0; i<pParse->nTableLock; i++){
112     TableLock *p = &pParse->aTableLock[i];
113     int p1 = p->iDb;
114     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
115                       p->zName, P4_STATIC);
116   }
117 }
118 #else
119   #define codeTableLocks(x)
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   db = pParse->db;
137   if( db->mallocFailed ) return;
138   if( pParse->nested ) return;
139   if( pParse->nErr ) return;
140   if( !pParse->pVdbe ){
141     if( pParse->rc==SQLITE_OK && pParse->nErr ){
142       pParse->rc = SQLITE_ERROR;
143       return;
144     }
145   }
146 
147   /* Begin by generating some termination code at the end of the
148   ** vdbe program
149   */
150   v = sqlite3GetVdbe(pParse);
151   if( v ){
152     sqlite3VdbeAddOp0(v, OP_Halt);
153 
154     /* The cookie mask contains one bit for each database file open.
155     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
156     ** set for each database that is used.  Generate code to start a
157     ** transaction on each used database and to verify the schema cookie
158     ** on each used database.
159     */
160     if( pParse->cookieGoto>0 ){
161       u32 mask;
162       int iDb;
163       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
164       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
165         if( (mask & pParse->cookieMask)==0 ) continue;
166         sqlite3VdbeUsesBtree(v, iDb);
167         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
168         sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
169       }
170 #ifndef SQLITE_OMIT_VIRTUALTABLE
171       {
172         int i;
173         for(i=0; i<pParse->nVtabLock; i++){
174           char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
175           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
176         }
177         pParse->nVtabLock = 0;
178       }
179 #endif
180 
181       /* Once all the cookies have been verified and transactions opened,
182       ** obtain the required table-locks. This is a no-op unless the
183       ** shared-cache feature is enabled.
184       */
185       codeTableLocks(pParse);
186       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
187     }
188 
189 #ifndef SQLITE_OMIT_TRACE
190     if( !db->init.busy ){
191       /* Change the P4 argument of the first opcode (which will always be
192       ** an OP_Trace) to be the complete text of the current SQL statement.
193       */
194       VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
195       if( pOp && pOp->opcode==OP_Trace ){
196         sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
197       }
198     }
199 #endif /* SQLITE_OMIT_TRACE */
200   }
201 
202 
203   /* Get the VDBE program ready for execution
204   */
205   if( v && pParse->nErr==0 && !db->mallocFailed ){
206 #ifdef SQLITE_DEBUG
207     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
208     sqlite3VdbeTrace(v, trace);
209 #endif
210     assert( pParse->disableColCache==0 );  /* Disables and re-enables match */
211     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
212                          pParse->nTab+3, pParse->explain);
213     pParse->rc = SQLITE_DONE;
214     pParse->colNamesSet = 0;
215   }else if( pParse->rc==SQLITE_OK ){
216     pParse->rc = SQLITE_ERROR;
217   }
218   pParse->nTab = 0;
219   pParse->nMem = 0;
220   pParse->nSet = 0;
221   pParse->nVar = 0;
222   pParse->cookieMask = 0;
223   pParse->cookieGoto = 0;
224 }
225 
226 /*
227 ** Run the parser and code generator recursively in order to generate
228 ** code for the SQL statement given onto the end of the pParse context
229 ** currently under construction.  When the parser is run recursively
230 ** this way, the final OP_Halt is not appended and other initialization
231 ** and finalization steps are omitted because those are handling by the
232 ** outermost parser.
233 **
234 ** Not everything is nestable.  This facility is designed to permit
235 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
236 ** care if you decide to try to use this routine for some other purposes.
237 */
238 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
239   va_list ap;
240   char *zSql;
241   char *zErrMsg = 0;
242   sqlite3 *db = pParse->db;
243 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
244   char saveBuf[SAVE_SZ];
245 
246   if( pParse->nErr ) return;
247   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
248   va_start(ap, zFormat);
249   zSql = sqlite3VMPrintf(db, zFormat, ap);
250   va_end(ap);
251   if( zSql==0 ){
252     return;   /* A malloc must have failed */
253   }
254   pParse->nested++;
255   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
256   memset(&pParse->nVar, 0, SAVE_SZ);
257   sqlite3RunParser(pParse, zSql, &zErrMsg);
258   sqlite3DbFree(db, zErrMsg);
259   sqlite3DbFree(db, zSql);
260   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
261   pParse->nested--;
262 }
263 
264 /*
265 ** Locate the in-memory structure that describes a particular database
266 ** table given the name of that table and (optionally) the name of the
267 ** database containing the table.  Return NULL if not found.
268 **
269 ** If zDatabase is 0, all databases are searched for the table and the
270 ** first matching table is returned.  (No checking for duplicate table
271 ** names is done.)  The search order is TEMP first, then MAIN, then any
272 ** auxiliary databases added using the ATTACH command.
273 **
274 ** See also sqlite3LocateTable().
275 */
276 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
277   Table *p = 0;
278   int i;
279   int nName;
280   assert( zName!=0 );
281   nName = sqlite3Strlen(db, zName) + 1;
282   for(i=OMIT_TEMPDB; i<db->nDb; i++){
283     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
284     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
285     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
286     if( p ) break;
287   }
288   return p;
289 }
290 
291 /*
292 ** Locate the in-memory structure that describes a particular database
293 ** table given the name of that table and (optionally) the name of the
294 ** database containing the table.  Return NULL if not found.  Also leave an
295 ** error message in pParse->zErrMsg.
296 **
297 ** The difference between this routine and sqlite3FindTable() is that this
298 ** routine leaves an error message in pParse->zErrMsg where
299 ** sqlite3FindTable() does not.
300 */
301 Table *sqlite3LocateTable(
302   Parse *pParse,         /* context in which to report errors */
303   int isView,            /* True if looking for a VIEW rather than a TABLE */
304   const char *zName,     /* Name of the table we are looking for */
305   const char *zDbase     /* Name of the database.  Might be NULL */
306 ){
307   Table *p;
308 
309   /* Read the database schema. If an error occurs, leave an error message
310   ** and code in pParse and return NULL. */
311   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
312     return 0;
313   }
314 
315   p = sqlite3FindTable(pParse->db, zName, zDbase);
316   if( p==0 ){
317     const char *zMsg = isView ? "no such view" : "no such table";
318     if( zDbase ){
319       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
320     }else{
321       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
322     }
323     pParse->checkSchema = 1;
324   }
325   return p;
326 }
327 
328 /*
329 ** Locate the in-memory structure that describes
330 ** a particular index given the name of that index
331 ** and the name of the database that contains the index.
332 ** Return NULL if not found.
333 **
334 ** If zDatabase is 0, all databases are searched for the
335 ** table and the first matching index is returned.  (No checking
336 ** for duplicate index names is done.)  The search order is
337 ** TEMP first, then MAIN, then any auxiliary databases added
338 ** using the ATTACH command.
339 */
340 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
341   Index *p = 0;
342   int i;
343   int nName = sqlite3Strlen(db, zName)+1;
344   for(i=OMIT_TEMPDB; i<db->nDb; i++){
345     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
346     Schema *pSchema = db->aDb[j].pSchema;
347     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
348     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
349     if( pSchema ){
350       p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
351     }
352     if( p ) break;
353   }
354   return p;
355 }
356 
357 /*
358 ** Reclaim the memory used by an index
359 */
360 static void freeIndex(Index *p){
361   sqlite3 *db = p->pTable->db;
362   sqlite3DbFree(db, p->zColAff);
363   sqlite3DbFree(db, p);
364 }
365 
366 /*
367 ** Remove the given index from the index hash table, and free
368 ** its memory structures.
369 **
370 ** The index is removed from the database hash tables but
371 ** it is not unlinked from the Table that it indexes.
372 ** Unlinking from the Table must be done by the calling function.
373 */
374 static void sqliteDeleteIndex(Index *p){
375   Index *pOld;
376   const char *zName = p->zName;
377 
378   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
379   assert( pOld==0 || pOld==p );
380   freeIndex(p);
381 }
382 
383 /*
384 ** For the index called zIdxName which is found in the database iDb,
385 ** unlike that index from its Table then remove the index from
386 ** the index hash table and free all memory structures associated
387 ** with the index.
388 */
389 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
390   Index *pIndex;
391   int len;
392   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
393 
394   len = sqlite3Strlen(db, zIdxName);
395   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
396   if( pIndex ){
397     if( pIndex->pTable->pIndex==pIndex ){
398       pIndex->pTable->pIndex = pIndex->pNext;
399     }else{
400       Index *p;
401       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
402       if( p && p->pNext==pIndex ){
403         p->pNext = pIndex->pNext;
404       }
405     }
406     freeIndex(pIndex);
407   }
408   db->flags |= SQLITE_InternChanges;
409 }
410 
411 /*
412 ** Erase all schema information from the in-memory hash tables of
413 ** a single database.  This routine is called to reclaim memory
414 ** before the database closes.  It is also called during a rollback
415 ** if there were schema changes during the transaction or if a
416 ** schema-cookie mismatch occurs.
417 **
418 ** If iDb<=0 then reset the internal schema tables for all database
419 ** files.  If iDb>=2 then reset the internal schema for only the
420 ** single file indicated.
421 */
422 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
423   int i, j;
424   assert( iDb>=0 && iDb<db->nDb );
425 
426   if( iDb==0 ){
427     sqlite3BtreeEnterAll(db);
428   }
429   for(i=iDb; i<db->nDb; i++){
430     Db *pDb = &db->aDb[i];
431     if( pDb->pSchema ){
432       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
433       sqlite3SchemaFree(pDb->pSchema);
434     }
435     if( iDb>0 ) return;
436   }
437   assert( iDb==0 );
438   db->flags &= ~SQLITE_InternChanges;
439   sqlite3BtreeLeaveAll(db);
440 
441   /* If one or more of the auxiliary database files has been closed,
442   ** then remove them from the auxiliary database list.  We take the
443   ** opportunity to do this here since we have just deleted all of the
444   ** schema hash tables and therefore do not have to make any changes
445   ** to any of those tables.
446   */
447   for(i=0; i<db->nDb; i++){
448     struct Db *pDb = &db->aDb[i];
449     if( pDb->pBt==0 ){
450       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
451       pDb->pAux = 0;
452     }
453   }
454   for(i=j=2; i<db->nDb; i++){
455     struct Db *pDb = &db->aDb[i];
456     if( pDb->pBt==0 ){
457       sqlite3DbFree(db, pDb->zName);
458       pDb->zName = 0;
459       continue;
460     }
461     if( j<i ){
462       db->aDb[j] = db->aDb[i];
463     }
464     j++;
465   }
466   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
467   db->nDb = j;
468   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
469     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
470     sqlite3DbFree(db, db->aDb);
471     db->aDb = db->aDbStatic;
472   }
473 }
474 
475 /*
476 ** This routine is called when a commit occurs.
477 */
478 void sqlite3CommitInternalChanges(sqlite3 *db){
479   db->flags &= ~SQLITE_InternChanges;
480 }
481 
482 /*
483 ** Clear the column names from a table or view.
484 */
485 static void sqliteResetColumnNames(Table *pTable){
486   int i;
487   Column *pCol;
488   sqlite3 *db = pTable->db;
489   assert( pTable!=0 );
490   if( (pCol = pTable->aCol)!=0 ){
491     for(i=0; i<pTable->nCol; i++, pCol++){
492       sqlite3DbFree(db, pCol->zName);
493       sqlite3ExprDelete(db, pCol->pDflt);
494       sqlite3DbFree(db, pCol->zType);
495       sqlite3DbFree(db, pCol->zColl);
496     }
497     sqlite3DbFree(db, pTable->aCol);
498   }
499   pTable->aCol = 0;
500   pTable->nCol = 0;
501 }
502 
503 /*
504 ** Remove the memory data structures associated with the given
505 ** Table.  No changes are made to disk by this routine.
506 **
507 ** This routine just deletes the data structure.  It does not unlink
508 ** the table data structure from the hash table.  Nor does it remove
509 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
510 ** memory structures of the indices and foreign keys associated with
511 ** the table.
512 */
513 void sqlite3DeleteTable(Table *pTable){
514   Index *pIndex, *pNext;
515   FKey *pFKey, *pNextFKey;
516   sqlite3 *db;
517 
518   if( pTable==0 ) return;
519   db = pTable->db;
520 
521   /* Do not delete the table until the reference count reaches zero. */
522   pTable->nRef--;
523   if( pTable->nRef>0 ){
524     return;
525   }
526   assert( pTable->nRef==0 );
527 
528   /* Delete all indices associated with this table
529   */
530   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
531     pNext = pIndex->pNext;
532     assert( pIndex->pSchema==pTable->pSchema );
533     sqliteDeleteIndex(pIndex);
534   }
535 
536 #ifndef SQLITE_OMIT_FOREIGN_KEY
537   /* Delete all foreign keys associated with this table.  The keys
538   ** should have already been unlinked from the pSchema->aFKey hash table
539   */
540   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
541     pNextFKey = pFKey->pNextFrom;
542     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
543                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
544     sqlite3DbFree(db, pFKey);
545   }
546 #endif
547 
548   /* Delete the Table structure itself.
549   */
550   sqliteResetColumnNames(pTable);
551   sqlite3DbFree(db, pTable->zName);
552   sqlite3DbFree(db, pTable->zColAff);
553   sqlite3SelectDelete(db, pTable->pSelect);
554 #ifndef SQLITE_OMIT_CHECK
555   sqlite3ExprDelete(db, pTable->pCheck);
556 #endif
557   sqlite3VtabClear(pTable);
558   sqlite3DbFree(db, pTable);
559 }
560 
561 /*
562 ** Unlink the given table from the hash tables and the delete the
563 ** table structure with all its indices and foreign keys.
564 */
565 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
566   Table *p;
567   FKey *pF1, *pF2;
568   Db *pDb;
569 
570   assert( db!=0 );
571   assert( iDb>=0 && iDb<db->nDb );
572   assert( zTabName && zTabName[0] );
573   pDb = &db->aDb[iDb];
574   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
575   if( p ){
576 #ifndef SQLITE_OMIT_FOREIGN_KEY
577     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
578       int nTo = strlen(pF1->zTo) + 1;
579       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
580       if( pF2==pF1 ){
581         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
582       }else{
583         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
584         if( pF2 ){
585           pF2->pNextTo = pF1->pNextTo;
586         }
587       }
588     }
589 #endif
590     sqlite3DeleteTable(p);
591   }
592   db->flags |= SQLITE_InternChanges;
593 }
594 
595 /*
596 ** Given a token, return a string that consists of the text of that
597 ** token with any quotations removed.  Space to hold the returned string
598 ** is obtained from sqliteMalloc() and must be freed by the calling
599 ** function.
600 **
601 ** Tokens are often just pointers into the original SQL text and so
602 ** are not \000 terminated and are not persistent.  The returned string
603 ** is \000 terminated and is persistent.
604 */
605 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
606   char *zName;
607   if( pName ){
608     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
609     sqlite3Dequote(zName);
610   }else{
611     zName = 0;
612   }
613   return zName;
614 }
615 
616 /*
617 ** Open the sqlite_master table stored in database number iDb for
618 ** writing. The table is opened using cursor 0.
619 */
620 void sqlite3OpenMasterTable(Parse *p, int iDb){
621   Vdbe *v = sqlite3GetVdbe(p);
622   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
623   sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
624   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
625 }
626 
627 /*
628 ** The token *pName contains the name of a database (either "main" or
629 ** "temp" or the name of an attached db). This routine returns the
630 ** index of the named database in db->aDb[], or -1 if the named db
631 ** does not exist.
632 */
633 int sqlite3FindDb(sqlite3 *db, Token *pName){
634   int i = -1;    /* Database number */
635   int n;         /* Number of characters in the name */
636   Db *pDb;       /* A database whose name space is being searched */
637   char *zName;   /* Name we are searching for */
638 
639   zName = sqlite3NameFromToken(db, pName);
640   if( zName ){
641     n = strlen(zName);
642     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
643       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
644           0==sqlite3StrICmp(pDb->zName, zName) ){
645         break;
646       }
647     }
648     sqlite3DbFree(db, zName);
649   }
650   return i;
651 }
652 
653 /* The table or view or trigger name is passed to this routine via tokens
654 ** pName1 and pName2. If the table name was fully qualified, for example:
655 **
656 ** CREATE TABLE xxx.yyy (...);
657 **
658 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
659 ** the table name is not fully qualified, i.e.:
660 **
661 ** CREATE TABLE yyy(...);
662 **
663 ** Then pName1 is set to "yyy" and pName2 is "".
664 **
665 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
666 ** pName2) that stores the unqualified table name.  The index of the
667 ** database "xxx" is returned.
668 */
669 int sqlite3TwoPartName(
670   Parse *pParse,      /* Parsing and code generating context */
671   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
672   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
673   Token **pUnqual     /* Write the unqualified object name here */
674 ){
675   int iDb;                    /* Database holding the object */
676   sqlite3 *db = pParse->db;
677 
678   if( pName2 && pName2->n>0 ){
679     assert( !db->init.busy );
680     *pUnqual = pName2;
681     iDb = sqlite3FindDb(db, pName1);
682     if( iDb<0 ){
683       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
684       pParse->nErr++;
685       return -1;
686     }
687   }else{
688     assert( db->init.iDb==0 || db->init.busy );
689     iDb = db->init.iDb;
690     *pUnqual = pName1;
691   }
692   return iDb;
693 }
694 
695 /*
696 ** This routine is used to check if the UTF-8 string zName is a legal
697 ** unqualified name for a new schema object (table, index, view or
698 ** trigger). All names are legal except those that begin with the string
699 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
700 ** is reserved for internal use.
701 */
702 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
703   if( !pParse->db->init.busy && pParse->nested==0
704           && (pParse->db->flags & SQLITE_WriteSchema)==0
705           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
706     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
707     return SQLITE_ERROR;
708   }
709   return SQLITE_OK;
710 }
711 
712 /*
713 ** Begin constructing a new table representation in memory.  This is
714 ** the first of several action routines that get called in response
715 ** to a CREATE TABLE statement.  In particular, this routine is called
716 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
717 ** flag is true if the table should be stored in the auxiliary database
718 ** file instead of in the main database file.  This is normally the case
719 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
720 ** CREATE and TABLE.
721 **
722 ** The new table record is initialized and put in pParse->pNewTable.
723 ** As more of the CREATE TABLE statement is parsed, additional action
724 ** routines will be called to add more information to this record.
725 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
726 ** is called to complete the construction of the new table record.
727 */
728 void sqlite3StartTable(
729   Parse *pParse,   /* Parser context */
730   Token *pName1,   /* First part of the name of the table or view */
731   Token *pName2,   /* Second part of the name of the table or view */
732   int isTemp,      /* True if this is a TEMP table */
733   int isView,      /* True if this is a VIEW */
734   int isVirtual,   /* True if this is a VIRTUAL table */
735   int noErr        /* Do nothing if table already exists */
736 ){
737   Table *pTable;
738   char *zName = 0; /* The name of the new table */
739   sqlite3 *db = pParse->db;
740   Vdbe *v;
741   int iDb;         /* Database number to create the table in */
742   Token *pName;    /* Unqualified name of the table to create */
743 
744   /* The table or view name to create is passed to this routine via tokens
745   ** pName1 and pName2. If the table name was fully qualified, for example:
746   **
747   ** CREATE TABLE xxx.yyy (...);
748   **
749   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
750   ** the table name is not fully qualified, i.e.:
751   **
752   ** CREATE TABLE yyy(...);
753   **
754   ** Then pName1 is set to "yyy" and pName2 is "".
755   **
756   ** The call below sets the pName pointer to point at the token (pName1 or
757   ** pName2) that stores the unqualified table name. The variable iDb is
758   ** set to the index of the database that the table or view is to be
759   ** created in.
760   */
761   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
762   if( iDb<0 ) return;
763   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
764     /* If creating a temp table, the name may not be qualified */
765     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
766     return;
767   }
768   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
769 
770   pParse->sNameToken = *pName;
771   zName = sqlite3NameFromToken(db, pName);
772   if( zName==0 ) return;
773   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
774     goto begin_table_error;
775   }
776   if( db->init.iDb==1 ) isTemp = 1;
777 #ifndef SQLITE_OMIT_AUTHORIZATION
778   assert( (isTemp & 1)==isTemp );
779   {
780     int code;
781     char *zDb = db->aDb[iDb].zName;
782     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
783       goto begin_table_error;
784     }
785     if( isView ){
786       if( !OMIT_TEMPDB && isTemp ){
787         code = SQLITE_CREATE_TEMP_VIEW;
788       }else{
789         code = SQLITE_CREATE_VIEW;
790       }
791     }else{
792       if( !OMIT_TEMPDB && isTemp ){
793         code = SQLITE_CREATE_TEMP_TABLE;
794       }else{
795         code = SQLITE_CREATE_TABLE;
796       }
797     }
798     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
799       goto begin_table_error;
800     }
801   }
802 #endif
803 
804   /* Make sure the new table name does not collide with an existing
805   ** index or table name in the same database.  Issue an error message if
806   ** it does. The exception is if the statement being parsed was passed
807   ** to an sqlite3_declare_vtab() call. In that case only the column names
808   ** and types will be used, so there is no need to test for namespace
809   ** collisions.
810   */
811   if( !IN_DECLARE_VTAB ){
812     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
813       goto begin_table_error;
814     }
815     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
816     if( pTable ){
817       if( !noErr ){
818         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
819       }
820       goto begin_table_error;
821     }
822     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
823       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
824       goto begin_table_error;
825     }
826   }
827 
828   pTable = sqlite3DbMallocZero(db, sizeof(Table));
829   if( pTable==0 ){
830     db->mallocFailed = 1;
831     pParse->rc = SQLITE_NOMEM;
832     pParse->nErr++;
833     goto begin_table_error;
834   }
835   pTable->zName = zName;
836   pTable->iPKey = -1;
837   pTable->pSchema = db->aDb[iDb].pSchema;
838   pTable->nRef = 1;
839   pTable->db = db;
840   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
841   pParse->pNewTable = pTable;
842 
843   /* If this is the magic sqlite_sequence table used by autoincrement,
844   ** then record a pointer to this table in the main database structure
845   ** so that INSERT can find the table easily.
846   */
847 #ifndef SQLITE_OMIT_AUTOINCREMENT
848   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
849     pTable->pSchema->pSeqTab = pTable;
850   }
851 #endif
852 
853   /* Begin generating the code that will insert the table record into
854   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
855   ** and allocate the record number for the table entry now.  Before any
856   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
857   ** indices to be created and the table record must come before the
858   ** indices.  Hence, the record number for the table must be allocated
859   ** now.
860   */
861   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
862     int j1;
863     int fileFormat;
864     int reg1, reg2, reg3;
865     sqlite3BeginWriteOperation(pParse, 0, iDb);
866 
867 #ifndef SQLITE_OMIT_VIRTUALTABLE
868     if( isVirtual ){
869       sqlite3VdbeAddOp0(v, OP_VBegin);
870     }
871 #endif
872 
873     /* If the file format and encoding in the database have not been set,
874     ** set them now.
875     */
876     reg1 = pParse->regRowid = ++pParse->nMem;
877     reg2 = pParse->regRoot = ++pParse->nMem;
878     reg3 = ++pParse->nMem;
879     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1);   /* file_format */
880     sqlite3VdbeUsesBtree(v, iDb);
881     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
882     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
883                   1 : SQLITE_MAX_FILE_FORMAT;
884     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
885     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
886     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
887     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
888     sqlite3VdbeJumpHere(v, j1);
889 
890     /* This just creates a place-holder record in the sqlite_master table.
891     ** The record created does not contain anything yet.  It will be replaced
892     ** by the real entry in code generated at sqlite3EndTable().
893     **
894     ** The rowid for the new entry is left on the top of the stack.
895     ** The rowid value is needed by the code that sqlite3EndTable will
896     ** generate.
897     */
898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
899     if( isView || isVirtual ){
900       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
901     }else
902 #endif
903     {
904       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
905     }
906     sqlite3OpenMasterTable(pParse, iDb);
907     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
908     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
909     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
910     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
911     sqlite3VdbeAddOp0(v, OP_Close);
912   }
913 
914   /* Normal (non-error) return. */
915   return;
916 
917   /* If an error occurs, we jump here */
918 begin_table_error:
919   sqlite3DbFree(db, zName);
920   return;
921 }
922 
923 /*
924 ** This macro is used to compare two strings in a case-insensitive manner.
925 ** It is slightly faster than calling sqlite3StrICmp() directly, but
926 ** produces larger code.
927 **
928 ** WARNING: This macro is not compatible with the strcmp() family. It
929 ** returns true if the two strings are equal, otherwise false.
930 */
931 #define STRICMP(x, y) (\
932 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
933 sqlite3UpperToLower[*(unsigned char *)(y)]     \
934 && sqlite3StrICmp((x)+1,(y)+1)==0 )
935 
936 /*
937 ** Add a new column to the table currently being constructed.
938 **
939 ** The parser calls this routine once for each column declaration
940 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
941 ** first to get things going.  Then this routine is called for each
942 ** column.
943 */
944 void sqlite3AddColumn(Parse *pParse, Token *pName){
945   Table *p;
946   int i;
947   char *z;
948   Column *pCol;
949   sqlite3 *db = pParse->db;
950   if( (p = pParse->pNewTable)==0 ) return;
951 #if SQLITE_MAX_COLUMN
952   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
953     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
954     return;
955   }
956 #endif
957   z = sqlite3NameFromToken(pParse->db, pName);
958   if( z==0 ) return;
959   for(i=0; i<p->nCol; i++){
960     if( STRICMP(z, p->aCol[i].zName) ){
961       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
962       sqlite3DbFree(db, z);
963       return;
964     }
965   }
966   if( (p->nCol & 0x7)==0 ){
967     Column *aNew;
968     aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
969     if( aNew==0 ){
970       sqlite3DbFree(db, z);
971       return;
972     }
973     p->aCol = aNew;
974   }
975   pCol = &p->aCol[p->nCol];
976   memset(pCol, 0, sizeof(p->aCol[0]));
977   pCol->zName = z;
978 
979   /* If there is no type specified, columns have the default affinity
980   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
981   ** be called next to set pCol->affinity correctly.
982   */
983   pCol->affinity = SQLITE_AFF_NONE;
984   p->nCol++;
985 }
986 
987 /*
988 ** This routine is called by the parser while in the middle of
989 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
990 ** been seen on a column.  This routine sets the notNull flag on
991 ** the column currently under construction.
992 */
993 void sqlite3AddNotNull(Parse *pParse, int onError){
994   Table *p;
995   int i;
996   if( (p = pParse->pNewTable)==0 ) return;
997   i = p->nCol-1;
998   if( i>=0 ) p->aCol[i].notNull = onError;
999 }
1000 
1001 /*
1002 ** Scan the column type name zType (length nType) and return the
1003 ** associated affinity type.
1004 **
1005 ** This routine does a case-independent search of zType for the
1006 ** substrings in the following table. If one of the substrings is
1007 ** found, the corresponding affinity is returned. If zType contains
1008 ** more than one of the substrings, entries toward the top of
1009 ** the table take priority. For example, if zType is 'BLOBINT',
1010 ** SQLITE_AFF_INTEGER is returned.
1011 **
1012 ** Substring     | Affinity
1013 ** --------------------------------
1014 ** 'INT'         | SQLITE_AFF_INTEGER
1015 ** 'CHAR'        | SQLITE_AFF_TEXT
1016 ** 'CLOB'        | SQLITE_AFF_TEXT
1017 ** 'TEXT'        | SQLITE_AFF_TEXT
1018 ** 'BLOB'        | SQLITE_AFF_NONE
1019 ** 'REAL'        | SQLITE_AFF_REAL
1020 ** 'FLOA'        | SQLITE_AFF_REAL
1021 ** 'DOUB'        | SQLITE_AFF_REAL
1022 **
1023 ** If none of the substrings in the above table are found,
1024 ** SQLITE_AFF_NUMERIC is returned.
1025 */
1026 char sqlite3AffinityType(const Token *pType){
1027   u32 h = 0;
1028   char aff = SQLITE_AFF_NUMERIC;
1029   const unsigned char *zIn = pType->z;
1030   const unsigned char *zEnd = &pType->z[pType->n];
1031 
1032   while( zIn!=zEnd ){
1033     h = (h<<8) + sqlite3UpperToLower[*zIn];
1034     zIn++;
1035     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1036       aff = SQLITE_AFF_TEXT;
1037     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1038       aff = SQLITE_AFF_TEXT;
1039     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1040       aff = SQLITE_AFF_TEXT;
1041     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1042         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1043       aff = SQLITE_AFF_NONE;
1044 #ifndef SQLITE_OMIT_FLOATING_POINT
1045     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1046         && aff==SQLITE_AFF_NUMERIC ){
1047       aff = SQLITE_AFF_REAL;
1048     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1049         && aff==SQLITE_AFF_NUMERIC ){
1050       aff = SQLITE_AFF_REAL;
1051     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1052         && aff==SQLITE_AFF_NUMERIC ){
1053       aff = SQLITE_AFF_REAL;
1054 #endif
1055     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1056       aff = SQLITE_AFF_INTEGER;
1057       break;
1058     }
1059   }
1060 
1061   return aff;
1062 }
1063 
1064 /*
1065 ** This routine is called by the parser while in the middle of
1066 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1067 ** token in the sequence of tokens that describe the type of the
1068 ** column currently under construction.   pLast is the last token
1069 ** in the sequence.  Use this information to construct a string
1070 ** that contains the typename of the column and store that string
1071 ** in zType.
1072 */
1073 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1074   Table *p;
1075   int i;
1076   Column *pCol;
1077   sqlite3 *db;
1078 
1079   if( (p = pParse->pNewTable)==0 ) return;
1080   i = p->nCol-1;
1081   if( i<0 ) return;
1082   pCol = &p->aCol[i];
1083   db = pParse->db;
1084   sqlite3DbFree(db, pCol->zType);
1085   pCol->zType = sqlite3NameFromToken(db, pType);
1086   pCol->affinity = sqlite3AffinityType(pType);
1087 }
1088 
1089 /*
1090 ** The expression is the default value for the most recently added column
1091 ** of the table currently under construction.
1092 **
1093 ** Default value expressions must be constant.  Raise an exception if this
1094 ** is not the case.
1095 **
1096 ** This routine is called by the parser while in the middle of
1097 ** parsing a CREATE TABLE statement.
1098 */
1099 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
1100   Table *p;
1101   Column *pCol;
1102   sqlite3 *db = pParse->db;
1103   if( (p = pParse->pNewTable)!=0 ){
1104     pCol = &(p->aCol[p->nCol-1]);
1105     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
1106       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1107           pCol->zName);
1108     }else{
1109       Expr *pCopy;
1110       sqlite3ExprDelete(db, pCol->pDflt);
1111       pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
1112       if( pCopy ){
1113         sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
1114       }
1115     }
1116   }
1117   sqlite3ExprDelete(db, pExpr);
1118 }
1119 
1120 /*
1121 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1122 ** of columns that form the primary key.  If pList is NULL, then the
1123 ** most recently added column of the table is the primary key.
1124 **
1125 ** A table can have at most one primary key.  If the table already has
1126 ** a primary key (and this is the second primary key) then create an
1127 ** error.
1128 **
1129 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1130 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1131 ** field of the table under construction to be the index of the
1132 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1133 ** no INTEGER PRIMARY KEY.
1134 **
1135 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1136 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1137 */
1138 void sqlite3AddPrimaryKey(
1139   Parse *pParse,    /* Parsing context */
1140   ExprList *pList,  /* List of field names to be indexed */
1141   int onError,      /* What to do with a uniqueness conflict */
1142   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1143   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1144 ){
1145   Table *pTab = pParse->pNewTable;
1146   char *zType = 0;
1147   int iCol = -1, i;
1148   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1149   if( pTab->hasPrimKey ){
1150     sqlite3ErrorMsg(pParse,
1151       "table \"%s\" has more than one primary key", pTab->zName);
1152     goto primary_key_exit;
1153   }
1154   pTab->hasPrimKey = 1;
1155   if( pList==0 ){
1156     iCol = pTab->nCol - 1;
1157     pTab->aCol[iCol].isPrimKey = 1;
1158   }else{
1159     for(i=0; i<pList->nExpr; i++){
1160       for(iCol=0; iCol<pTab->nCol; iCol++){
1161         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1162           break;
1163         }
1164       }
1165       if( iCol<pTab->nCol ){
1166         pTab->aCol[iCol].isPrimKey = 1;
1167       }
1168     }
1169     if( pList->nExpr>1 ) iCol = -1;
1170   }
1171   if( iCol>=0 && iCol<pTab->nCol ){
1172     zType = pTab->aCol[iCol].zType;
1173   }
1174   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1175         && sortOrder==SQLITE_SO_ASC ){
1176     pTab->iPKey = iCol;
1177     pTab->keyConf = onError;
1178     pTab->autoInc = autoInc;
1179   }else if( autoInc ){
1180 #ifndef SQLITE_OMIT_AUTOINCREMENT
1181     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1182        "INTEGER PRIMARY KEY");
1183 #endif
1184   }else{
1185     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1186     pList = 0;
1187   }
1188 
1189 primary_key_exit:
1190   sqlite3ExprListDelete(pParse->db, pList);
1191   return;
1192 }
1193 
1194 /*
1195 ** Add a new CHECK constraint to the table currently under construction.
1196 */
1197 void sqlite3AddCheckConstraint(
1198   Parse *pParse,    /* Parsing context */
1199   Expr *pCheckExpr  /* The check expression */
1200 ){
1201   sqlite3 *db = pParse->db;
1202 #ifndef SQLITE_OMIT_CHECK
1203   Table *pTab = pParse->pNewTable;
1204   if( pTab && !IN_DECLARE_VTAB ){
1205     /* The CHECK expression must be duplicated so that tokens refer
1206     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
1207     ** statement */
1208     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
1209                                   sqlite3ExprDup(db, pCheckExpr));
1210   }
1211 #endif
1212   sqlite3ExprDelete(db, pCheckExpr);
1213 }
1214 
1215 /*
1216 ** Set the collation function of the most recently parsed table column
1217 ** to the CollSeq given.
1218 */
1219 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1220   Table *p;
1221   int i;
1222   char *zColl;              /* Dequoted name of collation sequence */
1223   sqlite3 *db;
1224 
1225   if( (p = pParse->pNewTable)==0 ) return;
1226   i = p->nCol-1;
1227   db = pParse->db;
1228   zColl = sqlite3NameFromToken(db, pToken);
1229   if( !zColl ) return;
1230 
1231   if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
1232     Index *pIdx;
1233     p->aCol[i].zColl = zColl;
1234 
1235     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1236     ** then an index may have been created on this column before the
1237     ** collation type was added. Correct this if it is the case.
1238     */
1239     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1240       assert( pIdx->nColumn==1 );
1241       if( pIdx->aiColumn[0]==i ){
1242         pIdx->azColl[0] = p->aCol[i].zColl;
1243       }
1244     }
1245   }else{
1246     sqlite3DbFree(db, zColl);
1247   }
1248 }
1249 
1250 /*
1251 ** This function returns the collation sequence for database native text
1252 ** encoding identified by the string zName, length nName.
1253 **
1254 ** If the requested collation sequence is not available, or not available
1255 ** in the database native encoding, the collation factory is invoked to
1256 ** request it. If the collation factory does not supply such a sequence,
1257 ** and the sequence is available in another text encoding, then that is
1258 ** returned instead.
1259 **
1260 ** If no versions of the requested collations sequence are available, or
1261 ** another error occurs, NULL is returned and an error message written into
1262 ** pParse.
1263 **
1264 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1265 ** invokes the collation factory if the named collation cannot be found
1266 ** and generates an error message.
1267 */
1268 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
1269   sqlite3 *db = pParse->db;
1270   u8 enc = ENC(db);
1271   u8 initbusy = db->init.busy;
1272   CollSeq *pColl;
1273 
1274   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
1275   if( !initbusy && (!pColl || !pColl->xCmp) ){
1276     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
1277     if( !pColl ){
1278       if( nName<0 ){
1279         nName = sqlite3Strlen(db, zName);
1280       }
1281       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
1282       pColl = 0;
1283     }
1284   }
1285 
1286   return pColl;
1287 }
1288 
1289 
1290 /*
1291 ** Generate code that will increment the schema cookie.
1292 **
1293 ** The schema cookie is used to determine when the schema for the
1294 ** database changes.  After each schema change, the cookie value
1295 ** changes.  When a process first reads the schema it records the
1296 ** cookie.  Thereafter, whenever it goes to access the database,
1297 ** it checks the cookie to make sure the schema has not changed
1298 ** since it was last read.
1299 **
1300 ** This plan is not completely bullet-proof.  It is possible for
1301 ** the schema to change multiple times and for the cookie to be
1302 ** set back to prior value.  But schema changes are infrequent
1303 ** and the probability of hitting the same cookie value is only
1304 ** 1 chance in 2^32.  So we're safe enough.
1305 */
1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1307   int r1 = sqlite3GetTempReg(pParse);
1308   sqlite3 *db = pParse->db;
1309   Vdbe *v = pParse->pVdbe;
1310   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1311   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
1312   sqlite3ReleaseTempReg(pParse, r1);
1313 }
1314 
1315 /*
1316 ** Measure the number of characters needed to output the given
1317 ** identifier.  The number returned includes any quotes used
1318 ** but does not include the null terminator.
1319 **
1320 ** The estimate is conservative.  It might be larger that what is
1321 ** really needed.
1322 */
1323 static int identLength(const char *z){
1324   int n;
1325   for(n=0; *z; n++, z++){
1326     if( *z=='"' ){ n++; }
1327   }
1328   return n + 2;
1329 }
1330 
1331 /*
1332 ** Write an identifier onto the end of the given string.  Add
1333 ** quote characters as needed.
1334 */
1335 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1336   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1337   int i, j, needQuote;
1338   i = *pIdx;
1339   for(j=0; zIdent[j]; j++){
1340     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1341   }
1342   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
1343                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1344   if( needQuote ) z[i++] = '"';
1345   for(j=0; zIdent[j]; j++){
1346     z[i++] = zIdent[j];
1347     if( zIdent[j]=='"' ) z[i++] = '"';
1348   }
1349   if( needQuote ) z[i++] = '"';
1350   z[i] = 0;
1351   *pIdx = i;
1352 }
1353 
1354 /*
1355 ** Generate a CREATE TABLE statement appropriate for the given
1356 ** table.  Memory to hold the text of the statement is obtained
1357 ** from sqliteMalloc() and must be freed by the calling function.
1358 */
1359 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
1360   int i, k, n;
1361   char *zStmt;
1362   char *zSep, *zSep2, *zEnd, *z;
1363   Column *pCol;
1364   n = 0;
1365   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1366     n += identLength(pCol->zName);
1367     z = pCol->zType;
1368     if( z ){
1369       n += (strlen(z) + 1);
1370     }
1371   }
1372   n += identLength(p->zName);
1373   if( n<50 ){
1374     zSep = "";
1375     zSep2 = ",";
1376     zEnd = ")";
1377   }else{
1378     zSep = "\n  ";
1379     zSep2 = ",\n  ";
1380     zEnd = "\n)";
1381   }
1382   n += 35 + 6*p->nCol;
1383   zStmt = sqlite3Malloc( n );
1384   if( zStmt==0 ){
1385     db->mallocFailed = 1;
1386     return 0;
1387   }
1388   sqlite3_snprintf(n, zStmt,
1389                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
1390   k = strlen(zStmt);
1391   identPut(zStmt, &k, p->zName);
1392   zStmt[k++] = '(';
1393   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1394     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1395     k += strlen(&zStmt[k]);
1396     zSep = zSep2;
1397     identPut(zStmt, &k, pCol->zName);
1398     if( (z = pCol->zType)!=0 ){
1399       zStmt[k++] = ' ';
1400       assert( strlen(z)+k+1<=n );
1401       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
1402       k += strlen(z);
1403     }
1404   }
1405   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1406   return zStmt;
1407 }
1408 
1409 /*
1410 ** This routine is called to report the final ")" that terminates
1411 ** a CREATE TABLE statement.
1412 **
1413 ** The table structure that other action routines have been building
1414 ** is added to the internal hash tables, assuming no errors have
1415 ** occurred.
1416 **
1417 ** An entry for the table is made in the master table on disk, unless
1418 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1419 ** it means we are reading the sqlite_master table because we just
1420 ** connected to the database or because the sqlite_master table has
1421 ** recently changed, so the entry for this table already exists in
1422 ** the sqlite_master table.  We do not want to create it again.
1423 **
1424 ** If the pSelect argument is not NULL, it means that this routine
1425 ** was called to create a table generated from a
1426 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1427 ** the new table will match the result set of the SELECT.
1428 */
1429 void sqlite3EndTable(
1430   Parse *pParse,          /* Parse context */
1431   Token *pCons,           /* The ',' token after the last column defn. */
1432   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1433   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1434 ){
1435   Table *p;
1436   sqlite3 *db = pParse->db;
1437   int iDb;
1438 
1439   if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
1440     return;
1441   }
1442   p = pParse->pNewTable;
1443   if( p==0 ) return;
1444 
1445   assert( !db->init.busy || !pSelect );
1446 
1447   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1448 
1449 #ifndef SQLITE_OMIT_CHECK
1450   /* Resolve names in all CHECK constraint expressions.
1451   */
1452   if( p->pCheck ){
1453     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1454     NameContext sNC;                /* Name context for pParse->pNewTable */
1455 
1456     memset(&sNC, 0, sizeof(sNC));
1457     memset(&sSrc, 0, sizeof(sSrc));
1458     sSrc.nSrc = 1;
1459     sSrc.a[0].zName = p->zName;
1460     sSrc.a[0].pTab = p;
1461     sSrc.a[0].iCursor = -1;
1462     sNC.pParse = pParse;
1463     sNC.pSrcList = &sSrc;
1464     sNC.isCheck = 1;
1465     if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
1466       return;
1467     }
1468   }
1469 #endif /* !defined(SQLITE_OMIT_CHECK) */
1470 
1471   /* If the db->init.busy is 1 it means we are reading the SQL off the
1472   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1473   ** So do not write to the disk again.  Extract the root page number
1474   ** for the table from the db->init.newTnum field.  (The page number
1475   ** should have been put there by the sqliteOpenCb routine.)
1476   */
1477   if( db->init.busy ){
1478     p->tnum = db->init.newTnum;
1479   }
1480 
1481   /* If not initializing, then create a record for the new table
1482   ** in the SQLITE_MASTER table of the database.  The record number
1483   ** for the new table entry should already be on the stack.
1484   **
1485   ** If this is a TEMPORARY table, write the entry into the auxiliary
1486   ** file instead of into the main database file.
1487   */
1488   if( !db->init.busy ){
1489     int n;
1490     Vdbe *v;
1491     char *zType;    /* "view" or "table" */
1492     char *zType2;   /* "VIEW" or "TABLE" */
1493     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1494 
1495     v = sqlite3GetVdbe(pParse);
1496     if( v==0 ) return;
1497 
1498     sqlite3VdbeAddOp1(v, OP_Close, 0);
1499 
1500     /* Create the rootpage for the new table and push it onto the stack.
1501     ** A view has no rootpage, so just push a zero onto the stack for
1502     ** views.  Initialize zType at the same time.
1503     */
1504     if( p->pSelect==0 ){
1505       /* A regular table */
1506       zType = "table";
1507       zType2 = "TABLE";
1508 #ifndef SQLITE_OMIT_VIEW
1509     }else{
1510       /* A view */
1511       zType = "view";
1512       zType2 = "VIEW";
1513 #endif
1514     }
1515 
1516     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1517     ** statement to populate the new table. The root-page number for the
1518     ** new table is on the top of the vdbe stack.
1519     **
1520     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1521     ** suitable state to query for the column names and types to be used
1522     ** by the new table.
1523     **
1524     ** A shared-cache write-lock is not required to write to the new table,
1525     ** as a schema-lock must have already been obtained to create it. Since
1526     ** a schema-lock excludes all other database users, the write-lock would
1527     ** be redundant.
1528     */
1529     if( pSelect ){
1530       SelectDest dest;
1531       Table *pSelTab;
1532 
1533       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1534       sqlite3VdbeChangeP5(v, 1);
1535       pParse->nTab = 2;
1536       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1537       sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
1538       sqlite3VdbeAddOp1(v, OP_Close, 1);
1539       if( pParse->nErr==0 ){
1540         pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
1541         if( pSelTab==0 ) return;
1542         assert( p->aCol==0 );
1543         p->nCol = pSelTab->nCol;
1544         p->aCol = pSelTab->aCol;
1545         pSelTab->nCol = 0;
1546         pSelTab->aCol = 0;
1547         sqlite3DeleteTable(pSelTab);
1548       }
1549     }
1550 
1551     /* Compute the complete text of the CREATE statement */
1552     if( pSelect ){
1553       zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
1554     }else{
1555       n = pEnd->z - pParse->sNameToken.z + 1;
1556       zStmt = sqlite3MPrintf(db,
1557           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1558       );
1559     }
1560 
1561     /* A slot for the record has already been allocated in the
1562     ** SQLITE_MASTER table.  We just need to update that slot with all
1563     ** the information we've collected.  The rowid for the preallocated
1564     ** slot is the 2nd item on the stack.  The top of the stack is the
1565     ** root page for the new table (or a 0 if this is a view).
1566     */
1567     sqlite3NestedParse(pParse,
1568       "UPDATE %Q.%s "
1569          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1570        "WHERE rowid=#%d",
1571       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1572       zType,
1573       p->zName,
1574       p->zName,
1575       pParse->regRoot,
1576       zStmt,
1577       pParse->regRowid
1578     );
1579     sqlite3DbFree(db, zStmt);
1580     sqlite3ChangeCookie(pParse, iDb);
1581 
1582 #ifndef SQLITE_OMIT_AUTOINCREMENT
1583     /* Check to see if we need to create an sqlite_sequence table for
1584     ** keeping track of autoincrement keys.
1585     */
1586     if( p->autoInc ){
1587       Db *pDb = &db->aDb[iDb];
1588       if( pDb->pSchema->pSeqTab==0 ){
1589         sqlite3NestedParse(pParse,
1590           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1591           pDb->zName
1592         );
1593       }
1594     }
1595 #endif
1596 
1597     /* Reparse everything to update our internal data structures */
1598     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1599         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1600   }
1601 
1602 
1603   /* Add the table to the in-memory representation of the database.
1604   */
1605   if( db->init.busy && pParse->nErr==0 ){
1606     Table *pOld;
1607     FKey *pFKey;
1608     Schema *pSchema = p->pSchema;
1609     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
1610     if( pOld ){
1611       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1612       db->mallocFailed = 1;
1613       return;
1614     }
1615 #ifndef SQLITE_OMIT_FOREIGN_KEY
1616     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
1617       void *data;
1618       int nTo = strlen(pFKey->zTo) + 1;
1619       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
1620       data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
1621       if( data==(void *)pFKey ){
1622         db->mallocFailed = 1;
1623       }
1624     }
1625 #endif
1626     pParse->pNewTable = 0;
1627     db->nTable++;
1628     db->flags |= SQLITE_InternChanges;
1629 
1630 #ifndef SQLITE_OMIT_ALTERTABLE
1631     if( !p->pSelect ){
1632       const char *zName = (const char *)pParse->sNameToken.z;
1633       int nName;
1634       assert( !pSelect && pCons && pEnd );
1635       if( pCons->z==0 ){
1636         pCons = pEnd;
1637       }
1638       nName = (const char *)pCons->z - zName;
1639       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1640     }
1641 #endif
1642   }
1643 }
1644 
1645 #ifndef SQLITE_OMIT_VIEW
1646 /*
1647 ** The parser calls this routine in order to create a new VIEW
1648 */
1649 void sqlite3CreateView(
1650   Parse *pParse,     /* The parsing context */
1651   Token *pBegin,     /* The CREATE token that begins the statement */
1652   Token *pName1,     /* The token that holds the name of the view */
1653   Token *pName2,     /* The token that holds the name of the view */
1654   Select *pSelect,   /* A SELECT statement that will become the new view */
1655   int isTemp,        /* TRUE for a TEMPORARY view */
1656   int noErr          /* Suppress error messages if VIEW already exists */
1657 ){
1658   Table *p;
1659   int n;
1660   const unsigned char *z;
1661   Token sEnd;
1662   DbFixer sFix;
1663   Token *pName;
1664   int iDb;
1665   sqlite3 *db = pParse->db;
1666 
1667   if( pParse->nVar>0 ){
1668     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1669     sqlite3SelectDelete(db, pSelect);
1670     return;
1671   }
1672   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1673   p = pParse->pNewTable;
1674   if( p==0 || pParse->nErr ){
1675     sqlite3SelectDelete(db, pSelect);
1676     return;
1677   }
1678   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1679   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1680   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1681     && sqlite3FixSelect(&sFix, pSelect)
1682   ){
1683     sqlite3SelectDelete(db, pSelect);
1684     return;
1685   }
1686 
1687   /* Make a copy of the entire SELECT statement that defines the view.
1688   ** This will force all the Expr.token.z values to be dynamically
1689   ** allocated rather than point to the input string - which means that
1690   ** they will persist after the current sqlite3_exec() call returns.
1691   */
1692   p->pSelect = sqlite3SelectDup(db, pSelect);
1693   sqlite3SelectDelete(db, pSelect);
1694   if( db->mallocFailed ){
1695     return;
1696   }
1697   if( !db->init.busy ){
1698     sqlite3ViewGetColumnNames(pParse, p);
1699   }
1700 
1701   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1702   ** the end.
1703   */
1704   sEnd = pParse->sLastToken;
1705   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1706     sEnd.z += sEnd.n;
1707   }
1708   sEnd.n = 0;
1709   n = sEnd.z - pBegin->z;
1710   z = (const unsigned char*)pBegin->z;
1711   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1712   sEnd.z = &z[n-1];
1713   sEnd.n = 1;
1714 
1715   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1716   sqlite3EndTable(pParse, 0, &sEnd, 0);
1717   return;
1718 }
1719 #endif /* SQLITE_OMIT_VIEW */
1720 
1721 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1722 /*
1723 ** The Table structure pTable is really a VIEW.  Fill in the names of
1724 ** the columns of the view in the pTable structure.  Return the number
1725 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1726 */
1727 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1728   Table *pSelTab;   /* A fake table from which we get the result set */
1729   Select *pSel;     /* Copy of the SELECT that implements the view */
1730   int nErr = 0;     /* Number of errors encountered */
1731   int n;            /* Temporarily holds the number of cursors assigned */
1732   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1733   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1734 
1735   assert( pTable );
1736 
1737 #ifndef SQLITE_OMIT_VIRTUALTABLE
1738   if( sqlite3VtabCallConnect(pParse, pTable) ){
1739     return SQLITE_ERROR;
1740   }
1741   if( IsVirtual(pTable) ) return 0;
1742 #endif
1743 
1744 #ifndef SQLITE_OMIT_VIEW
1745   /* A positive nCol means the columns names for this view are
1746   ** already known.
1747   */
1748   if( pTable->nCol>0 ) return 0;
1749 
1750   /* A negative nCol is a special marker meaning that we are currently
1751   ** trying to compute the column names.  If we enter this routine with
1752   ** a negative nCol, it means two or more views form a loop, like this:
1753   **
1754   **     CREATE VIEW one AS SELECT * FROM two;
1755   **     CREATE VIEW two AS SELECT * FROM one;
1756   **
1757   ** Actually, this error is caught previously and so the following test
1758   ** should always fail.  But we will leave it in place just to be safe.
1759   */
1760   if( pTable->nCol<0 ){
1761     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1762     return 1;
1763   }
1764   assert( pTable->nCol>=0 );
1765 
1766   /* If we get this far, it means we need to compute the table names.
1767   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1768   ** "*" elements in the results set of the view and will assign cursors
1769   ** to the elements of the FROM clause.  But we do not want these changes
1770   ** to be permanent.  So the computation is done on a copy of the SELECT
1771   ** statement that defines the view.
1772   */
1773   assert( pTable->pSelect );
1774   pSel = sqlite3SelectDup(db, pTable->pSelect);
1775   if( pSel ){
1776     n = pParse->nTab;
1777     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1778     pTable->nCol = -1;
1779 #ifndef SQLITE_OMIT_AUTHORIZATION
1780     xAuth = db->xAuth;
1781     db->xAuth = 0;
1782     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
1783     db->xAuth = xAuth;
1784 #else
1785     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
1786 #endif
1787     pParse->nTab = n;
1788     if( pSelTab ){
1789       assert( pTable->aCol==0 );
1790       pTable->nCol = pSelTab->nCol;
1791       pTable->aCol = pSelTab->aCol;
1792       pSelTab->nCol = 0;
1793       pSelTab->aCol = 0;
1794       sqlite3DeleteTable(pSelTab);
1795       pTable->pSchema->flags |= DB_UnresetViews;
1796     }else{
1797       pTable->nCol = 0;
1798       nErr++;
1799     }
1800     sqlite3SelectDelete(db, pSel);
1801   } else {
1802     nErr++;
1803   }
1804 #endif /* SQLITE_OMIT_VIEW */
1805   return nErr;
1806 }
1807 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1808 
1809 #ifndef SQLITE_OMIT_VIEW
1810 /*
1811 ** Clear the column names from every VIEW in database idx.
1812 */
1813 static void sqliteViewResetAll(sqlite3 *db, int idx){
1814   HashElem *i;
1815   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1816   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1817     Table *pTab = sqliteHashData(i);
1818     if( pTab->pSelect ){
1819       sqliteResetColumnNames(pTab);
1820     }
1821   }
1822   DbClearProperty(db, idx, DB_UnresetViews);
1823 }
1824 #else
1825 # define sqliteViewResetAll(A,B)
1826 #endif /* SQLITE_OMIT_VIEW */
1827 
1828 /*
1829 ** This function is called by the VDBE to adjust the internal schema
1830 ** used by SQLite when the btree layer moves a table root page. The
1831 ** root-page of a table or index in database iDb has changed from iFrom
1832 ** to iTo.
1833 **
1834 ** Ticket #1728:  The symbol table might still contain information
1835 ** on tables and/or indices that are the process of being deleted.
1836 ** If you are unlucky, one of those deleted indices or tables might
1837 ** have the same rootpage number as the real table or index that is
1838 ** being moved.  So we cannot stop searching after the first match
1839 ** because the first match might be for one of the deleted indices
1840 ** or tables and not the table/index that is actually being moved.
1841 ** We must continue looping until all tables and indices with
1842 ** rootpage==iFrom have been converted to have a rootpage of iTo
1843 ** in order to be certain that we got the right one.
1844 */
1845 #ifndef SQLITE_OMIT_AUTOVACUUM
1846 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1847   HashElem *pElem;
1848   Hash *pHash;
1849 
1850   pHash = &pDb->pSchema->tblHash;
1851   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1852     Table *pTab = sqliteHashData(pElem);
1853     if( pTab->tnum==iFrom ){
1854       pTab->tnum = iTo;
1855     }
1856   }
1857   pHash = &pDb->pSchema->idxHash;
1858   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1859     Index *pIdx = sqliteHashData(pElem);
1860     if( pIdx->tnum==iFrom ){
1861       pIdx->tnum = iTo;
1862     }
1863   }
1864 }
1865 #endif
1866 
1867 /*
1868 ** Write code to erase the table with root-page iTable from database iDb.
1869 ** Also write code to modify the sqlite_master table and internal schema
1870 ** if a root-page of another table is moved by the btree-layer whilst
1871 ** erasing iTable (this can happen with an auto-vacuum database).
1872 */
1873 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1874   Vdbe *v = sqlite3GetVdbe(pParse);
1875   int r1 = sqlite3GetTempReg(pParse);
1876   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1877 #ifndef SQLITE_OMIT_AUTOVACUUM
1878   /* OP_Destroy stores an in integer r1. If this integer
1879   ** is non-zero, then it is the root page number of a table moved to
1880   ** location iTable. The following code modifies the sqlite_master table to
1881   ** reflect this.
1882   **
1883   ** The "#%d" in the SQL is a special constant that means whatever value
1884   ** is on the top of the stack.  See sqlite3RegisterExpr().
1885   */
1886   sqlite3NestedParse(pParse,
1887      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1888      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1889 #endif
1890   sqlite3ReleaseTempReg(pParse, r1);
1891 }
1892 
1893 /*
1894 ** Write VDBE code to erase table pTab and all associated indices on disk.
1895 ** Code to update the sqlite_master tables and internal schema definitions
1896 ** in case a root-page belonging to another table is moved by the btree layer
1897 ** is also added (this can happen with an auto-vacuum database).
1898 */
1899 static void destroyTable(Parse *pParse, Table *pTab){
1900 #ifdef SQLITE_OMIT_AUTOVACUUM
1901   Index *pIdx;
1902   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1903   destroyRootPage(pParse, pTab->tnum, iDb);
1904   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1905     destroyRootPage(pParse, pIdx->tnum, iDb);
1906   }
1907 #else
1908   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1909   ** is not defined), then it is important to call OP_Destroy on the
1910   ** table and index root-pages in order, starting with the numerically
1911   ** largest root-page number. This guarantees that none of the root-pages
1912   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1913   ** following were coded:
1914   **
1915   ** OP_Destroy 4 0
1916   ** ...
1917   ** OP_Destroy 5 0
1918   **
1919   ** and root page 5 happened to be the largest root-page number in the
1920   ** database, then root page 5 would be moved to page 4 by the
1921   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1922   ** a free-list page.
1923   */
1924   int iTab = pTab->tnum;
1925   int iDestroyed = 0;
1926 
1927   while( 1 ){
1928     Index *pIdx;
1929     int iLargest = 0;
1930 
1931     if( iDestroyed==0 || iTab<iDestroyed ){
1932       iLargest = iTab;
1933     }
1934     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1935       int iIdx = pIdx->tnum;
1936       assert( pIdx->pSchema==pTab->pSchema );
1937       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1938         iLargest = iIdx;
1939       }
1940     }
1941     if( iLargest==0 ){
1942       return;
1943     }else{
1944       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1945       destroyRootPage(pParse, iLargest, iDb);
1946       iDestroyed = iLargest;
1947     }
1948   }
1949 #endif
1950 }
1951 
1952 /*
1953 ** This routine is called to do the work of a DROP TABLE statement.
1954 ** pName is the name of the table to be dropped.
1955 */
1956 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1957   Table *pTab;
1958   Vdbe *v;
1959   sqlite3 *db = pParse->db;
1960   int iDb;
1961 
1962   if( pParse->nErr || db->mallocFailed ){
1963     goto exit_drop_table;
1964   }
1965   assert( pName->nSrc==1 );
1966   pTab = sqlite3LocateTable(pParse, isView,
1967                             pName->a[0].zName, pName->a[0].zDatabase);
1968 
1969   if( pTab==0 ){
1970     if( noErr ){
1971       sqlite3ErrorClear(pParse);
1972     }
1973     goto exit_drop_table;
1974   }
1975   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1976   assert( iDb>=0 && iDb<db->nDb );
1977 
1978   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
1979   ** it is initialized.
1980   */
1981   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
1982     goto exit_drop_table;
1983   }
1984 #ifndef SQLITE_OMIT_AUTHORIZATION
1985   {
1986     int code;
1987     const char *zTab = SCHEMA_TABLE(iDb);
1988     const char *zDb = db->aDb[iDb].zName;
1989     const char *zArg2 = 0;
1990     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1991       goto exit_drop_table;
1992     }
1993     if( isView ){
1994       if( !OMIT_TEMPDB && iDb==1 ){
1995         code = SQLITE_DROP_TEMP_VIEW;
1996       }else{
1997         code = SQLITE_DROP_VIEW;
1998       }
1999 #ifndef SQLITE_OMIT_VIRTUALTABLE
2000     }else if( IsVirtual(pTab) ){
2001       code = SQLITE_DROP_VTABLE;
2002       zArg2 = pTab->pMod->zName;
2003 #endif
2004     }else{
2005       if( !OMIT_TEMPDB && iDb==1 ){
2006         code = SQLITE_DROP_TEMP_TABLE;
2007       }else{
2008         code = SQLITE_DROP_TABLE;
2009       }
2010     }
2011     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2012       goto exit_drop_table;
2013     }
2014     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2015       goto exit_drop_table;
2016     }
2017   }
2018 #endif
2019   if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
2020     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2021     goto exit_drop_table;
2022   }
2023 
2024 #ifndef SQLITE_OMIT_VIEW
2025   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2026   ** on a table.
2027   */
2028   if( isView && pTab->pSelect==0 ){
2029     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2030     goto exit_drop_table;
2031   }
2032   if( !isView && pTab->pSelect ){
2033     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2034     goto exit_drop_table;
2035   }
2036 #endif
2037 
2038   /* Generate code to remove the table from the master table
2039   ** on disk.
2040   */
2041   v = sqlite3GetVdbe(pParse);
2042   if( v ){
2043     Trigger *pTrigger;
2044     Db *pDb = &db->aDb[iDb];
2045     sqlite3BeginWriteOperation(pParse, 1, iDb);
2046 
2047 #ifndef SQLITE_OMIT_VIRTUALTABLE
2048     if( IsVirtual(pTab) ){
2049       Vdbe *v = sqlite3GetVdbe(pParse);
2050       if( v ){
2051         sqlite3VdbeAddOp0(v, OP_VBegin);
2052       }
2053     }
2054 #endif
2055 
2056     /* Drop all triggers associated with the table being dropped. Code
2057     ** is generated to remove entries from sqlite_master and/or
2058     ** sqlite_temp_master if required.
2059     */
2060     pTrigger = pTab->pTrigger;
2061     while( pTrigger ){
2062       assert( pTrigger->pSchema==pTab->pSchema ||
2063           pTrigger->pSchema==db->aDb[1].pSchema );
2064       sqlite3DropTriggerPtr(pParse, pTrigger);
2065       pTrigger = pTrigger->pNext;
2066     }
2067 
2068 #ifndef SQLITE_OMIT_AUTOINCREMENT
2069     /* Remove any entries of the sqlite_sequence table associated with
2070     ** the table being dropped. This is done before the table is dropped
2071     ** at the btree level, in case the sqlite_sequence table needs to
2072     ** move as a result of the drop (can happen in auto-vacuum mode).
2073     */
2074     if( pTab->autoInc ){
2075       sqlite3NestedParse(pParse,
2076         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2077         pDb->zName, pTab->zName
2078       );
2079     }
2080 #endif
2081 
2082     /* Drop all SQLITE_MASTER table and index entries that refer to the
2083     ** table. The program name loops through the master table and deletes
2084     ** every row that refers to a table of the same name as the one being
2085     ** dropped. Triggers are handled seperately because a trigger can be
2086     ** created in the temp database that refers to a table in another
2087     ** database.
2088     */
2089     sqlite3NestedParse(pParse,
2090         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2091         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2092 
2093     /* Drop any statistics from the sqlite_stat1 table, if it exists */
2094     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2095       sqlite3NestedParse(pParse,
2096         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2097       );
2098     }
2099 
2100     if( !isView && !IsVirtual(pTab) ){
2101       destroyTable(pParse, pTab);
2102     }
2103 
2104     /* Remove the table entry from SQLite's internal schema and modify
2105     ** the schema cookie.
2106     */
2107     if( IsVirtual(pTab) ){
2108       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2109     }
2110     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2111     sqlite3ChangeCookie(pParse, iDb);
2112   }
2113   sqliteViewResetAll(db, iDb);
2114 
2115 exit_drop_table:
2116   sqlite3SrcListDelete(db, pName);
2117 }
2118 
2119 /*
2120 ** This routine is called to create a new foreign key on the table
2121 ** currently under construction.  pFromCol determines which columns
2122 ** in the current table point to the foreign key.  If pFromCol==0 then
2123 ** connect the key to the last column inserted.  pTo is the name of
2124 ** the table referred to.  pToCol is a list of tables in the other
2125 ** pTo table that the foreign key points to.  flags contains all
2126 ** information about the conflict resolution algorithms specified
2127 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2128 **
2129 ** An FKey structure is created and added to the table currently
2130 ** under construction in the pParse->pNewTable field.  The new FKey
2131 ** is not linked into db->aFKey at this point - that does not happen
2132 ** until sqlite3EndTable().
2133 **
2134 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2135 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2136 */
2137 void sqlite3CreateForeignKey(
2138   Parse *pParse,       /* Parsing context */
2139   ExprList *pFromCol,  /* Columns in this table that point to other table */
2140   Token *pTo,          /* Name of the other table */
2141   ExprList *pToCol,    /* Columns in the other table */
2142   int flags            /* Conflict resolution algorithms. */
2143 ){
2144 #ifndef SQLITE_OMIT_FOREIGN_KEY
2145   FKey *pFKey = 0;
2146   Table *p = pParse->pNewTable;
2147   int nByte;
2148   int i;
2149   int nCol;
2150   char *z;
2151   sqlite3 *db;
2152 
2153   assert( pTo!=0 );
2154   db = pParse->db;
2155   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
2156   if( pFromCol==0 ){
2157     int iCol = p->nCol-1;
2158     if( iCol<0 ) goto fk_end;
2159     if( pToCol && pToCol->nExpr!=1 ){
2160       sqlite3ErrorMsg(pParse, "foreign key on %s"
2161          " should reference only one column of table %T",
2162          p->aCol[iCol].zName, pTo);
2163       goto fk_end;
2164     }
2165     nCol = 1;
2166   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2167     sqlite3ErrorMsg(pParse,
2168         "number of columns in foreign key does not match the number of "
2169         "columns in the referenced table");
2170     goto fk_end;
2171   }else{
2172     nCol = pFromCol->nExpr;
2173   }
2174   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2175   if( pToCol ){
2176     for(i=0; i<pToCol->nExpr; i++){
2177       nByte += strlen(pToCol->a[i].zName) + 1;
2178     }
2179   }
2180   pFKey = sqlite3DbMallocZero(db, nByte );
2181   if( pFKey==0 ){
2182     goto fk_end;
2183   }
2184   pFKey->pFrom = p;
2185   pFKey->pNextFrom = p->pFKey;
2186   z = (char*)&pFKey[1];
2187   pFKey->aCol = (struct sColMap*)z;
2188   z += sizeof(struct sColMap)*nCol;
2189   pFKey->zTo = z;
2190   memcpy(z, pTo->z, pTo->n);
2191   z[pTo->n] = 0;
2192   z += pTo->n+1;
2193   pFKey->pNextTo = 0;
2194   pFKey->nCol = nCol;
2195   if( pFromCol==0 ){
2196     pFKey->aCol[0].iFrom = p->nCol-1;
2197   }else{
2198     for(i=0; i<nCol; i++){
2199       int j;
2200       for(j=0; j<p->nCol; j++){
2201         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2202           pFKey->aCol[i].iFrom = j;
2203           break;
2204         }
2205       }
2206       if( j>=p->nCol ){
2207         sqlite3ErrorMsg(pParse,
2208           "unknown column \"%s\" in foreign key definition",
2209           pFromCol->a[i].zName);
2210         goto fk_end;
2211       }
2212     }
2213   }
2214   if( pToCol ){
2215     for(i=0; i<nCol; i++){
2216       int n = strlen(pToCol->a[i].zName);
2217       pFKey->aCol[i].zCol = z;
2218       memcpy(z, pToCol->a[i].zName, n);
2219       z[n] = 0;
2220       z += n+1;
2221     }
2222   }
2223   pFKey->isDeferred = 0;
2224   pFKey->deleteConf = flags & 0xff;
2225   pFKey->updateConf = (flags >> 8 ) & 0xff;
2226   pFKey->insertConf = (flags >> 16 ) & 0xff;
2227 
2228   /* Link the foreign key to the table as the last step.
2229   */
2230   p->pFKey = pFKey;
2231   pFKey = 0;
2232 
2233 fk_end:
2234   sqlite3DbFree(db, pFKey);
2235 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2236   sqlite3ExprListDelete(db, pFromCol);
2237   sqlite3ExprListDelete(db, pToCol);
2238 }
2239 
2240 /*
2241 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2242 ** clause is seen as part of a foreign key definition.  The isDeferred
2243 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2244 ** The behavior of the most recently created foreign key is adjusted
2245 ** accordingly.
2246 */
2247 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2248 #ifndef SQLITE_OMIT_FOREIGN_KEY
2249   Table *pTab;
2250   FKey *pFKey;
2251   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2252   pFKey->isDeferred = isDeferred;
2253 #endif
2254 }
2255 
2256 /*
2257 ** Generate code that will erase and refill index *pIdx.  This is
2258 ** used to initialize a newly created index or to recompute the
2259 ** content of an index in response to a REINDEX command.
2260 **
2261 ** if memRootPage is not negative, it means that the index is newly
2262 ** created.  The register specified by memRootPage contains the
2263 ** root page number of the index.  If memRootPage is negative, then
2264 ** the index already exists and must be cleared before being refilled and
2265 ** the root page number of the index is taken from pIndex->tnum.
2266 */
2267 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2268   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2269   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
2270   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
2271   int addr1;                     /* Address of top of loop */
2272   int tnum;                      /* Root page of index */
2273   Vdbe *v;                       /* Generate code into this virtual machine */
2274   KeyInfo *pKey;                 /* KeyInfo for index */
2275   int regIdxKey;                 /* Registers containing the index key */
2276   int regRecord;                 /* Register holding assemblied index record */
2277   sqlite3 *db = pParse->db;      /* The database connection */
2278   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2279 
2280 #ifndef SQLITE_OMIT_AUTHORIZATION
2281   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2282       db->aDb[iDb].zName ) ){
2283     return;
2284   }
2285 #endif
2286 
2287   /* Require a write-lock on the table to perform this operation */
2288   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2289 
2290   v = sqlite3GetVdbe(pParse);
2291   if( v==0 ) return;
2292   if( memRootPage>=0 ){
2293     tnum = memRootPage;
2294   }else{
2295     tnum = pIndex->tnum;
2296     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2297   }
2298   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2299   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2300                     (char *)pKey, P4_KEYINFO_HANDOFF);
2301   if( memRootPage>=0 ){
2302     sqlite3VdbeChangeP5(v, 1);
2303   }
2304   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2305   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2306   regRecord = sqlite3GetTempReg(pParse);
2307   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2308   if( pIndex->onError!=OE_None ){
2309     int j1, j2;
2310     int regRowid;
2311 
2312     regRowid = regIdxKey + pIndex->nColumn;
2313     j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
2314     j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
2315                            0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
2316     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
2317                     "indexed columns are not unique", P4_STATIC);
2318     sqlite3VdbeJumpHere(v, j1);
2319     sqlite3VdbeJumpHere(v, j2);
2320   }
2321   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2322   sqlite3ReleaseTempReg(pParse, regRecord);
2323   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2324   sqlite3VdbeJumpHere(v, addr1);
2325   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2326   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2327 }
2328 
2329 /*
2330 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2331 ** and pTblList is the name of the table that is to be indexed.  Both will
2332 ** be NULL for a primary key or an index that is created to satisfy a
2333 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2334 ** as the table to be indexed.  pParse->pNewTable is a table that is
2335 ** currently being constructed by a CREATE TABLE statement.
2336 **
2337 ** pList is a list of columns to be indexed.  pList will be NULL if this
2338 ** is a primary key or unique-constraint on the most recent column added
2339 ** to the table currently under construction.
2340 */
2341 void sqlite3CreateIndex(
2342   Parse *pParse,     /* All information about this parse */
2343   Token *pName1,     /* First part of index name. May be NULL */
2344   Token *pName2,     /* Second part of index name. May be NULL */
2345   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2346   ExprList *pList,   /* A list of columns to be indexed */
2347   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2348   Token *pStart,     /* The CREATE token that begins this statement */
2349   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2350   int sortOrder,     /* Sort order of primary key when pList==NULL */
2351   int ifNotExist     /* Omit error if index already exists */
2352 ){
2353   Table *pTab = 0;     /* Table to be indexed */
2354   Index *pIndex = 0;   /* The index to be created */
2355   char *zName = 0;     /* Name of the index */
2356   int nName;           /* Number of characters in zName */
2357   int i, j;
2358   Token nullId;        /* Fake token for an empty ID list */
2359   DbFixer sFix;        /* For assigning database names to pTable */
2360   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2361   sqlite3 *db = pParse->db;
2362   Db *pDb;             /* The specific table containing the indexed database */
2363   int iDb;             /* Index of the database that is being written */
2364   Token *pName = 0;    /* Unqualified name of the index to create */
2365   struct ExprList_item *pListItem; /* For looping over pList */
2366   int nCol;
2367   int nExtra = 0;
2368   char *zExtra;
2369 
2370   if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
2371     goto exit_create_index;
2372   }
2373 
2374   /*
2375   ** Find the table that is to be indexed.  Return early if not found.
2376   */
2377   if( pTblName!=0 ){
2378 
2379     /* Use the two-part index name to determine the database
2380     ** to search for the table. 'Fix' the table name to this db
2381     ** before looking up the table.
2382     */
2383     assert( pName1 && pName2 );
2384     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2385     if( iDb<0 ) goto exit_create_index;
2386 
2387 #ifndef SQLITE_OMIT_TEMPDB
2388     /* If the index name was unqualified, check if the the table
2389     ** is a temp table. If so, set the database to 1. Do not do this
2390     ** if initialising a database schema.
2391     */
2392     if( !db->init.busy ){
2393       pTab = sqlite3SrcListLookup(pParse, pTblName);
2394       if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2395         iDb = 1;
2396       }
2397     }
2398 #endif
2399 
2400     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2401         sqlite3FixSrcList(&sFix, pTblName)
2402     ){
2403       /* Because the parser constructs pTblName from a single identifier,
2404       ** sqlite3FixSrcList can never fail. */
2405       assert(0);
2406     }
2407     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2408         pTblName->a[0].zDatabase);
2409     if( !pTab ) goto exit_create_index;
2410     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2411   }else{
2412     assert( pName==0 );
2413     pTab = pParse->pNewTable;
2414     if( !pTab ) goto exit_create_index;
2415     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2416   }
2417   pDb = &db->aDb[iDb];
2418 
2419   if( pTab==0 || pParse->nErr ) goto exit_create_index;
2420   if( pTab->readOnly ){
2421     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2422     goto exit_create_index;
2423   }
2424 #ifndef SQLITE_OMIT_VIEW
2425   if( pTab->pSelect ){
2426     sqlite3ErrorMsg(pParse, "views may not be indexed");
2427     goto exit_create_index;
2428   }
2429 #endif
2430 #ifndef SQLITE_OMIT_VIRTUALTABLE
2431   if( IsVirtual(pTab) ){
2432     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2433     goto exit_create_index;
2434   }
2435 #endif
2436 
2437   /*
2438   ** Find the name of the index.  Make sure there is not already another
2439   ** index or table with the same name.
2440   **
2441   ** Exception:  If we are reading the names of permanent indices from the
2442   ** sqlite_master table (because some other process changed the schema) and
2443   ** one of the index names collides with the name of a temporary table or
2444   ** index, then we will continue to process this index.
2445   **
2446   ** If pName==0 it means that we are
2447   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2448   ** own name.
2449   */
2450   if( pName ){
2451     zName = sqlite3NameFromToken(db, pName);
2452     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2453     if( zName==0 ) goto exit_create_index;
2454     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2455       goto exit_create_index;
2456     }
2457     if( !db->init.busy ){
2458       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2459       if( sqlite3FindTable(db, zName, 0)!=0 ){
2460         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2461         goto exit_create_index;
2462       }
2463     }
2464     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2465       if( !ifNotExist ){
2466         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2467       }
2468       goto exit_create_index;
2469     }
2470   }else{
2471     int n;
2472     Index *pLoop;
2473     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2474     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2475     if( zName==0 ){
2476       goto exit_create_index;
2477     }
2478   }
2479 
2480   /* Check for authorization to create an index.
2481   */
2482 #ifndef SQLITE_OMIT_AUTHORIZATION
2483   {
2484     const char *zDb = pDb->zName;
2485     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2486       goto exit_create_index;
2487     }
2488     i = SQLITE_CREATE_INDEX;
2489     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2490     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2491       goto exit_create_index;
2492     }
2493   }
2494 #endif
2495 
2496   /* If pList==0, it means this routine was called to make a primary
2497   ** key out of the last column added to the table under construction.
2498   ** So create a fake list to simulate this.
2499   */
2500   if( pList==0 ){
2501     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
2502     nullId.n = strlen((char*)nullId.z);
2503     pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
2504     if( pList==0 ) goto exit_create_index;
2505     pList->a[0].sortOrder = sortOrder;
2506   }
2507 
2508   /* Figure out how many bytes of space are required to store explicitly
2509   ** specified collation sequence names.
2510   */
2511   for(i=0; i<pList->nExpr; i++){
2512     Expr *pExpr = pList->a[i].pExpr;
2513     if( pExpr ){
2514       nExtra += (1 + strlen(pExpr->pColl->zName));
2515     }
2516   }
2517 
2518   /*
2519   ** Allocate the index structure.
2520   */
2521   nName = strlen(zName);
2522   nCol = pList->nExpr;
2523   pIndex = sqlite3DbMallocZero(db,
2524       sizeof(Index) +              /* Index structure  */
2525       sizeof(int)*nCol +           /* Index.aiColumn   */
2526       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
2527       sizeof(char *)*nCol +        /* Index.azColl     */
2528       sizeof(u8)*nCol +            /* Index.aSortOrder */
2529       nName + 1 +                  /* Index.zName      */
2530       nExtra                       /* Collation sequence names */
2531   );
2532   if( db->mallocFailed ){
2533     goto exit_create_index;
2534   }
2535   pIndex->azColl = (char**)(&pIndex[1]);
2536   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2537   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2538   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2539   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2540   zExtra = (char *)(&pIndex->zName[nName+1]);
2541   memcpy(pIndex->zName, zName, nName+1);
2542   pIndex->pTable = pTab;
2543   pIndex->nColumn = pList->nExpr;
2544   pIndex->onError = onError;
2545   pIndex->autoIndex = pName==0;
2546   pIndex->pSchema = db->aDb[iDb].pSchema;
2547 
2548   /* Check to see if we should honor DESC requests on index columns
2549   */
2550   if( pDb->pSchema->file_format>=4 ){
2551     sortOrderMask = -1;   /* Honor DESC */
2552   }else{
2553     sortOrderMask = 0;    /* Ignore DESC */
2554   }
2555 
2556   /* Scan the names of the columns of the table to be indexed and
2557   ** load the column indices into the Index structure.  Report an error
2558   ** if any column is not found.
2559   */
2560   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2561     const char *zColName = pListItem->zName;
2562     Column *pTabCol;
2563     int requestedSortOrder;
2564     char *zColl;                   /* Collation sequence name */
2565 
2566     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2567       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2568     }
2569     if( j>=pTab->nCol ){
2570       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2571         pTab->zName, zColName);
2572       goto exit_create_index;
2573     }
2574     /* TODO:  Add a test to make sure that the same column is not named
2575     ** more than once within the same index.  Only the first instance of
2576     ** the column will ever be used by the optimizer.  Note that using the
2577     ** same column more than once cannot be an error because that would
2578     ** break backwards compatibility - it needs to be a warning.
2579     */
2580     pIndex->aiColumn[i] = j;
2581     if( pListItem->pExpr ){
2582       assert( pListItem->pExpr->pColl );
2583       zColl = zExtra;
2584       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
2585       zExtra += (strlen(zColl) + 1);
2586     }else{
2587       zColl = pTab->aCol[j].zColl;
2588       if( !zColl ){
2589         zColl = db->pDfltColl->zName;
2590       }
2591     }
2592     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
2593       goto exit_create_index;
2594     }
2595     pIndex->azColl[i] = zColl;
2596     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2597     pIndex->aSortOrder[i] = requestedSortOrder;
2598   }
2599   sqlite3DefaultRowEst(pIndex);
2600 
2601   if( pTab==pParse->pNewTable ){
2602     /* This routine has been called to create an automatic index as a
2603     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2604     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2605     ** i.e. one of:
2606     **
2607     ** CREATE TABLE t(x PRIMARY KEY, y);
2608     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2609     **
2610     ** Either way, check to see if the table already has such an index. If
2611     ** so, don't bother creating this one. This only applies to
2612     ** automatically created indices. Users can do as they wish with
2613     ** explicit indices.
2614     */
2615     Index *pIdx;
2616     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2617       int k;
2618       assert( pIdx->onError!=OE_None );
2619       assert( pIdx->autoIndex );
2620       assert( pIndex->onError!=OE_None );
2621 
2622       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2623       for(k=0; k<pIdx->nColumn; k++){
2624         const char *z1 = pIdx->azColl[k];
2625         const char *z2 = pIndex->azColl[k];
2626         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2627         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
2628         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2629       }
2630       if( k==pIdx->nColumn ){
2631         if( pIdx->onError!=pIndex->onError ){
2632           /* This constraint creates the same index as a previous
2633           ** constraint specified somewhere in the CREATE TABLE statement.
2634           ** However the ON CONFLICT clauses are different. If both this
2635           ** constraint and the previous equivalent constraint have explicit
2636           ** ON CONFLICT clauses this is an error. Otherwise, use the
2637           ** explicitly specified behaviour for the index.
2638           */
2639           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2640             sqlite3ErrorMsg(pParse,
2641                 "conflicting ON CONFLICT clauses specified", 0);
2642           }
2643           if( pIdx->onError==OE_Default ){
2644             pIdx->onError = pIndex->onError;
2645           }
2646         }
2647         goto exit_create_index;
2648       }
2649     }
2650   }
2651 
2652   /* Link the new Index structure to its table and to the other
2653   ** in-memory database structures.
2654   */
2655   if( db->init.busy ){
2656     Index *p;
2657     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2658                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
2659     if( p ){
2660       assert( p==pIndex );  /* Malloc must have failed */
2661       db->mallocFailed = 1;
2662       goto exit_create_index;
2663     }
2664     db->flags |= SQLITE_InternChanges;
2665     if( pTblName!=0 ){
2666       pIndex->tnum = db->init.newTnum;
2667     }
2668   }
2669 
2670   /* If the db->init.busy is 0 then create the index on disk.  This
2671   ** involves writing the index into the master table and filling in the
2672   ** index with the current table contents.
2673   **
2674   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2675   ** command.  db->init.busy is 1 when a database is opened and
2676   ** CREATE INDEX statements are read out of the master table.  In
2677   ** the latter case the index already exists on disk, which is why
2678   ** we don't want to recreate it.
2679   **
2680   ** If pTblName==0 it means this index is generated as a primary key
2681   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2682   ** has just been created, it contains no data and the index initialization
2683   ** step can be skipped.
2684   */
2685   else if( db->init.busy==0 ){
2686     Vdbe *v;
2687     char *zStmt;
2688     int iMem = ++pParse->nMem;
2689 
2690     v = sqlite3GetVdbe(pParse);
2691     if( v==0 ) goto exit_create_index;
2692 
2693 
2694     /* Create the rootpage for the index
2695     */
2696     sqlite3BeginWriteOperation(pParse, 1, iDb);
2697     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2698 
2699     /* Gather the complete text of the CREATE INDEX statement into
2700     ** the zStmt variable
2701     */
2702     if( pStart && pEnd ){
2703       /* A named index with an explicit CREATE INDEX statement */
2704       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2705         onError==OE_None ? "" : " UNIQUE",
2706         pEnd->z - pName->z + 1,
2707         pName->z);
2708     }else{
2709       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2710       /* zStmt = sqlite3MPrintf(""); */
2711       zStmt = 0;
2712     }
2713 
2714     /* Add an entry in sqlite_master for this index
2715     */
2716     sqlite3NestedParse(pParse,
2717         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2718         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2719         pIndex->zName,
2720         pTab->zName,
2721         iMem,
2722         zStmt
2723     );
2724     sqlite3DbFree(db, zStmt);
2725 
2726     /* Fill the index with data and reparse the schema. Code an OP_Expire
2727     ** to invalidate all pre-compiled statements.
2728     */
2729     if( pTblName ){
2730       sqlite3RefillIndex(pParse, pIndex, iMem);
2731       sqlite3ChangeCookie(pParse, iDb);
2732       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2733          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
2734       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2735     }
2736   }
2737 
2738   /* When adding an index to the list of indices for a table, make
2739   ** sure all indices labeled OE_Replace come after all those labeled
2740   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
2741   ** and INSERT.
2742   */
2743   if( db->init.busy || pTblName==0 ){
2744     if( onError!=OE_Replace || pTab->pIndex==0
2745          || pTab->pIndex->onError==OE_Replace){
2746       pIndex->pNext = pTab->pIndex;
2747       pTab->pIndex = pIndex;
2748     }else{
2749       Index *pOther = pTab->pIndex;
2750       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2751         pOther = pOther->pNext;
2752       }
2753       pIndex->pNext = pOther->pNext;
2754       pOther->pNext = pIndex;
2755     }
2756     pIndex = 0;
2757   }
2758 
2759   /* Clean up before exiting */
2760 exit_create_index:
2761   if( pIndex ){
2762     freeIndex(pIndex);
2763   }
2764   sqlite3ExprListDelete(db, pList);
2765   sqlite3SrcListDelete(db, pTblName);
2766   sqlite3DbFree(db, zName);
2767   return;
2768 }
2769 
2770 /*
2771 ** Generate code to make sure the file format number is at least minFormat.
2772 ** The generated code will increase the file format number if necessary.
2773 */
2774 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
2775   Vdbe *v;
2776   v = sqlite3GetVdbe(pParse);
2777   if( v ){
2778     int r1 = sqlite3GetTempReg(pParse);
2779     int r2 = sqlite3GetTempReg(pParse);
2780     int j1;
2781     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
2782     sqlite3VdbeUsesBtree(v, iDb);
2783     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
2784     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
2785     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
2786     sqlite3VdbeJumpHere(v, j1);
2787     sqlite3ReleaseTempReg(pParse, r1);
2788     sqlite3ReleaseTempReg(pParse, r2);
2789   }
2790 }
2791 
2792 /*
2793 ** Fill the Index.aiRowEst[] array with default information - information
2794 ** to be used when we have not run the ANALYZE command.
2795 **
2796 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2797 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2798 ** number of rows in the table that match any particular value of the
2799 ** first column of the index.  aiRowEst[2] is an estimate of the number
2800 ** of rows that match any particular combiniation of the first 2 columns
2801 ** of the index.  And so forth.  It must always be the case that
2802 *
2803 **           aiRowEst[N]<=aiRowEst[N-1]
2804 **           aiRowEst[N]>=1
2805 **
2806 ** Apart from that, we have little to go on besides intuition as to
2807 ** how aiRowEst[] should be initialized.  The numbers generated here
2808 ** are based on typical values found in actual indices.
2809 */
2810 void sqlite3DefaultRowEst(Index *pIdx){
2811   unsigned *a = pIdx->aiRowEst;
2812   int i;
2813   assert( a!=0 );
2814   a[0] = 1000000;
2815   for(i=pIdx->nColumn; i>=5; i--){
2816     a[i] = 5;
2817   }
2818   while( i>=1 ){
2819     a[i] = 11 - i;
2820     i--;
2821   }
2822   if( pIdx->onError!=OE_None ){
2823     a[pIdx->nColumn] = 1;
2824   }
2825 }
2826 
2827 /*
2828 ** This routine will drop an existing named index.  This routine
2829 ** implements the DROP INDEX statement.
2830 */
2831 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2832   Index *pIndex;
2833   Vdbe *v;
2834   sqlite3 *db = pParse->db;
2835   int iDb;
2836 
2837   if( pParse->nErr || db->mallocFailed ){
2838     goto exit_drop_index;
2839   }
2840   assert( pName->nSrc==1 );
2841   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2842     goto exit_drop_index;
2843   }
2844   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2845   if( pIndex==0 ){
2846     if( !ifExists ){
2847       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2848     }
2849     pParse->checkSchema = 1;
2850     goto exit_drop_index;
2851   }
2852   if( pIndex->autoIndex ){
2853     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2854       "or PRIMARY KEY constraint cannot be dropped", 0);
2855     goto exit_drop_index;
2856   }
2857   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2858 #ifndef SQLITE_OMIT_AUTHORIZATION
2859   {
2860     int code = SQLITE_DROP_INDEX;
2861     Table *pTab = pIndex->pTable;
2862     const char *zDb = db->aDb[iDb].zName;
2863     const char *zTab = SCHEMA_TABLE(iDb);
2864     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2865       goto exit_drop_index;
2866     }
2867     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2868     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2869       goto exit_drop_index;
2870     }
2871   }
2872 #endif
2873 
2874   /* Generate code to remove the index and from the master table */
2875   v = sqlite3GetVdbe(pParse);
2876   if( v ){
2877     sqlite3BeginWriteOperation(pParse, 1, iDb);
2878     sqlite3NestedParse(pParse,
2879        "DELETE FROM %Q.%s WHERE name=%Q",
2880        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2881        pIndex->zName
2882     );
2883     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2884       sqlite3NestedParse(pParse,
2885         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2886         db->aDb[iDb].zName, pIndex->zName
2887       );
2888     }
2889     sqlite3ChangeCookie(pParse, iDb);
2890     destroyRootPage(pParse, pIndex->tnum, iDb);
2891     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2892   }
2893 
2894 exit_drop_index:
2895   sqlite3SrcListDelete(db, pName);
2896 }
2897 
2898 /*
2899 ** pArray is a pointer to an array of objects.  Each object in the
2900 ** array is szEntry bytes in size.  This routine allocates a new
2901 ** object on the end of the array.
2902 **
2903 ** *pnEntry is the number of entries already in use.  *pnAlloc is
2904 ** the previously allocated size of the array.  initSize is the
2905 ** suggested initial array size allocation.
2906 **
2907 ** The index of the new entry is returned in *pIdx.
2908 **
2909 ** This routine returns a pointer to the array of objects.  This
2910 ** might be the same as the pArray parameter or it might be a different
2911 ** pointer if the array was resized.
2912 */
2913 void *sqlite3ArrayAllocate(
2914   sqlite3 *db,      /* Connection to notify of malloc failures */
2915   void *pArray,     /* Array of objects.  Might be reallocated */
2916   int szEntry,      /* Size of each object in the array */
2917   int initSize,     /* Suggested initial allocation, in elements */
2918   int *pnEntry,     /* Number of objects currently in use */
2919   int *pnAlloc,     /* Current size of the allocation, in elements */
2920   int *pIdx         /* Write the index of a new slot here */
2921 ){
2922   char *z;
2923   if( *pnEntry >= *pnAlloc ){
2924     void *pNew;
2925     int newSize;
2926     newSize = (*pnAlloc)*2 + initSize;
2927     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
2928     if( pNew==0 ){
2929       *pIdx = -1;
2930       return pArray;
2931     }
2932     *pnAlloc = newSize;
2933     pArray = pNew;
2934   }
2935   z = (char*)pArray;
2936   memset(&z[*pnEntry * szEntry], 0, szEntry);
2937   *pIdx = *pnEntry;
2938   ++*pnEntry;
2939   return pArray;
2940 }
2941 
2942 /*
2943 ** Append a new element to the given IdList.  Create a new IdList if
2944 ** need be.
2945 **
2946 ** A new IdList is returned, or NULL if malloc() fails.
2947 */
2948 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
2949   int i;
2950   if( pList==0 ){
2951     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
2952     if( pList==0 ) return 0;
2953     pList->nAlloc = 0;
2954   }
2955   pList->a = sqlite3ArrayAllocate(
2956       db,
2957       pList->a,
2958       sizeof(pList->a[0]),
2959       5,
2960       &pList->nId,
2961       &pList->nAlloc,
2962       &i
2963   );
2964   if( i<0 ){
2965     sqlite3IdListDelete(db, pList);
2966     return 0;
2967   }
2968   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
2969   return pList;
2970 }
2971 
2972 /*
2973 ** Delete an IdList.
2974 */
2975 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
2976   int i;
2977   if( pList==0 ) return;
2978   for(i=0; i<pList->nId; i++){
2979     sqlite3DbFree(db, pList->a[i].zName);
2980   }
2981   sqlite3DbFree(db, pList->a);
2982   sqlite3DbFree(db, pList);
2983 }
2984 
2985 /*
2986 ** Return the index in pList of the identifier named zId.  Return -1
2987 ** if not found.
2988 */
2989 int sqlite3IdListIndex(IdList *pList, const char *zName){
2990   int i;
2991   if( pList==0 ) return -1;
2992   for(i=0; i<pList->nId; i++){
2993     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
2994   }
2995   return -1;
2996 }
2997 
2998 /*
2999 ** Append a new table name to the given SrcList.  Create a new SrcList if
3000 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
3001 **
3002 ** A new SrcList is returned, or NULL if malloc() fails.
3003 **
3004 ** If pDatabase is not null, it means that the table has an optional
3005 ** database name prefix.  Like this:  "database.table".  The pDatabase
3006 ** points to the table name and the pTable points to the database name.
3007 ** The SrcList.a[].zName field is filled with the table name which might
3008 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3009 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3010 ** or with NULL if no database is specified.
3011 **
3012 ** In other words, if call like this:
3013 **
3014 **         sqlite3SrcListAppend(D,A,B,0);
3015 **
3016 ** Then B is a table name and the database name is unspecified.  If called
3017 ** like this:
3018 **
3019 **         sqlite3SrcListAppend(D,A,B,C);
3020 **
3021 ** Then C is the table name and B is the database name.
3022 */
3023 SrcList *sqlite3SrcListAppend(
3024   sqlite3 *db,        /* Connection to notify of malloc failures */
3025   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3026   Token *pTable,      /* Table to append */
3027   Token *pDatabase    /* Database of the table */
3028 ){
3029   struct SrcList_item *pItem;
3030   if( pList==0 ){
3031     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3032     if( pList==0 ) return 0;
3033     pList->nAlloc = 1;
3034   }
3035   if( pList->nSrc>=pList->nAlloc ){
3036     SrcList *pNew;
3037     pList->nAlloc *= 2;
3038     pNew = sqlite3DbRealloc(db, pList,
3039                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
3040     if( pNew==0 ){
3041       sqlite3SrcListDelete(db, pList);
3042       return 0;
3043     }
3044     pList = pNew;
3045   }
3046   pItem = &pList->a[pList->nSrc];
3047   memset(pItem, 0, sizeof(pList->a[0]));
3048   if( pDatabase && pDatabase->z==0 ){
3049     pDatabase = 0;
3050   }
3051   if( pDatabase && pTable ){
3052     Token *pTemp = pDatabase;
3053     pDatabase = pTable;
3054     pTable = pTemp;
3055   }
3056   pItem->zName = sqlite3NameFromToken(db, pTable);
3057   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3058   pItem->iCursor = -1;
3059   pItem->isPopulated = 0;
3060   pList->nSrc++;
3061   return pList;
3062 }
3063 
3064 /*
3065 ** Assign cursors to all tables in a SrcList
3066 */
3067 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3068   int i;
3069   struct SrcList_item *pItem;
3070   assert(pList || pParse->db->mallocFailed );
3071   if( pList ){
3072     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3073       if( pItem->iCursor>=0 ) break;
3074       pItem->iCursor = pParse->nTab++;
3075       if( pItem->pSelect ){
3076         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3077       }
3078     }
3079   }
3080 }
3081 
3082 /*
3083 ** Delete an entire SrcList including all its substructure.
3084 */
3085 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3086   int i;
3087   struct SrcList_item *pItem;
3088   if( pList==0 ) return;
3089   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3090     sqlite3DbFree(db, pItem->zDatabase);
3091     sqlite3DbFree(db, pItem->zName);
3092     sqlite3DbFree(db, pItem->zAlias);
3093     sqlite3DeleteTable(pItem->pTab);
3094     sqlite3SelectDelete(db, pItem->pSelect);
3095     sqlite3ExprDelete(db, pItem->pOn);
3096     sqlite3IdListDelete(db, pItem->pUsing);
3097   }
3098   sqlite3DbFree(db, pList);
3099 }
3100 
3101 /*
3102 ** This routine is called by the parser to add a new term to the
3103 ** end of a growing FROM clause.  The "p" parameter is the part of
3104 ** the FROM clause that has already been constructed.  "p" is NULL
3105 ** if this is the first term of the FROM clause.  pTable and pDatabase
3106 ** are the name of the table and database named in the FROM clause term.
3107 ** pDatabase is NULL if the database name qualifier is missing - the
3108 ** usual case.  If the term has a alias, then pAlias points to the
3109 ** alias token.  If the term is a subquery, then pSubquery is the
3110 ** SELECT statement that the subquery encodes.  The pTable and
3111 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3112 ** parameters are the content of the ON and USING clauses.
3113 **
3114 ** Return a new SrcList which encodes is the FROM with the new
3115 ** term added.
3116 */
3117 SrcList *sqlite3SrcListAppendFromTerm(
3118   Parse *pParse,          /* Parsing context */
3119   SrcList *p,             /* The left part of the FROM clause already seen */
3120   Token *pTable,          /* Name of the table to add to the FROM clause */
3121   Token *pDatabase,       /* Name of the database containing pTable */
3122   Token *pAlias,          /* The right-hand side of the AS subexpression */
3123   Select *pSubquery,      /* A subquery used in place of a table name */
3124   Expr *pOn,              /* The ON clause of a join */
3125   IdList *pUsing          /* The USING clause of a join */
3126 ){
3127   struct SrcList_item *pItem;
3128   sqlite3 *db = pParse->db;
3129   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3130   if( p==0 || p->nSrc==0 ){
3131     sqlite3ExprDelete(db, pOn);
3132     sqlite3IdListDelete(db, pUsing);
3133     sqlite3SelectDelete(db, pSubquery);
3134     return p;
3135   }
3136   pItem = &p->a[p->nSrc-1];
3137   if( pAlias && pAlias->n ){
3138     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3139   }
3140   pItem->pSelect = pSubquery;
3141   pItem->pOn = pOn;
3142   pItem->pUsing = pUsing;
3143   return p;
3144 }
3145 
3146 /*
3147 ** When building up a FROM clause in the parser, the join operator
3148 ** is initially attached to the left operand.  But the code generator
3149 ** expects the join operator to be on the right operand.  This routine
3150 ** Shifts all join operators from left to right for an entire FROM
3151 ** clause.
3152 **
3153 ** Example: Suppose the join is like this:
3154 **
3155 **           A natural cross join B
3156 **
3157 ** The operator is "natural cross join".  The A and B operands are stored
3158 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3159 ** operator with A.  This routine shifts that operator over to B.
3160 */
3161 void sqlite3SrcListShiftJoinType(SrcList *p){
3162   if( p && p->a ){
3163     int i;
3164     for(i=p->nSrc-1; i>0; i--){
3165       p->a[i].jointype = p->a[i-1].jointype;
3166     }
3167     p->a[0].jointype = 0;
3168   }
3169 }
3170 
3171 /*
3172 ** Begin a transaction
3173 */
3174 void sqlite3BeginTransaction(Parse *pParse, int type){
3175   sqlite3 *db;
3176   Vdbe *v;
3177   int i;
3178 
3179   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3180   if( pParse->nErr || db->mallocFailed ) return;
3181   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
3182 
3183   v = sqlite3GetVdbe(pParse);
3184   if( !v ) return;
3185   if( type!=TK_DEFERRED ){
3186     for(i=0; i<db->nDb; i++){
3187       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3188       sqlite3VdbeUsesBtree(v, i);
3189     }
3190   }
3191   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3192 }
3193 
3194 /*
3195 ** Commit a transaction
3196 */
3197 void sqlite3CommitTransaction(Parse *pParse){
3198   sqlite3 *db;
3199   Vdbe *v;
3200 
3201   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3202   if( pParse->nErr || db->mallocFailed ) return;
3203   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
3204 
3205   v = sqlite3GetVdbe(pParse);
3206   if( v ){
3207     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3208   }
3209 }
3210 
3211 /*
3212 ** Rollback a transaction
3213 */
3214 void sqlite3RollbackTransaction(Parse *pParse){
3215   sqlite3 *db;
3216   Vdbe *v;
3217 
3218   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3219   if( pParse->nErr || db->mallocFailed ) return;
3220   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
3221 
3222   v = sqlite3GetVdbe(pParse);
3223   if( v ){
3224     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3225   }
3226 }
3227 
3228 /*
3229 ** Make sure the TEMP database is open and available for use.  Return
3230 ** the number of errors.  Leave any error messages in the pParse structure.
3231 */
3232 int sqlite3OpenTempDatabase(Parse *pParse){
3233   sqlite3 *db = pParse->db;
3234   if( db->aDb[1].pBt==0 && !pParse->explain ){
3235     int rc;
3236     static const int flags =
3237           SQLITE_OPEN_READWRITE |
3238           SQLITE_OPEN_CREATE |
3239           SQLITE_OPEN_EXCLUSIVE |
3240           SQLITE_OPEN_DELETEONCLOSE |
3241           SQLITE_OPEN_TEMP_DB;
3242 
3243     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
3244                                  &db->aDb[1].pBt);
3245     if( rc!=SQLITE_OK ){
3246       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3247         "file for storing temporary tables");
3248       pParse->rc = rc;
3249       return 1;
3250     }
3251     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
3252     assert( db->aDb[1].pSchema );
3253     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
3254                             db->dfltJournalMode);
3255   }
3256   return 0;
3257 }
3258 
3259 /*
3260 ** Generate VDBE code that will verify the schema cookie and start
3261 ** a read-transaction for all named database files.
3262 **
3263 ** It is important that all schema cookies be verified and all
3264 ** read transactions be started before anything else happens in
3265 ** the VDBE program.  But this routine can be called after much other
3266 ** code has been generated.  So here is what we do:
3267 **
3268 ** The first time this routine is called, we code an OP_Goto that
3269 ** will jump to a subroutine at the end of the program.  Then we
3270 ** record every database that needs its schema verified in the
3271 ** pParse->cookieMask field.  Later, after all other code has been
3272 ** generated, the subroutine that does the cookie verifications and
3273 ** starts the transactions will be coded and the OP_Goto P2 value
3274 ** will be made to point to that subroutine.  The generation of the
3275 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3276 **
3277 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3278 ** schema on any databases.  This can be used to position the OP_Goto
3279 ** early in the code, before we know if any database tables will be used.
3280 */
3281 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3282   sqlite3 *db;
3283   Vdbe *v;
3284   int mask;
3285 
3286   v = sqlite3GetVdbe(pParse);
3287   if( v==0 ) return;  /* This only happens if there was a prior error */
3288   db = pParse->db;
3289   if( pParse->cookieGoto==0 ){
3290     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3291   }
3292   if( iDb>=0 ){
3293     assert( iDb<db->nDb );
3294     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3295     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3296     mask = 1<<iDb;
3297     if( (pParse->cookieMask & mask)==0 ){
3298       pParse->cookieMask |= mask;
3299       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3300       if( !OMIT_TEMPDB && iDb==1 ){
3301         sqlite3OpenTempDatabase(pParse);
3302       }
3303     }
3304   }
3305 }
3306 
3307 /*
3308 ** Generate VDBE code that prepares for doing an operation that
3309 ** might change the database.
3310 **
3311 ** This routine starts a new transaction if we are not already within
3312 ** a transaction.  If we are already within a transaction, then a checkpoint
3313 ** is set if the setStatement parameter is true.  A checkpoint should
3314 ** be set for operations that might fail (due to a constraint) part of
3315 ** the way through and which will need to undo some writes without having to
3316 ** rollback the whole transaction.  For operations where all constraints
3317 ** can be checked before any changes are made to the database, it is never
3318 ** necessary to undo a write and the checkpoint should not be set.
3319 **
3320 ** Only database iDb and the temp database are made writable by this call.
3321 ** If iDb==0, then the main and temp databases are made writable.   If
3322 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
3323 ** specified auxiliary database and the temp database are made writable.
3324 */
3325 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3326   Vdbe *v = sqlite3GetVdbe(pParse);
3327   if( v==0 ) return;
3328   sqlite3CodeVerifySchema(pParse, iDb);
3329   pParse->writeMask |= 1<<iDb;
3330   if( setStatement && pParse->nested==0 ){
3331     sqlite3VdbeAddOp1(v, OP_Statement, iDb);
3332   }
3333   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
3334     sqlite3BeginWriteOperation(pParse, setStatement, 1);
3335   }
3336 }
3337 
3338 /*
3339 ** Check to see if pIndex uses the collating sequence pColl.  Return
3340 ** true if it does and false if it does not.
3341 */
3342 #ifndef SQLITE_OMIT_REINDEX
3343 static int collationMatch(const char *zColl, Index *pIndex){
3344   int i;
3345   for(i=0; i<pIndex->nColumn; i++){
3346     const char *z = pIndex->azColl[i];
3347     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
3348       return 1;
3349     }
3350   }
3351   return 0;
3352 }
3353 #endif
3354 
3355 /*
3356 ** Recompute all indices of pTab that use the collating sequence pColl.
3357 ** If pColl==0 then recompute all indices of pTab.
3358 */
3359 #ifndef SQLITE_OMIT_REINDEX
3360 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3361   Index *pIndex;              /* An index associated with pTab */
3362 
3363   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3364     if( zColl==0 || collationMatch(zColl, pIndex) ){
3365       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3366       sqlite3BeginWriteOperation(pParse, 0, iDb);
3367       sqlite3RefillIndex(pParse, pIndex, -1);
3368     }
3369   }
3370 }
3371 #endif
3372 
3373 /*
3374 ** Recompute all indices of all tables in all databases where the
3375 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3376 ** all indices everywhere.
3377 */
3378 #ifndef SQLITE_OMIT_REINDEX
3379 static void reindexDatabases(Parse *pParse, char const *zColl){
3380   Db *pDb;                    /* A single database */
3381   int iDb;                    /* The database index number */
3382   sqlite3 *db = pParse->db;   /* The database connection */
3383   HashElem *k;                /* For looping over tables in pDb */
3384   Table *pTab;                /* A table in the database */
3385 
3386   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3387     assert( pDb!=0 );
3388     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3389       pTab = (Table*)sqliteHashData(k);
3390       reindexTable(pParse, pTab, zColl);
3391     }
3392   }
3393 }
3394 #endif
3395 
3396 /*
3397 ** Generate code for the REINDEX command.
3398 **
3399 **        REINDEX                            -- 1
3400 **        REINDEX  <collation>               -- 2
3401 **        REINDEX  ?<database>.?<tablename>  -- 3
3402 **        REINDEX  ?<database>.?<indexname>  -- 4
3403 **
3404 ** Form 1 causes all indices in all attached databases to be rebuilt.
3405 ** Form 2 rebuilds all indices in all databases that use the named
3406 ** collating function.  Forms 3 and 4 rebuild the named index or all
3407 ** indices associated with the named table.
3408 */
3409 #ifndef SQLITE_OMIT_REINDEX
3410 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3411   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3412   char *z;                    /* Name of a table or index */
3413   const char *zDb;            /* Name of the database */
3414   Table *pTab;                /* A table in the database */
3415   Index *pIndex;              /* An index associated with pTab */
3416   int iDb;                    /* The database index number */
3417   sqlite3 *db = pParse->db;   /* The database connection */
3418   Token *pObjName;            /* Name of the table or index to be reindexed */
3419 
3420   /* Read the database schema. If an error occurs, leave an error message
3421   ** and code in pParse and return NULL. */
3422   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3423     return;
3424   }
3425 
3426   if( pName1==0 || pName1->z==0 ){
3427     reindexDatabases(pParse, 0);
3428     return;
3429   }else if( pName2==0 || pName2->z==0 ){
3430     char *zColl;
3431     assert( pName1->z );
3432     zColl = sqlite3NameFromToken(pParse->db, pName1);
3433     if( !zColl ) return;
3434     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
3435     if( pColl ){
3436       if( zColl ){
3437         reindexDatabases(pParse, zColl);
3438         sqlite3DbFree(db, zColl);
3439       }
3440       return;
3441     }
3442     sqlite3DbFree(db, zColl);
3443   }
3444   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3445   if( iDb<0 ) return;
3446   z = sqlite3NameFromToken(db, pObjName);
3447   if( z==0 ) return;
3448   zDb = db->aDb[iDb].zName;
3449   pTab = sqlite3FindTable(db, z, zDb);
3450   if( pTab ){
3451     reindexTable(pParse, pTab, 0);
3452     sqlite3DbFree(db, z);
3453     return;
3454   }
3455   pIndex = sqlite3FindIndex(db, z, zDb);
3456   sqlite3DbFree(db, z);
3457   if( pIndex ){
3458     sqlite3BeginWriteOperation(pParse, 0, iDb);
3459     sqlite3RefillIndex(pParse, pIndex, -1);
3460     return;
3461   }
3462   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3463 }
3464 #endif
3465 
3466 /*
3467 ** Return a dynamicly allocated KeyInfo structure that can be used
3468 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3469 **
3470 ** If successful, a pointer to the new structure is returned. In this case
3471 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3472 ** pointer. If an error occurs (out of memory or missing collation
3473 ** sequence), NULL is returned and the state of pParse updated to reflect
3474 ** the error.
3475 */
3476 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3477   int i;
3478   int nCol = pIdx->nColumn;
3479   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3480   sqlite3 *db = pParse->db;
3481   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3482 
3483   if( pKey ){
3484     pKey->db = pParse->db;
3485     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3486     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3487     for(i=0; i<nCol; i++){
3488       char *zColl = pIdx->azColl[i];
3489       assert( zColl );
3490       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
3491       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3492     }
3493     pKey->nField = nCol;
3494   }
3495 
3496   if( pParse->nErr ){
3497     sqlite3DbFree(db, pKey);
3498     pKey = 0;
3499   }
3500   return pKey;
3501 }
3502