1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 return; 268 } 269 pParse->nested++; 270 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 271 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 272 sqlite3RunParser(pParse, zSql, &zErrMsg); 273 sqlite3DbFree(db, zErrMsg); 274 sqlite3DbFree(db, zSql); 275 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 276 pParse->nested--; 277 } 278 279 #if SQLITE_USER_AUTHENTICATION 280 /* 281 ** Return TRUE if zTable is the name of the system table that stores the 282 ** list of users and their access credentials. 283 */ 284 int sqlite3UserAuthTable(const char *zTable){ 285 return sqlite3_stricmp(zTable, "sqlite_user")==0; 286 } 287 #endif 288 289 /* 290 ** Locate the in-memory structure that describes a particular database 291 ** table given the name of that table and (optionally) the name of the 292 ** database containing the table. Return NULL if not found. 293 ** 294 ** If zDatabase is 0, all databases are searched for the table and the 295 ** first matching table is returned. (No checking for duplicate table 296 ** names is done.) The search order is TEMP first, then MAIN, then any 297 ** auxiliary databases added using the ATTACH command. 298 ** 299 ** See also sqlite3LocateTable(). 300 */ 301 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 302 Table *p = 0; 303 int i; 304 305 /* All mutexes are required for schema access. Make sure we hold them. */ 306 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 307 #if SQLITE_USER_AUTHENTICATION 308 /* Only the admin user is allowed to know that the sqlite_user table 309 ** exists */ 310 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 311 return 0; 312 } 313 #endif 314 while(1){ 315 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 316 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 317 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 318 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 319 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 320 if( p ) return p; 321 } 322 } 323 /* Not found. If the name we were looking for was temp.sqlite_master 324 ** then change the name to sqlite_temp_master and try again. */ 325 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 326 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 327 zName = TEMP_MASTER_NAME; 328 } 329 return 0; 330 } 331 332 /* 333 ** Locate the in-memory structure that describes a particular database 334 ** table given the name of that table and (optionally) the name of the 335 ** database containing the table. Return NULL if not found. Also leave an 336 ** error message in pParse->zErrMsg. 337 ** 338 ** The difference between this routine and sqlite3FindTable() is that this 339 ** routine leaves an error message in pParse->zErrMsg where 340 ** sqlite3FindTable() does not. 341 */ 342 Table *sqlite3LocateTable( 343 Parse *pParse, /* context in which to report errors */ 344 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 345 const char *zName, /* Name of the table we are looking for */ 346 const char *zDbase /* Name of the database. Might be NULL */ 347 ){ 348 Table *p; 349 sqlite3 *db = pParse->db; 350 351 /* Read the database schema. If an error occurs, leave an error message 352 ** and code in pParse and return NULL. */ 353 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 354 && SQLITE_OK!=sqlite3ReadSchema(pParse) 355 ){ 356 return 0; 357 } 358 359 p = sqlite3FindTable(db, zName, zDbase); 360 if( p==0 ){ 361 #ifndef SQLITE_OMIT_VIRTUALTABLE 362 /* If zName is the not the name of a table in the schema created using 363 ** CREATE, then check to see if it is the name of an virtual table that 364 ** can be an eponymous virtual table. */ 365 if( pParse->disableVtab==0 ){ 366 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 367 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 368 pMod = sqlite3PragmaVtabRegister(db, zName); 369 } 370 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 371 return pMod->pEpoTab; 372 } 373 } 374 #endif 375 if( flags & LOCATE_NOERR ) return 0; 376 pParse->checkSchema = 1; 377 }else if( IsVirtual(p) && pParse->disableVtab ){ 378 p = 0; 379 } 380 381 if( p==0 ){ 382 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 383 if( zDbase ){ 384 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 385 }else{ 386 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 387 } 388 } 389 390 return p; 391 } 392 393 /* 394 ** Locate the table identified by *p. 395 ** 396 ** This is a wrapper around sqlite3LocateTable(). The difference between 397 ** sqlite3LocateTable() and this function is that this function restricts 398 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 399 ** non-NULL if it is part of a view or trigger program definition. See 400 ** sqlite3FixSrcList() for details. 401 */ 402 Table *sqlite3LocateTableItem( 403 Parse *pParse, 404 u32 flags, 405 struct SrcList_item *p 406 ){ 407 const char *zDb; 408 assert( p->pSchema==0 || p->zDatabase==0 ); 409 if( p->pSchema ){ 410 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 411 zDb = pParse->db->aDb[iDb].zDbSName; 412 }else{ 413 zDb = p->zDatabase; 414 } 415 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 416 } 417 418 /* 419 ** Locate the in-memory structure that describes 420 ** a particular index given the name of that index 421 ** and the name of the database that contains the index. 422 ** Return NULL if not found. 423 ** 424 ** If zDatabase is 0, all databases are searched for the 425 ** table and the first matching index is returned. (No checking 426 ** for duplicate index names is done.) The search order is 427 ** TEMP first, then MAIN, then any auxiliary databases added 428 ** using the ATTACH command. 429 */ 430 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 431 Index *p = 0; 432 int i; 433 /* All mutexes are required for schema access. Make sure we hold them. */ 434 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 435 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 436 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 437 Schema *pSchema = db->aDb[j].pSchema; 438 assert( pSchema ); 439 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 440 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 441 p = sqlite3HashFind(&pSchema->idxHash, zName); 442 if( p ) break; 443 } 444 return p; 445 } 446 447 /* 448 ** Reclaim the memory used by an index 449 */ 450 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 451 #ifndef SQLITE_OMIT_ANALYZE 452 sqlite3DeleteIndexSamples(db, p); 453 #endif 454 sqlite3ExprDelete(db, p->pPartIdxWhere); 455 sqlite3ExprListDelete(db, p->aColExpr); 456 sqlite3DbFree(db, p->zColAff); 457 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 458 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 459 sqlite3_free(p->aiRowEst); 460 #endif 461 sqlite3DbFree(db, p); 462 } 463 464 /* 465 ** For the index called zIdxName which is found in the database iDb, 466 ** unlike that index from its Table then remove the index from 467 ** the index hash table and free all memory structures associated 468 ** with the index. 469 */ 470 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 471 Index *pIndex; 472 Hash *pHash; 473 474 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 475 pHash = &db->aDb[iDb].pSchema->idxHash; 476 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 477 if( ALWAYS(pIndex) ){ 478 if( pIndex->pTable->pIndex==pIndex ){ 479 pIndex->pTable->pIndex = pIndex->pNext; 480 }else{ 481 Index *p; 482 /* Justification of ALWAYS(); The index must be on the list of 483 ** indices. */ 484 p = pIndex->pTable->pIndex; 485 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 486 if( ALWAYS(p && p->pNext==pIndex) ){ 487 p->pNext = pIndex->pNext; 488 } 489 } 490 sqlite3FreeIndex(db, pIndex); 491 } 492 db->mDbFlags |= DBFLAG_SchemaChange; 493 } 494 495 /* 496 ** Look through the list of open database files in db->aDb[] and if 497 ** any have been closed, remove them from the list. Reallocate the 498 ** db->aDb[] structure to a smaller size, if possible. 499 ** 500 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 501 ** are never candidates for being collapsed. 502 */ 503 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 504 int i, j; 505 for(i=j=2; i<db->nDb; i++){ 506 struct Db *pDb = &db->aDb[i]; 507 if( pDb->pBt==0 ){ 508 sqlite3DbFree(db, pDb->zDbSName); 509 pDb->zDbSName = 0; 510 continue; 511 } 512 if( j<i ){ 513 db->aDb[j] = db->aDb[i]; 514 } 515 j++; 516 } 517 db->nDb = j; 518 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 519 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 520 sqlite3DbFree(db, db->aDb); 521 db->aDb = db->aDbStatic; 522 } 523 } 524 525 /* 526 ** Reset the schema for the database at index iDb. Also reset the 527 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 528 ** Deferred resets may be run by calling with iDb<0. 529 */ 530 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 531 int i; 532 assert( iDb<db->nDb ); 533 534 if( iDb>=0 ){ 535 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 536 DbSetProperty(db, iDb, DB_ResetWanted); 537 DbSetProperty(db, 1, DB_ResetWanted); 538 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 539 } 540 541 if( db->nSchemaLock==0 ){ 542 for(i=0; i<db->nDb; i++){ 543 if( DbHasProperty(db, i, DB_ResetWanted) ){ 544 sqlite3SchemaClear(db->aDb[i].pSchema); 545 } 546 } 547 } 548 } 549 550 /* 551 ** Erase all schema information from all attached databases (including 552 ** "main" and "temp") for a single database connection. 553 */ 554 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 555 int i; 556 sqlite3BtreeEnterAll(db); 557 for(i=0; i<db->nDb; i++){ 558 Db *pDb = &db->aDb[i]; 559 if( pDb->pSchema ){ 560 if( db->nSchemaLock==0 ){ 561 sqlite3SchemaClear(pDb->pSchema); 562 }else{ 563 DbSetProperty(db, i, DB_ResetWanted); 564 } 565 } 566 } 567 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 568 sqlite3VtabUnlockList(db); 569 sqlite3BtreeLeaveAll(db); 570 if( db->nSchemaLock==0 ){ 571 sqlite3CollapseDatabaseArray(db); 572 } 573 } 574 575 /* 576 ** This routine is called when a commit occurs. 577 */ 578 void sqlite3CommitInternalChanges(sqlite3 *db){ 579 db->mDbFlags &= ~DBFLAG_SchemaChange; 580 } 581 582 /* 583 ** Delete memory allocated for the column names of a table or view (the 584 ** Table.aCol[] array). 585 */ 586 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 587 int i; 588 Column *pCol; 589 assert( pTable!=0 ); 590 if( (pCol = pTable->aCol)!=0 ){ 591 for(i=0; i<pTable->nCol; i++, pCol++){ 592 sqlite3DbFree(db, pCol->zName); 593 sqlite3ExprDelete(db, pCol->pDflt); 594 sqlite3DbFree(db, pCol->zColl); 595 } 596 sqlite3DbFree(db, pTable->aCol); 597 } 598 } 599 600 /* 601 ** Remove the memory data structures associated with the given 602 ** Table. No changes are made to disk by this routine. 603 ** 604 ** This routine just deletes the data structure. It does not unlink 605 ** the table data structure from the hash table. But it does destroy 606 ** memory structures of the indices and foreign keys associated with 607 ** the table. 608 ** 609 ** The db parameter is optional. It is needed if the Table object 610 ** contains lookaside memory. (Table objects in the schema do not use 611 ** lookaside memory, but some ephemeral Table objects do.) Or the 612 ** db parameter can be used with db->pnBytesFreed to measure the memory 613 ** used by the Table object. 614 */ 615 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 616 Index *pIndex, *pNext; 617 618 #ifdef SQLITE_DEBUG 619 /* Record the number of outstanding lookaside allocations in schema Tables 620 ** prior to doing any free() operations. Since schema Tables do not use 621 ** lookaside, this number should not change. */ 622 int nLookaside = 0; 623 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){ 624 nLookaside = sqlite3LookasideUsed(db, 0); 625 } 626 #endif 627 628 /* Delete all indices associated with this table. */ 629 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 630 pNext = pIndex->pNext; 631 assert( pIndex->pSchema==pTable->pSchema 632 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 633 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 634 char *zName = pIndex->zName; 635 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 636 &pIndex->pSchema->idxHash, zName, 0 637 ); 638 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 639 assert( pOld==pIndex || pOld==0 ); 640 } 641 sqlite3FreeIndex(db, pIndex); 642 } 643 644 /* Delete any foreign keys attached to this table. */ 645 sqlite3FkDelete(db, pTable); 646 647 /* Delete the Table structure itself. 648 */ 649 sqlite3DeleteColumnNames(db, pTable); 650 sqlite3DbFree(db, pTable->zName); 651 sqlite3DbFree(db, pTable->zColAff); 652 sqlite3SelectDelete(db, pTable->pSelect); 653 sqlite3ExprListDelete(db, pTable->pCheck); 654 #ifndef SQLITE_OMIT_VIRTUALTABLE 655 sqlite3VtabClear(db, pTable); 656 #endif 657 sqlite3DbFree(db, pTable); 658 659 /* Verify that no lookaside memory was used by schema tables */ 660 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 661 } 662 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 663 /* Do not delete the table until the reference count reaches zero. */ 664 if( !pTable ) return; 665 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 666 deleteTable(db, pTable); 667 } 668 669 670 /* 671 ** Unlink the given table from the hash tables and the delete the 672 ** table structure with all its indices and foreign keys. 673 */ 674 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 675 Table *p; 676 Db *pDb; 677 678 assert( db!=0 ); 679 assert( iDb>=0 && iDb<db->nDb ); 680 assert( zTabName ); 681 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 682 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 683 pDb = &db->aDb[iDb]; 684 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 685 sqlite3DeleteTable(db, p); 686 db->mDbFlags |= DBFLAG_SchemaChange; 687 } 688 689 /* 690 ** Given a token, return a string that consists of the text of that 691 ** token. Space to hold the returned string 692 ** is obtained from sqliteMalloc() and must be freed by the calling 693 ** function. 694 ** 695 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 696 ** surround the body of the token are removed. 697 ** 698 ** Tokens are often just pointers into the original SQL text and so 699 ** are not \000 terminated and are not persistent. The returned string 700 ** is \000 terminated and is persistent. 701 */ 702 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 703 char *zName; 704 if( pName ){ 705 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 706 sqlite3Dequote(zName); 707 }else{ 708 zName = 0; 709 } 710 return zName; 711 } 712 713 /* 714 ** Open the sqlite_master table stored in database number iDb for 715 ** writing. The table is opened using cursor 0. 716 */ 717 void sqlite3OpenMasterTable(Parse *p, int iDb){ 718 Vdbe *v = sqlite3GetVdbe(p); 719 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 720 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 721 if( p->nTab==0 ){ 722 p->nTab = 1; 723 } 724 } 725 726 /* 727 ** Parameter zName points to a nul-terminated buffer containing the name 728 ** of a database ("main", "temp" or the name of an attached db). This 729 ** function returns the index of the named database in db->aDb[], or 730 ** -1 if the named db cannot be found. 731 */ 732 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 733 int i = -1; /* Database number */ 734 if( zName ){ 735 Db *pDb; 736 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 737 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 738 /* "main" is always an acceptable alias for the primary database 739 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 740 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 741 } 742 } 743 return i; 744 } 745 746 /* 747 ** The token *pName contains the name of a database (either "main" or 748 ** "temp" or the name of an attached db). This routine returns the 749 ** index of the named database in db->aDb[], or -1 if the named db 750 ** does not exist. 751 */ 752 int sqlite3FindDb(sqlite3 *db, Token *pName){ 753 int i; /* Database number */ 754 char *zName; /* Name we are searching for */ 755 zName = sqlite3NameFromToken(db, pName); 756 i = sqlite3FindDbName(db, zName); 757 sqlite3DbFree(db, zName); 758 return i; 759 } 760 761 /* The table or view or trigger name is passed to this routine via tokens 762 ** pName1 and pName2. If the table name was fully qualified, for example: 763 ** 764 ** CREATE TABLE xxx.yyy (...); 765 ** 766 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 767 ** the table name is not fully qualified, i.e.: 768 ** 769 ** CREATE TABLE yyy(...); 770 ** 771 ** Then pName1 is set to "yyy" and pName2 is "". 772 ** 773 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 774 ** pName2) that stores the unqualified table name. The index of the 775 ** database "xxx" is returned. 776 */ 777 int sqlite3TwoPartName( 778 Parse *pParse, /* Parsing and code generating context */ 779 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 780 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 781 Token **pUnqual /* Write the unqualified object name here */ 782 ){ 783 int iDb; /* Database holding the object */ 784 sqlite3 *db = pParse->db; 785 786 assert( pName2!=0 ); 787 if( pName2->n>0 ){ 788 if( db->init.busy ) { 789 sqlite3ErrorMsg(pParse, "corrupt database"); 790 return -1; 791 } 792 *pUnqual = pName2; 793 iDb = sqlite3FindDb(db, pName1); 794 if( iDb<0 ){ 795 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 796 return -1; 797 } 798 }else{ 799 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 800 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 801 iDb = db->init.iDb; 802 *pUnqual = pName1; 803 } 804 return iDb; 805 } 806 807 /* 808 ** True if PRAGMA writable_schema is ON 809 */ 810 int sqlite3WritableSchema(sqlite3 *db){ 811 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 812 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 813 SQLITE_WriteSchema ); 814 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 815 SQLITE_Defensive ); 816 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 817 (SQLITE_WriteSchema|SQLITE_Defensive) ); 818 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 819 } 820 821 /* 822 ** This routine is used to check if the UTF-8 string zName is a legal 823 ** unqualified name for a new schema object (table, index, view or 824 ** trigger). All names are legal except those that begin with the string 825 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 826 ** is reserved for internal use. 827 */ 828 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 829 if( !pParse->db->init.busy && pParse->nested==0 830 && sqlite3WritableSchema(pParse->db)==0 831 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 832 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 833 return SQLITE_ERROR; 834 } 835 return SQLITE_OK; 836 } 837 838 /* 839 ** Return the PRIMARY KEY index of a table 840 */ 841 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 842 Index *p; 843 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 844 return p; 845 } 846 847 /* 848 ** Return the column of index pIdx that corresponds to table 849 ** column iCol. Return -1 if not found. 850 */ 851 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 852 int i; 853 for(i=0; i<pIdx->nColumn; i++){ 854 if( iCol==pIdx->aiColumn[i] ) return i; 855 } 856 return -1; 857 } 858 859 /* 860 ** Begin constructing a new table representation in memory. This is 861 ** the first of several action routines that get called in response 862 ** to a CREATE TABLE statement. In particular, this routine is called 863 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 864 ** flag is true if the table should be stored in the auxiliary database 865 ** file instead of in the main database file. This is normally the case 866 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 867 ** CREATE and TABLE. 868 ** 869 ** The new table record is initialized and put in pParse->pNewTable. 870 ** As more of the CREATE TABLE statement is parsed, additional action 871 ** routines will be called to add more information to this record. 872 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 873 ** is called to complete the construction of the new table record. 874 */ 875 void sqlite3StartTable( 876 Parse *pParse, /* Parser context */ 877 Token *pName1, /* First part of the name of the table or view */ 878 Token *pName2, /* Second part of the name of the table or view */ 879 int isTemp, /* True if this is a TEMP table */ 880 int isView, /* True if this is a VIEW */ 881 int isVirtual, /* True if this is a VIRTUAL table */ 882 int noErr /* Do nothing if table already exists */ 883 ){ 884 Table *pTable; 885 char *zName = 0; /* The name of the new table */ 886 sqlite3 *db = pParse->db; 887 Vdbe *v; 888 int iDb; /* Database number to create the table in */ 889 Token *pName; /* Unqualified name of the table to create */ 890 891 if( db->init.busy && db->init.newTnum==1 ){ 892 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 893 iDb = db->init.iDb; 894 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 895 pName = pName1; 896 }else{ 897 /* The common case */ 898 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 899 if( iDb<0 ) return; 900 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 901 /* If creating a temp table, the name may not be qualified. Unless 902 ** the database name is "temp" anyway. */ 903 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 904 return; 905 } 906 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 907 zName = sqlite3NameFromToken(db, pName); 908 if( IN_RENAME_OBJECT ){ 909 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 910 } 911 } 912 pParse->sNameToken = *pName; 913 if( zName==0 ) return; 914 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 915 goto begin_table_error; 916 } 917 if( db->init.iDb==1 ) isTemp = 1; 918 #ifndef SQLITE_OMIT_AUTHORIZATION 919 assert( isTemp==0 || isTemp==1 ); 920 assert( isView==0 || isView==1 ); 921 { 922 static const u8 aCode[] = { 923 SQLITE_CREATE_TABLE, 924 SQLITE_CREATE_TEMP_TABLE, 925 SQLITE_CREATE_VIEW, 926 SQLITE_CREATE_TEMP_VIEW 927 }; 928 char *zDb = db->aDb[iDb].zDbSName; 929 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 930 goto begin_table_error; 931 } 932 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 933 zName, 0, zDb) ){ 934 goto begin_table_error; 935 } 936 } 937 #endif 938 939 /* Make sure the new table name does not collide with an existing 940 ** index or table name in the same database. Issue an error message if 941 ** it does. The exception is if the statement being parsed was passed 942 ** to an sqlite3_declare_vtab() call. In that case only the column names 943 ** and types will be used, so there is no need to test for namespace 944 ** collisions. 945 */ 946 if( !IN_SPECIAL_PARSE ){ 947 char *zDb = db->aDb[iDb].zDbSName; 948 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 949 goto begin_table_error; 950 } 951 pTable = sqlite3FindTable(db, zName, zDb); 952 if( pTable ){ 953 if( !noErr ){ 954 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 955 }else{ 956 assert( !db->init.busy || CORRUPT_DB ); 957 sqlite3CodeVerifySchema(pParse, iDb); 958 } 959 goto begin_table_error; 960 } 961 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 962 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 963 goto begin_table_error; 964 } 965 } 966 967 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 968 if( pTable==0 ){ 969 assert( db->mallocFailed ); 970 pParse->rc = SQLITE_NOMEM_BKPT; 971 pParse->nErr++; 972 goto begin_table_error; 973 } 974 pTable->zName = zName; 975 pTable->iPKey = -1; 976 pTable->pSchema = db->aDb[iDb].pSchema; 977 pTable->nTabRef = 1; 978 #ifdef SQLITE_DEFAULT_ROWEST 979 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 980 #else 981 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 982 #endif 983 assert( pParse->pNewTable==0 ); 984 pParse->pNewTable = pTable; 985 986 /* If this is the magic sqlite_sequence table used by autoincrement, 987 ** then record a pointer to this table in the main database structure 988 ** so that INSERT can find the table easily. 989 */ 990 #ifndef SQLITE_OMIT_AUTOINCREMENT 991 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 992 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 993 pTable->pSchema->pSeqTab = pTable; 994 } 995 #endif 996 997 /* Begin generating the code that will insert the table record into 998 ** the SQLITE_MASTER table. Note in particular that we must go ahead 999 ** and allocate the record number for the table entry now. Before any 1000 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1001 ** indices to be created and the table record must come before the 1002 ** indices. Hence, the record number for the table must be allocated 1003 ** now. 1004 */ 1005 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1006 int addr1; 1007 int fileFormat; 1008 int reg1, reg2, reg3; 1009 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1010 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1011 sqlite3BeginWriteOperation(pParse, 1, iDb); 1012 1013 #ifndef SQLITE_OMIT_VIRTUALTABLE 1014 if( isVirtual ){ 1015 sqlite3VdbeAddOp0(v, OP_VBegin); 1016 } 1017 #endif 1018 1019 /* If the file format and encoding in the database have not been set, 1020 ** set them now. 1021 */ 1022 reg1 = pParse->regRowid = ++pParse->nMem; 1023 reg2 = pParse->regRoot = ++pParse->nMem; 1024 reg3 = ++pParse->nMem; 1025 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1026 sqlite3VdbeUsesBtree(v, iDb); 1027 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1028 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1029 1 : SQLITE_MAX_FILE_FORMAT; 1030 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1031 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1032 sqlite3VdbeJumpHere(v, addr1); 1033 1034 /* This just creates a place-holder record in the sqlite_master table. 1035 ** The record created does not contain anything yet. It will be replaced 1036 ** by the real entry in code generated at sqlite3EndTable(). 1037 ** 1038 ** The rowid for the new entry is left in register pParse->regRowid. 1039 ** The root page number of the new table is left in reg pParse->regRoot. 1040 ** The rowid and root page number values are needed by the code that 1041 ** sqlite3EndTable will generate. 1042 */ 1043 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1044 if( isView || isVirtual ){ 1045 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1046 }else 1047 #endif 1048 { 1049 pParse->addrCrTab = 1050 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1051 } 1052 sqlite3OpenMasterTable(pParse, iDb); 1053 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1054 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1055 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1056 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1057 sqlite3VdbeAddOp0(v, OP_Close); 1058 } 1059 1060 /* Normal (non-error) return. */ 1061 return; 1062 1063 /* If an error occurs, we jump here */ 1064 begin_table_error: 1065 sqlite3DbFree(db, zName); 1066 return; 1067 } 1068 1069 /* Set properties of a table column based on the (magical) 1070 ** name of the column. 1071 */ 1072 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1073 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1074 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1075 pCol->colFlags |= COLFLAG_HIDDEN; 1076 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1077 pTab->tabFlags |= TF_OOOHidden; 1078 } 1079 } 1080 #endif 1081 1082 1083 /* 1084 ** Add a new column to the table currently being constructed. 1085 ** 1086 ** The parser calls this routine once for each column declaration 1087 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1088 ** first to get things going. Then this routine is called for each 1089 ** column. 1090 */ 1091 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1092 Table *p; 1093 int i; 1094 char *z; 1095 char *zType; 1096 Column *pCol; 1097 sqlite3 *db = pParse->db; 1098 if( (p = pParse->pNewTable)==0 ) return; 1099 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1100 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1101 return; 1102 } 1103 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1104 if( z==0 ) return; 1105 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1106 memcpy(z, pName->z, pName->n); 1107 z[pName->n] = 0; 1108 sqlite3Dequote(z); 1109 for(i=0; i<p->nCol; i++){ 1110 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1111 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1112 sqlite3DbFree(db, z); 1113 return; 1114 } 1115 } 1116 if( (p->nCol & 0x7)==0 ){ 1117 Column *aNew; 1118 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1119 if( aNew==0 ){ 1120 sqlite3DbFree(db, z); 1121 return; 1122 } 1123 p->aCol = aNew; 1124 } 1125 pCol = &p->aCol[p->nCol]; 1126 memset(pCol, 0, sizeof(p->aCol[0])); 1127 pCol->zName = z; 1128 sqlite3ColumnPropertiesFromName(p, pCol); 1129 1130 if( pType->n==0 ){ 1131 /* If there is no type specified, columns have the default affinity 1132 ** 'BLOB' with a default size of 4 bytes. */ 1133 pCol->affinity = SQLITE_AFF_BLOB; 1134 pCol->szEst = 1; 1135 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1136 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1137 pCol->colFlags |= COLFLAG_SORTERREF; 1138 } 1139 #endif 1140 }else{ 1141 zType = z + sqlite3Strlen30(z) + 1; 1142 memcpy(zType, pType->z, pType->n); 1143 zType[pType->n] = 0; 1144 sqlite3Dequote(zType); 1145 pCol->affinity = sqlite3AffinityType(zType, pCol); 1146 pCol->colFlags |= COLFLAG_HASTYPE; 1147 } 1148 p->nCol++; 1149 pParse->constraintName.n = 0; 1150 } 1151 1152 /* 1153 ** This routine is called by the parser while in the middle of 1154 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1155 ** been seen on a column. This routine sets the notNull flag on 1156 ** the column currently under construction. 1157 */ 1158 void sqlite3AddNotNull(Parse *pParse, int onError){ 1159 Table *p; 1160 Column *pCol; 1161 p = pParse->pNewTable; 1162 if( p==0 || NEVER(p->nCol<1) ) return; 1163 pCol = &p->aCol[p->nCol-1]; 1164 pCol->notNull = (u8)onError; 1165 p->tabFlags |= TF_HasNotNull; 1166 1167 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1168 ** on this column. */ 1169 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1170 Index *pIdx; 1171 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1172 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1173 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1174 pIdx->uniqNotNull = 1; 1175 } 1176 } 1177 } 1178 } 1179 1180 /* 1181 ** Scan the column type name zType (length nType) and return the 1182 ** associated affinity type. 1183 ** 1184 ** This routine does a case-independent search of zType for the 1185 ** substrings in the following table. If one of the substrings is 1186 ** found, the corresponding affinity is returned. If zType contains 1187 ** more than one of the substrings, entries toward the top of 1188 ** the table take priority. For example, if zType is 'BLOBINT', 1189 ** SQLITE_AFF_INTEGER is returned. 1190 ** 1191 ** Substring | Affinity 1192 ** -------------------------------- 1193 ** 'INT' | SQLITE_AFF_INTEGER 1194 ** 'CHAR' | SQLITE_AFF_TEXT 1195 ** 'CLOB' | SQLITE_AFF_TEXT 1196 ** 'TEXT' | SQLITE_AFF_TEXT 1197 ** 'BLOB' | SQLITE_AFF_BLOB 1198 ** 'REAL' | SQLITE_AFF_REAL 1199 ** 'FLOA' | SQLITE_AFF_REAL 1200 ** 'DOUB' | SQLITE_AFF_REAL 1201 ** 1202 ** If none of the substrings in the above table are found, 1203 ** SQLITE_AFF_NUMERIC is returned. 1204 */ 1205 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1206 u32 h = 0; 1207 char aff = SQLITE_AFF_NUMERIC; 1208 const char *zChar = 0; 1209 1210 assert( zIn!=0 ); 1211 while( zIn[0] ){ 1212 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1213 zIn++; 1214 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1215 aff = SQLITE_AFF_TEXT; 1216 zChar = zIn; 1217 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1218 aff = SQLITE_AFF_TEXT; 1219 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1220 aff = SQLITE_AFF_TEXT; 1221 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1222 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1223 aff = SQLITE_AFF_BLOB; 1224 if( zIn[0]=='(' ) zChar = zIn; 1225 #ifndef SQLITE_OMIT_FLOATING_POINT 1226 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1227 && aff==SQLITE_AFF_NUMERIC ){ 1228 aff = SQLITE_AFF_REAL; 1229 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1230 && aff==SQLITE_AFF_NUMERIC ){ 1231 aff = SQLITE_AFF_REAL; 1232 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1233 && aff==SQLITE_AFF_NUMERIC ){ 1234 aff = SQLITE_AFF_REAL; 1235 #endif 1236 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1237 aff = SQLITE_AFF_INTEGER; 1238 break; 1239 } 1240 } 1241 1242 /* If pCol is not NULL, store an estimate of the field size. The 1243 ** estimate is scaled so that the size of an integer is 1. */ 1244 if( pCol ){ 1245 int v = 0; /* default size is approx 4 bytes */ 1246 if( aff<SQLITE_AFF_NUMERIC ){ 1247 if( zChar ){ 1248 while( zChar[0] ){ 1249 if( sqlite3Isdigit(zChar[0]) ){ 1250 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1251 sqlite3GetInt32(zChar, &v); 1252 break; 1253 } 1254 zChar++; 1255 } 1256 }else{ 1257 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1258 } 1259 } 1260 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1261 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1262 pCol->colFlags |= COLFLAG_SORTERREF; 1263 } 1264 #endif 1265 v = v/4 + 1; 1266 if( v>255 ) v = 255; 1267 pCol->szEst = v; 1268 } 1269 return aff; 1270 } 1271 1272 /* 1273 ** The expression is the default value for the most recently added column 1274 ** of the table currently under construction. 1275 ** 1276 ** Default value expressions must be constant. Raise an exception if this 1277 ** is not the case. 1278 ** 1279 ** This routine is called by the parser while in the middle of 1280 ** parsing a CREATE TABLE statement. 1281 */ 1282 void sqlite3AddDefaultValue( 1283 Parse *pParse, /* Parsing context */ 1284 Expr *pExpr, /* The parsed expression of the default value */ 1285 const char *zStart, /* Start of the default value text */ 1286 const char *zEnd /* First character past end of defaut value text */ 1287 ){ 1288 Table *p; 1289 Column *pCol; 1290 sqlite3 *db = pParse->db; 1291 p = pParse->pNewTable; 1292 if( p!=0 ){ 1293 pCol = &(p->aCol[p->nCol-1]); 1294 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1295 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1296 pCol->zName); 1297 }else{ 1298 /* A copy of pExpr is used instead of the original, as pExpr contains 1299 ** tokens that point to volatile memory. 1300 */ 1301 Expr x; 1302 sqlite3ExprDelete(db, pCol->pDflt); 1303 memset(&x, 0, sizeof(x)); 1304 x.op = TK_SPAN; 1305 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1306 x.pLeft = pExpr; 1307 x.flags = EP_Skip; 1308 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1309 sqlite3DbFree(db, x.u.zToken); 1310 } 1311 } 1312 if( IN_RENAME_OBJECT ){ 1313 sqlite3RenameExprUnmap(pParse, pExpr); 1314 } 1315 sqlite3ExprDelete(db, pExpr); 1316 } 1317 1318 /* 1319 ** Backwards Compatibility Hack: 1320 ** 1321 ** Historical versions of SQLite accepted strings as column names in 1322 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1323 ** 1324 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1325 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1326 ** 1327 ** This is goofy. But to preserve backwards compatibility we continue to 1328 ** accept it. This routine does the necessary conversion. It converts 1329 ** the expression given in its argument from a TK_STRING into a TK_ID 1330 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1331 ** If the epxression is anything other than TK_STRING, the expression is 1332 ** unchanged. 1333 */ 1334 static void sqlite3StringToId(Expr *p){ 1335 if( p->op==TK_STRING ){ 1336 p->op = TK_ID; 1337 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1338 p->pLeft->op = TK_ID; 1339 } 1340 } 1341 1342 /* 1343 ** Designate the PRIMARY KEY for the table. pList is a list of names 1344 ** of columns that form the primary key. If pList is NULL, then the 1345 ** most recently added column of the table is the primary key. 1346 ** 1347 ** A table can have at most one primary key. If the table already has 1348 ** a primary key (and this is the second primary key) then create an 1349 ** error. 1350 ** 1351 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1352 ** then we will try to use that column as the rowid. Set the Table.iPKey 1353 ** field of the table under construction to be the index of the 1354 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1355 ** no INTEGER PRIMARY KEY. 1356 ** 1357 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1358 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1359 */ 1360 void sqlite3AddPrimaryKey( 1361 Parse *pParse, /* Parsing context */ 1362 ExprList *pList, /* List of field names to be indexed */ 1363 int onError, /* What to do with a uniqueness conflict */ 1364 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1365 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1366 ){ 1367 Table *pTab = pParse->pNewTable; 1368 Column *pCol = 0; 1369 int iCol = -1, i; 1370 int nTerm; 1371 if( pTab==0 ) goto primary_key_exit; 1372 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1373 sqlite3ErrorMsg(pParse, 1374 "table \"%s\" has more than one primary key", pTab->zName); 1375 goto primary_key_exit; 1376 } 1377 pTab->tabFlags |= TF_HasPrimaryKey; 1378 if( pList==0 ){ 1379 iCol = pTab->nCol - 1; 1380 pCol = &pTab->aCol[iCol]; 1381 pCol->colFlags |= COLFLAG_PRIMKEY; 1382 nTerm = 1; 1383 }else{ 1384 nTerm = pList->nExpr; 1385 for(i=0; i<nTerm; i++){ 1386 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1387 assert( pCExpr!=0 ); 1388 sqlite3StringToId(pCExpr); 1389 if( pCExpr->op==TK_ID ){ 1390 const char *zCName = pCExpr->u.zToken; 1391 for(iCol=0; iCol<pTab->nCol; iCol++){ 1392 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1393 pCol = &pTab->aCol[iCol]; 1394 pCol->colFlags |= COLFLAG_PRIMKEY; 1395 break; 1396 } 1397 } 1398 } 1399 } 1400 } 1401 if( nTerm==1 1402 && pCol 1403 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1404 && sortOrder!=SQLITE_SO_DESC 1405 ){ 1406 if( IN_RENAME_OBJECT && pList ){ 1407 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1408 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1409 } 1410 pTab->iPKey = iCol; 1411 pTab->keyConf = (u8)onError; 1412 assert( autoInc==0 || autoInc==1 ); 1413 pTab->tabFlags |= autoInc*TF_Autoincrement; 1414 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1415 }else if( autoInc ){ 1416 #ifndef SQLITE_OMIT_AUTOINCREMENT 1417 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1418 "INTEGER PRIMARY KEY"); 1419 #endif 1420 }else{ 1421 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1422 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1423 pList = 0; 1424 } 1425 1426 primary_key_exit: 1427 sqlite3ExprListDelete(pParse->db, pList); 1428 return; 1429 } 1430 1431 /* 1432 ** Add a new CHECK constraint to the table currently under construction. 1433 */ 1434 void sqlite3AddCheckConstraint( 1435 Parse *pParse, /* Parsing context */ 1436 Expr *pCheckExpr /* The check expression */ 1437 ){ 1438 #ifndef SQLITE_OMIT_CHECK 1439 Table *pTab = pParse->pNewTable; 1440 sqlite3 *db = pParse->db; 1441 if( pTab && !IN_DECLARE_VTAB 1442 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1443 ){ 1444 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1445 if( pParse->constraintName.n ){ 1446 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1447 } 1448 }else 1449 #endif 1450 { 1451 sqlite3ExprDelete(pParse->db, pCheckExpr); 1452 } 1453 } 1454 1455 /* 1456 ** Set the collation function of the most recently parsed table column 1457 ** to the CollSeq given. 1458 */ 1459 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1460 Table *p; 1461 int i; 1462 char *zColl; /* Dequoted name of collation sequence */ 1463 sqlite3 *db; 1464 1465 if( (p = pParse->pNewTable)==0 ) return; 1466 i = p->nCol-1; 1467 db = pParse->db; 1468 zColl = sqlite3NameFromToken(db, pToken); 1469 if( !zColl ) return; 1470 1471 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1472 Index *pIdx; 1473 sqlite3DbFree(db, p->aCol[i].zColl); 1474 p->aCol[i].zColl = zColl; 1475 1476 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1477 ** then an index may have been created on this column before the 1478 ** collation type was added. Correct this if it is the case. 1479 */ 1480 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1481 assert( pIdx->nKeyCol==1 ); 1482 if( pIdx->aiColumn[0]==i ){ 1483 pIdx->azColl[0] = p->aCol[i].zColl; 1484 } 1485 } 1486 }else{ 1487 sqlite3DbFree(db, zColl); 1488 } 1489 } 1490 1491 /* 1492 ** This function returns the collation sequence for database native text 1493 ** encoding identified by the string zName, length nName. 1494 ** 1495 ** If the requested collation sequence is not available, or not available 1496 ** in the database native encoding, the collation factory is invoked to 1497 ** request it. If the collation factory does not supply such a sequence, 1498 ** and the sequence is available in another text encoding, then that is 1499 ** returned instead. 1500 ** 1501 ** If no versions of the requested collations sequence are available, or 1502 ** another error occurs, NULL is returned and an error message written into 1503 ** pParse. 1504 ** 1505 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1506 ** invokes the collation factory if the named collation cannot be found 1507 ** and generates an error message. 1508 ** 1509 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1510 */ 1511 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1512 sqlite3 *db = pParse->db; 1513 u8 enc = ENC(db); 1514 u8 initbusy = db->init.busy; 1515 CollSeq *pColl; 1516 1517 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1518 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1519 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1520 } 1521 1522 return pColl; 1523 } 1524 1525 1526 /* 1527 ** Generate code that will increment the schema cookie. 1528 ** 1529 ** The schema cookie is used to determine when the schema for the 1530 ** database changes. After each schema change, the cookie value 1531 ** changes. When a process first reads the schema it records the 1532 ** cookie. Thereafter, whenever it goes to access the database, 1533 ** it checks the cookie to make sure the schema has not changed 1534 ** since it was last read. 1535 ** 1536 ** This plan is not completely bullet-proof. It is possible for 1537 ** the schema to change multiple times and for the cookie to be 1538 ** set back to prior value. But schema changes are infrequent 1539 ** and the probability of hitting the same cookie value is only 1540 ** 1 chance in 2^32. So we're safe enough. 1541 ** 1542 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1543 ** the schema-version whenever the schema changes. 1544 */ 1545 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1546 sqlite3 *db = pParse->db; 1547 Vdbe *v = pParse->pVdbe; 1548 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1549 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1550 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1551 } 1552 1553 /* 1554 ** Measure the number of characters needed to output the given 1555 ** identifier. The number returned includes any quotes used 1556 ** but does not include the null terminator. 1557 ** 1558 ** The estimate is conservative. It might be larger that what is 1559 ** really needed. 1560 */ 1561 static int identLength(const char *z){ 1562 int n; 1563 for(n=0; *z; n++, z++){ 1564 if( *z=='"' ){ n++; } 1565 } 1566 return n + 2; 1567 } 1568 1569 /* 1570 ** The first parameter is a pointer to an output buffer. The second 1571 ** parameter is a pointer to an integer that contains the offset at 1572 ** which to write into the output buffer. This function copies the 1573 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1574 ** to the specified offset in the buffer and updates *pIdx to refer 1575 ** to the first byte after the last byte written before returning. 1576 ** 1577 ** If the string zSignedIdent consists entirely of alpha-numeric 1578 ** characters, does not begin with a digit and is not an SQL keyword, 1579 ** then it is copied to the output buffer exactly as it is. Otherwise, 1580 ** it is quoted using double-quotes. 1581 */ 1582 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1583 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1584 int i, j, needQuote; 1585 i = *pIdx; 1586 1587 for(j=0; zIdent[j]; j++){ 1588 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1589 } 1590 needQuote = sqlite3Isdigit(zIdent[0]) 1591 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1592 || zIdent[j]!=0 1593 || j==0; 1594 1595 if( needQuote ) z[i++] = '"'; 1596 for(j=0; zIdent[j]; j++){ 1597 z[i++] = zIdent[j]; 1598 if( zIdent[j]=='"' ) z[i++] = '"'; 1599 } 1600 if( needQuote ) z[i++] = '"'; 1601 z[i] = 0; 1602 *pIdx = i; 1603 } 1604 1605 /* 1606 ** Generate a CREATE TABLE statement appropriate for the given 1607 ** table. Memory to hold the text of the statement is obtained 1608 ** from sqliteMalloc() and must be freed by the calling function. 1609 */ 1610 static char *createTableStmt(sqlite3 *db, Table *p){ 1611 int i, k, n; 1612 char *zStmt; 1613 char *zSep, *zSep2, *zEnd; 1614 Column *pCol; 1615 n = 0; 1616 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1617 n += identLength(pCol->zName) + 5; 1618 } 1619 n += identLength(p->zName); 1620 if( n<50 ){ 1621 zSep = ""; 1622 zSep2 = ","; 1623 zEnd = ")"; 1624 }else{ 1625 zSep = "\n "; 1626 zSep2 = ",\n "; 1627 zEnd = "\n)"; 1628 } 1629 n += 35 + 6*p->nCol; 1630 zStmt = sqlite3DbMallocRaw(0, n); 1631 if( zStmt==0 ){ 1632 sqlite3OomFault(db); 1633 return 0; 1634 } 1635 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1636 k = sqlite3Strlen30(zStmt); 1637 identPut(zStmt, &k, p->zName); 1638 zStmt[k++] = '('; 1639 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1640 static const char * const azType[] = { 1641 /* SQLITE_AFF_BLOB */ "", 1642 /* SQLITE_AFF_TEXT */ " TEXT", 1643 /* SQLITE_AFF_NUMERIC */ " NUM", 1644 /* SQLITE_AFF_INTEGER */ " INT", 1645 /* SQLITE_AFF_REAL */ " REAL" 1646 }; 1647 int len; 1648 const char *zType; 1649 1650 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1651 k += sqlite3Strlen30(&zStmt[k]); 1652 zSep = zSep2; 1653 identPut(zStmt, &k, pCol->zName); 1654 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1655 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1656 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1657 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1658 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1659 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1660 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1661 1662 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1663 len = sqlite3Strlen30(zType); 1664 assert( pCol->affinity==SQLITE_AFF_BLOB 1665 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1666 memcpy(&zStmt[k], zType, len); 1667 k += len; 1668 assert( k<=n ); 1669 } 1670 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1671 return zStmt; 1672 } 1673 1674 /* 1675 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1676 ** on success and SQLITE_NOMEM on an OOM error. 1677 */ 1678 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1679 char *zExtra; 1680 int nByte; 1681 if( pIdx->nColumn>=N ) return SQLITE_OK; 1682 assert( pIdx->isResized==0 ); 1683 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1684 zExtra = sqlite3DbMallocZero(db, nByte); 1685 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1686 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1687 pIdx->azColl = (const char**)zExtra; 1688 zExtra += sizeof(char*)*N; 1689 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1690 pIdx->aiColumn = (i16*)zExtra; 1691 zExtra += sizeof(i16)*N; 1692 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1693 pIdx->aSortOrder = (u8*)zExtra; 1694 pIdx->nColumn = N; 1695 pIdx->isResized = 1; 1696 return SQLITE_OK; 1697 } 1698 1699 /* 1700 ** Estimate the total row width for a table. 1701 */ 1702 static void estimateTableWidth(Table *pTab){ 1703 unsigned wTable = 0; 1704 const Column *pTabCol; 1705 int i; 1706 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1707 wTable += pTabCol->szEst; 1708 } 1709 if( pTab->iPKey<0 ) wTable++; 1710 pTab->szTabRow = sqlite3LogEst(wTable*4); 1711 } 1712 1713 /* 1714 ** Estimate the average size of a row for an index. 1715 */ 1716 static void estimateIndexWidth(Index *pIdx){ 1717 unsigned wIndex = 0; 1718 int i; 1719 const Column *aCol = pIdx->pTable->aCol; 1720 for(i=0; i<pIdx->nColumn; i++){ 1721 i16 x = pIdx->aiColumn[i]; 1722 assert( x<pIdx->pTable->nCol ); 1723 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1724 } 1725 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1726 } 1727 1728 /* Return true if value x is found any of the first nCol entries of aiCol[] 1729 */ 1730 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1731 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1732 return 0; 1733 } 1734 1735 /* Recompute the colNotIdxed field of the Index. 1736 ** 1737 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1738 ** columns that are within the first 63 columns of the table. The 1739 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1740 ** of the table have a 1. 1741 ** 1742 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1743 ** to determine if the index is covering index. 1744 */ 1745 static void recomputeColumnsNotIndexed(Index *pIdx){ 1746 Bitmask m = 0; 1747 int j; 1748 for(j=pIdx->nColumn-1; j>=0; j--){ 1749 int x = pIdx->aiColumn[j]; 1750 if( x>=0 ){ 1751 testcase( x==BMS-1 ); 1752 testcase( x==BMS-2 ); 1753 if( x<BMS-1 ) m |= MASKBIT(x); 1754 } 1755 } 1756 pIdx->colNotIdxed = ~m; 1757 assert( (pIdx->colNotIdxed>>63)==1 ); 1758 } 1759 1760 /* 1761 ** This routine runs at the end of parsing a CREATE TABLE statement that 1762 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1763 ** internal schema data structures and the generated VDBE code so that they 1764 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1765 ** Changes include: 1766 ** 1767 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1768 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1769 ** into BTREE_BLOBKEY. 1770 ** (3) Bypass the creation of the sqlite_master table entry 1771 ** for the PRIMARY KEY as the primary key index is now 1772 ** identified by the sqlite_master table entry of the table itself. 1773 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1774 ** schema to the rootpage from the main table. 1775 ** (5) Add all table columns to the PRIMARY KEY Index object 1776 ** so that the PRIMARY KEY is a covering index. The surplus 1777 ** columns are part of KeyInfo.nAllField and are not used for 1778 ** sorting or lookup or uniqueness checks. 1779 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1780 ** indices with the PRIMARY KEY columns. 1781 ** 1782 ** For virtual tables, only (1) is performed. 1783 */ 1784 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1785 Index *pIdx; 1786 Index *pPk; 1787 int nPk; 1788 int i, j; 1789 sqlite3 *db = pParse->db; 1790 Vdbe *v = pParse->pVdbe; 1791 1792 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1793 */ 1794 if( !db->init.imposterTable ){ 1795 for(i=0; i<pTab->nCol; i++){ 1796 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1797 pTab->aCol[i].notNull = OE_Abort; 1798 } 1799 } 1800 } 1801 1802 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1803 ** into BTREE_BLOBKEY. 1804 */ 1805 if( pParse->addrCrTab ){ 1806 assert( v ); 1807 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1808 } 1809 1810 /* Locate the PRIMARY KEY index. Or, if this table was originally 1811 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1812 */ 1813 if( pTab->iPKey>=0 ){ 1814 ExprList *pList; 1815 Token ipkToken; 1816 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1817 pList = sqlite3ExprListAppend(pParse, 0, 1818 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1819 if( pList==0 ) return; 1820 pList->a[0].sortOrder = pParse->iPkSortOrder; 1821 assert( pParse->pNewTable==pTab ); 1822 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1823 SQLITE_IDXTYPE_PRIMARYKEY); 1824 if( db->mallocFailed || pParse->nErr ) return; 1825 pPk = sqlite3PrimaryKeyIndex(pTab); 1826 pTab->iPKey = -1; 1827 }else{ 1828 pPk = sqlite3PrimaryKeyIndex(pTab); 1829 assert( pPk!=0 ); 1830 1831 /* 1832 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1833 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1834 ** code assumes the PRIMARY KEY contains no repeated columns. 1835 */ 1836 for(i=j=1; i<pPk->nKeyCol; i++){ 1837 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1838 pPk->nColumn--; 1839 }else{ 1840 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1841 } 1842 } 1843 pPk->nKeyCol = j; 1844 } 1845 assert( pPk!=0 ); 1846 pPk->isCovering = 1; 1847 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1848 nPk = pPk->nKeyCol; 1849 1850 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1851 ** table entry. This is only required if currently generating VDBE 1852 ** code for a CREATE TABLE (not when parsing one as part of reading 1853 ** a database schema). */ 1854 if( v && pPk->tnum>0 ){ 1855 assert( db->init.busy==0 ); 1856 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1857 } 1858 1859 /* The root page of the PRIMARY KEY is the table root page */ 1860 pPk->tnum = pTab->tnum; 1861 1862 /* Update the in-memory representation of all UNIQUE indices by converting 1863 ** the final rowid column into one or more columns of the PRIMARY KEY. 1864 */ 1865 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1866 int n; 1867 if( IsPrimaryKeyIndex(pIdx) ) continue; 1868 for(i=n=0; i<nPk; i++){ 1869 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1870 } 1871 if( n==0 ){ 1872 /* This index is a superset of the primary key */ 1873 pIdx->nColumn = pIdx->nKeyCol; 1874 continue; 1875 } 1876 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1877 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1878 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1879 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1880 pIdx->azColl[j] = pPk->azColl[i]; 1881 j++; 1882 } 1883 } 1884 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1885 assert( pIdx->nColumn>=j ); 1886 } 1887 1888 /* Add all table columns to the PRIMARY KEY index 1889 */ 1890 if( nPk<pTab->nCol ){ 1891 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1892 for(i=0, j=nPk; i<pTab->nCol; i++){ 1893 if( !hasColumn(pPk->aiColumn, j, i) ){ 1894 assert( j<pPk->nColumn ); 1895 pPk->aiColumn[j] = i; 1896 pPk->azColl[j] = sqlite3StrBINARY; 1897 j++; 1898 } 1899 } 1900 assert( pPk->nColumn==j ); 1901 assert( pTab->nCol==j ); 1902 }else{ 1903 pPk->nColumn = pTab->nCol; 1904 } 1905 recomputeColumnsNotIndexed(pPk); 1906 } 1907 1908 #ifndef SQLITE_OMIT_VIRTUALTABLE 1909 /* 1910 ** Return true if zName is a shadow table name in the current database 1911 ** connection. 1912 ** 1913 ** zName is temporarily modified while this routine is running, but is 1914 ** restored to its original value prior to this routine returning. 1915 */ 1916 static int isShadowTableName(sqlite3 *db, char *zName){ 1917 char *zTail; /* Pointer to the last "_" in zName */ 1918 Table *pTab; /* Table that zName is a shadow of */ 1919 Module *pMod; /* Module for the virtual table */ 1920 1921 zTail = strrchr(zName, '_'); 1922 if( zTail==0 ) return 0; 1923 *zTail = 0; 1924 pTab = sqlite3FindTable(db, zName, 0); 1925 *zTail = '_'; 1926 if( pTab==0 ) return 0; 1927 if( !IsVirtual(pTab) ) return 0; 1928 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 1929 if( pMod==0 ) return 0; 1930 if( pMod->pModule->iVersion<3 ) return 0; 1931 if( pMod->pModule->xShadowName==0 ) return 0; 1932 return pMod->pModule->xShadowName(zTail+1); 1933 } 1934 #else 1935 # define isShadowTableName(x,y) 0 1936 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 1937 1938 /* 1939 ** This routine is called to report the final ")" that terminates 1940 ** a CREATE TABLE statement. 1941 ** 1942 ** The table structure that other action routines have been building 1943 ** is added to the internal hash tables, assuming no errors have 1944 ** occurred. 1945 ** 1946 ** An entry for the table is made in the master table on disk, unless 1947 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1948 ** it means we are reading the sqlite_master table because we just 1949 ** connected to the database or because the sqlite_master table has 1950 ** recently changed, so the entry for this table already exists in 1951 ** the sqlite_master table. We do not want to create it again. 1952 ** 1953 ** If the pSelect argument is not NULL, it means that this routine 1954 ** was called to create a table generated from a 1955 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1956 ** the new table will match the result set of the SELECT. 1957 */ 1958 void sqlite3EndTable( 1959 Parse *pParse, /* Parse context */ 1960 Token *pCons, /* The ',' token after the last column defn. */ 1961 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1962 u8 tabOpts, /* Extra table options. Usually 0. */ 1963 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1964 ){ 1965 Table *p; /* The new table */ 1966 sqlite3 *db = pParse->db; /* The database connection */ 1967 int iDb; /* Database in which the table lives */ 1968 Index *pIdx; /* An implied index of the table */ 1969 1970 if( pEnd==0 && pSelect==0 ){ 1971 return; 1972 } 1973 assert( !db->mallocFailed ); 1974 p = pParse->pNewTable; 1975 if( p==0 ) return; 1976 1977 if( pSelect==0 && isShadowTableName(db, p->zName) ){ 1978 p->tabFlags |= TF_Shadow; 1979 } 1980 1981 /* If the db->init.busy is 1 it means we are reading the SQL off the 1982 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1983 ** So do not write to the disk again. Extract the root page number 1984 ** for the table from the db->init.newTnum field. (The page number 1985 ** should have been put there by the sqliteOpenCb routine.) 1986 ** 1987 ** If the root page number is 1, that means this is the sqlite_master 1988 ** table itself. So mark it read-only. 1989 */ 1990 if( db->init.busy ){ 1991 if( pSelect ){ 1992 sqlite3ErrorMsg(pParse, ""); 1993 return; 1994 } 1995 p->tnum = db->init.newTnum; 1996 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1997 } 1998 1999 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2000 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2001 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2002 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2003 2004 /* Special processing for WITHOUT ROWID Tables */ 2005 if( tabOpts & TF_WithoutRowid ){ 2006 if( (p->tabFlags & TF_Autoincrement) ){ 2007 sqlite3ErrorMsg(pParse, 2008 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2009 return; 2010 } 2011 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2012 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2013 }else{ 2014 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2015 convertToWithoutRowidTable(pParse, p); 2016 } 2017 } 2018 2019 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2020 2021 #ifndef SQLITE_OMIT_CHECK 2022 /* Resolve names in all CHECK constraint expressions. 2023 */ 2024 if( p->pCheck ){ 2025 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2026 } 2027 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2028 2029 /* Estimate the average row size for the table and for all implied indices */ 2030 estimateTableWidth(p); 2031 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2032 estimateIndexWidth(pIdx); 2033 } 2034 2035 /* If not initializing, then create a record for the new table 2036 ** in the SQLITE_MASTER table of the database. 2037 ** 2038 ** If this is a TEMPORARY table, write the entry into the auxiliary 2039 ** file instead of into the main database file. 2040 */ 2041 if( !db->init.busy ){ 2042 int n; 2043 Vdbe *v; 2044 char *zType; /* "view" or "table" */ 2045 char *zType2; /* "VIEW" or "TABLE" */ 2046 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2047 2048 v = sqlite3GetVdbe(pParse); 2049 if( NEVER(v==0) ) return; 2050 2051 sqlite3VdbeAddOp1(v, OP_Close, 0); 2052 2053 /* 2054 ** Initialize zType for the new view or table. 2055 */ 2056 if( p->pSelect==0 ){ 2057 /* A regular table */ 2058 zType = "table"; 2059 zType2 = "TABLE"; 2060 #ifndef SQLITE_OMIT_VIEW 2061 }else{ 2062 /* A view */ 2063 zType = "view"; 2064 zType2 = "VIEW"; 2065 #endif 2066 } 2067 2068 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2069 ** statement to populate the new table. The root-page number for the 2070 ** new table is in register pParse->regRoot. 2071 ** 2072 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2073 ** suitable state to query for the column names and types to be used 2074 ** by the new table. 2075 ** 2076 ** A shared-cache write-lock is not required to write to the new table, 2077 ** as a schema-lock must have already been obtained to create it. Since 2078 ** a schema-lock excludes all other database users, the write-lock would 2079 ** be redundant. 2080 */ 2081 if( pSelect ){ 2082 SelectDest dest; /* Where the SELECT should store results */ 2083 int regYield; /* Register holding co-routine entry-point */ 2084 int addrTop; /* Top of the co-routine */ 2085 int regRec; /* A record to be insert into the new table */ 2086 int regRowid; /* Rowid of the next row to insert */ 2087 int addrInsLoop; /* Top of the loop for inserting rows */ 2088 Table *pSelTab; /* A table that describes the SELECT results */ 2089 2090 regYield = ++pParse->nMem; 2091 regRec = ++pParse->nMem; 2092 regRowid = ++pParse->nMem; 2093 assert(pParse->nTab==1); 2094 sqlite3MayAbort(pParse); 2095 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2096 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2097 pParse->nTab = 2; 2098 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2099 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2100 if( pParse->nErr ) return; 2101 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 2102 if( pSelTab==0 ) return; 2103 assert( p->aCol==0 ); 2104 p->nCol = pSelTab->nCol; 2105 p->aCol = pSelTab->aCol; 2106 pSelTab->nCol = 0; 2107 pSelTab->aCol = 0; 2108 sqlite3DeleteTable(db, pSelTab); 2109 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2110 sqlite3Select(pParse, pSelect, &dest); 2111 if( pParse->nErr ) return; 2112 sqlite3VdbeEndCoroutine(v, regYield); 2113 sqlite3VdbeJumpHere(v, addrTop - 1); 2114 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2115 VdbeCoverage(v); 2116 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2117 sqlite3TableAffinity(v, p, 0); 2118 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2119 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2120 sqlite3VdbeGoto(v, addrInsLoop); 2121 sqlite3VdbeJumpHere(v, addrInsLoop); 2122 sqlite3VdbeAddOp1(v, OP_Close, 1); 2123 } 2124 2125 /* Compute the complete text of the CREATE statement */ 2126 if( pSelect ){ 2127 zStmt = createTableStmt(db, p); 2128 }else{ 2129 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2130 n = (int)(pEnd2->z - pParse->sNameToken.z); 2131 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2132 zStmt = sqlite3MPrintf(db, 2133 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2134 ); 2135 } 2136 2137 /* A slot for the record has already been allocated in the 2138 ** SQLITE_MASTER table. We just need to update that slot with all 2139 ** the information we've collected. 2140 */ 2141 sqlite3NestedParse(pParse, 2142 "UPDATE %Q.%s " 2143 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2144 "WHERE rowid=#%d", 2145 db->aDb[iDb].zDbSName, MASTER_NAME, 2146 zType, 2147 p->zName, 2148 p->zName, 2149 pParse->regRoot, 2150 zStmt, 2151 pParse->regRowid 2152 ); 2153 sqlite3DbFree(db, zStmt); 2154 sqlite3ChangeCookie(pParse, iDb); 2155 2156 #ifndef SQLITE_OMIT_AUTOINCREMENT 2157 /* Check to see if we need to create an sqlite_sequence table for 2158 ** keeping track of autoincrement keys. 2159 */ 2160 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2161 Db *pDb = &db->aDb[iDb]; 2162 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2163 if( pDb->pSchema->pSeqTab==0 ){ 2164 sqlite3NestedParse(pParse, 2165 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2166 pDb->zDbSName 2167 ); 2168 } 2169 } 2170 #endif 2171 2172 /* Reparse everything to update our internal data structures */ 2173 sqlite3VdbeAddParseSchemaOp(v, iDb, 2174 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2175 } 2176 2177 2178 /* Add the table to the in-memory representation of the database. 2179 */ 2180 if( db->init.busy ){ 2181 Table *pOld; 2182 Schema *pSchema = p->pSchema; 2183 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2184 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2185 if( pOld ){ 2186 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2187 sqlite3OomFault(db); 2188 return; 2189 } 2190 pParse->pNewTable = 0; 2191 db->mDbFlags |= DBFLAG_SchemaChange; 2192 2193 #ifndef SQLITE_OMIT_ALTERTABLE 2194 if( !p->pSelect ){ 2195 const char *zName = (const char *)pParse->sNameToken.z; 2196 int nName; 2197 assert( !pSelect && pCons && pEnd ); 2198 if( pCons->z==0 ){ 2199 pCons = pEnd; 2200 } 2201 nName = (int)((const char *)pCons->z - zName); 2202 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2203 } 2204 #endif 2205 } 2206 } 2207 2208 #ifndef SQLITE_OMIT_VIEW 2209 /* 2210 ** The parser calls this routine in order to create a new VIEW 2211 */ 2212 void sqlite3CreateView( 2213 Parse *pParse, /* The parsing context */ 2214 Token *pBegin, /* The CREATE token that begins the statement */ 2215 Token *pName1, /* The token that holds the name of the view */ 2216 Token *pName2, /* The token that holds the name of the view */ 2217 ExprList *pCNames, /* Optional list of view column names */ 2218 Select *pSelect, /* A SELECT statement that will become the new view */ 2219 int isTemp, /* TRUE for a TEMPORARY view */ 2220 int noErr /* Suppress error messages if VIEW already exists */ 2221 ){ 2222 Table *p; 2223 int n; 2224 const char *z; 2225 Token sEnd; 2226 DbFixer sFix; 2227 Token *pName = 0; 2228 int iDb; 2229 sqlite3 *db = pParse->db; 2230 2231 if( pParse->nVar>0 ){ 2232 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2233 goto create_view_fail; 2234 } 2235 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2236 p = pParse->pNewTable; 2237 if( p==0 || pParse->nErr ) goto create_view_fail; 2238 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2239 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2240 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2241 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2242 2243 /* Make a copy of the entire SELECT statement that defines the view. 2244 ** This will force all the Expr.token.z values to be dynamically 2245 ** allocated rather than point to the input string - which means that 2246 ** they will persist after the current sqlite3_exec() call returns. 2247 */ 2248 if( IN_RENAME_OBJECT ){ 2249 p->pSelect = pSelect; 2250 pSelect = 0; 2251 }else{ 2252 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2253 } 2254 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2255 if( db->mallocFailed ) goto create_view_fail; 2256 2257 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2258 ** the end. 2259 */ 2260 sEnd = pParse->sLastToken; 2261 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2262 if( sEnd.z[0]!=';' ){ 2263 sEnd.z += sEnd.n; 2264 } 2265 sEnd.n = 0; 2266 n = (int)(sEnd.z - pBegin->z); 2267 assert( n>0 ); 2268 z = pBegin->z; 2269 while( sqlite3Isspace(z[n-1]) ){ n--; } 2270 sEnd.z = &z[n-1]; 2271 sEnd.n = 1; 2272 2273 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2274 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2275 2276 create_view_fail: 2277 sqlite3SelectDelete(db, pSelect); 2278 if( IN_RENAME_OBJECT ){ 2279 sqlite3RenameExprlistUnmap(pParse, pCNames); 2280 } 2281 sqlite3ExprListDelete(db, pCNames); 2282 return; 2283 } 2284 #endif /* SQLITE_OMIT_VIEW */ 2285 2286 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2287 /* 2288 ** The Table structure pTable is really a VIEW. Fill in the names of 2289 ** the columns of the view in the pTable structure. Return the number 2290 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2291 */ 2292 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2293 Table *pSelTab; /* A fake table from which we get the result set */ 2294 Select *pSel; /* Copy of the SELECT that implements the view */ 2295 int nErr = 0; /* Number of errors encountered */ 2296 int n; /* Temporarily holds the number of cursors assigned */ 2297 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2298 #ifndef SQLITE_OMIT_VIRTUALTABLE 2299 int rc; 2300 #endif 2301 #ifndef SQLITE_OMIT_AUTHORIZATION 2302 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2303 #endif 2304 2305 assert( pTable ); 2306 2307 #ifndef SQLITE_OMIT_VIRTUALTABLE 2308 db->nSchemaLock++; 2309 rc = sqlite3VtabCallConnect(pParse, pTable); 2310 db->nSchemaLock--; 2311 if( rc ){ 2312 return 1; 2313 } 2314 if( IsVirtual(pTable) ) return 0; 2315 #endif 2316 2317 #ifndef SQLITE_OMIT_VIEW 2318 /* A positive nCol means the columns names for this view are 2319 ** already known. 2320 */ 2321 if( pTable->nCol>0 ) return 0; 2322 2323 /* A negative nCol is a special marker meaning that we are currently 2324 ** trying to compute the column names. If we enter this routine with 2325 ** a negative nCol, it means two or more views form a loop, like this: 2326 ** 2327 ** CREATE VIEW one AS SELECT * FROM two; 2328 ** CREATE VIEW two AS SELECT * FROM one; 2329 ** 2330 ** Actually, the error above is now caught prior to reaching this point. 2331 ** But the following test is still important as it does come up 2332 ** in the following: 2333 ** 2334 ** CREATE TABLE main.ex1(a); 2335 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2336 ** SELECT * FROM temp.ex1; 2337 */ 2338 if( pTable->nCol<0 ){ 2339 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2340 return 1; 2341 } 2342 assert( pTable->nCol>=0 ); 2343 2344 /* If we get this far, it means we need to compute the table names. 2345 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2346 ** "*" elements in the results set of the view and will assign cursors 2347 ** to the elements of the FROM clause. But we do not want these changes 2348 ** to be permanent. So the computation is done on a copy of the SELECT 2349 ** statement that defines the view. 2350 */ 2351 assert( pTable->pSelect ); 2352 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2353 if( pSel ){ 2354 #ifndef SQLITE_OMIT_ALTERTABLE 2355 u8 eParseMode = pParse->eParseMode; 2356 pParse->eParseMode = PARSE_MODE_NORMAL; 2357 #endif 2358 n = pParse->nTab; 2359 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2360 pTable->nCol = -1; 2361 db->lookaside.bDisable++; 2362 #ifndef SQLITE_OMIT_AUTHORIZATION 2363 xAuth = db->xAuth; 2364 db->xAuth = 0; 2365 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2366 db->xAuth = xAuth; 2367 #else 2368 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2369 #endif 2370 pParse->nTab = n; 2371 if( pTable->pCheck ){ 2372 /* CREATE VIEW name(arglist) AS ... 2373 ** The names of the columns in the table are taken from 2374 ** arglist which is stored in pTable->pCheck. The pCheck field 2375 ** normally holds CHECK constraints on an ordinary table, but for 2376 ** a VIEW it holds the list of column names. 2377 */ 2378 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2379 &pTable->nCol, &pTable->aCol); 2380 if( db->mallocFailed==0 2381 && pParse->nErr==0 2382 && pTable->nCol==pSel->pEList->nExpr 2383 ){ 2384 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2385 } 2386 }else if( pSelTab ){ 2387 /* CREATE VIEW name AS... without an argument list. Construct 2388 ** the column names from the SELECT statement that defines the view. 2389 */ 2390 assert( pTable->aCol==0 ); 2391 pTable->nCol = pSelTab->nCol; 2392 pTable->aCol = pSelTab->aCol; 2393 pSelTab->nCol = 0; 2394 pSelTab->aCol = 0; 2395 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2396 }else{ 2397 pTable->nCol = 0; 2398 nErr++; 2399 } 2400 sqlite3DeleteTable(db, pSelTab); 2401 sqlite3SelectDelete(db, pSel); 2402 db->lookaside.bDisable--; 2403 #ifndef SQLITE_OMIT_ALTERTABLE 2404 pParse->eParseMode = eParseMode; 2405 #endif 2406 } else { 2407 nErr++; 2408 } 2409 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2410 if( db->mallocFailed ){ 2411 sqlite3DeleteColumnNames(db, pTable); 2412 pTable->aCol = 0; 2413 pTable->nCol = 0; 2414 } 2415 #endif /* SQLITE_OMIT_VIEW */ 2416 return nErr; 2417 } 2418 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2419 2420 #ifndef SQLITE_OMIT_VIEW 2421 /* 2422 ** Clear the column names from every VIEW in database idx. 2423 */ 2424 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2425 HashElem *i; 2426 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2427 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2428 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2429 Table *pTab = sqliteHashData(i); 2430 if( pTab->pSelect ){ 2431 sqlite3DeleteColumnNames(db, pTab); 2432 pTab->aCol = 0; 2433 pTab->nCol = 0; 2434 } 2435 } 2436 DbClearProperty(db, idx, DB_UnresetViews); 2437 } 2438 #else 2439 # define sqliteViewResetAll(A,B) 2440 #endif /* SQLITE_OMIT_VIEW */ 2441 2442 /* 2443 ** This function is called by the VDBE to adjust the internal schema 2444 ** used by SQLite when the btree layer moves a table root page. The 2445 ** root-page of a table or index in database iDb has changed from iFrom 2446 ** to iTo. 2447 ** 2448 ** Ticket #1728: The symbol table might still contain information 2449 ** on tables and/or indices that are the process of being deleted. 2450 ** If you are unlucky, one of those deleted indices or tables might 2451 ** have the same rootpage number as the real table or index that is 2452 ** being moved. So we cannot stop searching after the first match 2453 ** because the first match might be for one of the deleted indices 2454 ** or tables and not the table/index that is actually being moved. 2455 ** We must continue looping until all tables and indices with 2456 ** rootpage==iFrom have been converted to have a rootpage of iTo 2457 ** in order to be certain that we got the right one. 2458 */ 2459 #ifndef SQLITE_OMIT_AUTOVACUUM 2460 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2461 HashElem *pElem; 2462 Hash *pHash; 2463 Db *pDb; 2464 2465 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2466 pDb = &db->aDb[iDb]; 2467 pHash = &pDb->pSchema->tblHash; 2468 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2469 Table *pTab = sqliteHashData(pElem); 2470 if( pTab->tnum==iFrom ){ 2471 pTab->tnum = iTo; 2472 } 2473 } 2474 pHash = &pDb->pSchema->idxHash; 2475 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2476 Index *pIdx = sqliteHashData(pElem); 2477 if( pIdx->tnum==iFrom ){ 2478 pIdx->tnum = iTo; 2479 } 2480 } 2481 } 2482 #endif 2483 2484 /* 2485 ** Write code to erase the table with root-page iTable from database iDb. 2486 ** Also write code to modify the sqlite_master table and internal schema 2487 ** if a root-page of another table is moved by the btree-layer whilst 2488 ** erasing iTable (this can happen with an auto-vacuum database). 2489 */ 2490 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2491 Vdbe *v = sqlite3GetVdbe(pParse); 2492 int r1 = sqlite3GetTempReg(pParse); 2493 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2494 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2495 sqlite3MayAbort(pParse); 2496 #ifndef SQLITE_OMIT_AUTOVACUUM 2497 /* OP_Destroy stores an in integer r1. If this integer 2498 ** is non-zero, then it is the root page number of a table moved to 2499 ** location iTable. The following code modifies the sqlite_master table to 2500 ** reflect this. 2501 ** 2502 ** The "#NNN" in the SQL is a special constant that means whatever value 2503 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2504 ** token for additional information. 2505 */ 2506 sqlite3NestedParse(pParse, 2507 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2508 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2509 #endif 2510 sqlite3ReleaseTempReg(pParse, r1); 2511 } 2512 2513 /* 2514 ** Write VDBE code to erase table pTab and all associated indices on disk. 2515 ** Code to update the sqlite_master tables and internal schema definitions 2516 ** in case a root-page belonging to another table is moved by the btree layer 2517 ** is also added (this can happen with an auto-vacuum database). 2518 */ 2519 static void destroyTable(Parse *pParse, Table *pTab){ 2520 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2521 ** is not defined), then it is important to call OP_Destroy on the 2522 ** table and index root-pages in order, starting with the numerically 2523 ** largest root-page number. This guarantees that none of the root-pages 2524 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2525 ** following were coded: 2526 ** 2527 ** OP_Destroy 4 0 2528 ** ... 2529 ** OP_Destroy 5 0 2530 ** 2531 ** and root page 5 happened to be the largest root-page number in the 2532 ** database, then root page 5 would be moved to page 4 by the 2533 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2534 ** a free-list page. 2535 */ 2536 int iTab = pTab->tnum; 2537 int iDestroyed = 0; 2538 2539 while( 1 ){ 2540 Index *pIdx; 2541 int iLargest = 0; 2542 2543 if( iDestroyed==0 || iTab<iDestroyed ){ 2544 iLargest = iTab; 2545 } 2546 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2547 int iIdx = pIdx->tnum; 2548 assert( pIdx->pSchema==pTab->pSchema ); 2549 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2550 iLargest = iIdx; 2551 } 2552 } 2553 if( iLargest==0 ){ 2554 return; 2555 }else{ 2556 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2557 assert( iDb>=0 && iDb<pParse->db->nDb ); 2558 destroyRootPage(pParse, iLargest, iDb); 2559 iDestroyed = iLargest; 2560 } 2561 } 2562 } 2563 2564 /* 2565 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2566 ** after a DROP INDEX or DROP TABLE command. 2567 */ 2568 static void sqlite3ClearStatTables( 2569 Parse *pParse, /* The parsing context */ 2570 int iDb, /* The database number */ 2571 const char *zType, /* "idx" or "tbl" */ 2572 const char *zName /* Name of index or table */ 2573 ){ 2574 int i; 2575 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2576 for(i=1; i<=4; i++){ 2577 char zTab[24]; 2578 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2579 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2580 sqlite3NestedParse(pParse, 2581 "DELETE FROM %Q.%s WHERE %s=%Q", 2582 zDbName, zTab, zType, zName 2583 ); 2584 } 2585 } 2586 } 2587 2588 /* 2589 ** Generate code to drop a table. 2590 */ 2591 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2592 Vdbe *v; 2593 sqlite3 *db = pParse->db; 2594 Trigger *pTrigger; 2595 Db *pDb = &db->aDb[iDb]; 2596 2597 v = sqlite3GetVdbe(pParse); 2598 assert( v!=0 ); 2599 sqlite3BeginWriteOperation(pParse, 1, iDb); 2600 2601 #ifndef SQLITE_OMIT_VIRTUALTABLE 2602 if( IsVirtual(pTab) ){ 2603 sqlite3VdbeAddOp0(v, OP_VBegin); 2604 } 2605 #endif 2606 2607 /* Drop all triggers associated with the table being dropped. Code 2608 ** is generated to remove entries from sqlite_master and/or 2609 ** sqlite_temp_master if required. 2610 */ 2611 pTrigger = sqlite3TriggerList(pParse, pTab); 2612 while( pTrigger ){ 2613 assert( pTrigger->pSchema==pTab->pSchema || 2614 pTrigger->pSchema==db->aDb[1].pSchema ); 2615 sqlite3DropTriggerPtr(pParse, pTrigger); 2616 pTrigger = pTrigger->pNext; 2617 } 2618 2619 #ifndef SQLITE_OMIT_AUTOINCREMENT 2620 /* Remove any entries of the sqlite_sequence table associated with 2621 ** the table being dropped. This is done before the table is dropped 2622 ** at the btree level, in case the sqlite_sequence table needs to 2623 ** move as a result of the drop (can happen in auto-vacuum mode). 2624 */ 2625 if( pTab->tabFlags & TF_Autoincrement ){ 2626 sqlite3NestedParse(pParse, 2627 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2628 pDb->zDbSName, pTab->zName 2629 ); 2630 } 2631 #endif 2632 2633 /* Drop all SQLITE_MASTER table and index entries that refer to the 2634 ** table. The program name loops through the master table and deletes 2635 ** every row that refers to a table of the same name as the one being 2636 ** dropped. Triggers are handled separately because a trigger can be 2637 ** created in the temp database that refers to a table in another 2638 ** database. 2639 */ 2640 sqlite3NestedParse(pParse, 2641 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2642 pDb->zDbSName, MASTER_NAME, pTab->zName); 2643 if( !isView && !IsVirtual(pTab) ){ 2644 destroyTable(pParse, pTab); 2645 } 2646 2647 /* Remove the table entry from SQLite's internal schema and modify 2648 ** the schema cookie. 2649 */ 2650 if( IsVirtual(pTab) ){ 2651 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2652 sqlite3MayAbort(pParse); 2653 } 2654 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2655 sqlite3ChangeCookie(pParse, iDb); 2656 sqliteViewResetAll(db, iDb); 2657 } 2658 2659 /* 2660 ** This routine is called to do the work of a DROP TABLE statement. 2661 ** pName is the name of the table to be dropped. 2662 */ 2663 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2664 Table *pTab; 2665 Vdbe *v; 2666 sqlite3 *db = pParse->db; 2667 int iDb; 2668 2669 if( db->mallocFailed ){ 2670 goto exit_drop_table; 2671 } 2672 assert( pParse->nErr==0 ); 2673 assert( pName->nSrc==1 ); 2674 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2675 if( noErr ) db->suppressErr++; 2676 assert( isView==0 || isView==LOCATE_VIEW ); 2677 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2678 if( noErr ) db->suppressErr--; 2679 2680 if( pTab==0 ){ 2681 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2682 goto exit_drop_table; 2683 } 2684 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2685 assert( iDb>=0 && iDb<db->nDb ); 2686 2687 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2688 ** it is initialized. 2689 */ 2690 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2691 goto exit_drop_table; 2692 } 2693 #ifndef SQLITE_OMIT_AUTHORIZATION 2694 { 2695 int code; 2696 const char *zTab = SCHEMA_TABLE(iDb); 2697 const char *zDb = db->aDb[iDb].zDbSName; 2698 const char *zArg2 = 0; 2699 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2700 goto exit_drop_table; 2701 } 2702 if( isView ){ 2703 if( !OMIT_TEMPDB && iDb==1 ){ 2704 code = SQLITE_DROP_TEMP_VIEW; 2705 }else{ 2706 code = SQLITE_DROP_VIEW; 2707 } 2708 #ifndef SQLITE_OMIT_VIRTUALTABLE 2709 }else if( IsVirtual(pTab) ){ 2710 code = SQLITE_DROP_VTABLE; 2711 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2712 #endif 2713 }else{ 2714 if( !OMIT_TEMPDB && iDb==1 ){ 2715 code = SQLITE_DROP_TEMP_TABLE; 2716 }else{ 2717 code = SQLITE_DROP_TABLE; 2718 } 2719 } 2720 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2721 goto exit_drop_table; 2722 } 2723 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2724 goto exit_drop_table; 2725 } 2726 } 2727 #endif 2728 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2729 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2730 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2731 goto exit_drop_table; 2732 } 2733 2734 #ifndef SQLITE_OMIT_VIEW 2735 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2736 ** on a table. 2737 */ 2738 if( isView && pTab->pSelect==0 ){ 2739 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2740 goto exit_drop_table; 2741 } 2742 if( !isView && pTab->pSelect ){ 2743 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2744 goto exit_drop_table; 2745 } 2746 #endif 2747 2748 /* Generate code to remove the table from the master table 2749 ** on disk. 2750 */ 2751 v = sqlite3GetVdbe(pParse); 2752 if( v ){ 2753 sqlite3BeginWriteOperation(pParse, 1, iDb); 2754 if( !isView ){ 2755 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2756 sqlite3FkDropTable(pParse, pName, pTab); 2757 } 2758 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2759 } 2760 2761 exit_drop_table: 2762 sqlite3SrcListDelete(db, pName); 2763 } 2764 2765 /* 2766 ** This routine is called to create a new foreign key on the table 2767 ** currently under construction. pFromCol determines which columns 2768 ** in the current table point to the foreign key. If pFromCol==0 then 2769 ** connect the key to the last column inserted. pTo is the name of 2770 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2771 ** of tables in the parent pTo table. flags contains all 2772 ** information about the conflict resolution algorithms specified 2773 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2774 ** 2775 ** An FKey structure is created and added to the table currently 2776 ** under construction in the pParse->pNewTable field. 2777 ** 2778 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2779 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2780 */ 2781 void sqlite3CreateForeignKey( 2782 Parse *pParse, /* Parsing context */ 2783 ExprList *pFromCol, /* Columns in this table that point to other table */ 2784 Token *pTo, /* Name of the other table */ 2785 ExprList *pToCol, /* Columns in the other table */ 2786 int flags /* Conflict resolution algorithms. */ 2787 ){ 2788 sqlite3 *db = pParse->db; 2789 #ifndef SQLITE_OMIT_FOREIGN_KEY 2790 FKey *pFKey = 0; 2791 FKey *pNextTo; 2792 Table *p = pParse->pNewTable; 2793 int nByte; 2794 int i; 2795 int nCol; 2796 char *z; 2797 2798 assert( pTo!=0 ); 2799 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2800 if( pFromCol==0 ){ 2801 int iCol = p->nCol-1; 2802 if( NEVER(iCol<0) ) goto fk_end; 2803 if( pToCol && pToCol->nExpr!=1 ){ 2804 sqlite3ErrorMsg(pParse, "foreign key on %s" 2805 " should reference only one column of table %T", 2806 p->aCol[iCol].zName, pTo); 2807 goto fk_end; 2808 } 2809 nCol = 1; 2810 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2811 sqlite3ErrorMsg(pParse, 2812 "number of columns in foreign key does not match the number of " 2813 "columns in the referenced table"); 2814 goto fk_end; 2815 }else{ 2816 nCol = pFromCol->nExpr; 2817 } 2818 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2819 if( pToCol ){ 2820 for(i=0; i<pToCol->nExpr; i++){ 2821 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2822 } 2823 } 2824 pFKey = sqlite3DbMallocZero(db, nByte ); 2825 if( pFKey==0 ){ 2826 goto fk_end; 2827 } 2828 pFKey->pFrom = p; 2829 pFKey->pNextFrom = p->pFKey; 2830 z = (char*)&pFKey->aCol[nCol]; 2831 pFKey->zTo = z; 2832 if( IN_RENAME_OBJECT ){ 2833 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 2834 } 2835 memcpy(z, pTo->z, pTo->n); 2836 z[pTo->n] = 0; 2837 sqlite3Dequote(z); 2838 z += pTo->n+1; 2839 pFKey->nCol = nCol; 2840 if( pFromCol==0 ){ 2841 pFKey->aCol[0].iFrom = p->nCol-1; 2842 }else{ 2843 for(i=0; i<nCol; i++){ 2844 int j; 2845 for(j=0; j<p->nCol; j++){ 2846 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2847 pFKey->aCol[i].iFrom = j; 2848 break; 2849 } 2850 } 2851 if( j>=p->nCol ){ 2852 sqlite3ErrorMsg(pParse, 2853 "unknown column \"%s\" in foreign key definition", 2854 pFromCol->a[i].zName); 2855 goto fk_end; 2856 } 2857 if( IN_RENAME_OBJECT ){ 2858 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName); 2859 } 2860 } 2861 } 2862 if( pToCol ){ 2863 for(i=0; i<nCol; i++){ 2864 int n = sqlite3Strlen30(pToCol->a[i].zName); 2865 pFKey->aCol[i].zCol = z; 2866 if( IN_RENAME_OBJECT ){ 2867 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName); 2868 } 2869 memcpy(z, pToCol->a[i].zName, n); 2870 z[n] = 0; 2871 z += n+1; 2872 } 2873 } 2874 pFKey->isDeferred = 0; 2875 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2876 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2877 2878 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2879 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2880 pFKey->zTo, (void *)pFKey 2881 ); 2882 if( pNextTo==pFKey ){ 2883 sqlite3OomFault(db); 2884 goto fk_end; 2885 } 2886 if( pNextTo ){ 2887 assert( pNextTo->pPrevTo==0 ); 2888 pFKey->pNextTo = pNextTo; 2889 pNextTo->pPrevTo = pFKey; 2890 } 2891 2892 /* Link the foreign key to the table as the last step. 2893 */ 2894 p->pFKey = pFKey; 2895 pFKey = 0; 2896 2897 fk_end: 2898 sqlite3DbFree(db, pFKey); 2899 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2900 sqlite3ExprListDelete(db, pFromCol); 2901 sqlite3ExprListDelete(db, pToCol); 2902 } 2903 2904 /* 2905 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2906 ** clause is seen as part of a foreign key definition. The isDeferred 2907 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2908 ** The behavior of the most recently created foreign key is adjusted 2909 ** accordingly. 2910 */ 2911 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2912 #ifndef SQLITE_OMIT_FOREIGN_KEY 2913 Table *pTab; 2914 FKey *pFKey; 2915 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2916 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2917 pFKey->isDeferred = (u8)isDeferred; 2918 #endif 2919 } 2920 2921 /* 2922 ** Generate code that will erase and refill index *pIdx. This is 2923 ** used to initialize a newly created index or to recompute the 2924 ** content of an index in response to a REINDEX command. 2925 ** 2926 ** if memRootPage is not negative, it means that the index is newly 2927 ** created. The register specified by memRootPage contains the 2928 ** root page number of the index. If memRootPage is negative, then 2929 ** the index already exists and must be cleared before being refilled and 2930 ** the root page number of the index is taken from pIndex->tnum. 2931 */ 2932 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2933 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2934 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2935 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2936 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2937 int addr1; /* Address of top of loop */ 2938 int addr2; /* Address to jump to for next iteration */ 2939 int tnum; /* Root page of index */ 2940 int iPartIdxLabel; /* Jump to this label to skip a row */ 2941 Vdbe *v; /* Generate code into this virtual machine */ 2942 KeyInfo *pKey; /* KeyInfo for index */ 2943 int regRecord; /* Register holding assembled index record */ 2944 sqlite3 *db = pParse->db; /* The database connection */ 2945 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2946 2947 #ifndef SQLITE_OMIT_AUTHORIZATION 2948 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2949 db->aDb[iDb].zDbSName ) ){ 2950 return; 2951 } 2952 #endif 2953 2954 /* Require a write-lock on the table to perform this operation */ 2955 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2956 2957 v = sqlite3GetVdbe(pParse); 2958 if( v==0 ) return; 2959 if( memRootPage>=0 ){ 2960 tnum = memRootPage; 2961 }else{ 2962 tnum = pIndex->tnum; 2963 } 2964 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2965 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2966 2967 /* Open the sorter cursor if we are to use one. */ 2968 iSorter = pParse->nTab++; 2969 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2970 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2971 2972 /* Open the table. Loop through all rows of the table, inserting index 2973 ** records into the sorter. */ 2974 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2975 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2976 regRecord = sqlite3GetTempReg(pParse); 2977 sqlite3MultiWrite(pParse); 2978 2979 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2980 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2981 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2982 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2983 sqlite3VdbeJumpHere(v, addr1); 2984 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2985 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2986 (char *)pKey, P4_KEYINFO); 2987 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2988 2989 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2990 if( IsUniqueIndex(pIndex) ){ 2991 int j2 = sqlite3VdbeGoto(v, 1); 2992 addr2 = sqlite3VdbeCurrentAddr(v); 2993 sqlite3VdbeVerifyAbortable(v, OE_Abort); 2994 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2995 pIndex->nKeyCol); VdbeCoverage(v); 2996 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2997 sqlite3VdbeJumpHere(v, j2); 2998 }else{ 2999 addr2 = sqlite3VdbeCurrentAddr(v); 3000 } 3001 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3002 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3003 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3004 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3005 sqlite3ReleaseTempReg(pParse, regRecord); 3006 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3007 sqlite3VdbeJumpHere(v, addr1); 3008 3009 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3010 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3011 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3012 } 3013 3014 /* 3015 ** Allocate heap space to hold an Index object with nCol columns. 3016 ** 3017 ** Increase the allocation size to provide an extra nExtra bytes 3018 ** of 8-byte aligned space after the Index object and return a 3019 ** pointer to this extra space in *ppExtra. 3020 */ 3021 Index *sqlite3AllocateIndexObject( 3022 sqlite3 *db, /* Database connection */ 3023 i16 nCol, /* Total number of columns in the index */ 3024 int nExtra, /* Number of bytes of extra space to alloc */ 3025 char **ppExtra /* Pointer to the "extra" space */ 3026 ){ 3027 Index *p; /* Allocated index object */ 3028 int nByte; /* Bytes of space for Index object + arrays */ 3029 3030 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3031 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3032 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3033 sizeof(i16)*nCol + /* Index.aiColumn */ 3034 sizeof(u8)*nCol); /* Index.aSortOrder */ 3035 p = sqlite3DbMallocZero(db, nByte + nExtra); 3036 if( p ){ 3037 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3038 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3039 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3040 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3041 p->aSortOrder = (u8*)pExtra; 3042 p->nColumn = nCol; 3043 p->nKeyCol = nCol - 1; 3044 *ppExtra = ((char*)p) + nByte; 3045 } 3046 return p; 3047 } 3048 3049 /* 3050 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3051 ** and pTblList is the name of the table that is to be indexed. Both will 3052 ** be NULL for a primary key or an index that is created to satisfy a 3053 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3054 ** as the table to be indexed. pParse->pNewTable is a table that is 3055 ** currently being constructed by a CREATE TABLE statement. 3056 ** 3057 ** pList is a list of columns to be indexed. pList will be NULL if this 3058 ** is a primary key or unique-constraint on the most recent column added 3059 ** to the table currently under construction. 3060 */ 3061 void sqlite3CreateIndex( 3062 Parse *pParse, /* All information about this parse */ 3063 Token *pName1, /* First part of index name. May be NULL */ 3064 Token *pName2, /* Second part of index name. May be NULL */ 3065 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3066 ExprList *pList, /* A list of columns to be indexed */ 3067 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3068 Token *pStart, /* The CREATE token that begins this statement */ 3069 Expr *pPIWhere, /* WHERE clause for partial indices */ 3070 int sortOrder, /* Sort order of primary key when pList==NULL */ 3071 int ifNotExist, /* Omit error if index already exists */ 3072 u8 idxType /* The index type */ 3073 ){ 3074 Table *pTab = 0; /* Table to be indexed */ 3075 Index *pIndex = 0; /* The index to be created */ 3076 char *zName = 0; /* Name of the index */ 3077 int nName; /* Number of characters in zName */ 3078 int i, j; 3079 DbFixer sFix; /* For assigning database names to pTable */ 3080 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3081 sqlite3 *db = pParse->db; 3082 Db *pDb; /* The specific table containing the indexed database */ 3083 int iDb; /* Index of the database that is being written */ 3084 Token *pName = 0; /* Unqualified name of the index to create */ 3085 struct ExprList_item *pListItem; /* For looping over pList */ 3086 int nExtra = 0; /* Space allocated for zExtra[] */ 3087 int nExtraCol; /* Number of extra columns needed */ 3088 char *zExtra = 0; /* Extra space after the Index object */ 3089 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3090 3091 if( db->mallocFailed || pParse->nErr>0 ){ 3092 goto exit_create_index; 3093 } 3094 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3095 goto exit_create_index; 3096 } 3097 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3098 goto exit_create_index; 3099 } 3100 3101 /* 3102 ** Find the table that is to be indexed. Return early if not found. 3103 */ 3104 if( pTblName!=0 ){ 3105 3106 /* Use the two-part index name to determine the database 3107 ** to search for the table. 'Fix' the table name to this db 3108 ** before looking up the table. 3109 */ 3110 assert( pName1 && pName2 ); 3111 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3112 if( iDb<0 ) goto exit_create_index; 3113 assert( pName && pName->z ); 3114 3115 #ifndef SQLITE_OMIT_TEMPDB 3116 /* If the index name was unqualified, check if the table 3117 ** is a temp table. If so, set the database to 1. Do not do this 3118 ** if initialising a database schema. 3119 */ 3120 if( !db->init.busy ){ 3121 pTab = sqlite3SrcListLookup(pParse, pTblName); 3122 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3123 iDb = 1; 3124 } 3125 } 3126 #endif 3127 3128 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3129 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3130 /* Because the parser constructs pTblName from a single identifier, 3131 ** sqlite3FixSrcList can never fail. */ 3132 assert(0); 3133 } 3134 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3135 assert( db->mallocFailed==0 || pTab==0 ); 3136 if( pTab==0 ) goto exit_create_index; 3137 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3138 sqlite3ErrorMsg(pParse, 3139 "cannot create a TEMP index on non-TEMP table \"%s\"", 3140 pTab->zName); 3141 goto exit_create_index; 3142 } 3143 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3144 }else{ 3145 assert( pName==0 ); 3146 assert( pStart==0 ); 3147 pTab = pParse->pNewTable; 3148 if( !pTab ) goto exit_create_index; 3149 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3150 } 3151 pDb = &db->aDb[iDb]; 3152 3153 assert( pTab!=0 ); 3154 assert( pParse->nErr==0 ); 3155 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3156 && db->init.busy==0 3157 #if SQLITE_USER_AUTHENTICATION 3158 && sqlite3UserAuthTable(pTab->zName)==0 3159 #endif 3160 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3161 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3162 #endif 3163 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 3164 ){ 3165 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3166 goto exit_create_index; 3167 } 3168 #ifndef SQLITE_OMIT_VIEW 3169 if( pTab->pSelect ){ 3170 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3171 goto exit_create_index; 3172 } 3173 #endif 3174 #ifndef SQLITE_OMIT_VIRTUALTABLE 3175 if( IsVirtual(pTab) ){ 3176 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3177 goto exit_create_index; 3178 } 3179 #endif 3180 3181 /* 3182 ** Find the name of the index. Make sure there is not already another 3183 ** index or table with the same name. 3184 ** 3185 ** Exception: If we are reading the names of permanent indices from the 3186 ** sqlite_master table (because some other process changed the schema) and 3187 ** one of the index names collides with the name of a temporary table or 3188 ** index, then we will continue to process this index. 3189 ** 3190 ** If pName==0 it means that we are 3191 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3192 ** own name. 3193 */ 3194 if( pName ){ 3195 zName = sqlite3NameFromToken(db, pName); 3196 if( zName==0 ) goto exit_create_index; 3197 assert( pName->z!=0 ); 3198 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3199 goto exit_create_index; 3200 } 3201 if( !IN_RENAME_OBJECT ){ 3202 if( !db->init.busy ){ 3203 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3204 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3205 goto exit_create_index; 3206 } 3207 } 3208 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3209 if( !ifNotExist ){ 3210 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3211 }else{ 3212 assert( !db->init.busy ); 3213 sqlite3CodeVerifySchema(pParse, iDb); 3214 } 3215 goto exit_create_index; 3216 } 3217 } 3218 }else{ 3219 int n; 3220 Index *pLoop; 3221 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3222 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3223 if( zName==0 ){ 3224 goto exit_create_index; 3225 } 3226 3227 /* Automatic index names generated from within sqlite3_declare_vtab() 3228 ** must have names that are distinct from normal automatic index names. 3229 ** The following statement converts "sqlite3_autoindex..." into 3230 ** "sqlite3_butoindex..." in order to make the names distinct. 3231 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3232 if( IN_SPECIAL_PARSE ) zName[7]++; 3233 } 3234 3235 /* Check for authorization to create an index. 3236 */ 3237 #ifndef SQLITE_OMIT_AUTHORIZATION 3238 if( !IN_RENAME_OBJECT ){ 3239 const char *zDb = pDb->zDbSName; 3240 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3241 goto exit_create_index; 3242 } 3243 i = SQLITE_CREATE_INDEX; 3244 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3245 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3246 goto exit_create_index; 3247 } 3248 } 3249 #endif 3250 3251 /* If pList==0, it means this routine was called to make a primary 3252 ** key out of the last column added to the table under construction. 3253 ** So create a fake list to simulate this. 3254 */ 3255 if( pList==0 ){ 3256 Token prevCol; 3257 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3258 pCol->colFlags |= COLFLAG_UNIQUE; 3259 sqlite3TokenInit(&prevCol, pCol->zName); 3260 pList = sqlite3ExprListAppend(pParse, 0, 3261 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3262 if( pList==0 ) goto exit_create_index; 3263 assert( pList->nExpr==1 ); 3264 sqlite3ExprListSetSortOrder(pList, sortOrder); 3265 }else{ 3266 sqlite3ExprListCheckLength(pParse, pList, "index"); 3267 } 3268 3269 /* Figure out how many bytes of space are required to store explicitly 3270 ** specified collation sequence names. 3271 */ 3272 for(i=0; i<pList->nExpr; i++){ 3273 Expr *pExpr = pList->a[i].pExpr; 3274 assert( pExpr!=0 ); 3275 if( pExpr->op==TK_COLLATE ){ 3276 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3277 } 3278 } 3279 3280 /* 3281 ** Allocate the index structure. 3282 */ 3283 nName = sqlite3Strlen30(zName); 3284 nExtraCol = pPk ? pPk->nKeyCol : 1; 3285 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3286 nName + nExtra + 1, &zExtra); 3287 if( db->mallocFailed ){ 3288 goto exit_create_index; 3289 } 3290 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3291 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3292 pIndex->zName = zExtra; 3293 zExtra += nName + 1; 3294 memcpy(pIndex->zName, zName, nName+1); 3295 pIndex->pTable = pTab; 3296 pIndex->onError = (u8)onError; 3297 pIndex->uniqNotNull = onError!=OE_None; 3298 pIndex->idxType = idxType; 3299 pIndex->pSchema = db->aDb[iDb].pSchema; 3300 pIndex->nKeyCol = pList->nExpr; 3301 if( pPIWhere ){ 3302 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3303 pIndex->pPartIdxWhere = pPIWhere; 3304 pPIWhere = 0; 3305 } 3306 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3307 3308 /* Check to see if we should honor DESC requests on index columns 3309 */ 3310 if( pDb->pSchema->file_format>=4 ){ 3311 sortOrderMask = -1; /* Honor DESC */ 3312 }else{ 3313 sortOrderMask = 0; /* Ignore DESC */ 3314 } 3315 3316 /* Analyze the list of expressions that form the terms of the index and 3317 ** report any errors. In the common case where the expression is exactly 3318 ** a table column, store that column in aiColumn[]. For general expressions, 3319 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3320 ** 3321 ** TODO: Issue a warning if two or more columns of the index are identical. 3322 ** TODO: Issue a warning if the table primary key is used as part of the 3323 ** index key. 3324 */ 3325 pListItem = pList->a; 3326 if( IN_RENAME_OBJECT ){ 3327 pIndex->aColExpr = pList; 3328 pList = 0; 3329 } 3330 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3331 Expr *pCExpr; /* The i-th index expression */ 3332 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3333 const char *zColl; /* Collation sequence name */ 3334 3335 sqlite3StringToId(pListItem->pExpr); 3336 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3337 if( pParse->nErr ) goto exit_create_index; 3338 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3339 if( pCExpr->op!=TK_COLUMN ){ 3340 if( pTab==pParse->pNewTable ){ 3341 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3342 "UNIQUE constraints"); 3343 goto exit_create_index; 3344 } 3345 if( pIndex->aColExpr==0 ){ 3346 pIndex->aColExpr = pList; 3347 pList = 0; 3348 } 3349 j = XN_EXPR; 3350 pIndex->aiColumn[i] = XN_EXPR; 3351 pIndex->uniqNotNull = 0; 3352 }else{ 3353 j = pCExpr->iColumn; 3354 assert( j<=0x7fff ); 3355 if( j<0 ){ 3356 j = pTab->iPKey; 3357 }else if( pTab->aCol[j].notNull==0 ){ 3358 pIndex->uniqNotNull = 0; 3359 } 3360 pIndex->aiColumn[i] = (i16)j; 3361 } 3362 zColl = 0; 3363 if( pListItem->pExpr->op==TK_COLLATE ){ 3364 int nColl; 3365 zColl = pListItem->pExpr->u.zToken; 3366 nColl = sqlite3Strlen30(zColl) + 1; 3367 assert( nExtra>=nColl ); 3368 memcpy(zExtra, zColl, nColl); 3369 zColl = zExtra; 3370 zExtra += nColl; 3371 nExtra -= nColl; 3372 }else if( j>=0 ){ 3373 zColl = pTab->aCol[j].zColl; 3374 } 3375 if( !zColl ) zColl = sqlite3StrBINARY; 3376 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3377 goto exit_create_index; 3378 } 3379 pIndex->azColl[i] = zColl; 3380 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3381 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3382 } 3383 3384 /* Append the table key to the end of the index. For WITHOUT ROWID 3385 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3386 ** normal tables (when pPk==0) this will be the rowid. 3387 */ 3388 if( pPk ){ 3389 for(j=0; j<pPk->nKeyCol; j++){ 3390 int x = pPk->aiColumn[j]; 3391 assert( x>=0 ); 3392 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3393 pIndex->nColumn--; 3394 }else{ 3395 pIndex->aiColumn[i] = x; 3396 pIndex->azColl[i] = pPk->azColl[j]; 3397 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3398 i++; 3399 } 3400 } 3401 assert( i==pIndex->nColumn ); 3402 }else{ 3403 pIndex->aiColumn[i] = XN_ROWID; 3404 pIndex->azColl[i] = sqlite3StrBINARY; 3405 } 3406 sqlite3DefaultRowEst(pIndex); 3407 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3408 3409 /* If this index contains every column of its table, then mark 3410 ** it as a covering index */ 3411 assert( HasRowid(pTab) 3412 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3413 recomputeColumnsNotIndexed(pIndex); 3414 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3415 pIndex->isCovering = 1; 3416 for(j=0; j<pTab->nCol; j++){ 3417 if( j==pTab->iPKey ) continue; 3418 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3419 pIndex->isCovering = 0; 3420 break; 3421 } 3422 } 3423 3424 if( pTab==pParse->pNewTable ){ 3425 /* This routine has been called to create an automatic index as a 3426 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3427 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3428 ** i.e. one of: 3429 ** 3430 ** CREATE TABLE t(x PRIMARY KEY, y); 3431 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3432 ** 3433 ** Either way, check to see if the table already has such an index. If 3434 ** so, don't bother creating this one. This only applies to 3435 ** automatically created indices. Users can do as they wish with 3436 ** explicit indices. 3437 ** 3438 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3439 ** (and thus suppressing the second one) even if they have different 3440 ** sort orders. 3441 ** 3442 ** If there are different collating sequences or if the columns of 3443 ** the constraint occur in different orders, then the constraints are 3444 ** considered distinct and both result in separate indices. 3445 */ 3446 Index *pIdx; 3447 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3448 int k; 3449 assert( IsUniqueIndex(pIdx) ); 3450 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3451 assert( IsUniqueIndex(pIndex) ); 3452 3453 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3454 for(k=0; k<pIdx->nKeyCol; k++){ 3455 const char *z1; 3456 const char *z2; 3457 assert( pIdx->aiColumn[k]>=0 ); 3458 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3459 z1 = pIdx->azColl[k]; 3460 z2 = pIndex->azColl[k]; 3461 if( sqlite3StrICmp(z1, z2) ) break; 3462 } 3463 if( k==pIdx->nKeyCol ){ 3464 if( pIdx->onError!=pIndex->onError ){ 3465 /* This constraint creates the same index as a previous 3466 ** constraint specified somewhere in the CREATE TABLE statement. 3467 ** However the ON CONFLICT clauses are different. If both this 3468 ** constraint and the previous equivalent constraint have explicit 3469 ** ON CONFLICT clauses this is an error. Otherwise, use the 3470 ** explicitly specified behavior for the index. 3471 */ 3472 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3473 sqlite3ErrorMsg(pParse, 3474 "conflicting ON CONFLICT clauses specified", 0); 3475 } 3476 if( pIdx->onError==OE_Default ){ 3477 pIdx->onError = pIndex->onError; 3478 } 3479 } 3480 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3481 if( IN_RENAME_OBJECT ){ 3482 pIndex->pNext = pParse->pNewIndex; 3483 pParse->pNewIndex = pIndex; 3484 pIndex = 0; 3485 } 3486 goto exit_create_index; 3487 } 3488 } 3489 } 3490 3491 if( !IN_RENAME_OBJECT ){ 3492 3493 /* Link the new Index structure to its table and to the other 3494 ** in-memory database structures. 3495 */ 3496 assert( pParse->nErr==0 ); 3497 if( db->init.busy ){ 3498 Index *p; 3499 assert( !IN_SPECIAL_PARSE ); 3500 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3501 if( pTblName!=0 ){ 3502 pIndex->tnum = db->init.newTnum; 3503 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3504 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3505 pParse->rc = SQLITE_CORRUPT_BKPT; 3506 goto exit_create_index; 3507 } 3508 } 3509 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3510 pIndex->zName, pIndex); 3511 if( p ){ 3512 assert( p==pIndex ); /* Malloc must have failed */ 3513 sqlite3OomFault(db); 3514 goto exit_create_index; 3515 } 3516 db->mDbFlags |= DBFLAG_SchemaChange; 3517 } 3518 3519 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3520 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3521 ** emit code to allocate the index rootpage on disk and make an entry for 3522 ** the index in the sqlite_master table and populate the index with 3523 ** content. But, do not do this if we are simply reading the sqlite_master 3524 ** table to parse the schema, or if this index is the PRIMARY KEY index 3525 ** of a WITHOUT ROWID table. 3526 ** 3527 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3528 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3529 ** has just been created, it contains no data and the index initialization 3530 ** step can be skipped. 3531 */ 3532 else if( HasRowid(pTab) || pTblName!=0 ){ 3533 Vdbe *v; 3534 char *zStmt; 3535 int iMem = ++pParse->nMem; 3536 3537 v = sqlite3GetVdbe(pParse); 3538 if( v==0 ) goto exit_create_index; 3539 3540 sqlite3BeginWriteOperation(pParse, 1, iDb); 3541 3542 /* Create the rootpage for the index using CreateIndex. But before 3543 ** doing so, code a Noop instruction and store its address in 3544 ** Index.tnum. This is required in case this index is actually a 3545 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3546 ** that case the convertToWithoutRowidTable() routine will replace 3547 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3548 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3549 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3550 3551 /* Gather the complete text of the CREATE INDEX statement into 3552 ** the zStmt variable 3553 */ 3554 if( pStart ){ 3555 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3556 if( pName->z[n-1]==';' ) n--; 3557 /* A named index with an explicit CREATE INDEX statement */ 3558 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3559 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3560 }else{ 3561 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3562 /* zStmt = sqlite3MPrintf(""); */ 3563 zStmt = 0; 3564 } 3565 3566 /* Add an entry in sqlite_master for this index 3567 */ 3568 sqlite3NestedParse(pParse, 3569 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3570 db->aDb[iDb].zDbSName, MASTER_NAME, 3571 pIndex->zName, 3572 pTab->zName, 3573 iMem, 3574 zStmt 3575 ); 3576 sqlite3DbFree(db, zStmt); 3577 3578 /* Fill the index with data and reparse the schema. Code an OP_Expire 3579 ** to invalidate all pre-compiled statements. 3580 */ 3581 if( pTblName ){ 3582 sqlite3RefillIndex(pParse, pIndex, iMem); 3583 sqlite3ChangeCookie(pParse, iDb); 3584 sqlite3VdbeAddParseSchemaOp(v, iDb, 3585 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3586 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3587 } 3588 3589 sqlite3VdbeJumpHere(v, pIndex->tnum); 3590 } 3591 } 3592 3593 /* When adding an index to the list of indices for a table, make 3594 ** sure all indices labeled OE_Replace come after all those labeled 3595 ** OE_Ignore. This is necessary for the correct constraint check 3596 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3597 ** UPDATE and INSERT statements. 3598 */ 3599 if( db->init.busy || pTblName==0 ){ 3600 if( onError!=OE_Replace || pTab->pIndex==0 3601 || pTab->pIndex->onError==OE_Replace){ 3602 pIndex->pNext = pTab->pIndex; 3603 pTab->pIndex = pIndex; 3604 }else{ 3605 Index *pOther = pTab->pIndex; 3606 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3607 pOther = pOther->pNext; 3608 } 3609 pIndex->pNext = pOther->pNext; 3610 pOther->pNext = pIndex; 3611 } 3612 pIndex = 0; 3613 } 3614 else if( IN_RENAME_OBJECT ){ 3615 assert( pParse->pNewIndex==0 ); 3616 pParse->pNewIndex = pIndex; 3617 pIndex = 0; 3618 } 3619 3620 /* Clean up before exiting */ 3621 exit_create_index: 3622 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3623 sqlite3ExprDelete(db, pPIWhere); 3624 sqlite3ExprListDelete(db, pList); 3625 sqlite3SrcListDelete(db, pTblName); 3626 sqlite3DbFree(db, zName); 3627 } 3628 3629 /* 3630 ** Fill the Index.aiRowEst[] array with default information - information 3631 ** to be used when we have not run the ANALYZE command. 3632 ** 3633 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3634 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3635 ** number of rows in the table that match any particular value of the 3636 ** first column of the index. aiRowEst[2] is an estimate of the number 3637 ** of rows that match any particular combination of the first 2 columns 3638 ** of the index. And so forth. It must always be the case that 3639 * 3640 ** aiRowEst[N]<=aiRowEst[N-1] 3641 ** aiRowEst[N]>=1 3642 ** 3643 ** Apart from that, we have little to go on besides intuition as to 3644 ** how aiRowEst[] should be initialized. The numbers generated here 3645 ** are based on typical values found in actual indices. 3646 */ 3647 void sqlite3DefaultRowEst(Index *pIdx){ 3648 /* 10, 9, 8, 7, 6 */ 3649 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3650 LogEst *a = pIdx->aiRowLogEst; 3651 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3652 int i; 3653 3654 /* Indexes with default row estimates should not have stat1 data */ 3655 assert( !pIdx->hasStat1 ); 3656 3657 /* Set the first entry (number of rows in the index) to the estimated 3658 ** number of rows in the table, or half the number of rows in the table 3659 ** for a partial index. But do not let the estimate drop below 10. */ 3660 a[0] = pIdx->pTable->nRowLogEst; 3661 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3662 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3663 3664 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3665 ** 6 and each subsequent value (if any) is 5. */ 3666 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3667 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3668 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3669 } 3670 3671 assert( 0==sqlite3LogEst(1) ); 3672 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3673 } 3674 3675 /* 3676 ** This routine will drop an existing named index. This routine 3677 ** implements the DROP INDEX statement. 3678 */ 3679 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3680 Index *pIndex; 3681 Vdbe *v; 3682 sqlite3 *db = pParse->db; 3683 int iDb; 3684 3685 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3686 if( db->mallocFailed ){ 3687 goto exit_drop_index; 3688 } 3689 assert( pName->nSrc==1 ); 3690 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3691 goto exit_drop_index; 3692 } 3693 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3694 if( pIndex==0 ){ 3695 if( !ifExists ){ 3696 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3697 }else{ 3698 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3699 } 3700 pParse->checkSchema = 1; 3701 goto exit_drop_index; 3702 } 3703 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3704 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3705 "or PRIMARY KEY constraint cannot be dropped", 0); 3706 goto exit_drop_index; 3707 } 3708 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3709 #ifndef SQLITE_OMIT_AUTHORIZATION 3710 { 3711 int code = SQLITE_DROP_INDEX; 3712 Table *pTab = pIndex->pTable; 3713 const char *zDb = db->aDb[iDb].zDbSName; 3714 const char *zTab = SCHEMA_TABLE(iDb); 3715 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3716 goto exit_drop_index; 3717 } 3718 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3719 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3720 goto exit_drop_index; 3721 } 3722 } 3723 #endif 3724 3725 /* Generate code to remove the index and from the master table */ 3726 v = sqlite3GetVdbe(pParse); 3727 if( v ){ 3728 sqlite3BeginWriteOperation(pParse, 1, iDb); 3729 sqlite3NestedParse(pParse, 3730 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3731 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3732 ); 3733 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3734 sqlite3ChangeCookie(pParse, iDb); 3735 destroyRootPage(pParse, pIndex->tnum, iDb); 3736 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3737 } 3738 3739 exit_drop_index: 3740 sqlite3SrcListDelete(db, pName); 3741 } 3742 3743 /* 3744 ** pArray is a pointer to an array of objects. Each object in the 3745 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3746 ** to extend the array so that there is space for a new object at the end. 3747 ** 3748 ** When this function is called, *pnEntry contains the current size of 3749 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3750 ** in total). 3751 ** 3752 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3753 ** space allocated for the new object is zeroed, *pnEntry updated to 3754 ** reflect the new size of the array and a pointer to the new allocation 3755 ** returned. *pIdx is set to the index of the new array entry in this case. 3756 ** 3757 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3758 ** unchanged and a copy of pArray returned. 3759 */ 3760 void *sqlite3ArrayAllocate( 3761 sqlite3 *db, /* Connection to notify of malloc failures */ 3762 void *pArray, /* Array of objects. Might be reallocated */ 3763 int szEntry, /* Size of each object in the array */ 3764 int *pnEntry, /* Number of objects currently in use */ 3765 int *pIdx /* Write the index of a new slot here */ 3766 ){ 3767 char *z; 3768 int n = *pnEntry; 3769 if( (n & (n-1))==0 ){ 3770 int sz = (n==0) ? 1 : 2*n; 3771 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3772 if( pNew==0 ){ 3773 *pIdx = -1; 3774 return pArray; 3775 } 3776 pArray = pNew; 3777 } 3778 z = (char*)pArray; 3779 memset(&z[n * szEntry], 0, szEntry); 3780 *pIdx = n; 3781 ++*pnEntry; 3782 return pArray; 3783 } 3784 3785 /* 3786 ** Append a new element to the given IdList. Create a new IdList if 3787 ** need be. 3788 ** 3789 ** A new IdList is returned, or NULL if malloc() fails. 3790 */ 3791 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 3792 sqlite3 *db = pParse->db; 3793 int i; 3794 if( pList==0 ){ 3795 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3796 if( pList==0 ) return 0; 3797 } 3798 pList->a = sqlite3ArrayAllocate( 3799 db, 3800 pList->a, 3801 sizeof(pList->a[0]), 3802 &pList->nId, 3803 &i 3804 ); 3805 if( i<0 ){ 3806 sqlite3IdListDelete(db, pList); 3807 return 0; 3808 } 3809 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3810 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 3811 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 3812 } 3813 return pList; 3814 } 3815 3816 /* 3817 ** Delete an IdList. 3818 */ 3819 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3820 int i; 3821 if( pList==0 ) return; 3822 for(i=0; i<pList->nId; i++){ 3823 sqlite3DbFree(db, pList->a[i].zName); 3824 } 3825 sqlite3DbFree(db, pList->a); 3826 sqlite3DbFreeNN(db, pList); 3827 } 3828 3829 /* 3830 ** Return the index in pList of the identifier named zId. Return -1 3831 ** if not found. 3832 */ 3833 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3834 int i; 3835 if( pList==0 ) return -1; 3836 for(i=0; i<pList->nId; i++){ 3837 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3838 } 3839 return -1; 3840 } 3841 3842 /* 3843 ** Maximum size of a SrcList object. 3844 ** The SrcList object is used to represent the FROM clause of a 3845 ** SELECT statement, and the query planner cannot deal with more 3846 ** than 64 tables in a join. So any value larger than 64 here 3847 ** is sufficient for most uses. Smaller values, like say 10, are 3848 ** appropriate for small and memory-limited applications. 3849 */ 3850 #ifndef SQLITE_MAX_SRCLIST 3851 # define SQLITE_MAX_SRCLIST 200 3852 #endif 3853 3854 /* 3855 ** Expand the space allocated for the given SrcList object by 3856 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3857 ** New slots are zeroed. 3858 ** 3859 ** For example, suppose a SrcList initially contains two entries: A,B. 3860 ** To append 3 new entries onto the end, do this: 3861 ** 3862 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3863 ** 3864 ** After the call above it would contain: A, B, nil, nil, nil. 3865 ** If the iStart argument had been 1 instead of 2, then the result 3866 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3867 ** the iStart value would be 0. The result then would 3868 ** be: nil, nil, nil, A, B. 3869 ** 3870 ** If a memory allocation fails or the SrcList becomes too large, leave 3871 ** the original SrcList unchanged, return NULL, and leave an error message 3872 ** in pParse. 3873 */ 3874 SrcList *sqlite3SrcListEnlarge( 3875 Parse *pParse, /* Parsing context into which errors are reported */ 3876 SrcList *pSrc, /* The SrcList to be enlarged */ 3877 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3878 int iStart /* Index in pSrc->a[] of first new slot */ 3879 ){ 3880 int i; 3881 3882 /* Sanity checking on calling parameters */ 3883 assert( iStart>=0 ); 3884 assert( nExtra>=1 ); 3885 assert( pSrc!=0 ); 3886 assert( iStart<=pSrc->nSrc ); 3887 3888 /* Allocate additional space if needed */ 3889 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3890 SrcList *pNew; 3891 int nAlloc = pSrc->nSrc*2+nExtra; 3892 sqlite3 *db = pParse->db; 3893 3894 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 3895 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 3896 SQLITE_MAX_SRCLIST); 3897 return 0; 3898 } 3899 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 3900 pNew = sqlite3DbRealloc(db, pSrc, 3901 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3902 if( pNew==0 ){ 3903 assert( db->mallocFailed ); 3904 return 0; 3905 } 3906 pSrc = pNew; 3907 pSrc->nAlloc = nAlloc; 3908 } 3909 3910 /* Move existing slots that come after the newly inserted slots 3911 ** out of the way */ 3912 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3913 pSrc->a[i+nExtra] = pSrc->a[i]; 3914 } 3915 pSrc->nSrc += nExtra; 3916 3917 /* Zero the newly allocated slots */ 3918 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3919 for(i=iStart; i<iStart+nExtra; i++){ 3920 pSrc->a[i].iCursor = -1; 3921 } 3922 3923 /* Return a pointer to the enlarged SrcList */ 3924 return pSrc; 3925 } 3926 3927 3928 /* 3929 ** Append a new table name to the given SrcList. Create a new SrcList if 3930 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3931 ** 3932 ** A SrcList is returned, or NULL if there is an OOM error or if the 3933 ** SrcList grows to large. The returned 3934 ** SrcList might be the same as the SrcList that was input or it might be 3935 ** a new one. If an OOM error does occurs, then the prior value of pList 3936 ** that is input to this routine is automatically freed. 3937 ** 3938 ** If pDatabase is not null, it means that the table has an optional 3939 ** database name prefix. Like this: "database.table". The pDatabase 3940 ** points to the table name and the pTable points to the database name. 3941 ** The SrcList.a[].zName field is filled with the table name which might 3942 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3943 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3944 ** or with NULL if no database is specified. 3945 ** 3946 ** In other words, if call like this: 3947 ** 3948 ** sqlite3SrcListAppend(D,A,B,0); 3949 ** 3950 ** Then B is a table name and the database name is unspecified. If called 3951 ** like this: 3952 ** 3953 ** sqlite3SrcListAppend(D,A,B,C); 3954 ** 3955 ** Then C is the table name and B is the database name. If C is defined 3956 ** then so is B. In other words, we never have a case where: 3957 ** 3958 ** sqlite3SrcListAppend(D,A,0,C); 3959 ** 3960 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3961 ** before being added to the SrcList. 3962 */ 3963 SrcList *sqlite3SrcListAppend( 3964 Parse *pParse, /* Parsing context, in which errors are reported */ 3965 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3966 Token *pTable, /* Table to append */ 3967 Token *pDatabase /* Database of the table */ 3968 ){ 3969 struct SrcList_item *pItem; 3970 sqlite3 *db; 3971 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3972 assert( pParse!=0 ); 3973 assert( pParse->db!=0 ); 3974 db = pParse->db; 3975 if( pList==0 ){ 3976 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 3977 if( pList==0 ) return 0; 3978 pList->nAlloc = 1; 3979 pList->nSrc = 1; 3980 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3981 pList->a[0].iCursor = -1; 3982 }else{ 3983 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 3984 if( pNew==0 ){ 3985 sqlite3SrcListDelete(db, pList); 3986 return 0; 3987 }else{ 3988 pList = pNew; 3989 } 3990 } 3991 pItem = &pList->a[pList->nSrc-1]; 3992 if( pDatabase && pDatabase->z==0 ){ 3993 pDatabase = 0; 3994 } 3995 if( pDatabase ){ 3996 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3997 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3998 }else{ 3999 pItem->zName = sqlite3NameFromToken(db, pTable); 4000 pItem->zDatabase = 0; 4001 } 4002 return pList; 4003 } 4004 4005 /* 4006 ** Assign VdbeCursor index numbers to all tables in a SrcList 4007 */ 4008 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4009 int i; 4010 struct SrcList_item *pItem; 4011 assert(pList || pParse->db->mallocFailed ); 4012 if( pList ){ 4013 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4014 if( pItem->iCursor>=0 ) break; 4015 pItem->iCursor = pParse->nTab++; 4016 if( pItem->pSelect ){ 4017 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4018 } 4019 } 4020 } 4021 } 4022 4023 /* 4024 ** Delete an entire SrcList including all its substructure. 4025 */ 4026 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4027 int i; 4028 struct SrcList_item *pItem; 4029 if( pList==0 ) return; 4030 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4031 sqlite3DbFree(db, pItem->zDatabase); 4032 sqlite3DbFree(db, pItem->zName); 4033 sqlite3DbFree(db, pItem->zAlias); 4034 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4035 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4036 sqlite3DeleteTable(db, pItem->pTab); 4037 sqlite3SelectDelete(db, pItem->pSelect); 4038 sqlite3ExprDelete(db, pItem->pOn); 4039 sqlite3IdListDelete(db, pItem->pUsing); 4040 } 4041 sqlite3DbFreeNN(db, pList); 4042 } 4043 4044 /* 4045 ** This routine is called by the parser to add a new term to the 4046 ** end of a growing FROM clause. The "p" parameter is the part of 4047 ** the FROM clause that has already been constructed. "p" is NULL 4048 ** if this is the first term of the FROM clause. pTable and pDatabase 4049 ** are the name of the table and database named in the FROM clause term. 4050 ** pDatabase is NULL if the database name qualifier is missing - the 4051 ** usual case. If the term has an alias, then pAlias points to the 4052 ** alias token. If the term is a subquery, then pSubquery is the 4053 ** SELECT statement that the subquery encodes. The pTable and 4054 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4055 ** parameters are the content of the ON and USING clauses. 4056 ** 4057 ** Return a new SrcList which encodes is the FROM with the new 4058 ** term added. 4059 */ 4060 SrcList *sqlite3SrcListAppendFromTerm( 4061 Parse *pParse, /* Parsing context */ 4062 SrcList *p, /* The left part of the FROM clause already seen */ 4063 Token *pTable, /* Name of the table to add to the FROM clause */ 4064 Token *pDatabase, /* Name of the database containing pTable */ 4065 Token *pAlias, /* The right-hand side of the AS subexpression */ 4066 Select *pSubquery, /* A subquery used in place of a table name */ 4067 Expr *pOn, /* The ON clause of a join */ 4068 IdList *pUsing /* The USING clause of a join */ 4069 ){ 4070 struct SrcList_item *pItem; 4071 sqlite3 *db = pParse->db; 4072 if( !p && (pOn || pUsing) ){ 4073 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4074 (pOn ? "ON" : "USING") 4075 ); 4076 goto append_from_error; 4077 } 4078 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4079 if( p==0 ){ 4080 goto append_from_error; 4081 } 4082 assert( p->nSrc>0 ); 4083 pItem = &p->a[p->nSrc-1]; 4084 assert( (pTable==0)==(pDatabase==0) ); 4085 assert( pItem->zName==0 || pDatabase!=0 ); 4086 if( IN_RENAME_OBJECT && pItem->zName ){ 4087 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4088 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4089 } 4090 assert( pAlias!=0 ); 4091 if( pAlias->n ){ 4092 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4093 } 4094 pItem->pSelect = pSubquery; 4095 pItem->pOn = pOn; 4096 pItem->pUsing = pUsing; 4097 return p; 4098 4099 append_from_error: 4100 assert( p==0 ); 4101 sqlite3ExprDelete(db, pOn); 4102 sqlite3IdListDelete(db, pUsing); 4103 sqlite3SelectDelete(db, pSubquery); 4104 return 0; 4105 } 4106 4107 /* 4108 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4109 ** element of the source-list passed as the second argument. 4110 */ 4111 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4112 assert( pIndexedBy!=0 ); 4113 if( p && pIndexedBy->n>0 ){ 4114 struct SrcList_item *pItem; 4115 assert( p->nSrc>0 ); 4116 pItem = &p->a[p->nSrc-1]; 4117 assert( pItem->fg.notIndexed==0 ); 4118 assert( pItem->fg.isIndexedBy==0 ); 4119 assert( pItem->fg.isTabFunc==0 ); 4120 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4121 /* A "NOT INDEXED" clause was supplied. See parse.y 4122 ** construct "indexed_opt" for details. */ 4123 pItem->fg.notIndexed = 1; 4124 }else{ 4125 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4126 pItem->fg.isIndexedBy = 1; 4127 } 4128 } 4129 } 4130 4131 /* 4132 ** Add the list of function arguments to the SrcList entry for a 4133 ** table-valued-function. 4134 */ 4135 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4136 if( p ){ 4137 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4138 assert( pItem->fg.notIndexed==0 ); 4139 assert( pItem->fg.isIndexedBy==0 ); 4140 assert( pItem->fg.isTabFunc==0 ); 4141 pItem->u1.pFuncArg = pList; 4142 pItem->fg.isTabFunc = 1; 4143 }else{ 4144 sqlite3ExprListDelete(pParse->db, pList); 4145 } 4146 } 4147 4148 /* 4149 ** When building up a FROM clause in the parser, the join operator 4150 ** is initially attached to the left operand. But the code generator 4151 ** expects the join operator to be on the right operand. This routine 4152 ** Shifts all join operators from left to right for an entire FROM 4153 ** clause. 4154 ** 4155 ** Example: Suppose the join is like this: 4156 ** 4157 ** A natural cross join B 4158 ** 4159 ** The operator is "natural cross join". The A and B operands are stored 4160 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4161 ** operator with A. This routine shifts that operator over to B. 4162 */ 4163 void sqlite3SrcListShiftJoinType(SrcList *p){ 4164 if( p ){ 4165 int i; 4166 for(i=p->nSrc-1; i>0; i--){ 4167 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4168 } 4169 p->a[0].fg.jointype = 0; 4170 } 4171 } 4172 4173 /* 4174 ** Generate VDBE code for a BEGIN statement. 4175 */ 4176 void sqlite3BeginTransaction(Parse *pParse, int type){ 4177 sqlite3 *db; 4178 Vdbe *v; 4179 int i; 4180 4181 assert( pParse!=0 ); 4182 db = pParse->db; 4183 assert( db!=0 ); 4184 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4185 return; 4186 } 4187 v = sqlite3GetVdbe(pParse); 4188 if( !v ) return; 4189 if( type!=TK_DEFERRED ){ 4190 for(i=0; i<db->nDb; i++){ 4191 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4192 sqlite3VdbeUsesBtree(v, i); 4193 } 4194 } 4195 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4196 } 4197 4198 /* 4199 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4200 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4201 ** code is generated for a COMMIT. 4202 */ 4203 void sqlite3EndTransaction(Parse *pParse, int eType){ 4204 Vdbe *v; 4205 int isRollback; 4206 4207 assert( pParse!=0 ); 4208 assert( pParse->db!=0 ); 4209 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4210 isRollback = eType==TK_ROLLBACK; 4211 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4212 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4213 return; 4214 } 4215 v = sqlite3GetVdbe(pParse); 4216 if( v ){ 4217 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4218 } 4219 } 4220 4221 /* 4222 ** This function is called by the parser when it parses a command to create, 4223 ** release or rollback an SQL savepoint. 4224 */ 4225 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4226 char *zName = sqlite3NameFromToken(pParse->db, pName); 4227 if( zName ){ 4228 Vdbe *v = sqlite3GetVdbe(pParse); 4229 #ifndef SQLITE_OMIT_AUTHORIZATION 4230 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4231 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4232 #endif 4233 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4234 sqlite3DbFree(pParse->db, zName); 4235 return; 4236 } 4237 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4238 } 4239 } 4240 4241 /* 4242 ** Make sure the TEMP database is open and available for use. Return 4243 ** the number of errors. Leave any error messages in the pParse structure. 4244 */ 4245 int sqlite3OpenTempDatabase(Parse *pParse){ 4246 sqlite3 *db = pParse->db; 4247 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4248 int rc; 4249 Btree *pBt; 4250 static const int flags = 4251 SQLITE_OPEN_READWRITE | 4252 SQLITE_OPEN_CREATE | 4253 SQLITE_OPEN_EXCLUSIVE | 4254 SQLITE_OPEN_DELETEONCLOSE | 4255 SQLITE_OPEN_TEMP_DB; 4256 4257 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4258 if( rc!=SQLITE_OK ){ 4259 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4260 "file for storing temporary tables"); 4261 pParse->rc = rc; 4262 return 1; 4263 } 4264 db->aDb[1].pBt = pBt; 4265 assert( db->aDb[1].pSchema ); 4266 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4267 sqlite3OomFault(db); 4268 return 1; 4269 } 4270 } 4271 return 0; 4272 } 4273 4274 /* 4275 ** Record the fact that the schema cookie will need to be verified 4276 ** for database iDb. The code to actually verify the schema cookie 4277 ** will occur at the end of the top-level VDBE and will be generated 4278 ** later, by sqlite3FinishCoding(). 4279 */ 4280 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4281 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4282 4283 assert( iDb>=0 && iDb<pParse->db->nDb ); 4284 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4285 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4286 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4287 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4288 DbMaskSet(pToplevel->cookieMask, iDb); 4289 if( !OMIT_TEMPDB && iDb==1 ){ 4290 sqlite3OpenTempDatabase(pToplevel); 4291 } 4292 } 4293 } 4294 4295 /* 4296 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4297 ** attached database. Otherwise, invoke it for the database named zDb only. 4298 */ 4299 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4300 sqlite3 *db = pParse->db; 4301 int i; 4302 for(i=0; i<db->nDb; i++){ 4303 Db *pDb = &db->aDb[i]; 4304 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4305 sqlite3CodeVerifySchema(pParse, i); 4306 } 4307 } 4308 } 4309 4310 /* 4311 ** Generate VDBE code that prepares for doing an operation that 4312 ** might change the database. 4313 ** 4314 ** This routine starts a new transaction if we are not already within 4315 ** a transaction. If we are already within a transaction, then a checkpoint 4316 ** is set if the setStatement parameter is true. A checkpoint should 4317 ** be set for operations that might fail (due to a constraint) part of 4318 ** the way through and which will need to undo some writes without having to 4319 ** rollback the whole transaction. For operations where all constraints 4320 ** can be checked before any changes are made to the database, it is never 4321 ** necessary to undo a write and the checkpoint should not be set. 4322 */ 4323 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4324 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4325 sqlite3CodeVerifySchema(pParse, iDb); 4326 DbMaskSet(pToplevel->writeMask, iDb); 4327 pToplevel->isMultiWrite |= setStatement; 4328 } 4329 4330 /* 4331 ** Indicate that the statement currently under construction might write 4332 ** more than one entry (example: deleting one row then inserting another, 4333 ** inserting multiple rows in a table, or inserting a row and index entries.) 4334 ** If an abort occurs after some of these writes have completed, then it will 4335 ** be necessary to undo the completed writes. 4336 */ 4337 void sqlite3MultiWrite(Parse *pParse){ 4338 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4339 pToplevel->isMultiWrite = 1; 4340 } 4341 4342 /* 4343 ** The code generator calls this routine if is discovers that it is 4344 ** possible to abort a statement prior to completion. In order to 4345 ** perform this abort without corrupting the database, we need to make 4346 ** sure that the statement is protected by a statement transaction. 4347 ** 4348 ** Technically, we only need to set the mayAbort flag if the 4349 ** isMultiWrite flag was previously set. There is a time dependency 4350 ** such that the abort must occur after the multiwrite. This makes 4351 ** some statements involving the REPLACE conflict resolution algorithm 4352 ** go a little faster. But taking advantage of this time dependency 4353 ** makes it more difficult to prove that the code is correct (in 4354 ** particular, it prevents us from writing an effective 4355 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4356 ** to take the safe route and skip the optimization. 4357 */ 4358 void sqlite3MayAbort(Parse *pParse){ 4359 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4360 pToplevel->mayAbort = 1; 4361 } 4362 4363 /* 4364 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4365 ** error. The onError parameter determines which (if any) of the statement 4366 ** and/or current transaction is rolled back. 4367 */ 4368 void sqlite3HaltConstraint( 4369 Parse *pParse, /* Parsing context */ 4370 int errCode, /* extended error code */ 4371 int onError, /* Constraint type */ 4372 char *p4, /* Error message */ 4373 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4374 u8 p5Errmsg /* P5_ErrMsg type */ 4375 ){ 4376 Vdbe *v = sqlite3GetVdbe(pParse); 4377 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4378 if( onError==OE_Abort ){ 4379 sqlite3MayAbort(pParse); 4380 } 4381 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4382 sqlite3VdbeChangeP5(v, p5Errmsg); 4383 } 4384 4385 /* 4386 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4387 */ 4388 void sqlite3UniqueConstraint( 4389 Parse *pParse, /* Parsing context */ 4390 int onError, /* Constraint type */ 4391 Index *pIdx /* The index that triggers the constraint */ 4392 ){ 4393 char *zErr; 4394 int j; 4395 StrAccum errMsg; 4396 Table *pTab = pIdx->pTable; 4397 4398 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4399 if( pIdx->aColExpr ){ 4400 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4401 }else{ 4402 for(j=0; j<pIdx->nKeyCol; j++){ 4403 char *zCol; 4404 assert( pIdx->aiColumn[j]>=0 ); 4405 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4406 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4407 sqlite3_str_appendall(&errMsg, pTab->zName); 4408 sqlite3_str_append(&errMsg, ".", 1); 4409 sqlite3_str_appendall(&errMsg, zCol); 4410 } 4411 } 4412 zErr = sqlite3StrAccumFinish(&errMsg); 4413 sqlite3HaltConstraint(pParse, 4414 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4415 : SQLITE_CONSTRAINT_UNIQUE, 4416 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4417 } 4418 4419 4420 /* 4421 ** Code an OP_Halt due to non-unique rowid. 4422 */ 4423 void sqlite3RowidConstraint( 4424 Parse *pParse, /* Parsing context */ 4425 int onError, /* Conflict resolution algorithm */ 4426 Table *pTab /* The table with the non-unique rowid */ 4427 ){ 4428 char *zMsg; 4429 int rc; 4430 if( pTab->iPKey>=0 ){ 4431 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4432 pTab->aCol[pTab->iPKey].zName); 4433 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4434 }else{ 4435 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4436 rc = SQLITE_CONSTRAINT_ROWID; 4437 } 4438 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4439 P5_ConstraintUnique); 4440 } 4441 4442 /* 4443 ** Check to see if pIndex uses the collating sequence pColl. Return 4444 ** true if it does and false if it does not. 4445 */ 4446 #ifndef SQLITE_OMIT_REINDEX 4447 static int collationMatch(const char *zColl, Index *pIndex){ 4448 int i; 4449 assert( zColl!=0 ); 4450 for(i=0; i<pIndex->nColumn; i++){ 4451 const char *z = pIndex->azColl[i]; 4452 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4453 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4454 return 1; 4455 } 4456 } 4457 return 0; 4458 } 4459 #endif 4460 4461 /* 4462 ** Recompute all indices of pTab that use the collating sequence pColl. 4463 ** If pColl==0 then recompute all indices of pTab. 4464 */ 4465 #ifndef SQLITE_OMIT_REINDEX 4466 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4467 if( !IsVirtual(pTab) ){ 4468 Index *pIndex; /* An index associated with pTab */ 4469 4470 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4471 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4472 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4473 sqlite3BeginWriteOperation(pParse, 0, iDb); 4474 sqlite3RefillIndex(pParse, pIndex, -1); 4475 } 4476 } 4477 } 4478 } 4479 #endif 4480 4481 /* 4482 ** Recompute all indices of all tables in all databases where the 4483 ** indices use the collating sequence pColl. If pColl==0 then recompute 4484 ** all indices everywhere. 4485 */ 4486 #ifndef SQLITE_OMIT_REINDEX 4487 static void reindexDatabases(Parse *pParse, char const *zColl){ 4488 Db *pDb; /* A single database */ 4489 int iDb; /* The database index number */ 4490 sqlite3 *db = pParse->db; /* The database connection */ 4491 HashElem *k; /* For looping over tables in pDb */ 4492 Table *pTab; /* A table in the database */ 4493 4494 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4495 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4496 assert( pDb!=0 ); 4497 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4498 pTab = (Table*)sqliteHashData(k); 4499 reindexTable(pParse, pTab, zColl); 4500 } 4501 } 4502 } 4503 #endif 4504 4505 /* 4506 ** Generate code for the REINDEX command. 4507 ** 4508 ** REINDEX -- 1 4509 ** REINDEX <collation> -- 2 4510 ** REINDEX ?<database>.?<tablename> -- 3 4511 ** REINDEX ?<database>.?<indexname> -- 4 4512 ** 4513 ** Form 1 causes all indices in all attached databases to be rebuilt. 4514 ** Form 2 rebuilds all indices in all databases that use the named 4515 ** collating function. Forms 3 and 4 rebuild the named index or all 4516 ** indices associated with the named table. 4517 */ 4518 #ifndef SQLITE_OMIT_REINDEX 4519 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4520 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4521 char *z; /* Name of a table or index */ 4522 const char *zDb; /* Name of the database */ 4523 Table *pTab; /* A table in the database */ 4524 Index *pIndex; /* An index associated with pTab */ 4525 int iDb; /* The database index number */ 4526 sqlite3 *db = pParse->db; /* The database connection */ 4527 Token *pObjName; /* Name of the table or index to be reindexed */ 4528 4529 /* Read the database schema. If an error occurs, leave an error message 4530 ** and code in pParse and return NULL. */ 4531 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4532 return; 4533 } 4534 4535 if( pName1==0 ){ 4536 reindexDatabases(pParse, 0); 4537 return; 4538 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4539 char *zColl; 4540 assert( pName1->z ); 4541 zColl = sqlite3NameFromToken(pParse->db, pName1); 4542 if( !zColl ) return; 4543 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4544 if( pColl ){ 4545 reindexDatabases(pParse, zColl); 4546 sqlite3DbFree(db, zColl); 4547 return; 4548 } 4549 sqlite3DbFree(db, zColl); 4550 } 4551 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4552 if( iDb<0 ) return; 4553 z = sqlite3NameFromToken(db, pObjName); 4554 if( z==0 ) return; 4555 zDb = db->aDb[iDb].zDbSName; 4556 pTab = sqlite3FindTable(db, z, zDb); 4557 if( pTab ){ 4558 reindexTable(pParse, pTab, 0); 4559 sqlite3DbFree(db, z); 4560 return; 4561 } 4562 pIndex = sqlite3FindIndex(db, z, zDb); 4563 sqlite3DbFree(db, z); 4564 if( pIndex ){ 4565 sqlite3BeginWriteOperation(pParse, 0, iDb); 4566 sqlite3RefillIndex(pParse, pIndex, -1); 4567 return; 4568 } 4569 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4570 } 4571 #endif 4572 4573 /* 4574 ** Return a KeyInfo structure that is appropriate for the given Index. 4575 ** 4576 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4577 ** when it has finished using it. 4578 */ 4579 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4580 int i; 4581 int nCol = pIdx->nColumn; 4582 int nKey = pIdx->nKeyCol; 4583 KeyInfo *pKey; 4584 if( pParse->nErr ) return 0; 4585 if( pIdx->uniqNotNull ){ 4586 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4587 }else{ 4588 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4589 } 4590 if( pKey ){ 4591 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4592 for(i=0; i<nCol; i++){ 4593 const char *zColl = pIdx->azColl[i]; 4594 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4595 sqlite3LocateCollSeq(pParse, zColl); 4596 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4597 } 4598 if( pParse->nErr ){ 4599 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4600 if( pIdx->bNoQuery==0 ){ 4601 /* Deactivate the index because it contains an unknown collating 4602 ** sequence. The only way to reactive the index is to reload the 4603 ** schema. Adding the missing collating sequence later does not 4604 ** reactive the index. The application had the chance to register 4605 ** the missing index using the collation-needed callback. For 4606 ** simplicity, SQLite will not give the application a second chance. 4607 */ 4608 pIdx->bNoQuery = 1; 4609 pParse->rc = SQLITE_ERROR_RETRY; 4610 } 4611 sqlite3KeyInfoUnref(pKey); 4612 pKey = 0; 4613 } 4614 } 4615 return pKey; 4616 } 4617 4618 #ifndef SQLITE_OMIT_CTE 4619 /* 4620 ** This routine is invoked once per CTE by the parser while parsing a 4621 ** WITH clause. 4622 */ 4623 With *sqlite3WithAdd( 4624 Parse *pParse, /* Parsing context */ 4625 With *pWith, /* Existing WITH clause, or NULL */ 4626 Token *pName, /* Name of the common-table */ 4627 ExprList *pArglist, /* Optional column name list for the table */ 4628 Select *pQuery /* Query used to initialize the table */ 4629 ){ 4630 sqlite3 *db = pParse->db; 4631 With *pNew; 4632 char *zName; 4633 4634 /* Check that the CTE name is unique within this WITH clause. If 4635 ** not, store an error in the Parse structure. */ 4636 zName = sqlite3NameFromToken(pParse->db, pName); 4637 if( zName && pWith ){ 4638 int i; 4639 for(i=0; i<pWith->nCte; i++){ 4640 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4641 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4642 } 4643 } 4644 } 4645 4646 if( pWith ){ 4647 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4648 pNew = sqlite3DbRealloc(db, pWith, nByte); 4649 }else{ 4650 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4651 } 4652 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4653 4654 if( db->mallocFailed ){ 4655 sqlite3ExprListDelete(db, pArglist); 4656 sqlite3SelectDelete(db, pQuery); 4657 sqlite3DbFree(db, zName); 4658 pNew = pWith; 4659 }else{ 4660 pNew->a[pNew->nCte].pSelect = pQuery; 4661 pNew->a[pNew->nCte].pCols = pArglist; 4662 pNew->a[pNew->nCte].zName = zName; 4663 pNew->a[pNew->nCte].zCteErr = 0; 4664 pNew->nCte++; 4665 } 4666 4667 return pNew; 4668 } 4669 4670 /* 4671 ** Free the contents of the With object passed as the second argument. 4672 */ 4673 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4674 if( pWith ){ 4675 int i; 4676 for(i=0; i<pWith->nCte; i++){ 4677 struct Cte *pCte = &pWith->a[i]; 4678 sqlite3ExprListDelete(db, pCte->pCols); 4679 sqlite3SelectDelete(db, pCte->pSelect); 4680 sqlite3DbFree(db, pCte->zName); 4681 } 4682 sqlite3DbFree(db, pWith); 4683 } 4684 } 4685 #endif /* !defined(SQLITE_OMIT_CTE) */ 4686