1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 if( pParse->nested ) return; 147 if( db->mallocFailed || pParse->nErr ){ 148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 149 return; 150 } 151 152 /* Begin by generating some termination code at the end of the 153 ** vdbe program 154 */ 155 v = pParse->pVdbe; 156 if( v==0 ){ 157 if( db->init.busy ){ 158 pParse->rc = SQLITE_DONE; 159 return; 160 } 161 v = sqlite3GetVdbe(pParse); 162 if( v==0 ) pParse->rc = SQLITE_ERROR; 163 } 164 assert( !pParse->isMultiWrite 165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 166 if( v ){ 167 if( pParse->bReturning ){ 168 Returning *pReturning = pParse->u1.pReturning; 169 int addrRewind; 170 int i; 171 int reg; 172 173 addrRewind = 174 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 175 VdbeCoverage(v); 176 reg = pReturning->iRetReg; 177 for(i=0; i<pReturning->nRetCol; i++){ 178 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 179 } 180 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 181 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 182 VdbeCoverage(v); 183 sqlite3VdbeJumpHere(v, addrRewind); 184 } 185 sqlite3VdbeAddOp0(v, OP_Halt); 186 187 #if SQLITE_USER_AUTHENTICATION 188 if( pParse->nTableLock>0 && db->init.busy==0 ){ 189 sqlite3UserAuthInit(db); 190 if( db->auth.authLevel<UAUTH_User ){ 191 sqlite3ErrorMsg(pParse, "user not authenticated"); 192 pParse->rc = SQLITE_AUTH_USER; 193 return; 194 } 195 } 196 #endif 197 198 /* The cookie mask contains one bit for each database file open. 199 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 200 ** set for each database that is used. Generate code to start a 201 ** transaction on each used database and to verify the schema cookie 202 ** on each used database. 203 */ 204 if( db->mallocFailed==0 205 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 206 ){ 207 int iDb, i; 208 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 209 sqlite3VdbeJumpHere(v, 0); 210 for(iDb=0; iDb<db->nDb; iDb++){ 211 Schema *pSchema; 212 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 213 sqlite3VdbeUsesBtree(v, iDb); 214 pSchema = db->aDb[iDb].pSchema; 215 sqlite3VdbeAddOp4Int(v, 216 OP_Transaction, /* Opcode */ 217 iDb, /* P1 */ 218 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 219 pSchema->schema_cookie, /* P3 */ 220 pSchema->iGeneration /* P4 */ 221 ); 222 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 223 VdbeComment((v, 224 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 225 } 226 #ifndef SQLITE_OMIT_VIRTUALTABLE 227 for(i=0; i<pParse->nVtabLock; i++){ 228 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 229 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 230 } 231 pParse->nVtabLock = 0; 232 #endif 233 234 /* Once all the cookies have been verified and transactions opened, 235 ** obtain the required table-locks. This is a no-op unless the 236 ** shared-cache feature is enabled. 237 */ 238 codeTableLocks(pParse); 239 240 /* Initialize any AUTOINCREMENT data structures required. 241 */ 242 sqlite3AutoincrementBegin(pParse); 243 244 /* Code constant expressions that where factored out of inner loops. 245 ** 246 ** The pConstExpr list might also contain expressions that we simply 247 ** want to keep around until the Parse object is deleted. Such 248 ** expressions have iConstExprReg==0. Do not generate code for 249 ** those expressions, of course. 250 */ 251 if( pParse->pConstExpr ){ 252 ExprList *pEL = pParse->pConstExpr; 253 pParse->okConstFactor = 0; 254 for(i=0; i<pEL->nExpr; i++){ 255 int iReg = pEL->a[i].u.iConstExprReg; 256 if( iReg>0 ){ 257 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 258 } 259 } 260 } 261 262 if( pParse->bReturning ){ 263 Returning *pRet = pParse->u1.pReturning; 264 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 265 } 266 267 /* Finally, jump back to the beginning of the executable code. */ 268 sqlite3VdbeGoto(v, 1); 269 } 270 } 271 272 /* Get the VDBE program ready for execution 273 */ 274 if( v && pParse->nErr==0 && !db->mallocFailed ){ 275 /* A minimum of one cursor is required if autoincrement is used 276 * See ticket [a696379c1f08866] */ 277 assert( pParse->pAinc==0 || pParse->nTab>0 ); 278 sqlite3VdbeMakeReady(v, pParse); 279 pParse->rc = SQLITE_DONE; 280 }else{ 281 pParse->rc = SQLITE_ERROR; 282 } 283 } 284 285 /* 286 ** Run the parser and code generator recursively in order to generate 287 ** code for the SQL statement given onto the end of the pParse context 288 ** currently under construction. When the parser is run recursively 289 ** this way, the final OP_Halt is not appended and other initialization 290 ** and finalization steps are omitted because those are handling by the 291 ** outermost parser. 292 ** 293 ** Not everything is nestable. This facility is designed to permit 294 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 295 ** care if you decide to try to use this routine for some other purposes. 296 */ 297 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 298 va_list ap; 299 char *zSql; 300 char *zErrMsg = 0; 301 sqlite3 *db = pParse->db; 302 char saveBuf[PARSE_TAIL_SZ]; 303 304 if( pParse->nErr ) return; 305 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 306 va_start(ap, zFormat); 307 zSql = sqlite3VMPrintf(db, zFormat, ap); 308 va_end(ap); 309 if( zSql==0 ){ 310 /* This can result either from an OOM or because the formatted string 311 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 312 ** an error */ 313 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 314 pParse->nErr++; 315 return; 316 } 317 pParse->nested++; 318 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 319 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 320 sqlite3RunParser(pParse, zSql, &zErrMsg); 321 sqlite3DbFree(db, zErrMsg); 322 sqlite3DbFree(db, zSql); 323 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 324 pParse->nested--; 325 } 326 327 #if SQLITE_USER_AUTHENTICATION 328 /* 329 ** Return TRUE if zTable is the name of the system table that stores the 330 ** list of users and their access credentials. 331 */ 332 int sqlite3UserAuthTable(const char *zTable){ 333 return sqlite3_stricmp(zTable, "sqlite_user")==0; 334 } 335 #endif 336 337 /* 338 ** Locate the in-memory structure that describes a particular database 339 ** table given the name of that table and (optionally) the name of the 340 ** database containing the table. Return NULL if not found. 341 ** 342 ** If zDatabase is 0, all databases are searched for the table and the 343 ** first matching table is returned. (No checking for duplicate table 344 ** names is done.) The search order is TEMP first, then MAIN, then any 345 ** auxiliary databases added using the ATTACH command. 346 ** 347 ** See also sqlite3LocateTable(). 348 */ 349 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 350 Table *p = 0; 351 int i; 352 353 /* All mutexes are required for schema access. Make sure we hold them. */ 354 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 355 #if SQLITE_USER_AUTHENTICATION 356 /* Only the admin user is allowed to know that the sqlite_user table 357 ** exists */ 358 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 359 return 0; 360 } 361 #endif 362 if( zDatabase ){ 363 for(i=0; i<db->nDb; i++){ 364 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 365 } 366 if( i>=db->nDb ){ 367 /* No match against the official names. But always match "main" 368 ** to schema 0 as a legacy fallback. */ 369 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 370 i = 0; 371 }else{ 372 return 0; 373 } 374 } 375 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 376 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 377 if( i==1 ){ 378 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 379 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 380 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 381 ){ 382 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 383 DFLT_TEMP_SCHEMA_TABLE); 384 } 385 }else{ 386 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 387 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 388 DFLT_SCHEMA_TABLE); 389 } 390 } 391 } 392 }else{ 393 /* Match against TEMP first */ 394 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 395 if( p ) return p; 396 /* The main database is second */ 397 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 398 if( p ) return p; 399 /* Attached databases are in order of attachment */ 400 for(i=2; i<db->nDb; i++){ 401 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 402 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 403 if( p ) break; 404 } 405 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 406 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 407 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 408 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 409 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 410 DFLT_TEMP_SCHEMA_TABLE); 411 } 412 } 413 } 414 return p; 415 } 416 417 /* 418 ** Locate the in-memory structure that describes a particular database 419 ** table given the name of that table and (optionally) the name of the 420 ** database containing the table. Return NULL if not found. Also leave an 421 ** error message in pParse->zErrMsg. 422 ** 423 ** The difference between this routine and sqlite3FindTable() is that this 424 ** routine leaves an error message in pParse->zErrMsg where 425 ** sqlite3FindTable() does not. 426 */ 427 Table *sqlite3LocateTable( 428 Parse *pParse, /* context in which to report errors */ 429 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 430 const char *zName, /* Name of the table we are looking for */ 431 const char *zDbase /* Name of the database. Might be NULL */ 432 ){ 433 Table *p; 434 sqlite3 *db = pParse->db; 435 436 /* Read the database schema. If an error occurs, leave an error message 437 ** and code in pParse and return NULL. */ 438 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 439 && SQLITE_OK!=sqlite3ReadSchema(pParse) 440 ){ 441 return 0; 442 } 443 444 p = sqlite3FindTable(db, zName, zDbase); 445 if( p==0 ){ 446 #ifndef SQLITE_OMIT_VIRTUALTABLE 447 /* If zName is the not the name of a table in the schema created using 448 ** CREATE, then check to see if it is the name of an virtual table that 449 ** can be an eponymous virtual table. */ 450 if( pParse->disableVtab==0 && db->init.busy==0 ){ 451 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 452 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 453 pMod = sqlite3PragmaVtabRegister(db, zName); 454 } 455 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 456 testcase( pMod->pEpoTab==0 ); 457 return pMod->pEpoTab; 458 } 459 } 460 #endif 461 if( flags & LOCATE_NOERR ) return 0; 462 pParse->checkSchema = 1; 463 }else if( IsVirtual(p) && pParse->disableVtab ){ 464 p = 0; 465 } 466 467 if( p==0 ){ 468 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 469 if( zDbase ){ 470 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 471 }else{ 472 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 473 } 474 }else{ 475 assert( HasRowid(p) || p->iPKey<0 ); 476 } 477 478 return p; 479 } 480 481 /* 482 ** Locate the table identified by *p. 483 ** 484 ** This is a wrapper around sqlite3LocateTable(). The difference between 485 ** sqlite3LocateTable() and this function is that this function restricts 486 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 487 ** non-NULL if it is part of a view or trigger program definition. See 488 ** sqlite3FixSrcList() for details. 489 */ 490 Table *sqlite3LocateTableItem( 491 Parse *pParse, 492 u32 flags, 493 SrcItem *p 494 ){ 495 const char *zDb; 496 assert( p->pSchema==0 || p->zDatabase==0 ); 497 if( p->pSchema ){ 498 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 499 zDb = pParse->db->aDb[iDb].zDbSName; 500 }else{ 501 zDb = p->zDatabase; 502 } 503 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 504 } 505 506 /* 507 ** Locate the in-memory structure that describes 508 ** a particular index given the name of that index 509 ** and the name of the database that contains the index. 510 ** Return NULL if not found. 511 ** 512 ** If zDatabase is 0, all databases are searched for the 513 ** table and the first matching index is returned. (No checking 514 ** for duplicate index names is done.) The search order is 515 ** TEMP first, then MAIN, then any auxiliary databases added 516 ** using the ATTACH command. 517 */ 518 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 519 Index *p = 0; 520 int i; 521 /* All mutexes are required for schema access. Make sure we hold them. */ 522 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 523 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 524 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 525 Schema *pSchema = db->aDb[j].pSchema; 526 assert( pSchema ); 527 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 528 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 529 p = sqlite3HashFind(&pSchema->idxHash, zName); 530 if( p ) break; 531 } 532 return p; 533 } 534 535 /* 536 ** Reclaim the memory used by an index 537 */ 538 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 539 #ifndef SQLITE_OMIT_ANALYZE 540 sqlite3DeleteIndexSamples(db, p); 541 #endif 542 sqlite3ExprDelete(db, p->pPartIdxWhere); 543 sqlite3ExprListDelete(db, p->aColExpr); 544 sqlite3DbFree(db, p->zColAff); 545 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 546 #ifdef SQLITE_ENABLE_STAT4 547 sqlite3_free(p->aiRowEst); 548 #endif 549 sqlite3DbFree(db, p); 550 } 551 552 /* 553 ** For the index called zIdxName which is found in the database iDb, 554 ** unlike that index from its Table then remove the index from 555 ** the index hash table and free all memory structures associated 556 ** with the index. 557 */ 558 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 559 Index *pIndex; 560 Hash *pHash; 561 562 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 563 pHash = &db->aDb[iDb].pSchema->idxHash; 564 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 565 if( ALWAYS(pIndex) ){ 566 if( pIndex->pTable->pIndex==pIndex ){ 567 pIndex->pTable->pIndex = pIndex->pNext; 568 }else{ 569 Index *p; 570 /* Justification of ALWAYS(); The index must be on the list of 571 ** indices. */ 572 p = pIndex->pTable->pIndex; 573 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 574 if( ALWAYS(p && p->pNext==pIndex) ){ 575 p->pNext = pIndex->pNext; 576 } 577 } 578 sqlite3FreeIndex(db, pIndex); 579 } 580 db->mDbFlags |= DBFLAG_SchemaChange; 581 } 582 583 /* 584 ** Look through the list of open database files in db->aDb[] and if 585 ** any have been closed, remove them from the list. Reallocate the 586 ** db->aDb[] structure to a smaller size, if possible. 587 ** 588 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 589 ** are never candidates for being collapsed. 590 */ 591 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 592 int i, j; 593 for(i=j=2; i<db->nDb; i++){ 594 struct Db *pDb = &db->aDb[i]; 595 if( pDb->pBt==0 ){ 596 sqlite3DbFree(db, pDb->zDbSName); 597 pDb->zDbSName = 0; 598 continue; 599 } 600 if( j<i ){ 601 db->aDb[j] = db->aDb[i]; 602 } 603 j++; 604 } 605 db->nDb = j; 606 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 607 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 608 sqlite3DbFree(db, db->aDb); 609 db->aDb = db->aDbStatic; 610 } 611 } 612 613 /* 614 ** Reset the schema for the database at index iDb. Also reset the 615 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 616 ** Deferred resets may be run by calling with iDb<0. 617 */ 618 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 619 int i; 620 assert( iDb<db->nDb ); 621 622 if( iDb>=0 ){ 623 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 624 DbSetProperty(db, iDb, DB_ResetWanted); 625 DbSetProperty(db, 1, DB_ResetWanted); 626 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 627 } 628 629 if( db->nSchemaLock==0 ){ 630 for(i=0; i<db->nDb; i++){ 631 if( DbHasProperty(db, i, DB_ResetWanted) ){ 632 sqlite3SchemaClear(db->aDb[i].pSchema); 633 } 634 } 635 } 636 } 637 638 /* 639 ** Erase all schema information from all attached databases (including 640 ** "main" and "temp") for a single database connection. 641 */ 642 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 643 int i; 644 sqlite3BtreeEnterAll(db); 645 for(i=0; i<db->nDb; i++){ 646 Db *pDb = &db->aDb[i]; 647 if( pDb->pSchema ){ 648 if( db->nSchemaLock==0 ){ 649 sqlite3SchemaClear(pDb->pSchema); 650 }else{ 651 DbSetProperty(db, i, DB_ResetWanted); 652 } 653 } 654 } 655 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 656 sqlite3VtabUnlockList(db); 657 sqlite3BtreeLeaveAll(db); 658 if( db->nSchemaLock==0 ){ 659 sqlite3CollapseDatabaseArray(db); 660 } 661 } 662 663 /* 664 ** This routine is called when a commit occurs. 665 */ 666 void sqlite3CommitInternalChanges(sqlite3 *db){ 667 db->mDbFlags &= ~DBFLAG_SchemaChange; 668 } 669 670 /* 671 ** Delete memory allocated for the column names of a table or view (the 672 ** Table.aCol[] array). 673 */ 674 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 675 int i; 676 Column *pCol; 677 assert( pTable!=0 ); 678 if( (pCol = pTable->aCol)!=0 ){ 679 for(i=0; i<pTable->nCol; i++, pCol++){ 680 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 681 sqlite3DbFree(db, pCol->zName); 682 sqlite3ExprDelete(db, pCol->pDflt); 683 sqlite3DbFree(db, pCol->zColl); 684 } 685 sqlite3DbFree(db, pTable->aCol); 686 } 687 } 688 689 /* 690 ** Remove the memory data structures associated with the given 691 ** Table. No changes are made to disk by this routine. 692 ** 693 ** This routine just deletes the data structure. It does not unlink 694 ** the table data structure from the hash table. But it does destroy 695 ** memory structures of the indices and foreign keys associated with 696 ** the table. 697 ** 698 ** The db parameter is optional. It is needed if the Table object 699 ** contains lookaside memory. (Table objects in the schema do not use 700 ** lookaside memory, but some ephemeral Table objects do.) Or the 701 ** db parameter can be used with db->pnBytesFreed to measure the memory 702 ** used by the Table object. 703 */ 704 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 705 Index *pIndex, *pNext; 706 707 #ifdef SQLITE_DEBUG 708 /* Record the number of outstanding lookaside allocations in schema Tables 709 ** prior to doing any free() operations. Since schema Tables do not use 710 ** lookaside, this number should not change. 711 ** 712 ** If malloc has already failed, it may be that it failed while allocating 713 ** a Table object that was going to be marked ephemeral. So do not check 714 ** that no lookaside memory is used in this case either. */ 715 int nLookaside = 0; 716 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 717 nLookaside = sqlite3LookasideUsed(db, 0); 718 } 719 #endif 720 721 /* Delete all indices associated with this table. */ 722 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 723 pNext = pIndex->pNext; 724 assert( pIndex->pSchema==pTable->pSchema 725 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 726 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 727 char *zName = pIndex->zName; 728 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 729 &pIndex->pSchema->idxHash, zName, 0 730 ); 731 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 732 assert( pOld==pIndex || pOld==0 ); 733 } 734 sqlite3FreeIndex(db, pIndex); 735 } 736 737 /* Delete any foreign keys attached to this table. */ 738 sqlite3FkDelete(db, pTable); 739 740 /* Delete the Table structure itself. 741 */ 742 sqlite3DeleteColumnNames(db, pTable); 743 sqlite3DbFree(db, pTable->zName); 744 sqlite3DbFree(db, pTable->zColAff); 745 sqlite3SelectDelete(db, pTable->pSelect); 746 sqlite3ExprListDelete(db, pTable->pCheck); 747 #ifndef SQLITE_OMIT_VIRTUALTABLE 748 sqlite3VtabClear(db, pTable); 749 #endif 750 sqlite3DbFree(db, pTable); 751 752 /* Verify that no lookaside memory was used by schema tables */ 753 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 754 } 755 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 756 /* Do not delete the table until the reference count reaches zero. */ 757 if( !pTable ) return; 758 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 759 deleteTable(db, pTable); 760 } 761 762 763 /* 764 ** Unlink the given table from the hash tables and the delete the 765 ** table structure with all its indices and foreign keys. 766 */ 767 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 768 Table *p; 769 Db *pDb; 770 771 assert( db!=0 ); 772 assert( iDb>=0 && iDb<db->nDb ); 773 assert( zTabName ); 774 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 775 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 776 pDb = &db->aDb[iDb]; 777 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 778 sqlite3DeleteTable(db, p); 779 db->mDbFlags |= DBFLAG_SchemaChange; 780 } 781 782 /* 783 ** Given a token, return a string that consists of the text of that 784 ** token. Space to hold the returned string 785 ** is obtained from sqliteMalloc() and must be freed by the calling 786 ** function. 787 ** 788 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 789 ** surround the body of the token are removed. 790 ** 791 ** Tokens are often just pointers into the original SQL text and so 792 ** are not \000 terminated and are not persistent. The returned string 793 ** is \000 terminated and is persistent. 794 */ 795 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 796 char *zName; 797 if( pName ){ 798 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 799 sqlite3Dequote(zName); 800 }else{ 801 zName = 0; 802 } 803 return zName; 804 } 805 806 /* 807 ** Open the sqlite_schema table stored in database number iDb for 808 ** writing. The table is opened using cursor 0. 809 */ 810 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 811 Vdbe *v = sqlite3GetVdbe(p); 812 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 813 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 814 if( p->nTab==0 ){ 815 p->nTab = 1; 816 } 817 } 818 819 /* 820 ** Parameter zName points to a nul-terminated buffer containing the name 821 ** of a database ("main", "temp" or the name of an attached db). This 822 ** function returns the index of the named database in db->aDb[], or 823 ** -1 if the named db cannot be found. 824 */ 825 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 826 int i = -1; /* Database number */ 827 if( zName ){ 828 Db *pDb; 829 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 830 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 831 /* "main" is always an acceptable alias for the primary database 832 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 833 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 834 } 835 } 836 return i; 837 } 838 839 /* 840 ** The token *pName contains the name of a database (either "main" or 841 ** "temp" or the name of an attached db). This routine returns the 842 ** index of the named database in db->aDb[], or -1 if the named db 843 ** does not exist. 844 */ 845 int sqlite3FindDb(sqlite3 *db, Token *pName){ 846 int i; /* Database number */ 847 char *zName; /* Name we are searching for */ 848 zName = sqlite3NameFromToken(db, pName); 849 i = sqlite3FindDbName(db, zName); 850 sqlite3DbFree(db, zName); 851 return i; 852 } 853 854 /* The table or view or trigger name is passed to this routine via tokens 855 ** pName1 and pName2. If the table name was fully qualified, for example: 856 ** 857 ** CREATE TABLE xxx.yyy (...); 858 ** 859 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 860 ** the table name is not fully qualified, i.e.: 861 ** 862 ** CREATE TABLE yyy(...); 863 ** 864 ** Then pName1 is set to "yyy" and pName2 is "". 865 ** 866 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 867 ** pName2) that stores the unqualified table name. The index of the 868 ** database "xxx" is returned. 869 */ 870 int sqlite3TwoPartName( 871 Parse *pParse, /* Parsing and code generating context */ 872 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 873 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 874 Token **pUnqual /* Write the unqualified object name here */ 875 ){ 876 int iDb; /* Database holding the object */ 877 sqlite3 *db = pParse->db; 878 879 assert( pName2!=0 ); 880 if( pName2->n>0 ){ 881 if( db->init.busy ) { 882 sqlite3ErrorMsg(pParse, "corrupt database"); 883 return -1; 884 } 885 *pUnqual = pName2; 886 iDb = sqlite3FindDb(db, pName1); 887 if( iDb<0 ){ 888 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 889 return -1; 890 } 891 }else{ 892 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 893 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 894 iDb = db->init.iDb; 895 *pUnqual = pName1; 896 } 897 return iDb; 898 } 899 900 /* 901 ** True if PRAGMA writable_schema is ON 902 */ 903 int sqlite3WritableSchema(sqlite3 *db){ 904 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 905 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 906 SQLITE_WriteSchema ); 907 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 908 SQLITE_Defensive ); 909 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 910 (SQLITE_WriteSchema|SQLITE_Defensive) ); 911 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 912 } 913 914 /* 915 ** This routine is used to check if the UTF-8 string zName is a legal 916 ** unqualified name for a new schema object (table, index, view or 917 ** trigger). All names are legal except those that begin with the string 918 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 919 ** is reserved for internal use. 920 ** 921 ** When parsing the sqlite_schema table, this routine also checks to 922 ** make sure the "type", "name", and "tbl_name" columns are consistent 923 ** with the SQL. 924 */ 925 int sqlite3CheckObjectName( 926 Parse *pParse, /* Parsing context */ 927 const char *zName, /* Name of the object to check */ 928 const char *zType, /* Type of this object */ 929 const char *zTblName /* Parent table name for triggers and indexes */ 930 ){ 931 sqlite3 *db = pParse->db; 932 if( sqlite3WritableSchema(db) 933 || db->init.imposterTable 934 || !sqlite3Config.bExtraSchemaChecks 935 ){ 936 /* Skip these error checks for writable_schema=ON */ 937 return SQLITE_OK; 938 } 939 if( db->init.busy ){ 940 if( sqlite3_stricmp(zType, db->init.azInit[0]) 941 || sqlite3_stricmp(zName, db->init.azInit[1]) 942 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 943 ){ 944 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 945 return SQLITE_ERROR; 946 } 947 }else{ 948 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 949 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 950 ){ 951 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 952 zName); 953 return SQLITE_ERROR; 954 } 955 956 } 957 return SQLITE_OK; 958 } 959 960 /* 961 ** Return the PRIMARY KEY index of a table 962 */ 963 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 964 Index *p; 965 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 966 return p; 967 } 968 969 /* 970 ** Convert an table column number into a index column number. That is, 971 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 972 ** find the (first) offset of that column in index pIdx. Or return -1 973 ** if column iCol is not used in index pIdx. 974 */ 975 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 976 int i; 977 for(i=0; i<pIdx->nColumn; i++){ 978 if( iCol==pIdx->aiColumn[i] ) return i; 979 } 980 return -1; 981 } 982 983 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 984 /* Convert a storage column number into a table column number. 985 ** 986 ** The storage column number (0,1,2,....) is the index of the value 987 ** as it appears in the record on disk. The true column number 988 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 989 ** 990 ** The storage column number is less than the table column number if 991 ** and only there are VIRTUAL columns to the left. 992 ** 993 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 994 */ 995 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 996 if( pTab->tabFlags & TF_HasVirtual ){ 997 int i; 998 for(i=0; i<=iCol; i++){ 999 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 1000 } 1001 } 1002 return iCol; 1003 } 1004 #endif 1005 1006 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1007 /* Convert a table column number into a storage column number. 1008 ** 1009 ** The storage column number (0,1,2,....) is the index of the value 1010 ** as it appears in the record on disk. Or, if the input column is 1011 ** the N-th virtual column (zero-based) then the storage number is 1012 ** the number of non-virtual columns in the table plus N. 1013 ** 1014 ** The true column number is the index (0,1,2,...) of the column in 1015 ** the CREATE TABLE statement. 1016 ** 1017 ** If the input column is a VIRTUAL column, then it should not appear 1018 ** in storage. But the value sometimes is cached in registers that 1019 ** follow the range of registers used to construct storage. This 1020 ** avoids computing the same VIRTUAL column multiple times, and provides 1021 ** values for use by OP_Param opcodes in triggers. Hence, if the 1022 ** input column is a VIRTUAL table, put it after all the other columns. 1023 ** 1024 ** In the following, N means "normal column", S means STORED, and 1025 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1026 ** 1027 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1028 ** -- 0 1 2 3 4 5 6 7 8 1029 ** 1030 ** Then the mapping from this function is as follows: 1031 ** 1032 ** INPUTS: 0 1 2 3 4 5 6 7 8 1033 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1034 ** 1035 ** So, in other words, this routine shifts all the virtual columns to 1036 ** the end. 1037 ** 1038 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1039 ** this routine is a no-op macro. If the pTab does not have any virtual 1040 ** columns, then this routine is no-op that always return iCol. If iCol 1041 ** is negative (indicating the ROWID column) then this routine return iCol. 1042 */ 1043 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1044 int i; 1045 i16 n; 1046 assert( iCol<pTab->nCol ); 1047 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1048 for(i=0, n=0; i<iCol; i++){ 1049 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1050 } 1051 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1052 /* iCol is a virtual column itself */ 1053 return pTab->nNVCol + i - n; 1054 }else{ 1055 /* iCol is a normal or stored column */ 1056 return n; 1057 } 1058 } 1059 #endif 1060 1061 /* 1062 ** Insert a single OP_JournalMode query opcode in order to force the 1063 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1064 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1065 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1066 ** will return false for sqlite3_stmt_readonly() even if that statement 1067 ** is a read-only no-op. 1068 */ 1069 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1070 int iReg = ++pParse->nMem; 1071 Vdbe *v = sqlite3GetVdbe(pParse); 1072 if( v ){ 1073 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1074 sqlite3VdbeUsesBtree(v, 0); 1075 } 1076 } 1077 1078 /* 1079 ** Begin constructing a new table representation in memory. This is 1080 ** the first of several action routines that get called in response 1081 ** to a CREATE TABLE statement. In particular, this routine is called 1082 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1083 ** flag is true if the table should be stored in the auxiliary database 1084 ** file instead of in the main database file. This is normally the case 1085 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1086 ** CREATE and TABLE. 1087 ** 1088 ** The new table record is initialized and put in pParse->pNewTable. 1089 ** As more of the CREATE TABLE statement is parsed, additional action 1090 ** routines will be called to add more information to this record. 1091 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1092 ** is called to complete the construction of the new table record. 1093 */ 1094 void sqlite3StartTable( 1095 Parse *pParse, /* Parser context */ 1096 Token *pName1, /* First part of the name of the table or view */ 1097 Token *pName2, /* Second part of the name of the table or view */ 1098 int isTemp, /* True if this is a TEMP table */ 1099 int isView, /* True if this is a VIEW */ 1100 int isVirtual, /* True if this is a VIRTUAL table */ 1101 int noErr /* Do nothing if table already exists */ 1102 ){ 1103 Table *pTable; 1104 char *zName = 0; /* The name of the new table */ 1105 sqlite3 *db = pParse->db; 1106 Vdbe *v; 1107 int iDb; /* Database number to create the table in */ 1108 Token *pName; /* Unqualified name of the table to create */ 1109 1110 if( db->init.busy && db->init.newTnum==1 ){ 1111 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1112 iDb = db->init.iDb; 1113 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1114 pName = pName1; 1115 }else{ 1116 /* The common case */ 1117 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1118 if( iDb<0 ) return; 1119 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1120 /* If creating a temp table, the name may not be qualified. Unless 1121 ** the database name is "temp" anyway. */ 1122 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1123 return; 1124 } 1125 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1126 zName = sqlite3NameFromToken(db, pName); 1127 if( IN_RENAME_OBJECT ){ 1128 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1129 } 1130 } 1131 pParse->sNameToken = *pName; 1132 if( zName==0 ) return; 1133 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1134 goto begin_table_error; 1135 } 1136 if( db->init.iDb==1 ) isTemp = 1; 1137 #ifndef SQLITE_OMIT_AUTHORIZATION 1138 assert( isTemp==0 || isTemp==1 ); 1139 assert( isView==0 || isView==1 ); 1140 { 1141 static const u8 aCode[] = { 1142 SQLITE_CREATE_TABLE, 1143 SQLITE_CREATE_TEMP_TABLE, 1144 SQLITE_CREATE_VIEW, 1145 SQLITE_CREATE_TEMP_VIEW 1146 }; 1147 char *zDb = db->aDb[iDb].zDbSName; 1148 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1149 goto begin_table_error; 1150 } 1151 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1152 zName, 0, zDb) ){ 1153 goto begin_table_error; 1154 } 1155 } 1156 #endif 1157 1158 /* Make sure the new table name does not collide with an existing 1159 ** index or table name in the same database. Issue an error message if 1160 ** it does. The exception is if the statement being parsed was passed 1161 ** to an sqlite3_declare_vtab() call. In that case only the column names 1162 ** and types will be used, so there is no need to test for namespace 1163 ** collisions. 1164 */ 1165 if( !IN_SPECIAL_PARSE ){ 1166 char *zDb = db->aDb[iDb].zDbSName; 1167 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1168 goto begin_table_error; 1169 } 1170 pTable = sqlite3FindTable(db, zName, zDb); 1171 if( pTable ){ 1172 if( !noErr ){ 1173 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1174 }else{ 1175 assert( !db->init.busy || CORRUPT_DB ); 1176 sqlite3CodeVerifySchema(pParse, iDb); 1177 sqlite3ForceNotReadOnly(pParse); 1178 } 1179 goto begin_table_error; 1180 } 1181 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1182 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1183 goto begin_table_error; 1184 } 1185 } 1186 1187 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1188 if( pTable==0 ){ 1189 assert( db->mallocFailed ); 1190 pParse->rc = SQLITE_NOMEM_BKPT; 1191 pParse->nErr++; 1192 goto begin_table_error; 1193 } 1194 pTable->zName = zName; 1195 pTable->iPKey = -1; 1196 pTable->pSchema = db->aDb[iDb].pSchema; 1197 pTable->nTabRef = 1; 1198 #ifdef SQLITE_DEFAULT_ROWEST 1199 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1200 #else 1201 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1202 #endif 1203 assert( pParse->pNewTable==0 ); 1204 pParse->pNewTable = pTable; 1205 1206 /* Begin generating the code that will insert the table record into 1207 ** the schema table. Note in particular that we must go ahead 1208 ** and allocate the record number for the table entry now. Before any 1209 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1210 ** indices to be created and the table record must come before the 1211 ** indices. Hence, the record number for the table must be allocated 1212 ** now. 1213 */ 1214 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1215 int addr1; 1216 int fileFormat; 1217 int reg1, reg2, reg3; 1218 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1219 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1220 sqlite3BeginWriteOperation(pParse, 1, iDb); 1221 1222 #ifndef SQLITE_OMIT_VIRTUALTABLE 1223 if( isVirtual ){ 1224 sqlite3VdbeAddOp0(v, OP_VBegin); 1225 } 1226 #endif 1227 1228 /* If the file format and encoding in the database have not been set, 1229 ** set them now. 1230 */ 1231 reg1 = pParse->regRowid = ++pParse->nMem; 1232 reg2 = pParse->regRoot = ++pParse->nMem; 1233 reg3 = ++pParse->nMem; 1234 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1235 sqlite3VdbeUsesBtree(v, iDb); 1236 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1237 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1238 1 : SQLITE_MAX_FILE_FORMAT; 1239 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1240 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1241 sqlite3VdbeJumpHere(v, addr1); 1242 1243 /* This just creates a place-holder record in the sqlite_schema table. 1244 ** The record created does not contain anything yet. It will be replaced 1245 ** by the real entry in code generated at sqlite3EndTable(). 1246 ** 1247 ** The rowid for the new entry is left in register pParse->regRowid. 1248 ** The root page number of the new table is left in reg pParse->regRoot. 1249 ** The rowid and root page number values are needed by the code that 1250 ** sqlite3EndTable will generate. 1251 */ 1252 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1253 if( isView || isVirtual ){ 1254 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1255 }else 1256 #endif 1257 { 1258 assert( !pParse->bReturning ); 1259 pParse->u1.addrCrTab = 1260 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1261 } 1262 sqlite3OpenSchemaTable(pParse, iDb); 1263 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1264 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1265 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1266 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1267 sqlite3VdbeAddOp0(v, OP_Close); 1268 } 1269 1270 /* Normal (non-error) return. */ 1271 return; 1272 1273 /* If an error occurs, we jump here */ 1274 begin_table_error: 1275 pParse->checkSchema = 1; 1276 sqlite3DbFree(db, zName); 1277 return; 1278 } 1279 1280 /* Set properties of a table column based on the (magical) 1281 ** name of the column. 1282 */ 1283 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1284 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1285 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1286 pCol->colFlags |= COLFLAG_HIDDEN; 1287 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1288 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1289 pTab->tabFlags |= TF_OOOHidden; 1290 } 1291 } 1292 #endif 1293 1294 /* 1295 ** Name of the special TEMP trigger used to implement RETURNING. The 1296 ** name begins with "sqlite_" so that it is guaranteed not to collide 1297 ** with any application-generated triggers. 1298 */ 1299 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1300 1301 /* 1302 ** Clean up the data structures associated with the RETURNING clause. 1303 */ 1304 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1305 Hash *pHash; 1306 pHash = &(db->aDb[1].pSchema->trigHash); 1307 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1308 sqlite3ExprListDelete(db, pRet->pReturnEL); 1309 sqlite3DbFree(db, pRet); 1310 } 1311 1312 /* 1313 ** Add the RETURNING clause to the parse currently underway. 1314 ** 1315 ** This routine creates a special TEMP trigger that will fire for each row 1316 ** of the DML statement. That TEMP trigger contains a single SELECT 1317 ** statement with a result set that is the argument of the RETURNING clause. 1318 ** The trigger has the Trigger.bReturning flag and an opcode of 1319 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1320 ** knows to handle it specially. The TEMP trigger is automatically 1321 ** removed at the end of the parse. 1322 ** 1323 ** When this routine is called, we do not yet know if the RETURNING clause 1324 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1325 ** RETURNING trigger instead. It will then be converted into the appropriate 1326 ** type on the first call to sqlite3TriggersExist(). 1327 */ 1328 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1329 Returning *pRet; 1330 Hash *pHash; 1331 sqlite3 *db = pParse->db; 1332 if( pParse->pNewTrigger ){ 1333 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1334 }else{ 1335 assert( pParse->bReturning==0 ); 1336 } 1337 pParse->bReturning = 1; 1338 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1339 if( pRet==0 ){ 1340 sqlite3ExprListDelete(db, pList); 1341 return; 1342 } 1343 pParse->u1.pReturning = pRet; 1344 pRet->pParse = pParse; 1345 pRet->pReturnEL = pList; 1346 sqlite3ParserAddCleanup(pParse, 1347 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1348 testcase( pParse->earlyCleanup ); 1349 if( db->mallocFailed ) return; 1350 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1351 pRet->retTrig.op = TK_RETURNING; 1352 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1353 pRet->retTrig.bReturning = 1; 1354 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1355 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1356 pRet->retTrig.step_list = &pRet->retTStep; 1357 pRet->retTStep.op = TK_RETURNING; 1358 pRet->retTStep.pTrig = &pRet->retTrig; 1359 pRet->retTStep.pExprList = pList; 1360 pHash = &(db->aDb[1].pSchema->trigHash); 1361 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1362 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1363 ==&pRet->retTrig ){ 1364 sqlite3OomFault(db); 1365 } 1366 } 1367 1368 /* 1369 ** Add a new column to the table currently being constructed. 1370 ** 1371 ** The parser calls this routine once for each column declaration 1372 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1373 ** first to get things going. Then this routine is called for each 1374 ** column. 1375 */ 1376 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1377 Table *p; 1378 int i; 1379 char *z; 1380 char *zType; 1381 Column *pCol; 1382 sqlite3 *db = pParse->db; 1383 u8 hName; 1384 1385 if( (p = pParse->pNewTable)==0 ) return; 1386 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1387 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1388 return; 1389 } 1390 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1391 if( z==0 ) return; 1392 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1393 memcpy(z, pName->z, pName->n); 1394 z[pName->n] = 0; 1395 sqlite3Dequote(z); 1396 hName = sqlite3StrIHash(z); 1397 for(i=0; i<p->nCol; i++){ 1398 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1399 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1400 sqlite3DbFree(db, z); 1401 return; 1402 } 1403 } 1404 if( (p->nCol & 0x7)==0 ){ 1405 Column *aNew; 1406 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1407 if( aNew==0 ){ 1408 sqlite3DbFree(db, z); 1409 return; 1410 } 1411 p->aCol = aNew; 1412 } 1413 pCol = &p->aCol[p->nCol]; 1414 memset(pCol, 0, sizeof(p->aCol[0])); 1415 pCol->zName = z; 1416 pCol->hName = hName; 1417 sqlite3ColumnPropertiesFromName(p, pCol); 1418 1419 if( pType->n==0 ){ 1420 /* If there is no type specified, columns have the default affinity 1421 ** 'BLOB' with a default size of 4 bytes. */ 1422 pCol->affinity = SQLITE_AFF_BLOB; 1423 pCol->szEst = 1; 1424 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1425 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1426 pCol->colFlags |= COLFLAG_SORTERREF; 1427 } 1428 #endif 1429 }else{ 1430 zType = z + sqlite3Strlen30(z) + 1; 1431 memcpy(zType, pType->z, pType->n); 1432 zType[pType->n] = 0; 1433 sqlite3Dequote(zType); 1434 pCol->affinity = sqlite3AffinityType(zType, pCol); 1435 pCol->colFlags |= COLFLAG_HASTYPE; 1436 } 1437 p->nCol++; 1438 p->nNVCol++; 1439 pParse->constraintName.n = 0; 1440 } 1441 1442 /* 1443 ** This routine is called by the parser while in the middle of 1444 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1445 ** been seen on a column. This routine sets the notNull flag on 1446 ** the column currently under construction. 1447 */ 1448 void sqlite3AddNotNull(Parse *pParse, int onError){ 1449 Table *p; 1450 Column *pCol; 1451 p = pParse->pNewTable; 1452 if( p==0 || NEVER(p->nCol<1) ) return; 1453 pCol = &p->aCol[p->nCol-1]; 1454 pCol->notNull = (u8)onError; 1455 p->tabFlags |= TF_HasNotNull; 1456 1457 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1458 ** on this column. */ 1459 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1460 Index *pIdx; 1461 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1462 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1463 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1464 pIdx->uniqNotNull = 1; 1465 } 1466 } 1467 } 1468 } 1469 1470 /* 1471 ** Scan the column type name zType (length nType) and return the 1472 ** associated affinity type. 1473 ** 1474 ** This routine does a case-independent search of zType for the 1475 ** substrings in the following table. If one of the substrings is 1476 ** found, the corresponding affinity is returned. If zType contains 1477 ** more than one of the substrings, entries toward the top of 1478 ** the table take priority. For example, if zType is 'BLOBINT', 1479 ** SQLITE_AFF_INTEGER is returned. 1480 ** 1481 ** Substring | Affinity 1482 ** -------------------------------- 1483 ** 'INT' | SQLITE_AFF_INTEGER 1484 ** 'CHAR' | SQLITE_AFF_TEXT 1485 ** 'CLOB' | SQLITE_AFF_TEXT 1486 ** 'TEXT' | SQLITE_AFF_TEXT 1487 ** 'BLOB' | SQLITE_AFF_BLOB 1488 ** 'REAL' | SQLITE_AFF_REAL 1489 ** 'FLOA' | SQLITE_AFF_REAL 1490 ** 'DOUB' | SQLITE_AFF_REAL 1491 ** 1492 ** If none of the substrings in the above table are found, 1493 ** SQLITE_AFF_NUMERIC is returned. 1494 */ 1495 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1496 u32 h = 0; 1497 char aff = SQLITE_AFF_NUMERIC; 1498 const char *zChar = 0; 1499 1500 assert( zIn!=0 ); 1501 while( zIn[0] ){ 1502 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1503 zIn++; 1504 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1505 aff = SQLITE_AFF_TEXT; 1506 zChar = zIn; 1507 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1508 aff = SQLITE_AFF_TEXT; 1509 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1510 aff = SQLITE_AFF_TEXT; 1511 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1512 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1513 aff = SQLITE_AFF_BLOB; 1514 if( zIn[0]=='(' ) zChar = zIn; 1515 #ifndef SQLITE_OMIT_FLOATING_POINT 1516 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1517 && aff==SQLITE_AFF_NUMERIC ){ 1518 aff = SQLITE_AFF_REAL; 1519 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1520 && aff==SQLITE_AFF_NUMERIC ){ 1521 aff = SQLITE_AFF_REAL; 1522 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1523 && aff==SQLITE_AFF_NUMERIC ){ 1524 aff = SQLITE_AFF_REAL; 1525 #endif 1526 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1527 aff = SQLITE_AFF_INTEGER; 1528 break; 1529 } 1530 } 1531 1532 /* If pCol is not NULL, store an estimate of the field size. The 1533 ** estimate is scaled so that the size of an integer is 1. */ 1534 if( pCol ){ 1535 int v = 0; /* default size is approx 4 bytes */ 1536 if( aff<SQLITE_AFF_NUMERIC ){ 1537 if( zChar ){ 1538 while( zChar[0] ){ 1539 if( sqlite3Isdigit(zChar[0]) ){ 1540 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1541 sqlite3GetInt32(zChar, &v); 1542 break; 1543 } 1544 zChar++; 1545 } 1546 }else{ 1547 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1548 } 1549 } 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1552 pCol->colFlags |= COLFLAG_SORTERREF; 1553 } 1554 #endif 1555 v = v/4 + 1; 1556 if( v>255 ) v = 255; 1557 pCol->szEst = v; 1558 } 1559 return aff; 1560 } 1561 1562 /* 1563 ** The expression is the default value for the most recently added column 1564 ** of the table currently under construction. 1565 ** 1566 ** Default value expressions must be constant. Raise an exception if this 1567 ** is not the case. 1568 ** 1569 ** This routine is called by the parser while in the middle of 1570 ** parsing a CREATE TABLE statement. 1571 */ 1572 void sqlite3AddDefaultValue( 1573 Parse *pParse, /* Parsing context */ 1574 Expr *pExpr, /* The parsed expression of the default value */ 1575 const char *zStart, /* Start of the default value text */ 1576 const char *zEnd /* First character past end of defaut value text */ 1577 ){ 1578 Table *p; 1579 Column *pCol; 1580 sqlite3 *db = pParse->db; 1581 p = pParse->pNewTable; 1582 if( p!=0 ){ 1583 int isInit = db->init.busy && db->init.iDb!=1; 1584 pCol = &(p->aCol[p->nCol-1]); 1585 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1586 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1587 pCol->zName); 1588 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1589 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1590 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1591 testcase( pCol->colFlags & COLFLAG_STORED ); 1592 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1593 #endif 1594 }else{ 1595 /* A copy of pExpr is used instead of the original, as pExpr contains 1596 ** tokens that point to volatile memory. 1597 */ 1598 Expr x; 1599 sqlite3ExprDelete(db, pCol->pDflt); 1600 memset(&x, 0, sizeof(x)); 1601 x.op = TK_SPAN; 1602 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1603 x.pLeft = pExpr; 1604 x.flags = EP_Skip; 1605 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1606 sqlite3DbFree(db, x.u.zToken); 1607 } 1608 } 1609 if( IN_RENAME_OBJECT ){ 1610 sqlite3RenameExprUnmap(pParse, pExpr); 1611 } 1612 sqlite3ExprDelete(db, pExpr); 1613 } 1614 1615 /* 1616 ** Backwards Compatibility Hack: 1617 ** 1618 ** Historical versions of SQLite accepted strings as column names in 1619 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1620 ** 1621 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1622 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1623 ** 1624 ** This is goofy. But to preserve backwards compatibility we continue to 1625 ** accept it. This routine does the necessary conversion. It converts 1626 ** the expression given in its argument from a TK_STRING into a TK_ID 1627 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1628 ** If the expression is anything other than TK_STRING, the expression is 1629 ** unchanged. 1630 */ 1631 static void sqlite3StringToId(Expr *p){ 1632 if( p->op==TK_STRING ){ 1633 p->op = TK_ID; 1634 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1635 p->pLeft->op = TK_ID; 1636 } 1637 } 1638 1639 /* 1640 ** Tag the given column as being part of the PRIMARY KEY 1641 */ 1642 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1643 pCol->colFlags |= COLFLAG_PRIMKEY; 1644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1645 if( pCol->colFlags & COLFLAG_GENERATED ){ 1646 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1647 testcase( pCol->colFlags & COLFLAG_STORED ); 1648 sqlite3ErrorMsg(pParse, 1649 "generated columns cannot be part of the PRIMARY KEY"); 1650 } 1651 #endif 1652 } 1653 1654 /* 1655 ** Designate the PRIMARY KEY for the table. pList is a list of names 1656 ** of columns that form the primary key. If pList is NULL, then the 1657 ** most recently added column of the table is the primary key. 1658 ** 1659 ** A table can have at most one primary key. If the table already has 1660 ** a primary key (and this is the second primary key) then create an 1661 ** error. 1662 ** 1663 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1664 ** then we will try to use that column as the rowid. Set the Table.iPKey 1665 ** field of the table under construction to be the index of the 1666 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1667 ** no INTEGER PRIMARY KEY. 1668 ** 1669 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1670 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1671 */ 1672 void sqlite3AddPrimaryKey( 1673 Parse *pParse, /* Parsing context */ 1674 ExprList *pList, /* List of field names to be indexed */ 1675 int onError, /* What to do with a uniqueness conflict */ 1676 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1677 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1678 ){ 1679 Table *pTab = pParse->pNewTable; 1680 Column *pCol = 0; 1681 int iCol = -1, i; 1682 int nTerm; 1683 if( pTab==0 ) goto primary_key_exit; 1684 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1685 sqlite3ErrorMsg(pParse, 1686 "table \"%s\" has more than one primary key", pTab->zName); 1687 goto primary_key_exit; 1688 } 1689 pTab->tabFlags |= TF_HasPrimaryKey; 1690 if( pList==0 ){ 1691 iCol = pTab->nCol - 1; 1692 pCol = &pTab->aCol[iCol]; 1693 makeColumnPartOfPrimaryKey(pParse, pCol); 1694 nTerm = 1; 1695 }else{ 1696 nTerm = pList->nExpr; 1697 for(i=0; i<nTerm; i++){ 1698 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1699 assert( pCExpr!=0 ); 1700 sqlite3StringToId(pCExpr); 1701 if( pCExpr->op==TK_ID ){ 1702 const char *zCName = pCExpr->u.zToken; 1703 for(iCol=0; iCol<pTab->nCol; iCol++){ 1704 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1705 pCol = &pTab->aCol[iCol]; 1706 makeColumnPartOfPrimaryKey(pParse, pCol); 1707 break; 1708 } 1709 } 1710 } 1711 } 1712 } 1713 if( nTerm==1 1714 && pCol 1715 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1716 && sortOrder!=SQLITE_SO_DESC 1717 ){ 1718 if( IN_RENAME_OBJECT && pList ){ 1719 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1720 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1721 } 1722 pTab->iPKey = iCol; 1723 pTab->keyConf = (u8)onError; 1724 assert( autoInc==0 || autoInc==1 ); 1725 pTab->tabFlags |= autoInc*TF_Autoincrement; 1726 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1727 (void)sqlite3HasExplicitNulls(pParse, pList); 1728 }else if( autoInc ){ 1729 #ifndef SQLITE_OMIT_AUTOINCREMENT 1730 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1731 "INTEGER PRIMARY KEY"); 1732 #endif 1733 }else{ 1734 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1735 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1736 pList = 0; 1737 } 1738 1739 primary_key_exit: 1740 sqlite3ExprListDelete(pParse->db, pList); 1741 return; 1742 } 1743 1744 /* 1745 ** Add a new CHECK constraint to the table currently under construction. 1746 */ 1747 void sqlite3AddCheckConstraint( 1748 Parse *pParse, /* Parsing context */ 1749 Expr *pCheckExpr, /* The check expression */ 1750 const char *zStart, /* Opening "(" */ 1751 const char *zEnd /* Closing ")" */ 1752 ){ 1753 #ifndef SQLITE_OMIT_CHECK 1754 Table *pTab = pParse->pNewTable; 1755 sqlite3 *db = pParse->db; 1756 if( pTab && !IN_DECLARE_VTAB 1757 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1758 ){ 1759 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1760 if( pParse->constraintName.n ){ 1761 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1762 }else{ 1763 Token t; 1764 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1765 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1766 t.z = zStart; 1767 t.n = (int)(zEnd - t.z); 1768 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1769 } 1770 }else 1771 #endif 1772 { 1773 sqlite3ExprDelete(pParse->db, pCheckExpr); 1774 } 1775 } 1776 1777 /* 1778 ** Set the collation function of the most recently parsed table column 1779 ** to the CollSeq given. 1780 */ 1781 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1782 Table *p; 1783 int i; 1784 char *zColl; /* Dequoted name of collation sequence */ 1785 sqlite3 *db; 1786 1787 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1788 i = p->nCol-1; 1789 db = pParse->db; 1790 zColl = sqlite3NameFromToken(db, pToken); 1791 if( !zColl ) return; 1792 1793 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1794 Index *pIdx; 1795 sqlite3DbFree(db, p->aCol[i].zColl); 1796 p->aCol[i].zColl = zColl; 1797 1798 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1799 ** then an index may have been created on this column before the 1800 ** collation type was added. Correct this if it is the case. 1801 */ 1802 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1803 assert( pIdx->nKeyCol==1 ); 1804 if( pIdx->aiColumn[0]==i ){ 1805 pIdx->azColl[0] = p->aCol[i].zColl; 1806 } 1807 } 1808 }else{ 1809 sqlite3DbFree(db, zColl); 1810 } 1811 } 1812 1813 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1814 ** column. 1815 */ 1816 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1817 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1818 u8 eType = COLFLAG_VIRTUAL; 1819 Table *pTab = pParse->pNewTable; 1820 Column *pCol; 1821 if( pTab==0 ){ 1822 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1823 goto generated_done; 1824 } 1825 pCol = &(pTab->aCol[pTab->nCol-1]); 1826 if( IN_DECLARE_VTAB ){ 1827 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1828 goto generated_done; 1829 } 1830 if( pCol->pDflt ) goto generated_error; 1831 if( pType ){ 1832 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1833 /* no-op */ 1834 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1835 eType = COLFLAG_STORED; 1836 }else{ 1837 goto generated_error; 1838 } 1839 } 1840 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1841 pCol->colFlags |= eType; 1842 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1843 assert( TF_HasStored==COLFLAG_STORED ); 1844 pTab->tabFlags |= eType; 1845 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1846 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1847 } 1848 pCol->pDflt = pExpr; 1849 pExpr = 0; 1850 goto generated_done; 1851 1852 generated_error: 1853 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1854 pCol->zName); 1855 generated_done: 1856 sqlite3ExprDelete(pParse->db, pExpr); 1857 #else 1858 /* Throw and error for the GENERATED ALWAYS AS clause if the 1859 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1860 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1861 sqlite3ExprDelete(pParse->db, pExpr); 1862 #endif 1863 } 1864 1865 /* 1866 ** Generate code that will increment the schema cookie. 1867 ** 1868 ** The schema cookie is used to determine when the schema for the 1869 ** database changes. After each schema change, the cookie value 1870 ** changes. When a process first reads the schema it records the 1871 ** cookie. Thereafter, whenever it goes to access the database, 1872 ** it checks the cookie to make sure the schema has not changed 1873 ** since it was last read. 1874 ** 1875 ** This plan is not completely bullet-proof. It is possible for 1876 ** the schema to change multiple times and for the cookie to be 1877 ** set back to prior value. But schema changes are infrequent 1878 ** and the probability of hitting the same cookie value is only 1879 ** 1 chance in 2^32. So we're safe enough. 1880 ** 1881 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1882 ** the schema-version whenever the schema changes. 1883 */ 1884 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1885 sqlite3 *db = pParse->db; 1886 Vdbe *v = pParse->pVdbe; 1887 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1889 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1890 } 1891 1892 /* 1893 ** Measure the number of characters needed to output the given 1894 ** identifier. The number returned includes any quotes used 1895 ** but does not include the null terminator. 1896 ** 1897 ** The estimate is conservative. It might be larger that what is 1898 ** really needed. 1899 */ 1900 static int identLength(const char *z){ 1901 int n; 1902 for(n=0; *z; n++, z++){ 1903 if( *z=='"' ){ n++; } 1904 } 1905 return n + 2; 1906 } 1907 1908 /* 1909 ** The first parameter is a pointer to an output buffer. The second 1910 ** parameter is a pointer to an integer that contains the offset at 1911 ** which to write into the output buffer. This function copies the 1912 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1913 ** to the specified offset in the buffer and updates *pIdx to refer 1914 ** to the first byte after the last byte written before returning. 1915 ** 1916 ** If the string zSignedIdent consists entirely of alpha-numeric 1917 ** characters, does not begin with a digit and is not an SQL keyword, 1918 ** then it is copied to the output buffer exactly as it is. Otherwise, 1919 ** it is quoted using double-quotes. 1920 */ 1921 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1922 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1923 int i, j, needQuote; 1924 i = *pIdx; 1925 1926 for(j=0; zIdent[j]; j++){ 1927 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1928 } 1929 needQuote = sqlite3Isdigit(zIdent[0]) 1930 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1931 || zIdent[j]!=0 1932 || j==0; 1933 1934 if( needQuote ) z[i++] = '"'; 1935 for(j=0; zIdent[j]; j++){ 1936 z[i++] = zIdent[j]; 1937 if( zIdent[j]=='"' ) z[i++] = '"'; 1938 } 1939 if( needQuote ) z[i++] = '"'; 1940 z[i] = 0; 1941 *pIdx = i; 1942 } 1943 1944 /* 1945 ** Generate a CREATE TABLE statement appropriate for the given 1946 ** table. Memory to hold the text of the statement is obtained 1947 ** from sqliteMalloc() and must be freed by the calling function. 1948 */ 1949 static char *createTableStmt(sqlite3 *db, Table *p){ 1950 int i, k, n; 1951 char *zStmt; 1952 char *zSep, *zSep2, *zEnd; 1953 Column *pCol; 1954 n = 0; 1955 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1956 n += identLength(pCol->zName) + 5; 1957 } 1958 n += identLength(p->zName); 1959 if( n<50 ){ 1960 zSep = ""; 1961 zSep2 = ","; 1962 zEnd = ")"; 1963 }else{ 1964 zSep = "\n "; 1965 zSep2 = ",\n "; 1966 zEnd = "\n)"; 1967 } 1968 n += 35 + 6*p->nCol; 1969 zStmt = sqlite3DbMallocRaw(0, n); 1970 if( zStmt==0 ){ 1971 sqlite3OomFault(db); 1972 return 0; 1973 } 1974 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1975 k = sqlite3Strlen30(zStmt); 1976 identPut(zStmt, &k, p->zName); 1977 zStmt[k++] = '('; 1978 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1979 static const char * const azType[] = { 1980 /* SQLITE_AFF_BLOB */ "", 1981 /* SQLITE_AFF_TEXT */ " TEXT", 1982 /* SQLITE_AFF_NUMERIC */ " NUM", 1983 /* SQLITE_AFF_INTEGER */ " INT", 1984 /* SQLITE_AFF_REAL */ " REAL" 1985 }; 1986 int len; 1987 const char *zType; 1988 1989 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1990 k += sqlite3Strlen30(&zStmt[k]); 1991 zSep = zSep2; 1992 identPut(zStmt, &k, pCol->zName); 1993 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1994 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1995 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1996 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1997 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1998 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1999 testcase( pCol->affinity==SQLITE_AFF_REAL ); 2000 2001 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2002 len = sqlite3Strlen30(zType); 2003 assert( pCol->affinity==SQLITE_AFF_BLOB 2004 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2005 memcpy(&zStmt[k], zType, len); 2006 k += len; 2007 assert( k<=n ); 2008 } 2009 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2010 return zStmt; 2011 } 2012 2013 /* 2014 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2015 ** on success and SQLITE_NOMEM on an OOM error. 2016 */ 2017 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2018 char *zExtra; 2019 int nByte; 2020 if( pIdx->nColumn>=N ) return SQLITE_OK; 2021 assert( pIdx->isResized==0 ); 2022 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2023 zExtra = sqlite3DbMallocZero(db, nByte); 2024 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2025 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2026 pIdx->azColl = (const char**)zExtra; 2027 zExtra += sizeof(char*)*N; 2028 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2029 pIdx->aiRowLogEst = (LogEst*)zExtra; 2030 zExtra += sizeof(LogEst)*N; 2031 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2032 pIdx->aiColumn = (i16*)zExtra; 2033 zExtra += sizeof(i16)*N; 2034 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2035 pIdx->aSortOrder = (u8*)zExtra; 2036 pIdx->nColumn = N; 2037 pIdx->isResized = 1; 2038 return SQLITE_OK; 2039 } 2040 2041 /* 2042 ** Estimate the total row width for a table. 2043 */ 2044 static void estimateTableWidth(Table *pTab){ 2045 unsigned wTable = 0; 2046 const Column *pTabCol; 2047 int i; 2048 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2049 wTable += pTabCol->szEst; 2050 } 2051 if( pTab->iPKey<0 ) wTable++; 2052 pTab->szTabRow = sqlite3LogEst(wTable*4); 2053 } 2054 2055 /* 2056 ** Estimate the average size of a row for an index. 2057 */ 2058 static void estimateIndexWidth(Index *pIdx){ 2059 unsigned wIndex = 0; 2060 int i; 2061 const Column *aCol = pIdx->pTable->aCol; 2062 for(i=0; i<pIdx->nColumn; i++){ 2063 i16 x = pIdx->aiColumn[i]; 2064 assert( x<pIdx->pTable->nCol ); 2065 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2066 } 2067 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2068 } 2069 2070 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2071 ** This is used to determine if the column number x appears in any of the 2072 ** first nCol entries of an index. 2073 */ 2074 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2075 while( nCol-- > 0 ){ 2076 assert( aiCol[0]>=0 ); 2077 if( x==*(aiCol++) ){ 2078 return 1; 2079 } 2080 } 2081 return 0; 2082 } 2083 2084 /* 2085 ** Return true if any of the first nKey entries of index pIdx exactly 2086 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2087 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2088 ** or may not be the same index as pPk. 2089 ** 2090 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2091 ** not a rowid or expression. 2092 ** 2093 ** This routine differs from hasColumn() in that both the column and the 2094 ** collating sequence must match for this routine, but for hasColumn() only 2095 ** the column name must match. 2096 */ 2097 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2098 int i, j; 2099 assert( nKey<=pIdx->nColumn ); 2100 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2101 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2102 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2103 assert( pPk->pTable==pIdx->pTable ); 2104 testcase( pPk==pIdx ); 2105 j = pPk->aiColumn[iCol]; 2106 assert( j!=XN_ROWID && j!=XN_EXPR ); 2107 for(i=0; i<nKey; i++){ 2108 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2109 if( pIdx->aiColumn[i]==j 2110 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2111 ){ 2112 return 1; 2113 } 2114 } 2115 return 0; 2116 } 2117 2118 /* Recompute the colNotIdxed field of the Index. 2119 ** 2120 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2121 ** columns that are within the first 63 columns of the table. The 2122 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2123 ** of the table have a 1. 2124 ** 2125 ** 2019-10-24: For the purpose of this computation, virtual columns are 2126 ** not considered to be covered by the index, even if they are in the 2127 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2128 ** able to find all instances of a reference to the indexed table column 2129 ** and convert them into references to the index. Hence we always want 2130 ** the actual table at hand in order to recompute the virtual column, if 2131 ** necessary. 2132 ** 2133 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2134 ** to determine if the index is covering index. 2135 */ 2136 static void recomputeColumnsNotIndexed(Index *pIdx){ 2137 Bitmask m = 0; 2138 int j; 2139 Table *pTab = pIdx->pTable; 2140 for(j=pIdx->nColumn-1; j>=0; j--){ 2141 int x = pIdx->aiColumn[j]; 2142 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2143 testcase( x==BMS-1 ); 2144 testcase( x==BMS-2 ); 2145 if( x<BMS-1 ) m |= MASKBIT(x); 2146 } 2147 } 2148 pIdx->colNotIdxed = ~m; 2149 assert( (pIdx->colNotIdxed>>63)==1 ); 2150 } 2151 2152 /* 2153 ** This routine runs at the end of parsing a CREATE TABLE statement that 2154 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2155 ** internal schema data structures and the generated VDBE code so that they 2156 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2157 ** Changes include: 2158 ** 2159 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2160 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2161 ** into BTREE_BLOBKEY. 2162 ** (3) Bypass the creation of the sqlite_schema table entry 2163 ** for the PRIMARY KEY as the primary key index is now 2164 ** identified by the sqlite_schema table entry of the table itself. 2165 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2166 ** schema to the rootpage from the main table. 2167 ** (5) Add all table columns to the PRIMARY KEY Index object 2168 ** so that the PRIMARY KEY is a covering index. The surplus 2169 ** columns are part of KeyInfo.nAllField and are not used for 2170 ** sorting or lookup or uniqueness checks. 2171 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2172 ** indices with the PRIMARY KEY columns. 2173 ** 2174 ** For virtual tables, only (1) is performed. 2175 */ 2176 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2177 Index *pIdx; 2178 Index *pPk; 2179 int nPk; 2180 int nExtra; 2181 int i, j; 2182 sqlite3 *db = pParse->db; 2183 Vdbe *v = pParse->pVdbe; 2184 2185 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2186 */ 2187 if( !db->init.imposterTable ){ 2188 for(i=0; i<pTab->nCol; i++){ 2189 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2190 pTab->aCol[i].notNull = OE_Abort; 2191 } 2192 } 2193 pTab->tabFlags |= TF_HasNotNull; 2194 } 2195 2196 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2197 ** into BTREE_BLOBKEY. 2198 */ 2199 assert( !pParse->bReturning ); 2200 if( pParse->u1.addrCrTab ){ 2201 assert( v ); 2202 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2203 } 2204 2205 /* Locate the PRIMARY KEY index. Or, if this table was originally 2206 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2207 */ 2208 if( pTab->iPKey>=0 ){ 2209 ExprList *pList; 2210 Token ipkToken; 2211 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2212 pList = sqlite3ExprListAppend(pParse, 0, 2213 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2214 if( pList==0 ){ 2215 pTab->tabFlags &= ~TF_WithoutRowid; 2216 return; 2217 } 2218 if( IN_RENAME_OBJECT ){ 2219 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2220 } 2221 pList->a[0].sortFlags = pParse->iPkSortOrder; 2222 assert( pParse->pNewTable==pTab ); 2223 pTab->iPKey = -1; 2224 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2225 SQLITE_IDXTYPE_PRIMARYKEY); 2226 if( db->mallocFailed || pParse->nErr ){ 2227 pTab->tabFlags &= ~TF_WithoutRowid; 2228 return; 2229 } 2230 pPk = sqlite3PrimaryKeyIndex(pTab); 2231 assert( pPk->nKeyCol==1 ); 2232 }else{ 2233 pPk = sqlite3PrimaryKeyIndex(pTab); 2234 assert( pPk!=0 ); 2235 2236 /* 2237 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2238 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2239 ** code assumes the PRIMARY KEY contains no repeated columns. 2240 */ 2241 for(i=j=1; i<pPk->nKeyCol; i++){ 2242 if( isDupColumn(pPk, j, pPk, i) ){ 2243 pPk->nColumn--; 2244 }else{ 2245 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2246 pPk->azColl[j] = pPk->azColl[i]; 2247 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2248 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2249 } 2250 } 2251 pPk->nKeyCol = j; 2252 } 2253 assert( pPk!=0 ); 2254 pPk->isCovering = 1; 2255 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2256 nPk = pPk->nColumn = pPk->nKeyCol; 2257 2258 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2259 ** table entry. This is only required if currently generating VDBE 2260 ** code for a CREATE TABLE (not when parsing one as part of reading 2261 ** a database schema). */ 2262 if( v && pPk->tnum>0 ){ 2263 assert( db->init.busy==0 ); 2264 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2265 } 2266 2267 /* The root page of the PRIMARY KEY is the table root page */ 2268 pPk->tnum = pTab->tnum; 2269 2270 /* Update the in-memory representation of all UNIQUE indices by converting 2271 ** the final rowid column into one or more columns of the PRIMARY KEY. 2272 */ 2273 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2274 int n; 2275 if( IsPrimaryKeyIndex(pIdx) ) continue; 2276 for(i=n=0; i<nPk; i++){ 2277 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2278 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2279 n++; 2280 } 2281 } 2282 if( n==0 ){ 2283 /* This index is a superset of the primary key */ 2284 pIdx->nColumn = pIdx->nKeyCol; 2285 continue; 2286 } 2287 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2288 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2289 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2290 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2291 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2292 pIdx->azColl[j] = pPk->azColl[i]; 2293 if( pPk->aSortOrder[i] ){ 2294 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2295 pIdx->bAscKeyBug = 1; 2296 } 2297 j++; 2298 } 2299 } 2300 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2301 assert( pIdx->nColumn>=j ); 2302 } 2303 2304 /* Add all table columns to the PRIMARY KEY index 2305 */ 2306 nExtra = 0; 2307 for(i=0; i<pTab->nCol; i++){ 2308 if( !hasColumn(pPk->aiColumn, nPk, i) 2309 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2310 } 2311 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2312 for(i=0, j=nPk; i<pTab->nCol; i++){ 2313 if( !hasColumn(pPk->aiColumn, j, i) 2314 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2315 ){ 2316 assert( j<pPk->nColumn ); 2317 pPk->aiColumn[j] = i; 2318 pPk->azColl[j] = sqlite3StrBINARY; 2319 j++; 2320 } 2321 } 2322 assert( pPk->nColumn==j ); 2323 assert( pTab->nNVCol<=j ); 2324 recomputeColumnsNotIndexed(pPk); 2325 } 2326 2327 2328 #ifndef SQLITE_OMIT_VIRTUALTABLE 2329 /* 2330 ** Return true if pTab is a virtual table and zName is a shadow table name 2331 ** for that virtual table. 2332 */ 2333 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2334 int nName; /* Length of zName */ 2335 Module *pMod; /* Module for the virtual table */ 2336 2337 if( !IsVirtual(pTab) ) return 0; 2338 nName = sqlite3Strlen30(pTab->zName); 2339 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2340 if( zName[nName]!='_' ) return 0; 2341 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2342 if( pMod==0 ) return 0; 2343 if( pMod->pModule->iVersion<3 ) return 0; 2344 if( pMod->pModule->xShadowName==0 ) return 0; 2345 return pMod->pModule->xShadowName(zName+nName+1); 2346 } 2347 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2348 2349 #ifndef SQLITE_OMIT_VIRTUALTABLE 2350 /* 2351 ** Return true if zName is a shadow table name in the current database 2352 ** connection. 2353 ** 2354 ** zName is temporarily modified while this routine is running, but is 2355 ** restored to its original value prior to this routine returning. 2356 */ 2357 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2358 char *zTail; /* Pointer to the last "_" in zName */ 2359 Table *pTab; /* Table that zName is a shadow of */ 2360 zTail = strrchr(zName, '_'); 2361 if( zTail==0 ) return 0; 2362 *zTail = 0; 2363 pTab = sqlite3FindTable(db, zName, 0); 2364 *zTail = '_'; 2365 if( pTab==0 ) return 0; 2366 if( !IsVirtual(pTab) ) return 0; 2367 return sqlite3IsShadowTableOf(db, pTab, zName); 2368 } 2369 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2370 2371 2372 #ifdef SQLITE_DEBUG 2373 /* 2374 ** Mark all nodes of an expression as EP_Immutable, indicating that 2375 ** they should not be changed. Expressions attached to a table or 2376 ** index definition are tagged this way to help ensure that we do 2377 ** not pass them into code generator routines by mistake. 2378 */ 2379 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2380 ExprSetVVAProperty(pExpr, EP_Immutable); 2381 return WRC_Continue; 2382 } 2383 static void markExprListImmutable(ExprList *pList){ 2384 if( pList ){ 2385 Walker w; 2386 memset(&w, 0, sizeof(w)); 2387 w.xExprCallback = markImmutableExprStep; 2388 w.xSelectCallback = sqlite3SelectWalkNoop; 2389 w.xSelectCallback2 = 0; 2390 sqlite3WalkExprList(&w, pList); 2391 } 2392 } 2393 #else 2394 #define markExprListImmutable(X) /* no-op */ 2395 #endif /* SQLITE_DEBUG */ 2396 2397 2398 /* 2399 ** This routine is called to report the final ")" that terminates 2400 ** a CREATE TABLE statement. 2401 ** 2402 ** The table structure that other action routines have been building 2403 ** is added to the internal hash tables, assuming no errors have 2404 ** occurred. 2405 ** 2406 ** An entry for the table is made in the schema table on disk, unless 2407 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2408 ** it means we are reading the sqlite_schema table because we just 2409 ** connected to the database or because the sqlite_schema table has 2410 ** recently changed, so the entry for this table already exists in 2411 ** the sqlite_schema table. We do not want to create it again. 2412 ** 2413 ** If the pSelect argument is not NULL, it means that this routine 2414 ** was called to create a table generated from a 2415 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2416 ** the new table will match the result set of the SELECT. 2417 */ 2418 void sqlite3EndTable( 2419 Parse *pParse, /* Parse context */ 2420 Token *pCons, /* The ',' token after the last column defn. */ 2421 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2422 u8 tabOpts, /* Extra table options. Usually 0. */ 2423 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2424 ){ 2425 Table *p; /* The new table */ 2426 sqlite3 *db = pParse->db; /* The database connection */ 2427 int iDb; /* Database in which the table lives */ 2428 Index *pIdx; /* An implied index of the table */ 2429 2430 if( pEnd==0 && pSelect==0 ){ 2431 return; 2432 } 2433 p = pParse->pNewTable; 2434 if( p==0 ) return; 2435 2436 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2437 p->tabFlags |= TF_Shadow; 2438 } 2439 2440 /* If the db->init.busy is 1 it means we are reading the SQL off the 2441 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2442 ** So do not write to the disk again. Extract the root page number 2443 ** for the table from the db->init.newTnum field. (The page number 2444 ** should have been put there by the sqliteOpenCb routine.) 2445 ** 2446 ** If the root page number is 1, that means this is the sqlite_schema 2447 ** table itself. So mark it read-only. 2448 */ 2449 if( db->init.busy ){ 2450 if( pSelect ){ 2451 sqlite3ErrorMsg(pParse, ""); 2452 return; 2453 } 2454 p->tnum = db->init.newTnum; 2455 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2456 } 2457 2458 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2459 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2460 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2461 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2462 2463 /* Special processing for WITHOUT ROWID Tables */ 2464 if( tabOpts & TF_WithoutRowid ){ 2465 if( (p->tabFlags & TF_Autoincrement) ){ 2466 sqlite3ErrorMsg(pParse, 2467 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2468 return; 2469 } 2470 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2471 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2472 return; 2473 } 2474 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2475 convertToWithoutRowidTable(pParse, p); 2476 } 2477 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2478 2479 #ifndef SQLITE_OMIT_CHECK 2480 /* Resolve names in all CHECK constraint expressions. 2481 */ 2482 if( p->pCheck ){ 2483 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2484 if( pParse->nErr ){ 2485 /* If errors are seen, delete the CHECK constraints now, else they might 2486 ** actually be used if PRAGMA writable_schema=ON is set. */ 2487 sqlite3ExprListDelete(db, p->pCheck); 2488 p->pCheck = 0; 2489 }else{ 2490 markExprListImmutable(p->pCheck); 2491 } 2492 } 2493 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2494 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2495 if( p->tabFlags & TF_HasGenerated ){ 2496 int ii, nNG = 0; 2497 testcase( p->tabFlags & TF_HasVirtual ); 2498 testcase( p->tabFlags & TF_HasStored ); 2499 for(ii=0; ii<p->nCol; ii++){ 2500 u32 colFlags = p->aCol[ii].colFlags; 2501 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2502 Expr *pX = p->aCol[ii].pDflt; 2503 testcase( colFlags & COLFLAG_VIRTUAL ); 2504 testcase( colFlags & COLFLAG_STORED ); 2505 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2506 /* If there are errors in resolving the expression, change the 2507 ** expression to a NULL. This prevents code generators that operate 2508 ** on the expression from inserting extra parts into the expression 2509 ** tree that have been allocated from lookaside memory, which is 2510 ** illegal in a schema and will lead to errors or heap corruption 2511 ** when the database connection closes. */ 2512 sqlite3ExprDelete(db, pX); 2513 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2514 } 2515 }else{ 2516 nNG++; 2517 } 2518 } 2519 if( nNG==0 ){ 2520 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2521 return; 2522 } 2523 } 2524 #endif 2525 2526 /* Estimate the average row size for the table and for all implied indices */ 2527 estimateTableWidth(p); 2528 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2529 estimateIndexWidth(pIdx); 2530 } 2531 2532 /* If not initializing, then create a record for the new table 2533 ** in the schema table of the database. 2534 ** 2535 ** If this is a TEMPORARY table, write the entry into the auxiliary 2536 ** file instead of into the main database file. 2537 */ 2538 if( !db->init.busy ){ 2539 int n; 2540 Vdbe *v; 2541 char *zType; /* "view" or "table" */ 2542 char *zType2; /* "VIEW" or "TABLE" */ 2543 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2544 2545 v = sqlite3GetVdbe(pParse); 2546 if( NEVER(v==0) ) return; 2547 2548 sqlite3VdbeAddOp1(v, OP_Close, 0); 2549 2550 /* 2551 ** Initialize zType for the new view or table. 2552 */ 2553 if( p->pSelect==0 ){ 2554 /* A regular table */ 2555 zType = "table"; 2556 zType2 = "TABLE"; 2557 #ifndef SQLITE_OMIT_VIEW 2558 }else{ 2559 /* A view */ 2560 zType = "view"; 2561 zType2 = "VIEW"; 2562 #endif 2563 } 2564 2565 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2566 ** statement to populate the new table. The root-page number for the 2567 ** new table is in register pParse->regRoot. 2568 ** 2569 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2570 ** suitable state to query for the column names and types to be used 2571 ** by the new table. 2572 ** 2573 ** A shared-cache write-lock is not required to write to the new table, 2574 ** as a schema-lock must have already been obtained to create it. Since 2575 ** a schema-lock excludes all other database users, the write-lock would 2576 ** be redundant. 2577 */ 2578 if( pSelect ){ 2579 SelectDest dest; /* Where the SELECT should store results */ 2580 int regYield; /* Register holding co-routine entry-point */ 2581 int addrTop; /* Top of the co-routine */ 2582 int regRec; /* A record to be insert into the new table */ 2583 int regRowid; /* Rowid of the next row to insert */ 2584 int addrInsLoop; /* Top of the loop for inserting rows */ 2585 Table *pSelTab; /* A table that describes the SELECT results */ 2586 2587 regYield = ++pParse->nMem; 2588 regRec = ++pParse->nMem; 2589 regRowid = ++pParse->nMem; 2590 assert(pParse->nTab==1); 2591 sqlite3MayAbort(pParse); 2592 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2593 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2594 pParse->nTab = 2; 2595 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2596 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2597 if( pParse->nErr ) return; 2598 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2599 if( pSelTab==0 ) return; 2600 assert( p->aCol==0 ); 2601 p->nCol = p->nNVCol = pSelTab->nCol; 2602 p->aCol = pSelTab->aCol; 2603 pSelTab->nCol = 0; 2604 pSelTab->aCol = 0; 2605 sqlite3DeleteTable(db, pSelTab); 2606 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2607 sqlite3Select(pParse, pSelect, &dest); 2608 if( pParse->nErr ) return; 2609 sqlite3VdbeEndCoroutine(v, regYield); 2610 sqlite3VdbeJumpHere(v, addrTop - 1); 2611 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2612 VdbeCoverage(v); 2613 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2614 sqlite3TableAffinity(v, p, 0); 2615 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2616 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2617 sqlite3VdbeGoto(v, addrInsLoop); 2618 sqlite3VdbeJumpHere(v, addrInsLoop); 2619 sqlite3VdbeAddOp1(v, OP_Close, 1); 2620 } 2621 2622 /* Compute the complete text of the CREATE statement */ 2623 if( pSelect ){ 2624 zStmt = createTableStmt(db, p); 2625 }else{ 2626 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2627 n = (int)(pEnd2->z - pParse->sNameToken.z); 2628 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2629 zStmt = sqlite3MPrintf(db, 2630 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2631 ); 2632 } 2633 2634 /* A slot for the record has already been allocated in the 2635 ** schema table. We just need to update that slot with all 2636 ** the information we've collected. 2637 */ 2638 sqlite3NestedParse(pParse, 2639 "UPDATE %Q." DFLT_SCHEMA_TABLE 2640 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2641 " WHERE rowid=#%d", 2642 db->aDb[iDb].zDbSName, 2643 zType, 2644 p->zName, 2645 p->zName, 2646 pParse->regRoot, 2647 zStmt, 2648 pParse->regRowid 2649 ); 2650 sqlite3DbFree(db, zStmt); 2651 sqlite3ChangeCookie(pParse, iDb); 2652 2653 #ifndef SQLITE_OMIT_AUTOINCREMENT 2654 /* Check to see if we need to create an sqlite_sequence table for 2655 ** keeping track of autoincrement keys. 2656 */ 2657 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2658 Db *pDb = &db->aDb[iDb]; 2659 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2660 if( pDb->pSchema->pSeqTab==0 ){ 2661 sqlite3NestedParse(pParse, 2662 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2663 pDb->zDbSName 2664 ); 2665 } 2666 } 2667 #endif 2668 2669 /* Reparse everything to update our internal data structures */ 2670 sqlite3VdbeAddParseSchemaOp(v, iDb, 2671 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2672 } 2673 2674 /* Add the table to the in-memory representation of the database. 2675 */ 2676 if( db->init.busy ){ 2677 Table *pOld; 2678 Schema *pSchema = p->pSchema; 2679 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2680 assert( HasRowid(p) || p->iPKey<0 ); 2681 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2682 if( pOld ){ 2683 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2684 sqlite3OomFault(db); 2685 return; 2686 } 2687 pParse->pNewTable = 0; 2688 db->mDbFlags |= DBFLAG_SchemaChange; 2689 2690 /* If this is the magic sqlite_sequence table used by autoincrement, 2691 ** then record a pointer to this table in the main database structure 2692 ** so that INSERT can find the table easily. */ 2693 assert( !pParse->nested ); 2694 #ifndef SQLITE_OMIT_AUTOINCREMENT 2695 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2696 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2697 p->pSchema->pSeqTab = p; 2698 } 2699 #endif 2700 } 2701 2702 #ifndef SQLITE_OMIT_ALTERTABLE 2703 if( !pSelect && !p->pSelect ){ 2704 assert( pCons && pEnd ); 2705 if( pCons->z==0 ){ 2706 pCons = pEnd; 2707 } 2708 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2709 } 2710 #endif 2711 } 2712 2713 #ifndef SQLITE_OMIT_VIEW 2714 /* 2715 ** The parser calls this routine in order to create a new VIEW 2716 */ 2717 void sqlite3CreateView( 2718 Parse *pParse, /* The parsing context */ 2719 Token *pBegin, /* The CREATE token that begins the statement */ 2720 Token *pName1, /* The token that holds the name of the view */ 2721 Token *pName2, /* The token that holds the name of the view */ 2722 ExprList *pCNames, /* Optional list of view column names */ 2723 Select *pSelect, /* A SELECT statement that will become the new view */ 2724 int isTemp, /* TRUE for a TEMPORARY view */ 2725 int noErr /* Suppress error messages if VIEW already exists */ 2726 ){ 2727 Table *p; 2728 int n; 2729 const char *z; 2730 Token sEnd; 2731 DbFixer sFix; 2732 Token *pName = 0; 2733 int iDb; 2734 sqlite3 *db = pParse->db; 2735 2736 if( pParse->nVar>0 ){ 2737 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2738 goto create_view_fail; 2739 } 2740 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2741 p = pParse->pNewTable; 2742 if( p==0 || pParse->nErr ) goto create_view_fail; 2743 2744 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2745 ** on a view, even though views do not have rowids. The following flag 2746 ** setting fixes this problem. But the fix can be disabled by compiling 2747 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2748 ** depend upon the old buggy behavior. */ 2749 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2750 p->tabFlags |= TF_NoVisibleRowid; 2751 #endif 2752 2753 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2754 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2755 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2756 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2757 2758 /* Make a copy of the entire SELECT statement that defines the view. 2759 ** This will force all the Expr.token.z values to be dynamically 2760 ** allocated rather than point to the input string - which means that 2761 ** they will persist after the current sqlite3_exec() call returns. 2762 */ 2763 pSelect->selFlags |= SF_View; 2764 if( IN_RENAME_OBJECT ){ 2765 p->pSelect = pSelect; 2766 pSelect = 0; 2767 }else{ 2768 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2769 } 2770 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2771 if( db->mallocFailed ) goto create_view_fail; 2772 2773 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2774 ** the end. 2775 */ 2776 sEnd = pParse->sLastToken; 2777 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2778 if( sEnd.z[0]!=';' ){ 2779 sEnd.z += sEnd.n; 2780 } 2781 sEnd.n = 0; 2782 n = (int)(sEnd.z - pBegin->z); 2783 assert( n>0 ); 2784 z = pBegin->z; 2785 while( sqlite3Isspace(z[n-1]) ){ n--; } 2786 sEnd.z = &z[n-1]; 2787 sEnd.n = 1; 2788 2789 /* Use sqlite3EndTable() to add the view to the schema table */ 2790 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2791 2792 create_view_fail: 2793 sqlite3SelectDelete(db, pSelect); 2794 if( IN_RENAME_OBJECT ){ 2795 sqlite3RenameExprlistUnmap(pParse, pCNames); 2796 } 2797 sqlite3ExprListDelete(db, pCNames); 2798 return; 2799 } 2800 #endif /* SQLITE_OMIT_VIEW */ 2801 2802 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2803 /* 2804 ** The Table structure pTable is really a VIEW. Fill in the names of 2805 ** the columns of the view in the pTable structure. Return the number 2806 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2807 */ 2808 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2809 Table *pSelTab; /* A fake table from which we get the result set */ 2810 Select *pSel; /* Copy of the SELECT that implements the view */ 2811 int nErr = 0; /* Number of errors encountered */ 2812 int n; /* Temporarily holds the number of cursors assigned */ 2813 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2814 #ifndef SQLITE_OMIT_VIRTUALTABLE 2815 int rc; 2816 #endif 2817 #ifndef SQLITE_OMIT_AUTHORIZATION 2818 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2819 #endif 2820 2821 assert( pTable ); 2822 2823 #ifndef SQLITE_OMIT_VIRTUALTABLE 2824 db->nSchemaLock++; 2825 rc = sqlite3VtabCallConnect(pParse, pTable); 2826 db->nSchemaLock--; 2827 if( rc ){ 2828 return 1; 2829 } 2830 if( IsVirtual(pTable) ) return 0; 2831 #endif 2832 2833 #ifndef SQLITE_OMIT_VIEW 2834 /* A positive nCol means the columns names for this view are 2835 ** already known. 2836 */ 2837 if( pTable->nCol>0 ) return 0; 2838 2839 /* A negative nCol is a special marker meaning that we are currently 2840 ** trying to compute the column names. If we enter this routine with 2841 ** a negative nCol, it means two or more views form a loop, like this: 2842 ** 2843 ** CREATE VIEW one AS SELECT * FROM two; 2844 ** CREATE VIEW two AS SELECT * FROM one; 2845 ** 2846 ** Actually, the error above is now caught prior to reaching this point. 2847 ** But the following test is still important as it does come up 2848 ** in the following: 2849 ** 2850 ** CREATE TABLE main.ex1(a); 2851 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2852 ** SELECT * FROM temp.ex1; 2853 */ 2854 if( pTable->nCol<0 ){ 2855 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2856 return 1; 2857 } 2858 assert( pTable->nCol>=0 ); 2859 2860 /* If we get this far, it means we need to compute the table names. 2861 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2862 ** "*" elements in the results set of the view and will assign cursors 2863 ** to the elements of the FROM clause. But we do not want these changes 2864 ** to be permanent. So the computation is done on a copy of the SELECT 2865 ** statement that defines the view. 2866 */ 2867 assert( pTable->pSelect ); 2868 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2869 if( pSel ){ 2870 u8 eParseMode = pParse->eParseMode; 2871 pParse->eParseMode = PARSE_MODE_NORMAL; 2872 n = pParse->nTab; 2873 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2874 pTable->nCol = -1; 2875 DisableLookaside; 2876 #ifndef SQLITE_OMIT_AUTHORIZATION 2877 xAuth = db->xAuth; 2878 db->xAuth = 0; 2879 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2880 db->xAuth = xAuth; 2881 #else 2882 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2883 #endif 2884 pParse->nTab = n; 2885 if( pSelTab==0 ){ 2886 pTable->nCol = 0; 2887 nErr++; 2888 }else if( pTable->pCheck ){ 2889 /* CREATE VIEW name(arglist) AS ... 2890 ** The names of the columns in the table are taken from 2891 ** arglist which is stored in pTable->pCheck. The pCheck field 2892 ** normally holds CHECK constraints on an ordinary table, but for 2893 ** a VIEW it holds the list of column names. 2894 */ 2895 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2896 &pTable->nCol, &pTable->aCol); 2897 if( db->mallocFailed==0 2898 && pParse->nErr==0 2899 && pTable->nCol==pSel->pEList->nExpr 2900 ){ 2901 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2902 SQLITE_AFF_NONE); 2903 } 2904 }else{ 2905 /* CREATE VIEW name AS... without an argument list. Construct 2906 ** the column names from the SELECT statement that defines the view. 2907 */ 2908 assert( pTable->aCol==0 ); 2909 pTable->nCol = pSelTab->nCol; 2910 pTable->aCol = pSelTab->aCol; 2911 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 2912 pSelTab->nCol = 0; 2913 pSelTab->aCol = 0; 2914 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2915 } 2916 pTable->nNVCol = pTable->nCol; 2917 sqlite3DeleteTable(db, pSelTab); 2918 sqlite3SelectDelete(db, pSel); 2919 EnableLookaside; 2920 pParse->eParseMode = eParseMode; 2921 } else { 2922 nErr++; 2923 } 2924 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2925 if( db->mallocFailed ){ 2926 sqlite3DeleteColumnNames(db, pTable); 2927 pTable->aCol = 0; 2928 pTable->nCol = 0; 2929 } 2930 #endif /* SQLITE_OMIT_VIEW */ 2931 return nErr; 2932 } 2933 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2934 2935 #ifndef SQLITE_OMIT_VIEW 2936 /* 2937 ** Clear the column names from every VIEW in database idx. 2938 */ 2939 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2940 HashElem *i; 2941 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2942 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2943 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2944 Table *pTab = sqliteHashData(i); 2945 if( pTab->pSelect ){ 2946 sqlite3DeleteColumnNames(db, pTab); 2947 pTab->aCol = 0; 2948 pTab->nCol = 0; 2949 } 2950 } 2951 DbClearProperty(db, idx, DB_UnresetViews); 2952 } 2953 #else 2954 # define sqliteViewResetAll(A,B) 2955 #endif /* SQLITE_OMIT_VIEW */ 2956 2957 /* 2958 ** This function is called by the VDBE to adjust the internal schema 2959 ** used by SQLite when the btree layer moves a table root page. The 2960 ** root-page of a table or index in database iDb has changed from iFrom 2961 ** to iTo. 2962 ** 2963 ** Ticket #1728: The symbol table might still contain information 2964 ** on tables and/or indices that are the process of being deleted. 2965 ** If you are unlucky, one of those deleted indices or tables might 2966 ** have the same rootpage number as the real table or index that is 2967 ** being moved. So we cannot stop searching after the first match 2968 ** because the first match might be for one of the deleted indices 2969 ** or tables and not the table/index that is actually being moved. 2970 ** We must continue looping until all tables and indices with 2971 ** rootpage==iFrom have been converted to have a rootpage of iTo 2972 ** in order to be certain that we got the right one. 2973 */ 2974 #ifndef SQLITE_OMIT_AUTOVACUUM 2975 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2976 HashElem *pElem; 2977 Hash *pHash; 2978 Db *pDb; 2979 2980 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2981 pDb = &db->aDb[iDb]; 2982 pHash = &pDb->pSchema->tblHash; 2983 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2984 Table *pTab = sqliteHashData(pElem); 2985 if( pTab->tnum==iFrom ){ 2986 pTab->tnum = iTo; 2987 } 2988 } 2989 pHash = &pDb->pSchema->idxHash; 2990 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2991 Index *pIdx = sqliteHashData(pElem); 2992 if( pIdx->tnum==iFrom ){ 2993 pIdx->tnum = iTo; 2994 } 2995 } 2996 } 2997 #endif 2998 2999 /* 3000 ** Write code to erase the table with root-page iTable from database iDb. 3001 ** Also write code to modify the sqlite_schema table and internal schema 3002 ** if a root-page of another table is moved by the btree-layer whilst 3003 ** erasing iTable (this can happen with an auto-vacuum database). 3004 */ 3005 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3006 Vdbe *v = sqlite3GetVdbe(pParse); 3007 int r1 = sqlite3GetTempReg(pParse); 3008 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3009 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3010 sqlite3MayAbort(pParse); 3011 #ifndef SQLITE_OMIT_AUTOVACUUM 3012 /* OP_Destroy stores an in integer r1. If this integer 3013 ** is non-zero, then it is the root page number of a table moved to 3014 ** location iTable. The following code modifies the sqlite_schema table to 3015 ** reflect this. 3016 ** 3017 ** The "#NNN" in the SQL is a special constant that means whatever value 3018 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3019 ** token for additional information. 3020 */ 3021 sqlite3NestedParse(pParse, 3022 "UPDATE %Q." DFLT_SCHEMA_TABLE 3023 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3024 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3025 #endif 3026 sqlite3ReleaseTempReg(pParse, r1); 3027 } 3028 3029 /* 3030 ** Write VDBE code to erase table pTab and all associated indices on disk. 3031 ** Code to update the sqlite_schema tables and internal schema definitions 3032 ** in case a root-page belonging to another table is moved by the btree layer 3033 ** is also added (this can happen with an auto-vacuum database). 3034 */ 3035 static void destroyTable(Parse *pParse, Table *pTab){ 3036 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3037 ** is not defined), then it is important to call OP_Destroy on the 3038 ** table and index root-pages in order, starting with the numerically 3039 ** largest root-page number. This guarantees that none of the root-pages 3040 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3041 ** following were coded: 3042 ** 3043 ** OP_Destroy 4 0 3044 ** ... 3045 ** OP_Destroy 5 0 3046 ** 3047 ** and root page 5 happened to be the largest root-page number in the 3048 ** database, then root page 5 would be moved to page 4 by the 3049 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3050 ** a free-list page. 3051 */ 3052 Pgno iTab = pTab->tnum; 3053 Pgno iDestroyed = 0; 3054 3055 while( 1 ){ 3056 Index *pIdx; 3057 Pgno iLargest = 0; 3058 3059 if( iDestroyed==0 || iTab<iDestroyed ){ 3060 iLargest = iTab; 3061 } 3062 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3063 Pgno iIdx = pIdx->tnum; 3064 assert( pIdx->pSchema==pTab->pSchema ); 3065 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3066 iLargest = iIdx; 3067 } 3068 } 3069 if( iLargest==0 ){ 3070 return; 3071 }else{ 3072 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3073 assert( iDb>=0 && iDb<pParse->db->nDb ); 3074 destroyRootPage(pParse, iLargest, iDb); 3075 iDestroyed = iLargest; 3076 } 3077 } 3078 } 3079 3080 /* 3081 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3082 ** after a DROP INDEX or DROP TABLE command. 3083 */ 3084 static void sqlite3ClearStatTables( 3085 Parse *pParse, /* The parsing context */ 3086 int iDb, /* The database number */ 3087 const char *zType, /* "idx" or "tbl" */ 3088 const char *zName /* Name of index or table */ 3089 ){ 3090 int i; 3091 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3092 for(i=1; i<=4; i++){ 3093 char zTab[24]; 3094 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3095 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3096 sqlite3NestedParse(pParse, 3097 "DELETE FROM %Q.%s WHERE %s=%Q", 3098 zDbName, zTab, zType, zName 3099 ); 3100 } 3101 } 3102 } 3103 3104 /* 3105 ** Generate code to drop a table. 3106 */ 3107 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3108 Vdbe *v; 3109 sqlite3 *db = pParse->db; 3110 Trigger *pTrigger; 3111 Db *pDb = &db->aDb[iDb]; 3112 3113 v = sqlite3GetVdbe(pParse); 3114 assert( v!=0 ); 3115 sqlite3BeginWriteOperation(pParse, 1, iDb); 3116 3117 #ifndef SQLITE_OMIT_VIRTUALTABLE 3118 if( IsVirtual(pTab) ){ 3119 sqlite3VdbeAddOp0(v, OP_VBegin); 3120 } 3121 #endif 3122 3123 /* Drop all triggers associated with the table being dropped. Code 3124 ** is generated to remove entries from sqlite_schema and/or 3125 ** sqlite_temp_schema if required. 3126 */ 3127 pTrigger = sqlite3TriggerList(pParse, pTab); 3128 while( pTrigger ){ 3129 assert( pTrigger->pSchema==pTab->pSchema || 3130 pTrigger->pSchema==db->aDb[1].pSchema ); 3131 sqlite3DropTriggerPtr(pParse, pTrigger); 3132 pTrigger = pTrigger->pNext; 3133 } 3134 3135 #ifndef SQLITE_OMIT_AUTOINCREMENT 3136 /* Remove any entries of the sqlite_sequence table associated with 3137 ** the table being dropped. This is done before the table is dropped 3138 ** at the btree level, in case the sqlite_sequence table needs to 3139 ** move as a result of the drop (can happen in auto-vacuum mode). 3140 */ 3141 if( pTab->tabFlags & TF_Autoincrement ){ 3142 sqlite3NestedParse(pParse, 3143 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3144 pDb->zDbSName, pTab->zName 3145 ); 3146 } 3147 #endif 3148 3149 /* Drop all entries in the schema table that refer to the 3150 ** table. The program name loops through the schema table and deletes 3151 ** every row that refers to a table of the same name as the one being 3152 ** dropped. Triggers are handled separately because a trigger can be 3153 ** created in the temp database that refers to a table in another 3154 ** database. 3155 */ 3156 sqlite3NestedParse(pParse, 3157 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3158 " WHERE tbl_name=%Q and type!='trigger'", 3159 pDb->zDbSName, pTab->zName); 3160 if( !isView && !IsVirtual(pTab) ){ 3161 destroyTable(pParse, pTab); 3162 } 3163 3164 /* Remove the table entry from SQLite's internal schema and modify 3165 ** the schema cookie. 3166 */ 3167 if( IsVirtual(pTab) ){ 3168 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3169 sqlite3MayAbort(pParse); 3170 } 3171 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3172 sqlite3ChangeCookie(pParse, iDb); 3173 sqliteViewResetAll(db, iDb); 3174 } 3175 3176 /* 3177 ** Return TRUE if shadow tables should be read-only in the current 3178 ** context. 3179 */ 3180 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3181 #ifndef SQLITE_OMIT_VIRTUALTABLE 3182 if( (db->flags & SQLITE_Defensive)!=0 3183 && db->pVtabCtx==0 3184 && db->nVdbeExec==0 3185 && !sqlite3VtabInSync(db) 3186 ){ 3187 return 1; 3188 } 3189 #endif 3190 return 0; 3191 } 3192 3193 /* 3194 ** Return true if it is not allowed to drop the given table 3195 */ 3196 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3197 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3198 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3199 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3200 return 1; 3201 } 3202 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3203 return 1; 3204 } 3205 return 0; 3206 } 3207 3208 /* 3209 ** This routine is called to do the work of a DROP TABLE statement. 3210 ** pName is the name of the table to be dropped. 3211 */ 3212 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3213 Table *pTab; 3214 Vdbe *v; 3215 sqlite3 *db = pParse->db; 3216 int iDb; 3217 3218 if( db->mallocFailed ){ 3219 goto exit_drop_table; 3220 } 3221 assert( pParse->nErr==0 ); 3222 assert( pName->nSrc==1 ); 3223 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3224 if( noErr ) db->suppressErr++; 3225 assert( isView==0 || isView==LOCATE_VIEW ); 3226 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3227 if( noErr ) db->suppressErr--; 3228 3229 if( pTab==0 ){ 3230 if( noErr ){ 3231 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3232 sqlite3ForceNotReadOnly(pParse); 3233 } 3234 goto exit_drop_table; 3235 } 3236 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3237 assert( iDb>=0 && iDb<db->nDb ); 3238 3239 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3240 ** it is initialized. 3241 */ 3242 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3243 goto exit_drop_table; 3244 } 3245 #ifndef SQLITE_OMIT_AUTHORIZATION 3246 { 3247 int code; 3248 const char *zTab = SCHEMA_TABLE(iDb); 3249 const char *zDb = db->aDb[iDb].zDbSName; 3250 const char *zArg2 = 0; 3251 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3252 goto exit_drop_table; 3253 } 3254 if( isView ){ 3255 if( !OMIT_TEMPDB && iDb==1 ){ 3256 code = SQLITE_DROP_TEMP_VIEW; 3257 }else{ 3258 code = SQLITE_DROP_VIEW; 3259 } 3260 #ifndef SQLITE_OMIT_VIRTUALTABLE 3261 }else if( IsVirtual(pTab) ){ 3262 code = SQLITE_DROP_VTABLE; 3263 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3264 #endif 3265 }else{ 3266 if( !OMIT_TEMPDB && iDb==1 ){ 3267 code = SQLITE_DROP_TEMP_TABLE; 3268 }else{ 3269 code = SQLITE_DROP_TABLE; 3270 } 3271 } 3272 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3273 goto exit_drop_table; 3274 } 3275 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3276 goto exit_drop_table; 3277 } 3278 } 3279 #endif 3280 if( tableMayNotBeDropped(db, pTab) ){ 3281 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3282 goto exit_drop_table; 3283 } 3284 3285 #ifndef SQLITE_OMIT_VIEW 3286 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3287 ** on a table. 3288 */ 3289 if( isView && pTab->pSelect==0 ){ 3290 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3291 goto exit_drop_table; 3292 } 3293 if( !isView && pTab->pSelect ){ 3294 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3295 goto exit_drop_table; 3296 } 3297 #endif 3298 3299 /* Generate code to remove the table from the schema table 3300 ** on disk. 3301 */ 3302 v = sqlite3GetVdbe(pParse); 3303 if( v ){ 3304 sqlite3BeginWriteOperation(pParse, 1, iDb); 3305 if( !isView ){ 3306 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3307 sqlite3FkDropTable(pParse, pName, pTab); 3308 } 3309 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3310 } 3311 3312 exit_drop_table: 3313 sqlite3SrcListDelete(db, pName); 3314 } 3315 3316 /* 3317 ** This routine is called to create a new foreign key on the table 3318 ** currently under construction. pFromCol determines which columns 3319 ** in the current table point to the foreign key. If pFromCol==0 then 3320 ** connect the key to the last column inserted. pTo is the name of 3321 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3322 ** of tables in the parent pTo table. flags contains all 3323 ** information about the conflict resolution algorithms specified 3324 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3325 ** 3326 ** An FKey structure is created and added to the table currently 3327 ** under construction in the pParse->pNewTable field. 3328 ** 3329 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3330 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3331 */ 3332 void sqlite3CreateForeignKey( 3333 Parse *pParse, /* Parsing context */ 3334 ExprList *pFromCol, /* Columns in this table that point to other table */ 3335 Token *pTo, /* Name of the other table */ 3336 ExprList *pToCol, /* Columns in the other table */ 3337 int flags /* Conflict resolution algorithms. */ 3338 ){ 3339 sqlite3 *db = pParse->db; 3340 #ifndef SQLITE_OMIT_FOREIGN_KEY 3341 FKey *pFKey = 0; 3342 FKey *pNextTo; 3343 Table *p = pParse->pNewTable; 3344 int nByte; 3345 int i; 3346 int nCol; 3347 char *z; 3348 3349 assert( pTo!=0 ); 3350 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3351 if( pFromCol==0 ){ 3352 int iCol = p->nCol-1; 3353 if( NEVER(iCol<0) ) goto fk_end; 3354 if( pToCol && pToCol->nExpr!=1 ){ 3355 sqlite3ErrorMsg(pParse, "foreign key on %s" 3356 " should reference only one column of table %T", 3357 p->aCol[iCol].zName, pTo); 3358 goto fk_end; 3359 } 3360 nCol = 1; 3361 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3362 sqlite3ErrorMsg(pParse, 3363 "number of columns in foreign key does not match the number of " 3364 "columns in the referenced table"); 3365 goto fk_end; 3366 }else{ 3367 nCol = pFromCol->nExpr; 3368 } 3369 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3370 if( pToCol ){ 3371 for(i=0; i<pToCol->nExpr; i++){ 3372 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3373 } 3374 } 3375 pFKey = sqlite3DbMallocZero(db, nByte ); 3376 if( pFKey==0 ){ 3377 goto fk_end; 3378 } 3379 pFKey->pFrom = p; 3380 pFKey->pNextFrom = p->pFKey; 3381 z = (char*)&pFKey->aCol[nCol]; 3382 pFKey->zTo = z; 3383 if( IN_RENAME_OBJECT ){ 3384 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3385 } 3386 memcpy(z, pTo->z, pTo->n); 3387 z[pTo->n] = 0; 3388 sqlite3Dequote(z); 3389 z += pTo->n+1; 3390 pFKey->nCol = nCol; 3391 if( pFromCol==0 ){ 3392 pFKey->aCol[0].iFrom = p->nCol-1; 3393 }else{ 3394 for(i=0; i<nCol; i++){ 3395 int j; 3396 for(j=0; j<p->nCol; j++){ 3397 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3398 pFKey->aCol[i].iFrom = j; 3399 break; 3400 } 3401 } 3402 if( j>=p->nCol ){ 3403 sqlite3ErrorMsg(pParse, 3404 "unknown column \"%s\" in foreign key definition", 3405 pFromCol->a[i].zEName); 3406 goto fk_end; 3407 } 3408 if( IN_RENAME_OBJECT ){ 3409 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3410 } 3411 } 3412 } 3413 if( pToCol ){ 3414 for(i=0; i<nCol; i++){ 3415 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3416 pFKey->aCol[i].zCol = z; 3417 if( IN_RENAME_OBJECT ){ 3418 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3419 } 3420 memcpy(z, pToCol->a[i].zEName, n); 3421 z[n] = 0; 3422 z += n+1; 3423 } 3424 } 3425 pFKey->isDeferred = 0; 3426 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3427 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3428 3429 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3430 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3431 pFKey->zTo, (void *)pFKey 3432 ); 3433 if( pNextTo==pFKey ){ 3434 sqlite3OomFault(db); 3435 goto fk_end; 3436 } 3437 if( pNextTo ){ 3438 assert( pNextTo->pPrevTo==0 ); 3439 pFKey->pNextTo = pNextTo; 3440 pNextTo->pPrevTo = pFKey; 3441 } 3442 3443 /* Link the foreign key to the table as the last step. 3444 */ 3445 p->pFKey = pFKey; 3446 pFKey = 0; 3447 3448 fk_end: 3449 sqlite3DbFree(db, pFKey); 3450 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3451 sqlite3ExprListDelete(db, pFromCol); 3452 sqlite3ExprListDelete(db, pToCol); 3453 } 3454 3455 /* 3456 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3457 ** clause is seen as part of a foreign key definition. The isDeferred 3458 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3459 ** The behavior of the most recently created foreign key is adjusted 3460 ** accordingly. 3461 */ 3462 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3463 #ifndef SQLITE_OMIT_FOREIGN_KEY 3464 Table *pTab; 3465 FKey *pFKey; 3466 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3467 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3468 pFKey->isDeferred = (u8)isDeferred; 3469 #endif 3470 } 3471 3472 /* 3473 ** Generate code that will erase and refill index *pIdx. This is 3474 ** used to initialize a newly created index or to recompute the 3475 ** content of an index in response to a REINDEX command. 3476 ** 3477 ** if memRootPage is not negative, it means that the index is newly 3478 ** created. The register specified by memRootPage contains the 3479 ** root page number of the index. If memRootPage is negative, then 3480 ** the index already exists and must be cleared before being refilled and 3481 ** the root page number of the index is taken from pIndex->tnum. 3482 */ 3483 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3484 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3485 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3486 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3487 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3488 int addr1; /* Address of top of loop */ 3489 int addr2; /* Address to jump to for next iteration */ 3490 Pgno tnum; /* Root page of index */ 3491 int iPartIdxLabel; /* Jump to this label to skip a row */ 3492 Vdbe *v; /* Generate code into this virtual machine */ 3493 KeyInfo *pKey; /* KeyInfo for index */ 3494 int regRecord; /* Register holding assembled index record */ 3495 sqlite3 *db = pParse->db; /* The database connection */ 3496 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3497 3498 #ifndef SQLITE_OMIT_AUTHORIZATION 3499 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3500 db->aDb[iDb].zDbSName ) ){ 3501 return; 3502 } 3503 #endif 3504 3505 /* Require a write-lock on the table to perform this operation */ 3506 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3507 3508 v = sqlite3GetVdbe(pParse); 3509 if( v==0 ) return; 3510 if( memRootPage>=0 ){ 3511 tnum = (Pgno)memRootPage; 3512 }else{ 3513 tnum = pIndex->tnum; 3514 } 3515 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3516 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3517 3518 /* Open the sorter cursor if we are to use one. */ 3519 iSorter = pParse->nTab++; 3520 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3521 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3522 3523 /* Open the table. Loop through all rows of the table, inserting index 3524 ** records into the sorter. */ 3525 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3526 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3527 regRecord = sqlite3GetTempReg(pParse); 3528 sqlite3MultiWrite(pParse); 3529 3530 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3531 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3532 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3533 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3534 sqlite3VdbeJumpHere(v, addr1); 3535 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3536 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3537 (char *)pKey, P4_KEYINFO); 3538 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3539 3540 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3541 if( IsUniqueIndex(pIndex) ){ 3542 int j2 = sqlite3VdbeGoto(v, 1); 3543 addr2 = sqlite3VdbeCurrentAddr(v); 3544 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3545 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3546 pIndex->nKeyCol); VdbeCoverage(v); 3547 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3548 sqlite3VdbeJumpHere(v, j2); 3549 }else{ 3550 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3551 ** abort. The exception is if one of the indexed expressions contains a 3552 ** user function that throws an exception when it is evaluated. But the 3553 ** overhead of adding a statement journal to a CREATE INDEX statement is 3554 ** very small (since most of the pages written do not contain content that 3555 ** needs to be restored if the statement aborts), so we call 3556 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3557 sqlite3MayAbort(pParse); 3558 addr2 = sqlite3VdbeCurrentAddr(v); 3559 } 3560 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3561 if( !pIndex->bAscKeyBug ){ 3562 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3563 ** faster by avoiding unnecessary seeks. But the optimization does 3564 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3565 ** with DESC primary keys, since those indexes have there keys in 3566 ** a different order from the main table. 3567 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3568 */ 3569 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3570 } 3571 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3572 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3573 sqlite3ReleaseTempReg(pParse, regRecord); 3574 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3575 sqlite3VdbeJumpHere(v, addr1); 3576 3577 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3578 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3579 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3580 } 3581 3582 /* 3583 ** Allocate heap space to hold an Index object with nCol columns. 3584 ** 3585 ** Increase the allocation size to provide an extra nExtra bytes 3586 ** of 8-byte aligned space after the Index object and return a 3587 ** pointer to this extra space in *ppExtra. 3588 */ 3589 Index *sqlite3AllocateIndexObject( 3590 sqlite3 *db, /* Database connection */ 3591 i16 nCol, /* Total number of columns in the index */ 3592 int nExtra, /* Number of bytes of extra space to alloc */ 3593 char **ppExtra /* Pointer to the "extra" space */ 3594 ){ 3595 Index *p; /* Allocated index object */ 3596 int nByte; /* Bytes of space for Index object + arrays */ 3597 3598 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3599 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3600 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3601 sizeof(i16)*nCol + /* Index.aiColumn */ 3602 sizeof(u8)*nCol); /* Index.aSortOrder */ 3603 p = sqlite3DbMallocZero(db, nByte + nExtra); 3604 if( p ){ 3605 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3606 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3607 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3608 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3609 p->aSortOrder = (u8*)pExtra; 3610 p->nColumn = nCol; 3611 p->nKeyCol = nCol - 1; 3612 *ppExtra = ((char*)p) + nByte; 3613 } 3614 return p; 3615 } 3616 3617 /* 3618 ** If expression list pList contains an expression that was parsed with 3619 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3620 ** pParse and return non-zero. Otherwise, return zero. 3621 */ 3622 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3623 if( pList ){ 3624 int i; 3625 for(i=0; i<pList->nExpr; i++){ 3626 if( pList->a[i].bNulls ){ 3627 u8 sf = pList->a[i].sortFlags; 3628 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3629 (sf==0 || sf==3) ? "FIRST" : "LAST" 3630 ); 3631 return 1; 3632 } 3633 } 3634 } 3635 return 0; 3636 } 3637 3638 /* 3639 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3640 ** and pTblList is the name of the table that is to be indexed. Both will 3641 ** be NULL for a primary key or an index that is created to satisfy a 3642 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3643 ** as the table to be indexed. pParse->pNewTable is a table that is 3644 ** currently being constructed by a CREATE TABLE statement. 3645 ** 3646 ** pList is a list of columns to be indexed. pList will be NULL if this 3647 ** is a primary key or unique-constraint on the most recent column added 3648 ** to the table currently under construction. 3649 */ 3650 void sqlite3CreateIndex( 3651 Parse *pParse, /* All information about this parse */ 3652 Token *pName1, /* First part of index name. May be NULL */ 3653 Token *pName2, /* Second part of index name. May be NULL */ 3654 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3655 ExprList *pList, /* A list of columns to be indexed */ 3656 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3657 Token *pStart, /* The CREATE token that begins this statement */ 3658 Expr *pPIWhere, /* WHERE clause for partial indices */ 3659 int sortOrder, /* Sort order of primary key when pList==NULL */ 3660 int ifNotExist, /* Omit error if index already exists */ 3661 u8 idxType /* The index type */ 3662 ){ 3663 Table *pTab = 0; /* Table to be indexed */ 3664 Index *pIndex = 0; /* The index to be created */ 3665 char *zName = 0; /* Name of the index */ 3666 int nName; /* Number of characters in zName */ 3667 int i, j; 3668 DbFixer sFix; /* For assigning database names to pTable */ 3669 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3670 sqlite3 *db = pParse->db; 3671 Db *pDb; /* The specific table containing the indexed database */ 3672 int iDb; /* Index of the database that is being written */ 3673 Token *pName = 0; /* Unqualified name of the index to create */ 3674 struct ExprList_item *pListItem; /* For looping over pList */ 3675 int nExtra = 0; /* Space allocated for zExtra[] */ 3676 int nExtraCol; /* Number of extra columns needed */ 3677 char *zExtra = 0; /* Extra space after the Index object */ 3678 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3679 3680 if( db->mallocFailed || pParse->nErr>0 ){ 3681 goto exit_create_index; 3682 } 3683 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3684 goto exit_create_index; 3685 } 3686 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3687 goto exit_create_index; 3688 } 3689 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3690 goto exit_create_index; 3691 } 3692 3693 /* 3694 ** Find the table that is to be indexed. Return early if not found. 3695 */ 3696 if( pTblName!=0 ){ 3697 3698 /* Use the two-part index name to determine the database 3699 ** to search for the table. 'Fix' the table name to this db 3700 ** before looking up the table. 3701 */ 3702 assert( pName1 && pName2 ); 3703 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3704 if( iDb<0 ) goto exit_create_index; 3705 assert( pName && pName->z ); 3706 3707 #ifndef SQLITE_OMIT_TEMPDB 3708 /* If the index name was unqualified, check if the table 3709 ** is a temp table. If so, set the database to 1. Do not do this 3710 ** if initialising a database schema. 3711 */ 3712 if( !db->init.busy ){ 3713 pTab = sqlite3SrcListLookup(pParse, pTblName); 3714 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3715 iDb = 1; 3716 } 3717 } 3718 #endif 3719 3720 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3721 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3722 /* Because the parser constructs pTblName from a single identifier, 3723 ** sqlite3FixSrcList can never fail. */ 3724 assert(0); 3725 } 3726 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3727 assert( db->mallocFailed==0 || pTab==0 ); 3728 if( pTab==0 ) goto exit_create_index; 3729 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3730 sqlite3ErrorMsg(pParse, 3731 "cannot create a TEMP index on non-TEMP table \"%s\"", 3732 pTab->zName); 3733 goto exit_create_index; 3734 } 3735 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3736 }else{ 3737 assert( pName==0 ); 3738 assert( pStart==0 ); 3739 pTab = pParse->pNewTable; 3740 if( !pTab ) goto exit_create_index; 3741 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3742 } 3743 pDb = &db->aDb[iDb]; 3744 3745 assert( pTab!=0 ); 3746 assert( pParse->nErr==0 ); 3747 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3748 && db->init.busy==0 3749 && pTblName!=0 3750 #if SQLITE_USER_AUTHENTICATION 3751 && sqlite3UserAuthTable(pTab->zName)==0 3752 #endif 3753 ){ 3754 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3755 goto exit_create_index; 3756 } 3757 #ifndef SQLITE_OMIT_VIEW 3758 if( pTab->pSelect ){ 3759 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3760 goto exit_create_index; 3761 } 3762 #endif 3763 #ifndef SQLITE_OMIT_VIRTUALTABLE 3764 if( IsVirtual(pTab) ){ 3765 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3766 goto exit_create_index; 3767 } 3768 #endif 3769 3770 /* 3771 ** Find the name of the index. Make sure there is not already another 3772 ** index or table with the same name. 3773 ** 3774 ** Exception: If we are reading the names of permanent indices from the 3775 ** sqlite_schema table (because some other process changed the schema) and 3776 ** one of the index names collides with the name of a temporary table or 3777 ** index, then we will continue to process this index. 3778 ** 3779 ** If pName==0 it means that we are 3780 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3781 ** own name. 3782 */ 3783 if( pName ){ 3784 zName = sqlite3NameFromToken(db, pName); 3785 if( zName==0 ) goto exit_create_index; 3786 assert( pName->z!=0 ); 3787 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3788 goto exit_create_index; 3789 } 3790 if( !IN_RENAME_OBJECT ){ 3791 if( !db->init.busy ){ 3792 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3793 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3794 goto exit_create_index; 3795 } 3796 } 3797 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3798 if( !ifNotExist ){ 3799 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3800 }else{ 3801 assert( !db->init.busy ); 3802 sqlite3CodeVerifySchema(pParse, iDb); 3803 sqlite3ForceNotReadOnly(pParse); 3804 } 3805 goto exit_create_index; 3806 } 3807 } 3808 }else{ 3809 int n; 3810 Index *pLoop; 3811 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3812 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3813 if( zName==0 ){ 3814 goto exit_create_index; 3815 } 3816 3817 /* Automatic index names generated from within sqlite3_declare_vtab() 3818 ** must have names that are distinct from normal automatic index names. 3819 ** The following statement converts "sqlite3_autoindex..." into 3820 ** "sqlite3_butoindex..." in order to make the names distinct. 3821 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3822 if( IN_SPECIAL_PARSE ) zName[7]++; 3823 } 3824 3825 /* Check for authorization to create an index. 3826 */ 3827 #ifndef SQLITE_OMIT_AUTHORIZATION 3828 if( !IN_RENAME_OBJECT ){ 3829 const char *zDb = pDb->zDbSName; 3830 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3831 goto exit_create_index; 3832 } 3833 i = SQLITE_CREATE_INDEX; 3834 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3835 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3836 goto exit_create_index; 3837 } 3838 } 3839 #endif 3840 3841 /* If pList==0, it means this routine was called to make a primary 3842 ** key out of the last column added to the table under construction. 3843 ** So create a fake list to simulate this. 3844 */ 3845 if( pList==0 ){ 3846 Token prevCol; 3847 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3848 pCol->colFlags |= COLFLAG_UNIQUE; 3849 sqlite3TokenInit(&prevCol, pCol->zName); 3850 pList = sqlite3ExprListAppend(pParse, 0, 3851 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3852 if( pList==0 ) goto exit_create_index; 3853 assert( pList->nExpr==1 ); 3854 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3855 }else{ 3856 sqlite3ExprListCheckLength(pParse, pList, "index"); 3857 if( pParse->nErr ) goto exit_create_index; 3858 } 3859 3860 /* Figure out how many bytes of space are required to store explicitly 3861 ** specified collation sequence names. 3862 */ 3863 for(i=0; i<pList->nExpr; i++){ 3864 Expr *pExpr = pList->a[i].pExpr; 3865 assert( pExpr!=0 ); 3866 if( pExpr->op==TK_COLLATE ){ 3867 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3868 } 3869 } 3870 3871 /* 3872 ** Allocate the index structure. 3873 */ 3874 nName = sqlite3Strlen30(zName); 3875 nExtraCol = pPk ? pPk->nKeyCol : 1; 3876 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3877 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3878 nName + nExtra + 1, &zExtra); 3879 if( db->mallocFailed ){ 3880 goto exit_create_index; 3881 } 3882 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3883 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3884 pIndex->zName = zExtra; 3885 zExtra += nName + 1; 3886 memcpy(pIndex->zName, zName, nName+1); 3887 pIndex->pTable = pTab; 3888 pIndex->onError = (u8)onError; 3889 pIndex->uniqNotNull = onError!=OE_None; 3890 pIndex->idxType = idxType; 3891 pIndex->pSchema = db->aDb[iDb].pSchema; 3892 pIndex->nKeyCol = pList->nExpr; 3893 if( pPIWhere ){ 3894 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3895 pIndex->pPartIdxWhere = pPIWhere; 3896 pPIWhere = 0; 3897 } 3898 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3899 3900 /* Check to see if we should honor DESC requests on index columns 3901 */ 3902 if( pDb->pSchema->file_format>=4 ){ 3903 sortOrderMask = -1; /* Honor DESC */ 3904 }else{ 3905 sortOrderMask = 0; /* Ignore DESC */ 3906 } 3907 3908 /* Analyze the list of expressions that form the terms of the index and 3909 ** report any errors. In the common case where the expression is exactly 3910 ** a table column, store that column in aiColumn[]. For general expressions, 3911 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3912 ** 3913 ** TODO: Issue a warning if two or more columns of the index are identical. 3914 ** TODO: Issue a warning if the table primary key is used as part of the 3915 ** index key. 3916 */ 3917 pListItem = pList->a; 3918 if( IN_RENAME_OBJECT ){ 3919 pIndex->aColExpr = pList; 3920 pList = 0; 3921 } 3922 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3923 Expr *pCExpr; /* The i-th index expression */ 3924 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3925 const char *zColl; /* Collation sequence name */ 3926 3927 sqlite3StringToId(pListItem->pExpr); 3928 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3929 if( pParse->nErr ) goto exit_create_index; 3930 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3931 if( pCExpr->op!=TK_COLUMN ){ 3932 if( pTab==pParse->pNewTable ){ 3933 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3934 "UNIQUE constraints"); 3935 goto exit_create_index; 3936 } 3937 if( pIndex->aColExpr==0 ){ 3938 pIndex->aColExpr = pList; 3939 pList = 0; 3940 } 3941 j = XN_EXPR; 3942 pIndex->aiColumn[i] = XN_EXPR; 3943 pIndex->uniqNotNull = 0; 3944 }else{ 3945 j = pCExpr->iColumn; 3946 assert( j<=0x7fff ); 3947 if( j<0 ){ 3948 j = pTab->iPKey; 3949 }else{ 3950 if( pTab->aCol[j].notNull==0 ){ 3951 pIndex->uniqNotNull = 0; 3952 } 3953 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3954 pIndex->bHasVCol = 1; 3955 } 3956 } 3957 pIndex->aiColumn[i] = (i16)j; 3958 } 3959 zColl = 0; 3960 if( pListItem->pExpr->op==TK_COLLATE ){ 3961 int nColl; 3962 zColl = pListItem->pExpr->u.zToken; 3963 nColl = sqlite3Strlen30(zColl) + 1; 3964 assert( nExtra>=nColl ); 3965 memcpy(zExtra, zColl, nColl); 3966 zColl = zExtra; 3967 zExtra += nColl; 3968 nExtra -= nColl; 3969 }else if( j>=0 ){ 3970 zColl = pTab->aCol[j].zColl; 3971 } 3972 if( !zColl ) zColl = sqlite3StrBINARY; 3973 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3974 goto exit_create_index; 3975 } 3976 pIndex->azColl[i] = zColl; 3977 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3978 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3979 } 3980 3981 /* Append the table key to the end of the index. For WITHOUT ROWID 3982 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3983 ** normal tables (when pPk==0) this will be the rowid. 3984 */ 3985 if( pPk ){ 3986 for(j=0; j<pPk->nKeyCol; j++){ 3987 int x = pPk->aiColumn[j]; 3988 assert( x>=0 ); 3989 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3990 pIndex->nColumn--; 3991 }else{ 3992 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3993 pIndex->aiColumn[i] = x; 3994 pIndex->azColl[i] = pPk->azColl[j]; 3995 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3996 i++; 3997 } 3998 } 3999 assert( i==pIndex->nColumn ); 4000 }else{ 4001 pIndex->aiColumn[i] = XN_ROWID; 4002 pIndex->azColl[i] = sqlite3StrBINARY; 4003 } 4004 sqlite3DefaultRowEst(pIndex); 4005 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4006 4007 /* If this index contains every column of its table, then mark 4008 ** it as a covering index */ 4009 assert( HasRowid(pTab) 4010 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4011 recomputeColumnsNotIndexed(pIndex); 4012 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4013 pIndex->isCovering = 1; 4014 for(j=0; j<pTab->nCol; j++){ 4015 if( j==pTab->iPKey ) continue; 4016 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4017 pIndex->isCovering = 0; 4018 break; 4019 } 4020 } 4021 4022 if( pTab==pParse->pNewTable ){ 4023 /* This routine has been called to create an automatic index as a 4024 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4025 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4026 ** i.e. one of: 4027 ** 4028 ** CREATE TABLE t(x PRIMARY KEY, y); 4029 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4030 ** 4031 ** Either way, check to see if the table already has such an index. If 4032 ** so, don't bother creating this one. This only applies to 4033 ** automatically created indices. Users can do as they wish with 4034 ** explicit indices. 4035 ** 4036 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4037 ** (and thus suppressing the second one) even if they have different 4038 ** sort orders. 4039 ** 4040 ** If there are different collating sequences or if the columns of 4041 ** the constraint occur in different orders, then the constraints are 4042 ** considered distinct and both result in separate indices. 4043 */ 4044 Index *pIdx; 4045 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4046 int k; 4047 assert( IsUniqueIndex(pIdx) ); 4048 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4049 assert( IsUniqueIndex(pIndex) ); 4050 4051 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4052 for(k=0; k<pIdx->nKeyCol; k++){ 4053 const char *z1; 4054 const char *z2; 4055 assert( pIdx->aiColumn[k]>=0 ); 4056 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4057 z1 = pIdx->azColl[k]; 4058 z2 = pIndex->azColl[k]; 4059 if( sqlite3StrICmp(z1, z2) ) break; 4060 } 4061 if( k==pIdx->nKeyCol ){ 4062 if( pIdx->onError!=pIndex->onError ){ 4063 /* This constraint creates the same index as a previous 4064 ** constraint specified somewhere in the CREATE TABLE statement. 4065 ** However the ON CONFLICT clauses are different. If both this 4066 ** constraint and the previous equivalent constraint have explicit 4067 ** ON CONFLICT clauses this is an error. Otherwise, use the 4068 ** explicitly specified behavior for the index. 4069 */ 4070 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4071 sqlite3ErrorMsg(pParse, 4072 "conflicting ON CONFLICT clauses specified", 0); 4073 } 4074 if( pIdx->onError==OE_Default ){ 4075 pIdx->onError = pIndex->onError; 4076 } 4077 } 4078 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4079 if( IN_RENAME_OBJECT ){ 4080 pIndex->pNext = pParse->pNewIndex; 4081 pParse->pNewIndex = pIndex; 4082 pIndex = 0; 4083 } 4084 goto exit_create_index; 4085 } 4086 } 4087 } 4088 4089 if( !IN_RENAME_OBJECT ){ 4090 4091 /* Link the new Index structure to its table and to the other 4092 ** in-memory database structures. 4093 */ 4094 assert( pParse->nErr==0 ); 4095 if( db->init.busy ){ 4096 Index *p; 4097 assert( !IN_SPECIAL_PARSE ); 4098 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4099 if( pTblName!=0 ){ 4100 pIndex->tnum = db->init.newTnum; 4101 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4102 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4103 pParse->rc = SQLITE_CORRUPT_BKPT; 4104 goto exit_create_index; 4105 } 4106 } 4107 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4108 pIndex->zName, pIndex); 4109 if( p ){ 4110 assert( p==pIndex ); /* Malloc must have failed */ 4111 sqlite3OomFault(db); 4112 goto exit_create_index; 4113 } 4114 db->mDbFlags |= DBFLAG_SchemaChange; 4115 } 4116 4117 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4118 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4119 ** emit code to allocate the index rootpage on disk and make an entry for 4120 ** the index in the sqlite_schema table and populate the index with 4121 ** content. But, do not do this if we are simply reading the sqlite_schema 4122 ** table to parse the schema, or if this index is the PRIMARY KEY index 4123 ** of a WITHOUT ROWID table. 4124 ** 4125 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4126 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4127 ** has just been created, it contains no data and the index initialization 4128 ** step can be skipped. 4129 */ 4130 else if( HasRowid(pTab) || pTblName!=0 ){ 4131 Vdbe *v; 4132 char *zStmt; 4133 int iMem = ++pParse->nMem; 4134 4135 v = sqlite3GetVdbe(pParse); 4136 if( v==0 ) goto exit_create_index; 4137 4138 sqlite3BeginWriteOperation(pParse, 1, iDb); 4139 4140 /* Create the rootpage for the index using CreateIndex. But before 4141 ** doing so, code a Noop instruction and store its address in 4142 ** Index.tnum. This is required in case this index is actually a 4143 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4144 ** that case the convertToWithoutRowidTable() routine will replace 4145 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4146 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4147 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4148 4149 /* Gather the complete text of the CREATE INDEX statement into 4150 ** the zStmt variable 4151 */ 4152 assert( pName!=0 || pStart==0 ); 4153 if( pStart ){ 4154 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4155 if( pName->z[n-1]==';' ) n--; 4156 /* A named index with an explicit CREATE INDEX statement */ 4157 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4158 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4159 }else{ 4160 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4161 /* zStmt = sqlite3MPrintf(""); */ 4162 zStmt = 0; 4163 } 4164 4165 /* Add an entry in sqlite_schema for this index 4166 */ 4167 sqlite3NestedParse(pParse, 4168 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4169 db->aDb[iDb].zDbSName, 4170 pIndex->zName, 4171 pTab->zName, 4172 iMem, 4173 zStmt 4174 ); 4175 sqlite3DbFree(db, zStmt); 4176 4177 /* Fill the index with data and reparse the schema. Code an OP_Expire 4178 ** to invalidate all pre-compiled statements. 4179 */ 4180 if( pTblName ){ 4181 sqlite3RefillIndex(pParse, pIndex, iMem); 4182 sqlite3ChangeCookie(pParse, iDb); 4183 sqlite3VdbeAddParseSchemaOp(v, iDb, 4184 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4185 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4186 } 4187 4188 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4189 } 4190 } 4191 if( db->init.busy || pTblName==0 ){ 4192 pIndex->pNext = pTab->pIndex; 4193 pTab->pIndex = pIndex; 4194 pIndex = 0; 4195 } 4196 else if( IN_RENAME_OBJECT ){ 4197 assert( pParse->pNewIndex==0 ); 4198 pParse->pNewIndex = pIndex; 4199 pIndex = 0; 4200 } 4201 4202 /* Clean up before exiting */ 4203 exit_create_index: 4204 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4205 if( pTab ){ 4206 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4207 ** The list was already ordered when this routine was entered, so at this 4208 ** point at most a single index (the newly added index) will be out of 4209 ** order. So we have to reorder at most one index. */ 4210 Index **ppFrom = &pTab->pIndex; 4211 Index *pThis; 4212 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4213 Index *pNext; 4214 if( pThis->onError!=OE_Replace ) continue; 4215 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4216 *ppFrom = pNext; 4217 pThis->pNext = pNext->pNext; 4218 pNext->pNext = pThis; 4219 ppFrom = &pNext->pNext; 4220 } 4221 break; 4222 } 4223 #ifdef SQLITE_DEBUG 4224 /* Verify that all REPLACE indexes really are now at the end 4225 ** of the index list. In other words, no other index type ever 4226 ** comes after a REPLACE index on the list. */ 4227 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4228 assert( pThis->onError!=OE_Replace 4229 || pThis->pNext==0 4230 || pThis->pNext->onError==OE_Replace ); 4231 } 4232 #endif 4233 } 4234 sqlite3ExprDelete(db, pPIWhere); 4235 sqlite3ExprListDelete(db, pList); 4236 sqlite3SrcListDelete(db, pTblName); 4237 sqlite3DbFree(db, zName); 4238 } 4239 4240 /* 4241 ** Fill the Index.aiRowEst[] array with default information - information 4242 ** to be used when we have not run the ANALYZE command. 4243 ** 4244 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4245 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4246 ** number of rows in the table that match any particular value of the 4247 ** first column of the index. aiRowEst[2] is an estimate of the number 4248 ** of rows that match any particular combination of the first 2 columns 4249 ** of the index. And so forth. It must always be the case that 4250 * 4251 ** aiRowEst[N]<=aiRowEst[N-1] 4252 ** aiRowEst[N]>=1 4253 ** 4254 ** Apart from that, we have little to go on besides intuition as to 4255 ** how aiRowEst[] should be initialized. The numbers generated here 4256 ** are based on typical values found in actual indices. 4257 */ 4258 void sqlite3DefaultRowEst(Index *pIdx){ 4259 /* 10, 9, 8, 7, 6 */ 4260 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4261 LogEst *a = pIdx->aiRowLogEst; 4262 LogEst x; 4263 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4264 int i; 4265 4266 /* Indexes with default row estimates should not have stat1 data */ 4267 assert( !pIdx->hasStat1 ); 4268 4269 /* Set the first entry (number of rows in the index) to the estimated 4270 ** number of rows in the table, or half the number of rows in the table 4271 ** for a partial index. 4272 ** 4273 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4274 ** table but other parts we are having to guess at, then do not let the 4275 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4276 ** Failure to do this can cause the indexes for which we do not have 4277 ** stat1 data to be ignored by the query planner. 4278 */ 4279 x = pIdx->pTable->nRowLogEst; 4280 assert( 99==sqlite3LogEst(1000) ); 4281 if( x<99 ){ 4282 pIdx->pTable->nRowLogEst = x = 99; 4283 } 4284 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4285 a[0] = x; 4286 4287 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4288 ** 6 and each subsequent value (if any) is 5. */ 4289 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4290 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4291 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4292 } 4293 4294 assert( 0==sqlite3LogEst(1) ); 4295 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4296 } 4297 4298 /* 4299 ** This routine will drop an existing named index. This routine 4300 ** implements the DROP INDEX statement. 4301 */ 4302 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4303 Index *pIndex; 4304 Vdbe *v; 4305 sqlite3 *db = pParse->db; 4306 int iDb; 4307 4308 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4309 if( db->mallocFailed ){ 4310 goto exit_drop_index; 4311 } 4312 assert( pName->nSrc==1 ); 4313 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4314 goto exit_drop_index; 4315 } 4316 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4317 if( pIndex==0 ){ 4318 if( !ifExists ){ 4319 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4320 }else{ 4321 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4322 sqlite3ForceNotReadOnly(pParse); 4323 } 4324 pParse->checkSchema = 1; 4325 goto exit_drop_index; 4326 } 4327 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4328 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4329 "or PRIMARY KEY constraint cannot be dropped", 0); 4330 goto exit_drop_index; 4331 } 4332 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4333 #ifndef SQLITE_OMIT_AUTHORIZATION 4334 { 4335 int code = SQLITE_DROP_INDEX; 4336 Table *pTab = pIndex->pTable; 4337 const char *zDb = db->aDb[iDb].zDbSName; 4338 const char *zTab = SCHEMA_TABLE(iDb); 4339 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4340 goto exit_drop_index; 4341 } 4342 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 4343 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4344 goto exit_drop_index; 4345 } 4346 } 4347 #endif 4348 4349 /* Generate code to remove the index and from the schema table */ 4350 v = sqlite3GetVdbe(pParse); 4351 if( v ){ 4352 sqlite3BeginWriteOperation(pParse, 1, iDb); 4353 sqlite3NestedParse(pParse, 4354 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4355 db->aDb[iDb].zDbSName, pIndex->zName 4356 ); 4357 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4358 sqlite3ChangeCookie(pParse, iDb); 4359 destroyRootPage(pParse, pIndex->tnum, iDb); 4360 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4361 } 4362 4363 exit_drop_index: 4364 sqlite3SrcListDelete(db, pName); 4365 } 4366 4367 /* 4368 ** pArray is a pointer to an array of objects. Each object in the 4369 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4370 ** to extend the array so that there is space for a new object at the end. 4371 ** 4372 ** When this function is called, *pnEntry contains the current size of 4373 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4374 ** in total). 4375 ** 4376 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4377 ** space allocated for the new object is zeroed, *pnEntry updated to 4378 ** reflect the new size of the array and a pointer to the new allocation 4379 ** returned. *pIdx is set to the index of the new array entry in this case. 4380 ** 4381 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4382 ** unchanged and a copy of pArray returned. 4383 */ 4384 void *sqlite3ArrayAllocate( 4385 sqlite3 *db, /* Connection to notify of malloc failures */ 4386 void *pArray, /* Array of objects. Might be reallocated */ 4387 int szEntry, /* Size of each object in the array */ 4388 int *pnEntry, /* Number of objects currently in use */ 4389 int *pIdx /* Write the index of a new slot here */ 4390 ){ 4391 char *z; 4392 sqlite3_int64 n = *pIdx = *pnEntry; 4393 if( (n & (n-1))==0 ){ 4394 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4395 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4396 if( pNew==0 ){ 4397 *pIdx = -1; 4398 return pArray; 4399 } 4400 pArray = pNew; 4401 } 4402 z = (char*)pArray; 4403 memset(&z[n * szEntry], 0, szEntry); 4404 ++*pnEntry; 4405 return pArray; 4406 } 4407 4408 /* 4409 ** Append a new element to the given IdList. Create a new IdList if 4410 ** need be. 4411 ** 4412 ** A new IdList is returned, or NULL if malloc() fails. 4413 */ 4414 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4415 sqlite3 *db = pParse->db; 4416 int i; 4417 if( pList==0 ){ 4418 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4419 if( pList==0 ) return 0; 4420 } 4421 pList->a = sqlite3ArrayAllocate( 4422 db, 4423 pList->a, 4424 sizeof(pList->a[0]), 4425 &pList->nId, 4426 &i 4427 ); 4428 if( i<0 ){ 4429 sqlite3IdListDelete(db, pList); 4430 return 0; 4431 } 4432 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4433 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4434 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4435 } 4436 return pList; 4437 } 4438 4439 /* 4440 ** Delete an IdList. 4441 */ 4442 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4443 int i; 4444 if( pList==0 ) return; 4445 for(i=0; i<pList->nId; i++){ 4446 sqlite3DbFree(db, pList->a[i].zName); 4447 } 4448 sqlite3DbFree(db, pList->a); 4449 sqlite3DbFreeNN(db, pList); 4450 } 4451 4452 /* 4453 ** Return the index in pList of the identifier named zId. Return -1 4454 ** if not found. 4455 */ 4456 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4457 int i; 4458 if( pList==0 ) return -1; 4459 for(i=0; i<pList->nId; i++){ 4460 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4461 } 4462 return -1; 4463 } 4464 4465 /* 4466 ** Maximum size of a SrcList object. 4467 ** The SrcList object is used to represent the FROM clause of a 4468 ** SELECT statement, and the query planner cannot deal with more 4469 ** than 64 tables in a join. So any value larger than 64 here 4470 ** is sufficient for most uses. Smaller values, like say 10, are 4471 ** appropriate for small and memory-limited applications. 4472 */ 4473 #ifndef SQLITE_MAX_SRCLIST 4474 # define SQLITE_MAX_SRCLIST 200 4475 #endif 4476 4477 /* 4478 ** Expand the space allocated for the given SrcList object by 4479 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4480 ** New slots are zeroed. 4481 ** 4482 ** For example, suppose a SrcList initially contains two entries: A,B. 4483 ** To append 3 new entries onto the end, do this: 4484 ** 4485 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4486 ** 4487 ** After the call above it would contain: A, B, nil, nil, nil. 4488 ** If the iStart argument had been 1 instead of 2, then the result 4489 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4490 ** the iStart value would be 0. The result then would 4491 ** be: nil, nil, nil, A, B. 4492 ** 4493 ** If a memory allocation fails or the SrcList becomes too large, leave 4494 ** the original SrcList unchanged, return NULL, and leave an error message 4495 ** in pParse. 4496 */ 4497 SrcList *sqlite3SrcListEnlarge( 4498 Parse *pParse, /* Parsing context into which errors are reported */ 4499 SrcList *pSrc, /* The SrcList to be enlarged */ 4500 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4501 int iStart /* Index in pSrc->a[] of first new slot */ 4502 ){ 4503 int i; 4504 4505 /* Sanity checking on calling parameters */ 4506 assert( iStart>=0 ); 4507 assert( nExtra>=1 ); 4508 assert( pSrc!=0 ); 4509 assert( iStart<=pSrc->nSrc ); 4510 4511 /* Allocate additional space if needed */ 4512 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4513 SrcList *pNew; 4514 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4515 sqlite3 *db = pParse->db; 4516 4517 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4518 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4519 SQLITE_MAX_SRCLIST); 4520 return 0; 4521 } 4522 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4523 pNew = sqlite3DbRealloc(db, pSrc, 4524 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4525 if( pNew==0 ){ 4526 assert( db->mallocFailed ); 4527 return 0; 4528 } 4529 pSrc = pNew; 4530 pSrc->nAlloc = nAlloc; 4531 } 4532 4533 /* Move existing slots that come after the newly inserted slots 4534 ** out of the way */ 4535 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4536 pSrc->a[i+nExtra] = pSrc->a[i]; 4537 } 4538 pSrc->nSrc += nExtra; 4539 4540 /* Zero the newly allocated slots */ 4541 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4542 for(i=iStart; i<iStart+nExtra; i++){ 4543 pSrc->a[i].iCursor = -1; 4544 } 4545 4546 /* Return a pointer to the enlarged SrcList */ 4547 return pSrc; 4548 } 4549 4550 4551 /* 4552 ** Append a new table name to the given SrcList. Create a new SrcList if 4553 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4554 ** 4555 ** A SrcList is returned, or NULL if there is an OOM error or if the 4556 ** SrcList grows to large. The returned 4557 ** SrcList might be the same as the SrcList that was input or it might be 4558 ** a new one. If an OOM error does occurs, then the prior value of pList 4559 ** that is input to this routine is automatically freed. 4560 ** 4561 ** If pDatabase is not null, it means that the table has an optional 4562 ** database name prefix. Like this: "database.table". The pDatabase 4563 ** points to the table name and the pTable points to the database name. 4564 ** The SrcList.a[].zName field is filled with the table name which might 4565 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4566 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4567 ** or with NULL if no database is specified. 4568 ** 4569 ** In other words, if call like this: 4570 ** 4571 ** sqlite3SrcListAppend(D,A,B,0); 4572 ** 4573 ** Then B is a table name and the database name is unspecified. If called 4574 ** like this: 4575 ** 4576 ** sqlite3SrcListAppend(D,A,B,C); 4577 ** 4578 ** Then C is the table name and B is the database name. If C is defined 4579 ** then so is B. In other words, we never have a case where: 4580 ** 4581 ** sqlite3SrcListAppend(D,A,0,C); 4582 ** 4583 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4584 ** before being added to the SrcList. 4585 */ 4586 SrcList *sqlite3SrcListAppend( 4587 Parse *pParse, /* Parsing context, in which errors are reported */ 4588 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4589 Token *pTable, /* Table to append */ 4590 Token *pDatabase /* Database of the table */ 4591 ){ 4592 SrcItem *pItem; 4593 sqlite3 *db; 4594 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4595 assert( pParse!=0 ); 4596 assert( pParse->db!=0 ); 4597 db = pParse->db; 4598 if( pList==0 ){ 4599 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4600 if( pList==0 ) return 0; 4601 pList->nAlloc = 1; 4602 pList->nSrc = 1; 4603 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4604 pList->a[0].iCursor = -1; 4605 }else{ 4606 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4607 if( pNew==0 ){ 4608 sqlite3SrcListDelete(db, pList); 4609 return 0; 4610 }else{ 4611 pList = pNew; 4612 } 4613 } 4614 pItem = &pList->a[pList->nSrc-1]; 4615 if( pDatabase && pDatabase->z==0 ){ 4616 pDatabase = 0; 4617 } 4618 if( pDatabase ){ 4619 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4620 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4621 }else{ 4622 pItem->zName = sqlite3NameFromToken(db, pTable); 4623 pItem->zDatabase = 0; 4624 } 4625 return pList; 4626 } 4627 4628 /* 4629 ** Assign VdbeCursor index numbers to all tables in a SrcList 4630 */ 4631 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4632 int i; 4633 SrcItem *pItem; 4634 assert( pList || pParse->db->mallocFailed ); 4635 if( ALWAYS(pList) ){ 4636 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4637 if( pItem->iCursor>=0 ) continue; 4638 pItem->iCursor = pParse->nTab++; 4639 if( pItem->pSelect ){ 4640 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4641 } 4642 } 4643 } 4644 } 4645 4646 /* 4647 ** Delete an entire SrcList including all its substructure. 4648 */ 4649 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4650 int i; 4651 SrcItem *pItem; 4652 if( pList==0 ) return; 4653 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4654 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4655 sqlite3DbFree(db, pItem->zName); 4656 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4657 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4658 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4659 sqlite3DeleteTable(db, pItem->pTab); 4660 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4661 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4662 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4663 } 4664 sqlite3DbFreeNN(db, pList); 4665 } 4666 4667 /* 4668 ** This routine is called by the parser to add a new term to the 4669 ** end of a growing FROM clause. The "p" parameter is the part of 4670 ** the FROM clause that has already been constructed. "p" is NULL 4671 ** if this is the first term of the FROM clause. pTable and pDatabase 4672 ** are the name of the table and database named in the FROM clause term. 4673 ** pDatabase is NULL if the database name qualifier is missing - the 4674 ** usual case. If the term has an alias, then pAlias points to the 4675 ** alias token. If the term is a subquery, then pSubquery is the 4676 ** SELECT statement that the subquery encodes. The pTable and 4677 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4678 ** parameters are the content of the ON and USING clauses. 4679 ** 4680 ** Return a new SrcList which encodes is the FROM with the new 4681 ** term added. 4682 */ 4683 SrcList *sqlite3SrcListAppendFromTerm( 4684 Parse *pParse, /* Parsing context */ 4685 SrcList *p, /* The left part of the FROM clause already seen */ 4686 Token *pTable, /* Name of the table to add to the FROM clause */ 4687 Token *pDatabase, /* Name of the database containing pTable */ 4688 Token *pAlias, /* The right-hand side of the AS subexpression */ 4689 Select *pSubquery, /* A subquery used in place of a table name */ 4690 Expr *pOn, /* The ON clause of a join */ 4691 IdList *pUsing /* The USING clause of a join */ 4692 ){ 4693 SrcItem *pItem; 4694 sqlite3 *db = pParse->db; 4695 if( !p && (pOn || pUsing) ){ 4696 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4697 (pOn ? "ON" : "USING") 4698 ); 4699 goto append_from_error; 4700 } 4701 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4702 if( p==0 ){ 4703 goto append_from_error; 4704 } 4705 assert( p->nSrc>0 ); 4706 pItem = &p->a[p->nSrc-1]; 4707 assert( (pTable==0)==(pDatabase==0) ); 4708 assert( pItem->zName==0 || pDatabase!=0 ); 4709 if( IN_RENAME_OBJECT && pItem->zName ){ 4710 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4711 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4712 } 4713 assert( pAlias!=0 ); 4714 if( pAlias->n ){ 4715 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4716 } 4717 pItem->pSelect = pSubquery; 4718 pItem->pOn = pOn; 4719 pItem->pUsing = pUsing; 4720 return p; 4721 4722 append_from_error: 4723 assert( p==0 ); 4724 sqlite3ExprDelete(db, pOn); 4725 sqlite3IdListDelete(db, pUsing); 4726 sqlite3SelectDelete(db, pSubquery); 4727 return 0; 4728 } 4729 4730 /* 4731 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4732 ** element of the source-list passed as the second argument. 4733 */ 4734 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4735 assert( pIndexedBy!=0 ); 4736 if( p && pIndexedBy->n>0 ){ 4737 SrcItem *pItem; 4738 assert( p->nSrc>0 ); 4739 pItem = &p->a[p->nSrc-1]; 4740 assert( pItem->fg.notIndexed==0 ); 4741 assert( pItem->fg.isIndexedBy==0 ); 4742 assert( pItem->fg.isTabFunc==0 ); 4743 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4744 /* A "NOT INDEXED" clause was supplied. See parse.y 4745 ** construct "indexed_opt" for details. */ 4746 pItem->fg.notIndexed = 1; 4747 }else{ 4748 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4749 pItem->fg.isIndexedBy = 1; 4750 } 4751 } 4752 } 4753 4754 /* 4755 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4756 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4757 ** are deleted by this function. 4758 */ 4759 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4760 assert( p1 && p1->nSrc==1 ); 4761 if( p2 ){ 4762 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4763 if( pNew==0 ){ 4764 sqlite3SrcListDelete(pParse->db, p2); 4765 }else{ 4766 p1 = pNew; 4767 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4768 sqlite3DbFree(pParse->db, p2); 4769 } 4770 } 4771 return p1; 4772 } 4773 4774 /* 4775 ** Add the list of function arguments to the SrcList entry for a 4776 ** table-valued-function. 4777 */ 4778 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4779 if( p ){ 4780 SrcItem *pItem = &p->a[p->nSrc-1]; 4781 assert( pItem->fg.notIndexed==0 ); 4782 assert( pItem->fg.isIndexedBy==0 ); 4783 assert( pItem->fg.isTabFunc==0 ); 4784 pItem->u1.pFuncArg = pList; 4785 pItem->fg.isTabFunc = 1; 4786 }else{ 4787 sqlite3ExprListDelete(pParse->db, pList); 4788 } 4789 } 4790 4791 /* 4792 ** When building up a FROM clause in the parser, the join operator 4793 ** is initially attached to the left operand. But the code generator 4794 ** expects the join operator to be on the right operand. This routine 4795 ** Shifts all join operators from left to right for an entire FROM 4796 ** clause. 4797 ** 4798 ** Example: Suppose the join is like this: 4799 ** 4800 ** A natural cross join B 4801 ** 4802 ** The operator is "natural cross join". The A and B operands are stored 4803 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4804 ** operator with A. This routine shifts that operator over to B. 4805 */ 4806 void sqlite3SrcListShiftJoinType(SrcList *p){ 4807 if( p ){ 4808 int i; 4809 for(i=p->nSrc-1; i>0; i--){ 4810 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4811 } 4812 p->a[0].fg.jointype = 0; 4813 } 4814 } 4815 4816 /* 4817 ** Generate VDBE code for a BEGIN statement. 4818 */ 4819 void sqlite3BeginTransaction(Parse *pParse, int type){ 4820 sqlite3 *db; 4821 Vdbe *v; 4822 int i; 4823 4824 assert( pParse!=0 ); 4825 db = pParse->db; 4826 assert( db!=0 ); 4827 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4828 return; 4829 } 4830 v = sqlite3GetVdbe(pParse); 4831 if( !v ) return; 4832 if( type!=TK_DEFERRED ){ 4833 for(i=0; i<db->nDb; i++){ 4834 int eTxnType; 4835 Btree *pBt = db->aDb[i].pBt; 4836 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4837 eTxnType = 0; /* Read txn */ 4838 }else if( type==TK_EXCLUSIVE ){ 4839 eTxnType = 2; /* Exclusive txn */ 4840 }else{ 4841 eTxnType = 1; /* Write txn */ 4842 } 4843 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4844 sqlite3VdbeUsesBtree(v, i); 4845 } 4846 } 4847 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4848 } 4849 4850 /* 4851 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4852 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4853 ** code is generated for a COMMIT. 4854 */ 4855 void sqlite3EndTransaction(Parse *pParse, int eType){ 4856 Vdbe *v; 4857 int isRollback; 4858 4859 assert( pParse!=0 ); 4860 assert( pParse->db!=0 ); 4861 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4862 isRollback = eType==TK_ROLLBACK; 4863 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4864 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4865 return; 4866 } 4867 v = sqlite3GetVdbe(pParse); 4868 if( v ){ 4869 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4870 } 4871 } 4872 4873 /* 4874 ** This function is called by the parser when it parses a command to create, 4875 ** release or rollback an SQL savepoint. 4876 */ 4877 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4878 char *zName = sqlite3NameFromToken(pParse->db, pName); 4879 if( zName ){ 4880 Vdbe *v = sqlite3GetVdbe(pParse); 4881 #ifndef SQLITE_OMIT_AUTHORIZATION 4882 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4883 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4884 #endif 4885 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4886 sqlite3DbFree(pParse->db, zName); 4887 return; 4888 } 4889 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4890 } 4891 } 4892 4893 /* 4894 ** Make sure the TEMP database is open and available for use. Return 4895 ** the number of errors. Leave any error messages in the pParse structure. 4896 */ 4897 int sqlite3OpenTempDatabase(Parse *pParse){ 4898 sqlite3 *db = pParse->db; 4899 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4900 int rc; 4901 Btree *pBt; 4902 static const int flags = 4903 SQLITE_OPEN_READWRITE | 4904 SQLITE_OPEN_CREATE | 4905 SQLITE_OPEN_EXCLUSIVE | 4906 SQLITE_OPEN_DELETEONCLOSE | 4907 SQLITE_OPEN_TEMP_DB; 4908 4909 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4910 if( rc!=SQLITE_OK ){ 4911 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4912 "file for storing temporary tables"); 4913 pParse->rc = rc; 4914 return 1; 4915 } 4916 db->aDb[1].pBt = pBt; 4917 assert( db->aDb[1].pSchema ); 4918 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4919 sqlite3OomFault(db); 4920 return 1; 4921 } 4922 } 4923 return 0; 4924 } 4925 4926 /* 4927 ** Record the fact that the schema cookie will need to be verified 4928 ** for database iDb. The code to actually verify the schema cookie 4929 ** will occur at the end of the top-level VDBE and will be generated 4930 ** later, by sqlite3FinishCoding(). 4931 */ 4932 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4933 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4934 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4935 assert( iDb<SQLITE_MAX_DB ); 4936 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4937 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4938 DbMaskSet(pToplevel->cookieMask, iDb); 4939 if( !OMIT_TEMPDB && iDb==1 ){ 4940 sqlite3OpenTempDatabase(pToplevel); 4941 } 4942 } 4943 } 4944 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4945 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4946 } 4947 4948 4949 /* 4950 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4951 ** attached database. Otherwise, invoke it for the database named zDb only. 4952 */ 4953 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4954 sqlite3 *db = pParse->db; 4955 int i; 4956 for(i=0; i<db->nDb; i++){ 4957 Db *pDb = &db->aDb[i]; 4958 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4959 sqlite3CodeVerifySchema(pParse, i); 4960 } 4961 } 4962 } 4963 4964 /* 4965 ** Generate VDBE code that prepares for doing an operation that 4966 ** might change the database. 4967 ** 4968 ** This routine starts a new transaction if we are not already within 4969 ** a transaction. If we are already within a transaction, then a checkpoint 4970 ** is set if the setStatement parameter is true. A checkpoint should 4971 ** be set for operations that might fail (due to a constraint) part of 4972 ** the way through and which will need to undo some writes without having to 4973 ** rollback the whole transaction. For operations where all constraints 4974 ** can be checked before any changes are made to the database, it is never 4975 ** necessary to undo a write and the checkpoint should not be set. 4976 */ 4977 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4978 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4979 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4980 DbMaskSet(pToplevel->writeMask, iDb); 4981 pToplevel->isMultiWrite |= setStatement; 4982 } 4983 4984 /* 4985 ** Indicate that the statement currently under construction might write 4986 ** more than one entry (example: deleting one row then inserting another, 4987 ** inserting multiple rows in a table, or inserting a row and index entries.) 4988 ** If an abort occurs after some of these writes have completed, then it will 4989 ** be necessary to undo the completed writes. 4990 */ 4991 void sqlite3MultiWrite(Parse *pParse){ 4992 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4993 pToplevel->isMultiWrite = 1; 4994 } 4995 4996 /* 4997 ** The code generator calls this routine if is discovers that it is 4998 ** possible to abort a statement prior to completion. In order to 4999 ** perform this abort without corrupting the database, we need to make 5000 ** sure that the statement is protected by a statement transaction. 5001 ** 5002 ** Technically, we only need to set the mayAbort flag if the 5003 ** isMultiWrite flag was previously set. There is a time dependency 5004 ** such that the abort must occur after the multiwrite. This makes 5005 ** some statements involving the REPLACE conflict resolution algorithm 5006 ** go a little faster. But taking advantage of this time dependency 5007 ** makes it more difficult to prove that the code is correct (in 5008 ** particular, it prevents us from writing an effective 5009 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5010 ** to take the safe route and skip the optimization. 5011 */ 5012 void sqlite3MayAbort(Parse *pParse){ 5013 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5014 pToplevel->mayAbort = 1; 5015 } 5016 5017 /* 5018 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5019 ** error. The onError parameter determines which (if any) of the statement 5020 ** and/or current transaction is rolled back. 5021 */ 5022 void sqlite3HaltConstraint( 5023 Parse *pParse, /* Parsing context */ 5024 int errCode, /* extended error code */ 5025 int onError, /* Constraint type */ 5026 char *p4, /* Error message */ 5027 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5028 u8 p5Errmsg /* P5_ErrMsg type */ 5029 ){ 5030 Vdbe *v; 5031 assert( pParse->pVdbe!=0 ); 5032 v = sqlite3GetVdbe(pParse); 5033 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5034 if( onError==OE_Abort ){ 5035 sqlite3MayAbort(pParse); 5036 } 5037 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5038 sqlite3VdbeChangeP5(v, p5Errmsg); 5039 } 5040 5041 /* 5042 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5043 */ 5044 void sqlite3UniqueConstraint( 5045 Parse *pParse, /* Parsing context */ 5046 int onError, /* Constraint type */ 5047 Index *pIdx /* The index that triggers the constraint */ 5048 ){ 5049 char *zErr; 5050 int j; 5051 StrAccum errMsg; 5052 Table *pTab = pIdx->pTable; 5053 5054 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5055 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5056 if( pIdx->aColExpr ){ 5057 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5058 }else{ 5059 for(j=0; j<pIdx->nKeyCol; j++){ 5060 char *zCol; 5061 assert( pIdx->aiColumn[j]>=0 ); 5062 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 5063 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5064 sqlite3_str_appendall(&errMsg, pTab->zName); 5065 sqlite3_str_append(&errMsg, ".", 1); 5066 sqlite3_str_appendall(&errMsg, zCol); 5067 } 5068 } 5069 zErr = sqlite3StrAccumFinish(&errMsg); 5070 sqlite3HaltConstraint(pParse, 5071 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5072 : SQLITE_CONSTRAINT_UNIQUE, 5073 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5074 } 5075 5076 5077 /* 5078 ** Code an OP_Halt due to non-unique rowid. 5079 */ 5080 void sqlite3RowidConstraint( 5081 Parse *pParse, /* Parsing context */ 5082 int onError, /* Conflict resolution algorithm */ 5083 Table *pTab /* The table with the non-unique rowid */ 5084 ){ 5085 char *zMsg; 5086 int rc; 5087 if( pTab->iPKey>=0 ){ 5088 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5089 pTab->aCol[pTab->iPKey].zName); 5090 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5091 }else{ 5092 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5093 rc = SQLITE_CONSTRAINT_ROWID; 5094 } 5095 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5096 P5_ConstraintUnique); 5097 } 5098 5099 /* 5100 ** Check to see if pIndex uses the collating sequence pColl. Return 5101 ** true if it does and false if it does not. 5102 */ 5103 #ifndef SQLITE_OMIT_REINDEX 5104 static int collationMatch(const char *zColl, Index *pIndex){ 5105 int i; 5106 assert( zColl!=0 ); 5107 for(i=0; i<pIndex->nColumn; i++){ 5108 const char *z = pIndex->azColl[i]; 5109 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5110 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5111 return 1; 5112 } 5113 } 5114 return 0; 5115 } 5116 #endif 5117 5118 /* 5119 ** Recompute all indices of pTab that use the collating sequence pColl. 5120 ** If pColl==0 then recompute all indices of pTab. 5121 */ 5122 #ifndef SQLITE_OMIT_REINDEX 5123 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5124 if( !IsVirtual(pTab) ){ 5125 Index *pIndex; /* An index associated with pTab */ 5126 5127 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5128 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5129 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5130 sqlite3BeginWriteOperation(pParse, 0, iDb); 5131 sqlite3RefillIndex(pParse, pIndex, -1); 5132 } 5133 } 5134 } 5135 } 5136 #endif 5137 5138 /* 5139 ** Recompute all indices of all tables in all databases where the 5140 ** indices use the collating sequence pColl. If pColl==0 then recompute 5141 ** all indices everywhere. 5142 */ 5143 #ifndef SQLITE_OMIT_REINDEX 5144 static void reindexDatabases(Parse *pParse, char const *zColl){ 5145 Db *pDb; /* A single database */ 5146 int iDb; /* The database index number */ 5147 sqlite3 *db = pParse->db; /* The database connection */ 5148 HashElem *k; /* For looping over tables in pDb */ 5149 Table *pTab; /* A table in the database */ 5150 5151 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5152 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5153 assert( pDb!=0 ); 5154 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5155 pTab = (Table*)sqliteHashData(k); 5156 reindexTable(pParse, pTab, zColl); 5157 } 5158 } 5159 } 5160 #endif 5161 5162 /* 5163 ** Generate code for the REINDEX command. 5164 ** 5165 ** REINDEX -- 1 5166 ** REINDEX <collation> -- 2 5167 ** REINDEX ?<database>.?<tablename> -- 3 5168 ** REINDEX ?<database>.?<indexname> -- 4 5169 ** 5170 ** Form 1 causes all indices in all attached databases to be rebuilt. 5171 ** Form 2 rebuilds all indices in all databases that use the named 5172 ** collating function. Forms 3 and 4 rebuild the named index or all 5173 ** indices associated with the named table. 5174 */ 5175 #ifndef SQLITE_OMIT_REINDEX 5176 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5177 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5178 char *z; /* Name of a table or index */ 5179 const char *zDb; /* Name of the database */ 5180 Table *pTab; /* A table in the database */ 5181 Index *pIndex; /* An index associated with pTab */ 5182 int iDb; /* The database index number */ 5183 sqlite3 *db = pParse->db; /* The database connection */ 5184 Token *pObjName; /* Name of the table or index to be reindexed */ 5185 5186 /* Read the database schema. If an error occurs, leave an error message 5187 ** and code in pParse and return NULL. */ 5188 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5189 return; 5190 } 5191 5192 if( pName1==0 ){ 5193 reindexDatabases(pParse, 0); 5194 return; 5195 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5196 char *zColl; 5197 assert( pName1->z ); 5198 zColl = sqlite3NameFromToken(pParse->db, pName1); 5199 if( !zColl ) return; 5200 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5201 if( pColl ){ 5202 reindexDatabases(pParse, zColl); 5203 sqlite3DbFree(db, zColl); 5204 return; 5205 } 5206 sqlite3DbFree(db, zColl); 5207 } 5208 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5209 if( iDb<0 ) return; 5210 z = sqlite3NameFromToken(db, pObjName); 5211 if( z==0 ) return; 5212 zDb = db->aDb[iDb].zDbSName; 5213 pTab = sqlite3FindTable(db, z, zDb); 5214 if( pTab ){ 5215 reindexTable(pParse, pTab, 0); 5216 sqlite3DbFree(db, z); 5217 return; 5218 } 5219 pIndex = sqlite3FindIndex(db, z, zDb); 5220 sqlite3DbFree(db, z); 5221 if( pIndex ){ 5222 sqlite3BeginWriteOperation(pParse, 0, iDb); 5223 sqlite3RefillIndex(pParse, pIndex, -1); 5224 return; 5225 } 5226 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5227 } 5228 #endif 5229 5230 /* 5231 ** Return a KeyInfo structure that is appropriate for the given Index. 5232 ** 5233 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5234 ** when it has finished using it. 5235 */ 5236 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5237 int i; 5238 int nCol = pIdx->nColumn; 5239 int nKey = pIdx->nKeyCol; 5240 KeyInfo *pKey; 5241 if( pParse->nErr ) return 0; 5242 if( pIdx->uniqNotNull ){ 5243 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5244 }else{ 5245 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5246 } 5247 if( pKey ){ 5248 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5249 for(i=0; i<nCol; i++){ 5250 const char *zColl = pIdx->azColl[i]; 5251 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5252 sqlite3LocateCollSeq(pParse, zColl); 5253 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5254 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5255 } 5256 if( pParse->nErr ){ 5257 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5258 if( pIdx->bNoQuery==0 ){ 5259 /* Deactivate the index because it contains an unknown collating 5260 ** sequence. The only way to reactive the index is to reload the 5261 ** schema. Adding the missing collating sequence later does not 5262 ** reactive the index. The application had the chance to register 5263 ** the missing index using the collation-needed callback. For 5264 ** simplicity, SQLite will not give the application a second chance. 5265 */ 5266 pIdx->bNoQuery = 1; 5267 pParse->rc = SQLITE_ERROR_RETRY; 5268 } 5269 sqlite3KeyInfoUnref(pKey); 5270 pKey = 0; 5271 } 5272 } 5273 return pKey; 5274 } 5275 5276 #ifndef SQLITE_OMIT_CTE 5277 /* 5278 ** Create a new CTE object 5279 */ 5280 Cte *sqlite3CteNew( 5281 Parse *pParse, /* Parsing context */ 5282 Token *pName, /* Name of the common-table */ 5283 ExprList *pArglist, /* Optional column name list for the table */ 5284 Select *pQuery, /* Query used to initialize the table */ 5285 u8 eM10d /* The MATERIALIZED flag */ 5286 ){ 5287 Cte *pNew; 5288 sqlite3 *db = pParse->db; 5289 5290 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5291 assert( pNew!=0 || db->mallocFailed ); 5292 5293 if( db->mallocFailed ){ 5294 sqlite3ExprListDelete(db, pArglist); 5295 sqlite3SelectDelete(db, pQuery); 5296 }else{ 5297 pNew->pSelect = pQuery; 5298 pNew->pCols = pArglist; 5299 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5300 pNew->eM10d = eM10d; 5301 } 5302 return pNew; 5303 } 5304 5305 /* 5306 ** Clear information from a Cte object, but do not deallocate storage 5307 ** for the object itself. 5308 */ 5309 static void cteClear(sqlite3 *db, Cte *pCte){ 5310 assert( pCte!=0 ); 5311 sqlite3ExprListDelete(db, pCte->pCols); 5312 sqlite3SelectDelete(db, pCte->pSelect); 5313 sqlite3DbFree(db, pCte->zName); 5314 } 5315 5316 /* 5317 ** Free the contents of the CTE object passed as the second argument. 5318 */ 5319 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5320 assert( pCte!=0 ); 5321 cteClear(db, pCte); 5322 sqlite3DbFree(db, pCte); 5323 } 5324 5325 /* 5326 ** This routine is invoked once per CTE by the parser while parsing a 5327 ** WITH clause. The CTE described by teh third argument is added to 5328 ** the WITH clause of the second argument. If the second argument is 5329 ** NULL, then a new WITH argument is created. 5330 */ 5331 With *sqlite3WithAdd( 5332 Parse *pParse, /* Parsing context */ 5333 With *pWith, /* Existing WITH clause, or NULL */ 5334 Cte *pCte /* CTE to add to the WITH clause */ 5335 ){ 5336 sqlite3 *db = pParse->db; 5337 With *pNew; 5338 char *zName; 5339 5340 if( pCte==0 ){ 5341 return pWith; 5342 } 5343 5344 /* Check that the CTE name is unique within this WITH clause. If 5345 ** not, store an error in the Parse structure. */ 5346 zName = pCte->zName; 5347 if( zName && pWith ){ 5348 int i; 5349 for(i=0; i<pWith->nCte; i++){ 5350 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5351 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5352 } 5353 } 5354 } 5355 5356 if( pWith ){ 5357 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5358 pNew = sqlite3DbRealloc(db, pWith, nByte); 5359 }else{ 5360 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5361 } 5362 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5363 5364 if( db->mallocFailed ){ 5365 sqlite3CteDelete(db, pCte); 5366 pNew = pWith; 5367 }else{ 5368 pNew->a[pNew->nCte++] = *pCte; 5369 sqlite3DbFree(db, pCte); 5370 } 5371 5372 return pNew; 5373 } 5374 5375 /* 5376 ** Free the contents of the With object passed as the second argument. 5377 */ 5378 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5379 if( pWith ){ 5380 int i; 5381 for(i=0; i<pWith->nCte; i++){ 5382 cteClear(db, &pWith->a[i]); 5383 } 5384 sqlite3DbFree(db, pWith); 5385 } 5386 } 5387 #endif /* !defined(SQLITE_OMIT_CTE) */ 5388