1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 sqlite3OomFault(pToplevel->db); 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 int isView, /* True if looking for a VIEW rather than a TABLE */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = isView ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( zDbase ){ 368 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 369 }else{ 370 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 371 } 372 pParse->checkSchema = 1; 373 } 374 375 return p; 376 } 377 378 /* 379 ** Locate the table identified by *p. 380 ** 381 ** This is a wrapper around sqlite3LocateTable(). The difference between 382 ** sqlite3LocateTable() and this function is that this function restricts 383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 384 ** non-NULL if it is part of a view or trigger program definition. See 385 ** sqlite3FixSrcList() for details. 386 */ 387 Table *sqlite3LocateTableItem( 388 Parse *pParse, 389 int isView, 390 struct SrcList_item *p 391 ){ 392 const char *zDb; 393 assert( p->pSchema==0 || p->zDatabase==0 ); 394 if( p->pSchema ){ 395 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 396 zDb = pParse->db->aDb[iDb].zName; 397 }else{ 398 zDb = p->zDatabase; 399 } 400 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 401 } 402 403 /* 404 ** Locate the in-memory structure that describes 405 ** a particular index given the name of that index 406 ** and the name of the database that contains the index. 407 ** Return NULL if not found. 408 ** 409 ** If zDatabase is 0, all databases are searched for the 410 ** table and the first matching index is returned. (No checking 411 ** for duplicate index names is done.) The search order is 412 ** TEMP first, then MAIN, then any auxiliary databases added 413 ** using the ATTACH command. 414 */ 415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 416 Index *p = 0; 417 int i; 418 /* All mutexes are required for schema access. Make sure we hold them. */ 419 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 420 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 421 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 422 Schema *pSchema = db->aDb[j].pSchema; 423 assert( pSchema ); 424 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 425 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 426 p = sqlite3HashFind(&pSchema->idxHash, zName); 427 if( p ) break; 428 } 429 return p; 430 } 431 432 /* 433 ** Reclaim the memory used by an index 434 */ 435 static void freeIndex(sqlite3 *db, Index *p){ 436 #ifndef SQLITE_OMIT_ANALYZE 437 sqlite3DeleteIndexSamples(db, p); 438 #endif 439 sqlite3ExprDelete(db, p->pPartIdxWhere); 440 sqlite3ExprListDelete(db, p->aColExpr); 441 sqlite3DbFree(db, p->zColAff); 442 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 sqlite3_free(p->aiRowEst); 445 #endif 446 sqlite3DbFree(db, p); 447 } 448 449 /* 450 ** For the index called zIdxName which is found in the database iDb, 451 ** unlike that index from its Table then remove the index from 452 ** the index hash table and free all memory structures associated 453 ** with the index. 454 */ 455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 456 Index *pIndex; 457 Hash *pHash; 458 459 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 460 pHash = &db->aDb[iDb].pSchema->idxHash; 461 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 462 if( ALWAYS(pIndex) ){ 463 if( pIndex->pTable->pIndex==pIndex ){ 464 pIndex->pTable->pIndex = pIndex->pNext; 465 }else{ 466 Index *p; 467 /* Justification of ALWAYS(); The index must be on the list of 468 ** indices. */ 469 p = pIndex->pTable->pIndex; 470 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 471 if( ALWAYS(p && p->pNext==pIndex) ){ 472 p->pNext = pIndex->pNext; 473 } 474 } 475 freeIndex(db, pIndex); 476 } 477 db->flags |= SQLITE_InternChanges; 478 } 479 480 /* 481 ** Look through the list of open database files in db->aDb[] and if 482 ** any have been closed, remove them from the list. Reallocate the 483 ** db->aDb[] structure to a smaller size, if possible. 484 ** 485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 486 ** are never candidates for being collapsed. 487 */ 488 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 489 int i, j; 490 for(i=j=2; i<db->nDb; i++){ 491 struct Db *pDb = &db->aDb[i]; 492 if( pDb->pBt==0 ){ 493 sqlite3DbFree(db, pDb->zName); 494 pDb->zName = 0; 495 continue; 496 } 497 if( j<i ){ 498 db->aDb[j] = db->aDb[i]; 499 } 500 j++; 501 } 502 db->nDb = j; 503 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 504 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 505 sqlite3DbFree(db, db->aDb); 506 db->aDb = db->aDbStatic; 507 } 508 } 509 510 /* 511 ** Reset the schema for the database at index iDb. Also reset the 512 ** TEMP schema. 513 */ 514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 515 Db *pDb; 516 assert( iDb<db->nDb ); 517 518 /* Case 1: Reset the single schema identified by iDb */ 519 pDb = &db->aDb[iDb]; 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 assert( pDb->pSchema!=0 ); 522 sqlite3SchemaClear(pDb->pSchema); 523 524 /* If any database other than TEMP is reset, then also reset TEMP 525 ** since TEMP might be holding triggers that reference tables in the 526 ** other database. 527 */ 528 if( iDb!=1 ){ 529 pDb = &db->aDb[1]; 530 assert( pDb->pSchema!=0 ); 531 sqlite3SchemaClear(pDb->pSchema); 532 } 533 return; 534 } 535 536 /* 537 ** Erase all schema information from all attached databases (including 538 ** "main" and "temp") for a single database connection. 539 */ 540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 541 int i; 542 sqlite3BtreeEnterAll(db); 543 for(i=0; i<db->nDb; i++){ 544 Db *pDb = &db->aDb[i]; 545 if( pDb->pSchema ){ 546 sqlite3SchemaClear(pDb->pSchema); 547 } 548 } 549 db->flags &= ~SQLITE_InternChanges; 550 sqlite3VtabUnlockList(db); 551 sqlite3BtreeLeaveAll(db); 552 sqlite3CollapseDatabaseArray(db); 553 } 554 555 /* 556 ** This routine is called when a commit occurs. 557 */ 558 void sqlite3CommitInternalChanges(sqlite3 *db){ 559 db->flags &= ~SQLITE_InternChanges; 560 } 561 562 /* 563 ** Delete memory allocated for the column names of a table or view (the 564 ** Table.aCol[] array). 565 */ 566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 567 int i; 568 Column *pCol; 569 assert( pTable!=0 ); 570 if( (pCol = pTable->aCol)!=0 ){ 571 for(i=0; i<pTable->nCol; i++, pCol++){ 572 sqlite3DbFree(db, pCol->zName); 573 sqlite3ExprDelete(db, pCol->pDflt); 574 sqlite3DbFree(db, pCol->zDflt); 575 sqlite3DbFree(db, pCol->zType); 576 sqlite3DbFree(db, pCol->zColl); 577 } 578 sqlite3DbFree(db, pTable->aCol); 579 } 580 } 581 582 /* 583 ** Remove the memory data structures associated with the given 584 ** Table. No changes are made to disk by this routine. 585 ** 586 ** This routine just deletes the data structure. It does not unlink 587 ** the table data structure from the hash table. But it does destroy 588 ** memory structures of the indices and foreign keys associated with 589 ** the table. 590 ** 591 ** The db parameter is optional. It is needed if the Table object 592 ** contains lookaside memory. (Table objects in the schema do not use 593 ** lookaside memory, but some ephemeral Table objects do.) Or the 594 ** db parameter can be used with db->pnBytesFreed to measure the memory 595 ** used by the Table object. 596 */ 597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 598 Index *pIndex, *pNext; 599 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 600 601 assert( !pTable || pTable->nRef>0 ); 602 603 /* Do not delete the table until the reference count reaches zero. */ 604 if( !pTable ) return; 605 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 606 607 /* Record the number of outstanding lookaside allocations in schema Tables 608 ** prior to doing any free() operations. Since schema Tables do not use 609 ** lookaside, this number should not change. */ 610 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 611 db->lookaside.nOut : 0 ); 612 613 /* Delete all indices associated with this table. */ 614 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 615 pNext = pIndex->pNext; 616 assert( pIndex->pSchema==pTable->pSchema ); 617 if( !db || db->pnBytesFreed==0 ){ 618 char *zName = pIndex->zName; 619 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 620 &pIndex->pSchema->idxHash, zName, 0 621 ); 622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 623 assert( pOld==pIndex || pOld==0 ); 624 } 625 freeIndex(db, pIndex); 626 } 627 628 /* Delete any foreign keys attached to this table. */ 629 sqlite3FkDelete(db, pTable); 630 631 /* Delete the Table structure itself. 632 */ 633 sqlite3DeleteColumnNames(db, pTable); 634 sqlite3DbFree(db, pTable->zName); 635 sqlite3DbFree(db, pTable->zColAff); 636 sqlite3SelectDelete(db, pTable->pSelect); 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #ifndef SQLITE_OMIT_VIRTUALTABLE 639 sqlite3VtabClear(db, pTable); 640 #endif 641 sqlite3DbFree(db, pTable); 642 643 /* Verify that no lookaside memory was used by schema tables */ 644 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 645 } 646 647 /* 648 ** Unlink the given table from the hash tables and the delete the 649 ** table structure with all its indices and foreign keys. 650 */ 651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 652 Table *p; 653 Db *pDb; 654 655 assert( db!=0 ); 656 assert( iDb>=0 && iDb<db->nDb ); 657 assert( zTabName ); 658 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 659 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 660 pDb = &db->aDb[iDb]; 661 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 662 sqlite3DeleteTable(db, p); 663 db->flags |= SQLITE_InternChanges; 664 } 665 666 /* 667 ** Given a token, return a string that consists of the text of that 668 ** token. Space to hold the returned string 669 ** is obtained from sqliteMalloc() and must be freed by the calling 670 ** function. 671 ** 672 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 673 ** surround the body of the token are removed. 674 ** 675 ** Tokens are often just pointers into the original SQL text and so 676 ** are not \000 terminated and are not persistent. The returned string 677 ** is \000 terminated and is persistent. 678 */ 679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 680 char *zName; 681 if( pName ){ 682 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 683 sqlite3Dequote(zName); 684 }else{ 685 zName = 0; 686 } 687 return zName; 688 } 689 690 /* 691 ** Open the sqlite_master table stored in database number iDb for 692 ** writing. The table is opened using cursor 0. 693 */ 694 void sqlite3OpenMasterTable(Parse *p, int iDb){ 695 Vdbe *v = sqlite3GetVdbe(p); 696 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 697 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 698 if( p->nTab==0 ){ 699 p->nTab = 1; 700 } 701 } 702 703 /* 704 ** Parameter zName points to a nul-terminated buffer containing the name 705 ** of a database ("main", "temp" or the name of an attached db). This 706 ** function returns the index of the named database in db->aDb[], or 707 ** -1 if the named db cannot be found. 708 */ 709 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 710 int i = -1; /* Database number */ 711 if( zName ){ 712 Db *pDb; 713 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 714 if( 0==sqlite3StrICmp(pDb->zName, zName) ) break; 715 } 716 } 717 return i; 718 } 719 720 /* 721 ** The token *pName contains the name of a database (either "main" or 722 ** "temp" or the name of an attached db). This routine returns the 723 ** index of the named database in db->aDb[], or -1 if the named db 724 ** does not exist. 725 */ 726 int sqlite3FindDb(sqlite3 *db, Token *pName){ 727 int i; /* Database number */ 728 char *zName; /* Name we are searching for */ 729 zName = sqlite3NameFromToken(db, pName); 730 i = sqlite3FindDbName(db, zName); 731 sqlite3DbFree(db, zName); 732 return i; 733 } 734 735 /* The table or view or trigger name is passed to this routine via tokens 736 ** pName1 and pName2. If the table name was fully qualified, for example: 737 ** 738 ** CREATE TABLE xxx.yyy (...); 739 ** 740 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 741 ** the table name is not fully qualified, i.e.: 742 ** 743 ** CREATE TABLE yyy(...); 744 ** 745 ** Then pName1 is set to "yyy" and pName2 is "". 746 ** 747 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 748 ** pName2) that stores the unqualified table name. The index of the 749 ** database "xxx" is returned. 750 */ 751 int sqlite3TwoPartName( 752 Parse *pParse, /* Parsing and code generating context */ 753 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 754 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 755 Token **pUnqual /* Write the unqualified object name here */ 756 ){ 757 int iDb; /* Database holding the object */ 758 sqlite3 *db = pParse->db; 759 760 assert( pName2!=0 ); 761 if( pName2->n>0 ){ 762 if( db->init.busy ) { 763 sqlite3ErrorMsg(pParse, "corrupt database"); 764 return -1; 765 } 766 *pUnqual = pName2; 767 iDb = sqlite3FindDb(db, pName1); 768 if( iDb<0 ){ 769 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 770 return -1; 771 } 772 }else{ 773 assert( db->init.iDb==0 || db->init.busy ); 774 iDb = db->init.iDb; 775 *pUnqual = pName1; 776 } 777 return iDb; 778 } 779 780 /* 781 ** This routine is used to check if the UTF-8 string zName is a legal 782 ** unqualified name for a new schema object (table, index, view or 783 ** trigger). All names are legal except those that begin with the string 784 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 785 ** is reserved for internal use. 786 */ 787 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 788 if( !pParse->db->init.busy && pParse->nested==0 789 && (pParse->db->flags & SQLITE_WriteSchema)==0 790 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 791 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 792 return SQLITE_ERROR; 793 } 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Return the PRIMARY KEY index of a table 799 */ 800 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 801 Index *p; 802 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 803 return p; 804 } 805 806 /* 807 ** Return the column of index pIdx that corresponds to table 808 ** column iCol. Return -1 if not found. 809 */ 810 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 811 int i; 812 for(i=0; i<pIdx->nColumn; i++){ 813 if( iCol==pIdx->aiColumn[i] ) return i; 814 } 815 return -1; 816 } 817 818 /* 819 ** Begin constructing a new table representation in memory. This is 820 ** the first of several action routines that get called in response 821 ** to a CREATE TABLE statement. In particular, this routine is called 822 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 823 ** flag is true if the table should be stored in the auxiliary database 824 ** file instead of in the main database file. This is normally the case 825 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 826 ** CREATE and TABLE. 827 ** 828 ** The new table record is initialized and put in pParse->pNewTable. 829 ** As more of the CREATE TABLE statement is parsed, additional action 830 ** routines will be called to add more information to this record. 831 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 832 ** is called to complete the construction of the new table record. 833 */ 834 void sqlite3StartTable( 835 Parse *pParse, /* Parser context */ 836 Token *pName1, /* First part of the name of the table or view */ 837 Token *pName2, /* Second part of the name of the table or view */ 838 int isTemp, /* True if this is a TEMP table */ 839 int isView, /* True if this is a VIEW */ 840 int isVirtual, /* True if this is a VIRTUAL table */ 841 int noErr /* Do nothing if table already exists */ 842 ){ 843 Table *pTable; 844 char *zName = 0; /* The name of the new table */ 845 sqlite3 *db = pParse->db; 846 Vdbe *v; 847 int iDb; /* Database number to create the table in */ 848 Token *pName; /* Unqualified name of the table to create */ 849 850 if( db->init.busy && db->init.newTnum==1 ){ 851 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 852 iDb = db->init.iDb; 853 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 854 pName = pName1; 855 }else{ 856 /* The common case */ 857 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 858 if( iDb<0 ) return; 859 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 860 /* If creating a temp table, the name may not be qualified. Unless 861 ** the database name is "temp" anyway. */ 862 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 863 return; 864 } 865 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 866 zName = sqlite3NameFromToken(db, pName); 867 } 868 pParse->sNameToken = *pName; 869 if( zName==0 ) return; 870 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 871 goto begin_table_error; 872 } 873 if( db->init.iDb==1 ) isTemp = 1; 874 #ifndef SQLITE_OMIT_AUTHORIZATION 875 assert( isTemp==0 || isTemp==1 ); 876 assert( isView==0 || isView==1 ); 877 { 878 static const u8 aCode[] = { 879 SQLITE_CREATE_TABLE, 880 SQLITE_CREATE_TEMP_TABLE, 881 SQLITE_CREATE_VIEW, 882 SQLITE_CREATE_TEMP_VIEW 883 }; 884 char *zDb = db->aDb[iDb].zName; 885 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 886 goto begin_table_error; 887 } 888 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 889 zName, 0, zDb) ){ 890 goto begin_table_error; 891 } 892 } 893 #endif 894 895 /* Make sure the new table name does not collide with an existing 896 ** index or table name in the same database. Issue an error message if 897 ** it does. The exception is if the statement being parsed was passed 898 ** to an sqlite3_declare_vtab() call. In that case only the column names 899 ** and types will be used, so there is no need to test for namespace 900 ** collisions. 901 */ 902 if( !IN_DECLARE_VTAB ){ 903 char *zDb = db->aDb[iDb].zName; 904 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 905 goto begin_table_error; 906 } 907 pTable = sqlite3FindTable(db, zName, zDb); 908 if( pTable ){ 909 if( !noErr ){ 910 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 911 }else{ 912 assert( !db->init.busy || CORRUPT_DB ); 913 sqlite3CodeVerifySchema(pParse, iDb); 914 } 915 goto begin_table_error; 916 } 917 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 918 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 919 goto begin_table_error; 920 } 921 } 922 923 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 924 if( pTable==0 ){ 925 assert( db->mallocFailed ); 926 pParse->rc = SQLITE_NOMEM_BKPT; 927 pParse->nErr++; 928 goto begin_table_error; 929 } 930 pTable->zName = zName; 931 pTable->iPKey = -1; 932 pTable->pSchema = db->aDb[iDb].pSchema; 933 pTable->nRef = 1; 934 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 935 assert( pParse->pNewTable==0 ); 936 pParse->pNewTable = pTable; 937 938 /* If this is the magic sqlite_sequence table used by autoincrement, 939 ** then record a pointer to this table in the main database structure 940 ** so that INSERT can find the table easily. 941 */ 942 #ifndef SQLITE_OMIT_AUTOINCREMENT 943 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 944 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 945 pTable->pSchema->pSeqTab = pTable; 946 } 947 #endif 948 949 /* Begin generating the code that will insert the table record into 950 ** the SQLITE_MASTER table. Note in particular that we must go ahead 951 ** and allocate the record number for the table entry now. Before any 952 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 953 ** indices to be created and the table record must come before the 954 ** indices. Hence, the record number for the table must be allocated 955 ** now. 956 */ 957 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 958 int addr1; 959 int fileFormat; 960 int reg1, reg2, reg3; 961 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 962 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 963 sqlite3BeginWriteOperation(pParse, 1, iDb); 964 965 #ifndef SQLITE_OMIT_VIRTUALTABLE 966 if( isVirtual ){ 967 sqlite3VdbeAddOp0(v, OP_VBegin); 968 } 969 #endif 970 971 /* If the file format and encoding in the database have not been set, 972 ** set them now. 973 */ 974 reg1 = pParse->regRowid = ++pParse->nMem; 975 reg2 = pParse->regRoot = ++pParse->nMem; 976 reg3 = ++pParse->nMem; 977 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 978 sqlite3VdbeUsesBtree(v, iDb); 979 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 980 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 981 1 : SQLITE_MAX_FILE_FORMAT; 982 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 983 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 984 sqlite3VdbeJumpHere(v, addr1); 985 986 /* This just creates a place-holder record in the sqlite_master table. 987 ** The record created does not contain anything yet. It will be replaced 988 ** by the real entry in code generated at sqlite3EndTable(). 989 ** 990 ** The rowid for the new entry is left in register pParse->regRowid. 991 ** The root page number of the new table is left in reg pParse->regRoot. 992 ** The rowid and root page number values are needed by the code that 993 ** sqlite3EndTable will generate. 994 */ 995 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 996 if( isView || isVirtual ){ 997 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 998 }else 999 #endif 1000 { 1001 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1002 } 1003 sqlite3OpenMasterTable(pParse, iDb); 1004 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1005 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1006 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1007 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1008 sqlite3VdbeAddOp0(v, OP_Close); 1009 } 1010 1011 /* Normal (non-error) return. */ 1012 return; 1013 1014 /* If an error occurs, we jump here */ 1015 begin_table_error: 1016 sqlite3DbFree(db, zName); 1017 return; 1018 } 1019 1020 /* Set properties of a table column based on the (magical) 1021 ** name of the column. 1022 */ 1023 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1024 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1025 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1026 pCol->colFlags |= COLFLAG_HIDDEN; 1027 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1028 pTab->tabFlags |= TF_OOOHidden; 1029 } 1030 } 1031 #endif 1032 1033 1034 /* 1035 ** Add a new column to the table currently being constructed. 1036 ** 1037 ** The parser calls this routine once for each column declaration 1038 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1039 ** first to get things going. Then this routine is called for each 1040 ** column. 1041 */ 1042 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1043 Table *p; 1044 int i; 1045 char *z; 1046 Column *pCol; 1047 sqlite3 *db = pParse->db; 1048 if( (p = pParse->pNewTable)==0 ) return; 1049 #if SQLITE_MAX_COLUMN 1050 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1051 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1052 return; 1053 } 1054 #endif 1055 z = sqlite3NameFromToken(db, pName); 1056 if( z==0 ) return; 1057 for(i=0; i<p->nCol; i++){ 1058 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1059 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1060 sqlite3DbFree(db, z); 1061 return; 1062 } 1063 } 1064 if( (p->nCol & 0x7)==0 ){ 1065 Column *aNew; 1066 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1067 if( aNew==0 ){ 1068 sqlite3DbFree(db, z); 1069 return; 1070 } 1071 p->aCol = aNew; 1072 } 1073 pCol = &p->aCol[p->nCol]; 1074 memset(pCol, 0, sizeof(p->aCol[0])); 1075 pCol->zName = z; 1076 sqlite3ColumnPropertiesFromName(p, pCol); 1077 1078 /* If there is no type specified, columns have the default affinity 1079 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1080 ** be called next to set pCol->affinity correctly. 1081 */ 1082 pCol->affinity = SQLITE_AFF_BLOB; 1083 pCol->szEst = 1; 1084 p->nCol++; 1085 } 1086 1087 /* 1088 ** This routine is called by the parser while in the middle of 1089 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1090 ** been seen on a column. This routine sets the notNull flag on 1091 ** the column currently under construction. 1092 */ 1093 void sqlite3AddNotNull(Parse *pParse, int onError){ 1094 Table *p; 1095 p = pParse->pNewTable; 1096 if( p==0 || NEVER(p->nCol<1) ) return; 1097 p->aCol[p->nCol-1].notNull = (u8)onError; 1098 } 1099 1100 /* 1101 ** Scan the column type name zType (length nType) and return the 1102 ** associated affinity type. 1103 ** 1104 ** This routine does a case-independent search of zType for the 1105 ** substrings in the following table. If one of the substrings is 1106 ** found, the corresponding affinity is returned. If zType contains 1107 ** more than one of the substrings, entries toward the top of 1108 ** the table take priority. For example, if zType is 'BLOBINT', 1109 ** SQLITE_AFF_INTEGER is returned. 1110 ** 1111 ** Substring | Affinity 1112 ** -------------------------------- 1113 ** 'INT' | SQLITE_AFF_INTEGER 1114 ** 'CHAR' | SQLITE_AFF_TEXT 1115 ** 'CLOB' | SQLITE_AFF_TEXT 1116 ** 'TEXT' | SQLITE_AFF_TEXT 1117 ** 'BLOB' | SQLITE_AFF_BLOB 1118 ** 'REAL' | SQLITE_AFF_REAL 1119 ** 'FLOA' | SQLITE_AFF_REAL 1120 ** 'DOUB' | SQLITE_AFF_REAL 1121 ** 1122 ** If none of the substrings in the above table are found, 1123 ** SQLITE_AFF_NUMERIC is returned. 1124 */ 1125 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1126 u32 h = 0; 1127 char aff = SQLITE_AFF_NUMERIC; 1128 const char *zChar = 0; 1129 1130 if( zIn==0 ) return aff; 1131 while( zIn[0] ){ 1132 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1133 zIn++; 1134 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1135 aff = SQLITE_AFF_TEXT; 1136 zChar = zIn; 1137 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1138 aff = SQLITE_AFF_TEXT; 1139 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1140 aff = SQLITE_AFF_TEXT; 1141 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1142 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1143 aff = SQLITE_AFF_BLOB; 1144 if( zIn[0]=='(' ) zChar = zIn; 1145 #ifndef SQLITE_OMIT_FLOATING_POINT 1146 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1147 && aff==SQLITE_AFF_NUMERIC ){ 1148 aff = SQLITE_AFF_REAL; 1149 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1150 && aff==SQLITE_AFF_NUMERIC ){ 1151 aff = SQLITE_AFF_REAL; 1152 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1153 && aff==SQLITE_AFF_NUMERIC ){ 1154 aff = SQLITE_AFF_REAL; 1155 #endif 1156 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1157 aff = SQLITE_AFF_INTEGER; 1158 break; 1159 } 1160 } 1161 1162 /* If pszEst is not NULL, store an estimate of the field size. The 1163 ** estimate is scaled so that the size of an integer is 1. */ 1164 if( pszEst ){ 1165 *pszEst = 1; /* default size is approx 4 bytes */ 1166 if( aff<SQLITE_AFF_NUMERIC ){ 1167 if( zChar ){ 1168 while( zChar[0] ){ 1169 if( sqlite3Isdigit(zChar[0]) ){ 1170 int v = 0; 1171 sqlite3GetInt32(zChar, &v); 1172 v = v/4 + 1; 1173 if( v>255 ) v = 255; 1174 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1175 break; 1176 } 1177 zChar++; 1178 } 1179 }else{ 1180 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1181 } 1182 } 1183 } 1184 return aff; 1185 } 1186 1187 /* 1188 ** This routine is called by the parser while in the middle of 1189 ** parsing a CREATE TABLE statement. The pFirst token is the first 1190 ** token in the sequence of tokens that describe the type of the 1191 ** column currently under construction. pLast is the last token 1192 ** in the sequence. Use this information to construct a string 1193 ** that contains the typename of the column and store that string 1194 ** in zType. 1195 */ 1196 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1197 Table *p; 1198 Column *pCol; 1199 1200 p = pParse->pNewTable; 1201 if( p==0 || NEVER(p->nCol<1) ) return; 1202 pCol = &p->aCol[p->nCol-1]; 1203 assert( pCol->zType==0 || CORRUPT_DB ); 1204 sqlite3DbFree(pParse->db, pCol->zType); 1205 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1206 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1207 } 1208 1209 /* 1210 ** The expression is the default value for the most recently added column 1211 ** of the table currently under construction. 1212 ** 1213 ** Default value expressions must be constant. Raise an exception if this 1214 ** is not the case. 1215 ** 1216 ** This routine is called by the parser while in the middle of 1217 ** parsing a CREATE TABLE statement. 1218 */ 1219 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1220 Table *p; 1221 Column *pCol; 1222 sqlite3 *db = pParse->db; 1223 p = pParse->pNewTable; 1224 if( p!=0 ){ 1225 pCol = &(p->aCol[p->nCol-1]); 1226 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1227 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1228 pCol->zName); 1229 }else{ 1230 /* A copy of pExpr is used instead of the original, as pExpr contains 1231 ** tokens that point to volatile memory. The 'span' of the expression 1232 ** is required by pragma table_info. 1233 */ 1234 sqlite3ExprDelete(db, pCol->pDflt); 1235 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1236 sqlite3DbFree(db, pCol->zDflt); 1237 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1238 (int)(pSpan->zEnd - pSpan->zStart)); 1239 } 1240 } 1241 sqlite3ExprDelete(db, pSpan->pExpr); 1242 } 1243 1244 /* 1245 ** Backwards Compatibility Hack: 1246 ** 1247 ** Historical versions of SQLite accepted strings as column names in 1248 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1249 ** 1250 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1251 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1252 ** 1253 ** This is goofy. But to preserve backwards compatibility we continue to 1254 ** accept it. This routine does the necessary conversion. It converts 1255 ** the expression given in its argument from a TK_STRING into a TK_ID 1256 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1257 ** If the epxression is anything other than TK_STRING, the expression is 1258 ** unchanged. 1259 */ 1260 static void sqlite3StringToId(Expr *p){ 1261 if( p->op==TK_STRING ){ 1262 p->op = TK_ID; 1263 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1264 p->pLeft->op = TK_ID; 1265 } 1266 } 1267 1268 /* 1269 ** Designate the PRIMARY KEY for the table. pList is a list of names 1270 ** of columns that form the primary key. If pList is NULL, then the 1271 ** most recently added column of the table is the primary key. 1272 ** 1273 ** A table can have at most one primary key. If the table already has 1274 ** a primary key (and this is the second primary key) then create an 1275 ** error. 1276 ** 1277 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1278 ** then we will try to use that column as the rowid. Set the Table.iPKey 1279 ** field of the table under construction to be the index of the 1280 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1281 ** no INTEGER PRIMARY KEY. 1282 ** 1283 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1284 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1285 */ 1286 void sqlite3AddPrimaryKey( 1287 Parse *pParse, /* Parsing context */ 1288 ExprList *pList, /* List of field names to be indexed */ 1289 int onError, /* What to do with a uniqueness conflict */ 1290 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1291 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1292 ){ 1293 Table *pTab = pParse->pNewTable; 1294 char *zType = 0; 1295 int iCol = -1, i; 1296 int nTerm; 1297 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1298 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1299 sqlite3ErrorMsg(pParse, 1300 "table \"%s\" has more than one primary key", pTab->zName); 1301 goto primary_key_exit; 1302 } 1303 pTab->tabFlags |= TF_HasPrimaryKey; 1304 if( pList==0 ){ 1305 iCol = pTab->nCol - 1; 1306 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1307 zType = pTab->aCol[iCol].zType; 1308 nTerm = 1; 1309 }else{ 1310 nTerm = pList->nExpr; 1311 for(i=0; i<nTerm; i++){ 1312 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1313 assert( pCExpr!=0 ); 1314 sqlite3StringToId(pCExpr); 1315 if( pCExpr->op==TK_ID ){ 1316 const char *zCName = pCExpr->u.zToken; 1317 for(iCol=0; iCol<pTab->nCol; iCol++){ 1318 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1319 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1320 zType = pTab->aCol[iCol].zType; 1321 break; 1322 } 1323 } 1324 } 1325 } 1326 } 1327 if( nTerm==1 1328 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1329 && sortOrder!=SQLITE_SO_DESC 1330 ){ 1331 pTab->iPKey = iCol; 1332 pTab->keyConf = (u8)onError; 1333 assert( autoInc==0 || autoInc==1 ); 1334 pTab->tabFlags |= autoInc*TF_Autoincrement; 1335 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1336 }else if( autoInc ){ 1337 #ifndef SQLITE_OMIT_AUTOINCREMENT 1338 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1339 "INTEGER PRIMARY KEY"); 1340 #endif 1341 }else{ 1342 Index *p; 1343 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1344 0, sortOrder, 0); 1345 if( p ){ 1346 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1347 } 1348 pList = 0; 1349 } 1350 1351 primary_key_exit: 1352 sqlite3ExprListDelete(pParse->db, pList); 1353 return; 1354 } 1355 1356 /* 1357 ** Add a new CHECK constraint to the table currently under construction. 1358 */ 1359 void sqlite3AddCheckConstraint( 1360 Parse *pParse, /* Parsing context */ 1361 Expr *pCheckExpr /* The check expression */ 1362 ){ 1363 #ifndef SQLITE_OMIT_CHECK 1364 Table *pTab = pParse->pNewTable; 1365 sqlite3 *db = pParse->db; 1366 if( pTab && !IN_DECLARE_VTAB 1367 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1368 ){ 1369 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1370 if( pParse->constraintName.n ){ 1371 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1372 } 1373 }else 1374 #endif 1375 { 1376 sqlite3ExprDelete(pParse->db, pCheckExpr); 1377 } 1378 } 1379 1380 /* 1381 ** Set the collation function of the most recently parsed table column 1382 ** to the CollSeq given. 1383 */ 1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1385 Table *p; 1386 int i; 1387 char *zColl; /* Dequoted name of collation sequence */ 1388 sqlite3 *db; 1389 1390 if( (p = pParse->pNewTable)==0 ) return; 1391 i = p->nCol-1; 1392 db = pParse->db; 1393 zColl = sqlite3NameFromToken(db, pToken); 1394 if( !zColl ) return; 1395 1396 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1397 Index *pIdx; 1398 sqlite3DbFree(db, p->aCol[i].zColl); 1399 p->aCol[i].zColl = zColl; 1400 1401 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1402 ** then an index may have been created on this column before the 1403 ** collation type was added. Correct this if it is the case. 1404 */ 1405 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1406 assert( pIdx->nKeyCol==1 ); 1407 if( pIdx->aiColumn[0]==i ){ 1408 pIdx->azColl[0] = p->aCol[i].zColl; 1409 } 1410 } 1411 }else{ 1412 sqlite3DbFree(db, zColl); 1413 } 1414 } 1415 1416 /* 1417 ** This function returns the collation sequence for database native text 1418 ** encoding identified by the string zName, length nName. 1419 ** 1420 ** If the requested collation sequence is not available, or not available 1421 ** in the database native encoding, the collation factory is invoked to 1422 ** request it. If the collation factory does not supply such a sequence, 1423 ** and the sequence is available in another text encoding, then that is 1424 ** returned instead. 1425 ** 1426 ** If no versions of the requested collations sequence are available, or 1427 ** another error occurs, NULL is returned and an error message written into 1428 ** pParse. 1429 ** 1430 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1431 ** invokes the collation factory if the named collation cannot be found 1432 ** and generates an error message. 1433 ** 1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1435 */ 1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1437 sqlite3 *db = pParse->db; 1438 u8 enc = ENC(db); 1439 u8 initbusy = db->init.busy; 1440 CollSeq *pColl; 1441 1442 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1443 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1444 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1445 } 1446 1447 return pColl; 1448 } 1449 1450 1451 /* 1452 ** Generate code that will increment the schema cookie. 1453 ** 1454 ** The schema cookie is used to determine when the schema for the 1455 ** database changes. After each schema change, the cookie value 1456 ** changes. When a process first reads the schema it records the 1457 ** cookie. Thereafter, whenever it goes to access the database, 1458 ** it checks the cookie to make sure the schema has not changed 1459 ** since it was last read. 1460 ** 1461 ** This plan is not completely bullet-proof. It is possible for 1462 ** the schema to change multiple times and for the cookie to be 1463 ** set back to prior value. But schema changes are infrequent 1464 ** and the probability of hitting the same cookie value is only 1465 ** 1 chance in 2^32. So we're safe enough. 1466 */ 1467 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1468 sqlite3 *db = pParse->db; 1469 Vdbe *v = pParse->pVdbe; 1470 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1471 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1472 db->aDb[iDb].pSchema->schema_cookie+1); 1473 } 1474 1475 /* 1476 ** Measure the number of characters needed to output the given 1477 ** identifier. The number returned includes any quotes used 1478 ** but does not include the null terminator. 1479 ** 1480 ** The estimate is conservative. It might be larger that what is 1481 ** really needed. 1482 */ 1483 static int identLength(const char *z){ 1484 int n; 1485 for(n=0; *z; n++, z++){ 1486 if( *z=='"' ){ n++; } 1487 } 1488 return n + 2; 1489 } 1490 1491 /* 1492 ** The first parameter is a pointer to an output buffer. The second 1493 ** parameter is a pointer to an integer that contains the offset at 1494 ** which to write into the output buffer. This function copies the 1495 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1496 ** to the specified offset in the buffer and updates *pIdx to refer 1497 ** to the first byte after the last byte written before returning. 1498 ** 1499 ** If the string zSignedIdent consists entirely of alpha-numeric 1500 ** characters, does not begin with a digit and is not an SQL keyword, 1501 ** then it is copied to the output buffer exactly as it is. Otherwise, 1502 ** it is quoted using double-quotes. 1503 */ 1504 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1505 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1506 int i, j, needQuote; 1507 i = *pIdx; 1508 1509 for(j=0; zIdent[j]; j++){ 1510 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1511 } 1512 needQuote = sqlite3Isdigit(zIdent[0]) 1513 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1514 || zIdent[j]!=0 1515 || j==0; 1516 1517 if( needQuote ) z[i++] = '"'; 1518 for(j=0; zIdent[j]; j++){ 1519 z[i++] = zIdent[j]; 1520 if( zIdent[j]=='"' ) z[i++] = '"'; 1521 } 1522 if( needQuote ) z[i++] = '"'; 1523 z[i] = 0; 1524 *pIdx = i; 1525 } 1526 1527 /* 1528 ** Generate a CREATE TABLE statement appropriate for the given 1529 ** table. Memory to hold the text of the statement is obtained 1530 ** from sqliteMalloc() and must be freed by the calling function. 1531 */ 1532 static char *createTableStmt(sqlite3 *db, Table *p){ 1533 int i, k, n; 1534 char *zStmt; 1535 char *zSep, *zSep2, *zEnd; 1536 Column *pCol; 1537 n = 0; 1538 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1539 n += identLength(pCol->zName) + 5; 1540 } 1541 n += identLength(p->zName); 1542 if( n<50 ){ 1543 zSep = ""; 1544 zSep2 = ","; 1545 zEnd = ")"; 1546 }else{ 1547 zSep = "\n "; 1548 zSep2 = ",\n "; 1549 zEnd = "\n)"; 1550 } 1551 n += 35 + 6*p->nCol; 1552 zStmt = sqlite3DbMallocRaw(0, n); 1553 if( zStmt==0 ){ 1554 sqlite3OomFault(db); 1555 return 0; 1556 } 1557 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1558 k = sqlite3Strlen30(zStmt); 1559 identPut(zStmt, &k, p->zName); 1560 zStmt[k++] = '('; 1561 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1562 static const char * const azType[] = { 1563 /* SQLITE_AFF_BLOB */ "", 1564 /* SQLITE_AFF_TEXT */ " TEXT", 1565 /* SQLITE_AFF_NUMERIC */ " NUM", 1566 /* SQLITE_AFF_INTEGER */ " INT", 1567 /* SQLITE_AFF_REAL */ " REAL" 1568 }; 1569 int len; 1570 const char *zType; 1571 1572 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1573 k += sqlite3Strlen30(&zStmt[k]); 1574 zSep = zSep2; 1575 identPut(zStmt, &k, pCol->zName); 1576 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1577 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1578 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1579 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1580 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1581 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1582 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1583 1584 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1585 len = sqlite3Strlen30(zType); 1586 assert( pCol->affinity==SQLITE_AFF_BLOB 1587 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1588 memcpy(&zStmt[k], zType, len); 1589 k += len; 1590 assert( k<=n ); 1591 } 1592 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1593 return zStmt; 1594 } 1595 1596 /* 1597 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1598 ** on success and SQLITE_NOMEM on an OOM error. 1599 */ 1600 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1601 char *zExtra; 1602 int nByte; 1603 if( pIdx->nColumn>=N ) return SQLITE_OK; 1604 assert( pIdx->isResized==0 ); 1605 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1606 zExtra = sqlite3DbMallocZero(db, nByte); 1607 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1608 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1609 pIdx->azColl = (const char**)zExtra; 1610 zExtra += sizeof(char*)*N; 1611 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1612 pIdx->aiColumn = (i16*)zExtra; 1613 zExtra += sizeof(i16)*N; 1614 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1615 pIdx->aSortOrder = (u8*)zExtra; 1616 pIdx->nColumn = N; 1617 pIdx->isResized = 1; 1618 return SQLITE_OK; 1619 } 1620 1621 /* 1622 ** Estimate the total row width for a table. 1623 */ 1624 static void estimateTableWidth(Table *pTab){ 1625 unsigned wTable = 0; 1626 const Column *pTabCol; 1627 int i; 1628 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1629 wTable += pTabCol->szEst; 1630 } 1631 if( pTab->iPKey<0 ) wTable++; 1632 pTab->szTabRow = sqlite3LogEst(wTable*4); 1633 } 1634 1635 /* 1636 ** Estimate the average size of a row for an index. 1637 */ 1638 static void estimateIndexWidth(Index *pIdx){ 1639 unsigned wIndex = 0; 1640 int i; 1641 const Column *aCol = pIdx->pTable->aCol; 1642 for(i=0; i<pIdx->nColumn; i++){ 1643 i16 x = pIdx->aiColumn[i]; 1644 assert( x<pIdx->pTable->nCol ); 1645 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1646 } 1647 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1648 } 1649 1650 /* Return true if value x is found any of the first nCol entries of aiCol[] 1651 */ 1652 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1653 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1654 return 0; 1655 } 1656 1657 /* 1658 ** This routine runs at the end of parsing a CREATE TABLE statement that 1659 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1660 ** internal schema data structures and the generated VDBE code so that they 1661 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1662 ** Changes include: 1663 ** 1664 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1665 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1666 ** data storage is a covering index btree. 1667 ** (2) Bypass the creation of the sqlite_master table entry 1668 ** for the PRIMARY KEY as the primary key index is now 1669 ** identified by the sqlite_master table entry of the table itself. 1670 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1671 ** schema to the rootpage from the main table. 1672 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1673 ** (5) Add all table columns to the PRIMARY KEY Index object 1674 ** so that the PRIMARY KEY is a covering index. The surplus 1675 ** columns are part of KeyInfo.nXField and are not used for 1676 ** sorting or lookup or uniqueness checks. 1677 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1678 ** indices with the PRIMARY KEY columns. 1679 */ 1680 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1681 Index *pIdx; 1682 Index *pPk; 1683 int nPk; 1684 int i, j; 1685 sqlite3 *db = pParse->db; 1686 Vdbe *v = pParse->pVdbe; 1687 1688 /* Convert the OP_CreateTable opcode that would normally create the 1689 ** root-page for the table into an OP_CreateIndex opcode. The index 1690 ** created will become the PRIMARY KEY index. 1691 */ 1692 if( pParse->addrCrTab ){ 1693 assert( v ); 1694 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1695 } 1696 1697 /* Locate the PRIMARY KEY index. Or, if this table was originally 1698 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1699 */ 1700 if( pTab->iPKey>=0 ){ 1701 ExprList *pList; 1702 Token ipkToken; 1703 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1704 pList = sqlite3ExprListAppend(pParse, 0, 1705 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1706 if( pList==0 ) return; 1707 pList->a[0].sortOrder = pParse->iPkSortOrder; 1708 assert( pParse->pNewTable==pTab ); 1709 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1710 if( pPk==0 ) return; 1711 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1712 pTab->iPKey = -1; 1713 }else{ 1714 pPk = sqlite3PrimaryKeyIndex(pTab); 1715 1716 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1717 ** table entry. This is only required if currently generating VDBE 1718 ** code for a CREATE TABLE (not when parsing one as part of reading 1719 ** a database schema). */ 1720 if( v ){ 1721 assert( db->init.busy==0 ); 1722 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1723 } 1724 1725 /* 1726 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1727 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1728 ** code assumes the PRIMARY KEY contains no repeated columns. 1729 */ 1730 for(i=j=1; i<pPk->nKeyCol; i++){ 1731 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1732 pPk->nColumn--; 1733 }else{ 1734 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1735 } 1736 } 1737 pPk->nKeyCol = j; 1738 } 1739 pPk->isCovering = 1; 1740 assert( pPk!=0 ); 1741 nPk = pPk->nKeyCol; 1742 1743 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1744 ** do not enforce this for imposter tables.) */ 1745 if( !db->init.imposterTable ){ 1746 for(i=0; i<nPk; i++){ 1747 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort; 1748 } 1749 pPk->uniqNotNull = 1; 1750 } 1751 1752 /* The root page of the PRIMARY KEY is the table root page */ 1753 pPk->tnum = pTab->tnum; 1754 1755 /* Update the in-memory representation of all UNIQUE indices by converting 1756 ** the final rowid column into one or more columns of the PRIMARY KEY. 1757 */ 1758 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1759 int n; 1760 if( IsPrimaryKeyIndex(pIdx) ) continue; 1761 for(i=n=0; i<nPk; i++){ 1762 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1763 } 1764 if( n==0 ){ 1765 /* This index is a superset of the primary key */ 1766 pIdx->nColumn = pIdx->nKeyCol; 1767 continue; 1768 } 1769 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1770 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1771 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1772 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1773 pIdx->azColl[j] = pPk->azColl[i]; 1774 j++; 1775 } 1776 } 1777 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1778 assert( pIdx->nColumn>=j ); 1779 } 1780 1781 /* Add all table columns to the PRIMARY KEY index 1782 */ 1783 if( nPk<pTab->nCol ){ 1784 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1785 for(i=0, j=nPk; i<pTab->nCol; i++){ 1786 if( !hasColumn(pPk->aiColumn, j, i) ){ 1787 assert( j<pPk->nColumn ); 1788 pPk->aiColumn[j] = i; 1789 pPk->azColl[j] = sqlite3StrBINARY; 1790 j++; 1791 } 1792 } 1793 assert( pPk->nColumn==j ); 1794 assert( pTab->nCol==j ); 1795 }else{ 1796 pPk->nColumn = pTab->nCol; 1797 } 1798 } 1799 1800 /* 1801 ** This routine is called to report the final ")" that terminates 1802 ** a CREATE TABLE statement. 1803 ** 1804 ** The table structure that other action routines have been building 1805 ** is added to the internal hash tables, assuming no errors have 1806 ** occurred. 1807 ** 1808 ** An entry for the table is made in the master table on disk, unless 1809 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1810 ** it means we are reading the sqlite_master table because we just 1811 ** connected to the database or because the sqlite_master table has 1812 ** recently changed, so the entry for this table already exists in 1813 ** the sqlite_master table. We do not want to create it again. 1814 ** 1815 ** If the pSelect argument is not NULL, it means that this routine 1816 ** was called to create a table generated from a 1817 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1818 ** the new table will match the result set of the SELECT. 1819 */ 1820 void sqlite3EndTable( 1821 Parse *pParse, /* Parse context */ 1822 Token *pCons, /* The ',' token after the last column defn. */ 1823 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1824 u8 tabOpts, /* Extra table options. Usually 0. */ 1825 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1826 ){ 1827 Table *p; /* The new table */ 1828 sqlite3 *db = pParse->db; /* The database connection */ 1829 int iDb; /* Database in which the table lives */ 1830 Index *pIdx; /* An implied index of the table */ 1831 1832 if( pEnd==0 && pSelect==0 ){ 1833 return; 1834 } 1835 assert( !db->mallocFailed ); 1836 p = pParse->pNewTable; 1837 if( p==0 ) return; 1838 1839 assert( !db->init.busy || !pSelect ); 1840 1841 /* If the db->init.busy is 1 it means we are reading the SQL off the 1842 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1843 ** So do not write to the disk again. Extract the root page number 1844 ** for the table from the db->init.newTnum field. (The page number 1845 ** should have been put there by the sqliteOpenCb routine.) 1846 ** 1847 ** If the root page number is 1, that means this is the sqlite_master 1848 ** table itself. So mark it read-only. 1849 */ 1850 if( db->init.busy ){ 1851 p->tnum = db->init.newTnum; 1852 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1853 } 1854 1855 /* Special processing for WITHOUT ROWID Tables */ 1856 if( tabOpts & TF_WithoutRowid ){ 1857 if( (p->tabFlags & TF_Autoincrement) ){ 1858 sqlite3ErrorMsg(pParse, 1859 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1860 return; 1861 } 1862 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1863 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1864 }else{ 1865 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1866 convertToWithoutRowidTable(pParse, p); 1867 } 1868 } 1869 1870 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1871 1872 #ifndef SQLITE_OMIT_CHECK 1873 /* Resolve names in all CHECK constraint expressions. 1874 */ 1875 if( p->pCheck ){ 1876 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1877 } 1878 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1879 1880 /* Estimate the average row size for the table and for all implied indices */ 1881 estimateTableWidth(p); 1882 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1883 estimateIndexWidth(pIdx); 1884 } 1885 1886 /* If not initializing, then create a record for the new table 1887 ** in the SQLITE_MASTER table of the database. 1888 ** 1889 ** If this is a TEMPORARY table, write the entry into the auxiliary 1890 ** file instead of into the main database file. 1891 */ 1892 if( !db->init.busy ){ 1893 int n; 1894 Vdbe *v; 1895 char *zType; /* "view" or "table" */ 1896 char *zType2; /* "VIEW" or "TABLE" */ 1897 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1898 1899 v = sqlite3GetVdbe(pParse); 1900 if( NEVER(v==0) ) return; 1901 1902 sqlite3VdbeAddOp1(v, OP_Close, 0); 1903 1904 /* 1905 ** Initialize zType for the new view or table. 1906 */ 1907 if( p->pSelect==0 ){ 1908 /* A regular table */ 1909 zType = "table"; 1910 zType2 = "TABLE"; 1911 #ifndef SQLITE_OMIT_VIEW 1912 }else{ 1913 /* A view */ 1914 zType = "view"; 1915 zType2 = "VIEW"; 1916 #endif 1917 } 1918 1919 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1920 ** statement to populate the new table. The root-page number for the 1921 ** new table is in register pParse->regRoot. 1922 ** 1923 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1924 ** suitable state to query for the column names and types to be used 1925 ** by the new table. 1926 ** 1927 ** A shared-cache write-lock is not required to write to the new table, 1928 ** as a schema-lock must have already been obtained to create it. Since 1929 ** a schema-lock excludes all other database users, the write-lock would 1930 ** be redundant. 1931 */ 1932 if( pSelect ){ 1933 SelectDest dest; /* Where the SELECT should store results */ 1934 int regYield; /* Register holding co-routine entry-point */ 1935 int addrTop; /* Top of the co-routine */ 1936 int regRec; /* A record to be insert into the new table */ 1937 int regRowid; /* Rowid of the next row to insert */ 1938 int addrInsLoop; /* Top of the loop for inserting rows */ 1939 Table *pSelTab; /* A table that describes the SELECT results */ 1940 1941 regYield = ++pParse->nMem; 1942 regRec = ++pParse->nMem; 1943 regRowid = ++pParse->nMem; 1944 assert(pParse->nTab==1); 1945 sqlite3MayAbort(pParse); 1946 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1947 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1948 pParse->nTab = 2; 1949 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1950 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1951 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1952 sqlite3Select(pParse, pSelect, &dest); 1953 sqlite3VdbeEndCoroutine(v, regYield); 1954 sqlite3VdbeJumpHere(v, addrTop - 1); 1955 if( pParse->nErr ) return; 1956 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1957 if( pSelTab==0 ) return; 1958 assert( p->aCol==0 ); 1959 p->nCol = pSelTab->nCol; 1960 p->aCol = pSelTab->aCol; 1961 pSelTab->nCol = 0; 1962 pSelTab->aCol = 0; 1963 sqlite3DeleteTable(db, pSelTab); 1964 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1965 VdbeCoverage(v); 1966 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1967 sqlite3TableAffinity(v, p, 0); 1968 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1969 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1970 sqlite3VdbeGoto(v, addrInsLoop); 1971 sqlite3VdbeJumpHere(v, addrInsLoop); 1972 sqlite3VdbeAddOp1(v, OP_Close, 1); 1973 } 1974 1975 /* Compute the complete text of the CREATE statement */ 1976 if( pSelect ){ 1977 zStmt = createTableStmt(db, p); 1978 }else{ 1979 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1980 n = (int)(pEnd2->z - pParse->sNameToken.z); 1981 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1982 zStmt = sqlite3MPrintf(db, 1983 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1984 ); 1985 } 1986 1987 /* A slot for the record has already been allocated in the 1988 ** SQLITE_MASTER table. We just need to update that slot with all 1989 ** the information we've collected. 1990 */ 1991 sqlite3NestedParse(pParse, 1992 "UPDATE %Q.%s " 1993 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1994 "WHERE rowid=#%d", 1995 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1996 zType, 1997 p->zName, 1998 p->zName, 1999 pParse->regRoot, 2000 zStmt, 2001 pParse->regRowid 2002 ); 2003 sqlite3DbFree(db, zStmt); 2004 sqlite3ChangeCookie(pParse, iDb); 2005 2006 #ifndef SQLITE_OMIT_AUTOINCREMENT 2007 /* Check to see if we need to create an sqlite_sequence table for 2008 ** keeping track of autoincrement keys. 2009 */ 2010 if( p->tabFlags & TF_Autoincrement ){ 2011 Db *pDb = &db->aDb[iDb]; 2012 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2013 if( pDb->pSchema->pSeqTab==0 ){ 2014 sqlite3NestedParse(pParse, 2015 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2016 pDb->zName 2017 ); 2018 } 2019 } 2020 #endif 2021 2022 /* Reparse everything to update our internal data structures */ 2023 sqlite3VdbeAddParseSchemaOp(v, iDb, 2024 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2025 } 2026 2027 2028 /* Add the table to the in-memory representation of the database. 2029 */ 2030 if( db->init.busy ){ 2031 Table *pOld; 2032 Schema *pSchema = p->pSchema; 2033 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2034 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2035 if( pOld ){ 2036 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2037 sqlite3OomFault(db); 2038 return; 2039 } 2040 pParse->pNewTable = 0; 2041 db->flags |= SQLITE_InternChanges; 2042 2043 #ifndef SQLITE_OMIT_ALTERTABLE 2044 if( !p->pSelect ){ 2045 const char *zName = (const char *)pParse->sNameToken.z; 2046 int nName; 2047 assert( !pSelect && pCons && pEnd ); 2048 if( pCons->z==0 ){ 2049 pCons = pEnd; 2050 } 2051 nName = (int)((const char *)pCons->z - zName); 2052 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2053 } 2054 #endif 2055 } 2056 } 2057 2058 #ifndef SQLITE_OMIT_VIEW 2059 /* 2060 ** The parser calls this routine in order to create a new VIEW 2061 */ 2062 void sqlite3CreateView( 2063 Parse *pParse, /* The parsing context */ 2064 Token *pBegin, /* The CREATE token that begins the statement */ 2065 Token *pName1, /* The token that holds the name of the view */ 2066 Token *pName2, /* The token that holds the name of the view */ 2067 ExprList *pCNames, /* Optional list of view column names */ 2068 Select *pSelect, /* A SELECT statement that will become the new view */ 2069 int isTemp, /* TRUE for a TEMPORARY view */ 2070 int noErr /* Suppress error messages if VIEW already exists */ 2071 ){ 2072 Table *p; 2073 int n; 2074 const char *z; 2075 Token sEnd; 2076 DbFixer sFix; 2077 Token *pName = 0; 2078 int iDb; 2079 sqlite3 *db = pParse->db; 2080 2081 if( pParse->nVar>0 ){ 2082 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2083 goto create_view_fail; 2084 } 2085 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2086 p = pParse->pNewTable; 2087 if( p==0 || pParse->nErr ) goto create_view_fail; 2088 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2089 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2090 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2091 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2092 2093 /* Make a copy of the entire SELECT statement that defines the view. 2094 ** This will force all the Expr.token.z values to be dynamically 2095 ** allocated rather than point to the input string - which means that 2096 ** they will persist after the current sqlite3_exec() call returns. 2097 */ 2098 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2099 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2100 if( db->mallocFailed ) goto create_view_fail; 2101 2102 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2103 ** the end. 2104 */ 2105 sEnd = pParse->sLastToken; 2106 assert( sEnd.z[0]!=0 ); 2107 if( sEnd.z[0]!=';' ){ 2108 sEnd.z += sEnd.n; 2109 } 2110 sEnd.n = 0; 2111 n = (int)(sEnd.z - pBegin->z); 2112 assert( n>0 ); 2113 z = pBegin->z; 2114 while( sqlite3Isspace(z[n-1]) ){ n--; } 2115 sEnd.z = &z[n-1]; 2116 sEnd.n = 1; 2117 2118 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2119 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2120 2121 create_view_fail: 2122 sqlite3SelectDelete(db, pSelect); 2123 sqlite3ExprListDelete(db, pCNames); 2124 return; 2125 } 2126 #endif /* SQLITE_OMIT_VIEW */ 2127 2128 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2129 /* 2130 ** The Table structure pTable is really a VIEW. Fill in the names of 2131 ** the columns of the view in the pTable structure. Return the number 2132 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2133 */ 2134 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2135 Table *pSelTab; /* A fake table from which we get the result set */ 2136 Select *pSel; /* Copy of the SELECT that implements the view */ 2137 int nErr = 0; /* Number of errors encountered */ 2138 int n; /* Temporarily holds the number of cursors assigned */ 2139 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2140 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2141 2142 assert( pTable ); 2143 2144 #ifndef SQLITE_OMIT_VIRTUALTABLE 2145 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2146 return SQLITE_ERROR; 2147 } 2148 if( IsVirtual(pTable) ) return 0; 2149 #endif 2150 2151 #ifndef SQLITE_OMIT_VIEW 2152 /* A positive nCol means the columns names for this view are 2153 ** already known. 2154 */ 2155 if( pTable->nCol>0 ) return 0; 2156 2157 /* A negative nCol is a special marker meaning that we are currently 2158 ** trying to compute the column names. If we enter this routine with 2159 ** a negative nCol, it means two or more views form a loop, like this: 2160 ** 2161 ** CREATE VIEW one AS SELECT * FROM two; 2162 ** CREATE VIEW two AS SELECT * FROM one; 2163 ** 2164 ** Actually, the error above is now caught prior to reaching this point. 2165 ** But the following test is still important as it does come up 2166 ** in the following: 2167 ** 2168 ** CREATE TABLE main.ex1(a); 2169 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2170 ** SELECT * FROM temp.ex1; 2171 */ 2172 if( pTable->nCol<0 ){ 2173 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2174 return 1; 2175 } 2176 assert( pTable->nCol>=0 ); 2177 2178 /* If we get this far, it means we need to compute the table names. 2179 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2180 ** "*" elements in the results set of the view and will assign cursors 2181 ** to the elements of the FROM clause. But we do not want these changes 2182 ** to be permanent. So the computation is done on a copy of the SELECT 2183 ** statement that defines the view. 2184 */ 2185 assert( pTable->pSelect ); 2186 if( pTable->pCheck ){ 2187 db->lookaside.bDisable++; 2188 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2189 &pTable->nCol, &pTable->aCol); 2190 db->lookaside.bDisable--; 2191 }else{ 2192 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2193 if( pSel ){ 2194 n = pParse->nTab; 2195 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2196 pTable->nCol = -1; 2197 db->lookaside.bDisable++; 2198 #ifndef SQLITE_OMIT_AUTHORIZATION 2199 xAuth = db->xAuth; 2200 db->xAuth = 0; 2201 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2202 db->xAuth = xAuth; 2203 #else 2204 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2205 #endif 2206 db->lookaside.bDisable--; 2207 pParse->nTab = n; 2208 if( pSelTab ){ 2209 assert( pTable->aCol==0 ); 2210 pTable->nCol = pSelTab->nCol; 2211 pTable->aCol = pSelTab->aCol; 2212 pSelTab->nCol = 0; 2213 pSelTab->aCol = 0; 2214 sqlite3DeleteTable(db, pSelTab); 2215 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2216 }else{ 2217 pTable->nCol = 0; 2218 nErr++; 2219 } 2220 sqlite3SelectDelete(db, pSel); 2221 } else { 2222 nErr++; 2223 } 2224 } 2225 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2226 #endif /* SQLITE_OMIT_VIEW */ 2227 return nErr; 2228 } 2229 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2230 2231 #ifndef SQLITE_OMIT_VIEW 2232 /* 2233 ** Clear the column names from every VIEW in database idx. 2234 */ 2235 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2236 HashElem *i; 2237 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2238 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2239 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2240 Table *pTab = sqliteHashData(i); 2241 if( pTab->pSelect ){ 2242 sqlite3DeleteColumnNames(db, pTab); 2243 pTab->aCol = 0; 2244 pTab->nCol = 0; 2245 } 2246 } 2247 DbClearProperty(db, idx, DB_UnresetViews); 2248 } 2249 #else 2250 # define sqliteViewResetAll(A,B) 2251 #endif /* SQLITE_OMIT_VIEW */ 2252 2253 /* 2254 ** This function is called by the VDBE to adjust the internal schema 2255 ** used by SQLite when the btree layer moves a table root page. The 2256 ** root-page of a table or index in database iDb has changed from iFrom 2257 ** to iTo. 2258 ** 2259 ** Ticket #1728: The symbol table might still contain information 2260 ** on tables and/or indices that are the process of being deleted. 2261 ** If you are unlucky, one of those deleted indices or tables might 2262 ** have the same rootpage number as the real table or index that is 2263 ** being moved. So we cannot stop searching after the first match 2264 ** because the first match might be for one of the deleted indices 2265 ** or tables and not the table/index that is actually being moved. 2266 ** We must continue looping until all tables and indices with 2267 ** rootpage==iFrom have been converted to have a rootpage of iTo 2268 ** in order to be certain that we got the right one. 2269 */ 2270 #ifndef SQLITE_OMIT_AUTOVACUUM 2271 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2272 HashElem *pElem; 2273 Hash *pHash; 2274 Db *pDb; 2275 2276 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2277 pDb = &db->aDb[iDb]; 2278 pHash = &pDb->pSchema->tblHash; 2279 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2280 Table *pTab = sqliteHashData(pElem); 2281 if( pTab->tnum==iFrom ){ 2282 pTab->tnum = iTo; 2283 } 2284 } 2285 pHash = &pDb->pSchema->idxHash; 2286 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2287 Index *pIdx = sqliteHashData(pElem); 2288 if( pIdx->tnum==iFrom ){ 2289 pIdx->tnum = iTo; 2290 } 2291 } 2292 } 2293 #endif 2294 2295 /* 2296 ** Write code to erase the table with root-page iTable from database iDb. 2297 ** Also write code to modify the sqlite_master table and internal schema 2298 ** if a root-page of another table is moved by the btree-layer whilst 2299 ** erasing iTable (this can happen with an auto-vacuum database). 2300 */ 2301 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2302 Vdbe *v = sqlite3GetVdbe(pParse); 2303 int r1 = sqlite3GetTempReg(pParse); 2304 assert( iTable>1 ); 2305 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2306 sqlite3MayAbort(pParse); 2307 #ifndef SQLITE_OMIT_AUTOVACUUM 2308 /* OP_Destroy stores an in integer r1. If this integer 2309 ** is non-zero, then it is the root page number of a table moved to 2310 ** location iTable. The following code modifies the sqlite_master table to 2311 ** reflect this. 2312 ** 2313 ** The "#NNN" in the SQL is a special constant that means whatever value 2314 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2315 ** token for additional information. 2316 */ 2317 sqlite3NestedParse(pParse, 2318 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2319 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2320 #endif 2321 sqlite3ReleaseTempReg(pParse, r1); 2322 } 2323 2324 /* 2325 ** Write VDBE code to erase table pTab and all associated indices on disk. 2326 ** Code to update the sqlite_master tables and internal schema definitions 2327 ** in case a root-page belonging to another table is moved by the btree layer 2328 ** is also added (this can happen with an auto-vacuum database). 2329 */ 2330 static void destroyTable(Parse *pParse, Table *pTab){ 2331 #ifdef SQLITE_OMIT_AUTOVACUUM 2332 Index *pIdx; 2333 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2334 destroyRootPage(pParse, pTab->tnum, iDb); 2335 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2336 destroyRootPage(pParse, pIdx->tnum, iDb); 2337 } 2338 #else 2339 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2340 ** is not defined), then it is important to call OP_Destroy on the 2341 ** table and index root-pages in order, starting with the numerically 2342 ** largest root-page number. This guarantees that none of the root-pages 2343 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2344 ** following were coded: 2345 ** 2346 ** OP_Destroy 4 0 2347 ** ... 2348 ** OP_Destroy 5 0 2349 ** 2350 ** and root page 5 happened to be the largest root-page number in the 2351 ** database, then root page 5 would be moved to page 4 by the 2352 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2353 ** a free-list page. 2354 */ 2355 int iTab = pTab->tnum; 2356 int iDestroyed = 0; 2357 2358 while( 1 ){ 2359 Index *pIdx; 2360 int iLargest = 0; 2361 2362 if( iDestroyed==0 || iTab<iDestroyed ){ 2363 iLargest = iTab; 2364 } 2365 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2366 int iIdx = pIdx->tnum; 2367 assert( pIdx->pSchema==pTab->pSchema ); 2368 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2369 iLargest = iIdx; 2370 } 2371 } 2372 if( iLargest==0 ){ 2373 return; 2374 }else{ 2375 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2376 assert( iDb>=0 && iDb<pParse->db->nDb ); 2377 destroyRootPage(pParse, iLargest, iDb); 2378 iDestroyed = iLargest; 2379 } 2380 } 2381 #endif 2382 } 2383 2384 /* 2385 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2386 ** after a DROP INDEX or DROP TABLE command. 2387 */ 2388 static void sqlite3ClearStatTables( 2389 Parse *pParse, /* The parsing context */ 2390 int iDb, /* The database number */ 2391 const char *zType, /* "idx" or "tbl" */ 2392 const char *zName /* Name of index or table */ 2393 ){ 2394 int i; 2395 const char *zDbName = pParse->db->aDb[iDb].zName; 2396 for(i=1; i<=4; i++){ 2397 char zTab[24]; 2398 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2399 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2400 sqlite3NestedParse(pParse, 2401 "DELETE FROM %Q.%s WHERE %s=%Q", 2402 zDbName, zTab, zType, zName 2403 ); 2404 } 2405 } 2406 } 2407 2408 /* 2409 ** Generate code to drop a table. 2410 */ 2411 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2412 Vdbe *v; 2413 sqlite3 *db = pParse->db; 2414 Trigger *pTrigger; 2415 Db *pDb = &db->aDb[iDb]; 2416 2417 v = sqlite3GetVdbe(pParse); 2418 assert( v!=0 ); 2419 sqlite3BeginWriteOperation(pParse, 1, iDb); 2420 2421 #ifndef SQLITE_OMIT_VIRTUALTABLE 2422 if( IsVirtual(pTab) ){ 2423 sqlite3VdbeAddOp0(v, OP_VBegin); 2424 } 2425 #endif 2426 2427 /* Drop all triggers associated with the table being dropped. Code 2428 ** is generated to remove entries from sqlite_master and/or 2429 ** sqlite_temp_master if required. 2430 */ 2431 pTrigger = sqlite3TriggerList(pParse, pTab); 2432 while( pTrigger ){ 2433 assert( pTrigger->pSchema==pTab->pSchema || 2434 pTrigger->pSchema==db->aDb[1].pSchema ); 2435 sqlite3DropTriggerPtr(pParse, pTrigger); 2436 pTrigger = pTrigger->pNext; 2437 } 2438 2439 #ifndef SQLITE_OMIT_AUTOINCREMENT 2440 /* Remove any entries of the sqlite_sequence table associated with 2441 ** the table being dropped. This is done before the table is dropped 2442 ** at the btree level, in case the sqlite_sequence table needs to 2443 ** move as a result of the drop (can happen in auto-vacuum mode). 2444 */ 2445 if( pTab->tabFlags & TF_Autoincrement ){ 2446 sqlite3NestedParse(pParse, 2447 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2448 pDb->zName, pTab->zName 2449 ); 2450 } 2451 #endif 2452 2453 /* Drop all SQLITE_MASTER table and index entries that refer to the 2454 ** table. The program name loops through the master table and deletes 2455 ** every row that refers to a table of the same name as the one being 2456 ** dropped. Triggers are handled separately because a trigger can be 2457 ** created in the temp database that refers to a table in another 2458 ** database. 2459 */ 2460 sqlite3NestedParse(pParse, 2461 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2462 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2463 if( !isView && !IsVirtual(pTab) ){ 2464 destroyTable(pParse, pTab); 2465 } 2466 2467 /* Remove the table entry from SQLite's internal schema and modify 2468 ** the schema cookie. 2469 */ 2470 if( IsVirtual(pTab) ){ 2471 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2472 } 2473 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2474 sqlite3ChangeCookie(pParse, iDb); 2475 sqliteViewResetAll(db, iDb); 2476 } 2477 2478 /* 2479 ** This routine is called to do the work of a DROP TABLE statement. 2480 ** pName is the name of the table to be dropped. 2481 */ 2482 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2483 Table *pTab; 2484 Vdbe *v; 2485 sqlite3 *db = pParse->db; 2486 int iDb; 2487 2488 if( db->mallocFailed ){ 2489 goto exit_drop_table; 2490 } 2491 assert( pParse->nErr==0 ); 2492 assert( pName->nSrc==1 ); 2493 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2494 if( noErr ) db->suppressErr++; 2495 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2496 if( noErr ) db->suppressErr--; 2497 2498 if( pTab==0 ){ 2499 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2500 goto exit_drop_table; 2501 } 2502 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2503 assert( iDb>=0 && iDb<db->nDb ); 2504 2505 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2506 ** it is initialized. 2507 */ 2508 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2509 goto exit_drop_table; 2510 } 2511 #ifndef SQLITE_OMIT_AUTHORIZATION 2512 { 2513 int code; 2514 const char *zTab = SCHEMA_TABLE(iDb); 2515 const char *zDb = db->aDb[iDb].zName; 2516 const char *zArg2 = 0; 2517 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2518 goto exit_drop_table; 2519 } 2520 if( isView ){ 2521 if( !OMIT_TEMPDB && iDb==1 ){ 2522 code = SQLITE_DROP_TEMP_VIEW; 2523 }else{ 2524 code = SQLITE_DROP_VIEW; 2525 } 2526 #ifndef SQLITE_OMIT_VIRTUALTABLE 2527 }else if( IsVirtual(pTab) ){ 2528 code = SQLITE_DROP_VTABLE; 2529 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2530 #endif 2531 }else{ 2532 if( !OMIT_TEMPDB && iDb==1 ){ 2533 code = SQLITE_DROP_TEMP_TABLE; 2534 }else{ 2535 code = SQLITE_DROP_TABLE; 2536 } 2537 } 2538 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2539 goto exit_drop_table; 2540 } 2541 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2542 goto exit_drop_table; 2543 } 2544 } 2545 #endif 2546 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2547 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2548 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2549 goto exit_drop_table; 2550 } 2551 2552 #ifndef SQLITE_OMIT_VIEW 2553 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2554 ** on a table. 2555 */ 2556 if( isView && pTab->pSelect==0 ){ 2557 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2558 goto exit_drop_table; 2559 } 2560 if( !isView && pTab->pSelect ){ 2561 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2562 goto exit_drop_table; 2563 } 2564 #endif 2565 2566 /* Generate code to remove the table from the master table 2567 ** on disk. 2568 */ 2569 v = sqlite3GetVdbe(pParse); 2570 if( v ){ 2571 sqlite3BeginWriteOperation(pParse, 1, iDb); 2572 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2573 sqlite3FkDropTable(pParse, pName, pTab); 2574 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2575 } 2576 2577 exit_drop_table: 2578 sqlite3SrcListDelete(db, pName); 2579 } 2580 2581 /* 2582 ** This routine is called to create a new foreign key on the table 2583 ** currently under construction. pFromCol determines which columns 2584 ** in the current table point to the foreign key. If pFromCol==0 then 2585 ** connect the key to the last column inserted. pTo is the name of 2586 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2587 ** of tables in the parent pTo table. flags contains all 2588 ** information about the conflict resolution algorithms specified 2589 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2590 ** 2591 ** An FKey structure is created and added to the table currently 2592 ** under construction in the pParse->pNewTable field. 2593 ** 2594 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2595 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2596 */ 2597 void sqlite3CreateForeignKey( 2598 Parse *pParse, /* Parsing context */ 2599 ExprList *pFromCol, /* Columns in this table that point to other table */ 2600 Token *pTo, /* Name of the other table */ 2601 ExprList *pToCol, /* Columns in the other table */ 2602 int flags /* Conflict resolution algorithms. */ 2603 ){ 2604 sqlite3 *db = pParse->db; 2605 #ifndef SQLITE_OMIT_FOREIGN_KEY 2606 FKey *pFKey = 0; 2607 FKey *pNextTo; 2608 Table *p = pParse->pNewTable; 2609 int nByte; 2610 int i; 2611 int nCol; 2612 char *z; 2613 2614 assert( pTo!=0 ); 2615 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2616 if( pFromCol==0 ){ 2617 int iCol = p->nCol-1; 2618 if( NEVER(iCol<0) ) goto fk_end; 2619 if( pToCol && pToCol->nExpr!=1 ){ 2620 sqlite3ErrorMsg(pParse, "foreign key on %s" 2621 " should reference only one column of table %T", 2622 p->aCol[iCol].zName, pTo); 2623 goto fk_end; 2624 } 2625 nCol = 1; 2626 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2627 sqlite3ErrorMsg(pParse, 2628 "number of columns in foreign key does not match the number of " 2629 "columns in the referenced table"); 2630 goto fk_end; 2631 }else{ 2632 nCol = pFromCol->nExpr; 2633 } 2634 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2635 if( pToCol ){ 2636 for(i=0; i<pToCol->nExpr; i++){ 2637 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2638 } 2639 } 2640 pFKey = sqlite3DbMallocZero(db, nByte ); 2641 if( pFKey==0 ){ 2642 goto fk_end; 2643 } 2644 pFKey->pFrom = p; 2645 pFKey->pNextFrom = p->pFKey; 2646 z = (char*)&pFKey->aCol[nCol]; 2647 pFKey->zTo = z; 2648 memcpy(z, pTo->z, pTo->n); 2649 z[pTo->n] = 0; 2650 sqlite3Dequote(z); 2651 z += pTo->n+1; 2652 pFKey->nCol = nCol; 2653 if( pFromCol==0 ){ 2654 pFKey->aCol[0].iFrom = p->nCol-1; 2655 }else{ 2656 for(i=0; i<nCol; i++){ 2657 int j; 2658 for(j=0; j<p->nCol; j++){ 2659 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2660 pFKey->aCol[i].iFrom = j; 2661 break; 2662 } 2663 } 2664 if( j>=p->nCol ){ 2665 sqlite3ErrorMsg(pParse, 2666 "unknown column \"%s\" in foreign key definition", 2667 pFromCol->a[i].zName); 2668 goto fk_end; 2669 } 2670 } 2671 } 2672 if( pToCol ){ 2673 for(i=0; i<nCol; i++){ 2674 int n = sqlite3Strlen30(pToCol->a[i].zName); 2675 pFKey->aCol[i].zCol = z; 2676 memcpy(z, pToCol->a[i].zName, n); 2677 z[n] = 0; 2678 z += n+1; 2679 } 2680 } 2681 pFKey->isDeferred = 0; 2682 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2683 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2684 2685 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2686 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2687 pFKey->zTo, (void *)pFKey 2688 ); 2689 if( pNextTo==pFKey ){ 2690 sqlite3OomFault(db); 2691 goto fk_end; 2692 } 2693 if( pNextTo ){ 2694 assert( pNextTo->pPrevTo==0 ); 2695 pFKey->pNextTo = pNextTo; 2696 pNextTo->pPrevTo = pFKey; 2697 } 2698 2699 /* Link the foreign key to the table as the last step. 2700 */ 2701 p->pFKey = pFKey; 2702 pFKey = 0; 2703 2704 fk_end: 2705 sqlite3DbFree(db, pFKey); 2706 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2707 sqlite3ExprListDelete(db, pFromCol); 2708 sqlite3ExprListDelete(db, pToCol); 2709 } 2710 2711 /* 2712 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2713 ** clause is seen as part of a foreign key definition. The isDeferred 2714 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2715 ** The behavior of the most recently created foreign key is adjusted 2716 ** accordingly. 2717 */ 2718 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2719 #ifndef SQLITE_OMIT_FOREIGN_KEY 2720 Table *pTab; 2721 FKey *pFKey; 2722 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2723 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2724 pFKey->isDeferred = (u8)isDeferred; 2725 #endif 2726 } 2727 2728 /* 2729 ** Generate code that will erase and refill index *pIdx. This is 2730 ** used to initialize a newly created index or to recompute the 2731 ** content of an index in response to a REINDEX command. 2732 ** 2733 ** if memRootPage is not negative, it means that the index is newly 2734 ** created. The register specified by memRootPage contains the 2735 ** root page number of the index. If memRootPage is negative, then 2736 ** the index already exists and must be cleared before being refilled and 2737 ** the root page number of the index is taken from pIndex->tnum. 2738 */ 2739 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2740 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2741 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2742 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2743 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2744 int addr1; /* Address of top of loop */ 2745 int addr2; /* Address to jump to for next iteration */ 2746 int tnum; /* Root page of index */ 2747 int iPartIdxLabel; /* Jump to this label to skip a row */ 2748 Vdbe *v; /* Generate code into this virtual machine */ 2749 KeyInfo *pKey; /* KeyInfo for index */ 2750 int regRecord; /* Register holding assembled index record */ 2751 sqlite3 *db = pParse->db; /* The database connection */ 2752 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2753 2754 #ifndef SQLITE_OMIT_AUTHORIZATION 2755 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2756 db->aDb[iDb].zName ) ){ 2757 return; 2758 } 2759 #endif 2760 2761 /* Require a write-lock on the table to perform this operation */ 2762 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2763 2764 v = sqlite3GetVdbe(pParse); 2765 if( v==0 ) return; 2766 if( memRootPage>=0 ){ 2767 tnum = memRootPage; 2768 }else{ 2769 tnum = pIndex->tnum; 2770 } 2771 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2772 2773 /* Open the sorter cursor if we are to use one. */ 2774 iSorter = pParse->nTab++; 2775 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2776 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2777 2778 /* Open the table. Loop through all rows of the table, inserting index 2779 ** records into the sorter. */ 2780 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2781 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2782 regRecord = sqlite3GetTempReg(pParse); 2783 2784 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2785 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2786 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2787 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2788 sqlite3VdbeJumpHere(v, addr1); 2789 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2790 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2791 (char *)pKey, P4_KEYINFO); 2792 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2793 2794 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2795 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2796 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2797 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2798 sqlite3VdbeGoto(v, j2); 2799 addr2 = sqlite3VdbeCurrentAddr(v); 2800 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2801 pIndex->nKeyCol); VdbeCoverage(v); 2802 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2803 }else{ 2804 addr2 = sqlite3VdbeCurrentAddr(v); 2805 } 2806 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2807 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2808 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2809 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2810 sqlite3ReleaseTempReg(pParse, regRecord); 2811 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2812 sqlite3VdbeJumpHere(v, addr1); 2813 2814 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2815 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2816 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2817 } 2818 2819 /* 2820 ** Allocate heap space to hold an Index object with nCol columns. 2821 ** 2822 ** Increase the allocation size to provide an extra nExtra bytes 2823 ** of 8-byte aligned space after the Index object and return a 2824 ** pointer to this extra space in *ppExtra. 2825 */ 2826 Index *sqlite3AllocateIndexObject( 2827 sqlite3 *db, /* Database connection */ 2828 i16 nCol, /* Total number of columns in the index */ 2829 int nExtra, /* Number of bytes of extra space to alloc */ 2830 char **ppExtra /* Pointer to the "extra" space */ 2831 ){ 2832 Index *p; /* Allocated index object */ 2833 int nByte; /* Bytes of space for Index object + arrays */ 2834 2835 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2836 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2837 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2838 sizeof(i16)*nCol + /* Index.aiColumn */ 2839 sizeof(u8)*nCol); /* Index.aSortOrder */ 2840 p = sqlite3DbMallocZero(db, nByte + nExtra); 2841 if( p ){ 2842 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2843 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2844 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2845 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2846 p->aSortOrder = (u8*)pExtra; 2847 p->nColumn = nCol; 2848 p->nKeyCol = nCol - 1; 2849 *ppExtra = ((char*)p) + nByte; 2850 } 2851 return p; 2852 } 2853 2854 /* 2855 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2856 ** and pTblList is the name of the table that is to be indexed. Both will 2857 ** be NULL for a primary key or an index that is created to satisfy a 2858 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2859 ** as the table to be indexed. pParse->pNewTable is a table that is 2860 ** currently being constructed by a CREATE TABLE statement. 2861 ** 2862 ** pList is a list of columns to be indexed. pList will be NULL if this 2863 ** is a primary key or unique-constraint on the most recent column added 2864 ** to the table currently under construction. 2865 ** 2866 ** If the index is created successfully, return a pointer to the new Index 2867 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2868 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2869 */ 2870 Index *sqlite3CreateIndex( 2871 Parse *pParse, /* All information about this parse */ 2872 Token *pName1, /* First part of index name. May be NULL */ 2873 Token *pName2, /* Second part of index name. May be NULL */ 2874 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2875 ExprList *pList, /* A list of columns to be indexed */ 2876 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2877 Token *pStart, /* The CREATE token that begins this statement */ 2878 Expr *pPIWhere, /* WHERE clause for partial indices */ 2879 int sortOrder, /* Sort order of primary key when pList==NULL */ 2880 int ifNotExist /* Omit error if index already exists */ 2881 ){ 2882 Index *pRet = 0; /* Pointer to return */ 2883 Table *pTab = 0; /* Table to be indexed */ 2884 Index *pIndex = 0; /* The index to be created */ 2885 char *zName = 0; /* Name of the index */ 2886 int nName; /* Number of characters in zName */ 2887 int i, j; 2888 DbFixer sFix; /* For assigning database names to pTable */ 2889 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2890 sqlite3 *db = pParse->db; 2891 Db *pDb; /* The specific table containing the indexed database */ 2892 int iDb; /* Index of the database that is being written */ 2893 Token *pName = 0; /* Unqualified name of the index to create */ 2894 struct ExprList_item *pListItem; /* For looping over pList */ 2895 int nExtra = 0; /* Space allocated for zExtra[] */ 2896 int nExtraCol; /* Number of extra columns needed */ 2897 char *zExtra = 0; /* Extra space after the Index object */ 2898 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2899 2900 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2901 goto exit_create_index; 2902 } 2903 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2904 goto exit_create_index; 2905 } 2906 2907 /* 2908 ** Find the table that is to be indexed. Return early if not found. 2909 */ 2910 if( pTblName!=0 ){ 2911 2912 /* Use the two-part index name to determine the database 2913 ** to search for the table. 'Fix' the table name to this db 2914 ** before looking up the table. 2915 */ 2916 assert( pName1 && pName2 ); 2917 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2918 if( iDb<0 ) goto exit_create_index; 2919 assert( pName && pName->z ); 2920 2921 #ifndef SQLITE_OMIT_TEMPDB 2922 /* If the index name was unqualified, check if the table 2923 ** is a temp table. If so, set the database to 1. Do not do this 2924 ** if initialising a database schema. 2925 */ 2926 if( !db->init.busy ){ 2927 pTab = sqlite3SrcListLookup(pParse, pTblName); 2928 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2929 iDb = 1; 2930 } 2931 } 2932 #endif 2933 2934 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2935 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2936 /* Because the parser constructs pTblName from a single identifier, 2937 ** sqlite3FixSrcList can never fail. */ 2938 assert(0); 2939 } 2940 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2941 assert( db->mallocFailed==0 || pTab==0 ); 2942 if( pTab==0 ) goto exit_create_index; 2943 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2944 sqlite3ErrorMsg(pParse, 2945 "cannot create a TEMP index on non-TEMP table \"%s\"", 2946 pTab->zName); 2947 goto exit_create_index; 2948 } 2949 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2950 }else{ 2951 assert( pName==0 ); 2952 assert( pStart==0 ); 2953 pTab = pParse->pNewTable; 2954 if( !pTab ) goto exit_create_index; 2955 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2956 } 2957 pDb = &db->aDb[iDb]; 2958 2959 assert( pTab!=0 ); 2960 assert( pParse->nErr==0 ); 2961 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2962 && db->init.busy==0 2963 #if SQLITE_USER_AUTHENTICATION 2964 && sqlite3UserAuthTable(pTab->zName)==0 2965 #endif 2966 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2967 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2968 goto exit_create_index; 2969 } 2970 #ifndef SQLITE_OMIT_VIEW 2971 if( pTab->pSelect ){ 2972 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2973 goto exit_create_index; 2974 } 2975 #endif 2976 #ifndef SQLITE_OMIT_VIRTUALTABLE 2977 if( IsVirtual(pTab) ){ 2978 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2979 goto exit_create_index; 2980 } 2981 #endif 2982 2983 /* 2984 ** Find the name of the index. Make sure there is not already another 2985 ** index or table with the same name. 2986 ** 2987 ** Exception: If we are reading the names of permanent indices from the 2988 ** sqlite_master table (because some other process changed the schema) and 2989 ** one of the index names collides with the name of a temporary table or 2990 ** index, then we will continue to process this index. 2991 ** 2992 ** If pName==0 it means that we are 2993 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2994 ** own name. 2995 */ 2996 if( pName ){ 2997 zName = sqlite3NameFromToken(db, pName); 2998 if( zName==0 ) goto exit_create_index; 2999 assert( pName->z!=0 ); 3000 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3001 goto exit_create_index; 3002 } 3003 if( !db->init.busy ){ 3004 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3005 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3006 goto exit_create_index; 3007 } 3008 } 3009 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3010 if( !ifNotExist ){ 3011 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3012 }else{ 3013 assert( !db->init.busy ); 3014 sqlite3CodeVerifySchema(pParse, iDb); 3015 } 3016 goto exit_create_index; 3017 } 3018 }else{ 3019 int n; 3020 Index *pLoop; 3021 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3022 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3023 if( zName==0 ){ 3024 goto exit_create_index; 3025 } 3026 } 3027 3028 /* Check for authorization to create an index. 3029 */ 3030 #ifndef SQLITE_OMIT_AUTHORIZATION 3031 { 3032 const char *zDb = pDb->zName; 3033 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3034 goto exit_create_index; 3035 } 3036 i = SQLITE_CREATE_INDEX; 3037 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3038 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3039 goto exit_create_index; 3040 } 3041 } 3042 #endif 3043 3044 /* If pList==0, it means this routine was called to make a primary 3045 ** key out of the last column added to the table under construction. 3046 ** So create a fake list to simulate this. 3047 */ 3048 if( pList==0 ){ 3049 Token prevCol; 3050 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3051 pList = sqlite3ExprListAppend(pParse, 0, 3052 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3053 if( pList==0 ) goto exit_create_index; 3054 assert( pList->nExpr==1 ); 3055 sqlite3ExprListSetSortOrder(pList, sortOrder); 3056 }else{ 3057 sqlite3ExprListCheckLength(pParse, pList, "index"); 3058 } 3059 3060 /* Figure out how many bytes of space are required to store explicitly 3061 ** specified collation sequence names. 3062 */ 3063 for(i=0; i<pList->nExpr; i++){ 3064 Expr *pExpr = pList->a[i].pExpr; 3065 assert( pExpr!=0 ); 3066 if( pExpr->op==TK_COLLATE ){ 3067 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3068 } 3069 } 3070 3071 /* 3072 ** Allocate the index structure. 3073 */ 3074 nName = sqlite3Strlen30(zName); 3075 nExtraCol = pPk ? pPk->nKeyCol : 1; 3076 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3077 nName + nExtra + 1, &zExtra); 3078 if( db->mallocFailed ){ 3079 goto exit_create_index; 3080 } 3081 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3082 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3083 pIndex->zName = zExtra; 3084 zExtra += nName + 1; 3085 memcpy(pIndex->zName, zName, nName+1); 3086 pIndex->pTable = pTab; 3087 pIndex->onError = (u8)onError; 3088 pIndex->uniqNotNull = onError!=OE_None; 3089 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3090 pIndex->pSchema = db->aDb[iDb].pSchema; 3091 pIndex->nKeyCol = pList->nExpr; 3092 if( pPIWhere ){ 3093 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3094 pIndex->pPartIdxWhere = pPIWhere; 3095 pPIWhere = 0; 3096 } 3097 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3098 3099 /* Check to see if we should honor DESC requests on index columns 3100 */ 3101 if( pDb->pSchema->file_format>=4 ){ 3102 sortOrderMask = -1; /* Honor DESC */ 3103 }else{ 3104 sortOrderMask = 0; /* Ignore DESC */ 3105 } 3106 3107 /* Analyze the list of expressions that form the terms of the index and 3108 ** report any errors. In the common case where the expression is exactly 3109 ** a table column, store that column in aiColumn[]. For general expressions, 3110 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3111 ** 3112 ** TODO: Issue a warning if two or more columns of the index are identical. 3113 ** TODO: Issue a warning if the table primary key is used as part of the 3114 ** index key. 3115 */ 3116 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3117 Expr *pCExpr; /* The i-th index expression */ 3118 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3119 const char *zColl; /* Collation sequence name */ 3120 3121 sqlite3StringToId(pListItem->pExpr); 3122 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3123 if( pParse->nErr ) goto exit_create_index; 3124 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3125 if( pCExpr->op!=TK_COLUMN ){ 3126 if( pTab==pParse->pNewTable ){ 3127 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3128 "UNIQUE constraints"); 3129 goto exit_create_index; 3130 } 3131 if( pIndex->aColExpr==0 ){ 3132 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3133 pIndex->aColExpr = pCopy; 3134 if( !db->mallocFailed ){ 3135 assert( pCopy!=0 ); 3136 pListItem = &pCopy->a[i]; 3137 } 3138 } 3139 j = XN_EXPR; 3140 pIndex->aiColumn[i] = XN_EXPR; 3141 pIndex->uniqNotNull = 0; 3142 }else{ 3143 j = pCExpr->iColumn; 3144 assert( j<=0x7fff ); 3145 if( j<0 ){ 3146 j = pTab->iPKey; 3147 }else if( pTab->aCol[j].notNull==0 ){ 3148 pIndex->uniqNotNull = 0; 3149 } 3150 pIndex->aiColumn[i] = (i16)j; 3151 } 3152 zColl = 0; 3153 if( pListItem->pExpr->op==TK_COLLATE ){ 3154 int nColl; 3155 zColl = pListItem->pExpr->u.zToken; 3156 nColl = sqlite3Strlen30(zColl) + 1; 3157 assert( nExtra>=nColl ); 3158 memcpy(zExtra, zColl, nColl); 3159 zColl = zExtra; 3160 zExtra += nColl; 3161 nExtra -= nColl; 3162 }else if( j>=0 ){ 3163 zColl = pTab->aCol[j].zColl; 3164 } 3165 if( !zColl ) zColl = sqlite3StrBINARY; 3166 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3167 goto exit_create_index; 3168 } 3169 pIndex->azColl[i] = zColl; 3170 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3171 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3172 } 3173 3174 /* Append the table key to the end of the index. For WITHOUT ROWID 3175 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3176 ** normal tables (when pPk==0) this will be the rowid. 3177 */ 3178 if( pPk ){ 3179 for(j=0; j<pPk->nKeyCol; j++){ 3180 int x = pPk->aiColumn[j]; 3181 assert( x>=0 ); 3182 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3183 pIndex->nColumn--; 3184 }else{ 3185 pIndex->aiColumn[i] = x; 3186 pIndex->azColl[i] = pPk->azColl[j]; 3187 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3188 i++; 3189 } 3190 } 3191 assert( i==pIndex->nColumn ); 3192 }else{ 3193 pIndex->aiColumn[i] = XN_ROWID; 3194 pIndex->azColl[i] = sqlite3StrBINARY; 3195 } 3196 sqlite3DefaultRowEst(pIndex); 3197 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3198 3199 /* If this index contains every column of its table, then mark 3200 ** it as a covering index */ 3201 assert( HasRowid(pTab) 3202 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3203 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3204 pIndex->isCovering = 1; 3205 for(j=0; j<pTab->nCol; j++){ 3206 if( j==pTab->iPKey ) continue; 3207 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3208 pIndex->isCovering = 0; 3209 break; 3210 } 3211 } 3212 3213 if( pTab==pParse->pNewTable ){ 3214 /* This routine has been called to create an automatic index as a 3215 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3216 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3217 ** i.e. one of: 3218 ** 3219 ** CREATE TABLE t(x PRIMARY KEY, y); 3220 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3221 ** 3222 ** Either way, check to see if the table already has such an index. If 3223 ** so, don't bother creating this one. This only applies to 3224 ** automatically created indices. Users can do as they wish with 3225 ** explicit indices. 3226 ** 3227 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3228 ** (and thus suppressing the second one) even if they have different 3229 ** sort orders. 3230 ** 3231 ** If there are different collating sequences or if the columns of 3232 ** the constraint occur in different orders, then the constraints are 3233 ** considered distinct and both result in separate indices. 3234 */ 3235 Index *pIdx; 3236 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3237 int k; 3238 assert( IsUniqueIndex(pIdx) ); 3239 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3240 assert( IsUniqueIndex(pIndex) ); 3241 3242 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3243 for(k=0; k<pIdx->nKeyCol; k++){ 3244 const char *z1; 3245 const char *z2; 3246 assert( pIdx->aiColumn[k]>=0 ); 3247 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3248 z1 = pIdx->azColl[k]; 3249 z2 = pIndex->azColl[k]; 3250 if( sqlite3StrICmp(z1, z2) ) break; 3251 } 3252 if( k==pIdx->nKeyCol ){ 3253 if( pIdx->onError!=pIndex->onError ){ 3254 /* This constraint creates the same index as a previous 3255 ** constraint specified somewhere in the CREATE TABLE statement. 3256 ** However the ON CONFLICT clauses are different. If both this 3257 ** constraint and the previous equivalent constraint have explicit 3258 ** ON CONFLICT clauses this is an error. Otherwise, use the 3259 ** explicitly specified behavior for the index. 3260 */ 3261 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3262 sqlite3ErrorMsg(pParse, 3263 "conflicting ON CONFLICT clauses specified", 0); 3264 } 3265 if( pIdx->onError==OE_Default ){ 3266 pIdx->onError = pIndex->onError; 3267 } 3268 } 3269 pRet = pIdx; 3270 goto exit_create_index; 3271 } 3272 } 3273 } 3274 3275 /* Link the new Index structure to its table and to the other 3276 ** in-memory database structures. 3277 */ 3278 assert( pParse->nErr==0 ); 3279 if( db->init.busy ){ 3280 Index *p; 3281 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3282 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3283 pIndex->zName, pIndex); 3284 if( p ){ 3285 assert( p==pIndex ); /* Malloc must have failed */ 3286 sqlite3OomFault(db); 3287 goto exit_create_index; 3288 } 3289 db->flags |= SQLITE_InternChanges; 3290 if( pTblName!=0 ){ 3291 pIndex->tnum = db->init.newTnum; 3292 } 3293 } 3294 3295 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3296 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3297 ** emit code to allocate the index rootpage on disk and make an entry for 3298 ** the index in the sqlite_master table and populate the index with 3299 ** content. But, do not do this if we are simply reading the sqlite_master 3300 ** table to parse the schema, or if this index is the PRIMARY KEY index 3301 ** of a WITHOUT ROWID table. 3302 ** 3303 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3304 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3305 ** has just been created, it contains no data and the index initialization 3306 ** step can be skipped. 3307 */ 3308 else if( HasRowid(pTab) || pTblName!=0 ){ 3309 Vdbe *v; 3310 char *zStmt; 3311 int iMem = ++pParse->nMem; 3312 3313 v = sqlite3GetVdbe(pParse); 3314 if( v==0 ) goto exit_create_index; 3315 3316 sqlite3BeginWriteOperation(pParse, 1, iDb); 3317 3318 /* Create the rootpage for the index using CreateIndex. But before 3319 ** doing so, code a Noop instruction and store its address in 3320 ** Index.tnum. This is required in case this index is actually a 3321 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3322 ** that case the convertToWithoutRowidTable() routine will replace 3323 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3324 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3325 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3326 3327 /* Gather the complete text of the CREATE INDEX statement into 3328 ** the zStmt variable 3329 */ 3330 if( pStart ){ 3331 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3332 if( pName->z[n-1]==';' ) n--; 3333 /* A named index with an explicit CREATE INDEX statement */ 3334 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3335 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3336 }else{ 3337 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3338 /* zStmt = sqlite3MPrintf(""); */ 3339 zStmt = 0; 3340 } 3341 3342 /* Add an entry in sqlite_master for this index 3343 */ 3344 sqlite3NestedParse(pParse, 3345 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3346 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3347 pIndex->zName, 3348 pTab->zName, 3349 iMem, 3350 zStmt 3351 ); 3352 sqlite3DbFree(db, zStmt); 3353 3354 /* Fill the index with data and reparse the schema. Code an OP_Expire 3355 ** to invalidate all pre-compiled statements. 3356 */ 3357 if( pTblName ){ 3358 sqlite3RefillIndex(pParse, pIndex, iMem); 3359 sqlite3ChangeCookie(pParse, iDb); 3360 sqlite3VdbeAddParseSchemaOp(v, iDb, 3361 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3362 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3363 } 3364 3365 sqlite3VdbeJumpHere(v, pIndex->tnum); 3366 } 3367 3368 /* When adding an index to the list of indices for a table, make 3369 ** sure all indices labeled OE_Replace come after all those labeled 3370 ** OE_Ignore. This is necessary for the correct constraint check 3371 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3372 ** UPDATE and INSERT statements. 3373 */ 3374 if( db->init.busy || pTblName==0 ){ 3375 if( onError!=OE_Replace || pTab->pIndex==0 3376 || pTab->pIndex->onError==OE_Replace){ 3377 pIndex->pNext = pTab->pIndex; 3378 pTab->pIndex = pIndex; 3379 }else{ 3380 Index *pOther = pTab->pIndex; 3381 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3382 pOther = pOther->pNext; 3383 } 3384 pIndex->pNext = pOther->pNext; 3385 pOther->pNext = pIndex; 3386 } 3387 pRet = pIndex; 3388 pIndex = 0; 3389 } 3390 3391 /* Clean up before exiting */ 3392 exit_create_index: 3393 if( pIndex ) freeIndex(db, pIndex); 3394 sqlite3ExprDelete(db, pPIWhere); 3395 sqlite3ExprListDelete(db, pList); 3396 sqlite3SrcListDelete(db, pTblName); 3397 sqlite3DbFree(db, zName); 3398 return pRet; 3399 } 3400 3401 /* 3402 ** Fill the Index.aiRowEst[] array with default information - information 3403 ** to be used when we have not run the ANALYZE command. 3404 ** 3405 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3406 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3407 ** number of rows in the table that match any particular value of the 3408 ** first column of the index. aiRowEst[2] is an estimate of the number 3409 ** of rows that match any particular combination of the first 2 columns 3410 ** of the index. And so forth. It must always be the case that 3411 * 3412 ** aiRowEst[N]<=aiRowEst[N-1] 3413 ** aiRowEst[N]>=1 3414 ** 3415 ** Apart from that, we have little to go on besides intuition as to 3416 ** how aiRowEst[] should be initialized. The numbers generated here 3417 ** are based on typical values found in actual indices. 3418 */ 3419 void sqlite3DefaultRowEst(Index *pIdx){ 3420 /* 10, 9, 8, 7, 6 */ 3421 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3422 LogEst *a = pIdx->aiRowLogEst; 3423 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3424 int i; 3425 3426 /* Set the first entry (number of rows in the index) to the estimated 3427 ** number of rows in the table. Or 10, if the estimated number of rows 3428 ** in the table is less than that. */ 3429 a[0] = pIdx->pTable->nRowLogEst; 3430 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3431 3432 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3433 ** 6 and each subsequent value (if any) is 5. */ 3434 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3435 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3436 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3437 } 3438 3439 assert( 0==sqlite3LogEst(1) ); 3440 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3441 } 3442 3443 /* 3444 ** This routine will drop an existing named index. This routine 3445 ** implements the DROP INDEX statement. 3446 */ 3447 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3448 Index *pIndex; 3449 Vdbe *v; 3450 sqlite3 *db = pParse->db; 3451 int iDb; 3452 3453 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3454 if( db->mallocFailed ){ 3455 goto exit_drop_index; 3456 } 3457 assert( pName->nSrc==1 ); 3458 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3459 goto exit_drop_index; 3460 } 3461 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3462 if( pIndex==0 ){ 3463 if( !ifExists ){ 3464 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3465 }else{ 3466 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3467 } 3468 pParse->checkSchema = 1; 3469 goto exit_drop_index; 3470 } 3471 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3472 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3473 "or PRIMARY KEY constraint cannot be dropped", 0); 3474 goto exit_drop_index; 3475 } 3476 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3477 #ifndef SQLITE_OMIT_AUTHORIZATION 3478 { 3479 int code = SQLITE_DROP_INDEX; 3480 Table *pTab = pIndex->pTable; 3481 const char *zDb = db->aDb[iDb].zName; 3482 const char *zTab = SCHEMA_TABLE(iDb); 3483 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3484 goto exit_drop_index; 3485 } 3486 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3487 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3488 goto exit_drop_index; 3489 } 3490 } 3491 #endif 3492 3493 /* Generate code to remove the index and from the master table */ 3494 v = sqlite3GetVdbe(pParse); 3495 if( v ){ 3496 sqlite3BeginWriteOperation(pParse, 1, iDb); 3497 sqlite3NestedParse(pParse, 3498 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3499 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3500 ); 3501 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3502 sqlite3ChangeCookie(pParse, iDb); 3503 destroyRootPage(pParse, pIndex->tnum, iDb); 3504 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3505 } 3506 3507 exit_drop_index: 3508 sqlite3SrcListDelete(db, pName); 3509 } 3510 3511 /* 3512 ** pArray is a pointer to an array of objects. Each object in the 3513 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3514 ** to extend the array so that there is space for a new object at the end. 3515 ** 3516 ** When this function is called, *pnEntry contains the current size of 3517 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3518 ** in total). 3519 ** 3520 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3521 ** space allocated for the new object is zeroed, *pnEntry updated to 3522 ** reflect the new size of the array and a pointer to the new allocation 3523 ** returned. *pIdx is set to the index of the new array entry in this case. 3524 ** 3525 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3526 ** unchanged and a copy of pArray returned. 3527 */ 3528 void *sqlite3ArrayAllocate( 3529 sqlite3 *db, /* Connection to notify of malloc failures */ 3530 void *pArray, /* Array of objects. Might be reallocated */ 3531 int szEntry, /* Size of each object in the array */ 3532 int *pnEntry, /* Number of objects currently in use */ 3533 int *pIdx /* Write the index of a new slot here */ 3534 ){ 3535 char *z; 3536 int n = *pnEntry; 3537 if( (n & (n-1))==0 ){ 3538 int sz = (n==0) ? 1 : 2*n; 3539 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3540 if( pNew==0 ){ 3541 *pIdx = -1; 3542 return pArray; 3543 } 3544 pArray = pNew; 3545 } 3546 z = (char*)pArray; 3547 memset(&z[n * szEntry], 0, szEntry); 3548 *pIdx = n; 3549 ++*pnEntry; 3550 return pArray; 3551 } 3552 3553 /* 3554 ** Append a new element to the given IdList. Create a new IdList if 3555 ** need be. 3556 ** 3557 ** A new IdList is returned, or NULL if malloc() fails. 3558 */ 3559 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3560 int i; 3561 if( pList==0 ){ 3562 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3563 if( pList==0 ) return 0; 3564 } 3565 pList->a = sqlite3ArrayAllocate( 3566 db, 3567 pList->a, 3568 sizeof(pList->a[0]), 3569 &pList->nId, 3570 &i 3571 ); 3572 if( i<0 ){ 3573 sqlite3IdListDelete(db, pList); 3574 return 0; 3575 } 3576 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3577 return pList; 3578 } 3579 3580 /* 3581 ** Delete an IdList. 3582 */ 3583 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3584 int i; 3585 if( pList==0 ) return; 3586 for(i=0; i<pList->nId; i++){ 3587 sqlite3DbFree(db, pList->a[i].zName); 3588 } 3589 sqlite3DbFree(db, pList->a); 3590 sqlite3DbFree(db, pList); 3591 } 3592 3593 /* 3594 ** Return the index in pList of the identifier named zId. Return -1 3595 ** if not found. 3596 */ 3597 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3598 int i; 3599 if( pList==0 ) return -1; 3600 for(i=0; i<pList->nId; i++){ 3601 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3602 } 3603 return -1; 3604 } 3605 3606 /* 3607 ** Expand the space allocated for the given SrcList object by 3608 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3609 ** New slots are zeroed. 3610 ** 3611 ** For example, suppose a SrcList initially contains two entries: A,B. 3612 ** To append 3 new entries onto the end, do this: 3613 ** 3614 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3615 ** 3616 ** After the call above it would contain: A, B, nil, nil, nil. 3617 ** If the iStart argument had been 1 instead of 2, then the result 3618 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3619 ** the iStart value would be 0. The result then would 3620 ** be: nil, nil, nil, A, B. 3621 ** 3622 ** If a memory allocation fails the SrcList is unchanged. The 3623 ** db->mallocFailed flag will be set to true. 3624 */ 3625 SrcList *sqlite3SrcListEnlarge( 3626 sqlite3 *db, /* Database connection to notify of OOM errors */ 3627 SrcList *pSrc, /* The SrcList to be enlarged */ 3628 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3629 int iStart /* Index in pSrc->a[] of first new slot */ 3630 ){ 3631 int i; 3632 3633 /* Sanity checking on calling parameters */ 3634 assert( iStart>=0 ); 3635 assert( nExtra>=1 ); 3636 assert( pSrc!=0 ); 3637 assert( iStart<=pSrc->nSrc ); 3638 3639 /* Allocate additional space if needed */ 3640 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3641 SrcList *pNew; 3642 int nAlloc = pSrc->nSrc+nExtra; 3643 int nGot; 3644 pNew = sqlite3DbRealloc(db, pSrc, 3645 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3646 if( pNew==0 ){ 3647 assert( db->mallocFailed ); 3648 return pSrc; 3649 } 3650 pSrc = pNew; 3651 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3652 pSrc->nAlloc = nGot; 3653 } 3654 3655 /* Move existing slots that come after the newly inserted slots 3656 ** out of the way */ 3657 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3658 pSrc->a[i+nExtra] = pSrc->a[i]; 3659 } 3660 pSrc->nSrc += nExtra; 3661 3662 /* Zero the newly allocated slots */ 3663 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3664 for(i=iStart; i<iStart+nExtra; i++){ 3665 pSrc->a[i].iCursor = -1; 3666 } 3667 3668 /* Return a pointer to the enlarged SrcList */ 3669 return pSrc; 3670 } 3671 3672 3673 /* 3674 ** Append a new table name to the given SrcList. Create a new SrcList if 3675 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3676 ** 3677 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3678 ** SrcList might be the same as the SrcList that was input or it might be 3679 ** a new one. If an OOM error does occurs, then the prior value of pList 3680 ** that is input to this routine is automatically freed. 3681 ** 3682 ** If pDatabase is not null, it means that the table has an optional 3683 ** database name prefix. Like this: "database.table". The pDatabase 3684 ** points to the table name and the pTable points to the database name. 3685 ** The SrcList.a[].zName field is filled with the table name which might 3686 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3687 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3688 ** or with NULL if no database is specified. 3689 ** 3690 ** In other words, if call like this: 3691 ** 3692 ** sqlite3SrcListAppend(D,A,B,0); 3693 ** 3694 ** Then B is a table name and the database name is unspecified. If called 3695 ** like this: 3696 ** 3697 ** sqlite3SrcListAppend(D,A,B,C); 3698 ** 3699 ** Then C is the table name and B is the database name. If C is defined 3700 ** then so is B. In other words, we never have a case where: 3701 ** 3702 ** sqlite3SrcListAppend(D,A,0,C); 3703 ** 3704 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3705 ** before being added to the SrcList. 3706 */ 3707 SrcList *sqlite3SrcListAppend( 3708 sqlite3 *db, /* Connection to notify of malloc failures */ 3709 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3710 Token *pTable, /* Table to append */ 3711 Token *pDatabase /* Database of the table */ 3712 ){ 3713 struct SrcList_item *pItem; 3714 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3715 assert( db!=0 ); 3716 if( pList==0 ){ 3717 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3718 if( pList==0 ) return 0; 3719 pList->nAlloc = 1; 3720 pList->nSrc = 0; 3721 } 3722 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3723 if( db->mallocFailed ){ 3724 sqlite3SrcListDelete(db, pList); 3725 return 0; 3726 } 3727 pItem = &pList->a[pList->nSrc-1]; 3728 if( pDatabase && pDatabase->z==0 ){ 3729 pDatabase = 0; 3730 } 3731 if( pDatabase ){ 3732 Token *pTemp = pDatabase; 3733 pDatabase = pTable; 3734 pTable = pTemp; 3735 } 3736 pItem->zName = sqlite3NameFromToken(db, pTable); 3737 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3738 return pList; 3739 } 3740 3741 /* 3742 ** Assign VdbeCursor index numbers to all tables in a SrcList 3743 */ 3744 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3745 int i; 3746 struct SrcList_item *pItem; 3747 assert(pList || pParse->db->mallocFailed ); 3748 if( pList ){ 3749 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3750 if( pItem->iCursor>=0 ) break; 3751 pItem->iCursor = pParse->nTab++; 3752 if( pItem->pSelect ){ 3753 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3754 } 3755 } 3756 } 3757 } 3758 3759 /* 3760 ** Delete an entire SrcList including all its substructure. 3761 */ 3762 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3763 int i; 3764 struct SrcList_item *pItem; 3765 if( pList==0 ) return; 3766 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3767 sqlite3DbFree(db, pItem->zDatabase); 3768 sqlite3DbFree(db, pItem->zName); 3769 sqlite3DbFree(db, pItem->zAlias); 3770 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3771 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3772 sqlite3DeleteTable(db, pItem->pTab); 3773 sqlite3SelectDelete(db, pItem->pSelect); 3774 sqlite3ExprDelete(db, pItem->pOn); 3775 sqlite3IdListDelete(db, pItem->pUsing); 3776 } 3777 sqlite3DbFree(db, pList); 3778 } 3779 3780 /* 3781 ** This routine is called by the parser to add a new term to the 3782 ** end of a growing FROM clause. The "p" parameter is the part of 3783 ** the FROM clause that has already been constructed. "p" is NULL 3784 ** if this is the first term of the FROM clause. pTable and pDatabase 3785 ** are the name of the table and database named in the FROM clause term. 3786 ** pDatabase is NULL if the database name qualifier is missing - the 3787 ** usual case. If the term has an alias, then pAlias points to the 3788 ** alias token. If the term is a subquery, then pSubquery is the 3789 ** SELECT statement that the subquery encodes. The pTable and 3790 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3791 ** parameters are the content of the ON and USING clauses. 3792 ** 3793 ** Return a new SrcList which encodes is the FROM with the new 3794 ** term added. 3795 */ 3796 SrcList *sqlite3SrcListAppendFromTerm( 3797 Parse *pParse, /* Parsing context */ 3798 SrcList *p, /* The left part of the FROM clause already seen */ 3799 Token *pTable, /* Name of the table to add to the FROM clause */ 3800 Token *pDatabase, /* Name of the database containing pTable */ 3801 Token *pAlias, /* The right-hand side of the AS subexpression */ 3802 Select *pSubquery, /* A subquery used in place of a table name */ 3803 Expr *pOn, /* The ON clause of a join */ 3804 IdList *pUsing /* The USING clause of a join */ 3805 ){ 3806 struct SrcList_item *pItem; 3807 sqlite3 *db = pParse->db; 3808 if( !p && (pOn || pUsing) ){ 3809 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3810 (pOn ? "ON" : "USING") 3811 ); 3812 goto append_from_error; 3813 } 3814 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3815 if( p==0 || NEVER(p->nSrc==0) ){ 3816 goto append_from_error; 3817 } 3818 pItem = &p->a[p->nSrc-1]; 3819 assert( pAlias!=0 ); 3820 if( pAlias->n ){ 3821 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3822 } 3823 pItem->pSelect = pSubquery; 3824 pItem->pOn = pOn; 3825 pItem->pUsing = pUsing; 3826 return p; 3827 3828 append_from_error: 3829 assert( p==0 ); 3830 sqlite3ExprDelete(db, pOn); 3831 sqlite3IdListDelete(db, pUsing); 3832 sqlite3SelectDelete(db, pSubquery); 3833 return 0; 3834 } 3835 3836 /* 3837 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3838 ** element of the source-list passed as the second argument. 3839 */ 3840 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3841 assert( pIndexedBy!=0 ); 3842 if( p && ALWAYS(p->nSrc>0) ){ 3843 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3844 assert( pItem->fg.notIndexed==0 ); 3845 assert( pItem->fg.isIndexedBy==0 ); 3846 assert( pItem->fg.isTabFunc==0 ); 3847 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3848 /* A "NOT INDEXED" clause was supplied. See parse.y 3849 ** construct "indexed_opt" for details. */ 3850 pItem->fg.notIndexed = 1; 3851 }else{ 3852 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3853 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3854 } 3855 } 3856 } 3857 3858 /* 3859 ** Add the list of function arguments to the SrcList entry for a 3860 ** table-valued-function. 3861 */ 3862 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3863 if( p ){ 3864 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3865 assert( pItem->fg.notIndexed==0 ); 3866 assert( pItem->fg.isIndexedBy==0 ); 3867 assert( pItem->fg.isTabFunc==0 ); 3868 pItem->u1.pFuncArg = pList; 3869 pItem->fg.isTabFunc = 1; 3870 }else{ 3871 sqlite3ExprListDelete(pParse->db, pList); 3872 } 3873 } 3874 3875 /* 3876 ** When building up a FROM clause in the parser, the join operator 3877 ** is initially attached to the left operand. But the code generator 3878 ** expects the join operator to be on the right operand. This routine 3879 ** Shifts all join operators from left to right for an entire FROM 3880 ** clause. 3881 ** 3882 ** Example: Suppose the join is like this: 3883 ** 3884 ** A natural cross join B 3885 ** 3886 ** The operator is "natural cross join". The A and B operands are stored 3887 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3888 ** operator with A. This routine shifts that operator over to B. 3889 */ 3890 void sqlite3SrcListShiftJoinType(SrcList *p){ 3891 if( p ){ 3892 int i; 3893 for(i=p->nSrc-1; i>0; i--){ 3894 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3895 } 3896 p->a[0].fg.jointype = 0; 3897 } 3898 } 3899 3900 /* 3901 ** Generate VDBE code for a BEGIN statement. 3902 */ 3903 void sqlite3BeginTransaction(Parse *pParse, int type){ 3904 sqlite3 *db; 3905 Vdbe *v; 3906 int i; 3907 3908 assert( pParse!=0 ); 3909 db = pParse->db; 3910 assert( db!=0 ); 3911 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3912 return; 3913 } 3914 v = sqlite3GetVdbe(pParse); 3915 if( !v ) return; 3916 if( type!=TK_DEFERRED ){ 3917 for(i=0; i<db->nDb; i++){ 3918 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3919 sqlite3VdbeUsesBtree(v, i); 3920 } 3921 } 3922 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3923 } 3924 3925 /* 3926 ** Generate VDBE code for a COMMIT statement. 3927 */ 3928 void sqlite3CommitTransaction(Parse *pParse){ 3929 Vdbe *v; 3930 3931 assert( pParse!=0 ); 3932 assert( pParse->db!=0 ); 3933 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3934 return; 3935 } 3936 v = sqlite3GetVdbe(pParse); 3937 if( v ){ 3938 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3939 } 3940 } 3941 3942 /* 3943 ** Generate VDBE code for a ROLLBACK statement. 3944 */ 3945 void sqlite3RollbackTransaction(Parse *pParse){ 3946 Vdbe *v; 3947 3948 assert( pParse!=0 ); 3949 assert( pParse->db!=0 ); 3950 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3951 return; 3952 } 3953 v = sqlite3GetVdbe(pParse); 3954 if( v ){ 3955 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3956 } 3957 } 3958 3959 /* 3960 ** This function is called by the parser when it parses a command to create, 3961 ** release or rollback an SQL savepoint. 3962 */ 3963 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3964 char *zName = sqlite3NameFromToken(pParse->db, pName); 3965 if( zName ){ 3966 Vdbe *v = sqlite3GetVdbe(pParse); 3967 #ifndef SQLITE_OMIT_AUTHORIZATION 3968 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3969 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3970 #endif 3971 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3972 sqlite3DbFree(pParse->db, zName); 3973 return; 3974 } 3975 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3976 } 3977 } 3978 3979 /* 3980 ** Make sure the TEMP database is open and available for use. Return 3981 ** the number of errors. Leave any error messages in the pParse structure. 3982 */ 3983 int sqlite3OpenTempDatabase(Parse *pParse){ 3984 sqlite3 *db = pParse->db; 3985 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3986 int rc; 3987 Btree *pBt; 3988 static const int flags = 3989 SQLITE_OPEN_READWRITE | 3990 SQLITE_OPEN_CREATE | 3991 SQLITE_OPEN_EXCLUSIVE | 3992 SQLITE_OPEN_DELETEONCLOSE | 3993 SQLITE_OPEN_TEMP_DB; 3994 3995 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3996 if( rc!=SQLITE_OK ){ 3997 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3998 "file for storing temporary tables"); 3999 pParse->rc = rc; 4000 return 1; 4001 } 4002 db->aDb[1].pBt = pBt; 4003 assert( db->aDb[1].pSchema ); 4004 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4005 sqlite3OomFault(db); 4006 return 1; 4007 } 4008 } 4009 return 0; 4010 } 4011 4012 /* 4013 ** Record the fact that the schema cookie will need to be verified 4014 ** for database iDb. The code to actually verify the schema cookie 4015 ** will occur at the end of the top-level VDBE and will be generated 4016 ** later, by sqlite3FinishCoding(). 4017 */ 4018 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4019 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4020 sqlite3 *db = pToplevel->db; 4021 4022 assert( iDb>=0 && iDb<db->nDb ); 4023 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4024 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4025 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4026 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4027 DbMaskSet(pToplevel->cookieMask, iDb); 4028 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4029 if( !OMIT_TEMPDB && iDb==1 ){ 4030 sqlite3OpenTempDatabase(pToplevel); 4031 } 4032 } 4033 } 4034 4035 /* 4036 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4037 ** attached database. Otherwise, invoke it for the database named zDb only. 4038 */ 4039 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4040 sqlite3 *db = pParse->db; 4041 int i; 4042 for(i=0; i<db->nDb; i++){ 4043 Db *pDb = &db->aDb[i]; 4044 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4045 sqlite3CodeVerifySchema(pParse, i); 4046 } 4047 } 4048 } 4049 4050 /* 4051 ** Generate VDBE code that prepares for doing an operation that 4052 ** might change the database. 4053 ** 4054 ** This routine starts a new transaction if we are not already within 4055 ** a transaction. If we are already within a transaction, then a checkpoint 4056 ** is set if the setStatement parameter is true. A checkpoint should 4057 ** be set for operations that might fail (due to a constraint) part of 4058 ** the way through and which will need to undo some writes without having to 4059 ** rollback the whole transaction. For operations where all constraints 4060 ** can be checked before any changes are made to the database, it is never 4061 ** necessary to undo a write and the checkpoint should not be set. 4062 */ 4063 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4064 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4065 sqlite3CodeVerifySchema(pParse, iDb); 4066 DbMaskSet(pToplevel->writeMask, iDb); 4067 pToplevel->isMultiWrite |= setStatement; 4068 } 4069 4070 /* 4071 ** Indicate that the statement currently under construction might write 4072 ** more than one entry (example: deleting one row then inserting another, 4073 ** inserting multiple rows in a table, or inserting a row and index entries.) 4074 ** If an abort occurs after some of these writes have completed, then it will 4075 ** be necessary to undo the completed writes. 4076 */ 4077 void sqlite3MultiWrite(Parse *pParse){ 4078 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4079 pToplevel->isMultiWrite = 1; 4080 } 4081 4082 /* 4083 ** The code generator calls this routine if is discovers that it is 4084 ** possible to abort a statement prior to completion. In order to 4085 ** perform this abort without corrupting the database, we need to make 4086 ** sure that the statement is protected by a statement transaction. 4087 ** 4088 ** Technically, we only need to set the mayAbort flag if the 4089 ** isMultiWrite flag was previously set. There is a time dependency 4090 ** such that the abort must occur after the multiwrite. This makes 4091 ** some statements involving the REPLACE conflict resolution algorithm 4092 ** go a little faster. But taking advantage of this time dependency 4093 ** makes it more difficult to prove that the code is correct (in 4094 ** particular, it prevents us from writing an effective 4095 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4096 ** to take the safe route and skip the optimization. 4097 */ 4098 void sqlite3MayAbort(Parse *pParse){ 4099 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4100 pToplevel->mayAbort = 1; 4101 } 4102 4103 /* 4104 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4105 ** error. The onError parameter determines which (if any) of the statement 4106 ** and/or current transaction is rolled back. 4107 */ 4108 void sqlite3HaltConstraint( 4109 Parse *pParse, /* Parsing context */ 4110 int errCode, /* extended error code */ 4111 int onError, /* Constraint type */ 4112 char *p4, /* Error message */ 4113 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4114 u8 p5Errmsg /* P5_ErrMsg type */ 4115 ){ 4116 Vdbe *v = sqlite3GetVdbe(pParse); 4117 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4118 if( onError==OE_Abort ){ 4119 sqlite3MayAbort(pParse); 4120 } 4121 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4122 sqlite3VdbeChangeP5(v, p5Errmsg); 4123 } 4124 4125 /* 4126 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4127 */ 4128 void sqlite3UniqueConstraint( 4129 Parse *pParse, /* Parsing context */ 4130 int onError, /* Constraint type */ 4131 Index *pIdx /* The index that triggers the constraint */ 4132 ){ 4133 char *zErr; 4134 int j; 4135 StrAccum errMsg; 4136 Table *pTab = pIdx->pTable; 4137 4138 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4139 if( pIdx->aColExpr ){ 4140 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4141 }else{ 4142 for(j=0; j<pIdx->nKeyCol; j++){ 4143 char *zCol; 4144 assert( pIdx->aiColumn[j]>=0 ); 4145 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4146 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4147 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4148 } 4149 } 4150 zErr = sqlite3StrAccumFinish(&errMsg); 4151 sqlite3HaltConstraint(pParse, 4152 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4153 : SQLITE_CONSTRAINT_UNIQUE, 4154 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4155 } 4156 4157 4158 /* 4159 ** Code an OP_Halt due to non-unique rowid. 4160 */ 4161 void sqlite3RowidConstraint( 4162 Parse *pParse, /* Parsing context */ 4163 int onError, /* Conflict resolution algorithm */ 4164 Table *pTab /* The table with the non-unique rowid */ 4165 ){ 4166 char *zMsg; 4167 int rc; 4168 if( pTab->iPKey>=0 ){ 4169 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4170 pTab->aCol[pTab->iPKey].zName); 4171 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4172 }else{ 4173 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4174 rc = SQLITE_CONSTRAINT_ROWID; 4175 } 4176 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4177 P5_ConstraintUnique); 4178 } 4179 4180 /* 4181 ** Check to see if pIndex uses the collating sequence pColl. Return 4182 ** true if it does and false if it does not. 4183 */ 4184 #ifndef SQLITE_OMIT_REINDEX 4185 static int collationMatch(const char *zColl, Index *pIndex){ 4186 int i; 4187 assert( zColl!=0 ); 4188 for(i=0; i<pIndex->nColumn; i++){ 4189 const char *z = pIndex->azColl[i]; 4190 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4191 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4192 return 1; 4193 } 4194 } 4195 return 0; 4196 } 4197 #endif 4198 4199 /* 4200 ** Recompute all indices of pTab that use the collating sequence pColl. 4201 ** If pColl==0 then recompute all indices of pTab. 4202 */ 4203 #ifndef SQLITE_OMIT_REINDEX 4204 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4205 Index *pIndex; /* An index associated with pTab */ 4206 4207 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4208 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4209 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4210 sqlite3BeginWriteOperation(pParse, 0, iDb); 4211 sqlite3RefillIndex(pParse, pIndex, -1); 4212 } 4213 } 4214 } 4215 #endif 4216 4217 /* 4218 ** Recompute all indices of all tables in all databases where the 4219 ** indices use the collating sequence pColl. If pColl==0 then recompute 4220 ** all indices everywhere. 4221 */ 4222 #ifndef SQLITE_OMIT_REINDEX 4223 static void reindexDatabases(Parse *pParse, char const *zColl){ 4224 Db *pDb; /* A single database */ 4225 int iDb; /* The database index number */ 4226 sqlite3 *db = pParse->db; /* The database connection */ 4227 HashElem *k; /* For looping over tables in pDb */ 4228 Table *pTab; /* A table in the database */ 4229 4230 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4231 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4232 assert( pDb!=0 ); 4233 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4234 pTab = (Table*)sqliteHashData(k); 4235 reindexTable(pParse, pTab, zColl); 4236 } 4237 } 4238 } 4239 #endif 4240 4241 /* 4242 ** Generate code for the REINDEX command. 4243 ** 4244 ** REINDEX -- 1 4245 ** REINDEX <collation> -- 2 4246 ** REINDEX ?<database>.?<tablename> -- 3 4247 ** REINDEX ?<database>.?<indexname> -- 4 4248 ** 4249 ** Form 1 causes all indices in all attached databases to be rebuilt. 4250 ** Form 2 rebuilds all indices in all databases that use the named 4251 ** collating function. Forms 3 and 4 rebuild the named index or all 4252 ** indices associated with the named table. 4253 */ 4254 #ifndef SQLITE_OMIT_REINDEX 4255 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4256 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4257 char *z; /* Name of a table or index */ 4258 const char *zDb; /* Name of the database */ 4259 Table *pTab; /* A table in the database */ 4260 Index *pIndex; /* An index associated with pTab */ 4261 int iDb; /* The database index number */ 4262 sqlite3 *db = pParse->db; /* The database connection */ 4263 Token *pObjName; /* Name of the table or index to be reindexed */ 4264 4265 /* Read the database schema. If an error occurs, leave an error message 4266 ** and code in pParse and return NULL. */ 4267 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4268 return; 4269 } 4270 4271 if( pName1==0 ){ 4272 reindexDatabases(pParse, 0); 4273 return; 4274 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4275 char *zColl; 4276 assert( pName1->z ); 4277 zColl = sqlite3NameFromToken(pParse->db, pName1); 4278 if( !zColl ) return; 4279 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4280 if( pColl ){ 4281 reindexDatabases(pParse, zColl); 4282 sqlite3DbFree(db, zColl); 4283 return; 4284 } 4285 sqlite3DbFree(db, zColl); 4286 } 4287 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4288 if( iDb<0 ) return; 4289 z = sqlite3NameFromToken(db, pObjName); 4290 if( z==0 ) return; 4291 zDb = db->aDb[iDb].zName; 4292 pTab = sqlite3FindTable(db, z, zDb); 4293 if( pTab ){ 4294 reindexTable(pParse, pTab, 0); 4295 sqlite3DbFree(db, z); 4296 return; 4297 } 4298 pIndex = sqlite3FindIndex(db, z, zDb); 4299 sqlite3DbFree(db, z); 4300 if( pIndex ){ 4301 sqlite3BeginWriteOperation(pParse, 0, iDb); 4302 sqlite3RefillIndex(pParse, pIndex, -1); 4303 return; 4304 } 4305 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4306 } 4307 #endif 4308 4309 /* 4310 ** Return a KeyInfo structure that is appropriate for the given Index. 4311 ** 4312 ** The KeyInfo structure for an index is cached in the Index object. 4313 ** So there might be multiple references to the returned pointer. The 4314 ** caller should not try to modify the KeyInfo object. 4315 ** 4316 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4317 ** when it has finished using it. 4318 */ 4319 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4320 int i; 4321 int nCol = pIdx->nColumn; 4322 int nKey = pIdx->nKeyCol; 4323 KeyInfo *pKey; 4324 if( pParse->nErr ) return 0; 4325 if( pIdx->uniqNotNull ){ 4326 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4327 }else{ 4328 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4329 } 4330 if( pKey ){ 4331 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4332 for(i=0; i<nCol; i++){ 4333 const char *zColl = pIdx->azColl[i]; 4334 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4335 sqlite3LocateCollSeq(pParse, zColl); 4336 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4337 } 4338 if( pParse->nErr ){ 4339 sqlite3KeyInfoUnref(pKey); 4340 pKey = 0; 4341 } 4342 } 4343 return pKey; 4344 } 4345 4346 #ifndef SQLITE_OMIT_CTE 4347 /* 4348 ** This routine is invoked once per CTE by the parser while parsing a 4349 ** WITH clause. 4350 */ 4351 With *sqlite3WithAdd( 4352 Parse *pParse, /* Parsing context */ 4353 With *pWith, /* Existing WITH clause, or NULL */ 4354 Token *pName, /* Name of the common-table */ 4355 ExprList *pArglist, /* Optional column name list for the table */ 4356 Select *pQuery /* Query used to initialize the table */ 4357 ){ 4358 sqlite3 *db = pParse->db; 4359 With *pNew; 4360 char *zName; 4361 4362 /* Check that the CTE name is unique within this WITH clause. If 4363 ** not, store an error in the Parse structure. */ 4364 zName = sqlite3NameFromToken(pParse->db, pName); 4365 if( zName && pWith ){ 4366 int i; 4367 for(i=0; i<pWith->nCte; i++){ 4368 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4369 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4370 } 4371 } 4372 } 4373 4374 if( pWith ){ 4375 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4376 pNew = sqlite3DbRealloc(db, pWith, nByte); 4377 }else{ 4378 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4379 } 4380 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4381 4382 if( db->mallocFailed ){ 4383 sqlite3ExprListDelete(db, pArglist); 4384 sqlite3SelectDelete(db, pQuery); 4385 sqlite3DbFree(db, zName); 4386 pNew = pWith; 4387 }else{ 4388 pNew->a[pNew->nCte].pSelect = pQuery; 4389 pNew->a[pNew->nCte].pCols = pArglist; 4390 pNew->a[pNew->nCte].zName = zName; 4391 pNew->a[pNew->nCte].zCteErr = 0; 4392 pNew->nCte++; 4393 } 4394 4395 return pNew; 4396 } 4397 4398 /* 4399 ** Free the contents of the With object passed as the second argument. 4400 */ 4401 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4402 if( pWith ){ 4403 int i; 4404 for(i=0; i<pWith->nCte; i++){ 4405 struct Cte *pCte = &pWith->a[i]; 4406 sqlite3ExprListDelete(db, pCte->pCols); 4407 sqlite3SelectDelete(db, pCte->pSelect); 4408 sqlite3DbFree(db, pCte->zName); 4409 } 4410 sqlite3DbFree(db, pWith); 4411 } 4412 } 4413 #endif /* !defined(SQLITE_OMIT_CTE) */ 4414