1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( db->mallocFailed ) return; 146 if( pParse->nested ) return; 147 if( pParse->nErr ) return; 148 149 /* Begin by generating some termination code at the end of the 150 ** vdbe program 151 */ 152 v = sqlite3GetVdbe(pParse); 153 assert( !pParse->isMultiWrite 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 155 if( v ){ 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 157 sqlite3VdbeAddOp0(v, OP_Halt); 158 159 #if SQLITE_USER_AUTHENTICATION 160 if( pParse->nTableLock>0 && db->init.busy==0 ){ 161 sqlite3UserAuthInit(db); 162 if( db->auth.authLevel<UAUTH_User ){ 163 pParse->rc = SQLITE_AUTH_USER; 164 sqlite3ErrorMsg(pParse, "user not authenticated"); 165 return; 166 } 167 } 168 #endif 169 170 /* The cookie mask contains one bit for each database file open. 171 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 172 ** set for each database that is used. Generate code to start a 173 ** transaction on each used database and to verify the schema cookie 174 ** on each used database. 175 */ 176 if( db->mallocFailed==0 177 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 178 ){ 179 int iDb, i; 180 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 181 sqlite3VdbeJumpHere(v, 0); 182 for(iDb=0; iDb<db->nDb; iDb++){ 183 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 184 sqlite3VdbeUsesBtree(v, iDb); 185 sqlite3VdbeAddOp4Int(v, 186 OP_Transaction, /* Opcode */ 187 iDb, /* P1 */ 188 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 189 pParse->cookieValue[iDb], /* P3 */ 190 db->aDb[iDb].pSchema->iGeneration /* P4 */ 191 ); 192 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 for(i=0; i<pParse->nVtabLock; i++){ 196 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 197 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 198 } 199 pParse->nVtabLock = 0; 200 #endif 201 202 /* Once all the cookies have been verified and transactions opened, 203 ** obtain the required table-locks. This is a no-op unless the 204 ** shared-cache feature is enabled. 205 */ 206 codeTableLocks(pParse); 207 208 /* Initialize any AUTOINCREMENT data structures required. 209 */ 210 sqlite3AutoincrementBegin(pParse); 211 212 /* Code constant expressions that where factored out of inner loops */ 213 if( pParse->pConstExpr ){ 214 ExprList *pEL = pParse->pConstExpr; 215 pParse->okConstFactor = 0; 216 for(i=0; i<pEL->nExpr; i++){ 217 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 218 } 219 } 220 221 /* Finally, jump back to the beginning of the executable code. */ 222 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 223 } 224 } 225 226 227 /* Get the VDBE program ready for execution 228 */ 229 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 230 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 231 /* A minimum of one cursor is required if autoincrement is used 232 * See ticket [a696379c1f08866] */ 233 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 234 sqlite3VdbeMakeReady(v, pParse); 235 pParse->rc = SQLITE_DONE; 236 pParse->colNamesSet = 0; 237 }else{ 238 pParse->rc = SQLITE_ERROR; 239 } 240 pParse->nTab = 0; 241 pParse->nMem = 0; 242 pParse->nSet = 0; 243 pParse->nVar = 0; 244 DbMaskZero(pParse->cookieMask); 245 } 246 247 /* 248 ** Run the parser and code generator recursively in order to generate 249 ** code for the SQL statement given onto the end of the pParse context 250 ** currently under construction. When the parser is run recursively 251 ** this way, the final OP_Halt is not appended and other initialization 252 ** and finalization steps are omitted because those are handling by the 253 ** outermost parser. 254 ** 255 ** Not everything is nestable. This facility is designed to permit 256 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 257 ** care if you decide to try to use this routine for some other purposes. 258 */ 259 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 260 va_list ap; 261 char *zSql; 262 char *zErrMsg = 0; 263 sqlite3 *db = pParse->db; 264 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 265 char saveBuf[SAVE_SZ]; 266 267 if( pParse->nErr ) return; 268 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 269 va_start(ap, zFormat); 270 zSql = sqlite3VMPrintf(db, zFormat, ap); 271 va_end(ap); 272 if( zSql==0 ){ 273 return; /* A malloc must have failed */ 274 } 275 pParse->nested++; 276 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 277 memset(&pParse->nVar, 0, SAVE_SZ); 278 sqlite3RunParser(pParse, zSql, &zErrMsg); 279 sqlite3DbFree(db, zErrMsg); 280 sqlite3DbFree(db, zSql); 281 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 282 pParse->nested--; 283 } 284 285 #if SQLITE_USER_AUTHENTICATION 286 /* 287 ** Return TRUE if zTable is the name of the system table that stores the 288 ** list of users and their access credentials. 289 */ 290 int sqlite3UserAuthTable(const char *zTable){ 291 return sqlite3_stricmp(zTable, "sqlite_user")==0; 292 } 293 #endif 294 295 /* 296 ** Locate the in-memory structure that describes a particular database 297 ** table given the name of that table and (optionally) the name of the 298 ** database containing the table. Return NULL if not found. 299 ** 300 ** If zDatabase is 0, all databases are searched for the table and the 301 ** first matching table is returned. (No checking for duplicate table 302 ** names is done.) The search order is TEMP first, then MAIN, then any 303 ** auxiliary databases added using the ATTACH command. 304 ** 305 ** See also sqlite3LocateTable(). 306 */ 307 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 308 Table *p = 0; 309 int i; 310 assert( zName!=0 ); 311 /* All mutexes are required for schema access. Make sure we hold them. */ 312 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 313 #if SQLITE_USER_AUTHENTICATION 314 /* Only the admin user is allowed to know that the sqlite_user table 315 ** exists */ 316 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 317 return 0; 318 } 319 #endif 320 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 321 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 322 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 323 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 324 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 325 if( p ) break; 326 } 327 return p; 328 } 329 330 /* 331 ** Locate the in-memory structure that describes a particular database 332 ** table given the name of that table and (optionally) the name of the 333 ** database containing the table. Return NULL if not found. Also leave an 334 ** error message in pParse->zErrMsg. 335 ** 336 ** The difference between this routine and sqlite3FindTable() is that this 337 ** routine leaves an error message in pParse->zErrMsg where 338 ** sqlite3FindTable() does not. 339 */ 340 Table *sqlite3LocateTable( 341 Parse *pParse, /* context in which to report errors */ 342 int isView, /* True if looking for a VIEW rather than a TABLE */ 343 const char *zName, /* Name of the table we are looking for */ 344 const char *zDbase /* Name of the database. Might be NULL */ 345 ){ 346 Table *p; 347 348 /* Read the database schema. If an error occurs, leave an error message 349 ** and code in pParse and return NULL. */ 350 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 351 return 0; 352 } 353 354 p = sqlite3FindTable(pParse->db, zName, zDbase); 355 if( p==0 ){ 356 const char *zMsg = isView ? "no such view" : "no such table"; 357 if( zDbase ){ 358 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 359 }else{ 360 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 361 } 362 pParse->checkSchema = 1; 363 } 364 #if SQLITE_USER_AUTHENICATION 365 else if( pParse->db->auth.authLevel<UAUTH_User ){ 366 sqlite3ErrorMsg(pParse, "user not authenticated"); 367 p = 0; 368 } 369 #endif 370 return p; 371 } 372 373 /* 374 ** Locate the table identified by *p. 375 ** 376 ** This is a wrapper around sqlite3LocateTable(). The difference between 377 ** sqlite3LocateTable() and this function is that this function restricts 378 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 379 ** non-NULL if it is part of a view or trigger program definition. See 380 ** sqlite3FixSrcList() for details. 381 */ 382 Table *sqlite3LocateTableItem( 383 Parse *pParse, 384 int isView, 385 struct SrcList_item *p 386 ){ 387 const char *zDb; 388 assert( p->pSchema==0 || p->zDatabase==0 ); 389 if( p->pSchema ){ 390 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 391 zDb = pParse->db->aDb[iDb].zName; 392 }else{ 393 zDb = p->zDatabase; 394 } 395 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 396 } 397 398 /* 399 ** Locate the in-memory structure that describes 400 ** a particular index given the name of that index 401 ** and the name of the database that contains the index. 402 ** Return NULL if not found. 403 ** 404 ** If zDatabase is 0, all databases are searched for the 405 ** table and the first matching index is returned. (No checking 406 ** for duplicate index names is done.) The search order is 407 ** TEMP first, then MAIN, then any auxiliary databases added 408 ** using the ATTACH command. 409 */ 410 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 411 Index *p = 0; 412 int i; 413 /* All mutexes are required for schema access. Make sure we hold them. */ 414 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 415 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 416 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 417 Schema *pSchema = db->aDb[j].pSchema; 418 assert( pSchema ); 419 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 420 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 421 p = sqlite3HashFind(&pSchema->idxHash, zName); 422 if( p ) break; 423 } 424 return p; 425 } 426 427 /* 428 ** Reclaim the memory used by an index 429 */ 430 static void freeIndex(sqlite3 *db, Index *p){ 431 #ifndef SQLITE_OMIT_ANALYZE 432 sqlite3DeleteIndexSamples(db, p); 433 #endif 434 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); 435 sqlite3ExprDelete(db, p->pPartIdxWhere); 436 sqlite3DbFree(db, p->zColAff); 437 if( p->isResized ) sqlite3DbFree(db, p->azColl); 438 sqlite3DbFree(db, p); 439 } 440 441 /* 442 ** For the index called zIdxName which is found in the database iDb, 443 ** unlike that index from its Table then remove the index from 444 ** the index hash table and free all memory structures associated 445 ** with the index. 446 */ 447 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 448 Index *pIndex; 449 Hash *pHash; 450 451 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 452 pHash = &db->aDb[iDb].pSchema->idxHash; 453 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 454 if( ALWAYS(pIndex) ){ 455 if( pIndex->pTable->pIndex==pIndex ){ 456 pIndex->pTable->pIndex = pIndex->pNext; 457 }else{ 458 Index *p; 459 /* Justification of ALWAYS(); The index must be on the list of 460 ** indices. */ 461 p = pIndex->pTable->pIndex; 462 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 463 if( ALWAYS(p && p->pNext==pIndex) ){ 464 p->pNext = pIndex->pNext; 465 } 466 } 467 freeIndex(db, pIndex); 468 } 469 db->flags |= SQLITE_InternChanges; 470 } 471 472 /* 473 ** Look through the list of open database files in db->aDb[] and if 474 ** any have been closed, remove them from the list. Reallocate the 475 ** db->aDb[] structure to a smaller size, if possible. 476 ** 477 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 478 ** are never candidates for being collapsed. 479 */ 480 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 481 int i, j; 482 for(i=j=2; i<db->nDb; i++){ 483 struct Db *pDb = &db->aDb[i]; 484 if( pDb->pBt==0 ){ 485 sqlite3DbFree(db, pDb->zName); 486 pDb->zName = 0; 487 continue; 488 } 489 if( j<i ){ 490 db->aDb[j] = db->aDb[i]; 491 } 492 j++; 493 } 494 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 495 db->nDb = j; 496 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 497 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 498 sqlite3DbFree(db, db->aDb); 499 db->aDb = db->aDbStatic; 500 } 501 } 502 503 /* 504 ** Reset the schema for the database at index iDb. Also reset the 505 ** TEMP schema. 506 */ 507 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 508 Db *pDb; 509 assert( iDb<db->nDb ); 510 511 /* Case 1: Reset the single schema identified by iDb */ 512 pDb = &db->aDb[iDb]; 513 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 514 assert( pDb->pSchema!=0 ); 515 sqlite3SchemaClear(pDb->pSchema); 516 517 /* If any database other than TEMP is reset, then also reset TEMP 518 ** since TEMP might be holding triggers that reference tables in the 519 ** other database. 520 */ 521 if( iDb!=1 ){ 522 pDb = &db->aDb[1]; 523 assert( pDb->pSchema!=0 ); 524 sqlite3SchemaClear(pDb->pSchema); 525 } 526 return; 527 } 528 529 /* 530 ** Erase all schema information from all attached databases (including 531 ** "main" and "temp") for a single database connection. 532 */ 533 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 534 int i; 535 sqlite3BtreeEnterAll(db); 536 for(i=0; i<db->nDb; i++){ 537 Db *pDb = &db->aDb[i]; 538 if( pDb->pSchema ){ 539 sqlite3SchemaClear(pDb->pSchema); 540 } 541 } 542 db->flags &= ~SQLITE_InternChanges; 543 sqlite3VtabUnlockList(db); 544 sqlite3BtreeLeaveAll(db); 545 sqlite3CollapseDatabaseArray(db); 546 } 547 548 /* 549 ** This routine is called when a commit occurs. 550 */ 551 void sqlite3CommitInternalChanges(sqlite3 *db){ 552 db->flags &= ~SQLITE_InternChanges; 553 } 554 555 /* 556 ** Delete memory allocated for the column names of a table or view (the 557 ** Table.aCol[] array). 558 */ 559 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 560 int i; 561 Column *pCol; 562 assert( pTable!=0 ); 563 if( (pCol = pTable->aCol)!=0 ){ 564 for(i=0; i<pTable->nCol; i++, pCol++){ 565 sqlite3DbFree(db, pCol->zName); 566 sqlite3ExprDelete(db, pCol->pDflt); 567 sqlite3DbFree(db, pCol->zDflt); 568 sqlite3DbFree(db, pCol->zType); 569 sqlite3DbFree(db, pCol->zColl); 570 } 571 sqlite3DbFree(db, pTable->aCol); 572 } 573 } 574 575 /* 576 ** Remove the memory data structures associated with the given 577 ** Table. No changes are made to disk by this routine. 578 ** 579 ** This routine just deletes the data structure. It does not unlink 580 ** the table data structure from the hash table. But it does destroy 581 ** memory structures of the indices and foreign keys associated with 582 ** the table. 583 ** 584 ** The db parameter is optional. It is needed if the Table object 585 ** contains lookaside memory. (Table objects in the schema do not use 586 ** lookaside memory, but some ephemeral Table objects do.) Or the 587 ** db parameter can be used with db->pnBytesFreed to measure the memory 588 ** used by the Table object. 589 */ 590 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 591 Index *pIndex, *pNext; 592 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 593 594 assert( !pTable || pTable->nRef>0 ); 595 596 /* Do not delete the table until the reference count reaches zero. */ 597 if( !pTable ) return; 598 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 599 600 /* Record the number of outstanding lookaside allocations in schema Tables 601 ** prior to doing any free() operations. Since schema Tables do not use 602 ** lookaside, this number should not change. */ 603 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 604 db->lookaside.nOut : 0 ); 605 606 /* Delete all indices associated with this table. */ 607 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 608 pNext = pIndex->pNext; 609 assert( pIndex->pSchema==pTable->pSchema ); 610 if( !db || db->pnBytesFreed==0 ){ 611 char *zName = pIndex->zName; 612 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 613 &pIndex->pSchema->idxHash, zName, 0 614 ); 615 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 616 assert( pOld==pIndex || pOld==0 ); 617 } 618 freeIndex(db, pIndex); 619 } 620 621 /* Delete any foreign keys attached to this table. */ 622 sqlite3FkDelete(db, pTable); 623 624 /* Delete the Table structure itself. 625 */ 626 sqliteDeleteColumnNames(db, pTable); 627 sqlite3DbFree(db, pTable->zName); 628 sqlite3DbFree(db, pTable->zColAff); 629 sqlite3SelectDelete(db, pTable->pSelect); 630 #ifndef SQLITE_OMIT_CHECK 631 sqlite3ExprListDelete(db, pTable->pCheck); 632 #endif 633 #ifndef SQLITE_OMIT_VIRTUALTABLE 634 sqlite3VtabClear(db, pTable); 635 #endif 636 sqlite3DbFree(db, pTable); 637 638 /* Verify that no lookaside memory was used by schema tables */ 639 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 640 } 641 642 /* 643 ** Unlink the given table from the hash tables and the delete the 644 ** table structure with all its indices and foreign keys. 645 */ 646 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 647 Table *p; 648 Db *pDb; 649 650 assert( db!=0 ); 651 assert( iDb>=0 && iDb<db->nDb ); 652 assert( zTabName ); 653 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 654 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 655 pDb = &db->aDb[iDb]; 656 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 657 sqlite3DeleteTable(db, p); 658 db->flags |= SQLITE_InternChanges; 659 } 660 661 /* 662 ** Given a token, return a string that consists of the text of that 663 ** token. Space to hold the returned string 664 ** is obtained from sqliteMalloc() and must be freed by the calling 665 ** function. 666 ** 667 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 668 ** surround the body of the token are removed. 669 ** 670 ** Tokens are often just pointers into the original SQL text and so 671 ** are not \000 terminated and are not persistent. The returned string 672 ** is \000 terminated and is persistent. 673 */ 674 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 675 char *zName; 676 if( pName ){ 677 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 678 sqlite3Dequote(zName); 679 }else{ 680 zName = 0; 681 } 682 return zName; 683 } 684 685 /* 686 ** Open the sqlite_master table stored in database number iDb for 687 ** writing. The table is opened using cursor 0. 688 */ 689 void sqlite3OpenMasterTable(Parse *p, int iDb){ 690 Vdbe *v = sqlite3GetVdbe(p); 691 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 692 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 693 if( p->nTab==0 ){ 694 p->nTab = 1; 695 } 696 } 697 698 /* 699 ** Parameter zName points to a nul-terminated buffer containing the name 700 ** of a database ("main", "temp" or the name of an attached db). This 701 ** function returns the index of the named database in db->aDb[], or 702 ** -1 if the named db cannot be found. 703 */ 704 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 705 int i = -1; /* Database number */ 706 if( zName ){ 707 Db *pDb; 708 int n = sqlite3Strlen30(zName); 709 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 710 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 711 0==sqlite3StrICmp(pDb->zName, zName) ){ 712 break; 713 } 714 } 715 } 716 return i; 717 } 718 719 /* 720 ** The token *pName contains the name of a database (either "main" or 721 ** "temp" or the name of an attached db). This routine returns the 722 ** index of the named database in db->aDb[], or -1 if the named db 723 ** does not exist. 724 */ 725 int sqlite3FindDb(sqlite3 *db, Token *pName){ 726 int i; /* Database number */ 727 char *zName; /* Name we are searching for */ 728 zName = sqlite3NameFromToken(db, pName); 729 i = sqlite3FindDbName(db, zName); 730 sqlite3DbFree(db, zName); 731 return i; 732 } 733 734 /* The table or view or trigger name is passed to this routine via tokens 735 ** pName1 and pName2. If the table name was fully qualified, for example: 736 ** 737 ** CREATE TABLE xxx.yyy (...); 738 ** 739 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 740 ** the table name is not fully qualified, i.e.: 741 ** 742 ** CREATE TABLE yyy(...); 743 ** 744 ** Then pName1 is set to "yyy" and pName2 is "". 745 ** 746 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 747 ** pName2) that stores the unqualified table name. The index of the 748 ** database "xxx" is returned. 749 */ 750 int sqlite3TwoPartName( 751 Parse *pParse, /* Parsing and code generating context */ 752 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 753 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 754 Token **pUnqual /* Write the unqualified object name here */ 755 ){ 756 int iDb; /* Database holding the object */ 757 sqlite3 *db = pParse->db; 758 759 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 760 if( db->init.busy ) { 761 sqlite3ErrorMsg(pParse, "corrupt database"); 762 pParse->nErr++; 763 return -1; 764 } 765 *pUnqual = pName2; 766 iDb = sqlite3FindDb(db, pName1); 767 if( iDb<0 ){ 768 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 769 pParse->nErr++; 770 return -1; 771 } 772 }else{ 773 assert( db->init.iDb==0 || db->init.busy ); 774 iDb = db->init.iDb; 775 *pUnqual = pName1; 776 } 777 return iDb; 778 } 779 780 /* 781 ** This routine is used to check if the UTF-8 string zName is a legal 782 ** unqualified name for a new schema object (table, index, view or 783 ** trigger). All names are legal except those that begin with the string 784 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 785 ** is reserved for internal use. 786 */ 787 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 788 if( !pParse->db->init.busy && pParse->nested==0 789 && (pParse->db->flags & SQLITE_WriteSchema)==0 790 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 791 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 792 return SQLITE_ERROR; 793 } 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Return the PRIMARY KEY index of a table 799 */ 800 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 801 Index *p; 802 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 803 return p; 804 } 805 806 /* 807 ** Return the column of index pIdx that corresponds to table 808 ** column iCol. Return -1 if not found. 809 */ 810 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 811 int i; 812 for(i=0; i<pIdx->nColumn; i++){ 813 if( iCol==pIdx->aiColumn[i] ) return i; 814 } 815 return -1; 816 } 817 818 /* 819 ** Begin constructing a new table representation in memory. This is 820 ** the first of several action routines that get called in response 821 ** to a CREATE TABLE statement. In particular, this routine is called 822 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 823 ** flag is true if the table should be stored in the auxiliary database 824 ** file instead of in the main database file. This is normally the case 825 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 826 ** CREATE and TABLE. 827 ** 828 ** The new table record is initialized and put in pParse->pNewTable. 829 ** As more of the CREATE TABLE statement is parsed, additional action 830 ** routines will be called to add more information to this record. 831 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 832 ** is called to complete the construction of the new table record. 833 */ 834 void sqlite3StartTable( 835 Parse *pParse, /* Parser context */ 836 Token *pName1, /* First part of the name of the table or view */ 837 Token *pName2, /* Second part of the name of the table or view */ 838 int isTemp, /* True if this is a TEMP table */ 839 int isView, /* True if this is a VIEW */ 840 int isVirtual, /* True if this is a VIRTUAL table */ 841 int noErr /* Do nothing if table already exists */ 842 ){ 843 Table *pTable; 844 char *zName = 0; /* The name of the new table */ 845 sqlite3 *db = pParse->db; 846 Vdbe *v; 847 int iDb; /* Database number to create the table in */ 848 Token *pName; /* Unqualified name of the table to create */ 849 850 /* The table or view name to create is passed to this routine via tokens 851 ** pName1 and pName2. If the table name was fully qualified, for example: 852 ** 853 ** CREATE TABLE xxx.yyy (...); 854 ** 855 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 856 ** the table name is not fully qualified, i.e.: 857 ** 858 ** CREATE TABLE yyy(...); 859 ** 860 ** Then pName1 is set to "yyy" and pName2 is "". 861 ** 862 ** The call below sets the pName pointer to point at the token (pName1 or 863 ** pName2) that stores the unqualified table name. The variable iDb is 864 ** set to the index of the database that the table or view is to be 865 ** created in. 866 */ 867 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 868 if( iDb<0 ) return; 869 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 870 /* If creating a temp table, the name may not be qualified. Unless 871 ** the database name is "temp" anyway. */ 872 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 873 return; 874 } 875 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 876 877 pParse->sNameToken = *pName; 878 zName = sqlite3NameFromToken(db, pName); 879 if( zName==0 ) return; 880 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 881 goto begin_table_error; 882 } 883 if( db->init.iDb==1 ) isTemp = 1; 884 #ifndef SQLITE_OMIT_AUTHORIZATION 885 assert( (isTemp & 1)==isTemp ); 886 { 887 int code; 888 char *zDb = db->aDb[iDb].zName; 889 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 890 goto begin_table_error; 891 } 892 if( isView ){ 893 if( !OMIT_TEMPDB && isTemp ){ 894 code = SQLITE_CREATE_TEMP_VIEW; 895 }else{ 896 code = SQLITE_CREATE_VIEW; 897 } 898 }else{ 899 if( !OMIT_TEMPDB && isTemp ){ 900 code = SQLITE_CREATE_TEMP_TABLE; 901 }else{ 902 code = SQLITE_CREATE_TABLE; 903 } 904 } 905 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 906 goto begin_table_error; 907 } 908 } 909 #endif 910 911 /* Make sure the new table name does not collide with an existing 912 ** index or table name in the same database. Issue an error message if 913 ** it does. The exception is if the statement being parsed was passed 914 ** to an sqlite3_declare_vtab() call. In that case only the column names 915 ** and types will be used, so there is no need to test for namespace 916 ** collisions. 917 */ 918 if( !IN_DECLARE_VTAB ){ 919 char *zDb = db->aDb[iDb].zName; 920 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 921 goto begin_table_error; 922 } 923 pTable = sqlite3FindTable(db, zName, zDb); 924 if( pTable ){ 925 if( !noErr ){ 926 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 927 }else{ 928 assert( !db->init.busy ); 929 sqlite3CodeVerifySchema(pParse, iDb); 930 } 931 goto begin_table_error; 932 } 933 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 934 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 935 goto begin_table_error; 936 } 937 } 938 939 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 940 if( pTable==0 ){ 941 db->mallocFailed = 1; 942 pParse->rc = SQLITE_NOMEM; 943 pParse->nErr++; 944 goto begin_table_error; 945 } 946 pTable->zName = zName; 947 pTable->iPKey = -1; 948 pTable->pSchema = db->aDb[iDb].pSchema; 949 pTable->nRef = 1; 950 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 951 assert( pParse->pNewTable==0 ); 952 pParse->pNewTable = pTable; 953 954 /* If this is the magic sqlite_sequence table used by autoincrement, 955 ** then record a pointer to this table in the main database structure 956 ** so that INSERT can find the table easily. 957 */ 958 #ifndef SQLITE_OMIT_AUTOINCREMENT 959 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 960 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 961 pTable->pSchema->pSeqTab = pTable; 962 } 963 #endif 964 965 /* Begin generating the code that will insert the table record into 966 ** the SQLITE_MASTER table. Note in particular that we must go ahead 967 ** and allocate the record number for the table entry now. Before any 968 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 969 ** indices to be created and the table record must come before the 970 ** indices. Hence, the record number for the table must be allocated 971 ** now. 972 */ 973 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 974 int j1; 975 int fileFormat; 976 int reg1, reg2, reg3; 977 sqlite3BeginWriteOperation(pParse, 0, iDb); 978 979 #ifndef SQLITE_OMIT_VIRTUALTABLE 980 if( isVirtual ){ 981 sqlite3VdbeAddOp0(v, OP_VBegin); 982 } 983 #endif 984 985 /* If the file format and encoding in the database have not been set, 986 ** set them now. 987 */ 988 reg1 = pParse->regRowid = ++pParse->nMem; 989 reg2 = pParse->regRoot = ++pParse->nMem; 990 reg3 = ++pParse->nMem; 991 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 992 sqlite3VdbeUsesBtree(v, iDb); 993 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 994 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 995 1 : SQLITE_MAX_FILE_FORMAT; 996 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 998 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 999 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1000 sqlite3VdbeJumpHere(v, j1); 1001 1002 /* This just creates a place-holder record in the sqlite_master table. 1003 ** The record created does not contain anything yet. It will be replaced 1004 ** by the real entry in code generated at sqlite3EndTable(). 1005 ** 1006 ** The rowid for the new entry is left in register pParse->regRowid. 1007 ** The root page number of the new table is left in reg pParse->regRoot. 1008 ** The rowid and root page number values are needed by the code that 1009 ** sqlite3EndTable will generate. 1010 */ 1011 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1012 if( isView || isVirtual ){ 1013 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1014 }else 1015 #endif 1016 { 1017 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1018 } 1019 sqlite3OpenMasterTable(pParse, iDb); 1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1021 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1024 sqlite3VdbeAddOp0(v, OP_Close); 1025 } 1026 1027 /* Normal (non-error) return. */ 1028 return; 1029 1030 /* If an error occurs, we jump here */ 1031 begin_table_error: 1032 sqlite3DbFree(db, zName); 1033 return; 1034 } 1035 1036 /* 1037 ** This macro is used to compare two strings in a case-insensitive manner. 1038 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1039 ** produces larger code. 1040 ** 1041 ** WARNING: This macro is not compatible with the strcmp() family. It 1042 ** returns true if the two strings are equal, otherwise false. 1043 */ 1044 #define STRICMP(x, y) (\ 1045 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1046 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1047 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1048 1049 /* 1050 ** Add a new column to the table currently being constructed. 1051 ** 1052 ** The parser calls this routine once for each column declaration 1053 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1054 ** first to get things going. Then this routine is called for each 1055 ** column. 1056 */ 1057 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1058 Table *p; 1059 int i; 1060 char *z; 1061 Column *pCol; 1062 sqlite3 *db = pParse->db; 1063 if( (p = pParse->pNewTable)==0 ) return; 1064 #if SQLITE_MAX_COLUMN 1065 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1066 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1067 return; 1068 } 1069 #endif 1070 z = sqlite3NameFromToken(db, pName); 1071 if( z==0 ) return; 1072 for(i=0; i<p->nCol; i++){ 1073 if( STRICMP(z, p->aCol[i].zName) ){ 1074 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1075 sqlite3DbFree(db, z); 1076 return; 1077 } 1078 } 1079 if( (p->nCol & 0x7)==0 ){ 1080 Column *aNew; 1081 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1082 if( aNew==0 ){ 1083 sqlite3DbFree(db, z); 1084 return; 1085 } 1086 p->aCol = aNew; 1087 } 1088 pCol = &p->aCol[p->nCol]; 1089 memset(pCol, 0, sizeof(p->aCol[0])); 1090 pCol->zName = z; 1091 1092 /* If there is no type specified, columns have the default affinity 1093 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1094 ** be called next to set pCol->affinity correctly. 1095 */ 1096 pCol->affinity = SQLITE_AFF_NONE; 1097 pCol->szEst = 1; 1098 p->nCol++; 1099 } 1100 1101 /* 1102 ** This routine is called by the parser while in the middle of 1103 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1104 ** been seen on a column. This routine sets the notNull flag on 1105 ** the column currently under construction. 1106 */ 1107 void sqlite3AddNotNull(Parse *pParse, int onError){ 1108 Table *p; 1109 p = pParse->pNewTable; 1110 if( p==0 || NEVER(p->nCol<1) ) return; 1111 p->aCol[p->nCol-1].notNull = (u8)onError; 1112 } 1113 1114 /* 1115 ** Scan the column type name zType (length nType) and return the 1116 ** associated affinity type. 1117 ** 1118 ** This routine does a case-independent search of zType for the 1119 ** substrings in the following table. If one of the substrings is 1120 ** found, the corresponding affinity is returned. If zType contains 1121 ** more than one of the substrings, entries toward the top of 1122 ** the table take priority. For example, if zType is 'BLOBINT', 1123 ** SQLITE_AFF_INTEGER is returned. 1124 ** 1125 ** Substring | Affinity 1126 ** -------------------------------- 1127 ** 'INT' | SQLITE_AFF_INTEGER 1128 ** 'CHAR' | SQLITE_AFF_TEXT 1129 ** 'CLOB' | SQLITE_AFF_TEXT 1130 ** 'TEXT' | SQLITE_AFF_TEXT 1131 ** 'BLOB' | SQLITE_AFF_NONE 1132 ** 'REAL' | SQLITE_AFF_REAL 1133 ** 'FLOA' | SQLITE_AFF_REAL 1134 ** 'DOUB' | SQLITE_AFF_REAL 1135 ** 1136 ** If none of the substrings in the above table are found, 1137 ** SQLITE_AFF_NUMERIC is returned. 1138 */ 1139 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1140 u32 h = 0; 1141 char aff = SQLITE_AFF_NUMERIC; 1142 const char *zChar = 0; 1143 1144 if( zIn==0 ) return aff; 1145 while( zIn[0] ){ 1146 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1147 zIn++; 1148 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1149 aff = SQLITE_AFF_TEXT; 1150 zChar = zIn; 1151 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1152 aff = SQLITE_AFF_TEXT; 1153 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1154 aff = SQLITE_AFF_TEXT; 1155 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1156 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1157 aff = SQLITE_AFF_NONE; 1158 if( zIn[0]=='(' ) zChar = zIn; 1159 #ifndef SQLITE_OMIT_FLOATING_POINT 1160 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1161 && aff==SQLITE_AFF_NUMERIC ){ 1162 aff = SQLITE_AFF_REAL; 1163 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1164 && aff==SQLITE_AFF_NUMERIC ){ 1165 aff = SQLITE_AFF_REAL; 1166 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1167 && aff==SQLITE_AFF_NUMERIC ){ 1168 aff = SQLITE_AFF_REAL; 1169 #endif 1170 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1171 aff = SQLITE_AFF_INTEGER; 1172 break; 1173 } 1174 } 1175 1176 /* If pszEst is not NULL, store an estimate of the field size. The 1177 ** estimate is scaled so that the size of an integer is 1. */ 1178 if( pszEst ){ 1179 *pszEst = 1; /* default size is approx 4 bytes */ 1180 if( aff<=SQLITE_AFF_NONE ){ 1181 if( zChar ){ 1182 while( zChar[0] ){ 1183 if( sqlite3Isdigit(zChar[0]) ){ 1184 int v = 0; 1185 sqlite3GetInt32(zChar, &v); 1186 v = v/4 + 1; 1187 if( v>255 ) v = 255; 1188 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1189 break; 1190 } 1191 zChar++; 1192 } 1193 }else{ 1194 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1195 } 1196 } 1197 } 1198 return aff; 1199 } 1200 1201 /* 1202 ** This routine is called by the parser while in the middle of 1203 ** parsing a CREATE TABLE statement. The pFirst token is the first 1204 ** token in the sequence of tokens that describe the type of the 1205 ** column currently under construction. pLast is the last token 1206 ** in the sequence. Use this information to construct a string 1207 ** that contains the typename of the column and store that string 1208 ** in zType. 1209 */ 1210 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1211 Table *p; 1212 Column *pCol; 1213 1214 p = pParse->pNewTable; 1215 if( p==0 || NEVER(p->nCol<1) ) return; 1216 pCol = &p->aCol[p->nCol-1]; 1217 assert( pCol->zType==0 ); 1218 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1219 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1220 } 1221 1222 /* 1223 ** The expression is the default value for the most recently added column 1224 ** of the table currently under construction. 1225 ** 1226 ** Default value expressions must be constant. Raise an exception if this 1227 ** is not the case. 1228 ** 1229 ** This routine is called by the parser while in the middle of 1230 ** parsing a CREATE TABLE statement. 1231 */ 1232 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1233 Table *p; 1234 Column *pCol; 1235 sqlite3 *db = pParse->db; 1236 p = pParse->pNewTable; 1237 if( p!=0 ){ 1238 pCol = &(p->aCol[p->nCol-1]); 1239 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1240 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1241 pCol->zName); 1242 }else{ 1243 /* A copy of pExpr is used instead of the original, as pExpr contains 1244 ** tokens that point to volatile memory. The 'span' of the expression 1245 ** is required by pragma table_info. 1246 */ 1247 sqlite3ExprDelete(db, pCol->pDflt); 1248 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1249 sqlite3DbFree(db, pCol->zDflt); 1250 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1251 (int)(pSpan->zEnd - pSpan->zStart)); 1252 } 1253 } 1254 sqlite3ExprDelete(db, pSpan->pExpr); 1255 } 1256 1257 /* 1258 ** Designate the PRIMARY KEY for the table. pList is a list of names 1259 ** of columns that form the primary key. If pList is NULL, then the 1260 ** most recently added column of the table is the primary key. 1261 ** 1262 ** A table can have at most one primary key. If the table already has 1263 ** a primary key (and this is the second primary key) then create an 1264 ** error. 1265 ** 1266 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1267 ** then we will try to use that column as the rowid. Set the Table.iPKey 1268 ** field of the table under construction to be the index of the 1269 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1270 ** no INTEGER PRIMARY KEY. 1271 ** 1272 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1273 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1274 */ 1275 void sqlite3AddPrimaryKey( 1276 Parse *pParse, /* Parsing context */ 1277 ExprList *pList, /* List of field names to be indexed */ 1278 int onError, /* What to do with a uniqueness conflict */ 1279 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1280 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1281 ){ 1282 Table *pTab = pParse->pNewTable; 1283 char *zType = 0; 1284 int iCol = -1, i; 1285 int nTerm; 1286 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1287 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1288 sqlite3ErrorMsg(pParse, 1289 "table \"%s\" has more than one primary key", pTab->zName); 1290 goto primary_key_exit; 1291 } 1292 pTab->tabFlags |= TF_HasPrimaryKey; 1293 if( pList==0 ){ 1294 iCol = pTab->nCol - 1; 1295 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1296 zType = pTab->aCol[iCol].zType; 1297 nTerm = 1; 1298 }else{ 1299 nTerm = pList->nExpr; 1300 for(i=0; i<nTerm; i++){ 1301 for(iCol=0; iCol<pTab->nCol; iCol++){ 1302 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1303 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1304 zType = pTab->aCol[iCol].zType; 1305 break; 1306 } 1307 } 1308 } 1309 } 1310 if( nTerm==1 1311 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1312 && sortOrder==SQLITE_SO_ASC 1313 ){ 1314 pTab->iPKey = iCol; 1315 pTab->keyConf = (u8)onError; 1316 assert( autoInc==0 || autoInc==1 ); 1317 pTab->tabFlags |= autoInc*TF_Autoincrement; 1318 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1319 }else if( autoInc ){ 1320 #ifndef SQLITE_OMIT_AUTOINCREMENT 1321 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1322 "INTEGER PRIMARY KEY"); 1323 #endif 1324 }else{ 1325 Vdbe *v = pParse->pVdbe; 1326 Index *p; 1327 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1328 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1329 0, sortOrder, 0); 1330 if( p ){ 1331 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1332 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1333 } 1334 pList = 0; 1335 } 1336 1337 primary_key_exit: 1338 sqlite3ExprListDelete(pParse->db, pList); 1339 return; 1340 } 1341 1342 /* 1343 ** Add a new CHECK constraint to the table currently under construction. 1344 */ 1345 void sqlite3AddCheckConstraint( 1346 Parse *pParse, /* Parsing context */ 1347 Expr *pCheckExpr /* The check expression */ 1348 ){ 1349 #ifndef SQLITE_OMIT_CHECK 1350 Table *pTab = pParse->pNewTable; 1351 sqlite3 *db = pParse->db; 1352 if( pTab && !IN_DECLARE_VTAB 1353 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1354 ){ 1355 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1356 if( pParse->constraintName.n ){ 1357 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1358 } 1359 }else 1360 #endif 1361 { 1362 sqlite3ExprDelete(pParse->db, pCheckExpr); 1363 } 1364 } 1365 1366 /* 1367 ** Set the collation function of the most recently parsed table column 1368 ** to the CollSeq given. 1369 */ 1370 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1371 Table *p; 1372 int i; 1373 char *zColl; /* Dequoted name of collation sequence */ 1374 sqlite3 *db; 1375 1376 if( (p = pParse->pNewTable)==0 ) return; 1377 i = p->nCol-1; 1378 db = pParse->db; 1379 zColl = sqlite3NameFromToken(db, pToken); 1380 if( !zColl ) return; 1381 1382 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1383 Index *pIdx; 1384 sqlite3DbFree(db, p->aCol[i].zColl); 1385 p->aCol[i].zColl = zColl; 1386 1387 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1388 ** then an index may have been created on this column before the 1389 ** collation type was added. Correct this if it is the case. 1390 */ 1391 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1392 assert( pIdx->nKeyCol==1 ); 1393 if( pIdx->aiColumn[0]==i ){ 1394 pIdx->azColl[0] = p->aCol[i].zColl; 1395 } 1396 } 1397 }else{ 1398 sqlite3DbFree(db, zColl); 1399 } 1400 } 1401 1402 /* 1403 ** This function returns the collation sequence for database native text 1404 ** encoding identified by the string zName, length nName. 1405 ** 1406 ** If the requested collation sequence is not available, or not available 1407 ** in the database native encoding, the collation factory is invoked to 1408 ** request it. If the collation factory does not supply such a sequence, 1409 ** and the sequence is available in another text encoding, then that is 1410 ** returned instead. 1411 ** 1412 ** If no versions of the requested collations sequence are available, or 1413 ** another error occurs, NULL is returned and an error message written into 1414 ** pParse. 1415 ** 1416 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1417 ** invokes the collation factory if the named collation cannot be found 1418 ** and generates an error message. 1419 ** 1420 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1421 */ 1422 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1423 sqlite3 *db = pParse->db; 1424 u8 enc = ENC(db); 1425 u8 initbusy = db->init.busy; 1426 CollSeq *pColl; 1427 1428 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1429 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1430 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1431 } 1432 1433 return pColl; 1434 } 1435 1436 1437 /* 1438 ** Generate code that will increment the schema cookie. 1439 ** 1440 ** The schema cookie is used to determine when the schema for the 1441 ** database changes. After each schema change, the cookie value 1442 ** changes. When a process first reads the schema it records the 1443 ** cookie. Thereafter, whenever it goes to access the database, 1444 ** it checks the cookie to make sure the schema has not changed 1445 ** since it was last read. 1446 ** 1447 ** This plan is not completely bullet-proof. It is possible for 1448 ** the schema to change multiple times and for the cookie to be 1449 ** set back to prior value. But schema changes are infrequent 1450 ** and the probability of hitting the same cookie value is only 1451 ** 1 chance in 2^32. So we're safe enough. 1452 */ 1453 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1454 int r1 = sqlite3GetTempReg(pParse); 1455 sqlite3 *db = pParse->db; 1456 Vdbe *v = pParse->pVdbe; 1457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1458 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1459 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1460 sqlite3ReleaseTempReg(pParse, r1); 1461 } 1462 1463 /* 1464 ** Measure the number of characters needed to output the given 1465 ** identifier. The number returned includes any quotes used 1466 ** but does not include the null terminator. 1467 ** 1468 ** The estimate is conservative. It might be larger that what is 1469 ** really needed. 1470 */ 1471 static int identLength(const char *z){ 1472 int n; 1473 for(n=0; *z; n++, z++){ 1474 if( *z=='"' ){ n++; } 1475 } 1476 return n + 2; 1477 } 1478 1479 /* 1480 ** The first parameter is a pointer to an output buffer. The second 1481 ** parameter is a pointer to an integer that contains the offset at 1482 ** which to write into the output buffer. This function copies the 1483 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1484 ** to the specified offset in the buffer and updates *pIdx to refer 1485 ** to the first byte after the last byte written before returning. 1486 ** 1487 ** If the string zSignedIdent consists entirely of alpha-numeric 1488 ** characters, does not begin with a digit and is not an SQL keyword, 1489 ** then it is copied to the output buffer exactly as it is. Otherwise, 1490 ** it is quoted using double-quotes. 1491 */ 1492 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1493 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1494 int i, j, needQuote; 1495 i = *pIdx; 1496 1497 for(j=0; zIdent[j]; j++){ 1498 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1499 } 1500 needQuote = sqlite3Isdigit(zIdent[0]) 1501 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1502 || zIdent[j]!=0 1503 || j==0; 1504 1505 if( needQuote ) z[i++] = '"'; 1506 for(j=0; zIdent[j]; j++){ 1507 z[i++] = zIdent[j]; 1508 if( zIdent[j]=='"' ) z[i++] = '"'; 1509 } 1510 if( needQuote ) z[i++] = '"'; 1511 z[i] = 0; 1512 *pIdx = i; 1513 } 1514 1515 /* 1516 ** Generate a CREATE TABLE statement appropriate for the given 1517 ** table. Memory to hold the text of the statement is obtained 1518 ** from sqliteMalloc() and must be freed by the calling function. 1519 */ 1520 static char *createTableStmt(sqlite3 *db, Table *p){ 1521 int i, k, n; 1522 char *zStmt; 1523 char *zSep, *zSep2, *zEnd; 1524 Column *pCol; 1525 n = 0; 1526 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1527 n += identLength(pCol->zName) + 5; 1528 } 1529 n += identLength(p->zName); 1530 if( n<50 ){ 1531 zSep = ""; 1532 zSep2 = ","; 1533 zEnd = ")"; 1534 }else{ 1535 zSep = "\n "; 1536 zSep2 = ",\n "; 1537 zEnd = "\n)"; 1538 } 1539 n += 35 + 6*p->nCol; 1540 zStmt = sqlite3DbMallocRaw(0, n); 1541 if( zStmt==0 ){ 1542 db->mallocFailed = 1; 1543 return 0; 1544 } 1545 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1546 k = sqlite3Strlen30(zStmt); 1547 identPut(zStmt, &k, p->zName); 1548 zStmt[k++] = '('; 1549 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1550 static const char * const azType[] = { 1551 /* SQLITE_AFF_TEXT */ " TEXT", 1552 /* SQLITE_AFF_NONE */ "", 1553 /* SQLITE_AFF_NUMERIC */ " NUM", 1554 /* SQLITE_AFF_INTEGER */ " INT", 1555 /* SQLITE_AFF_REAL */ " REAL" 1556 }; 1557 int len; 1558 const char *zType; 1559 1560 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1561 k += sqlite3Strlen30(&zStmt[k]); 1562 zSep = zSep2; 1563 identPut(zStmt, &k, pCol->zName); 1564 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1565 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1566 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1567 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1568 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1569 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1570 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1571 1572 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1573 len = sqlite3Strlen30(zType); 1574 assert( pCol->affinity==SQLITE_AFF_NONE 1575 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1576 memcpy(&zStmt[k], zType, len); 1577 k += len; 1578 assert( k<=n ); 1579 } 1580 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1581 return zStmt; 1582 } 1583 1584 /* 1585 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1586 ** on success and SQLITE_NOMEM on an OOM error. 1587 */ 1588 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1589 char *zExtra; 1590 int nByte; 1591 if( pIdx->nColumn>=N ) return SQLITE_OK; 1592 assert( pIdx->isResized==0 ); 1593 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1594 zExtra = sqlite3DbMallocZero(db, nByte); 1595 if( zExtra==0 ) return SQLITE_NOMEM; 1596 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1597 pIdx->azColl = (char**)zExtra; 1598 zExtra += sizeof(char*)*N; 1599 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1600 pIdx->aiColumn = (i16*)zExtra; 1601 zExtra += sizeof(i16)*N; 1602 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1603 pIdx->aSortOrder = (u8*)zExtra; 1604 pIdx->nColumn = N; 1605 pIdx->isResized = 1; 1606 return SQLITE_OK; 1607 } 1608 1609 /* 1610 ** Estimate the total row width for a table. 1611 */ 1612 static void estimateTableWidth(Table *pTab){ 1613 unsigned wTable = 0; 1614 const Column *pTabCol; 1615 int i; 1616 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1617 wTable += pTabCol->szEst; 1618 } 1619 if( pTab->iPKey<0 ) wTable++; 1620 pTab->szTabRow = sqlite3LogEst(wTable*4); 1621 } 1622 1623 /* 1624 ** Estimate the average size of a row for an index. 1625 */ 1626 static void estimateIndexWidth(Index *pIdx){ 1627 unsigned wIndex = 0; 1628 int i; 1629 const Column *aCol = pIdx->pTable->aCol; 1630 for(i=0; i<pIdx->nColumn; i++){ 1631 i16 x = pIdx->aiColumn[i]; 1632 assert( x<pIdx->pTable->nCol ); 1633 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1634 } 1635 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1636 } 1637 1638 /* Return true if value x is found any of the first nCol entries of aiCol[] 1639 */ 1640 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1641 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 ** This routine runs at the end of parsing a CREATE TABLE statement that 1647 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1648 ** internal schema data structures and the generated VDBE code so that they 1649 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1650 ** Changes include: 1651 ** 1652 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1653 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1654 ** data storage is a covering index btree. 1655 ** (2) Bypass the creation of the sqlite_master table entry 1656 ** for the PRIMARY KEY as the primary key index is now 1657 ** identified by the sqlite_master table entry of the table itself. 1658 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1659 ** schema to the rootpage from the main table. 1660 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1661 ** (5) Add all table columns to the PRIMARY KEY Index object 1662 ** so that the PRIMARY KEY is a covering index. The surplus 1663 ** columns are part of KeyInfo.nXField and are not used for 1664 ** sorting or lookup or uniqueness checks. 1665 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1666 ** indices with the PRIMARY KEY columns. 1667 */ 1668 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1669 Index *pIdx; 1670 Index *pPk; 1671 int nPk; 1672 int i, j; 1673 sqlite3 *db = pParse->db; 1674 Vdbe *v = pParse->pVdbe; 1675 1676 /* Convert the OP_CreateTable opcode that would normally create the 1677 ** root-page for the table into an OP_CreateIndex opcode. The index 1678 ** created will become the PRIMARY KEY index. 1679 */ 1680 if( pParse->addrCrTab ){ 1681 assert( v ); 1682 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1683 } 1684 1685 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1686 ** table entry. 1687 */ 1688 if( pParse->addrSkipPK ){ 1689 assert( v ); 1690 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1691 } 1692 1693 /* Locate the PRIMARY KEY index. Or, if this table was originally 1694 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1695 */ 1696 if( pTab->iPKey>=0 ){ 1697 ExprList *pList; 1698 pList = sqlite3ExprListAppend(pParse, 0, 0); 1699 if( pList==0 ) return; 1700 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1701 pTab->aCol[pTab->iPKey].zName); 1702 pList->a[0].sortOrder = pParse->iPkSortOrder; 1703 assert( pParse->pNewTable==pTab ); 1704 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1705 if( pPk==0 ) return; 1706 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1707 pTab->iPKey = -1; 1708 }else{ 1709 pPk = sqlite3PrimaryKeyIndex(pTab); 1710 } 1711 pPk->isCovering = 1; 1712 assert( pPk!=0 ); 1713 nPk = pPk->nKeyCol; 1714 1715 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1716 for(i=0; i<nPk; i++){ 1717 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1718 } 1719 pPk->uniqNotNull = 1; 1720 1721 /* The root page of the PRIMARY KEY is the table root page */ 1722 pPk->tnum = pTab->tnum; 1723 1724 /* Update the in-memory representation of all UNIQUE indices by converting 1725 ** the final rowid column into one or more columns of the PRIMARY KEY. 1726 */ 1727 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1728 int n; 1729 if( IsPrimaryKeyIndex(pIdx) ) continue; 1730 for(i=n=0; i<nPk; i++){ 1731 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1732 } 1733 if( n==0 ){ 1734 /* This index is a superset of the primary key */ 1735 pIdx->nColumn = pIdx->nKeyCol; 1736 continue; 1737 } 1738 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1739 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1740 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1741 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1742 pIdx->azColl[j] = pPk->azColl[i]; 1743 j++; 1744 } 1745 } 1746 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1747 assert( pIdx->nColumn>=j ); 1748 } 1749 1750 /* Add all table columns to the PRIMARY KEY index 1751 */ 1752 if( nPk<pTab->nCol ){ 1753 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1754 for(i=0, j=nPk; i<pTab->nCol; i++){ 1755 if( !hasColumn(pPk->aiColumn, j, i) ){ 1756 assert( j<pPk->nColumn ); 1757 pPk->aiColumn[j] = i; 1758 pPk->azColl[j] = "BINARY"; 1759 j++; 1760 } 1761 } 1762 assert( pPk->nColumn==j ); 1763 assert( pTab->nCol==j ); 1764 }else{ 1765 pPk->nColumn = pTab->nCol; 1766 } 1767 } 1768 1769 /* 1770 ** This routine is called to report the final ")" that terminates 1771 ** a CREATE TABLE statement. 1772 ** 1773 ** The table structure that other action routines have been building 1774 ** is added to the internal hash tables, assuming no errors have 1775 ** occurred. 1776 ** 1777 ** An entry for the table is made in the master table on disk, unless 1778 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1779 ** it means we are reading the sqlite_master table because we just 1780 ** connected to the database or because the sqlite_master table has 1781 ** recently changed, so the entry for this table already exists in 1782 ** the sqlite_master table. We do not want to create it again. 1783 ** 1784 ** If the pSelect argument is not NULL, it means that this routine 1785 ** was called to create a table generated from a 1786 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1787 ** the new table will match the result set of the SELECT. 1788 */ 1789 void sqlite3EndTable( 1790 Parse *pParse, /* Parse context */ 1791 Token *pCons, /* The ',' token after the last column defn. */ 1792 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1793 u8 tabOpts, /* Extra table options. Usually 0. */ 1794 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1795 ){ 1796 Table *p; /* The new table */ 1797 sqlite3 *db = pParse->db; /* The database connection */ 1798 int iDb; /* Database in which the table lives */ 1799 Index *pIdx; /* An implied index of the table */ 1800 1801 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1802 return; 1803 } 1804 p = pParse->pNewTable; 1805 if( p==0 ) return; 1806 1807 assert( !db->init.busy || !pSelect ); 1808 1809 /* If the db->init.busy is 1 it means we are reading the SQL off the 1810 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1811 ** So do not write to the disk again. Extract the root page number 1812 ** for the table from the db->init.newTnum field. (The page number 1813 ** should have been put there by the sqliteOpenCb routine.) 1814 */ 1815 if( db->init.busy ){ 1816 p->tnum = db->init.newTnum; 1817 } 1818 1819 /* Special processing for WITHOUT ROWID Tables */ 1820 if( tabOpts & TF_WithoutRowid ){ 1821 if( (p->tabFlags & TF_Autoincrement) ){ 1822 sqlite3ErrorMsg(pParse, 1823 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1824 return; 1825 } 1826 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1827 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1828 }else{ 1829 p->tabFlags |= TF_WithoutRowid; 1830 convertToWithoutRowidTable(pParse, p); 1831 } 1832 } 1833 1834 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1835 1836 #ifndef SQLITE_OMIT_CHECK 1837 /* Resolve names in all CHECK constraint expressions. 1838 */ 1839 if( p->pCheck ){ 1840 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1841 } 1842 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1843 1844 /* Estimate the average row size for the table and for all implied indices */ 1845 estimateTableWidth(p); 1846 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1847 estimateIndexWidth(pIdx); 1848 } 1849 1850 /* If not initializing, then create a record for the new table 1851 ** in the SQLITE_MASTER table of the database. 1852 ** 1853 ** If this is a TEMPORARY table, write the entry into the auxiliary 1854 ** file instead of into the main database file. 1855 */ 1856 if( !db->init.busy ){ 1857 int n; 1858 Vdbe *v; 1859 char *zType; /* "view" or "table" */ 1860 char *zType2; /* "VIEW" or "TABLE" */ 1861 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1862 1863 v = sqlite3GetVdbe(pParse); 1864 if( NEVER(v==0) ) return; 1865 1866 sqlite3VdbeAddOp1(v, OP_Close, 0); 1867 1868 /* 1869 ** Initialize zType for the new view or table. 1870 */ 1871 if( p->pSelect==0 ){ 1872 /* A regular table */ 1873 zType = "table"; 1874 zType2 = "TABLE"; 1875 #ifndef SQLITE_OMIT_VIEW 1876 }else{ 1877 /* A view */ 1878 zType = "view"; 1879 zType2 = "VIEW"; 1880 #endif 1881 } 1882 1883 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1884 ** statement to populate the new table. The root-page number for the 1885 ** new table is in register pParse->regRoot. 1886 ** 1887 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1888 ** suitable state to query for the column names and types to be used 1889 ** by the new table. 1890 ** 1891 ** A shared-cache write-lock is not required to write to the new table, 1892 ** as a schema-lock must have already been obtained to create it. Since 1893 ** a schema-lock excludes all other database users, the write-lock would 1894 ** be redundant. 1895 */ 1896 if( pSelect ){ 1897 SelectDest dest; 1898 Table *pSelTab; 1899 1900 assert(pParse->nTab==1); 1901 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1902 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1903 pParse->nTab = 2; 1904 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1905 sqlite3Select(pParse, pSelect, &dest); 1906 sqlite3VdbeAddOp1(v, OP_Close, 1); 1907 if( pParse->nErr==0 ){ 1908 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1909 if( pSelTab==0 ) return; 1910 assert( p->aCol==0 ); 1911 p->nCol = pSelTab->nCol; 1912 p->aCol = pSelTab->aCol; 1913 pSelTab->nCol = 0; 1914 pSelTab->aCol = 0; 1915 sqlite3DeleteTable(db, pSelTab); 1916 } 1917 } 1918 1919 /* Compute the complete text of the CREATE statement */ 1920 if( pSelect ){ 1921 zStmt = createTableStmt(db, p); 1922 }else{ 1923 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1924 n = (int)(pEnd2->z - pParse->sNameToken.z); 1925 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1926 zStmt = sqlite3MPrintf(db, 1927 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1928 ); 1929 } 1930 1931 /* A slot for the record has already been allocated in the 1932 ** SQLITE_MASTER table. We just need to update that slot with all 1933 ** the information we've collected. 1934 */ 1935 sqlite3NestedParse(pParse, 1936 "UPDATE %Q.%s " 1937 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1938 "WHERE rowid=#%d", 1939 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1940 zType, 1941 p->zName, 1942 p->zName, 1943 pParse->regRoot, 1944 zStmt, 1945 pParse->regRowid 1946 ); 1947 sqlite3DbFree(db, zStmt); 1948 sqlite3ChangeCookie(pParse, iDb); 1949 1950 #ifndef SQLITE_OMIT_AUTOINCREMENT 1951 /* Check to see if we need to create an sqlite_sequence table for 1952 ** keeping track of autoincrement keys. 1953 */ 1954 if( p->tabFlags & TF_Autoincrement ){ 1955 Db *pDb = &db->aDb[iDb]; 1956 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1957 if( pDb->pSchema->pSeqTab==0 ){ 1958 sqlite3NestedParse(pParse, 1959 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1960 pDb->zName 1961 ); 1962 } 1963 } 1964 #endif 1965 1966 /* Reparse everything to update our internal data structures */ 1967 sqlite3VdbeAddParseSchemaOp(v, iDb, 1968 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1969 } 1970 1971 1972 /* Add the table to the in-memory representation of the database. 1973 */ 1974 if( db->init.busy ){ 1975 Table *pOld; 1976 Schema *pSchema = p->pSchema; 1977 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1978 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 1979 if( pOld ){ 1980 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1981 db->mallocFailed = 1; 1982 return; 1983 } 1984 pParse->pNewTable = 0; 1985 db->flags |= SQLITE_InternChanges; 1986 1987 #ifndef SQLITE_OMIT_ALTERTABLE 1988 if( !p->pSelect ){ 1989 const char *zName = (const char *)pParse->sNameToken.z; 1990 int nName; 1991 assert( !pSelect && pCons && pEnd ); 1992 if( pCons->z==0 ){ 1993 pCons = pEnd; 1994 } 1995 nName = (int)((const char *)pCons->z - zName); 1996 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1997 } 1998 #endif 1999 } 2000 } 2001 2002 #ifndef SQLITE_OMIT_VIEW 2003 /* 2004 ** The parser calls this routine in order to create a new VIEW 2005 */ 2006 void sqlite3CreateView( 2007 Parse *pParse, /* The parsing context */ 2008 Token *pBegin, /* The CREATE token that begins the statement */ 2009 Token *pName1, /* The token that holds the name of the view */ 2010 Token *pName2, /* The token that holds the name of the view */ 2011 Select *pSelect, /* A SELECT statement that will become the new view */ 2012 int isTemp, /* TRUE for a TEMPORARY view */ 2013 int noErr /* Suppress error messages if VIEW already exists */ 2014 ){ 2015 Table *p; 2016 int n; 2017 const char *z; 2018 Token sEnd; 2019 DbFixer sFix; 2020 Token *pName = 0; 2021 int iDb; 2022 sqlite3 *db = pParse->db; 2023 2024 if( pParse->nVar>0 ){ 2025 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2026 sqlite3SelectDelete(db, pSelect); 2027 return; 2028 } 2029 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2030 p = pParse->pNewTable; 2031 if( p==0 || pParse->nErr ){ 2032 sqlite3SelectDelete(db, pSelect); 2033 return; 2034 } 2035 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2036 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2037 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2038 if( sqlite3FixSelect(&sFix, pSelect) ){ 2039 sqlite3SelectDelete(db, pSelect); 2040 return; 2041 } 2042 2043 /* Make a copy of the entire SELECT statement that defines the view. 2044 ** This will force all the Expr.token.z values to be dynamically 2045 ** allocated rather than point to the input string - which means that 2046 ** they will persist after the current sqlite3_exec() call returns. 2047 */ 2048 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2049 sqlite3SelectDelete(db, pSelect); 2050 if( db->mallocFailed ){ 2051 return; 2052 } 2053 if( !db->init.busy ){ 2054 sqlite3ViewGetColumnNames(pParse, p); 2055 } 2056 2057 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2058 ** the end. 2059 */ 2060 sEnd = pParse->sLastToken; 2061 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2062 sEnd.z += sEnd.n; 2063 } 2064 sEnd.n = 0; 2065 n = (int)(sEnd.z - pBegin->z); 2066 z = pBegin->z; 2067 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2068 sEnd.z = &z[n-1]; 2069 sEnd.n = 1; 2070 2071 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2072 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2073 return; 2074 } 2075 #endif /* SQLITE_OMIT_VIEW */ 2076 2077 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2078 /* 2079 ** The Table structure pTable is really a VIEW. Fill in the names of 2080 ** the columns of the view in the pTable structure. Return the number 2081 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2082 */ 2083 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2084 Table *pSelTab; /* A fake table from which we get the result set */ 2085 Select *pSel; /* Copy of the SELECT that implements the view */ 2086 int nErr = 0; /* Number of errors encountered */ 2087 int n; /* Temporarily holds the number of cursors assigned */ 2088 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2089 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2090 2091 assert( pTable ); 2092 2093 #ifndef SQLITE_OMIT_VIRTUALTABLE 2094 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2095 return SQLITE_ERROR; 2096 } 2097 if( IsVirtual(pTable) ) return 0; 2098 #endif 2099 2100 #ifndef SQLITE_OMIT_VIEW 2101 /* A positive nCol means the columns names for this view are 2102 ** already known. 2103 */ 2104 if( pTable->nCol>0 ) return 0; 2105 2106 /* A negative nCol is a special marker meaning that we are currently 2107 ** trying to compute the column names. If we enter this routine with 2108 ** a negative nCol, it means two or more views form a loop, like this: 2109 ** 2110 ** CREATE VIEW one AS SELECT * FROM two; 2111 ** CREATE VIEW two AS SELECT * FROM one; 2112 ** 2113 ** Actually, the error above is now caught prior to reaching this point. 2114 ** But the following test is still important as it does come up 2115 ** in the following: 2116 ** 2117 ** CREATE TABLE main.ex1(a); 2118 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2119 ** SELECT * FROM temp.ex1; 2120 */ 2121 if( pTable->nCol<0 ){ 2122 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2123 return 1; 2124 } 2125 assert( pTable->nCol>=0 ); 2126 2127 /* If we get this far, it means we need to compute the table names. 2128 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2129 ** "*" elements in the results set of the view and will assign cursors 2130 ** to the elements of the FROM clause. But we do not want these changes 2131 ** to be permanent. So the computation is done on a copy of the SELECT 2132 ** statement that defines the view. 2133 */ 2134 assert( pTable->pSelect ); 2135 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2136 if( pSel ){ 2137 u8 enableLookaside = db->lookaside.bEnabled; 2138 n = pParse->nTab; 2139 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2140 pTable->nCol = -1; 2141 db->lookaside.bEnabled = 0; 2142 #ifndef SQLITE_OMIT_AUTHORIZATION 2143 xAuth = db->xAuth; 2144 db->xAuth = 0; 2145 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2146 db->xAuth = xAuth; 2147 #else 2148 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2149 #endif 2150 db->lookaside.bEnabled = enableLookaside; 2151 pParse->nTab = n; 2152 if( pSelTab ){ 2153 assert( pTable->aCol==0 ); 2154 pTable->nCol = pSelTab->nCol; 2155 pTable->aCol = pSelTab->aCol; 2156 pSelTab->nCol = 0; 2157 pSelTab->aCol = 0; 2158 sqlite3DeleteTable(db, pSelTab); 2159 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2160 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2161 }else{ 2162 pTable->nCol = 0; 2163 nErr++; 2164 } 2165 sqlite3SelectDelete(db, pSel); 2166 } else { 2167 nErr++; 2168 } 2169 #endif /* SQLITE_OMIT_VIEW */ 2170 return nErr; 2171 } 2172 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2173 2174 #ifndef SQLITE_OMIT_VIEW 2175 /* 2176 ** Clear the column names from every VIEW in database idx. 2177 */ 2178 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2179 HashElem *i; 2180 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2181 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2182 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2183 Table *pTab = sqliteHashData(i); 2184 if( pTab->pSelect ){ 2185 sqliteDeleteColumnNames(db, pTab); 2186 pTab->aCol = 0; 2187 pTab->nCol = 0; 2188 } 2189 } 2190 DbClearProperty(db, idx, DB_UnresetViews); 2191 } 2192 #else 2193 # define sqliteViewResetAll(A,B) 2194 #endif /* SQLITE_OMIT_VIEW */ 2195 2196 /* 2197 ** This function is called by the VDBE to adjust the internal schema 2198 ** used by SQLite when the btree layer moves a table root page. The 2199 ** root-page of a table or index in database iDb has changed from iFrom 2200 ** to iTo. 2201 ** 2202 ** Ticket #1728: The symbol table might still contain information 2203 ** on tables and/or indices that are the process of being deleted. 2204 ** If you are unlucky, one of those deleted indices or tables might 2205 ** have the same rootpage number as the real table or index that is 2206 ** being moved. So we cannot stop searching after the first match 2207 ** because the first match might be for one of the deleted indices 2208 ** or tables and not the table/index that is actually being moved. 2209 ** We must continue looping until all tables and indices with 2210 ** rootpage==iFrom have been converted to have a rootpage of iTo 2211 ** in order to be certain that we got the right one. 2212 */ 2213 #ifndef SQLITE_OMIT_AUTOVACUUM 2214 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2215 HashElem *pElem; 2216 Hash *pHash; 2217 Db *pDb; 2218 2219 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2220 pDb = &db->aDb[iDb]; 2221 pHash = &pDb->pSchema->tblHash; 2222 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2223 Table *pTab = sqliteHashData(pElem); 2224 if( pTab->tnum==iFrom ){ 2225 pTab->tnum = iTo; 2226 } 2227 } 2228 pHash = &pDb->pSchema->idxHash; 2229 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2230 Index *pIdx = sqliteHashData(pElem); 2231 if( pIdx->tnum==iFrom ){ 2232 pIdx->tnum = iTo; 2233 } 2234 } 2235 } 2236 #endif 2237 2238 /* 2239 ** Write code to erase the table with root-page iTable from database iDb. 2240 ** Also write code to modify the sqlite_master table and internal schema 2241 ** if a root-page of another table is moved by the btree-layer whilst 2242 ** erasing iTable (this can happen with an auto-vacuum database). 2243 */ 2244 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2245 Vdbe *v = sqlite3GetVdbe(pParse); 2246 int r1 = sqlite3GetTempReg(pParse); 2247 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2248 sqlite3MayAbort(pParse); 2249 #ifndef SQLITE_OMIT_AUTOVACUUM 2250 /* OP_Destroy stores an in integer r1. If this integer 2251 ** is non-zero, then it is the root page number of a table moved to 2252 ** location iTable. The following code modifies the sqlite_master table to 2253 ** reflect this. 2254 ** 2255 ** The "#NNN" in the SQL is a special constant that means whatever value 2256 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2257 ** token for additional information. 2258 */ 2259 sqlite3NestedParse(pParse, 2260 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2261 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2262 #endif 2263 sqlite3ReleaseTempReg(pParse, r1); 2264 } 2265 2266 /* 2267 ** Write VDBE code to erase table pTab and all associated indices on disk. 2268 ** Code to update the sqlite_master tables and internal schema definitions 2269 ** in case a root-page belonging to another table is moved by the btree layer 2270 ** is also added (this can happen with an auto-vacuum database). 2271 */ 2272 static void destroyTable(Parse *pParse, Table *pTab){ 2273 #ifdef SQLITE_OMIT_AUTOVACUUM 2274 Index *pIdx; 2275 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2276 destroyRootPage(pParse, pTab->tnum, iDb); 2277 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2278 destroyRootPage(pParse, pIdx->tnum, iDb); 2279 } 2280 #else 2281 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2282 ** is not defined), then it is important to call OP_Destroy on the 2283 ** table and index root-pages in order, starting with the numerically 2284 ** largest root-page number. This guarantees that none of the root-pages 2285 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2286 ** following were coded: 2287 ** 2288 ** OP_Destroy 4 0 2289 ** ... 2290 ** OP_Destroy 5 0 2291 ** 2292 ** and root page 5 happened to be the largest root-page number in the 2293 ** database, then root page 5 would be moved to page 4 by the 2294 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2295 ** a free-list page. 2296 */ 2297 int iTab = pTab->tnum; 2298 int iDestroyed = 0; 2299 2300 while( 1 ){ 2301 Index *pIdx; 2302 int iLargest = 0; 2303 2304 if( iDestroyed==0 || iTab<iDestroyed ){ 2305 iLargest = iTab; 2306 } 2307 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2308 int iIdx = pIdx->tnum; 2309 assert( pIdx->pSchema==pTab->pSchema ); 2310 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2311 iLargest = iIdx; 2312 } 2313 } 2314 if( iLargest==0 ){ 2315 return; 2316 }else{ 2317 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2318 assert( iDb>=0 && iDb<pParse->db->nDb ); 2319 destroyRootPage(pParse, iLargest, iDb); 2320 iDestroyed = iLargest; 2321 } 2322 } 2323 #endif 2324 } 2325 2326 /* 2327 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2328 ** after a DROP INDEX or DROP TABLE command. 2329 */ 2330 static void sqlite3ClearStatTables( 2331 Parse *pParse, /* The parsing context */ 2332 int iDb, /* The database number */ 2333 const char *zType, /* "idx" or "tbl" */ 2334 const char *zName /* Name of index or table */ 2335 ){ 2336 int i; 2337 const char *zDbName = pParse->db->aDb[iDb].zName; 2338 for(i=1; i<=4; i++){ 2339 char zTab[24]; 2340 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2341 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2342 sqlite3NestedParse(pParse, 2343 "DELETE FROM %Q.%s WHERE %s=%Q", 2344 zDbName, zTab, zType, zName 2345 ); 2346 } 2347 } 2348 } 2349 2350 /* 2351 ** Generate code to drop a table. 2352 */ 2353 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2354 Vdbe *v; 2355 sqlite3 *db = pParse->db; 2356 Trigger *pTrigger; 2357 Db *pDb = &db->aDb[iDb]; 2358 2359 v = sqlite3GetVdbe(pParse); 2360 assert( v!=0 ); 2361 sqlite3BeginWriteOperation(pParse, 1, iDb); 2362 2363 #ifndef SQLITE_OMIT_VIRTUALTABLE 2364 if( IsVirtual(pTab) ){ 2365 sqlite3VdbeAddOp0(v, OP_VBegin); 2366 } 2367 #endif 2368 2369 /* Drop all triggers associated with the table being dropped. Code 2370 ** is generated to remove entries from sqlite_master and/or 2371 ** sqlite_temp_master if required. 2372 */ 2373 pTrigger = sqlite3TriggerList(pParse, pTab); 2374 while( pTrigger ){ 2375 assert( pTrigger->pSchema==pTab->pSchema || 2376 pTrigger->pSchema==db->aDb[1].pSchema ); 2377 sqlite3DropTriggerPtr(pParse, pTrigger); 2378 pTrigger = pTrigger->pNext; 2379 } 2380 2381 #ifndef SQLITE_OMIT_AUTOINCREMENT 2382 /* Remove any entries of the sqlite_sequence table associated with 2383 ** the table being dropped. This is done before the table is dropped 2384 ** at the btree level, in case the sqlite_sequence table needs to 2385 ** move as a result of the drop (can happen in auto-vacuum mode). 2386 */ 2387 if( pTab->tabFlags & TF_Autoincrement ){ 2388 sqlite3NestedParse(pParse, 2389 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2390 pDb->zName, pTab->zName 2391 ); 2392 } 2393 #endif 2394 2395 /* Drop all SQLITE_MASTER table and index entries that refer to the 2396 ** table. The program name loops through the master table and deletes 2397 ** every row that refers to a table of the same name as the one being 2398 ** dropped. Triggers are handled separately because a trigger can be 2399 ** created in the temp database that refers to a table in another 2400 ** database. 2401 */ 2402 sqlite3NestedParse(pParse, 2403 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2404 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2405 if( !isView && !IsVirtual(pTab) ){ 2406 destroyTable(pParse, pTab); 2407 } 2408 2409 /* Remove the table entry from SQLite's internal schema and modify 2410 ** the schema cookie. 2411 */ 2412 if( IsVirtual(pTab) ){ 2413 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2414 } 2415 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2416 sqlite3ChangeCookie(pParse, iDb); 2417 sqliteViewResetAll(db, iDb); 2418 } 2419 2420 /* 2421 ** This routine is called to do the work of a DROP TABLE statement. 2422 ** pName is the name of the table to be dropped. 2423 */ 2424 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2425 Table *pTab; 2426 Vdbe *v; 2427 sqlite3 *db = pParse->db; 2428 int iDb; 2429 2430 if( db->mallocFailed ){ 2431 goto exit_drop_table; 2432 } 2433 assert( pParse->nErr==0 ); 2434 assert( pName->nSrc==1 ); 2435 if( noErr ) db->suppressErr++; 2436 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2437 if( noErr ) db->suppressErr--; 2438 2439 if( pTab==0 ){ 2440 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2441 goto exit_drop_table; 2442 } 2443 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2444 assert( iDb>=0 && iDb<db->nDb ); 2445 2446 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2447 ** it is initialized. 2448 */ 2449 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2450 goto exit_drop_table; 2451 } 2452 #ifndef SQLITE_OMIT_AUTHORIZATION 2453 { 2454 int code; 2455 const char *zTab = SCHEMA_TABLE(iDb); 2456 const char *zDb = db->aDb[iDb].zName; 2457 const char *zArg2 = 0; 2458 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2459 goto exit_drop_table; 2460 } 2461 if( isView ){ 2462 if( !OMIT_TEMPDB && iDb==1 ){ 2463 code = SQLITE_DROP_TEMP_VIEW; 2464 }else{ 2465 code = SQLITE_DROP_VIEW; 2466 } 2467 #ifndef SQLITE_OMIT_VIRTUALTABLE 2468 }else if( IsVirtual(pTab) ){ 2469 code = SQLITE_DROP_VTABLE; 2470 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2471 #endif 2472 }else{ 2473 if( !OMIT_TEMPDB && iDb==1 ){ 2474 code = SQLITE_DROP_TEMP_TABLE; 2475 }else{ 2476 code = SQLITE_DROP_TABLE; 2477 } 2478 } 2479 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2480 goto exit_drop_table; 2481 } 2482 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2483 goto exit_drop_table; 2484 } 2485 } 2486 #endif 2487 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2488 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2489 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2490 goto exit_drop_table; 2491 } 2492 2493 #ifndef SQLITE_OMIT_VIEW 2494 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2495 ** on a table. 2496 */ 2497 if( isView && pTab->pSelect==0 ){ 2498 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2499 goto exit_drop_table; 2500 } 2501 if( !isView && pTab->pSelect ){ 2502 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2503 goto exit_drop_table; 2504 } 2505 #endif 2506 2507 /* Generate code to remove the table from the master table 2508 ** on disk. 2509 */ 2510 v = sqlite3GetVdbe(pParse); 2511 if( v ){ 2512 sqlite3BeginWriteOperation(pParse, 1, iDb); 2513 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2514 sqlite3FkDropTable(pParse, pName, pTab); 2515 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2516 } 2517 2518 exit_drop_table: 2519 sqlite3SrcListDelete(db, pName); 2520 } 2521 2522 /* 2523 ** This routine is called to create a new foreign key on the table 2524 ** currently under construction. pFromCol determines which columns 2525 ** in the current table point to the foreign key. If pFromCol==0 then 2526 ** connect the key to the last column inserted. pTo is the name of 2527 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2528 ** of tables in the parent pTo table. flags contains all 2529 ** information about the conflict resolution algorithms specified 2530 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2531 ** 2532 ** An FKey structure is created and added to the table currently 2533 ** under construction in the pParse->pNewTable field. 2534 ** 2535 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2536 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2537 */ 2538 void sqlite3CreateForeignKey( 2539 Parse *pParse, /* Parsing context */ 2540 ExprList *pFromCol, /* Columns in this table that point to other table */ 2541 Token *pTo, /* Name of the other table */ 2542 ExprList *pToCol, /* Columns in the other table */ 2543 int flags /* Conflict resolution algorithms. */ 2544 ){ 2545 sqlite3 *db = pParse->db; 2546 #ifndef SQLITE_OMIT_FOREIGN_KEY 2547 FKey *pFKey = 0; 2548 FKey *pNextTo; 2549 Table *p = pParse->pNewTable; 2550 int nByte; 2551 int i; 2552 int nCol; 2553 char *z; 2554 2555 assert( pTo!=0 ); 2556 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2557 if( pFromCol==0 ){ 2558 int iCol = p->nCol-1; 2559 if( NEVER(iCol<0) ) goto fk_end; 2560 if( pToCol && pToCol->nExpr!=1 ){ 2561 sqlite3ErrorMsg(pParse, "foreign key on %s" 2562 " should reference only one column of table %T", 2563 p->aCol[iCol].zName, pTo); 2564 goto fk_end; 2565 } 2566 nCol = 1; 2567 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2568 sqlite3ErrorMsg(pParse, 2569 "number of columns in foreign key does not match the number of " 2570 "columns in the referenced table"); 2571 goto fk_end; 2572 }else{ 2573 nCol = pFromCol->nExpr; 2574 } 2575 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2576 if( pToCol ){ 2577 for(i=0; i<pToCol->nExpr; i++){ 2578 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2579 } 2580 } 2581 pFKey = sqlite3DbMallocZero(db, nByte ); 2582 if( pFKey==0 ){ 2583 goto fk_end; 2584 } 2585 pFKey->pFrom = p; 2586 pFKey->pNextFrom = p->pFKey; 2587 z = (char*)&pFKey->aCol[nCol]; 2588 pFKey->zTo = z; 2589 memcpy(z, pTo->z, pTo->n); 2590 z[pTo->n] = 0; 2591 sqlite3Dequote(z); 2592 z += pTo->n+1; 2593 pFKey->nCol = nCol; 2594 if( pFromCol==0 ){ 2595 pFKey->aCol[0].iFrom = p->nCol-1; 2596 }else{ 2597 for(i=0; i<nCol; i++){ 2598 int j; 2599 for(j=0; j<p->nCol; j++){ 2600 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2601 pFKey->aCol[i].iFrom = j; 2602 break; 2603 } 2604 } 2605 if( j>=p->nCol ){ 2606 sqlite3ErrorMsg(pParse, 2607 "unknown column \"%s\" in foreign key definition", 2608 pFromCol->a[i].zName); 2609 goto fk_end; 2610 } 2611 } 2612 } 2613 if( pToCol ){ 2614 for(i=0; i<nCol; i++){ 2615 int n = sqlite3Strlen30(pToCol->a[i].zName); 2616 pFKey->aCol[i].zCol = z; 2617 memcpy(z, pToCol->a[i].zName, n); 2618 z[n] = 0; 2619 z += n+1; 2620 } 2621 } 2622 pFKey->isDeferred = 0; 2623 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2624 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2625 2626 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2627 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2628 pFKey->zTo, (void *)pFKey 2629 ); 2630 if( pNextTo==pFKey ){ 2631 db->mallocFailed = 1; 2632 goto fk_end; 2633 } 2634 if( pNextTo ){ 2635 assert( pNextTo->pPrevTo==0 ); 2636 pFKey->pNextTo = pNextTo; 2637 pNextTo->pPrevTo = pFKey; 2638 } 2639 2640 /* Link the foreign key to the table as the last step. 2641 */ 2642 p->pFKey = pFKey; 2643 pFKey = 0; 2644 2645 fk_end: 2646 sqlite3DbFree(db, pFKey); 2647 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2648 sqlite3ExprListDelete(db, pFromCol); 2649 sqlite3ExprListDelete(db, pToCol); 2650 } 2651 2652 /* 2653 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2654 ** clause is seen as part of a foreign key definition. The isDeferred 2655 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2656 ** The behavior of the most recently created foreign key is adjusted 2657 ** accordingly. 2658 */ 2659 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2660 #ifndef SQLITE_OMIT_FOREIGN_KEY 2661 Table *pTab; 2662 FKey *pFKey; 2663 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2664 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2665 pFKey->isDeferred = (u8)isDeferred; 2666 #endif 2667 } 2668 2669 /* 2670 ** Generate code that will erase and refill index *pIdx. This is 2671 ** used to initialize a newly created index or to recompute the 2672 ** content of an index in response to a REINDEX command. 2673 ** 2674 ** if memRootPage is not negative, it means that the index is newly 2675 ** created. The register specified by memRootPage contains the 2676 ** root page number of the index. If memRootPage is negative, then 2677 ** the index already exists and must be cleared before being refilled and 2678 ** the root page number of the index is taken from pIndex->tnum. 2679 */ 2680 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2681 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2682 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2683 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2684 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2685 int addr1; /* Address of top of loop */ 2686 int addr2; /* Address to jump to for next iteration */ 2687 int tnum; /* Root page of index */ 2688 int iPartIdxLabel; /* Jump to this label to skip a row */ 2689 Vdbe *v; /* Generate code into this virtual machine */ 2690 KeyInfo *pKey; /* KeyInfo for index */ 2691 int regRecord; /* Register holding assembled index record */ 2692 sqlite3 *db = pParse->db; /* The database connection */ 2693 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2694 2695 #ifndef SQLITE_OMIT_AUTHORIZATION 2696 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2697 db->aDb[iDb].zName ) ){ 2698 return; 2699 } 2700 #endif 2701 2702 /* Require a write-lock on the table to perform this operation */ 2703 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2704 2705 v = sqlite3GetVdbe(pParse); 2706 if( v==0 ) return; 2707 if( memRootPage>=0 ){ 2708 tnum = memRootPage; 2709 }else{ 2710 tnum = pIndex->tnum; 2711 } 2712 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2713 2714 /* Open the sorter cursor if we are to use one. */ 2715 iSorter = pParse->nTab++; 2716 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2717 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2718 2719 /* Open the table. Loop through all rows of the table, inserting index 2720 ** records into the sorter. */ 2721 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2722 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2723 regRecord = sqlite3GetTempReg(pParse); 2724 2725 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2726 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2727 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2728 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2729 sqlite3VdbeJumpHere(v, addr1); 2730 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2731 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2732 (char *)pKey, P4_KEYINFO); 2733 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2734 2735 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2736 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2737 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2738 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2739 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2740 addr2 = sqlite3VdbeCurrentAddr(v); 2741 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2742 pIndex->nKeyCol); VdbeCoverage(v); 2743 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2744 }else{ 2745 addr2 = sqlite3VdbeCurrentAddr(v); 2746 } 2747 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2748 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2749 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2750 sqlite3ReleaseTempReg(pParse, regRecord); 2751 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2752 sqlite3VdbeJumpHere(v, addr1); 2753 2754 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2755 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2756 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2757 } 2758 2759 /* 2760 ** Allocate heap space to hold an Index object with nCol columns. 2761 ** 2762 ** Increase the allocation size to provide an extra nExtra bytes 2763 ** of 8-byte aligned space after the Index object and return a 2764 ** pointer to this extra space in *ppExtra. 2765 */ 2766 Index *sqlite3AllocateIndexObject( 2767 sqlite3 *db, /* Database connection */ 2768 i16 nCol, /* Total number of columns in the index */ 2769 int nExtra, /* Number of bytes of extra space to alloc */ 2770 char **ppExtra /* Pointer to the "extra" space */ 2771 ){ 2772 Index *p; /* Allocated index object */ 2773 int nByte; /* Bytes of space for Index object + arrays */ 2774 2775 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2776 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2777 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2778 sizeof(i16)*nCol + /* Index.aiColumn */ 2779 sizeof(u8)*nCol); /* Index.aSortOrder */ 2780 p = sqlite3DbMallocZero(db, nByte + nExtra); 2781 if( p ){ 2782 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2783 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2784 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2785 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2786 p->aSortOrder = (u8*)pExtra; 2787 p->nColumn = nCol; 2788 p->nKeyCol = nCol - 1; 2789 *ppExtra = ((char*)p) + nByte; 2790 } 2791 return p; 2792 } 2793 2794 /* 2795 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2796 ** and pTblList is the name of the table that is to be indexed. Both will 2797 ** be NULL for a primary key or an index that is created to satisfy a 2798 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2799 ** as the table to be indexed. pParse->pNewTable is a table that is 2800 ** currently being constructed by a CREATE TABLE statement. 2801 ** 2802 ** pList is a list of columns to be indexed. pList will be NULL if this 2803 ** is a primary key or unique-constraint on the most recent column added 2804 ** to the table currently under construction. 2805 ** 2806 ** If the index is created successfully, return a pointer to the new Index 2807 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2808 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2809 */ 2810 Index *sqlite3CreateIndex( 2811 Parse *pParse, /* All information about this parse */ 2812 Token *pName1, /* First part of index name. May be NULL */ 2813 Token *pName2, /* Second part of index name. May be NULL */ 2814 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2815 ExprList *pList, /* A list of columns to be indexed */ 2816 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2817 Token *pStart, /* The CREATE token that begins this statement */ 2818 Expr *pPIWhere, /* WHERE clause for partial indices */ 2819 int sortOrder, /* Sort order of primary key when pList==NULL */ 2820 int ifNotExist /* Omit error if index already exists */ 2821 ){ 2822 Index *pRet = 0; /* Pointer to return */ 2823 Table *pTab = 0; /* Table to be indexed */ 2824 Index *pIndex = 0; /* The index to be created */ 2825 char *zName = 0; /* Name of the index */ 2826 int nName; /* Number of characters in zName */ 2827 int i, j; 2828 DbFixer sFix; /* For assigning database names to pTable */ 2829 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2830 sqlite3 *db = pParse->db; 2831 Db *pDb; /* The specific table containing the indexed database */ 2832 int iDb; /* Index of the database that is being written */ 2833 Token *pName = 0; /* Unqualified name of the index to create */ 2834 struct ExprList_item *pListItem; /* For looping over pList */ 2835 const Column *pTabCol; /* A column in the table */ 2836 int nExtra = 0; /* Space allocated for zExtra[] */ 2837 int nExtraCol; /* Number of extra columns needed */ 2838 char *zExtra = 0; /* Extra space after the Index object */ 2839 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2840 2841 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2842 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2843 goto exit_create_index; 2844 } 2845 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2846 goto exit_create_index; 2847 } 2848 2849 /* 2850 ** Find the table that is to be indexed. Return early if not found. 2851 */ 2852 if( pTblName!=0 ){ 2853 2854 /* Use the two-part index name to determine the database 2855 ** to search for the table. 'Fix' the table name to this db 2856 ** before looking up the table. 2857 */ 2858 assert( pName1 && pName2 ); 2859 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2860 if( iDb<0 ) goto exit_create_index; 2861 assert( pName && pName->z ); 2862 2863 #ifndef SQLITE_OMIT_TEMPDB 2864 /* If the index name was unqualified, check if the table 2865 ** is a temp table. If so, set the database to 1. Do not do this 2866 ** if initialising a database schema. 2867 */ 2868 if( !db->init.busy ){ 2869 pTab = sqlite3SrcListLookup(pParse, pTblName); 2870 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2871 iDb = 1; 2872 } 2873 } 2874 #endif 2875 2876 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2877 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2878 /* Because the parser constructs pTblName from a single identifier, 2879 ** sqlite3FixSrcList can never fail. */ 2880 assert(0); 2881 } 2882 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2883 assert( db->mallocFailed==0 || pTab==0 ); 2884 if( pTab==0 ) goto exit_create_index; 2885 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2886 sqlite3ErrorMsg(pParse, 2887 "cannot create a TEMP index on non-TEMP table \"%s\"", 2888 pTab->zName); 2889 goto exit_create_index; 2890 } 2891 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2892 }else{ 2893 assert( pName==0 ); 2894 assert( pStart==0 ); 2895 pTab = pParse->pNewTable; 2896 if( !pTab ) goto exit_create_index; 2897 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2898 } 2899 pDb = &db->aDb[iDb]; 2900 2901 assert( pTab!=0 ); 2902 assert( pParse->nErr==0 ); 2903 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2904 #if SQLITE_USER_AUTHENTICATION 2905 && sqlite3UserAuthTable(pTab->zName)==0 2906 #endif 2907 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2908 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2909 goto exit_create_index; 2910 } 2911 #ifndef SQLITE_OMIT_VIEW 2912 if( pTab->pSelect ){ 2913 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2914 goto exit_create_index; 2915 } 2916 #endif 2917 #ifndef SQLITE_OMIT_VIRTUALTABLE 2918 if( IsVirtual(pTab) ){ 2919 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2920 goto exit_create_index; 2921 } 2922 #endif 2923 2924 /* 2925 ** Find the name of the index. Make sure there is not already another 2926 ** index or table with the same name. 2927 ** 2928 ** Exception: If we are reading the names of permanent indices from the 2929 ** sqlite_master table (because some other process changed the schema) and 2930 ** one of the index names collides with the name of a temporary table or 2931 ** index, then we will continue to process this index. 2932 ** 2933 ** If pName==0 it means that we are 2934 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2935 ** own name. 2936 */ 2937 if( pName ){ 2938 zName = sqlite3NameFromToken(db, pName); 2939 if( zName==0 ) goto exit_create_index; 2940 assert( pName->z!=0 ); 2941 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2942 goto exit_create_index; 2943 } 2944 if( !db->init.busy ){ 2945 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2946 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2947 goto exit_create_index; 2948 } 2949 } 2950 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2951 if( !ifNotExist ){ 2952 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2953 }else{ 2954 assert( !db->init.busy ); 2955 sqlite3CodeVerifySchema(pParse, iDb); 2956 } 2957 goto exit_create_index; 2958 } 2959 }else{ 2960 int n; 2961 Index *pLoop; 2962 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2963 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2964 if( zName==0 ){ 2965 goto exit_create_index; 2966 } 2967 } 2968 2969 /* Check for authorization to create an index. 2970 */ 2971 #ifndef SQLITE_OMIT_AUTHORIZATION 2972 { 2973 const char *zDb = pDb->zName; 2974 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2975 goto exit_create_index; 2976 } 2977 i = SQLITE_CREATE_INDEX; 2978 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2979 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2980 goto exit_create_index; 2981 } 2982 } 2983 #endif 2984 2985 /* If pList==0, it means this routine was called to make a primary 2986 ** key out of the last column added to the table under construction. 2987 ** So create a fake list to simulate this. 2988 */ 2989 if( pList==0 ){ 2990 pList = sqlite3ExprListAppend(pParse, 0, 0); 2991 if( pList==0 ) goto exit_create_index; 2992 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 2993 pTab->aCol[pTab->nCol-1].zName); 2994 pList->a[0].sortOrder = (u8)sortOrder; 2995 } 2996 2997 /* Figure out how many bytes of space are required to store explicitly 2998 ** specified collation sequence names. 2999 */ 3000 for(i=0; i<pList->nExpr; i++){ 3001 Expr *pExpr = pList->a[i].pExpr; 3002 if( pExpr ){ 3003 assert( pExpr->op==TK_COLLATE ); 3004 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3005 } 3006 } 3007 3008 /* 3009 ** Allocate the index structure. 3010 */ 3011 nName = sqlite3Strlen30(zName); 3012 nExtraCol = pPk ? pPk->nKeyCol : 1; 3013 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3014 nName + nExtra + 1, &zExtra); 3015 if( db->mallocFailed ){ 3016 goto exit_create_index; 3017 } 3018 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3019 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3020 pIndex->zName = zExtra; 3021 zExtra += nName + 1; 3022 memcpy(pIndex->zName, zName, nName+1); 3023 pIndex->pTable = pTab; 3024 pIndex->onError = (u8)onError; 3025 pIndex->uniqNotNull = onError!=OE_None; 3026 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3027 pIndex->pSchema = db->aDb[iDb].pSchema; 3028 pIndex->nKeyCol = pList->nExpr; 3029 if( pPIWhere ){ 3030 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3031 pIndex->pPartIdxWhere = pPIWhere; 3032 pPIWhere = 0; 3033 } 3034 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3035 3036 /* Check to see if we should honor DESC requests on index columns 3037 */ 3038 if( pDb->pSchema->file_format>=4 ){ 3039 sortOrderMask = -1; /* Honor DESC */ 3040 }else{ 3041 sortOrderMask = 0; /* Ignore DESC */ 3042 } 3043 3044 /* Scan the names of the columns of the table to be indexed and 3045 ** load the column indices into the Index structure. Report an error 3046 ** if any column is not found. 3047 ** 3048 ** TODO: Add a test to make sure that the same column is not named 3049 ** more than once within the same index. Only the first instance of 3050 ** the column will ever be used by the optimizer. Note that using the 3051 ** same column more than once cannot be an error because that would 3052 ** break backwards compatibility - it needs to be a warning. 3053 */ 3054 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3055 const char *zColName = pListItem->zName; 3056 int requestedSortOrder; 3057 char *zColl; /* Collation sequence name */ 3058 3059 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3060 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3061 } 3062 if( j>=pTab->nCol ){ 3063 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3064 pTab->zName, zColName); 3065 pParse->checkSchema = 1; 3066 goto exit_create_index; 3067 } 3068 assert( j<=0x7fff ); 3069 pIndex->aiColumn[i] = (i16)j; 3070 if( pListItem->pExpr ){ 3071 int nColl; 3072 assert( pListItem->pExpr->op==TK_COLLATE ); 3073 zColl = pListItem->pExpr->u.zToken; 3074 nColl = sqlite3Strlen30(zColl) + 1; 3075 assert( nExtra>=nColl ); 3076 memcpy(zExtra, zColl, nColl); 3077 zColl = zExtra; 3078 zExtra += nColl; 3079 nExtra -= nColl; 3080 }else{ 3081 zColl = pTab->aCol[j].zColl; 3082 if( !zColl ) zColl = "BINARY"; 3083 } 3084 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3085 goto exit_create_index; 3086 } 3087 pIndex->azColl[i] = zColl; 3088 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3089 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3090 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3091 } 3092 if( pPk ){ 3093 for(j=0; j<pPk->nKeyCol; j++){ 3094 int x = pPk->aiColumn[j]; 3095 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3096 pIndex->nColumn--; 3097 }else{ 3098 pIndex->aiColumn[i] = x; 3099 pIndex->azColl[i] = pPk->azColl[j]; 3100 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3101 i++; 3102 } 3103 } 3104 assert( i==pIndex->nColumn ); 3105 }else{ 3106 pIndex->aiColumn[i] = -1; 3107 pIndex->azColl[i] = "BINARY"; 3108 } 3109 sqlite3DefaultRowEst(pIndex); 3110 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3111 3112 if( pTab==pParse->pNewTable ){ 3113 /* This routine has been called to create an automatic index as a 3114 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3115 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3116 ** i.e. one of: 3117 ** 3118 ** CREATE TABLE t(x PRIMARY KEY, y); 3119 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3120 ** 3121 ** Either way, check to see if the table already has such an index. If 3122 ** so, don't bother creating this one. This only applies to 3123 ** automatically created indices. Users can do as they wish with 3124 ** explicit indices. 3125 ** 3126 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3127 ** (and thus suppressing the second one) even if they have different 3128 ** sort orders. 3129 ** 3130 ** If there are different collating sequences or if the columns of 3131 ** the constraint occur in different orders, then the constraints are 3132 ** considered distinct and both result in separate indices. 3133 */ 3134 Index *pIdx; 3135 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3136 int k; 3137 assert( IsUniqueIndex(pIdx) ); 3138 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3139 assert( IsUniqueIndex(pIndex) ); 3140 3141 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3142 for(k=0; k<pIdx->nKeyCol; k++){ 3143 const char *z1; 3144 const char *z2; 3145 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3146 z1 = pIdx->azColl[k]; 3147 z2 = pIndex->azColl[k]; 3148 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3149 } 3150 if( k==pIdx->nKeyCol ){ 3151 if( pIdx->onError!=pIndex->onError ){ 3152 /* This constraint creates the same index as a previous 3153 ** constraint specified somewhere in the CREATE TABLE statement. 3154 ** However the ON CONFLICT clauses are different. If both this 3155 ** constraint and the previous equivalent constraint have explicit 3156 ** ON CONFLICT clauses this is an error. Otherwise, use the 3157 ** explicitly specified behavior for the index. 3158 */ 3159 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3160 sqlite3ErrorMsg(pParse, 3161 "conflicting ON CONFLICT clauses specified", 0); 3162 } 3163 if( pIdx->onError==OE_Default ){ 3164 pIdx->onError = pIndex->onError; 3165 } 3166 } 3167 goto exit_create_index; 3168 } 3169 } 3170 } 3171 3172 /* Link the new Index structure to its table and to the other 3173 ** in-memory database structures. 3174 */ 3175 if( db->init.busy ){ 3176 Index *p; 3177 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3178 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3179 pIndex->zName, pIndex); 3180 if( p ){ 3181 assert( p==pIndex ); /* Malloc must have failed */ 3182 db->mallocFailed = 1; 3183 goto exit_create_index; 3184 } 3185 db->flags |= SQLITE_InternChanges; 3186 if( pTblName!=0 ){ 3187 pIndex->tnum = db->init.newTnum; 3188 } 3189 } 3190 3191 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3192 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3193 ** emit code to allocate the index rootpage on disk and make an entry for 3194 ** the index in the sqlite_master table and populate the index with 3195 ** content. But, do not do this if we are simply reading the sqlite_master 3196 ** table to parse the schema, or if this index is the PRIMARY KEY index 3197 ** of a WITHOUT ROWID table. 3198 ** 3199 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3200 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3201 ** has just been created, it contains no data and the index initialization 3202 ** step can be skipped. 3203 */ 3204 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3205 Vdbe *v; 3206 char *zStmt; 3207 int iMem = ++pParse->nMem; 3208 3209 v = sqlite3GetVdbe(pParse); 3210 if( v==0 ) goto exit_create_index; 3211 3212 3213 /* Create the rootpage for the index 3214 */ 3215 sqlite3BeginWriteOperation(pParse, 1, iDb); 3216 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3217 3218 /* Gather the complete text of the CREATE INDEX statement into 3219 ** the zStmt variable 3220 */ 3221 if( pStart ){ 3222 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3223 if( pName->z[n-1]==';' ) n--; 3224 /* A named index with an explicit CREATE INDEX statement */ 3225 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3226 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3227 }else{ 3228 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3229 /* zStmt = sqlite3MPrintf(""); */ 3230 zStmt = 0; 3231 } 3232 3233 /* Add an entry in sqlite_master for this index 3234 */ 3235 sqlite3NestedParse(pParse, 3236 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3237 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3238 pIndex->zName, 3239 pTab->zName, 3240 iMem, 3241 zStmt 3242 ); 3243 sqlite3DbFree(db, zStmt); 3244 3245 /* Fill the index with data and reparse the schema. Code an OP_Expire 3246 ** to invalidate all pre-compiled statements. 3247 */ 3248 if( pTblName ){ 3249 sqlite3RefillIndex(pParse, pIndex, iMem); 3250 sqlite3ChangeCookie(pParse, iDb); 3251 sqlite3VdbeAddParseSchemaOp(v, iDb, 3252 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3253 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3254 } 3255 } 3256 3257 /* When adding an index to the list of indices for a table, make 3258 ** sure all indices labeled OE_Replace come after all those labeled 3259 ** OE_Ignore. This is necessary for the correct constraint check 3260 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3261 ** UPDATE and INSERT statements. 3262 */ 3263 if( db->init.busy || pTblName==0 ){ 3264 if( onError!=OE_Replace || pTab->pIndex==0 3265 || pTab->pIndex->onError==OE_Replace){ 3266 pIndex->pNext = pTab->pIndex; 3267 pTab->pIndex = pIndex; 3268 }else{ 3269 Index *pOther = pTab->pIndex; 3270 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3271 pOther = pOther->pNext; 3272 } 3273 pIndex->pNext = pOther->pNext; 3274 pOther->pNext = pIndex; 3275 } 3276 pRet = pIndex; 3277 pIndex = 0; 3278 } 3279 3280 /* Clean up before exiting */ 3281 exit_create_index: 3282 if( pIndex ) freeIndex(db, pIndex); 3283 sqlite3ExprDelete(db, pPIWhere); 3284 sqlite3ExprListDelete(db, pList); 3285 sqlite3SrcListDelete(db, pTblName); 3286 sqlite3DbFree(db, zName); 3287 return pRet; 3288 } 3289 3290 /* 3291 ** Fill the Index.aiRowEst[] array with default information - information 3292 ** to be used when we have not run the ANALYZE command. 3293 ** 3294 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3295 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3296 ** number of rows in the table that match any particular value of the 3297 ** first column of the index. aiRowEst[2] is an estimate of the number 3298 ** of rows that match any particular combination of the first 2 columns 3299 ** of the index. And so forth. It must always be the case that 3300 * 3301 ** aiRowEst[N]<=aiRowEst[N-1] 3302 ** aiRowEst[N]>=1 3303 ** 3304 ** Apart from that, we have little to go on besides intuition as to 3305 ** how aiRowEst[] should be initialized. The numbers generated here 3306 ** are based on typical values found in actual indices. 3307 */ 3308 void sqlite3DefaultRowEst(Index *pIdx){ 3309 /* 10, 9, 8, 7, 6 */ 3310 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3311 LogEst *a = pIdx->aiRowLogEst; 3312 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3313 int i; 3314 3315 /* Set the first entry (number of rows in the index) to the estimated 3316 ** number of rows in the table. Or 10, if the estimated number of rows 3317 ** in the table is less than that. */ 3318 a[0] = pIdx->pTable->nRowLogEst; 3319 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3320 3321 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3322 ** 6 and each subsequent value (if any) is 5. */ 3323 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3324 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3325 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3326 } 3327 3328 assert( 0==sqlite3LogEst(1) ); 3329 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3330 } 3331 3332 /* 3333 ** This routine will drop an existing named index. This routine 3334 ** implements the DROP INDEX statement. 3335 */ 3336 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3337 Index *pIndex; 3338 Vdbe *v; 3339 sqlite3 *db = pParse->db; 3340 int iDb; 3341 3342 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3343 if( db->mallocFailed ){ 3344 goto exit_drop_index; 3345 } 3346 assert( pName->nSrc==1 ); 3347 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3348 goto exit_drop_index; 3349 } 3350 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3351 if( pIndex==0 ){ 3352 if( !ifExists ){ 3353 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3354 }else{ 3355 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3356 } 3357 pParse->checkSchema = 1; 3358 goto exit_drop_index; 3359 } 3360 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3361 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3362 "or PRIMARY KEY constraint cannot be dropped", 0); 3363 goto exit_drop_index; 3364 } 3365 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3366 #ifndef SQLITE_OMIT_AUTHORIZATION 3367 { 3368 int code = SQLITE_DROP_INDEX; 3369 Table *pTab = pIndex->pTable; 3370 const char *zDb = db->aDb[iDb].zName; 3371 const char *zTab = SCHEMA_TABLE(iDb); 3372 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3373 goto exit_drop_index; 3374 } 3375 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3376 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3377 goto exit_drop_index; 3378 } 3379 } 3380 #endif 3381 3382 /* Generate code to remove the index and from the master table */ 3383 v = sqlite3GetVdbe(pParse); 3384 if( v ){ 3385 sqlite3BeginWriteOperation(pParse, 1, iDb); 3386 sqlite3NestedParse(pParse, 3387 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3388 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3389 ); 3390 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3391 sqlite3ChangeCookie(pParse, iDb); 3392 destroyRootPage(pParse, pIndex->tnum, iDb); 3393 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3394 } 3395 3396 exit_drop_index: 3397 sqlite3SrcListDelete(db, pName); 3398 } 3399 3400 /* 3401 ** pArray is a pointer to an array of objects. Each object in the 3402 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3403 ** to extend the array so that there is space for a new object at the end. 3404 ** 3405 ** When this function is called, *pnEntry contains the current size of 3406 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3407 ** in total). 3408 ** 3409 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3410 ** space allocated for the new object is zeroed, *pnEntry updated to 3411 ** reflect the new size of the array and a pointer to the new allocation 3412 ** returned. *pIdx is set to the index of the new array entry in this case. 3413 ** 3414 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3415 ** unchanged and a copy of pArray returned. 3416 */ 3417 void *sqlite3ArrayAllocate( 3418 sqlite3 *db, /* Connection to notify of malloc failures */ 3419 void *pArray, /* Array of objects. Might be reallocated */ 3420 int szEntry, /* Size of each object in the array */ 3421 int *pnEntry, /* Number of objects currently in use */ 3422 int *pIdx /* Write the index of a new slot here */ 3423 ){ 3424 char *z; 3425 int n = *pnEntry; 3426 if( (n & (n-1))==0 ){ 3427 int sz = (n==0) ? 1 : 2*n; 3428 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3429 if( pNew==0 ){ 3430 *pIdx = -1; 3431 return pArray; 3432 } 3433 pArray = pNew; 3434 } 3435 z = (char*)pArray; 3436 memset(&z[n * szEntry], 0, szEntry); 3437 *pIdx = n; 3438 ++*pnEntry; 3439 return pArray; 3440 } 3441 3442 /* 3443 ** Append a new element to the given IdList. Create a new IdList if 3444 ** need be. 3445 ** 3446 ** A new IdList is returned, or NULL if malloc() fails. 3447 */ 3448 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3449 int i; 3450 if( pList==0 ){ 3451 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3452 if( pList==0 ) return 0; 3453 } 3454 pList->a = sqlite3ArrayAllocate( 3455 db, 3456 pList->a, 3457 sizeof(pList->a[0]), 3458 &pList->nId, 3459 &i 3460 ); 3461 if( i<0 ){ 3462 sqlite3IdListDelete(db, pList); 3463 return 0; 3464 } 3465 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3466 return pList; 3467 } 3468 3469 /* 3470 ** Delete an IdList. 3471 */ 3472 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3473 int i; 3474 if( pList==0 ) return; 3475 for(i=0; i<pList->nId; i++){ 3476 sqlite3DbFree(db, pList->a[i].zName); 3477 } 3478 sqlite3DbFree(db, pList->a); 3479 sqlite3DbFree(db, pList); 3480 } 3481 3482 /* 3483 ** Return the index in pList of the identifier named zId. Return -1 3484 ** if not found. 3485 */ 3486 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3487 int i; 3488 if( pList==0 ) return -1; 3489 for(i=0; i<pList->nId; i++){ 3490 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3491 } 3492 return -1; 3493 } 3494 3495 /* 3496 ** Expand the space allocated for the given SrcList object by 3497 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3498 ** New slots are zeroed. 3499 ** 3500 ** For example, suppose a SrcList initially contains two entries: A,B. 3501 ** To append 3 new entries onto the end, do this: 3502 ** 3503 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3504 ** 3505 ** After the call above it would contain: A, B, nil, nil, nil. 3506 ** If the iStart argument had been 1 instead of 2, then the result 3507 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3508 ** the iStart value would be 0. The result then would 3509 ** be: nil, nil, nil, A, B. 3510 ** 3511 ** If a memory allocation fails the SrcList is unchanged. The 3512 ** db->mallocFailed flag will be set to true. 3513 */ 3514 SrcList *sqlite3SrcListEnlarge( 3515 sqlite3 *db, /* Database connection to notify of OOM errors */ 3516 SrcList *pSrc, /* The SrcList to be enlarged */ 3517 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3518 int iStart /* Index in pSrc->a[] of first new slot */ 3519 ){ 3520 int i; 3521 3522 /* Sanity checking on calling parameters */ 3523 assert( iStart>=0 ); 3524 assert( nExtra>=1 ); 3525 assert( pSrc!=0 ); 3526 assert( iStart<=pSrc->nSrc ); 3527 3528 /* Allocate additional space if needed */ 3529 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3530 SrcList *pNew; 3531 int nAlloc = pSrc->nSrc+nExtra; 3532 int nGot; 3533 pNew = sqlite3DbRealloc(db, pSrc, 3534 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3535 if( pNew==0 ){ 3536 assert( db->mallocFailed ); 3537 return pSrc; 3538 } 3539 pSrc = pNew; 3540 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3541 pSrc->nAlloc = nGot; 3542 } 3543 3544 /* Move existing slots that come after the newly inserted slots 3545 ** out of the way */ 3546 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3547 pSrc->a[i+nExtra] = pSrc->a[i]; 3548 } 3549 pSrc->nSrc += nExtra; 3550 3551 /* Zero the newly allocated slots */ 3552 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3553 for(i=iStart; i<iStart+nExtra; i++){ 3554 pSrc->a[i].iCursor = -1; 3555 } 3556 3557 /* Return a pointer to the enlarged SrcList */ 3558 return pSrc; 3559 } 3560 3561 3562 /* 3563 ** Append a new table name to the given SrcList. Create a new SrcList if 3564 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3565 ** 3566 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3567 ** SrcList might be the same as the SrcList that was input or it might be 3568 ** a new one. If an OOM error does occurs, then the prior value of pList 3569 ** that is input to this routine is automatically freed. 3570 ** 3571 ** If pDatabase is not null, it means that the table has an optional 3572 ** database name prefix. Like this: "database.table". The pDatabase 3573 ** points to the table name and the pTable points to the database name. 3574 ** The SrcList.a[].zName field is filled with the table name which might 3575 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3576 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3577 ** or with NULL if no database is specified. 3578 ** 3579 ** In other words, if call like this: 3580 ** 3581 ** sqlite3SrcListAppend(D,A,B,0); 3582 ** 3583 ** Then B is a table name and the database name is unspecified. If called 3584 ** like this: 3585 ** 3586 ** sqlite3SrcListAppend(D,A,B,C); 3587 ** 3588 ** Then C is the table name and B is the database name. If C is defined 3589 ** then so is B. In other words, we never have a case where: 3590 ** 3591 ** sqlite3SrcListAppend(D,A,0,C); 3592 ** 3593 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3594 ** before being added to the SrcList. 3595 */ 3596 SrcList *sqlite3SrcListAppend( 3597 sqlite3 *db, /* Connection to notify of malloc failures */ 3598 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3599 Token *pTable, /* Table to append */ 3600 Token *pDatabase /* Database of the table */ 3601 ){ 3602 struct SrcList_item *pItem; 3603 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3604 if( pList==0 ){ 3605 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3606 if( pList==0 ) return 0; 3607 pList->nAlloc = 1; 3608 } 3609 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3610 if( db->mallocFailed ){ 3611 sqlite3SrcListDelete(db, pList); 3612 return 0; 3613 } 3614 pItem = &pList->a[pList->nSrc-1]; 3615 if( pDatabase && pDatabase->z==0 ){ 3616 pDatabase = 0; 3617 } 3618 if( pDatabase ){ 3619 Token *pTemp = pDatabase; 3620 pDatabase = pTable; 3621 pTable = pTemp; 3622 } 3623 pItem->zName = sqlite3NameFromToken(db, pTable); 3624 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3625 return pList; 3626 } 3627 3628 /* 3629 ** Assign VdbeCursor index numbers to all tables in a SrcList 3630 */ 3631 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3632 int i; 3633 struct SrcList_item *pItem; 3634 assert(pList || pParse->db->mallocFailed ); 3635 if( pList ){ 3636 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3637 if( pItem->iCursor>=0 ) break; 3638 pItem->iCursor = pParse->nTab++; 3639 if( pItem->pSelect ){ 3640 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3641 } 3642 } 3643 } 3644 } 3645 3646 /* 3647 ** Delete an entire SrcList including all its substructure. 3648 */ 3649 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3650 int i; 3651 struct SrcList_item *pItem; 3652 if( pList==0 ) return; 3653 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3654 sqlite3DbFree(db, pItem->zDatabase); 3655 sqlite3DbFree(db, pItem->zName); 3656 sqlite3DbFree(db, pItem->zAlias); 3657 sqlite3DbFree(db, pItem->zIndex); 3658 sqlite3DeleteTable(db, pItem->pTab); 3659 sqlite3SelectDelete(db, pItem->pSelect); 3660 sqlite3ExprDelete(db, pItem->pOn); 3661 sqlite3IdListDelete(db, pItem->pUsing); 3662 } 3663 sqlite3DbFree(db, pList); 3664 } 3665 3666 /* 3667 ** This routine is called by the parser to add a new term to the 3668 ** end of a growing FROM clause. The "p" parameter is the part of 3669 ** the FROM clause that has already been constructed. "p" is NULL 3670 ** if this is the first term of the FROM clause. pTable and pDatabase 3671 ** are the name of the table and database named in the FROM clause term. 3672 ** pDatabase is NULL if the database name qualifier is missing - the 3673 ** usual case. If the term has an alias, then pAlias points to the 3674 ** alias token. If the term is a subquery, then pSubquery is the 3675 ** SELECT statement that the subquery encodes. The pTable and 3676 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3677 ** parameters are the content of the ON and USING clauses. 3678 ** 3679 ** Return a new SrcList which encodes is the FROM with the new 3680 ** term added. 3681 */ 3682 SrcList *sqlite3SrcListAppendFromTerm( 3683 Parse *pParse, /* Parsing context */ 3684 SrcList *p, /* The left part of the FROM clause already seen */ 3685 Token *pTable, /* Name of the table to add to the FROM clause */ 3686 Token *pDatabase, /* Name of the database containing pTable */ 3687 Token *pAlias, /* The right-hand side of the AS subexpression */ 3688 Select *pSubquery, /* A subquery used in place of a table name */ 3689 Expr *pOn, /* The ON clause of a join */ 3690 IdList *pUsing /* The USING clause of a join */ 3691 ){ 3692 struct SrcList_item *pItem; 3693 sqlite3 *db = pParse->db; 3694 if( !p && (pOn || pUsing) ){ 3695 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3696 (pOn ? "ON" : "USING") 3697 ); 3698 goto append_from_error; 3699 } 3700 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3701 if( p==0 || NEVER(p->nSrc==0) ){ 3702 goto append_from_error; 3703 } 3704 pItem = &p->a[p->nSrc-1]; 3705 assert( pAlias!=0 ); 3706 if( pAlias->n ){ 3707 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3708 } 3709 pItem->pSelect = pSubquery; 3710 pItem->pOn = pOn; 3711 pItem->pUsing = pUsing; 3712 return p; 3713 3714 append_from_error: 3715 assert( p==0 ); 3716 sqlite3ExprDelete(db, pOn); 3717 sqlite3IdListDelete(db, pUsing); 3718 sqlite3SelectDelete(db, pSubquery); 3719 return 0; 3720 } 3721 3722 /* 3723 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3724 ** element of the source-list passed as the second argument. 3725 */ 3726 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3727 assert( pIndexedBy!=0 ); 3728 if( p && ALWAYS(p->nSrc>0) ){ 3729 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3730 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3731 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3732 /* A "NOT INDEXED" clause was supplied. See parse.y 3733 ** construct "indexed_opt" for details. */ 3734 pItem->notIndexed = 1; 3735 }else{ 3736 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3737 } 3738 } 3739 } 3740 3741 /* 3742 ** When building up a FROM clause in the parser, the join operator 3743 ** is initially attached to the left operand. But the code generator 3744 ** expects the join operator to be on the right operand. This routine 3745 ** Shifts all join operators from left to right for an entire FROM 3746 ** clause. 3747 ** 3748 ** Example: Suppose the join is like this: 3749 ** 3750 ** A natural cross join B 3751 ** 3752 ** The operator is "natural cross join". The A and B operands are stored 3753 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3754 ** operator with A. This routine shifts that operator over to B. 3755 */ 3756 void sqlite3SrcListShiftJoinType(SrcList *p){ 3757 if( p ){ 3758 int i; 3759 assert( p->a || p->nSrc==0 ); 3760 for(i=p->nSrc-1; i>0; i--){ 3761 p->a[i].jointype = p->a[i-1].jointype; 3762 } 3763 p->a[0].jointype = 0; 3764 } 3765 } 3766 3767 /* 3768 ** Begin a transaction 3769 */ 3770 void sqlite3BeginTransaction(Parse *pParse, int type){ 3771 sqlite3 *db; 3772 Vdbe *v; 3773 int i; 3774 3775 assert( pParse!=0 ); 3776 db = pParse->db; 3777 assert( db!=0 ); 3778 /* if( db->aDb[0].pBt==0 ) return; */ 3779 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3780 return; 3781 } 3782 v = sqlite3GetVdbe(pParse); 3783 if( !v ) return; 3784 if( type!=TK_DEFERRED ){ 3785 for(i=0; i<db->nDb; i++){ 3786 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3787 sqlite3VdbeUsesBtree(v, i); 3788 } 3789 } 3790 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3791 } 3792 3793 /* 3794 ** Commit a transaction 3795 */ 3796 void sqlite3CommitTransaction(Parse *pParse){ 3797 Vdbe *v; 3798 3799 assert( pParse!=0 ); 3800 assert( pParse->db!=0 ); 3801 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3802 return; 3803 } 3804 v = sqlite3GetVdbe(pParse); 3805 if( v ){ 3806 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3807 } 3808 } 3809 3810 /* 3811 ** Rollback a transaction 3812 */ 3813 void sqlite3RollbackTransaction(Parse *pParse){ 3814 Vdbe *v; 3815 3816 assert( pParse!=0 ); 3817 assert( pParse->db!=0 ); 3818 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3819 return; 3820 } 3821 v = sqlite3GetVdbe(pParse); 3822 if( v ){ 3823 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3824 } 3825 } 3826 3827 /* 3828 ** This function is called by the parser when it parses a command to create, 3829 ** release or rollback an SQL savepoint. 3830 */ 3831 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3832 char *zName = sqlite3NameFromToken(pParse->db, pName); 3833 if( zName ){ 3834 Vdbe *v = sqlite3GetVdbe(pParse); 3835 #ifndef SQLITE_OMIT_AUTHORIZATION 3836 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3837 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3838 #endif 3839 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3840 sqlite3DbFree(pParse->db, zName); 3841 return; 3842 } 3843 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3844 } 3845 } 3846 3847 /* 3848 ** Make sure the TEMP database is open and available for use. Return 3849 ** the number of errors. Leave any error messages in the pParse structure. 3850 */ 3851 int sqlite3OpenTempDatabase(Parse *pParse){ 3852 sqlite3 *db = pParse->db; 3853 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3854 int rc; 3855 Btree *pBt; 3856 static const int flags = 3857 SQLITE_OPEN_READWRITE | 3858 SQLITE_OPEN_CREATE | 3859 SQLITE_OPEN_EXCLUSIVE | 3860 SQLITE_OPEN_DELETEONCLOSE | 3861 SQLITE_OPEN_TEMP_DB; 3862 3863 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3864 if( rc!=SQLITE_OK ){ 3865 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3866 "file for storing temporary tables"); 3867 pParse->rc = rc; 3868 return 1; 3869 } 3870 db->aDb[1].pBt = pBt; 3871 assert( db->aDb[1].pSchema ); 3872 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3873 db->mallocFailed = 1; 3874 return 1; 3875 } 3876 } 3877 return 0; 3878 } 3879 3880 /* 3881 ** Record the fact that the schema cookie will need to be verified 3882 ** for database iDb. The code to actually verify the schema cookie 3883 ** will occur at the end of the top-level VDBE and will be generated 3884 ** later, by sqlite3FinishCoding(). 3885 */ 3886 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3887 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3888 sqlite3 *db = pToplevel->db; 3889 3890 assert( iDb>=0 && iDb<db->nDb ); 3891 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3892 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3893 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3894 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3895 DbMaskSet(pToplevel->cookieMask, iDb); 3896 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3897 if( !OMIT_TEMPDB && iDb==1 ){ 3898 sqlite3OpenTempDatabase(pToplevel); 3899 } 3900 } 3901 } 3902 3903 /* 3904 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3905 ** attached database. Otherwise, invoke it for the database named zDb only. 3906 */ 3907 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3908 sqlite3 *db = pParse->db; 3909 int i; 3910 for(i=0; i<db->nDb; i++){ 3911 Db *pDb = &db->aDb[i]; 3912 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3913 sqlite3CodeVerifySchema(pParse, i); 3914 } 3915 } 3916 } 3917 3918 /* 3919 ** Generate VDBE code that prepares for doing an operation that 3920 ** might change the database. 3921 ** 3922 ** This routine starts a new transaction if we are not already within 3923 ** a transaction. If we are already within a transaction, then a checkpoint 3924 ** is set if the setStatement parameter is true. A checkpoint should 3925 ** be set for operations that might fail (due to a constraint) part of 3926 ** the way through and which will need to undo some writes without having to 3927 ** rollback the whole transaction. For operations where all constraints 3928 ** can be checked before any changes are made to the database, it is never 3929 ** necessary to undo a write and the checkpoint should not be set. 3930 */ 3931 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3932 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3933 sqlite3CodeVerifySchema(pParse, iDb); 3934 DbMaskSet(pToplevel->writeMask, iDb); 3935 pToplevel->isMultiWrite |= setStatement; 3936 } 3937 3938 /* 3939 ** Indicate that the statement currently under construction might write 3940 ** more than one entry (example: deleting one row then inserting another, 3941 ** inserting multiple rows in a table, or inserting a row and index entries.) 3942 ** If an abort occurs after some of these writes have completed, then it will 3943 ** be necessary to undo the completed writes. 3944 */ 3945 void sqlite3MultiWrite(Parse *pParse){ 3946 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3947 pToplevel->isMultiWrite = 1; 3948 } 3949 3950 /* 3951 ** The code generator calls this routine if is discovers that it is 3952 ** possible to abort a statement prior to completion. In order to 3953 ** perform this abort without corrupting the database, we need to make 3954 ** sure that the statement is protected by a statement transaction. 3955 ** 3956 ** Technically, we only need to set the mayAbort flag if the 3957 ** isMultiWrite flag was previously set. There is a time dependency 3958 ** such that the abort must occur after the multiwrite. This makes 3959 ** some statements involving the REPLACE conflict resolution algorithm 3960 ** go a little faster. But taking advantage of this time dependency 3961 ** makes it more difficult to prove that the code is correct (in 3962 ** particular, it prevents us from writing an effective 3963 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3964 ** to take the safe route and skip the optimization. 3965 */ 3966 void sqlite3MayAbort(Parse *pParse){ 3967 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3968 pToplevel->mayAbort = 1; 3969 } 3970 3971 /* 3972 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3973 ** error. The onError parameter determines which (if any) of the statement 3974 ** and/or current transaction is rolled back. 3975 */ 3976 void sqlite3HaltConstraint( 3977 Parse *pParse, /* Parsing context */ 3978 int errCode, /* extended error code */ 3979 int onError, /* Constraint type */ 3980 char *p4, /* Error message */ 3981 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 3982 u8 p5Errmsg /* P5_ErrMsg type */ 3983 ){ 3984 Vdbe *v = sqlite3GetVdbe(pParse); 3985 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3986 if( onError==OE_Abort ){ 3987 sqlite3MayAbort(pParse); 3988 } 3989 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3990 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 3991 } 3992 3993 /* 3994 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 3995 */ 3996 void sqlite3UniqueConstraint( 3997 Parse *pParse, /* Parsing context */ 3998 int onError, /* Constraint type */ 3999 Index *pIdx /* The index that triggers the constraint */ 4000 ){ 4001 char *zErr; 4002 int j; 4003 StrAccum errMsg; 4004 Table *pTab = pIdx->pTable; 4005 4006 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 4007 errMsg.db = pParse->db; 4008 for(j=0; j<pIdx->nKeyCol; j++){ 4009 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4010 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4011 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4012 sqlite3StrAccumAppend(&errMsg, ".", 1); 4013 sqlite3StrAccumAppendAll(&errMsg, zCol); 4014 } 4015 zErr = sqlite3StrAccumFinish(&errMsg); 4016 sqlite3HaltConstraint(pParse, 4017 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4018 : SQLITE_CONSTRAINT_UNIQUE, 4019 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4020 } 4021 4022 4023 /* 4024 ** Code an OP_Halt due to non-unique rowid. 4025 */ 4026 void sqlite3RowidConstraint( 4027 Parse *pParse, /* Parsing context */ 4028 int onError, /* Conflict resolution algorithm */ 4029 Table *pTab /* The table with the non-unique rowid */ 4030 ){ 4031 char *zMsg; 4032 int rc; 4033 if( pTab->iPKey>=0 ){ 4034 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4035 pTab->aCol[pTab->iPKey].zName); 4036 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4037 }else{ 4038 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4039 rc = SQLITE_CONSTRAINT_ROWID; 4040 } 4041 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4042 P5_ConstraintUnique); 4043 } 4044 4045 /* 4046 ** Check to see if pIndex uses the collating sequence pColl. Return 4047 ** true if it does and false if it does not. 4048 */ 4049 #ifndef SQLITE_OMIT_REINDEX 4050 static int collationMatch(const char *zColl, Index *pIndex){ 4051 int i; 4052 assert( zColl!=0 ); 4053 for(i=0; i<pIndex->nColumn; i++){ 4054 const char *z = pIndex->azColl[i]; 4055 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4056 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4057 return 1; 4058 } 4059 } 4060 return 0; 4061 } 4062 #endif 4063 4064 /* 4065 ** Recompute all indices of pTab that use the collating sequence pColl. 4066 ** If pColl==0 then recompute all indices of pTab. 4067 */ 4068 #ifndef SQLITE_OMIT_REINDEX 4069 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4070 Index *pIndex; /* An index associated with pTab */ 4071 4072 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4073 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4074 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4075 sqlite3BeginWriteOperation(pParse, 0, iDb); 4076 sqlite3RefillIndex(pParse, pIndex, -1); 4077 } 4078 } 4079 } 4080 #endif 4081 4082 /* 4083 ** Recompute all indices of all tables in all databases where the 4084 ** indices use the collating sequence pColl. If pColl==0 then recompute 4085 ** all indices everywhere. 4086 */ 4087 #ifndef SQLITE_OMIT_REINDEX 4088 static void reindexDatabases(Parse *pParse, char const *zColl){ 4089 Db *pDb; /* A single database */ 4090 int iDb; /* The database index number */ 4091 sqlite3 *db = pParse->db; /* The database connection */ 4092 HashElem *k; /* For looping over tables in pDb */ 4093 Table *pTab; /* A table in the database */ 4094 4095 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4096 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4097 assert( pDb!=0 ); 4098 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4099 pTab = (Table*)sqliteHashData(k); 4100 reindexTable(pParse, pTab, zColl); 4101 } 4102 } 4103 } 4104 #endif 4105 4106 /* 4107 ** Generate code for the REINDEX command. 4108 ** 4109 ** REINDEX -- 1 4110 ** REINDEX <collation> -- 2 4111 ** REINDEX ?<database>.?<tablename> -- 3 4112 ** REINDEX ?<database>.?<indexname> -- 4 4113 ** 4114 ** Form 1 causes all indices in all attached databases to be rebuilt. 4115 ** Form 2 rebuilds all indices in all databases that use the named 4116 ** collating function. Forms 3 and 4 rebuild the named index or all 4117 ** indices associated with the named table. 4118 */ 4119 #ifndef SQLITE_OMIT_REINDEX 4120 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4121 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4122 char *z; /* Name of a table or index */ 4123 const char *zDb; /* Name of the database */ 4124 Table *pTab; /* A table in the database */ 4125 Index *pIndex; /* An index associated with pTab */ 4126 int iDb; /* The database index number */ 4127 sqlite3 *db = pParse->db; /* The database connection */ 4128 Token *pObjName; /* Name of the table or index to be reindexed */ 4129 4130 /* Read the database schema. If an error occurs, leave an error message 4131 ** and code in pParse and return NULL. */ 4132 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4133 return; 4134 } 4135 4136 if( pName1==0 ){ 4137 reindexDatabases(pParse, 0); 4138 return; 4139 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4140 char *zColl; 4141 assert( pName1->z ); 4142 zColl = sqlite3NameFromToken(pParse->db, pName1); 4143 if( !zColl ) return; 4144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4145 if( pColl ){ 4146 reindexDatabases(pParse, zColl); 4147 sqlite3DbFree(db, zColl); 4148 return; 4149 } 4150 sqlite3DbFree(db, zColl); 4151 } 4152 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4153 if( iDb<0 ) return; 4154 z = sqlite3NameFromToken(db, pObjName); 4155 if( z==0 ) return; 4156 zDb = db->aDb[iDb].zName; 4157 pTab = sqlite3FindTable(db, z, zDb); 4158 if( pTab ){ 4159 reindexTable(pParse, pTab, 0); 4160 sqlite3DbFree(db, z); 4161 return; 4162 } 4163 pIndex = sqlite3FindIndex(db, z, zDb); 4164 sqlite3DbFree(db, z); 4165 if( pIndex ){ 4166 sqlite3BeginWriteOperation(pParse, 0, iDb); 4167 sqlite3RefillIndex(pParse, pIndex, -1); 4168 return; 4169 } 4170 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4171 } 4172 #endif 4173 4174 /* 4175 ** Return a KeyInfo structure that is appropriate for the given Index. 4176 ** 4177 ** The KeyInfo structure for an index is cached in the Index object. 4178 ** So there might be multiple references to the returned pointer. The 4179 ** caller should not try to modify the KeyInfo object. 4180 ** 4181 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4182 ** when it has finished using it. 4183 */ 4184 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4185 if( pParse->nErr ) return 0; 4186 #ifndef SQLITE_OMIT_SHARED_CACHE 4187 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ 4188 sqlite3KeyInfoUnref(pIdx->pKeyInfo); 4189 pIdx->pKeyInfo = 0; 4190 } 4191 #endif 4192 if( pIdx->pKeyInfo==0 ){ 4193 int i; 4194 int nCol = pIdx->nColumn; 4195 int nKey = pIdx->nKeyCol; 4196 KeyInfo *pKey; 4197 if( pIdx->uniqNotNull ){ 4198 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4199 }else{ 4200 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4201 } 4202 if( pKey ){ 4203 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4204 for(i=0; i<nCol; i++){ 4205 char *zColl = pIdx->azColl[i]; 4206 assert( zColl!=0 ); 4207 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4208 sqlite3LocateCollSeq(pParse, zColl); 4209 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4210 } 4211 if( pParse->nErr ){ 4212 sqlite3KeyInfoUnref(pKey); 4213 }else{ 4214 pIdx->pKeyInfo = pKey; 4215 } 4216 } 4217 } 4218 return sqlite3KeyInfoRef(pIdx->pKeyInfo); 4219 } 4220 4221 #ifndef SQLITE_OMIT_CTE 4222 /* 4223 ** This routine is invoked once per CTE by the parser while parsing a 4224 ** WITH clause. 4225 */ 4226 With *sqlite3WithAdd( 4227 Parse *pParse, /* Parsing context */ 4228 With *pWith, /* Existing WITH clause, or NULL */ 4229 Token *pName, /* Name of the common-table */ 4230 ExprList *pArglist, /* Optional column name list for the table */ 4231 Select *pQuery /* Query used to initialize the table */ 4232 ){ 4233 sqlite3 *db = pParse->db; 4234 With *pNew; 4235 char *zName; 4236 4237 /* Check that the CTE name is unique within this WITH clause. If 4238 ** not, store an error in the Parse structure. */ 4239 zName = sqlite3NameFromToken(pParse->db, pName); 4240 if( zName && pWith ){ 4241 int i; 4242 for(i=0; i<pWith->nCte; i++){ 4243 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4244 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4245 } 4246 } 4247 } 4248 4249 if( pWith ){ 4250 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4251 pNew = sqlite3DbRealloc(db, pWith, nByte); 4252 }else{ 4253 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4254 } 4255 assert( zName!=0 || pNew==0 ); 4256 assert( db->mallocFailed==0 || pNew==0 ); 4257 4258 if( pNew==0 ){ 4259 sqlite3ExprListDelete(db, pArglist); 4260 sqlite3SelectDelete(db, pQuery); 4261 sqlite3DbFree(db, zName); 4262 pNew = pWith; 4263 }else{ 4264 pNew->a[pNew->nCte].pSelect = pQuery; 4265 pNew->a[pNew->nCte].pCols = pArglist; 4266 pNew->a[pNew->nCte].zName = zName; 4267 pNew->a[pNew->nCte].zErr = 0; 4268 pNew->nCte++; 4269 } 4270 4271 return pNew; 4272 } 4273 4274 /* 4275 ** Free the contents of the With object passed as the second argument. 4276 */ 4277 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4278 if( pWith ){ 4279 int i; 4280 for(i=0; i<pWith->nCte; i++){ 4281 struct Cte *pCte = &pWith->a[i]; 4282 sqlite3ExprListDelete(db, pCte->pCols); 4283 sqlite3SelectDelete(db, pCte->pSelect); 4284 sqlite3DbFree(db, pCte->zName); 4285 } 4286 sqlite3DbFree(db, pWith); 4287 } 4288 } 4289 #endif /* !defined(SQLITE_OMIT_CTE) */ 4290