xref: /sqlite-3.40.0/src/build.c (revision 768ab1f2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   Pgno iTab;             /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 static SQLITE_NOINLINE void lockTable(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   Pgno iTab,         /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel;
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   pToplevel = sqlite3ParseToplevel(pParse);
63   for(i=0; i<pToplevel->nTableLock; i++){
64     p = &pToplevel->aTableLock[i];
65     if( p->iDb==iDb && p->iTab==iTab ){
66       p->isWriteLock = (p->isWriteLock || isWriteLock);
67       return;
68     }
69   }
70 
71   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72   pToplevel->aTableLock =
73       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74   if( pToplevel->aTableLock ){
75     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76     p->iDb = iDb;
77     p->iTab = iTab;
78     p->isWriteLock = isWriteLock;
79     p->zLockName = zName;
80   }else{
81     pToplevel->nTableLock = 0;
82     sqlite3OomFault(pToplevel->db);
83   }
84 }
85 void sqlite3TableLock(
86   Parse *pParse,     /* Parsing context */
87   int iDb,           /* Index of the database containing the table to lock */
88   Pgno iTab,         /* Root page number of the table to be locked */
89   u8 isWriteLock,    /* True for a write lock */
90   const char *zName  /* Name of the table to be locked */
91 ){
92   if( iDb==1 ) return;
93   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94   lockTable(pParse, iDb, iTab, isWriteLock, zName);
95 }
96 
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
101 static void codeTableLocks(Parse *pParse){
102   int i;
103   Vdbe *pVdbe = pParse->pVdbe;
104   assert( pVdbe!=0 );
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zLockName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 */
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124   int i;
125   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126   return 1;
127 }
128 #endif
129 
130 /*
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared.  This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
136 **
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
139 */
140 void sqlite3FinishCoding(Parse *pParse){
141   sqlite3 *db;
142   Vdbe *v;
143 
144   assert( pParse->pToplevel==0 );
145   db = pParse->db;
146   assert( db->pParse==pParse );
147   if( pParse->nested ) return;
148   if( pParse->nErr ){
149     if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
150     return;
151   }
152   assert( db->mallocFailed==0 );
153 
154   /* Begin by generating some termination code at the end of the
155   ** vdbe program
156   */
157   v = pParse->pVdbe;
158   if( v==0 ){
159     if( db->init.busy ){
160       pParse->rc = SQLITE_DONE;
161       return;
162     }
163     v = sqlite3GetVdbe(pParse);
164     if( v==0 ) pParse->rc = SQLITE_ERROR;
165   }
166   assert( !pParse->isMultiWrite
167        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
168   if( v ){
169     if( pParse->bReturning ){
170       Returning *pReturning = pParse->u1.pReturning;
171       int addrRewind;
172       int i;
173       int reg;
174 
175       if( NEVER(pReturning->nRetCol==0) ){
176         assert( CORRUPT_DB );
177       }else{
178         sqlite3VdbeAddOp0(v, OP_FkCheck);
179         addrRewind =
180            sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
181         VdbeCoverage(v);
182         reg = pReturning->iRetReg;
183         for(i=0; i<pReturning->nRetCol; i++){
184           sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
185         }
186         sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
187         sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
188         VdbeCoverage(v);
189         sqlite3VdbeJumpHere(v, addrRewind);
190       }
191     }
192     sqlite3VdbeAddOp0(v, OP_Halt);
193 
194 #if SQLITE_USER_AUTHENTICATION
195     if( pParse->nTableLock>0 && db->init.busy==0 ){
196       sqlite3UserAuthInit(db);
197       if( db->auth.authLevel<UAUTH_User ){
198         sqlite3ErrorMsg(pParse, "user not authenticated");
199         pParse->rc = SQLITE_AUTH_USER;
200         return;
201       }
202     }
203 #endif
204 
205     /* The cookie mask contains one bit for each database file open.
206     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
207     ** set for each database that is used.  Generate code to start a
208     ** transaction on each used database and to verify the schema cookie
209     ** on each used database.
210     */
211     if( db->mallocFailed==0
212      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
213     ){
214       int iDb, i;
215       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
216       sqlite3VdbeJumpHere(v, 0);
217       for(iDb=0; iDb<db->nDb; iDb++){
218         Schema *pSchema;
219         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
220         sqlite3VdbeUsesBtree(v, iDb);
221         pSchema = db->aDb[iDb].pSchema;
222         sqlite3VdbeAddOp4Int(v,
223           OP_Transaction,                    /* Opcode */
224           iDb,                               /* P1 */
225           DbMaskTest(pParse->writeMask,iDb), /* P2 */
226           pSchema->schema_cookie,            /* P3 */
227           pSchema->iGeneration               /* P4 */
228         );
229         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
230         VdbeComment((v,
231               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
232       }
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234       for(i=0; i<pParse->nVtabLock; i++){
235         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
236         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
237       }
238       pParse->nVtabLock = 0;
239 #endif
240 
241       /* Once all the cookies have been verified and transactions opened,
242       ** obtain the required table-locks. This is a no-op unless the
243       ** shared-cache feature is enabled.
244       */
245       codeTableLocks(pParse);
246 
247       /* Initialize any AUTOINCREMENT data structures required.
248       */
249       sqlite3AutoincrementBegin(pParse);
250 
251       /* Code constant expressions that where factored out of inner loops.
252       **
253       ** The pConstExpr list might also contain expressions that we simply
254       ** want to keep around until the Parse object is deleted.  Such
255       ** expressions have iConstExprReg==0.  Do not generate code for
256       ** those expressions, of course.
257       */
258       if( pParse->pConstExpr ){
259         ExprList *pEL = pParse->pConstExpr;
260         pParse->okConstFactor = 0;
261         for(i=0; i<pEL->nExpr; i++){
262           int iReg = pEL->a[i].u.iConstExprReg;
263           if( iReg>0 ){
264             sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
265           }
266         }
267       }
268 
269       if( pParse->bReturning ){
270         Returning *pRet = pParse->u1.pReturning;
271         if( NEVER(pRet->nRetCol==0) ){
272           assert( CORRUPT_DB );
273         }else{
274           sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
275         }
276       }
277 
278       /* Finally, jump back to the beginning of the executable code. */
279       sqlite3VdbeGoto(v, 1);
280     }
281   }
282 
283   /* Get the VDBE program ready for execution
284   */
285   assert( v!=0 || pParse->nErr );
286   assert( db->mallocFailed==0 || pParse->nErr );
287   if( pParse->nErr==0 ){
288     /* A minimum of one cursor is required if autoincrement is used
289     *  See ticket [a696379c1f08866] */
290     assert( pParse->pAinc==0 || pParse->nTab>0 );
291     sqlite3VdbeMakeReady(v, pParse);
292     pParse->rc = SQLITE_DONE;
293   }else{
294     pParse->rc = SQLITE_ERROR;
295   }
296 }
297 
298 /*
299 ** Run the parser and code generator recursively in order to generate
300 ** code for the SQL statement given onto the end of the pParse context
301 ** currently under construction.  Notes:
302 **
303 **   *  The final OP_Halt is not appended and other initialization
304 **      and finalization steps are omitted because those are handling by the
305 **      outermost parser.
306 **
307 **   *  Built-in SQL functions always take precedence over application-defined
308 **      SQL functions.  In other words, it is not possible to override a
309 **      built-in function.
310 */
311 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
312   va_list ap;
313   char *zSql;
314   sqlite3 *db = pParse->db;
315   u32 savedDbFlags = db->mDbFlags;
316   char saveBuf[PARSE_TAIL_SZ];
317 
318   if( pParse->nErr ) return;
319   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
320   va_start(ap, zFormat);
321   zSql = sqlite3VMPrintf(db, zFormat, ap);
322   va_end(ap);
323   if( zSql==0 ){
324     /* This can result either from an OOM or because the formatted string
325     ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
326     ** an error */
327     if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
328     pParse->nErr++;
329     return;
330   }
331   pParse->nested++;
332   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
333   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
334   db->mDbFlags |= DBFLAG_PreferBuiltin;
335   sqlite3RunParser(pParse, zSql);
336   sqlite3DbFree(db, pParse->zErrMsg);
337   pParse->zErrMsg = 0;
338   db->mDbFlags = savedDbFlags;
339   sqlite3DbFree(db, zSql);
340   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
341   pParse->nested--;
342 }
343 
344 #if SQLITE_USER_AUTHENTICATION
345 /*
346 ** Return TRUE if zTable is the name of the system table that stores the
347 ** list of users and their access credentials.
348 */
349 int sqlite3UserAuthTable(const char *zTable){
350   return sqlite3_stricmp(zTable, "sqlite_user")==0;
351 }
352 #endif
353 
354 /*
355 ** Locate the in-memory structure that describes a particular database
356 ** table given the name of that table and (optionally) the name of the
357 ** database containing the table.  Return NULL if not found.
358 **
359 ** If zDatabase is 0, all databases are searched for the table and the
360 ** first matching table is returned.  (No checking for duplicate table
361 ** names is done.)  The search order is TEMP first, then MAIN, then any
362 ** auxiliary databases added using the ATTACH command.
363 **
364 ** See also sqlite3LocateTable().
365 */
366 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
367   Table *p = 0;
368   int i;
369 
370   /* All mutexes are required for schema access.  Make sure we hold them. */
371   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
372 #if SQLITE_USER_AUTHENTICATION
373   /* Only the admin user is allowed to know that the sqlite_user table
374   ** exists */
375   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
376     return 0;
377   }
378 #endif
379   if( zDatabase ){
380     for(i=0; i<db->nDb; i++){
381       if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
382     }
383     if( i>=db->nDb ){
384       /* No match against the official names.  But always match "main"
385       ** to schema 0 as a legacy fallback. */
386       if( sqlite3StrICmp(zDatabase,"main")==0 ){
387         i = 0;
388       }else{
389         return 0;
390       }
391     }
392     p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
393     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
394       if( i==1 ){
395         if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
396          || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
397          || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
398         ){
399           p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
400                               LEGACY_TEMP_SCHEMA_TABLE);
401         }
402       }else{
403         if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
404           p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
405                               LEGACY_SCHEMA_TABLE);
406         }
407       }
408     }
409   }else{
410     /* Match against TEMP first */
411     p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
412     if( p ) return p;
413     /* The main database is second */
414     p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
415     if( p ) return p;
416     /* Attached databases are in order of attachment */
417     for(i=2; i<db->nDb; i++){
418       assert( sqlite3SchemaMutexHeld(db, i, 0) );
419       p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
420       if( p ) break;
421     }
422     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
423       if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
424         p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
425       }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
426         p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
427                             LEGACY_TEMP_SCHEMA_TABLE);
428       }
429     }
430   }
431   return p;
432 }
433 
434 /*
435 ** Locate the in-memory structure that describes a particular database
436 ** table given the name of that table and (optionally) the name of the
437 ** database containing the table.  Return NULL if not found.  Also leave an
438 ** error message in pParse->zErrMsg.
439 **
440 ** The difference between this routine and sqlite3FindTable() is that this
441 ** routine leaves an error message in pParse->zErrMsg where
442 ** sqlite3FindTable() does not.
443 */
444 Table *sqlite3LocateTable(
445   Parse *pParse,         /* context in which to report errors */
446   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
447   const char *zName,     /* Name of the table we are looking for */
448   const char *zDbase     /* Name of the database.  Might be NULL */
449 ){
450   Table *p;
451   sqlite3 *db = pParse->db;
452 
453   /* Read the database schema. If an error occurs, leave an error message
454   ** and code in pParse and return NULL. */
455   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
456    && SQLITE_OK!=sqlite3ReadSchema(pParse)
457   ){
458     return 0;
459   }
460 
461   p = sqlite3FindTable(db, zName, zDbase);
462   if( p==0 ){
463 #ifndef SQLITE_OMIT_VIRTUALTABLE
464     /* If zName is the not the name of a table in the schema created using
465     ** CREATE, then check to see if it is the name of an virtual table that
466     ** can be an eponymous virtual table. */
467     if( pParse->disableVtab==0 && db->init.busy==0 ){
468       Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
469       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
470         pMod = sqlite3PragmaVtabRegister(db, zName);
471       }
472       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
473         testcase( pMod->pEpoTab==0 );
474         return pMod->pEpoTab;
475       }
476     }
477 #endif
478     if( flags & LOCATE_NOERR ) return 0;
479     pParse->checkSchema = 1;
480   }else if( IsVirtual(p) && pParse->disableVtab ){
481     p = 0;
482   }
483 
484   if( p==0 ){
485     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
486     if( zDbase ){
487       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
488     }else{
489       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
490     }
491   }else{
492     assert( HasRowid(p) || p->iPKey<0 );
493   }
494 
495   return p;
496 }
497 
498 /*
499 ** Locate the table identified by *p.
500 **
501 ** This is a wrapper around sqlite3LocateTable(). The difference between
502 ** sqlite3LocateTable() and this function is that this function restricts
503 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
504 ** non-NULL if it is part of a view or trigger program definition. See
505 ** sqlite3FixSrcList() for details.
506 */
507 Table *sqlite3LocateTableItem(
508   Parse *pParse,
509   u32 flags,
510   SrcItem *p
511 ){
512   const char *zDb;
513   assert( p->pSchema==0 || p->zDatabase==0 );
514   if( p->pSchema ){
515     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
516     zDb = pParse->db->aDb[iDb].zDbSName;
517   }else{
518     zDb = p->zDatabase;
519   }
520   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
521 }
522 
523 /*
524 ** Return the preferred table name for system tables.  Translate legacy
525 ** names into the new preferred names, as appropriate.
526 */
527 const char *sqlite3PreferredTableName(const char *zName){
528   if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
529     if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
530       return PREFERRED_SCHEMA_TABLE;
531     }
532     if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
533       return PREFERRED_TEMP_SCHEMA_TABLE;
534     }
535   }
536   return zName;
537 }
538 
539 /*
540 ** Locate the in-memory structure that describes
541 ** a particular index given the name of that index
542 ** and the name of the database that contains the index.
543 ** Return NULL if not found.
544 **
545 ** If zDatabase is 0, all databases are searched for the
546 ** table and the first matching index is returned.  (No checking
547 ** for duplicate index names is done.)  The search order is
548 ** TEMP first, then MAIN, then any auxiliary databases added
549 ** using the ATTACH command.
550 */
551 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
552   Index *p = 0;
553   int i;
554   /* All mutexes are required for schema access.  Make sure we hold them. */
555   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
556   for(i=OMIT_TEMPDB; i<db->nDb; i++){
557     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
558     Schema *pSchema = db->aDb[j].pSchema;
559     assert( pSchema );
560     if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
561     assert( sqlite3SchemaMutexHeld(db, j, 0) );
562     p = sqlite3HashFind(&pSchema->idxHash, zName);
563     if( p ) break;
564   }
565   return p;
566 }
567 
568 /*
569 ** Reclaim the memory used by an index
570 */
571 void sqlite3FreeIndex(sqlite3 *db, Index *p){
572 #ifndef SQLITE_OMIT_ANALYZE
573   sqlite3DeleteIndexSamples(db, p);
574 #endif
575   sqlite3ExprDelete(db, p->pPartIdxWhere);
576   sqlite3ExprListDelete(db, p->aColExpr);
577   sqlite3DbFree(db, p->zColAff);
578   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
579 #ifdef SQLITE_ENABLE_STAT4
580   sqlite3_free(p->aiRowEst);
581 #endif
582   sqlite3DbFree(db, p);
583 }
584 
585 /*
586 ** For the index called zIdxName which is found in the database iDb,
587 ** unlike that index from its Table then remove the index from
588 ** the index hash table and free all memory structures associated
589 ** with the index.
590 */
591 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
592   Index *pIndex;
593   Hash *pHash;
594 
595   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
596   pHash = &db->aDb[iDb].pSchema->idxHash;
597   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
598   if( ALWAYS(pIndex) ){
599     if( pIndex->pTable->pIndex==pIndex ){
600       pIndex->pTable->pIndex = pIndex->pNext;
601     }else{
602       Index *p;
603       /* Justification of ALWAYS();  The index must be on the list of
604       ** indices. */
605       p = pIndex->pTable->pIndex;
606       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
607       if( ALWAYS(p && p->pNext==pIndex) ){
608         p->pNext = pIndex->pNext;
609       }
610     }
611     sqlite3FreeIndex(db, pIndex);
612   }
613   db->mDbFlags |= DBFLAG_SchemaChange;
614 }
615 
616 /*
617 ** Look through the list of open database files in db->aDb[] and if
618 ** any have been closed, remove them from the list.  Reallocate the
619 ** db->aDb[] structure to a smaller size, if possible.
620 **
621 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
622 ** are never candidates for being collapsed.
623 */
624 void sqlite3CollapseDatabaseArray(sqlite3 *db){
625   int i, j;
626   for(i=j=2; i<db->nDb; i++){
627     struct Db *pDb = &db->aDb[i];
628     if( pDb->pBt==0 ){
629       sqlite3DbFree(db, pDb->zDbSName);
630       pDb->zDbSName = 0;
631       continue;
632     }
633     if( j<i ){
634       db->aDb[j] = db->aDb[i];
635     }
636     j++;
637   }
638   db->nDb = j;
639   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
640     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
641     sqlite3DbFree(db, db->aDb);
642     db->aDb = db->aDbStatic;
643   }
644 }
645 
646 /*
647 ** Reset the schema for the database at index iDb.  Also reset the
648 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
649 ** Deferred resets may be run by calling with iDb<0.
650 */
651 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
652   int i;
653   assert( iDb<db->nDb );
654 
655   if( iDb>=0 ){
656     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
657     DbSetProperty(db, iDb, DB_ResetWanted);
658     DbSetProperty(db, 1, DB_ResetWanted);
659     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
660   }
661 
662   if( db->nSchemaLock==0 ){
663     for(i=0; i<db->nDb; i++){
664       if( DbHasProperty(db, i, DB_ResetWanted) ){
665         sqlite3SchemaClear(db->aDb[i].pSchema);
666       }
667     }
668   }
669 }
670 
671 /*
672 ** Erase all schema information from all attached databases (including
673 ** "main" and "temp") for a single database connection.
674 */
675 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
676   int i;
677   sqlite3BtreeEnterAll(db);
678   for(i=0; i<db->nDb; i++){
679     Db *pDb = &db->aDb[i];
680     if( pDb->pSchema ){
681       if( db->nSchemaLock==0 ){
682         sqlite3SchemaClear(pDb->pSchema);
683       }else{
684         DbSetProperty(db, i, DB_ResetWanted);
685       }
686     }
687   }
688   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
689   sqlite3VtabUnlockList(db);
690   sqlite3BtreeLeaveAll(db);
691   if( db->nSchemaLock==0 ){
692     sqlite3CollapseDatabaseArray(db);
693   }
694 }
695 
696 /*
697 ** This routine is called when a commit occurs.
698 */
699 void sqlite3CommitInternalChanges(sqlite3 *db){
700   db->mDbFlags &= ~DBFLAG_SchemaChange;
701 }
702 
703 /*
704 ** Set the expression associated with a column.  This is usually
705 ** the DEFAULT value, but might also be the expression that computes
706 ** the value for a generated column.
707 */
708 void sqlite3ColumnSetExpr(
709   Parse *pParse,    /* Parsing context */
710   Table *pTab,      /* The table containing the column */
711   Column *pCol,     /* The column to receive the new DEFAULT expression */
712   Expr *pExpr       /* The new default expression */
713 ){
714   ExprList *pList;
715   assert( IsOrdinaryTable(pTab) );
716   pList = pTab->u.tab.pDfltList;
717   if( pCol->iDflt==0
718    || NEVER(pList==0)
719    || NEVER(pList->nExpr<pCol->iDflt)
720   ){
721     pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
722     pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
723   }else{
724     sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
725     pList->a[pCol->iDflt-1].pExpr = pExpr;
726   }
727 }
728 
729 /*
730 ** Return the expression associated with a column.  The expression might be
731 ** the DEFAULT clause or the AS clause of a generated column.
732 ** Return NULL if the column has no associated expression.
733 */
734 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
735   if( pCol->iDflt==0 ) return 0;
736   if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
737   if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
738   if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
739   return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
740 }
741 
742 /*
743 ** Set the collating sequence name for a column.
744 */
745 void sqlite3ColumnSetColl(
746   sqlite3 *db,
747   Column *pCol,
748   const char *zColl
749 ){
750   i64 nColl;
751   i64 n;
752   char *zNew;
753   assert( zColl!=0 );
754   n = sqlite3Strlen30(pCol->zCnName) + 1;
755   if( pCol->colFlags & COLFLAG_HASTYPE ){
756     n += sqlite3Strlen30(pCol->zCnName+n) + 1;
757   }
758   nColl = sqlite3Strlen30(zColl) + 1;
759   zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
760   if( zNew ){
761     pCol->zCnName = zNew;
762     memcpy(pCol->zCnName + n, zColl, nColl);
763     pCol->colFlags |= COLFLAG_HASCOLL;
764   }
765 }
766 
767 /*
768 ** Return the collating squence name for a column
769 */
770 const char *sqlite3ColumnColl(Column *pCol){
771   const char *z;
772   if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
773   z = pCol->zCnName;
774   while( *z ){ z++; }
775   if( pCol->colFlags & COLFLAG_HASTYPE ){
776     do{ z++; }while( *z );
777   }
778   return z+1;
779 }
780 
781 /*
782 ** Delete memory allocated for the column names of a table or view (the
783 ** Table.aCol[] array).
784 */
785 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
786   int i;
787   Column *pCol;
788   assert( pTable!=0 );
789   if( (pCol = pTable->aCol)!=0 ){
790     for(i=0; i<pTable->nCol; i++, pCol++){
791       assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
792       sqlite3DbFree(db, pCol->zCnName);
793     }
794     sqlite3DbFree(db, pTable->aCol);
795     if( IsOrdinaryTable(pTable) ){
796       sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
797     }
798     if( db==0 || db->pnBytesFreed==0 ){
799       pTable->aCol = 0;
800       pTable->nCol = 0;
801       if( IsOrdinaryTable(pTable) ){
802         pTable->u.tab.pDfltList = 0;
803       }
804     }
805   }
806 }
807 
808 /*
809 ** Remove the memory data structures associated with the given
810 ** Table.  No changes are made to disk by this routine.
811 **
812 ** This routine just deletes the data structure.  It does not unlink
813 ** the table data structure from the hash table.  But it does destroy
814 ** memory structures of the indices and foreign keys associated with
815 ** the table.
816 **
817 ** The db parameter is optional.  It is needed if the Table object
818 ** contains lookaside memory.  (Table objects in the schema do not use
819 ** lookaside memory, but some ephemeral Table objects do.)  Or the
820 ** db parameter can be used with db->pnBytesFreed to measure the memory
821 ** used by the Table object.
822 */
823 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
824   Index *pIndex, *pNext;
825 
826 #ifdef SQLITE_DEBUG
827   /* Record the number of outstanding lookaside allocations in schema Tables
828   ** prior to doing any free() operations. Since schema Tables do not use
829   ** lookaside, this number should not change.
830   **
831   ** If malloc has already failed, it may be that it failed while allocating
832   ** a Table object that was going to be marked ephemeral. So do not check
833   ** that no lookaside memory is used in this case either. */
834   int nLookaside = 0;
835   if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
836     nLookaside = sqlite3LookasideUsed(db, 0);
837   }
838 #endif
839 
840   /* Delete all indices associated with this table. */
841   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
842     pNext = pIndex->pNext;
843     assert( pIndex->pSchema==pTable->pSchema
844          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
845     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
846       char *zName = pIndex->zName;
847       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
848          &pIndex->pSchema->idxHash, zName, 0
849       );
850       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
851       assert( pOld==pIndex || pOld==0 );
852     }
853     sqlite3FreeIndex(db, pIndex);
854   }
855 
856   if( IsOrdinaryTable(pTable) ){
857     sqlite3FkDelete(db, pTable);
858   }
859 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
860   else if( IsVirtual(pTable) ){
861     sqlite3VtabClear(db, pTable);
862   }
863 #endif
864   else{
865     assert( IsView(pTable) );
866     sqlite3SelectDelete(db, pTable->u.view.pSelect);
867   }
868 
869   /* Delete the Table structure itself.
870   */
871   sqlite3DeleteColumnNames(db, pTable);
872   sqlite3DbFree(db, pTable->zName);
873   sqlite3DbFree(db, pTable->zColAff);
874   sqlite3ExprListDelete(db, pTable->pCheck);
875   sqlite3DbFree(db, pTable);
876 
877   /* Verify that no lookaside memory was used by schema tables */
878   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
879 }
880 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
881   /* Do not delete the table until the reference count reaches zero. */
882   if( !pTable ) return;
883   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
884   deleteTable(db, pTable);
885 }
886 
887 
888 /*
889 ** Unlink the given table from the hash tables and the delete the
890 ** table structure with all its indices and foreign keys.
891 */
892 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
893   Table *p;
894   Db *pDb;
895 
896   assert( db!=0 );
897   assert( iDb>=0 && iDb<db->nDb );
898   assert( zTabName );
899   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
900   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
901   pDb = &db->aDb[iDb];
902   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
903   sqlite3DeleteTable(db, p);
904   db->mDbFlags |= DBFLAG_SchemaChange;
905 }
906 
907 /*
908 ** Given a token, return a string that consists of the text of that
909 ** token.  Space to hold the returned string
910 ** is obtained from sqliteMalloc() and must be freed by the calling
911 ** function.
912 **
913 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
914 ** surround the body of the token are removed.
915 **
916 ** Tokens are often just pointers into the original SQL text and so
917 ** are not \000 terminated and are not persistent.  The returned string
918 ** is \000 terminated and is persistent.
919 */
920 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
921   char *zName;
922   if( pName ){
923     zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
924     sqlite3Dequote(zName);
925   }else{
926     zName = 0;
927   }
928   return zName;
929 }
930 
931 /*
932 ** Open the sqlite_schema table stored in database number iDb for
933 ** writing. The table is opened using cursor 0.
934 */
935 void sqlite3OpenSchemaTable(Parse *p, int iDb){
936   Vdbe *v = sqlite3GetVdbe(p);
937   sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
938   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
939   if( p->nTab==0 ){
940     p->nTab = 1;
941   }
942 }
943 
944 /*
945 ** Parameter zName points to a nul-terminated buffer containing the name
946 ** of a database ("main", "temp" or the name of an attached db). This
947 ** function returns the index of the named database in db->aDb[], or
948 ** -1 if the named db cannot be found.
949 */
950 int sqlite3FindDbName(sqlite3 *db, const char *zName){
951   int i = -1;         /* Database number */
952   if( zName ){
953     Db *pDb;
954     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
955       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
956       /* "main" is always an acceptable alias for the primary database
957       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
958       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
959     }
960   }
961   return i;
962 }
963 
964 /*
965 ** The token *pName contains the name of a database (either "main" or
966 ** "temp" or the name of an attached db). This routine returns the
967 ** index of the named database in db->aDb[], or -1 if the named db
968 ** does not exist.
969 */
970 int sqlite3FindDb(sqlite3 *db, Token *pName){
971   int i;                               /* Database number */
972   char *zName;                         /* Name we are searching for */
973   zName = sqlite3NameFromToken(db, pName);
974   i = sqlite3FindDbName(db, zName);
975   sqlite3DbFree(db, zName);
976   return i;
977 }
978 
979 /* The table or view or trigger name is passed to this routine via tokens
980 ** pName1 and pName2. If the table name was fully qualified, for example:
981 **
982 ** CREATE TABLE xxx.yyy (...);
983 **
984 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
985 ** the table name is not fully qualified, i.e.:
986 **
987 ** CREATE TABLE yyy(...);
988 **
989 ** Then pName1 is set to "yyy" and pName2 is "".
990 **
991 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
992 ** pName2) that stores the unqualified table name.  The index of the
993 ** database "xxx" is returned.
994 */
995 int sqlite3TwoPartName(
996   Parse *pParse,      /* Parsing and code generating context */
997   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
998   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
999   Token **pUnqual     /* Write the unqualified object name here */
1000 ){
1001   int iDb;                    /* Database holding the object */
1002   sqlite3 *db = pParse->db;
1003 
1004   assert( pName2!=0 );
1005   if( pName2->n>0 ){
1006     if( db->init.busy ) {
1007       sqlite3ErrorMsg(pParse, "corrupt database");
1008       return -1;
1009     }
1010     *pUnqual = pName2;
1011     iDb = sqlite3FindDb(db, pName1);
1012     if( iDb<0 ){
1013       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1014       return -1;
1015     }
1016   }else{
1017     assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1018              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1019     iDb = db->init.iDb;
1020     *pUnqual = pName1;
1021   }
1022   return iDb;
1023 }
1024 
1025 /*
1026 ** True if PRAGMA writable_schema is ON
1027 */
1028 int sqlite3WritableSchema(sqlite3 *db){
1029   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1030   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1031                SQLITE_WriteSchema );
1032   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1033                SQLITE_Defensive );
1034   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1035                (SQLITE_WriteSchema|SQLITE_Defensive) );
1036   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1037 }
1038 
1039 /*
1040 ** This routine is used to check if the UTF-8 string zName is a legal
1041 ** unqualified name for a new schema object (table, index, view or
1042 ** trigger). All names are legal except those that begin with the string
1043 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1044 ** is reserved for internal use.
1045 **
1046 ** When parsing the sqlite_schema table, this routine also checks to
1047 ** make sure the "type", "name", and "tbl_name" columns are consistent
1048 ** with the SQL.
1049 */
1050 int sqlite3CheckObjectName(
1051   Parse *pParse,            /* Parsing context */
1052   const char *zName,        /* Name of the object to check */
1053   const char *zType,        /* Type of this object */
1054   const char *zTblName      /* Parent table name for triggers and indexes */
1055 ){
1056   sqlite3 *db = pParse->db;
1057   if( sqlite3WritableSchema(db)
1058    || db->init.imposterTable
1059    || !sqlite3Config.bExtraSchemaChecks
1060   ){
1061     /* Skip these error checks for writable_schema=ON */
1062     return SQLITE_OK;
1063   }
1064   if( db->init.busy ){
1065     if( sqlite3_stricmp(zType, db->init.azInit[0])
1066      || sqlite3_stricmp(zName, db->init.azInit[1])
1067      || sqlite3_stricmp(zTblName, db->init.azInit[2])
1068     ){
1069       sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1070       return SQLITE_ERROR;
1071     }
1072   }else{
1073     if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1074      || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1075     ){
1076       sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1077                       zName);
1078       return SQLITE_ERROR;
1079     }
1080 
1081   }
1082   return SQLITE_OK;
1083 }
1084 
1085 /*
1086 ** Return the PRIMARY KEY index of a table
1087 */
1088 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1089   Index *p;
1090   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1091   return p;
1092 }
1093 
1094 /*
1095 ** Convert an table column number into a index column number.  That is,
1096 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1097 ** find the (first) offset of that column in index pIdx.  Or return -1
1098 ** if column iCol is not used in index pIdx.
1099 */
1100 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1101   int i;
1102   for(i=0; i<pIdx->nColumn; i++){
1103     if( iCol==pIdx->aiColumn[i] ) return i;
1104   }
1105   return -1;
1106 }
1107 
1108 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1109 /* Convert a storage column number into a table column number.
1110 **
1111 ** The storage column number (0,1,2,....) is the index of the value
1112 ** as it appears in the record on disk.  The true column number
1113 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1114 **
1115 ** The storage column number is less than the table column number if
1116 ** and only there are VIRTUAL columns to the left.
1117 **
1118 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1119 */
1120 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1121   if( pTab->tabFlags & TF_HasVirtual ){
1122     int i;
1123     for(i=0; i<=iCol; i++){
1124       if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1125     }
1126   }
1127   return iCol;
1128 }
1129 #endif
1130 
1131 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1132 /* Convert a table column number into a storage column number.
1133 **
1134 ** The storage column number (0,1,2,....) is the index of the value
1135 ** as it appears in the record on disk.  Or, if the input column is
1136 ** the N-th virtual column (zero-based) then the storage number is
1137 ** the number of non-virtual columns in the table plus N.
1138 **
1139 ** The true column number is the index (0,1,2,...) of the column in
1140 ** the CREATE TABLE statement.
1141 **
1142 ** If the input column is a VIRTUAL column, then it should not appear
1143 ** in storage.  But the value sometimes is cached in registers that
1144 ** follow the range of registers used to construct storage.  This
1145 ** avoids computing the same VIRTUAL column multiple times, and provides
1146 ** values for use by OP_Param opcodes in triggers.  Hence, if the
1147 ** input column is a VIRTUAL table, put it after all the other columns.
1148 **
1149 ** In the following, N means "normal column", S means STORED, and
1150 ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
1151 **
1152 **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1153 **                     -- 0 1 2 3 4 5 6 7 8
1154 **
1155 ** Then the mapping from this function is as follows:
1156 **
1157 **    INPUTS:     0 1 2 3 4 5 6 7 8
1158 **    OUTPUTS:    0 1 6 2 3 7 4 5 8
1159 **
1160 ** So, in other words, this routine shifts all the virtual columns to
1161 ** the end.
1162 **
1163 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1164 ** this routine is a no-op macro.  If the pTab does not have any virtual
1165 ** columns, then this routine is no-op that always return iCol.  If iCol
1166 ** is negative (indicating the ROWID column) then this routine return iCol.
1167 */
1168 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1169   int i;
1170   i16 n;
1171   assert( iCol<pTab->nCol );
1172   if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1173   for(i=0, n=0; i<iCol; i++){
1174     if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1175   }
1176   if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1177     /* iCol is a virtual column itself */
1178     return pTab->nNVCol + i - n;
1179   }else{
1180     /* iCol is a normal or stored column */
1181     return n;
1182   }
1183 }
1184 #endif
1185 
1186 /*
1187 ** Insert a single OP_JournalMode query opcode in order to force the
1188 ** prepared statement to return false for sqlite3_stmt_readonly().  This
1189 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1190 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1191 ** will return false for sqlite3_stmt_readonly() even if that statement
1192 ** is a read-only no-op.
1193 */
1194 static void sqlite3ForceNotReadOnly(Parse *pParse){
1195   int iReg = ++pParse->nMem;
1196   Vdbe *v = sqlite3GetVdbe(pParse);
1197   if( v ){
1198     sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1199     sqlite3VdbeUsesBtree(v, 0);
1200   }
1201 }
1202 
1203 /*
1204 ** Begin constructing a new table representation in memory.  This is
1205 ** the first of several action routines that get called in response
1206 ** to a CREATE TABLE statement.  In particular, this routine is called
1207 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1208 ** flag is true if the table should be stored in the auxiliary database
1209 ** file instead of in the main database file.  This is normally the case
1210 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1211 ** CREATE and TABLE.
1212 **
1213 ** The new table record is initialized and put in pParse->pNewTable.
1214 ** As more of the CREATE TABLE statement is parsed, additional action
1215 ** routines will be called to add more information to this record.
1216 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1217 ** is called to complete the construction of the new table record.
1218 */
1219 void sqlite3StartTable(
1220   Parse *pParse,   /* Parser context */
1221   Token *pName1,   /* First part of the name of the table or view */
1222   Token *pName2,   /* Second part of the name of the table or view */
1223   int isTemp,      /* True if this is a TEMP table */
1224   int isView,      /* True if this is a VIEW */
1225   int isVirtual,   /* True if this is a VIRTUAL table */
1226   int noErr        /* Do nothing if table already exists */
1227 ){
1228   Table *pTable;
1229   char *zName = 0; /* The name of the new table */
1230   sqlite3 *db = pParse->db;
1231   Vdbe *v;
1232   int iDb;         /* Database number to create the table in */
1233   Token *pName;    /* Unqualified name of the table to create */
1234 
1235   if( db->init.busy && db->init.newTnum==1 ){
1236     /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
1237     iDb = db->init.iDb;
1238     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1239     pName = pName1;
1240   }else{
1241     /* The common case */
1242     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1243     if( iDb<0 ) return;
1244     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1245       /* If creating a temp table, the name may not be qualified. Unless
1246       ** the database name is "temp" anyway.  */
1247       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1248       return;
1249     }
1250     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1251     zName = sqlite3NameFromToken(db, pName);
1252     if( IN_RENAME_OBJECT ){
1253       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1254     }
1255   }
1256   pParse->sNameToken = *pName;
1257   if( zName==0 ) return;
1258   if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1259     goto begin_table_error;
1260   }
1261   if( db->init.iDb==1 ) isTemp = 1;
1262 #ifndef SQLITE_OMIT_AUTHORIZATION
1263   assert( isTemp==0 || isTemp==1 );
1264   assert( isView==0 || isView==1 );
1265   {
1266     static const u8 aCode[] = {
1267        SQLITE_CREATE_TABLE,
1268        SQLITE_CREATE_TEMP_TABLE,
1269        SQLITE_CREATE_VIEW,
1270        SQLITE_CREATE_TEMP_VIEW
1271     };
1272     char *zDb = db->aDb[iDb].zDbSName;
1273     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1274       goto begin_table_error;
1275     }
1276     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1277                                        zName, 0, zDb) ){
1278       goto begin_table_error;
1279     }
1280   }
1281 #endif
1282 
1283   /* Make sure the new table name does not collide with an existing
1284   ** index or table name in the same database.  Issue an error message if
1285   ** it does. The exception is if the statement being parsed was passed
1286   ** to an sqlite3_declare_vtab() call. In that case only the column names
1287   ** and types will be used, so there is no need to test for namespace
1288   ** collisions.
1289   */
1290   if( !IN_SPECIAL_PARSE ){
1291     char *zDb = db->aDb[iDb].zDbSName;
1292     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1293       goto begin_table_error;
1294     }
1295     pTable = sqlite3FindTable(db, zName, zDb);
1296     if( pTable ){
1297       if( !noErr ){
1298         sqlite3ErrorMsg(pParse, "%s %T already exists",
1299                         (IsView(pTable)? "view" : "table"), pName);
1300       }else{
1301         assert( !db->init.busy || CORRUPT_DB );
1302         sqlite3CodeVerifySchema(pParse, iDb);
1303         sqlite3ForceNotReadOnly(pParse);
1304       }
1305       goto begin_table_error;
1306     }
1307     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1308       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1309       goto begin_table_error;
1310     }
1311   }
1312 
1313   pTable = sqlite3DbMallocZero(db, sizeof(Table));
1314   if( pTable==0 ){
1315     assert( db->mallocFailed );
1316     pParse->rc = SQLITE_NOMEM_BKPT;
1317     pParse->nErr++;
1318     goto begin_table_error;
1319   }
1320   pTable->zName = zName;
1321   pTable->iPKey = -1;
1322   pTable->pSchema = db->aDb[iDb].pSchema;
1323   pTable->nTabRef = 1;
1324 #ifdef SQLITE_DEFAULT_ROWEST
1325   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1326 #else
1327   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1328 #endif
1329   assert( pParse->pNewTable==0 );
1330   pParse->pNewTable = pTable;
1331 
1332   /* Begin generating the code that will insert the table record into
1333   ** the schema table.  Note in particular that we must go ahead
1334   ** and allocate the record number for the table entry now.  Before any
1335   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1336   ** indices to be created and the table record must come before the
1337   ** indices.  Hence, the record number for the table must be allocated
1338   ** now.
1339   */
1340   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1341     int addr1;
1342     int fileFormat;
1343     int reg1, reg2, reg3;
1344     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1345     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1346     sqlite3BeginWriteOperation(pParse, 1, iDb);
1347 
1348 #ifndef SQLITE_OMIT_VIRTUALTABLE
1349     if( isVirtual ){
1350       sqlite3VdbeAddOp0(v, OP_VBegin);
1351     }
1352 #endif
1353 
1354     /* If the file format and encoding in the database have not been set,
1355     ** set them now.
1356     */
1357     reg1 = pParse->regRowid = ++pParse->nMem;
1358     reg2 = pParse->regRoot = ++pParse->nMem;
1359     reg3 = ++pParse->nMem;
1360     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1361     sqlite3VdbeUsesBtree(v, iDb);
1362     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1363     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1364                   1 : SQLITE_MAX_FILE_FORMAT;
1365     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1366     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1367     sqlite3VdbeJumpHere(v, addr1);
1368 
1369     /* This just creates a place-holder record in the sqlite_schema table.
1370     ** The record created does not contain anything yet.  It will be replaced
1371     ** by the real entry in code generated at sqlite3EndTable().
1372     **
1373     ** The rowid for the new entry is left in register pParse->regRowid.
1374     ** The root page number of the new table is left in reg pParse->regRoot.
1375     ** The rowid and root page number values are needed by the code that
1376     ** sqlite3EndTable will generate.
1377     */
1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1379     if( isView || isVirtual ){
1380       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1381     }else
1382 #endif
1383     {
1384       assert( !pParse->bReturning );
1385       pParse->u1.addrCrTab =
1386          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1387     }
1388     sqlite3OpenSchemaTable(pParse, iDb);
1389     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1390     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1391     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1392     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1393     sqlite3VdbeAddOp0(v, OP_Close);
1394   }
1395 
1396   /* Normal (non-error) return. */
1397   return;
1398 
1399   /* If an error occurs, we jump here */
1400 begin_table_error:
1401   pParse->checkSchema = 1;
1402   sqlite3DbFree(db, zName);
1403   return;
1404 }
1405 
1406 /* Set properties of a table column based on the (magical)
1407 ** name of the column.
1408 */
1409 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1410 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1411   if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1412     pCol->colFlags |= COLFLAG_HIDDEN;
1413     if( pTab ) pTab->tabFlags |= TF_HasHidden;
1414   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1415     pTab->tabFlags |= TF_OOOHidden;
1416   }
1417 }
1418 #endif
1419 
1420 /*
1421 ** Name of the special TEMP trigger used to implement RETURNING.  The
1422 ** name begins with "sqlite_" so that it is guaranteed not to collide
1423 ** with any application-generated triggers.
1424 */
1425 #define RETURNING_TRIGGER_NAME  "sqlite_returning"
1426 
1427 /*
1428 ** Clean up the data structures associated with the RETURNING clause.
1429 */
1430 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1431   Hash *pHash;
1432   pHash = &(db->aDb[1].pSchema->trigHash);
1433   sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1434   sqlite3ExprListDelete(db, pRet->pReturnEL);
1435   sqlite3DbFree(db, pRet);
1436 }
1437 
1438 /*
1439 ** Add the RETURNING clause to the parse currently underway.
1440 **
1441 ** This routine creates a special TEMP trigger that will fire for each row
1442 ** of the DML statement.  That TEMP trigger contains a single SELECT
1443 ** statement with a result set that is the argument of the RETURNING clause.
1444 ** The trigger has the Trigger.bReturning flag and an opcode of
1445 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1446 ** knows to handle it specially.  The TEMP trigger is automatically
1447 ** removed at the end of the parse.
1448 **
1449 ** When this routine is called, we do not yet know if the RETURNING clause
1450 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1451 ** RETURNING trigger instead.  It will then be converted into the appropriate
1452 ** type on the first call to sqlite3TriggersExist().
1453 */
1454 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1455   Returning *pRet;
1456   Hash *pHash;
1457   sqlite3 *db = pParse->db;
1458   if( pParse->pNewTrigger ){
1459     sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1460   }else{
1461     assert( pParse->bReturning==0 );
1462   }
1463   pParse->bReturning = 1;
1464   pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1465   if( pRet==0 ){
1466     sqlite3ExprListDelete(db, pList);
1467     return;
1468   }
1469   pParse->u1.pReturning = pRet;
1470   pRet->pParse = pParse;
1471   pRet->pReturnEL = pList;
1472   sqlite3ParserAddCleanup(pParse,
1473      (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1474   testcase( pParse->earlyCleanup );
1475   if( db->mallocFailed ) return;
1476   pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1477   pRet->retTrig.op = TK_RETURNING;
1478   pRet->retTrig.tr_tm = TRIGGER_AFTER;
1479   pRet->retTrig.bReturning = 1;
1480   pRet->retTrig.pSchema = db->aDb[1].pSchema;
1481   pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1482   pRet->retTrig.step_list = &pRet->retTStep;
1483   pRet->retTStep.op = TK_RETURNING;
1484   pRet->retTStep.pTrig = &pRet->retTrig;
1485   pRet->retTStep.pExprList = pList;
1486   pHash = &(db->aDb[1].pSchema->trigHash);
1487   assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1488   if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1489           ==&pRet->retTrig ){
1490     sqlite3OomFault(db);
1491   }
1492 }
1493 
1494 /*
1495 ** Add a new column to the table currently being constructed.
1496 **
1497 ** The parser calls this routine once for each column declaration
1498 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1499 ** first to get things going.  Then this routine is called for each
1500 ** column.
1501 */
1502 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1503   Table *p;
1504   int i;
1505   char *z;
1506   char *zType;
1507   Column *pCol;
1508   sqlite3 *db = pParse->db;
1509   u8 hName;
1510   Column *aNew;
1511   u8 eType = COLTYPE_CUSTOM;
1512   u8 szEst = 1;
1513   char affinity = SQLITE_AFF_BLOB;
1514 
1515   if( (p = pParse->pNewTable)==0 ) return;
1516   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1517     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1518     return;
1519   }
1520   if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1521 
1522   /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1523   ** by the parser, we can sometimes end up with a typename that ends
1524   ** with "generated always".  Check for this case and omit the surplus
1525   ** text. */
1526   if( sType.n>=16
1527    && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1528   ){
1529     sType.n -= 6;
1530     while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1531     if( sType.n>=9
1532      && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1533     ){
1534       sType.n -= 9;
1535       while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1536     }
1537   }
1538 
1539   /* Check for standard typenames.  For standard typenames we will
1540   ** set the Column.eType field rather than storing the typename after
1541   ** the column name, in order to save space. */
1542   if( sType.n>=3 ){
1543     sqlite3DequoteToken(&sType);
1544     for(i=0; i<SQLITE_N_STDTYPE; i++){
1545        if( sType.n==sqlite3StdTypeLen[i]
1546         && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1547        ){
1548          sType.n = 0;
1549          eType = i+1;
1550          affinity = sqlite3StdTypeAffinity[i];
1551          if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1552          break;
1553        }
1554     }
1555   }
1556 
1557   z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1558   if( z==0 ) return;
1559   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1560   memcpy(z, sName.z, sName.n);
1561   z[sName.n] = 0;
1562   sqlite3Dequote(z);
1563   hName = sqlite3StrIHash(z);
1564   for(i=0; i<p->nCol; i++){
1565     if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1566       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1567       sqlite3DbFree(db, z);
1568       return;
1569     }
1570   }
1571   aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1572   if( aNew==0 ){
1573     sqlite3DbFree(db, z);
1574     return;
1575   }
1576   p->aCol = aNew;
1577   pCol = &p->aCol[p->nCol];
1578   memset(pCol, 0, sizeof(p->aCol[0]));
1579   pCol->zCnName = z;
1580   pCol->hName = hName;
1581   sqlite3ColumnPropertiesFromName(p, pCol);
1582 
1583   if( sType.n==0 ){
1584     /* If there is no type specified, columns have the default affinity
1585     ** 'BLOB' with a default size of 4 bytes. */
1586     pCol->affinity = affinity;
1587     pCol->eCType = eType;
1588     pCol->szEst = szEst;
1589 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1590     if( affinity==SQLITE_AFF_BLOB ){
1591       if( 4>=sqlite3GlobalConfig.szSorterRef ){
1592         pCol->colFlags |= COLFLAG_SORTERREF;
1593       }
1594     }
1595 #endif
1596   }else{
1597     zType = z + sqlite3Strlen30(z) + 1;
1598     memcpy(zType, sType.z, sType.n);
1599     zType[sType.n] = 0;
1600     sqlite3Dequote(zType);
1601     pCol->affinity = sqlite3AffinityType(zType, pCol);
1602     pCol->colFlags |= COLFLAG_HASTYPE;
1603   }
1604   p->nCol++;
1605   p->nNVCol++;
1606   pParse->constraintName.n = 0;
1607 }
1608 
1609 /*
1610 ** This routine is called by the parser while in the middle of
1611 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1612 ** been seen on a column.  This routine sets the notNull flag on
1613 ** the column currently under construction.
1614 */
1615 void sqlite3AddNotNull(Parse *pParse, int onError){
1616   Table *p;
1617   Column *pCol;
1618   p = pParse->pNewTable;
1619   if( p==0 || NEVER(p->nCol<1) ) return;
1620   pCol = &p->aCol[p->nCol-1];
1621   pCol->notNull = (u8)onError;
1622   p->tabFlags |= TF_HasNotNull;
1623 
1624   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1625   ** on this column.  */
1626   if( pCol->colFlags & COLFLAG_UNIQUE ){
1627     Index *pIdx;
1628     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1629       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1630       if( pIdx->aiColumn[0]==p->nCol-1 ){
1631         pIdx->uniqNotNull = 1;
1632       }
1633     }
1634   }
1635 }
1636 
1637 /*
1638 ** Scan the column type name zType (length nType) and return the
1639 ** associated affinity type.
1640 **
1641 ** This routine does a case-independent search of zType for the
1642 ** substrings in the following table. If one of the substrings is
1643 ** found, the corresponding affinity is returned. If zType contains
1644 ** more than one of the substrings, entries toward the top of
1645 ** the table take priority. For example, if zType is 'BLOBINT',
1646 ** SQLITE_AFF_INTEGER is returned.
1647 **
1648 ** Substring     | Affinity
1649 ** --------------------------------
1650 ** 'INT'         | SQLITE_AFF_INTEGER
1651 ** 'CHAR'        | SQLITE_AFF_TEXT
1652 ** 'CLOB'        | SQLITE_AFF_TEXT
1653 ** 'TEXT'        | SQLITE_AFF_TEXT
1654 ** 'BLOB'        | SQLITE_AFF_BLOB
1655 ** 'REAL'        | SQLITE_AFF_REAL
1656 ** 'FLOA'        | SQLITE_AFF_REAL
1657 ** 'DOUB'        | SQLITE_AFF_REAL
1658 **
1659 ** If none of the substrings in the above table are found,
1660 ** SQLITE_AFF_NUMERIC is returned.
1661 */
1662 char sqlite3AffinityType(const char *zIn, Column *pCol){
1663   u32 h = 0;
1664   char aff = SQLITE_AFF_NUMERIC;
1665   const char *zChar = 0;
1666 
1667   assert( zIn!=0 );
1668   while( zIn[0] ){
1669     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1670     zIn++;
1671     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1672       aff = SQLITE_AFF_TEXT;
1673       zChar = zIn;
1674     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1675       aff = SQLITE_AFF_TEXT;
1676     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1677       aff = SQLITE_AFF_TEXT;
1678     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1679         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1680       aff = SQLITE_AFF_BLOB;
1681       if( zIn[0]=='(' ) zChar = zIn;
1682 #ifndef SQLITE_OMIT_FLOATING_POINT
1683     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1684         && aff==SQLITE_AFF_NUMERIC ){
1685       aff = SQLITE_AFF_REAL;
1686     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1687         && aff==SQLITE_AFF_NUMERIC ){
1688       aff = SQLITE_AFF_REAL;
1689     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1690         && aff==SQLITE_AFF_NUMERIC ){
1691       aff = SQLITE_AFF_REAL;
1692 #endif
1693     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1694       aff = SQLITE_AFF_INTEGER;
1695       break;
1696     }
1697   }
1698 
1699   /* If pCol is not NULL, store an estimate of the field size.  The
1700   ** estimate is scaled so that the size of an integer is 1.  */
1701   if( pCol ){
1702     int v = 0;   /* default size is approx 4 bytes */
1703     if( aff<SQLITE_AFF_NUMERIC ){
1704       if( zChar ){
1705         while( zChar[0] ){
1706           if( sqlite3Isdigit(zChar[0]) ){
1707             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1708             sqlite3GetInt32(zChar, &v);
1709             break;
1710           }
1711           zChar++;
1712         }
1713       }else{
1714         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1715       }
1716     }
1717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1718     if( v>=sqlite3GlobalConfig.szSorterRef ){
1719       pCol->colFlags |= COLFLAG_SORTERREF;
1720     }
1721 #endif
1722     v = v/4 + 1;
1723     if( v>255 ) v = 255;
1724     pCol->szEst = v;
1725   }
1726   return aff;
1727 }
1728 
1729 /*
1730 ** The expression is the default value for the most recently added column
1731 ** of the table currently under construction.
1732 **
1733 ** Default value expressions must be constant.  Raise an exception if this
1734 ** is not the case.
1735 **
1736 ** This routine is called by the parser while in the middle of
1737 ** parsing a CREATE TABLE statement.
1738 */
1739 void sqlite3AddDefaultValue(
1740   Parse *pParse,           /* Parsing context */
1741   Expr *pExpr,             /* The parsed expression of the default value */
1742   const char *zStart,      /* Start of the default value text */
1743   const char *zEnd         /* First character past end of defaut value text */
1744 ){
1745   Table *p;
1746   Column *pCol;
1747   sqlite3 *db = pParse->db;
1748   p = pParse->pNewTable;
1749   if( p!=0 ){
1750     int isInit = db->init.busy && db->init.iDb!=1;
1751     pCol = &(p->aCol[p->nCol-1]);
1752     if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1753       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1754           pCol->zCnName);
1755 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1756     }else if( pCol->colFlags & COLFLAG_GENERATED ){
1757       testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1758       testcase( pCol->colFlags & COLFLAG_STORED );
1759       sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1760 #endif
1761     }else{
1762       /* A copy of pExpr is used instead of the original, as pExpr contains
1763       ** tokens that point to volatile memory.
1764       */
1765       Expr x, *pDfltExpr;
1766       memset(&x, 0, sizeof(x));
1767       x.op = TK_SPAN;
1768       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1769       x.pLeft = pExpr;
1770       x.flags = EP_Skip;
1771       pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1772       sqlite3DbFree(db, x.u.zToken);
1773       sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1774     }
1775   }
1776   if( IN_RENAME_OBJECT ){
1777     sqlite3RenameExprUnmap(pParse, pExpr);
1778   }
1779   sqlite3ExprDelete(db, pExpr);
1780 }
1781 
1782 /*
1783 ** Backwards Compatibility Hack:
1784 **
1785 ** Historical versions of SQLite accepted strings as column names in
1786 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1787 **
1788 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1789 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1790 **
1791 ** This is goofy.  But to preserve backwards compatibility we continue to
1792 ** accept it.  This routine does the necessary conversion.  It converts
1793 ** the expression given in its argument from a TK_STRING into a TK_ID
1794 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1795 ** If the expression is anything other than TK_STRING, the expression is
1796 ** unchanged.
1797 */
1798 static void sqlite3StringToId(Expr *p){
1799   if( p->op==TK_STRING ){
1800     p->op = TK_ID;
1801   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1802     p->pLeft->op = TK_ID;
1803   }
1804 }
1805 
1806 /*
1807 ** Tag the given column as being part of the PRIMARY KEY
1808 */
1809 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1810   pCol->colFlags |= COLFLAG_PRIMKEY;
1811 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1812   if( pCol->colFlags & COLFLAG_GENERATED ){
1813     testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1814     testcase( pCol->colFlags & COLFLAG_STORED );
1815     sqlite3ErrorMsg(pParse,
1816       "generated columns cannot be part of the PRIMARY KEY");
1817   }
1818 #endif
1819 }
1820 
1821 /*
1822 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1823 ** of columns that form the primary key.  If pList is NULL, then the
1824 ** most recently added column of the table is the primary key.
1825 **
1826 ** A table can have at most one primary key.  If the table already has
1827 ** a primary key (and this is the second primary key) then create an
1828 ** error.
1829 **
1830 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1831 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1832 ** field of the table under construction to be the index of the
1833 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1834 ** no INTEGER PRIMARY KEY.
1835 **
1836 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1837 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1838 */
1839 void sqlite3AddPrimaryKey(
1840   Parse *pParse,    /* Parsing context */
1841   ExprList *pList,  /* List of field names to be indexed */
1842   int onError,      /* What to do with a uniqueness conflict */
1843   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1844   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1845 ){
1846   Table *pTab = pParse->pNewTable;
1847   Column *pCol = 0;
1848   int iCol = -1, i;
1849   int nTerm;
1850   if( pTab==0 ) goto primary_key_exit;
1851   if( pTab->tabFlags & TF_HasPrimaryKey ){
1852     sqlite3ErrorMsg(pParse,
1853       "table \"%s\" has more than one primary key", pTab->zName);
1854     goto primary_key_exit;
1855   }
1856   pTab->tabFlags |= TF_HasPrimaryKey;
1857   if( pList==0 ){
1858     iCol = pTab->nCol - 1;
1859     pCol = &pTab->aCol[iCol];
1860     makeColumnPartOfPrimaryKey(pParse, pCol);
1861     nTerm = 1;
1862   }else{
1863     nTerm = pList->nExpr;
1864     for(i=0; i<nTerm; i++){
1865       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1866       assert( pCExpr!=0 );
1867       sqlite3StringToId(pCExpr);
1868       if( pCExpr->op==TK_ID ){
1869         const char *zCName;
1870         assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1871         zCName = pCExpr->u.zToken;
1872         for(iCol=0; iCol<pTab->nCol; iCol++){
1873           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1874             pCol = &pTab->aCol[iCol];
1875             makeColumnPartOfPrimaryKey(pParse, pCol);
1876             break;
1877           }
1878         }
1879       }
1880     }
1881   }
1882   if( nTerm==1
1883    && pCol
1884    && pCol->eCType==COLTYPE_INTEGER
1885    && sortOrder!=SQLITE_SO_DESC
1886   ){
1887     if( IN_RENAME_OBJECT && pList ){
1888       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1889       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1890     }
1891     pTab->iPKey = iCol;
1892     pTab->keyConf = (u8)onError;
1893     assert( autoInc==0 || autoInc==1 );
1894     pTab->tabFlags |= autoInc*TF_Autoincrement;
1895     if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1896     (void)sqlite3HasExplicitNulls(pParse, pList);
1897   }else if( autoInc ){
1898 #ifndef SQLITE_OMIT_AUTOINCREMENT
1899     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1900        "INTEGER PRIMARY KEY");
1901 #endif
1902   }else{
1903     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1904                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1905     pList = 0;
1906   }
1907 
1908 primary_key_exit:
1909   sqlite3ExprListDelete(pParse->db, pList);
1910   return;
1911 }
1912 
1913 /*
1914 ** Add a new CHECK constraint to the table currently under construction.
1915 */
1916 void sqlite3AddCheckConstraint(
1917   Parse *pParse,      /* Parsing context */
1918   Expr *pCheckExpr,   /* The check expression */
1919   const char *zStart, /* Opening "(" */
1920   const char *zEnd    /* Closing ")" */
1921 ){
1922 #ifndef SQLITE_OMIT_CHECK
1923   Table *pTab = pParse->pNewTable;
1924   sqlite3 *db = pParse->db;
1925   if( pTab && !IN_DECLARE_VTAB
1926    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1927   ){
1928     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1929     if( pParse->constraintName.n ){
1930       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1931     }else{
1932       Token t;
1933       for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1934       while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1935       t.z = zStart;
1936       t.n = (int)(zEnd - t.z);
1937       sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1938     }
1939   }else
1940 #endif
1941   {
1942     sqlite3ExprDelete(pParse->db, pCheckExpr);
1943   }
1944 }
1945 
1946 /*
1947 ** Set the collation function of the most recently parsed table column
1948 ** to the CollSeq given.
1949 */
1950 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1951   Table *p;
1952   int i;
1953   char *zColl;              /* Dequoted name of collation sequence */
1954   sqlite3 *db;
1955 
1956   if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1957   i = p->nCol-1;
1958   db = pParse->db;
1959   zColl = sqlite3NameFromToken(db, pToken);
1960   if( !zColl ) return;
1961 
1962   if( sqlite3LocateCollSeq(pParse, zColl) ){
1963     Index *pIdx;
1964     sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1965 
1966     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1967     ** then an index may have been created on this column before the
1968     ** collation type was added. Correct this if it is the case.
1969     */
1970     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1971       assert( pIdx->nKeyCol==1 );
1972       if( pIdx->aiColumn[0]==i ){
1973         pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1974       }
1975     }
1976   }
1977   sqlite3DbFree(db, zColl);
1978 }
1979 
1980 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1981 ** column.
1982 */
1983 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1984 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1985   u8 eType = COLFLAG_VIRTUAL;
1986   Table *pTab = pParse->pNewTable;
1987   Column *pCol;
1988   if( pTab==0 ){
1989     /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1990     goto generated_done;
1991   }
1992   pCol = &(pTab->aCol[pTab->nCol-1]);
1993   if( IN_DECLARE_VTAB ){
1994     sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1995     goto generated_done;
1996   }
1997   if( pCol->iDflt>0 ) goto generated_error;
1998   if( pType ){
1999     if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
2000       /* no-op */
2001     }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
2002       eType = COLFLAG_STORED;
2003     }else{
2004       goto generated_error;
2005     }
2006   }
2007   if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2008   pCol->colFlags |= eType;
2009   assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2010   assert( TF_HasStored==COLFLAG_STORED );
2011   pTab->tabFlags |= eType;
2012   if( pCol->colFlags & COLFLAG_PRIMKEY ){
2013     makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2014   }
2015   sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2016   pExpr = 0;
2017   goto generated_done;
2018 
2019 generated_error:
2020   sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2021                   pCol->zCnName);
2022 generated_done:
2023   sqlite3ExprDelete(pParse->db, pExpr);
2024 #else
2025   /* Throw and error for the GENERATED ALWAYS AS clause if the
2026   ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2027   sqlite3ErrorMsg(pParse, "generated columns not supported");
2028   sqlite3ExprDelete(pParse->db, pExpr);
2029 #endif
2030 }
2031 
2032 /*
2033 ** Generate code that will increment the schema cookie.
2034 **
2035 ** The schema cookie is used to determine when the schema for the
2036 ** database changes.  After each schema change, the cookie value
2037 ** changes.  When a process first reads the schema it records the
2038 ** cookie.  Thereafter, whenever it goes to access the database,
2039 ** it checks the cookie to make sure the schema has not changed
2040 ** since it was last read.
2041 **
2042 ** This plan is not completely bullet-proof.  It is possible for
2043 ** the schema to change multiple times and for the cookie to be
2044 ** set back to prior value.  But schema changes are infrequent
2045 ** and the probability of hitting the same cookie value is only
2046 ** 1 chance in 2^32.  So we're safe enough.
2047 **
2048 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2049 ** the schema-version whenever the schema changes.
2050 */
2051 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2052   sqlite3 *db = pParse->db;
2053   Vdbe *v = pParse->pVdbe;
2054   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2055   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2056                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2057 }
2058 
2059 /*
2060 ** Measure the number of characters needed to output the given
2061 ** identifier.  The number returned includes any quotes used
2062 ** but does not include the null terminator.
2063 **
2064 ** The estimate is conservative.  It might be larger that what is
2065 ** really needed.
2066 */
2067 static int identLength(const char *z){
2068   int n;
2069   for(n=0; *z; n++, z++){
2070     if( *z=='"' ){ n++; }
2071   }
2072   return n + 2;
2073 }
2074 
2075 /*
2076 ** The first parameter is a pointer to an output buffer. The second
2077 ** parameter is a pointer to an integer that contains the offset at
2078 ** which to write into the output buffer. This function copies the
2079 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2080 ** to the specified offset in the buffer and updates *pIdx to refer
2081 ** to the first byte after the last byte written before returning.
2082 **
2083 ** If the string zSignedIdent consists entirely of alpha-numeric
2084 ** characters, does not begin with a digit and is not an SQL keyword,
2085 ** then it is copied to the output buffer exactly as it is. Otherwise,
2086 ** it is quoted using double-quotes.
2087 */
2088 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2089   unsigned char *zIdent = (unsigned char*)zSignedIdent;
2090   int i, j, needQuote;
2091   i = *pIdx;
2092 
2093   for(j=0; zIdent[j]; j++){
2094     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2095   }
2096   needQuote = sqlite3Isdigit(zIdent[0])
2097             || sqlite3KeywordCode(zIdent, j)!=TK_ID
2098             || zIdent[j]!=0
2099             || j==0;
2100 
2101   if( needQuote ) z[i++] = '"';
2102   for(j=0; zIdent[j]; j++){
2103     z[i++] = zIdent[j];
2104     if( zIdent[j]=='"' ) z[i++] = '"';
2105   }
2106   if( needQuote ) z[i++] = '"';
2107   z[i] = 0;
2108   *pIdx = i;
2109 }
2110 
2111 /*
2112 ** Generate a CREATE TABLE statement appropriate for the given
2113 ** table.  Memory to hold the text of the statement is obtained
2114 ** from sqliteMalloc() and must be freed by the calling function.
2115 */
2116 static char *createTableStmt(sqlite3 *db, Table *p){
2117   int i, k, n;
2118   char *zStmt;
2119   char *zSep, *zSep2, *zEnd;
2120   Column *pCol;
2121   n = 0;
2122   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2123     n += identLength(pCol->zCnName) + 5;
2124   }
2125   n += identLength(p->zName);
2126   if( n<50 ){
2127     zSep = "";
2128     zSep2 = ",";
2129     zEnd = ")";
2130   }else{
2131     zSep = "\n  ";
2132     zSep2 = ",\n  ";
2133     zEnd = "\n)";
2134   }
2135   n += 35 + 6*p->nCol;
2136   zStmt = sqlite3DbMallocRaw(0, n);
2137   if( zStmt==0 ){
2138     sqlite3OomFault(db);
2139     return 0;
2140   }
2141   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2142   k = sqlite3Strlen30(zStmt);
2143   identPut(zStmt, &k, p->zName);
2144   zStmt[k++] = '(';
2145   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2146     static const char * const azType[] = {
2147         /* SQLITE_AFF_BLOB    */ "",
2148         /* SQLITE_AFF_TEXT    */ " TEXT",
2149         /* SQLITE_AFF_NUMERIC */ " NUM",
2150         /* SQLITE_AFF_INTEGER */ " INT",
2151         /* SQLITE_AFF_REAL    */ " REAL"
2152     };
2153     int len;
2154     const char *zType;
2155 
2156     sqlite3_snprintf(n-k, &zStmt[k], zSep);
2157     k += sqlite3Strlen30(&zStmt[k]);
2158     zSep = zSep2;
2159     identPut(zStmt, &k, pCol->zCnName);
2160     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2161     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2162     testcase( pCol->affinity==SQLITE_AFF_BLOB );
2163     testcase( pCol->affinity==SQLITE_AFF_TEXT );
2164     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2165     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2166     testcase( pCol->affinity==SQLITE_AFF_REAL );
2167 
2168     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2169     len = sqlite3Strlen30(zType);
2170     assert( pCol->affinity==SQLITE_AFF_BLOB
2171             || pCol->affinity==sqlite3AffinityType(zType, 0) );
2172     memcpy(&zStmt[k], zType, len);
2173     k += len;
2174     assert( k<=n );
2175   }
2176   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2177   return zStmt;
2178 }
2179 
2180 /*
2181 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
2182 ** on success and SQLITE_NOMEM on an OOM error.
2183 */
2184 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2185   char *zExtra;
2186   int nByte;
2187   if( pIdx->nColumn>=N ) return SQLITE_OK;
2188   assert( pIdx->isResized==0 );
2189   nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2190   zExtra = sqlite3DbMallocZero(db, nByte);
2191   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2192   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2193   pIdx->azColl = (const char**)zExtra;
2194   zExtra += sizeof(char*)*N;
2195   memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2196   pIdx->aiRowLogEst = (LogEst*)zExtra;
2197   zExtra += sizeof(LogEst)*N;
2198   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2199   pIdx->aiColumn = (i16*)zExtra;
2200   zExtra += sizeof(i16)*N;
2201   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2202   pIdx->aSortOrder = (u8*)zExtra;
2203   pIdx->nColumn = N;
2204   pIdx->isResized = 1;
2205   return SQLITE_OK;
2206 }
2207 
2208 /*
2209 ** Estimate the total row width for a table.
2210 */
2211 static void estimateTableWidth(Table *pTab){
2212   unsigned wTable = 0;
2213   const Column *pTabCol;
2214   int i;
2215   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2216     wTable += pTabCol->szEst;
2217   }
2218   if( pTab->iPKey<0 ) wTable++;
2219   pTab->szTabRow = sqlite3LogEst(wTable*4);
2220 }
2221 
2222 /*
2223 ** Estimate the average size of a row for an index.
2224 */
2225 static void estimateIndexWidth(Index *pIdx){
2226   unsigned wIndex = 0;
2227   int i;
2228   const Column *aCol = pIdx->pTable->aCol;
2229   for(i=0; i<pIdx->nColumn; i++){
2230     i16 x = pIdx->aiColumn[i];
2231     assert( x<pIdx->pTable->nCol );
2232     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2233   }
2234   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2235 }
2236 
2237 /* Return true if column number x is any of the first nCol entries of aiCol[].
2238 ** This is used to determine if the column number x appears in any of the
2239 ** first nCol entries of an index.
2240 */
2241 static int hasColumn(const i16 *aiCol, int nCol, int x){
2242   while( nCol-- > 0 ){
2243     if( x==*(aiCol++) ){
2244       return 1;
2245     }
2246   }
2247   return 0;
2248 }
2249 
2250 /*
2251 ** Return true if any of the first nKey entries of index pIdx exactly
2252 ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
2253 ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
2254 ** or may not be the same index as pPk.
2255 **
2256 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2257 ** not a rowid or expression.
2258 **
2259 ** This routine differs from hasColumn() in that both the column and the
2260 ** collating sequence must match for this routine, but for hasColumn() only
2261 ** the column name must match.
2262 */
2263 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2264   int i, j;
2265   assert( nKey<=pIdx->nColumn );
2266   assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2267   assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2268   assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2269   assert( pPk->pTable==pIdx->pTable );
2270   testcase( pPk==pIdx );
2271   j = pPk->aiColumn[iCol];
2272   assert( j!=XN_ROWID && j!=XN_EXPR );
2273   for(i=0; i<nKey; i++){
2274     assert( pIdx->aiColumn[i]>=0 || j>=0 );
2275     if( pIdx->aiColumn[i]==j
2276      && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2277     ){
2278       return 1;
2279     }
2280   }
2281   return 0;
2282 }
2283 
2284 /* Recompute the colNotIdxed field of the Index.
2285 **
2286 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2287 ** columns that are within the first 63 columns of the table.  The
2288 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
2289 ** of the table have a 1.
2290 **
2291 ** 2019-10-24:  For the purpose of this computation, virtual columns are
2292 ** not considered to be covered by the index, even if they are in the
2293 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2294 ** able to find all instances of a reference to the indexed table column
2295 ** and convert them into references to the index.  Hence we always want
2296 ** the actual table at hand in order to recompute the virtual column, if
2297 ** necessary.
2298 **
2299 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2300 ** to determine if the index is covering index.
2301 */
2302 static void recomputeColumnsNotIndexed(Index *pIdx){
2303   Bitmask m = 0;
2304   int j;
2305   Table *pTab = pIdx->pTable;
2306   for(j=pIdx->nColumn-1; j>=0; j--){
2307     int x = pIdx->aiColumn[j];
2308     if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2309       testcase( x==BMS-1 );
2310       testcase( x==BMS-2 );
2311       if( x<BMS-1 ) m |= MASKBIT(x);
2312     }
2313   }
2314   pIdx->colNotIdxed = ~m;
2315   assert( (pIdx->colNotIdxed>>63)==1 );
2316 }
2317 
2318 /*
2319 ** This routine runs at the end of parsing a CREATE TABLE statement that
2320 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
2321 ** internal schema data structures and the generated VDBE code so that they
2322 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2323 ** Changes include:
2324 **
2325 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2326 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2327 **          into BTREE_BLOBKEY.
2328 **     (3)  Bypass the creation of the sqlite_schema table entry
2329 **          for the PRIMARY KEY as the primary key index is now
2330 **          identified by the sqlite_schema table entry of the table itself.
2331 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
2332 **          schema to the rootpage from the main table.
2333 **     (5)  Add all table columns to the PRIMARY KEY Index object
2334 **          so that the PRIMARY KEY is a covering index.  The surplus
2335 **          columns are part of KeyInfo.nAllField and are not used for
2336 **          sorting or lookup or uniqueness checks.
2337 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
2338 **          indices with the PRIMARY KEY columns.
2339 **
2340 ** For virtual tables, only (1) is performed.
2341 */
2342 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2343   Index *pIdx;
2344   Index *pPk;
2345   int nPk;
2346   int nExtra;
2347   int i, j;
2348   sqlite3 *db = pParse->db;
2349   Vdbe *v = pParse->pVdbe;
2350 
2351   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2352   */
2353   if( !db->init.imposterTable ){
2354     for(i=0; i<pTab->nCol; i++){
2355       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2356        && (pTab->aCol[i].notNull==OE_None)
2357       ){
2358         pTab->aCol[i].notNull = OE_Abort;
2359       }
2360     }
2361     pTab->tabFlags |= TF_HasNotNull;
2362   }
2363 
2364   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2365   ** into BTREE_BLOBKEY.
2366   */
2367   assert( !pParse->bReturning );
2368   if( pParse->u1.addrCrTab ){
2369     assert( v );
2370     sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2371   }
2372 
2373   /* Locate the PRIMARY KEY index.  Or, if this table was originally
2374   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2375   */
2376   if( pTab->iPKey>=0 ){
2377     ExprList *pList;
2378     Token ipkToken;
2379     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2380     pList = sqlite3ExprListAppend(pParse, 0,
2381                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2382     if( pList==0 ){
2383       pTab->tabFlags &= ~TF_WithoutRowid;
2384       return;
2385     }
2386     if( IN_RENAME_OBJECT ){
2387       sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2388     }
2389     pList->a[0].sortFlags = pParse->iPkSortOrder;
2390     assert( pParse->pNewTable==pTab );
2391     pTab->iPKey = -1;
2392     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2393                        SQLITE_IDXTYPE_PRIMARYKEY);
2394     if( pParse->nErr ){
2395       pTab->tabFlags &= ~TF_WithoutRowid;
2396       return;
2397     }
2398     assert( db->mallocFailed==0 );
2399     pPk = sqlite3PrimaryKeyIndex(pTab);
2400     assert( pPk->nKeyCol==1 );
2401   }else{
2402     pPk = sqlite3PrimaryKeyIndex(pTab);
2403     assert( pPk!=0 );
2404 
2405     /*
2406     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
2407     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
2408     ** code assumes the PRIMARY KEY contains no repeated columns.
2409     */
2410     for(i=j=1; i<pPk->nKeyCol; i++){
2411       if( isDupColumn(pPk, j, pPk, i) ){
2412         pPk->nColumn--;
2413       }else{
2414         testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2415         pPk->azColl[j] = pPk->azColl[i];
2416         pPk->aSortOrder[j] = pPk->aSortOrder[i];
2417         pPk->aiColumn[j++] = pPk->aiColumn[i];
2418       }
2419     }
2420     pPk->nKeyCol = j;
2421   }
2422   assert( pPk!=0 );
2423   pPk->isCovering = 1;
2424   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2425   nPk = pPk->nColumn = pPk->nKeyCol;
2426 
2427   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2428   ** table entry. This is only required if currently generating VDBE
2429   ** code for a CREATE TABLE (not when parsing one as part of reading
2430   ** a database schema).  */
2431   if( v && pPk->tnum>0 ){
2432     assert( db->init.busy==0 );
2433     sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2434   }
2435 
2436   /* The root page of the PRIMARY KEY is the table root page */
2437   pPk->tnum = pTab->tnum;
2438 
2439   /* Update the in-memory representation of all UNIQUE indices by converting
2440   ** the final rowid column into one or more columns of the PRIMARY KEY.
2441   */
2442   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2443     int n;
2444     if( IsPrimaryKeyIndex(pIdx) ) continue;
2445     for(i=n=0; i<nPk; i++){
2446       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2447         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2448         n++;
2449       }
2450     }
2451     if( n==0 ){
2452       /* This index is a superset of the primary key */
2453       pIdx->nColumn = pIdx->nKeyCol;
2454       continue;
2455     }
2456     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2457     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2458       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2459         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2460         pIdx->aiColumn[j] = pPk->aiColumn[i];
2461         pIdx->azColl[j] = pPk->azColl[i];
2462         if( pPk->aSortOrder[i] ){
2463           /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2464           pIdx->bAscKeyBug = 1;
2465         }
2466         j++;
2467       }
2468     }
2469     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2470     assert( pIdx->nColumn>=j );
2471   }
2472 
2473   /* Add all table columns to the PRIMARY KEY index
2474   */
2475   nExtra = 0;
2476   for(i=0; i<pTab->nCol; i++){
2477     if( !hasColumn(pPk->aiColumn, nPk, i)
2478      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2479   }
2480   if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2481   for(i=0, j=nPk; i<pTab->nCol; i++){
2482     if( !hasColumn(pPk->aiColumn, j, i)
2483      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2484     ){
2485       assert( j<pPk->nColumn );
2486       pPk->aiColumn[j] = i;
2487       pPk->azColl[j] = sqlite3StrBINARY;
2488       j++;
2489     }
2490   }
2491   assert( pPk->nColumn==j );
2492   assert( pTab->nNVCol<=j );
2493   recomputeColumnsNotIndexed(pPk);
2494 }
2495 
2496 
2497 #ifndef SQLITE_OMIT_VIRTUALTABLE
2498 /*
2499 ** Return true if pTab is a virtual table and zName is a shadow table name
2500 ** for that virtual table.
2501 */
2502 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2503   int nName;                    /* Length of zName */
2504   Module *pMod;                 /* Module for the virtual table */
2505 
2506   if( !IsVirtual(pTab) ) return 0;
2507   nName = sqlite3Strlen30(pTab->zName);
2508   if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2509   if( zName[nName]!='_' ) return 0;
2510   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2511   if( pMod==0 ) return 0;
2512   if( pMod->pModule->iVersion<3 ) return 0;
2513   if( pMod->pModule->xShadowName==0 ) return 0;
2514   return pMod->pModule->xShadowName(zName+nName+1);
2515 }
2516 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2517 
2518 #ifndef SQLITE_OMIT_VIRTUALTABLE
2519 /*
2520 ** Table pTab is a virtual table.  If it the virtual table implementation
2521 ** exists and has an xShadowName method, then loop over all other ordinary
2522 ** tables within the same schema looking for shadow tables of pTab, and mark
2523 ** any shadow tables seen using the TF_Shadow flag.
2524 */
2525 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2526   int nName;                    /* Length of pTab->zName */
2527   Module *pMod;                 /* Module for the virtual table */
2528   HashElem *k;                  /* For looping through the symbol table */
2529 
2530   assert( IsVirtual(pTab) );
2531   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2532   if( pMod==0 ) return;
2533   if( NEVER(pMod->pModule==0) ) return;
2534   if( pMod->pModule->iVersion<3 ) return;
2535   if( pMod->pModule->xShadowName==0 ) return;
2536   assert( pTab->zName!=0 );
2537   nName = sqlite3Strlen30(pTab->zName);
2538   for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2539     Table *pOther = sqliteHashData(k);
2540     assert( pOther->zName!=0 );
2541     if( !IsOrdinaryTable(pOther) ) continue;
2542     if( pOther->tabFlags & TF_Shadow ) continue;
2543     if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2544      && pOther->zName[nName]=='_'
2545      && pMod->pModule->xShadowName(pOther->zName+nName+1)
2546     ){
2547       pOther->tabFlags |= TF_Shadow;
2548     }
2549   }
2550 }
2551 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2552 
2553 #ifndef SQLITE_OMIT_VIRTUALTABLE
2554 /*
2555 ** Return true if zName is a shadow table name in the current database
2556 ** connection.
2557 **
2558 ** zName is temporarily modified while this routine is running, but is
2559 ** restored to its original value prior to this routine returning.
2560 */
2561 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2562   char *zTail;                  /* Pointer to the last "_" in zName */
2563   Table *pTab;                  /* Table that zName is a shadow of */
2564   zTail = strrchr(zName, '_');
2565   if( zTail==0 ) return 0;
2566   *zTail = 0;
2567   pTab = sqlite3FindTable(db, zName, 0);
2568   *zTail = '_';
2569   if( pTab==0 ) return 0;
2570   if( !IsVirtual(pTab) ) return 0;
2571   return sqlite3IsShadowTableOf(db, pTab, zName);
2572 }
2573 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2574 
2575 
2576 #ifdef SQLITE_DEBUG
2577 /*
2578 ** Mark all nodes of an expression as EP_Immutable, indicating that
2579 ** they should not be changed.  Expressions attached to a table or
2580 ** index definition are tagged this way to help ensure that we do
2581 ** not pass them into code generator routines by mistake.
2582 */
2583 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2584   ExprSetVVAProperty(pExpr, EP_Immutable);
2585   return WRC_Continue;
2586 }
2587 static void markExprListImmutable(ExprList *pList){
2588   if( pList ){
2589     Walker w;
2590     memset(&w, 0, sizeof(w));
2591     w.xExprCallback = markImmutableExprStep;
2592     w.xSelectCallback = sqlite3SelectWalkNoop;
2593     w.xSelectCallback2 = 0;
2594     sqlite3WalkExprList(&w, pList);
2595   }
2596 }
2597 #else
2598 #define markExprListImmutable(X)  /* no-op */
2599 #endif /* SQLITE_DEBUG */
2600 
2601 
2602 /*
2603 ** This routine is called to report the final ")" that terminates
2604 ** a CREATE TABLE statement.
2605 **
2606 ** The table structure that other action routines have been building
2607 ** is added to the internal hash tables, assuming no errors have
2608 ** occurred.
2609 **
2610 ** An entry for the table is made in the schema table on disk, unless
2611 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
2612 ** it means we are reading the sqlite_schema table because we just
2613 ** connected to the database or because the sqlite_schema table has
2614 ** recently changed, so the entry for this table already exists in
2615 ** the sqlite_schema table.  We do not want to create it again.
2616 **
2617 ** If the pSelect argument is not NULL, it means that this routine
2618 ** was called to create a table generated from a
2619 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
2620 ** the new table will match the result set of the SELECT.
2621 */
2622 void sqlite3EndTable(
2623   Parse *pParse,          /* Parse context */
2624   Token *pCons,           /* The ',' token after the last column defn. */
2625   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
2626   u32 tabOpts,            /* Extra table options. Usually 0. */
2627   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
2628 ){
2629   Table *p;                 /* The new table */
2630   sqlite3 *db = pParse->db; /* The database connection */
2631   int iDb;                  /* Database in which the table lives */
2632   Index *pIdx;              /* An implied index of the table */
2633 
2634   if( pEnd==0 && pSelect==0 ){
2635     return;
2636   }
2637   p = pParse->pNewTable;
2638   if( p==0 ) return;
2639 
2640   if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2641     p->tabFlags |= TF_Shadow;
2642   }
2643 
2644   /* If the db->init.busy is 1 it means we are reading the SQL off the
2645   ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2646   ** So do not write to the disk again.  Extract the root page number
2647   ** for the table from the db->init.newTnum field.  (The page number
2648   ** should have been put there by the sqliteOpenCb routine.)
2649   **
2650   ** If the root page number is 1, that means this is the sqlite_schema
2651   ** table itself.  So mark it read-only.
2652   */
2653   if( db->init.busy ){
2654     if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2655       sqlite3ErrorMsg(pParse, "");
2656       return;
2657     }
2658     p->tnum = db->init.newTnum;
2659     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2660   }
2661 
2662   /* Special processing for tables that include the STRICT keyword:
2663   **
2664   **   *  Do not allow custom column datatypes.  Every column must have
2665   **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2666   **
2667   **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2668   **      then all columns of the PRIMARY KEY must have a NOT NULL
2669   **      constraint.
2670   */
2671   if( tabOpts & TF_Strict ){
2672     int ii;
2673     p->tabFlags |= TF_Strict;
2674     for(ii=0; ii<p->nCol; ii++){
2675       Column *pCol = &p->aCol[ii];
2676       if( pCol->eCType==COLTYPE_CUSTOM ){
2677         if( pCol->colFlags & COLFLAG_HASTYPE ){
2678           sqlite3ErrorMsg(pParse,
2679             "unknown datatype for %s.%s: \"%s\"",
2680             p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2681           );
2682         }else{
2683           sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2684                           p->zName, pCol->zCnName);
2685         }
2686         return;
2687       }else if( pCol->eCType==COLTYPE_ANY ){
2688         pCol->affinity = SQLITE_AFF_BLOB;
2689       }
2690       if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2691        && p->iPKey!=ii
2692        && pCol->notNull == OE_None
2693       ){
2694         pCol->notNull = OE_Abort;
2695         p->tabFlags |= TF_HasNotNull;
2696       }
2697     }
2698   }
2699 
2700   assert( (p->tabFlags & TF_HasPrimaryKey)==0
2701        || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2702   assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2703        || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2704 
2705   /* Special processing for WITHOUT ROWID Tables */
2706   if( tabOpts & TF_WithoutRowid ){
2707     if( (p->tabFlags & TF_Autoincrement) ){
2708       sqlite3ErrorMsg(pParse,
2709           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2710       return;
2711     }
2712     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2713       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2714       return;
2715     }
2716     p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2717     convertToWithoutRowidTable(pParse, p);
2718   }
2719   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2720 
2721 #ifndef SQLITE_OMIT_CHECK
2722   /* Resolve names in all CHECK constraint expressions.
2723   */
2724   if( p->pCheck ){
2725     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2726     if( pParse->nErr ){
2727       /* If errors are seen, delete the CHECK constraints now, else they might
2728       ** actually be used if PRAGMA writable_schema=ON is set. */
2729       sqlite3ExprListDelete(db, p->pCheck);
2730       p->pCheck = 0;
2731     }else{
2732       markExprListImmutable(p->pCheck);
2733     }
2734   }
2735 #endif /* !defined(SQLITE_OMIT_CHECK) */
2736 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2737   if( p->tabFlags & TF_HasGenerated ){
2738     int ii, nNG = 0;
2739     testcase( p->tabFlags & TF_HasVirtual );
2740     testcase( p->tabFlags & TF_HasStored );
2741     for(ii=0; ii<p->nCol; ii++){
2742       u32 colFlags = p->aCol[ii].colFlags;
2743       if( (colFlags & COLFLAG_GENERATED)!=0 ){
2744         Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2745         testcase( colFlags & COLFLAG_VIRTUAL );
2746         testcase( colFlags & COLFLAG_STORED );
2747         if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2748           /* If there are errors in resolving the expression, change the
2749           ** expression to a NULL.  This prevents code generators that operate
2750           ** on the expression from inserting extra parts into the expression
2751           ** tree that have been allocated from lookaside memory, which is
2752           ** illegal in a schema and will lead to errors or heap corruption
2753           ** when the database connection closes. */
2754           sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2755                sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2756         }
2757       }else{
2758         nNG++;
2759       }
2760     }
2761     if( nNG==0 ){
2762       sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2763       return;
2764     }
2765   }
2766 #endif
2767 
2768   /* Estimate the average row size for the table and for all implied indices */
2769   estimateTableWidth(p);
2770   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2771     estimateIndexWidth(pIdx);
2772   }
2773 
2774   /* If not initializing, then create a record for the new table
2775   ** in the schema table of the database.
2776   **
2777   ** If this is a TEMPORARY table, write the entry into the auxiliary
2778   ** file instead of into the main database file.
2779   */
2780   if( !db->init.busy ){
2781     int n;
2782     Vdbe *v;
2783     char *zType;    /* "view" or "table" */
2784     char *zType2;   /* "VIEW" or "TABLE" */
2785     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2786 
2787     v = sqlite3GetVdbe(pParse);
2788     if( NEVER(v==0) ) return;
2789 
2790     sqlite3VdbeAddOp1(v, OP_Close, 0);
2791 
2792     /*
2793     ** Initialize zType for the new view or table.
2794     */
2795     if( IsOrdinaryTable(p) ){
2796       /* A regular table */
2797       zType = "table";
2798       zType2 = "TABLE";
2799 #ifndef SQLITE_OMIT_VIEW
2800     }else{
2801       /* A view */
2802       zType = "view";
2803       zType2 = "VIEW";
2804 #endif
2805     }
2806 
2807     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2808     ** statement to populate the new table. The root-page number for the
2809     ** new table is in register pParse->regRoot.
2810     **
2811     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2812     ** suitable state to query for the column names and types to be used
2813     ** by the new table.
2814     **
2815     ** A shared-cache write-lock is not required to write to the new table,
2816     ** as a schema-lock must have already been obtained to create it. Since
2817     ** a schema-lock excludes all other database users, the write-lock would
2818     ** be redundant.
2819     */
2820     if( pSelect ){
2821       SelectDest dest;    /* Where the SELECT should store results */
2822       int regYield;       /* Register holding co-routine entry-point */
2823       int addrTop;        /* Top of the co-routine */
2824       int regRec;         /* A record to be insert into the new table */
2825       int regRowid;       /* Rowid of the next row to insert */
2826       int addrInsLoop;    /* Top of the loop for inserting rows */
2827       Table *pSelTab;     /* A table that describes the SELECT results */
2828 
2829       regYield = ++pParse->nMem;
2830       regRec = ++pParse->nMem;
2831       regRowid = ++pParse->nMem;
2832       assert(pParse->nTab==1);
2833       sqlite3MayAbort(pParse);
2834       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2835       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2836       pParse->nTab = 2;
2837       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2838       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2839       if( pParse->nErr ) return;
2840       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2841       if( pSelTab==0 ) return;
2842       assert( p->aCol==0 );
2843       p->nCol = p->nNVCol = pSelTab->nCol;
2844       p->aCol = pSelTab->aCol;
2845       pSelTab->nCol = 0;
2846       pSelTab->aCol = 0;
2847       sqlite3DeleteTable(db, pSelTab);
2848       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2849       sqlite3Select(pParse, pSelect, &dest);
2850       if( pParse->nErr ) return;
2851       sqlite3VdbeEndCoroutine(v, regYield);
2852       sqlite3VdbeJumpHere(v, addrTop - 1);
2853       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2854       VdbeCoverage(v);
2855       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2856       sqlite3TableAffinity(v, p, 0);
2857       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2858       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2859       sqlite3VdbeGoto(v, addrInsLoop);
2860       sqlite3VdbeJumpHere(v, addrInsLoop);
2861       sqlite3VdbeAddOp1(v, OP_Close, 1);
2862     }
2863 
2864     /* Compute the complete text of the CREATE statement */
2865     if( pSelect ){
2866       zStmt = createTableStmt(db, p);
2867     }else{
2868       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2869       n = (int)(pEnd2->z - pParse->sNameToken.z);
2870       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2871       zStmt = sqlite3MPrintf(db,
2872           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2873       );
2874     }
2875 
2876     /* A slot for the record has already been allocated in the
2877     ** schema table.  We just need to update that slot with all
2878     ** the information we've collected.
2879     */
2880     sqlite3NestedParse(pParse,
2881       "UPDATE %Q." LEGACY_SCHEMA_TABLE
2882       " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2883       " WHERE rowid=#%d",
2884       db->aDb[iDb].zDbSName,
2885       zType,
2886       p->zName,
2887       p->zName,
2888       pParse->regRoot,
2889       zStmt,
2890       pParse->regRowid
2891     );
2892     sqlite3DbFree(db, zStmt);
2893     sqlite3ChangeCookie(pParse, iDb);
2894 
2895 #ifndef SQLITE_OMIT_AUTOINCREMENT
2896     /* Check to see if we need to create an sqlite_sequence table for
2897     ** keeping track of autoincrement keys.
2898     */
2899     if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2900       Db *pDb = &db->aDb[iDb];
2901       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2902       if( pDb->pSchema->pSeqTab==0 ){
2903         sqlite3NestedParse(pParse,
2904           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2905           pDb->zDbSName
2906         );
2907       }
2908     }
2909 #endif
2910 
2911     /* Reparse everything to update our internal data structures */
2912     sqlite3VdbeAddParseSchemaOp(v, iDb,
2913            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2914   }
2915 
2916   /* Add the table to the in-memory representation of the database.
2917   */
2918   if( db->init.busy ){
2919     Table *pOld;
2920     Schema *pSchema = p->pSchema;
2921     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2922     assert( HasRowid(p) || p->iPKey<0 );
2923     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2924     if( pOld ){
2925       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2926       sqlite3OomFault(db);
2927       return;
2928     }
2929     pParse->pNewTable = 0;
2930     db->mDbFlags |= DBFLAG_SchemaChange;
2931 
2932     /* If this is the magic sqlite_sequence table used by autoincrement,
2933     ** then record a pointer to this table in the main database structure
2934     ** so that INSERT can find the table easily.  */
2935     assert( !pParse->nested );
2936 #ifndef SQLITE_OMIT_AUTOINCREMENT
2937     if( strcmp(p->zName, "sqlite_sequence")==0 ){
2938       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2939       p->pSchema->pSeqTab = p;
2940     }
2941 #endif
2942   }
2943 
2944 #ifndef SQLITE_OMIT_ALTERTABLE
2945   if( !pSelect && IsOrdinaryTable(p) ){
2946     assert( pCons && pEnd );
2947     if( pCons->z==0 ){
2948       pCons = pEnd;
2949     }
2950     p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2951   }
2952 #endif
2953 }
2954 
2955 #ifndef SQLITE_OMIT_VIEW
2956 /*
2957 ** The parser calls this routine in order to create a new VIEW
2958 */
2959 void sqlite3CreateView(
2960   Parse *pParse,     /* The parsing context */
2961   Token *pBegin,     /* The CREATE token that begins the statement */
2962   Token *pName1,     /* The token that holds the name of the view */
2963   Token *pName2,     /* The token that holds the name of the view */
2964   ExprList *pCNames, /* Optional list of view column names */
2965   Select *pSelect,   /* A SELECT statement that will become the new view */
2966   int isTemp,        /* TRUE for a TEMPORARY view */
2967   int noErr          /* Suppress error messages if VIEW already exists */
2968 ){
2969   Table *p;
2970   int n;
2971   const char *z;
2972   Token sEnd;
2973   DbFixer sFix;
2974   Token *pName = 0;
2975   int iDb;
2976   sqlite3 *db = pParse->db;
2977 
2978   if( pParse->nVar>0 ){
2979     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2980     goto create_view_fail;
2981   }
2982   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2983   p = pParse->pNewTable;
2984   if( p==0 || pParse->nErr ) goto create_view_fail;
2985 
2986   /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2987   ** on a view, even though views do not have rowids.  The following flag
2988   ** setting fixes this problem.  But the fix can be disabled by compiling
2989   ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2990   ** depend upon the old buggy behavior. */
2991 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2992   p->tabFlags |= TF_NoVisibleRowid;
2993 #endif
2994 
2995   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2996   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2997   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2998   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2999 
3000   /* Make a copy of the entire SELECT statement that defines the view.
3001   ** This will force all the Expr.token.z values to be dynamically
3002   ** allocated rather than point to the input string - which means that
3003   ** they will persist after the current sqlite3_exec() call returns.
3004   */
3005   pSelect->selFlags |= SF_View;
3006   if( IN_RENAME_OBJECT ){
3007     p->u.view.pSelect = pSelect;
3008     pSelect = 0;
3009   }else{
3010     p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3011   }
3012   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3013   p->eTabType = TABTYP_VIEW;
3014   if( db->mallocFailed ) goto create_view_fail;
3015 
3016   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
3017   ** the end.
3018   */
3019   sEnd = pParse->sLastToken;
3020   assert( sEnd.z[0]!=0 || sEnd.n==0 );
3021   if( sEnd.z[0]!=';' ){
3022     sEnd.z += sEnd.n;
3023   }
3024   sEnd.n = 0;
3025   n = (int)(sEnd.z - pBegin->z);
3026   assert( n>0 );
3027   z = pBegin->z;
3028   while( sqlite3Isspace(z[n-1]) ){ n--; }
3029   sEnd.z = &z[n-1];
3030   sEnd.n = 1;
3031 
3032   /* Use sqlite3EndTable() to add the view to the schema table */
3033   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3034 
3035 create_view_fail:
3036   sqlite3SelectDelete(db, pSelect);
3037   if( IN_RENAME_OBJECT ){
3038     sqlite3RenameExprlistUnmap(pParse, pCNames);
3039   }
3040   sqlite3ExprListDelete(db, pCNames);
3041   return;
3042 }
3043 #endif /* SQLITE_OMIT_VIEW */
3044 
3045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3046 /*
3047 ** The Table structure pTable is really a VIEW.  Fill in the names of
3048 ** the columns of the view in the pTable structure.  Return the number
3049 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
3050 */
3051 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3052   Table *pSelTab;   /* A fake table from which we get the result set */
3053   Select *pSel;     /* Copy of the SELECT that implements the view */
3054   int nErr = 0;     /* Number of errors encountered */
3055   int n;            /* Temporarily holds the number of cursors assigned */
3056   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
3057 #ifndef SQLITE_OMIT_VIRTUALTABLE
3058   int rc;
3059 #endif
3060 #ifndef SQLITE_OMIT_AUTHORIZATION
3061   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
3062 #endif
3063 
3064   assert( pTable );
3065 
3066 #ifndef SQLITE_OMIT_VIRTUALTABLE
3067   if( IsVirtual(pTable) ){
3068     db->nSchemaLock++;
3069     rc = sqlite3VtabCallConnect(pParse, pTable);
3070     db->nSchemaLock--;
3071     return rc;
3072   }
3073 #endif
3074 
3075 #ifndef SQLITE_OMIT_VIEW
3076   /* A positive nCol means the columns names for this view are
3077   ** already known.
3078   */
3079   if( pTable->nCol>0 ) return 0;
3080 
3081   /* A negative nCol is a special marker meaning that we are currently
3082   ** trying to compute the column names.  If we enter this routine with
3083   ** a negative nCol, it means two or more views form a loop, like this:
3084   **
3085   **     CREATE VIEW one AS SELECT * FROM two;
3086   **     CREATE VIEW two AS SELECT * FROM one;
3087   **
3088   ** Actually, the error above is now caught prior to reaching this point.
3089   ** But the following test is still important as it does come up
3090   ** in the following:
3091   **
3092   **     CREATE TABLE main.ex1(a);
3093   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3094   **     SELECT * FROM temp.ex1;
3095   */
3096   if( pTable->nCol<0 ){
3097     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3098     return 1;
3099   }
3100   assert( pTable->nCol>=0 );
3101 
3102   /* If we get this far, it means we need to compute the table names.
3103   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3104   ** "*" elements in the results set of the view and will assign cursors
3105   ** to the elements of the FROM clause.  But we do not want these changes
3106   ** to be permanent.  So the computation is done on a copy of the SELECT
3107   ** statement that defines the view.
3108   */
3109   assert( IsView(pTable) );
3110   pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3111   if( pSel ){
3112     u8 eParseMode = pParse->eParseMode;
3113     pParse->eParseMode = PARSE_MODE_NORMAL;
3114     n = pParse->nTab;
3115     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3116     pTable->nCol = -1;
3117     DisableLookaside;
3118 #ifndef SQLITE_OMIT_AUTHORIZATION
3119     xAuth = db->xAuth;
3120     db->xAuth = 0;
3121     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3122     db->xAuth = xAuth;
3123 #else
3124     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3125 #endif
3126     pParse->nTab = n;
3127     if( pSelTab==0 ){
3128       pTable->nCol = 0;
3129       nErr++;
3130     }else if( pTable->pCheck ){
3131       /* CREATE VIEW name(arglist) AS ...
3132       ** The names of the columns in the table are taken from
3133       ** arglist which is stored in pTable->pCheck.  The pCheck field
3134       ** normally holds CHECK constraints on an ordinary table, but for
3135       ** a VIEW it holds the list of column names.
3136       */
3137       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3138                                  &pTable->nCol, &pTable->aCol);
3139       if( pParse->nErr==0
3140        && pTable->nCol==pSel->pEList->nExpr
3141       ){
3142         assert( db->mallocFailed==0 );
3143         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3144                                                SQLITE_AFF_NONE);
3145       }
3146     }else{
3147       /* CREATE VIEW name AS...  without an argument list.  Construct
3148       ** the column names from the SELECT statement that defines the view.
3149       */
3150       assert( pTable->aCol==0 );
3151       pTable->nCol = pSelTab->nCol;
3152       pTable->aCol = pSelTab->aCol;
3153       pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3154       pSelTab->nCol = 0;
3155       pSelTab->aCol = 0;
3156       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3157     }
3158     pTable->nNVCol = pTable->nCol;
3159     sqlite3DeleteTable(db, pSelTab);
3160     sqlite3SelectDelete(db, pSel);
3161     EnableLookaside;
3162     pParse->eParseMode = eParseMode;
3163   } else {
3164     nErr++;
3165   }
3166   pTable->pSchema->schemaFlags |= DB_UnresetViews;
3167   if( db->mallocFailed ){
3168     sqlite3DeleteColumnNames(db, pTable);
3169   }
3170 #endif /* SQLITE_OMIT_VIEW */
3171   return nErr;
3172 }
3173 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3174 
3175 #ifndef SQLITE_OMIT_VIEW
3176 /*
3177 ** Clear the column names from every VIEW in database idx.
3178 */
3179 static void sqliteViewResetAll(sqlite3 *db, int idx){
3180   HashElem *i;
3181   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3182   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3183   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3184     Table *pTab = sqliteHashData(i);
3185     if( IsView(pTab) ){
3186       sqlite3DeleteColumnNames(db, pTab);
3187     }
3188   }
3189   DbClearProperty(db, idx, DB_UnresetViews);
3190 }
3191 #else
3192 # define sqliteViewResetAll(A,B)
3193 #endif /* SQLITE_OMIT_VIEW */
3194 
3195 /*
3196 ** This function is called by the VDBE to adjust the internal schema
3197 ** used by SQLite when the btree layer moves a table root page. The
3198 ** root-page of a table or index in database iDb has changed from iFrom
3199 ** to iTo.
3200 **
3201 ** Ticket #1728:  The symbol table might still contain information
3202 ** on tables and/or indices that are the process of being deleted.
3203 ** If you are unlucky, one of those deleted indices or tables might
3204 ** have the same rootpage number as the real table or index that is
3205 ** being moved.  So we cannot stop searching after the first match
3206 ** because the first match might be for one of the deleted indices
3207 ** or tables and not the table/index that is actually being moved.
3208 ** We must continue looping until all tables and indices with
3209 ** rootpage==iFrom have been converted to have a rootpage of iTo
3210 ** in order to be certain that we got the right one.
3211 */
3212 #ifndef SQLITE_OMIT_AUTOVACUUM
3213 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3214   HashElem *pElem;
3215   Hash *pHash;
3216   Db *pDb;
3217 
3218   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3219   pDb = &db->aDb[iDb];
3220   pHash = &pDb->pSchema->tblHash;
3221   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3222     Table *pTab = sqliteHashData(pElem);
3223     if( pTab->tnum==iFrom ){
3224       pTab->tnum = iTo;
3225     }
3226   }
3227   pHash = &pDb->pSchema->idxHash;
3228   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3229     Index *pIdx = sqliteHashData(pElem);
3230     if( pIdx->tnum==iFrom ){
3231       pIdx->tnum = iTo;
3232     }
3233   }
3234 }
3235 #endif
3236 
3237 /*
3238 ** Write code to erase the table with root-page iTable from database iDb.
3239 ** Also write code to modify the sqlite_schema table and internal schema
3240 ** if a root-page of another table is moved by the btree-layer whilst
3241 ** erasing iTable (this can happen with an auto-vacuum database).
3242 */
3243 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3244   Vdbe *v = sqlite3GetVdbe(pParse);
3245   int r1 = sqlite3GetTempReg(pParse);
3246   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3247   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3248   sqlite3MayAbort(pParse);
3249 #ifndef SQLITE_OMIT_AUTOVACUUM
3250   /* OP_Destroy stores an in integer r1. If this integer
3251   ** is non-zero, then it is the root page number of a table moved to
3252   ** location iTable. The following code modifies the sqlite_schema table to
3253   ** reflect this.
3254   **
3255   ** The "#NNN" in the SQL is a special constant that means whatever value
3256   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
3257   ** token for additional information.
3258   */
3259   sqlite3NestedParse(pParse,
3260      "UPDATE %Q." LEGACY_SCHEMA_TABLE
3261      " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3262      pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3263 #endif
3264   sqlite3ReleaseTempReg(pParse, r1);
3265 }
3266 
3267 /*
3268 ** Write VDBE code to erase table pTab and all associated indices on disk.
3269 ** Code to update the sqlite_schema tables and internal schema definitions
3270 ** in case a root-page belonging to another table is moved by the btree layer
3271 ** is also added (this can happen with an auto-vacuum database).
3272 */
3273 static void destroyTable(Parse *pParse, Table *pTab){
3274   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3275   ** is not defined), then it is important to call OP_Destroy on the
3276   ** table and index root-pages in order, starting with the numerically
3277   ** largest root-page number. This guarantees that none of the root-pages
3278   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3279   ** following were coded:
3280   **
3281   ** OP_Destroy 4 0
3282   ** ...
3283   ** OP_Destroy 5 0
3284   **
3285   ** and root page 5 happened to be the largest root-page number in the
3286   ** database, then root page 5 would be moved to page 4 by the
3287   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3288   ** a free-list page.
3289   */
3290   Pgno iTab = pTab->tnum;
3291   Pgno iDestroyed = 0;
3292 
3293   while( 1 ){
3294     Index *pIdx;
3295     Pgno iLargest = 0;
3296 
3297     if( iDestroyed==0 || iTab<iDestroyed ){
3298       iLargest = iTab;
3299     }
3300     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3301       Pgno iIdx = pIdx->tnum;
3302       assert( pIdx->pSchema==pTab->pSchema );
3303       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3304         iLargest = iIdx;
3305       }
3306     }
3307     if( iLargest==0 ){
3308       return;
3309     }else{
3310       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3311       assert( iDb>=0 && iDb<pParse->db->nDb );
3312       destroyRootPage(pParse, iLargest, iDb);
3313       iDestroyed = iLargest;
3314     }
3315   }
3316 }
3317 
3318 /*
3319 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3320 ** after a DROP INDEX or DROP TABLE command.
3321 */
3322 static void sqlite3ClearStatTables(
3323   Parse *pParse,         /* The parsing context */
3324   int iDb,               /* The database number */
3325   const char *zType,     /* "idx" or "tbl" */
3326   const char *zName      /* Name of index or table */
3327 ){
3328   int i;
3329   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3330   for(i=1; i<=4; i++){
3331     char zTab[24];
3332     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3333     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3334       sqlite3NestedParse(pParse,
3335         "DELETE FROM %Q.%s WHERE %s=%Q",
3336         zDbName, zTab, zType, zName
3337       );
3338     }
3339   }
3340 }
3341 
3342 /*
3343 ** Generate code to drop a table.
3344 */
3345 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3346   Vdbe *v;
3347   sqlite3 *db = pParse->db;
3348   Trigger *pTrigger;
3349   Db *pDb = &db->aDb[iDb];
3350 
3351   v = sqlite3GetVdbe(pParse);
3352   assert( v!=0 );
3353   sqlite3BeginWriteOperation(pParse, 1, iDb);
3354 
3355 #ifndef SQLITE_OMIT_VIRTUALTABLE
3356   if( IsVirtual(pTab) ){
3357     sqlite3VdbeAddOp0(v, OP_VBegin);
3358   }
3359 #endif
3360 
3361   /* Drop all triggers associated with the table being dropped. Code
3362   ** is generated to remove entries from sqlite_schema and/or
3363   ** sqlite_temp_schema if required.
3364   */
3365   pTrigger = sqlite3TriggerList(pParse, pTab);
3366   while( pTrigger ){
3367     assert( pTrigger->pSchema==pTab->pSchema ||
3368         pTrigger->pSchema==db->aDb[1].pSchema );
3369     sqlite3DropTriggerPtr(pParse, pTrigger);
3370     pTrigger = pTrigger->pNext;
3371   }
3372 
3373 #ifndef SQLITE_OMIT_AUTOINCREMENT
3374   /* Remove any entries of the sqlite_sequence table associated with
3375   ** the table being dropped. This is done before the table is dropped
3376   ** at the btree level, in case the sqlite_sequence table needs to
3377   ** move as a result of the drop (can happen in auto-vacuum mode).
3378   */
3379   if( pTab->tabFlags & TF_Autoincrement ){
3380     sqlite3NestedParse(pParse,
3381       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3382       pDb->zDbSName, pTab->zName
3383     );
3384   }
3385 #endif
3386 
3387   /* Drop all entries in the schema table that refer to the
3388   ** table. The program name loops through the schema table and deletes
3389   ** every row that refers to a table of the same name as the one being
3390   ** dropped. Triggers are handled separately because a trigger can be
3391   ** created in the temp database that refers to a table in another
3392   ** database.
3393   */
3394   sqlite3NestedParse(pParse,
3395       "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3396       " WHERE tbl_name=%Q and type!='trigger'",
3397       pDb->zDbSName, pTab->zName);
3398   if( !isView && !IsVirtual(pTab) ){
3399     destroyTable(pParse, pTab);
3400   }
3401 
3402   /* Remove the table entry from SQLite's internal schema and modify
3403   ** the schema cookie.
3404   */
3405   if( IsVirtual(pTab) ){
3406     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3407     sqlite3MayAbort(pParse);
3408   }
3409   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3410   sqlite3ChangeCookie(pParse, iDb);
3411   sqliteViewResetAll(db, iDb);
3412 }
3413 
3414 /*
3415 ** Return TRUE if shadow tables should be read-only in the current
3416 ** context.
3417 */
3418 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3419 #ifndef SQLITE_OMIT_VIRTUALTABLE
3420   if( (db->flags & SQLITE_Defensive)!=0
3421    && db->pVtabCtx==0
3422    && db->nVdbeExec==0
3423    && !sqlite3VtabInSync(db)
3424   ){
3425     return 1;
3426   }
3427 #endif
3428   return 0;
3429 }
3430 
3431 /*
3432 ** Return true if it is not allowed to drop the given table
3433 */
3434 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3435   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3436     if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3437     if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3438     return 1;
3439   }
3440   if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3441     return 1;
3442   }
3443   if( pTab->tabFlags & TF_Eponymous ){
3444     return 1;
3445   }
3446   return 0;
3447 }
3448 
3449 /*
3450 ** This routine is called to do the work of a DROP TABLE statement.
3451 ** pName is the name of the table to be dropped.
3452 */
3453 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3454   Table *pTab;
3455   Vdbe *v;
3456   sqlite3 *db = pParse->db;
3457   int iDb;
3458 
3459   if( db->mallocFailed ){
3460     goto exit_drop_table;
3461   }
3462   assert( pParse->nErr==0 );
3463   assert( pName->nSrc==1 );
3464   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3465   if( noErr ) db->suppressErr++;
3466   assert( isView==0 || isView==LOCATE_VIEW );
3467   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3468   if( noErr ) db->suppressErr--;
3469 
3470   if( pTab==0 ){
3471     if( noErr ){
3472       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3473       sqlite3ForceNotReadOnly(pParse);
3474     }
3475     goto exit_drop_table;
3476   }
3477   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3478   assert( iDb>=0 && iDb<db->nDb );
3479 
3480   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3481   ** it is initialized.
3482   */
3483   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3484     goto exit_drop_table;
3485   }
3486 #ifndef SQLITE_OMIT_AUTHORIZATION
3487   {
3488     int code;
3489     const char *zTab = SCHEMA_TABLE(iDb);
3490     const char *zDb = db->aDb[iDb].zDbSName;
3491     const char *zArg2 = 0;
3492     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3493       goto exit_drop_table;
3494     }
3495     if( isView ){
3496       if( !OMIT_TEMPDB && iDb==1 ){
3497         code = SQLITE_DROP_TEMP_VIEW;
3498       }else{
3499         code = SQLITE_DROP_VIEW;
3500       }
3501 #ifndef SQLITE_OMIT_VIRTUALTABLE
3502     }else if( IsVirtual(pTab) ){
3503       code = SQLITE_DROP_VTABLE;
3504       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3505 #endif
3506     }else{
3507       if( !OMIT_TEMPDB && iDb==1 ){
3508         code = SQLITE_DROP_TEMP_TABLE;
3509       }else{
3510         code = SQLITE_DROP_TABLE;
3511       }
3512     }
3513     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3514       goto exit_drop_table;
3515     }
3516     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3517       goto exit_drop_table;
3518     }
3519   }
3520 #endif
3521   if( tableMayNotBeDropped(db, pTab) ){
3522     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3523     goto exit_drop_table;
3524   }
3525 
3526 #ifndef SQLITE_OMIT_VIEW
3527   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3528   ** on a table.
3529   */
3530   if( isView && !IsView(pTab) ){
3531     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3532     goto exit_drop_table;
3533   }
3534   if( !isView && IsView(pTab) ){
3535     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3536     goto exit_drop_table;
3537   }
3538 #endif
3539 
3540   /* Generate code to remove the table from the schema table
3541   ** on disk.
3542   */
3543   v = sqlite3GetVdbe(pParse);
3544   if( v ){
3545     sqlite3BeginWriteOperation(pParse, 1, iDb);
3546     if( !isView ){
3547       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3548       sqlite3FkDropTable(pParse, pName, pTab);
3549     }
3550     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3551   }
3552 
3553 exit_drop_table:
3554   sqlite3SrcListDelete(db, pName);
3555 }
3556 
3557 /*
3558 ** This routine is called to create a new foreign key on the table
3559 ** currently under construction.  pFromCol determines which columns
3560 ** in the current table point to the foreign key.  If pFromCol==0 then
3561 ** connect the key to the last column inserted.  pTo is the name of
3562 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
3563 ** of tables in the parent pTo table.  flags contains all
3564 ** information about the conflict resolution algorithms specified
3565 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3566 **
3567 ** An FKey structure is created and added to the table currently
3568 ** under construction in the pParse->pNewTable field.
3569 **
3570 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
3571 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3572 */
3573 void sqlite3CreateForeignKey(
3574   Parse *pParse,       /* Parsing context */
3575   ExprList *pFromCol,  /* Columns in this table that point to other table */
3576   Token *pTo,          /* Name of the other table */
3577   ExprList *pToCol,    /* Columns in the other table */
3578   int flags            /* Conflict resolution algorithms. */
3579 ){
3580   sqlite3 *db = pParse->db;
3581 #ifndef SQLITE_OMIT_FOREIGN_KEY
3582   FKey *pFKey = 0;
3583   FKey *pNextTo;
3584   Table *p = pParse->pNewTable;
3585   i64 nByte;
3586   int i;
3587   int nCol;
3588   char *z;
3589 
3590   assert( pTo!=0 );
3591   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3592   if( pFromCol==0 ){
3593     int iCol = p->nCol-1;
3594     if( NEVER(iCol<0) ) goto fk_end;
3595     if( pToCol && pToCol->nExpr!=1 ){
3596       sqlite3ErrorMsg(pParse, "foreign key on %s"
3597          " should reference only one column of table %T",
3598          p->aCol[iCol].zCnName, pTo);
3599       goto fk_end;
3600     }
3601     nCol = 1;
3602   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3603     sqlite3ErrorMsg(pParse,
3604         "number of columns in foreign key does not match the number of "
3605         "columns in the referenced table");
3606     goto fk_end;
3607   }else{
3608     nCol = pFromCol->nExpr;
3609   }
3610   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3611   if( pToCol ){
3612     for(i=0; i<pToCol->nExpr; i++){
3613       nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3614     }
3615   }
3616   pFKey = sqlite3DbMallocZero(db, nByte );
3617   if( pFKey==0 ){
3618     goto fk_end;
3619   }
3620   pFKey->pFrom = p;
3621   assert( IsOrdinaryTable(p) );
3622   pFKey->pNextFrom = p->u.tab.pFKey;
3623   z = (char*)&pFKey->aCol[nCol];
3624   pFKey->zTo = z;
3625   if( IN_RENAME_OBJECT ){
3626     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3627   }
3628   memcpy(z, pTo->z, pTo->n);
3629   z[pTo->n] = 0;
3630   sqlite3Dequote(z);
3631   z += pTo->n+1;
3632   pFKey->nCol = nCol;
3633   if( pFromCol==0 ){
3634     pFKey->aCol[0].iFrom = p->nCol-1;
3635   }else{
3636     for(i=0; i<nCol; i++){
3637       int j;
3638       for(j=0; j<p->nCol; j++){
3639         if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3640           pFKey->aCol[i].iFrom = j;
3641           break;
3642         }
3643       }
3644       if( j>=p->nCol ){
3645         sqlite3ErrorMsg(pParse,
3646           "unknown column \"%s\" in foreign key definition",
3647           pFromCol->a[i].zEName);
3648         goto fk_end;
3649       }
3650       if( IN_RENAME_OBJECT ){
3651         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3652       }
3653     }
3654   }
3655   if( pToCol ){
3656     for(i=0; i<nCol; i++){
3657       int n = sqlite3Strlen30(pToCol->a[i].zEName);
3658       pFKey->aCol[i].zCol = z;
3659       if( IN_RENAME_OBJECT ){
3660         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3661       }
3662       memcpy(z, pToCol->a[i].zEName, n);
3663       z[n] = 0;
3664       z += n+1;
3665     }
3666   }
3667   pFKey->isDeferred = 0;
3668   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
3669   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
3670 
3671   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3672   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3673       pFKey->zTo, (void *)pFKey
3674   );
3675   if( pNextTo==pFKey ){
3676     sqlite3OomFault(db);
3677     goto fk_end;
3678   }
3679   if( pNextTo ){
3680     assert( pNextTo->pPrevTo==0 );
3681     pFKey->pNextTo = pNextTo;
3682     pNextTo->pPrevTo = pFKey;
3683   }
3684 
3685   /* Link the foreign key to the table as the last step.
3686   */
3687   assert( IsOrdinaryTable(p) );
3688   p->u.tab.pFKey = pFKey;
3689   pFKey = 0;
3690 
3691 fk_end:
3692   sqlite3DbFree(db, pFKey);
3693 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3694   sqlite3ExprListDelete(db, pFromCol);
3695   sqlite3ExprListDelete(db, pToCol);
3696 }
3697 
3698 /*
3699 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3700 ** clause is seen as part of a foreign key definition.  The isDeferred
3701 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3702 ** The behavior of the most recently created foreign key is adjusted
3703 ** accordingly.
3704 */
3705 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3706 #ifndef SQLITE_OMIT_FOREIGN_KEY
3707   Table *pTab;
3708   FKey *pFKey;
3709   if( (pTab = pParse->pNewTable)==0 ) return;
3710   if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3711   if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3712   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3713   pFKey->isDeferred = (u8)isDeferred;
3714 #endif
3715 }
3716 
3717 /*
3718 ** Generate code that will erase and refill index *pIdx.  This is
3719 ** used to initialize a newly created index or to recompute the
3720 ** content of an index in response to a REINDEX command.
3721 **
3722 ** if memRootPage is not negative, it means that the index is newly
3723 ** created.  The register specified by memRootPage contains the
3724 ** root page number of the index.  If memRootPage is negative, then
3725 ** the index already exists and must be cleared before being refilled and
3726 ** the root page number of the index is taken from pIndex->tnum.
3727 */
3728 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3729   Table *pTab = pIndex->pTable;  /* The table that is indexed */
3730   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
3731   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
3732   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
3733   int addr1;                     /* Address of top of loop */
3734   int addr2;                     /* Address to jump to for next iteration */
3735   Pgno tnum;                     /* Root page of index */
3736   int iPartIdxLabel;             /* Jump to this label to skip a row */
3737   Vdbe *v;                       /* Generate code into this virtual machine */
3738   KeyInfo *pKey;                 /* KeyInfo for index */
3739   int regRecord;                 /* Register holding assembled index record */
3740   sqlite3 *db = pParse->db;      /* The database connection */
3741   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3742 
3743 #ifndef SQLITE_OMIT_AUTHORIZATION
3744   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3745       db->aDb[iDb].zDbSName ) ){
3746     return;
3747   }
3748 #endif
3749 
3750   /* Require a write-lock on the table to perform this operation */
3751   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3752 
3753   v = sqlite3GetVdbe(pParse);
3754   if( v==0 ) return;
3755   if( memRootPage>=0 ){
3756     tnum = (Pgno)memRootPage;
3757   }else{
3758     tnum = pIndex->tnum;
3759   }
3760   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3761   assert( pKey!=0 || pParse->nErr );
3762 
3763   /* Open the sorter cursor if we are to use one. */
3764   iSorter = pParse->nTab++;
3765   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3766                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3767 
3768   /* Open the table. Loop through all rows of the table, inserting index
3769   ** records into the sorter. */
3770   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3771   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3772   regRecord = sqlite3GetTempReg(pParse);
3773   sqlite3MultiWrite(pParse);
3774 
3775   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3776   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3777   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3778   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3779   sqlite3VdbeJumpHere(v, addr1);
3780   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3781   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3782                     (char *)pKey, P4_KEYINFO);
3783   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3784 
3785   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3786   if( IsUniqueIndex(pIndex) ){
3787     int j2 = sqlite3VdbeGoto(v, 1);
3788     addr2 = sqlite3VdbeCurrentAddr(v);
3789     sqlite3VdbeVerifyAbortable(v, OE_Abort);
3790     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3791                          pIndex->nKeyCol); VdbeCoverage(v);
3792     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3793     sqlite3VdbeJumpHere(v, j2);
3794   }else{
3795     /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3796     ** abort. The exception is if one of the indexed expressions contains a
3797     ** user function that throws an exception when it is evaluated. But the
3798     ** overhead of adding a statement journal to a CREATE INDEX statement is
3799     ** very small (since most of the pages written do not contain content that
3800     ** needs to be restored if the statement aborts), so we call
3801     ** sqlite3MayAbort() for all CREATE INDEX statements.  */
3802     sqlite3MayAbort(pParse);
3803     addr2 = sqlite3VdbeCurrentAddr(v);
3804   }
3805   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3806   if( !pIndex->bAscKeyBug ){
3807     /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3808     ** faster by avoiding unnecessary seeks.  But the optimization does
3809     ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3810     ** with DESC primary keys, since those indexes have there keys in
3811     ** a different order from the main table.
3812     ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3813     */
3814     sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3815   }
3816   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3817   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3818   sqlite3ReleaseTempReg(pParse, regRecord);
3819   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3820   sqlite3VdbeJumpHere(v, addr1);
3821 
3822   sqlite3VdbeAddOp1(v, OP_Close, iTab);
3823   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3824   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3825 }
3826 
3827 /*
3828 ** Allocate heap space to hold an Index object with nCol columns.
3829 **
3830 ** Increase the allocation size to provide an extra nExtra bytes
3831 ** of 8-byte aligned space after the Index object and return a
3832 ** pointer to this extra space in *ppExtra.
3833 */
3834 Index *sqlite3AllocateIndexObject(
3835   sqlite3 *db,         /* Database connection */
3836   i16 nCol,            /* Total number of columns in the index */
3837   int nExtra,          /* Number of bytes of extra space to alloc */
3838   char **ppExtra       /* Pointer to the "extra" space */
3839 ){
3840   Index *p;            /* Allocated index object */
3841   int nByte;           /* Bytes of space for Index object + arrays */
3842 
3843   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3844           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3845           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3846                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3847                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3848   p = sqlite3DbMallocZero(db, nByte + nExtra);
3849   if( p ){
3850     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3851     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3852     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3853     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3854     p->aSortOrder = (u8*)pExtra;
3855     p->nColumn = nCol;
3856     p->nKeyCol = nCol - 1;
3857     *ppExtra = ((char*)p) + nByte;
3858   }
3859   return p;
3860 }
3861 
3862 /*
3863 ** If expression list pList contains an expression that was parsed with
3864 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3865 ** pParse and return non-zero. Otherwise, return zero.
3866 */
3867 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3868   if( pList ){
3869     int i;
3870     for(i=0; i<pList->nExpr; i++){
3871       if( pList->a[i].bNulls ){
3872         u8 sf = pList->a[i].sortFlags;
3873         sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3874             (sf==0 || sf==3) ? "FIRST" : "LAST"
3875         );
3876         return 1;
3877       }
3878     }
3879   }
3880   return 0;
3881 }
3882 
3883 /*
3884 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3885 ** and pTblList is the name of the table that is to be indexed.  Both will
3886 ** be NULL for a primary key or an index that is created to satisfy a
3887 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3888 ** as the table to be indexed.  pParse->pNewTable is a table that is
3889 ** currently being constructed by a CREATE TABLE statement.
3890 **
3891 ** pList is a list of columns to be indexed.  pList will be NULL if this
3892 ** is a primary key or unique-constraint on the most recent column added
3893 ** to the table currently under construction.
3894 */
3895 void sqlite3CreateIndex(
3896   Parse *pParse,     /* All information about this parse */
3897   Token *pName1,     /* First part of index name. May be NULL */
3898   Token *pName2,     /* Second part of index name. May be NULL */
3899   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3900   ExprList *pList,   /* A list of columns to be indexed */
3901   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3902   Token *pStart,     /* The CREATE token that begins this statement */
3903   Expr *pPIWhere,    /* WHERE clause for partial indices */
3904   int sortOrder,     /* Sort order of primary key when pList==NULL */
3905   int ifNotExist,    /* Omit error if index already exists */
3906   u8 idxType         /* The index type */
3907 ){
3908   Table *pTab = 0;     /* Table to be indexed */
3909   Index *pIndex = 0;   /* The index to be created */
3910   char *zName = 0;     /* Name of the index */
3911   int nName;           /* Number of characters in zName */
3912   int i, j;
3913   DbFixer sFix;        /* For assigning database names to pTable */
3914   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3915   sqlite3 *db = pParse->db;
3916   Db *pDb;             /* The specific table containing the indexed database */
3917   int iDb;             /* Index of the database that is being written */
3918   Token *pName = 0;    /* Unqualified name of the index to create */
3919   struct ExprList_item *pListItem; /* For looping over pList */
3920   int nExtra = 0;                  /* Space allocated for zExtra[] */
3921   int nExtraCol;                   /* Number of extra columns needed */
3922   char *zExtra = 0;                /* Extra space after the Index object */
3923   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3924 
3925   assert( db->pParse==pParse );
3926   if( pParse->nErr ){
3927     goto exit_create_index;
3928   }
3929   assert( db->mallocFailed==0 );
3930   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3931     goto exit_create_index;
3932   }
3933   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3934     goto exit_create_index;
3935   }
3936   if( sqlite3HasExplicitNulls(pParse, pList) ){
3937     goto exit_create_index;
3938   }
3939 
3940   /*
3941   ** Find the table that is to be indexed.  Return early if not found.
3942   */
3943   if( pTblName!=0 ){
3944 
3945     /* Use the two-part index name to determine the database
3946     ** to search for the table. 'Fix' the table name to this db
3947     ** before looking up the table.
3948     */
3949     assert( pName1 && pName2 );
3950     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3951     if( iDb<0 ) goto exit_create_index;
3952     assert( pName && pName->z );
3953 
3954 #ifndef SQLITE_OMIT_TEMPDB
3955     /* If the index name was unqualified, check if the table
3956     ** is a temp table. If so, set the database to 1. Do not do this
3957     ** if initialising a database schema.
3958     */
3959     if( !db->init.busy ){
3960       pTab = sqlite3SrcListLookup(pParse, pTblName);
3961       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3962         iDb = 1;
3963       }
3964     }
3965 #endif
3966 
3967     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3968     if( sqlite3FixSrcList(&sFix, pTblName) ){
3969       /* Because the parser constructs pTblName from a single identifier,
3970       ** sqlite3FixSrcList can never fail. */
3971       assert(0);
3972     }
3973     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3974     assert( db->mallocFailed==0 || pTab==0 );
3975     if( pTab==0 ) goto exit_create_index;
3976     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3977       sqlite3ErrorMsg(pParse,
3978            "cannot create a TEMP index on non-TEMP table \"%s\"",
3979            pTab->zName);
3980       goto exit_create_index;
3981     }
3982     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3983   }else{
3984     assert( pName==0 );
3985     assert( pStart==0 );
3986     pTab = pParse->pNewTable;
3987     if( !pTab ) goto exit_create_index;
3988     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3989   }
3990   pDb = &db->aDb[iDb];
3991 
3992   assert( pTab!=0 );
3993   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3994        && db->init.busy==0
3995        && pTblName!=0
3996 #if SQLITE_USER_AUTHENTICATION
3997        && sqlite3UserAuthTable(pTab->zName)==0
3998 #endif
3999   ){
4000     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
4001     goto exit_create_index;
4002   }
4003 #ifndef SQLITE_OMIT_VIEW
4004   if( IsView(pTab) ){
4005     sqlite3ErrorMsg(pParse, "views may not be indexed");
4006     goto exit_create_index;
4007   }
4008 #endif
4009 #ifndef SQLITE_OMIT_VIRTUALTABLE
4010   if( IsVirtual(pTab) ){
4011     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4012     goto exit_create_index;
4013   }
4014 #endif
4015 
4016   /*
4017   ** Find the name of the index.  Make sure there is not already another
4018   ** index or table with the same name.
4019   **
4020   ** Exception:  If we are reading the names of permanent indices from the
4021   ** sqlite_schema table (because some other process changed the schema) and
4022   ** one of the index names collides with the name of a temporary table or
4023   ** index, then we will continue to process this index.
4024   **
4025   ** If pName==0 it means that we are
4026   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
4027   ** own name.
4028   */
4029   if( pName ){
4030     zName = sqlite3NameFromToken(db, pName);
4031     if( zName==0 ) goto exit_create_index;
4032     assert( pName->z!=0 );
4033     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4034       goto exit_create_index;
4035     }
4036     if( !IN_RENAME_OBJECT ){
4037       if( !db->init.busy ){
4038         if( sqlite3FindTable(db, zName, 0)!=0 ){
4039           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4040           goto exit_create_index;
4041         }
4042       }
4043       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4044         if( !ifNotExist ){
4045           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4046         }else{
4047           assert( !db->init.busy );
4048           sqlite3CodeVerifySchema(pParse, iDb);
4049           sqlite3ForceNotReadOnly(pParse);
4050         }
4051         goto exit_create_index;
4052       }
4053     }
4054   }else{
4055     int n;
4056     Index *pLoop;
4057     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4058     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4059     if( zName==0 ){
4060       goto exit_create_index;
4061     }
4062 
4063     /* Automatic index names generated from within sqlite3_declare_vtab()
4064     ** must have names that are distinct from normal automatic index names.
4065     ** The following statement converts "sqlite3_autoindex..." into
4066     ** "sqlite3_butoindex..." in order to make the names distinct.
4067     ** The "vtab_err.test" test demonstrates the need of this statement. */
4068     if( IN_SPECIAL_PARSE ) zName[7]++;
4069   }
4070 
4071   /* Check for authorization to create an index.
4072   */
4073 #ifndef SQLITE_OMIT_AUTHORIZATION
4074   if( !IN_RENAME_OBJECT ){
4075     const char *zDb = pDb->zDbSName;
4076     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4077       goto exit_create_index;
4078     }
4079     i = SQLITE_CREATE_INDEX;
4080     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4081     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4082       goto exit_create_index;
4083     }
4084   }
4085 #endif
4086 
4087   /* If pList==0, it means this routine was called to make a primary
4088   ** key out of the last column added to the table under construction.
4089   ** So create a fake list to simulate this.
4090   */
4091   if( pList==0 ){
4092     Token prevCol;
4093     Column *pCol = &pTab->aCol[pTab->nCol-1];
4094     pCol->colFlags |= COLFLAG_UNIQUE;
4095     sqlite3TokenInit(&prevCol, pCol->zCnName);
4096     pList = sqlite3ExprListAppend(pParse, 0,
4097               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4098     if( pList==0 ) goto exit_create_index;
4099     assert( pList->nExpr==1 );
4100     sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4101   }else{
4102     sqlite3ExprListCheckLength(pParse, pList, "index");
4103     if( pParse->nErr ) goto exit_create_index;
4104   }
4105 
4106   /* Figure out how many bytes of space are required to store explicitly
4107   ** specified collation sequence names.
4108   */
4109   for(i=0; i<pList->nExpr; i++){
4110     Expr *pExpr = pList->a[i].pExpr;
4111     assert( pExpr!=0 );
4112     if( pExpr->op==TK_COLLATE ){
4113       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4114       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4115     }
4116   }
4117 
4118   /*
4119   ** Allocate the index structure.
4120   */
4121   nName = sqlite3Strlen30(zName);
4122   nExtraCol = pPk ? pPk->nKeyCol : 1;
4123   assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4124   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4125                                       nName + nExtra + 1, &zExtra);
4126   if( db->mallocFailed ){
4127     goto exit_create_index;
4128   }
4129   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4130   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4131   pIndex->zName = zExtra;
4132   zExtra += nName + 1;
4133   memcpy(pIndex->zName, zName, nName+1);
4134   pIndex->pTable = pTab;
4135   pIndex->onError = (u8)onError;
4136   pIndex->uniqNotNull = onError!=OE_None;
4137   pIndex->idxType = idxType;
4138   pIndex->pSchema = db->aDb[iDb].pSchema;
4139   pIndex->nKeyCol = pList->nExpr;
4140   if( pPIWhere ){
4141     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4142     pIndex->pPartIdxWhere = pPIWhere;
4143     pPIWhere = 0;
4144   }
4145   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4146 
4147   /* Check to see if we should honor DESC requests on index columns
4148   */
4149   if( pDb->pSchema->file_format>=4 ){
4150     sortOrderMask = -1;   /* Honor DESC */
4151   }else{
4152     sortOrderMask = 0;    /* Ignore DESC */
4153   }
4154 
4155   /* Analyze the list of expressions that form the terms of the index and
4156   ** report any errors.  In the common case where the expression is exactly
4157   ** a table column, store that column in aiColumn[].  For general expressions,
4158   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4159   **
4160   ** TODO: Issue a warning if two or more columns of the index are identical.
4161   ** TODO: Issue a warning if the table primary key is used as part of the
4162   ** index key.
4163   */
4164   pListItem = pList->a;
4165   if( IN_RENAME_OBJECT ){
4166     pIndex->aColExpr = pList;
4167     pList = 0;
4168   }
4169   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4170     Expr *pCExpr;                  /* The i-th index expression */
4171     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
4172     const char *zColl;             /* Collation sequence name */
4173 
4174     sqlite3StringToId(pListItem->pExpr);
4175     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4176     if( pParse->nErr ) goto exit_create_index;
4177     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4178     if( pCExpr->op!=TK_COLUMN ){
4179       if( pTab==pParse->pNewTable ){
4180         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4181                                 "UNIQUE constraints");
4182         goto exit_create_index;
4183       }
4184       if( pIndex->aColExpr==0 ){
4185         pIndex->aColExpr = pList;
4186         pList = 0;
4187       }
4188       j = XN_EXPR;
4189       pIndex->aiColumn[i] = XN_EXPR;
4190       pIndex->uniqNotNull = 0;
4191     }else{
4192       j = pCExpr->iColumn;
4193       assert( j<=0x7fff );
4194       if( j<0 ){
4195         j = pTab->iPKey;
4196       }else{
4197         if( pTab->aCol[j].notNull==0 ){
4198           pIndex->uniqNotNull = 0;
4199         }
4200         if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4201           pIndex->bHasVCol = 1;
4202         }
4203       }
4204       pIndex->aiColumn[i] = (i16)j;
4205     }
4206     zColl = 0;
4207     if( pListItem->pExpr->op==TK_COLLATE ){
4208       int nColl;
4209       assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4210       zColl = pListItem->pExpr->u.zToken;
4211       nColl = sqlite3Strlen30(zColl) + 1;
4212       assert( nExtra>=nColl );
4213       memcpy(zExtra, zColl, nColl);
4214       zColl = zExtra;
4215       zExtra += nColl;
4216       nExtra -= nColl;
4217     }else if( j>=0 ){
4218       zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4219     }
4220     if( !zColl ) zColl = sqlite3StrBINARY;
4221     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4222       goto exit_create_index;
4223     }
4224     pIndex->azColl[i] = zColl;
4225     requestedSortOrder = pListItem->sortFlags & sortOrderMask;
4226     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4227   }
4228 
4229   /* Append the table key to the end of the index.  For WITHOUT ROWID
4230   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
4231   ** normal tables (when pPk==0) this will be the rowid.
4232   */
4233   if( pPk ){
4234     for(j=0; j<pPk->nKeyCol; j++){
4235       int x = pPk->aiColumn[j];
4236       assert( x>=0 );
4237       if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4238         pIndex->nColumn--;
4239       }else{
4240         testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4241         pIndex->aiColumn[i] = x;
4242         pIndex->azColl[i] = pPk->azColl[j];
4243         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4244         i++;
4245       }
4246     }
4247     assert( i==pIndex->nColumn );
4248   }else{
4249     pIndex->aiColumn[i] = XN_ROWID;
4250     pIndex->azColl[i] = sqlite3StrBINARY;
4251   }
4252   sqlite3DefaultRowEst(pIndex);
4253   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4254 
4255   /* If this index contains every column of its table, then mark
4256   ** it as a covering index */
4257   assert( HasRowid(pTab)
4258       || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4259   recomputeColumnsNotIndexed(pIndex);
4260   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4261     pIndex->isCovering = 1;
4262     for(j=0; j<pTab->nCol; j++){
4263       if( j==pTab->iPKey ) continue;
4264       if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4265       pIndex->isCovering = 0;
4266       break;
4267     }
4268   }
4269 
4270   if( pTab==pParse->pNewTable ){
4271     /* This routine has been called to create an automatic index as a
4272     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4273     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4274     ** i.e. one of:
4275     **
4276     ** CREATE TABLE t(x PRIMARY KEY, y);
4277     ** CREATE TABLE t(x, y, UNIQUE(x, y));
4278     **
4279     ** Either way, check to see if the table already has such an index. If
4280     ** so, don't bother creating this one. This only applies to
4281     ** automatically created indices. Users can do as they wish with
4282     ** explicit indices.
4283     **
4284     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4285     ** (and thus suppressing the second one) even if they have different
4286     ** sort orders.
4287     **
4288     ** If there are different collating sequences or if the columns of
4289     ** the constraint occur in different orders, then the constraints are
4290     ** considered distinct and both result in separate indices.
4291     */
4292     Index *pIdx;
4293     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4294       int k;
4295       assert( IsUniqueIndex(pIdx) );
4296       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4297       assert( IsUniqueIndex(pIndex) );
4298 
4299       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4300       for(k=0; k<pIdx->nKeyCol; k++){
4301         const char *z1;
4302         const char *z2;
4303         assert( pIdx->aiColumn[k]>=0 );
4304         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4305         z1 = pIdx->azColl[k];
4306         z2 = pIndex->azColl[k];
4307         if( sqlite3StrICmp(z1, z2) ) break;
4308       }
4309       if( k==pIdx->nKeyCol ){
4310         if( pIdx->onError!=pIndex->onError ){
4311           /* This constraint creates the same index as a previous
4312           ** constraint specified somewhere in the CREATE TABLE statement.
4313           ** However the ON CONFLICT clauses are different. If both this
4314           ** constraint and the previous equivalent constraint have explicit
4315           ** ON CONFLICT clauses this is an error. Otherwise, use the
4316           ** explicitly specified behavior for the index.
4317           */
4318           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4319             sqlite3ErrorMsg(pParse,
4320                 "conflicting ON CONFLICT clauses specified", 0);
4321           }
4322           if( pIdx->onError==OE_Default ){
4323             pIdx->onError = pIndex->onError;
4324           }
4325         }
4326         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4327         if( IN_RENAME_OBJECT ){
4328           pIndex->pNext = pParse->pNewIndex;
4329           pParse->pNewIndex = pIndex;
4330           pIndex = 0;
4331         }
4332         goto exit_create_index;
4333       }
4334     }
4335   }
4336 
4337   if( !IN_RENAME_OBJECT ){
4338 
4339     /* Link the new Index structure to its table and to the other
4340     ** in-memory database structures.
4341     */
4342     assert( pParse->nErr==0 );
4343     if( db->init.busy ){
4344       Index *p;
4345       assert( !IN_SPECIAL_PARSE );
4346       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4347       if( pTblName!=0 ){
4348         pIndex->tnum = db->init.newTnum;
4349         if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4350           sqlite3ErrorMsg(pParse, "invalid rootpage");
4351           pParse->rc = SQLITE_CORRUPT_BKPT;
4352           goto exit_create_index;
4353         }
4354       }
4355       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4356           pIndex->zName, pIndex);
4357       if( p ){
4358         assert( p==pIndex );  /* Malloc must have failed */
4359         sqlite3OomFault(db);
4360         goto exit_create_index;
4361       }
4362       db->mDbFlags |= DBFLAG_SchemaChange;
4363     }
4364 
4365     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4366     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4367     ** emit code to allocate the index rootpage on disk and make an entry for
4368     ** the index in the sqlite_schema table and populate the index with
4369     ** content.  But, do not do this if we are simply reading the sqlite_schema
4370     ** table to parse the schema, or if this index is the PRIMARY KEY index
4371     ** of a WITHOUT ROWID table.
4372     **
4373     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4374     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
4375     ** has just been created, it contains no data and the index initialization
4376     ** step can be skipped.
4377     */
4378     else if( HasRowid(pTab) || pTblName!=0 ){
4379       Vdbe *v;
4380       char *zStmt;
4381       int iMem = ++pParse->nMem;
4382 
4383       v = sqlite3GetVdbe(pParse);
4384       if( v==0 ) goto exit_create_index;
4385 
4386       sqlite3BeginWriteOperation(pParse, 1, iDb);
4387 
4388       /* Create the rootpage for the index using CreateIndex. But before
4389       ** doing so, code a Noop instruction and store its address in
4390       ** Index.tnum. This is required in case this index is actually a
4391       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4392       ** that case the convertToWithoutRowidTable() routine will replace
4393       ** the Noop with a Goto to jump over the VDBE code generated below. */
4394       pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4395       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4396 
4397       /* Gather the complete text of the CREATE INDEX statement into
4398       ** the zStmt variable
4399       */
4400       assert( pName!=0 || pStart==0 );
4401       if( pStart ){
4402         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4403         if( pName->z[n-1]==';' ) n--;
4404         /* A named index with an explicit CREATE INDEX statement */
4405         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4406             onError==OE_None ? "" : " UNIQUE", n, pName->z);
4407       }else{
4408         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4409         /* zStmt = sqlite3MPrintf(""); */
4410         zStmt = 0;
4411       }
4412 
4413       /* Add an entry in sqlite_schema for this index
4414       */
4415       sqlite3NestedParse(pParse,
4416          "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4417          db->aDb[iDb].zDbSName,
4418          pIndex->zName,
4419          pTab->zName,
4420          iMem,
4421          zStmt
4422       );
4423       sqlite3DbFree(db, zStmt);
4424 
4425       /* Fill the index with data and reparse the schema. Code an OP_Expire
4426       ** to invalidate all pre-compiled statements.
4427       */
4428       if( pTblName ){
4429         sqlite3RefillIndex(pParse, pIndex, iMem);
4430         sqlite3ChangeCookie(pParse, iDb);
4431         sqlite3VdbeAddParseSchemaOp(v, iDb,
4432             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4433         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4434       }
4435 
4436       sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4437     }
4438   }
4439   if( db->init.busy || pTblName==0 ){
4440     pIndex->pNext = pTab->pIndex;
4441     pTab->pIndex = pIndex;
4442     pIndex = 0;
4443   }
4444   else if( IN_RENAME_OBJECT ){
4445     assert( pParse->pNewIndex==0 );
4446     pParse->pNewIndex = pIndex;
4447     pIndex = 0;
4448   }
4449 
4450   /* Clean up before exiting */
4451 exit_create_index:
4452   if( pIndex ) sqlite3FreeIndex(db, pIndex);
4453   if( pTab ){
4454     /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4455     ** The list was already ordered when this routine was entered, so at this
4456     ** point at most a single index (the newly added index) will be out of
4457     ** order.  So we have to reorder at most one index. */
4458     Index **ppFrom;
4459     Index *pThis;
4460     for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4461       Index *pNext;
4462       if( pThis->onError!=OE_Replace ) continue;
4463       while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4464         *ppFrom = pNext;
4465         pThis->pNext = pNext->pNext;
4466         pNext->pNext = pThis;
4467         ppFrom = &pNext->pNext;
4468       }
4469       break;
4470     }
4471 #ifdef SQLITE_DEBUG
4472     /* Verify that all REPLACE indexes really are now at the end
4473     ** of the index list.  In other words, no other index type ever
4474     ** comes after a REPLACE index on the list. */
4475     for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4476       assert( pThis->onError!=OE_Replace
4477            || pThis->pNext==0
4478            || pThis->pNext->onError==OE_Replace );
4479     }
4480 #endif
4481   }
4482   sqlite3ExprDelete(db, pPIWhere);
4483   sqlite3ExprListDelete(db, pList);
4484   sqlite3SrcListDelete(db, pTblName);
4485   sqlite3DbFree(db, zName);
4486 }
4487 
4488 /*
4489 ** Fill the Index.aiRowEst[] array with default information - information
4490 ** to be used when we have not run the ANALYZE command.
4491 **
4492 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4493 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
4494 ** number of rows in the table that match any particular value of the
4495 ** first column of the index.  aiRowEst[2] is an estimate of the number
4496 ** of rows that match any particular combination of the first 2 columns
4497 ** of the index.  And so forth.  It must always be the case that
4498 *
4499 **           aiRowEst[N]<=aiRowEst[N-1]
4500 **           aiRowEst[N]>=1
4501 **
4502 ** Apart from that, we have little to go on besides intuition as to
4503 ** how aiRowEst[] should be initialized.  The numbers generated here
4504 ** are based on typical values found in actual indices.
4505 */
4506 void sqlite3DefaultRowEst(Index *pIdx){
4507                /*                10,  9,  8,  7,  6 */
4508   static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4509   LogEst *a = pIdx->aiRowLogEst;
4510   LogEst x;
4511   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4512   int i;
4513 
4514   /* Indexes with default row estimates should not have stat1 data */
4515   assert( !pIdx->hasStat1 );
4516 
4517   /* Set the first entry (number of rows in the index) to the estimated
4518   ** number of rows in the table, or half the number of rows in the table
4519   ** for a partial index.
4520   **
4521   ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
4522   ** table but other parts we are having to guess at, then do not let the
4523   ** estimated number of rows in the table be less than 1000 (LogEst 99).
4524   ** Failure to do this can cause the indexes for which we do not have
4525   ** stat1 data to be ignored by the query planner.
4526   */
4527   x = pIdx->pTable->nRowLogEst;
4528   assert( 99==sqlite3LogEst(1000) );
4529   if( x<99 ){
4530     pIdx->pTable->nRowLogEst = x = 99;
4531   }
4532   if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
4533   a[0] = x;
4534 
4535   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4536   ** 6 and each subsequent value (if any) is 5.  */
4537   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4538   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4539     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
4540   }
4541 
4542   assert( 0==sqlite3LogEst(1) );
4543   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4544 }
4545 
4546 /*
4547 ** This routine will drop an existing named index.  This routine
4548 ** implements the DROP INDEX statement.
4549 */
4550 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4551   Index *pIndex;
4552   Vdbe *v;
4553   sqlite3 *db = pParse->db;
4554   int iDb;
4555 
4556   if( db->mallocFailed ){
4557     goto exit_drop_index;
4558   }
4559   assert( pParse->nErr==0 );   /* Never called with prior non-OOM errors */
4560   assert( pName->nSrc==1 );
4561   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4562     goto exit_drop_index;
4563   }
4564   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4565   if( pIndex==0 ){
4566     if( !ifExists ){
4567       sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4568     }else{
4569       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4570       sqlite3ForceNotReadOnly(pParse);
4571     }
4572     pParse->checkSchema = 1;
4573     goto exit_drop_index;
4574   }
4575   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4576     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4577       "or PRIMARY KEY constraint cannot be dropped", 0);
4578     goto exit_drop_index;
4579   }
4580   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4581 #ifndef SQLITE_OMIT_AUTHORIZATION
4582   {
4583     int code = SQLITE_DROP_INDEX;
4584     Table *pTab = pIndex->pTable;
4585     const char *zDb = db->aDb[iDb].zDbSName;
4586     const char *zTab = SCHEMA_TABLE(iDb);
4587     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4588       goto exit_drop_index;
4589     }
4590     if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4591     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4592       goto exit_drop_index;
4593     }
4594   }
4595 #endif
4596 
4597   /* Generate code to remove the index and from the schema table */
4598   v = sqlite3GetVdbe(pParse);
4599   if( v ){
4600     sqlite3BeginWriteOperation(pParse, 1, iDb);
4601     sqlite3NestedParse(pParse,
4602        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4603        db->aDb[iDb].zDbSName, pIndex->zName
4604     );
4605     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4606     sqlite3ChangeCookie(pParse, iDb);
4607     destroyRootPage(pParse, pIndex->tnum, iDb);
4608     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4609   }
4610 
4611 exit_drop_index:
4612   sqlite3SrcListDelete(db, pName);
4613 }
4614 
4615 /*
4616 ** pArray is a pointer to an array of objects. Each object in the
4617 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4618 ** to extend the array so that there is space for a new object at the end.
4619 **
4620 ** When this function is called, *pnEntry contains the current size of
4621 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4622 ** in total).
4623 **
4624 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4625 ** space allocated for the new object is zeroed, *pnEntry updated to
4626 ** reflect the new size of the array and a pointer to the new allocation
4627 ** returned. *pIdx is set to the index of the new array entry in this case.
4628 **
4629 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4630 ** unchanged and a copy of pArray returned.
4631 */
4632 void *sqlite3ArrayAllocate(
4633   sqlite3 *db,      /* Connection to notify of malloc failures */
4634   void *pArray,     /* Array of objects.  Might be reallocated */
4635   int szEntry,      /* Size of each object in the array */
4636   int *pnEntry,     /* Number of objects currently in use */
4637   int *pIdx         /* Write the index of a new slot here */
4638 ){
4639   char *z;
4640   sqlite3_int64 n = *pIdx = *pnEntry;
4641   if( (n & (n-1))==0 ){
4642     sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4643     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4644     if( pNew==0 ){
4645       *pIdx = -1;
4646       return pArray;
4647     }
4648     pArray = pNew;
4649   }
4650   z = (char*)pArray;
4651   memset(&z[n * szEntry], 0, szEntry);
4652   ++*pnEntry;
4653   return pArray;
4654 }
4655 
4656 /*
4657 ** Append a new element to the given IdList.  Create a new IdList if
4658 ** need be.
4659 **
4660 ** A new IdList is returned, or NULL if malloc() fails.
4661 */
4662 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4663   sqlite3 *db = pParse->db;
4664   int i;
4665   if( pList==0 ){
4666     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4667     if( pList==0 ) return 0;
4668   }
4669   pList->a = sqlite3ArrayAllocate(
4670       db,
4671       pList->a,
4672       sizeof(pList->a[0]),
4673       &pList->nId,
4674       &i
4675   );
4676   if( i<0 ){
4677     sqlite3IdListDelete(db, pList);
4678     return 0;
4679   }
4680   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4681   if( IN_RENAME_OBJECT && pList->a[i].zName ){
4682     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4683   }
4684   return pList;
4685 }
4686 
4687 /*
4688 ** Delete an IdList.
4689 */
4690 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4691   int i;
4692   if( pList==0 ) return;
4693   for(i=0; i<pList->nId; i++){
4694     sqlite3DbFree(db, pList->a[i].zName);
4695   }
4696   sqlite3DbFree(db, pList->a);
4697   sqlite3DbFreeNN(db, pList);
4698 }
4699 
4700 /*
4701 ** Return the index in pList of the identifier named zId.  Return -1
4702 ** if not found.
4703 */
4704 int sqlite3IdListIndex(IdList *pList, const char *zName){
4705   int i;
4706   if( pList==0 ) return -1;
4707   for(i=0; i<pList->nId; i++){
4708     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4709   }
4710   return -1;
4711 }
4712 
4713 /*
4714 ** Maximum size of a SrcList object.
4715 ** The SrcList object is used to represent the FROM clause of a
4716 ** SELECT statement, and the query planner cannot deal with more
4717 ** than 64 tables in a join.  So any value larger than 64 here
4718 ** is sufficient for most uses.  Smaller values, like say 10, are
4719 ** appropriate for small and memory-limited applications.
4720 */
4721 #ifndef SQLITE_MAX_SRCLIST
4722 # define SQLITE_MAX_SRCLIST 200
4723 #endif
4724 
4725 /*
4726 ** Expand the space allocated for the given SrcList object by
4727 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
4728 ** New slots are zeroed.
4729 **
4730 ** For example, suppose a SrcList initially contains two entries: A,B.
4731 ** To append 3 new entries onto the end, do this:
4732 **
4733 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4734 **
4735 ** After the call above it would contain:  A, B, nil, nil, nil.
4736 ** If the iStart argument had been 1 instead of 2, then the result
4737 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
4738 ** the iStart value would be 0.  The result then would
4739 ** be: nil, nil, nil, A, B.
4740 **
4741 ** If a memory allocation fails or the SrcList becomes too large, leave
4742 ** the original SrcList unchanged, return NULL, and leave an error message
4743 ** in pParse.
4744 */
4745 SrcList *sqlite3SrcListEnlarge(
4746   Parse *pParse,     /* Parsing context into which errors are reported */
4747   SrcList *pSrc,     /* The SrcList to be enlarged */
4748   int nExtra,        /* Number of new slots to add to pSrc->a[] */
4749   int iStart         /* Index in pSrc->a[] of first new slot */
4750 ){
4751   int i;
4752 
4753   /* Sanity checking on calling parameters */
4754   assert( iStart>=0 );
4755   assert( nExtra>=1 );
4756   assert( pSrc!=0 );
4757   assert( iStart<=pSrc->nSrc );
4758 
4759   /* Allocate additional space if needed */
4760   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4761     SrcList *pNew;
4762     sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4763     sqlite3 *db = pParse->db;
4764 
4765     if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4766       sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4767                       SQLITE_MAX_SRCLIST);
4768       return 0;
4769     }
4770     if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4771     pNew = sqlite3DbRealloc(db, pSrc,
4772                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4773     if( pNew==0 ){
4774       assert( db->mallocFailed );
4775       return 0;
4776     }
4777     pSrc = pNew;
4778     pSrc->nAlloc = nAlloc;
4779   }
4780 
4781   /* Move existing slots that come after the newly inserted slots
4782   ** out of the way */
4783   for(i=pSrc->nSrc-1; i>=iStart; i--){
4784     pSrc->a[i+nExtra] = pSrc->a[i];
4785   }
4786   pSrc->nSrc += nExtra;
4787 
4788   /* Zero the newly allocated slots */
4789   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4790   for(i=iStart; i<iStart+nExtra; i++){
4791     pSrc->a[i].iCursor = -1;
4792   }
4793 
4794   /* Return a pointer to the enlarged SrcList */
4795   return pSrc;
4796 }
4797 
4798 
4799 /*
4800 ** Append a new table name to the given SrcList.  Create a new SrcList if
4801 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
4802 **
4803 ** A SrcList is returned, or NULL if there is an OOM error or if the
4804 ** SrcList grows to large.  The returned
4805 ** SrcList might be the same as the SrcList that was input or it might be
4806 ** a new one.  If an OOM error does occurs, then the prior value of pList
4807 ** that is input to this routine is automatically freed.
4808 **
4809 ** If pDatabase is not null, it means that the table has an optional
4810 ** database name prefix.  Like this:  "database.table".  The pDatabase
4811 ** points to the table name and the pTable points to the database name.
4812 ** The SrcList.a[].zName field is filled with the table name which might
4813 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4814 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4815 ** or with NULL if no database is specified.
4816 **
4817 ** In other words, if call like this:
4818 **
4819 **         sqlite3SrcListAppend(D,A,B,0);
4820 **
4821 ** Then B is a table name and the database name is unspecified.  If called
4822 ** like this:
4823 **
4824 **         sqlite3SrcListAppend(D,A,B,C);
4825 **
4826 ** Then C is the table name and B is the database name.  If C is defined
4827 ** then so is B.  In other words, we never have a case where:
4828 **
4829 **         sqlite3SrcListAppend(D,A,0,C);
4830 **
4831 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
4832 ** before being added to the SrcList.
4833 */
4834 SrcList *sqlite3SrcListAppend(
4835   Parse *pParse,      /* Parsing context, in which errors are reported */
4836   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
4837   Token *pTable,      /* Table to append */
4838   Token *pDatabase    /* Database of the table */
4839 ){
4840   SrcItem *pItem;
4841   sqlite3 *db;
4842   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
4843   assert( pParse!=0 );
4844   assert( pParse->db!=0 );
4845   db = pParse->db;
4846   if( pList==0 ){
4847     pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4848     if( pList==0 ) return 0;
4849     pList->nAlloc = 1;
4850     pList->nSrc = 1;
4851     memset(&pList->a[0], 0, sizeof(pList->a[0]));
4852     pList->a[0].iCursor = -1;
4853   }else{
4854     SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4855     if( pNew==0 ){
4856       sqlite3SrcListDelete(db, pList);
4857       return 0;
4858     }else{
4859       pList = pNew;
4860     }
4861   }
4862   pItem = &pList->a[pList->nSrc-1];
4863   if( pDatabase && pDatabase->z==0 ){
4864     pDatabase = 0;
4865   }
4866   if( pDatabase ){
4867     pItem->zName = sqlite3NameFromToken(db, pDatabase);
4868     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4869   }else{
4870     pItem->zName = sqlite3NameFromToken(db, pTable);
4871     pItem->zDatabase = 0;
4872   }
4873   return pList;
4874 }
4875 
4876 /*
4877 ** Assign VdbeCursor index numbers to all tables in a SrcList
4878 */
4879 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4880   int i;
4881   SrcItem *pItem;
4882   assert( pList || pParse->db->mallocFailed );
4883   if( ALWAYS(pList) ){
4884     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4885       if( pItem->iCursor>=0 ) continue;
4886       pItem->iCursor = pParse->nTab++;
4887       if( pItem->pSelect ){
4888         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4889       }
4890     }
4891   }
4892 }
4893 
4894 /*
4895 ** Delete an entire SrcList including all its substructure.
4896 */
4897 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4898   int i;
4899   SrcItem *pItem;
4900   if( pList==0 ) return;
4901   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4902     if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4903     sqlite3DbFree(db, pItem->zName);
4904     if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4905     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4906     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4907     sqlite3DeleteTable(db, pItem->pTab);
4908     if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4909     if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4910     if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4911   }
4912   sqlite3DbFreeNN(db, pList);
4913 }
4914 
4915 /*
4916 ** This routine is called by the parser to add a new term to the
4917 ** end of a growing FROM clause.  The "p" parameter is the part of
4918 ** the FROM clause that has already been constructed.  "p" is NULL
4919 ** if this is the first term of the FROM clause.  pTable and pDatabase
4920 ** are the name of the table and database named in the FROM clause term.
4921 ** pDatabase is NULL if the database name qualifier is missing - the
4922 ** usual case.  If the term has an alias, then pAlias points to the
4923 ** alias token.  If the term is a subquery, then pSubquery is the
4924 ** SELECT statement that the subquery encodes.  The pTable and
4925 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4926 ** parameters are the content of the ON and USING clauses.
4927 **
4928 ** Return a new SrcList which encodes is the FROM with the new
4929 ** term added.
4930 */
4931 SrcList *sqlite3SrcListAppendFromTerm(
4932   Parse *pParse,          /* Parsing context */
4933   SrcList *p,             /* The left part of the FROM clause already seen */
4934   Token *pTable,          /* Name of the table to add to the FROM clause */
4935   Token *pDatabase,       /* Name of the database containing pTable */
4936   Token *pAlias,          /* The right-hand side of the AS subexpression */
4937   Select *pSubquery,      /* A subquery used in place of a table name */
4938   Expr *pOn,              /* The ON clause of a join */
4939   IdList *pUsing          /* The USING clause of a join */
4940 ){
4941   SrcItem *pItem;
4942   sqlite3 *db = pParse->db;
4943   if( !p && (pOn || pUsing) ){
4944     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4945       (pOn ? "ON" : "USING")
4946     );
4947     goto append_from_error;
4948   }
4949   p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4950   if( p==0 ){
4951     goto append_from_error;
4952   }
4953   assert( p->nSrc>0 );
4954   pItem = &p->a[p->nSrc-1];
4955   assert( (pTable==0)==(pDatabase==0) );
4956   assert( pItem->zName==0 || pDatabase!=0 );
4957   if( IN_RENAME_OBJECT && pItem->zName ){
4958     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4959     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4960   }
4961   assert( pAlias!=0 );
4962   if( pAlias->n ){
4963     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4964   }
4965   pItem->pSelect = pSubquery;
4966   pItem->pOn = pOn;
4967   pItem->pUsing = pUsing;
4968   return p;
4969 
4970 append_from_error:
4971   assert( p==0 );
4972   sqlite3ExprDelete(db, pOn);
4973   sqlite3IdListDelete(db, pUsing);
4974   sqlite3SelectDelete(db, pSubquery);
4975   return 0;
4976 }
4977 
4978 /*
4979 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4980 ** element of the source-list passed as the second argument.
4981 */
4982 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4983   assert( pIndexedBy!=0 );
4984   if( p && pIndexedBy->n>0 ){
4985     SrcItem *pItem;
4986     assert( p->nSrc>0 );
4987     pItem = &p->a[p->nSrc-1];
4988     assert( pItem->fg.notIndexed==0 );
4989     assert( pItem->fg.isIndexedBy==0 );
4990     assert( pItem->fg.isTabFunc==0 );
4991     if( pIndexedBy->n==1 && !pIndexedBy->z ){
4992       /* A "NOT INDEXED" clause was supplied. See parse.y
4993       ** construct "indexed_opt" for details. */
4994       pItem->fg.notIndexed = 1;
4995     }else{
4996       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4997       pItem->fg.isIndexedBy = 1;
4998       assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
4999     }
5000   }
5001 }
5002 
5003 /*
5004 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5005 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5006 ** are deleted by this function.
5007 */
5008 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5009   assert( p1 && p1->nSrc==1 );
5010   if( p2 ){
5011     SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5012     if( pNew==0 ){
5013       sqlite3SrcListDelete(pParse->db, p2);
5014     }else{
5015       p1 = pNew;
5016       memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5017       sqlite3DbFree(pParse->db, p2);
5018     }
5019   }
5020   return p1;
5021 }
5022 
5023 /*
5024 ** Add the list of function arguments to the SrcList entry for a
5025 ** table-valued-function.
5026 */
5027 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5028   if( p ){
5029     SrcItem *pItem = &p->a[p->nSrc-1];
5030     assert( pItem->fg.notIndexed==0 );
5031     assert( pItem->fg.isIndexedBy==0 );
5032     assert( pItem->fg.isTabFunc==0 );
5033     pItem->u1.pFuncArg = pList;
5034     pItem->fg.isTabFunc = 1;
5035   }else{
5036     sqlite3ExprListDelete(pParse->db, pList);
5037   }
5038 }
5039 
5040 /*
5041 ** When building up a FROM clause in the parser, the join operator
5042 ** is initially attached to the left operand.  But the code generator
5043 ** expects the join operator to be on the right operand.  This routine
5044 ** Shifts all join operators from left to right for an entire FROM
5045 ** clause.
5046 **
5047 ** Example: Suppose the join is like this:
5048 **
5049 **           A natural cross join B
5050 **
5051 ** The operator is "natural cross join".  The A and B operands are stored
5052 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
5053 ** operator with A.  This routine shifts that operator over to B.
5054 */
5055 void sqlite3SrcListShiftJoinType(SrcList *p){
5056   if( p ){
5057     int i;
5058     for(i=p->nSrc-1; i>0; i--){
5059       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5060     }
5061     p->a[0].fg.jointype = 0;
5062   }
5063 }
5064 
5065 /*
5066 ** Generate VDBE code for a BEGIN statement.
5067 */
5068 void sqlite3BeginTransaction(Parse *pParse, int type){
5069   sqlite3 *db;
5070   Vdbe *v;
5071   int i;
5072 
5073   assert( pParse!=0 );
5074   db = pParse->db;
5075   assert( db!=0 );
5076   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5077     return;
5078   }
5079   v = sqlite3GetVdbe(pParse);
5080   if( !v ) return;
5081   if( type!=TK_DEFERRED ){
5082     for(i=0; i<db->nDb; i++){
5083       int eTxnType;
5084       Btree *pBt = db->aDb[i].pBt;
5085       if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5086         eTxnType = 0;  /* Read txn */
5087       }else if( type==TK_EXCLUSIVE ){
5088         eTxnType = 2;  /* Exclusive txn */
5089       }else{
5090         eTxnType = 1;  /* Write txn */
5091       }
5092       sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5093       sqlite3VdbeUsesBtree(v, i);
5094     }
5095   }
5096   sqlite3VdbeAddOp0(v, OP_AutoCommit);
5097 }
5098 
5099 /*
5100 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5101 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
5102 ** code is generated for a COMMIT.
5103 */
5104 void sqlite3EndTransaction(Parse *pParse, int eType){
5105   Vdbe *v;
5106   int isRollback;
5107 
5108   assert( pParse!=0 );
5109   assert( pParse->db!=0 );
5110   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5111   isRollback = eType==TK_ROLLBACK;
5112   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5113        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5114     return;
5115   }
5116   v = sqlite3GetVdbe(pParse);
5117   if( v ){
5118     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5119   }
5120 }
5121 
5122 /*
5123 ** This function is called by the parser when it parses a command to create,
5124 ** release or rollback an SQL savepoint.
5125 */
5126 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5127   char *zName = sqlite3NameFromToken(pParse->db, pName);
5128   if( zName ){
5129     Vdbe *v = sqlite3GetVdbe(pParse);
5130 #ifndef SQLITE_OMIT_AUTHORIZATION
5131     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5132     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5133 #endif
5134     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5135       sqlite3DbFree(pParse->db, zName);
5136       return;
5137     }
5138     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5139   }
5140 }
5141 
5142 /*
5143 ** Make sure the TEMP database is open and available for use.  Return
5144 ** the number of errors.  Leave any error messages in the pParse structure.
5145 */
5146 int sqlite3OpenTempDatabase(Parse *pParse){
5147   sqlite3 *db = pParse->db;
5148   if( db->aDb[1].pBt==0 && !pParse->explain ){
5149     int rc;
5150     Btree *pBt;
5151     static const int flags =
5152           SQLITE_OPEN_READWRITE |
5153           SQLITE_OPEN_CREATE |
5154           SQLITE_OPEN_EXCLUSIVE |
5155           SQLITE_OPEN_DELETEONCLOSE |
5156           SQLITE_OPEN_TEMP_DB;
5157 
5158     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5159     if( rc!=SQLITE_OK ){
5160       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5161         "file for storing temporary tables");
5162       pParse->rc = rc;
5163       return 1;
5164     }
5165     db->aDb[1].pBt = pBt;
5166     assert( db->aDb[1].pSchema );
5167     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5168       sqlite3OomFault(db);
5169       return 1;
5170     }
5171   }
5172   return 0;
5173 }
5174 
5175 /*
5176 ** Record the fact that the schema cookie will need to be verified
5177 ** for database iDb.  The code to actually verify the schema cookie
5178 ** will occur at the end of the top-level VDBE and will be generated
5179 ** later, by sqlite3FinishCoding().
5180 */
5181 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5182   assert( iDb>=0 && iDb<pToplevel->db->nDb );
5183   assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5184   assert( iDb<SQLITE_MAX_DB );
5185   assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5186   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5187     DbMaskSet(pToplevel->cookieMask, iDb);
5188     if( !OMIT_TEMPDB && iDb==1 ){
5189       sqlite3OpenTempDatabase(pToplevel);
5190     }
5191   }
5192 }
5193 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5194   sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5195 }
5196 
5197 
5198 /*
5199 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5200 ** attached database. Otherwise, invoke it for the database named zDb only.
5201 */
5202 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5203   sqlite3 *db = pParse->db;
5204   int i;
5205   for(i=0; i<db->nDb; i++){
5206     Db *pDb = &db->aDb[i];
5207     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5208       sqlite3CodeVerifySchema(pParse, i);
5209     }
5210   }
5211 }
5212 
5213 /*
5214 ** Generate VDBE code that prepares for doing an operation that
5215 ** might change the database.
5216 **
5217 ** This routine starts a new transaction if we are not already within
5218 ** a transaction.  If we are already within a transaction, then a checkpoint
5219 ** is set if the setStatement parameter is true.  A checkpoint should
5220 ** be set for operations that might fail (due to a constraint) part of
5221 ** the way through and which will need to undo some writes without having to
5222 ** rollback the whole transaction.  For operations where all constraints
5223 ** can be checked before any changes are made to the database, it is never
5224 ** necessary to undo a write and the checkpoint should not be set.
5225 */
5226 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5227   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5228   sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5229   DbMaskSet(pToplevel->writeMask, iDb);
5230   pToplevel->isMultiWrite |= setStatement;
5231 }
5232 
5233 /*
5234 ** Indicate that the statement currently under construction might write
5235 ** more than one entry (example: deleting one row then inserting another,
5236 ** inserting multiple rows in a table, or inserting a row and index entries.)
5237 ** If an abort occurs after some of these writes have completed, then it will
5238 ** be necessary to undo the completed writes.
5239 */
5240 void sqlite3MultiWrite(Parse *pParse){
5241   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5242   pToplevel->isMultiWrite = 1;
5243 }
5244 
5245 /*
5246 ** The code generator calls this routine if is discovers that it is
5247 ** possible to abort a statement prior to completion.  In order to
5248 ** perform this abort without corrupting the database, we need to make
5249 ** sure that the statement is protected by a statement transaction.
5250 **
5251 ** Technically, we only need to set the mayAbort flag if the
5252 ** isMultiWrite flag was previously set.  There is a time dependency
5253 ** such that the abort must occur after the multiwrite.  This makes
5254 ** some statements involving the REPLACE conflict resolution algorithm
5255 ** go a little faster.  But taking advantage of this time dependency
5256 ** makes it more difficult to prove that the code is correct (in
5257 ** particular, it prevents us from writing an effective
5258 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5259 ** to take the safe route and skip the optimization.
5260 */
5261 void sqlite3MayAbort(Parse *pParse){
5262   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5263   pToplevel->mayAbort = 1;
5264 }
5265 
5266 /*
5267 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5268 ** error. The onError parameter determines which (if any) of the statement
5269 ** and/or current transaction is rolled back.
5270 */
5271 void sqlite3HaltConstraint(
5272   Parse *pParse,    /* Parsing context */
5273   int errCode,      /* extended error code */
5274   int onError,      /* Constraint type */
5275   char *p4,         /* Error message */
5276   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
5277   u8 p5Errmsg       /* P5_ErrMsg type */
5278 ){
5279   Vdbe *v;
5280   assert( pParse->pVdbe!=0 );
5281   v = sqlite3GetVdbe(pParse);
5282   assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5283   if( onError==OE_Abort ){
5284     sqlite3MayAbort(pParse);
5285   }
5286   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5287   sqlite3VdbeChangeP5(v, p5Errmsg);
5288 }
5289 
5290 /*
5291 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5292 */
5293 void sqlite3UniqueConstraint(
5294   Parse *pParse,    /* Parsing context */
5295   int onError,      /* Constraint type */
5296   Index *pIdx       /* The index that triggers the constraint */
5297 ){
5298   char *zErr;
5299   int j;
5300   StrAccum errMsg;
5301   Table *pTab = pIdx->pTable;
5302 
5303   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5304                       pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5305   if( pIdx->aColExpr ){
5306     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5307   }else{
5308     for(j=0; j<pIdx->nKeyCol; j++){
5309       char *zCol;
5310       assert( pIdx->aiColumn[j]>=0 );
5311       zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5312       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5313       sqlite3_str_appendall(&errMsg, pTab->zName);
5314       sqlite3_str_append(&errMsg, ".", 1);
5315       sqlite3_str_appendall(&errMsg, zCol);
5316     }
5317   }
5318   zErr = sqlite3StrAccumFinish(&errMsg);
5319   sqlite3HaltConstraint(pParse,
5320     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5321                             : SQLITE_CONSTRAINT_UNIQUE,
5322     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5323 }
5324 
5325 
5326 /*
5327 ** Code an OP_Halt due to non-unique rowid.
5328 */
5329 void sqlite3RowidConstraint(
5330   Parse *pParse,    /* Parsing context */
5331   int onError,      /* Conflict resolution algorithm */
5332   Table *pTab       /* The table with the non-unique rowid */
5333 ){
5334   char *zMsg;
5335   int rc;
5336   if( pTab->iPKey>=0 ){
5337     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5338                           pTab->aCol[pTab->iPKey].zCnName);
5339     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5340   }else{
5341     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5342     rc = SQLITE_CONSTRAINT_ROWID;
5343   }
5344   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5345                         P5_ConstraintUnique);
5346 }
5347 
5348 /*
5349 ** Check to see if pIndex uses the collating sequence pColl.  Return
5350 ** true if it does and false if it does not.
5351 */
5352 #ifndef SQLITE_OMIT_REINDEX
5353 static int collationMatch(const char *zColl, Index *pIndex){
5354   int i;
5355   assert( zColl!=0 );
5356   for(i=0; i<pIndex->nColumn; i++){
5357     const char *z = pIndex->azColl[i];
5358     assert( z!=0 || pIndex->aiColumn[i]<0 );
5359     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5360       return 1;
5361     }
5362   }
5363   return 0;
5364 }
5365 #endif
5366 
5367 /*
5368 ** Recompute all indices of pTab that use the collating sequence pColl.
5369 ** If pColl==0 then recompute all indices of pTab.
5370 */
5371 #ifndef SQLITE_OMIT_REINDEX
5372 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5373   if( !IsVirtual(pTab) ){
5374     Index *pIndex;              /* An index associated with pTab */
5375 
5376     for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5377       if( zColl==0 || collationMatch(zColl, pIndex) ){
5378         int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5379         sqlite3BeginWriteOperation(pParse, 0, iDb);
5380         sqlite3RefillIndex(pParse, pIndex, -1);
5381       }
5382     }
5383   }
5384 }
5385 #endif
5386 
5387 /*
5388 ** Recompute all indices of all tables in all databases where the
5389 ** indices use the collating sequence pColl.  If pColl==0 then recompute
5390 ** all indices everywhere.
5391 */
5392 #ifndef SQLITE_OMIT_REINDEX
5393 static void reindexDatabases(Parse *pParse, char const *zColl){
5394   Db *pDb;                    /* A single database */
5395   int iDb;                    /* The database index number */
5396   sqlite3 *db = pParse->db;   /* The database connection */
5397   HashElem *k;                /* For looping over tables in pDb */
5398   Table *pTab;                /* A table in the database */
5399 
5400   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
5401   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5402     assert( pDb!=0 );
5403     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
5404       pTab = (Table*)sqliteHashData(k);
5405       reindexTable(pParse, pTab, zColl);
5406     }
5407   }
5408 }
5409 #endif
5410 
5411 /*
5412 ** Generate code for the REINDEX command.
5413 **
5414 **        REINDEX                            -- 1
5415 **        REINDEX  <collation>               -- 2
5416 **        REINDEX  ?<database>.?<tablename>  -- 3
5417 **        REINDEX  ?<database>.?<indexname>  -- 4
5418 **
5419 ** Form 1 causes all indices in all attached databases to be rebuilt.
5420 ** Form 2 rebuilds all indices in all databases that use the named
5421 ** collating function.  Forms 3 and 4 rebuild the named index or all
5422 ** indices associated with the named table.
5423 */
5424 #ifndef SQLITE_OMIT_REINDEX
5425 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5426   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
5427   char *z;                    /* Name of a table or index */
5428   const char *zDb;            /* Name of the database */
5429   Table *pTab;                /* A table in the database */
5430   Index *pIndex;              /* An index associated with pTab */
5431   int iDb;                    /* The database index number */
5432   sqlite3 *db = pParse->db;   /* The database connection */
5433   Token *pObjName;            /* Name of the table or index to be reindexed */
5434 
5435   /* Read the database schema. If an error occurs, leave an error message
5436   ** and code in pParse and return NULL. */
5437   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5438     return;
5439   }
5440 
5441   if( pName1==0 ){
5442     reindexDatabases(pParse, 0);
5443     return;
5444   }else if( NEVER(pName2==0) || pName2->z==0 ){
5445     char *zColl;
5446     assert( pName1->z );
5447     zColl = sqlite3NameFromToken(pParse->db, pName1);
5448     if( !zColl ) return;
5449     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5450     if( pColl ){
5451       reindexDatabases(pParse, zColl);
5452       sqlite3DbFree(db, zColl);
5453       return;
5454     }
5455     sqlite3DbFree(db, zColl);
5456   }
5457   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5458   if( iDb<0 ) return;
5459   z = sqlite3NameFromToken(db, pObjName);
5460   if( z==0 ) return;
5461   zDb = db->aDb[iDb].zDbSName;
5462   pTab = sqlite3FindTable(db, z, zDb);
5463   if( pTab ){
5464     reindexTable(pParse, pTab, 0);
5465     sqlite3DbFree(db, z);
5466     return;
5467   }
5468   pIndex = sqlite3FindIndex(db, z, zDb);
5469   sqlite3DbFree(db, z);
5470   if( pIndex ){
5471     sqlite3BeginWriteOperation(pParse, 0, iDb);
5472     sqlite3RefillIndex(pParse, pIndex, -1);
5473     return;
5474   }
5475   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5476 }
5477 #endif
5478 
5479 /*
5480 ** Return a KeyInfo structure that is appropriate for the given Index.
5481 **
5482 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5483 ** when it has finished using it.
5484 */
5485 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5486   int i;
5487   int nCol = pIdx->nColumn;
5488   int nKey = pIdx->nKeyCol;
5489   KeyInfo *pKey;
5490   if( pParse->nErr ) return 0;
5491   if( pIdx->uniqNotNull ){
5492     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5493   }else{
5494     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5495   }
5496   if( pKey ){
5497     assert( sqlite3KeyInfoIsWriteable(pKey) );
5498     for(i=0; i<nCol; i++){
5499       const char *zColl = pIdx->azColl[i];
5500       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5501                         sqlite3LocateCollSeq(pParse, zColl);
5502       pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5503       assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5504     }
5505     if( pParse->nErr ){
5506       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5507       if( pIdx->bNoQuery==0 ){
5508         /* Deactivate the index because it contains an unknown collating
5509         ** sequence.  The only way to reactive the index is to reload the
5510         ** schema.  Adding the missing collating sequence later does not
5511         ** reactive the index.  The application had the chance to register
5512         ** the missing index using the collation-needed callback.  For
5513         ** simplicity, SQLite will not give the application a second chance.
5514         */
5515         pIdx->bNoQuery = 1;
5516         pParse->rc = SQLITE_ERROR_RETRY;
5517       }
5518       sqlite3KeyInfoUnref(pKey);
5519       pKey = 0;
5520     }
5521   }
5522   return pKey;
5523 }
5524 
5525 #ifndef SQLITE_OMIT_CTE
5526 /*
5527 ** Create a new CTE object
5528 */
5529 Cte *sqlite3CteNew(
5530   Parse *pParse,          /* Parsing context */
5531   Token *pName,           /* Name of the common-table */
5532   ExprList *pArglist,     /* Optional column name list for the table */
5533   Select *pQuery,         /* Query used to initialize the table */
5534   u8 eM10d                /* The MATERIALIZED flag */
5535 ){
5536   Cte *pNew;
5537   sqlite3 *db = pParse->db;
5538 
5539   pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5540   assert( pNew!=0 || db->mallocFailed );
5541 
5542   if( db->mallocFailed ){
5543     sqlite3ExprListDelete(db, pArglist);
5544     sqlite3SelectDelete(db, pQuery);
5545   }else{
5546     pNew->pSelect = pQuery;
5547     pNew->pCols = pArglist;
5548     pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5549     pNew->eM10d = eM10d;
5550   }
5551   return pNew;
5552 }
5553 
5554 /*
5555 ** Clear information from a Cte object, but do not deallocate storage
5556 ** for the object itself.
5557 */
5558 static void cteClear(sqlite3 *db, Cte *pCte){
5559   assert( pCte!=0 );
5560   sqlite3ExprListDelete(db, pCte->pCols);
5561   sqlite3SelectDelete(db, pCte->pSelect);
5562   sqlite3DbFree(db, pCte->zName);
5563 }
5564 
5565 /*
5566 ** Free the contents of the CTE object passed as the second argument.
5567 */
5568 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5569   assert( pCte!=0 );
5570   cteClear(db, pCte);
5571   sqlite3DbFree(db, pCte);
5572 }
5573 
5574 /*
5575 ** This routine is invoked once per CTE by the parser while parsing a
5576 ** WITH clause.  The CTE described by teh third argument is added to
5577 ** the WITH clause of the second argument.  If the second argument is
5578 ** NULL, then a new WITH argument is created.
5579 */
5580 With *sqlite3WithAdd(
5581   Parse *pParse,          /* Parsing context */
5582   With *pWith,            /* Existing WITH clause, or NULL */
5583   Cte *pCte               /* CTE to add to the WITH clause */
5584 ){
5585   sqlite3 *db = pParse->db;
5586   With *pNew;
5587   char *zName;
5588 
5589   if( pCte==0 ){
5590     return pWith;
5591   }
5592 
5593   /* Check that the CTE name is unique within this WITH clause. If
5594   ** not, store an error in the Parse structure. */
5595   zName = pCte->zName;
5596   if( zName && pWith ){
5597     int i;
5598     for(i=0; i<pWith->nCte; i++){
5599       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5600         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5601       }
5602     }
5603   }
5604 
5605   if( pWith ){
5606     sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5607     pNew = sqlite3DbRealloc(db, pWith, nByte);
5608   }else{
5609     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5610   }
5611   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5612 
5613   if( db->mallocFailed ){
5614     sqlite3CteDelete(db, pCte);
5615     pNew = pWith;
5616   }else{
5617     pNew->a[pNew->nCte++] = *pCte;
5618     sqlite3DbFree(db, pCte);
5619   }
5620 
5621   return pNew;
5622 }
5623 
5624 /*
5625 ** Free the contents of the With object passed as the second argument.
5626 */
5627 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5628   if( pWith ){
5629     int i;
5630     for(i=0; i<pWith->nCte; i++){
5631       cteClear(db, &pWith->a[i]);
5632     }
5633     sqlite3DbFree(db, pWith);
5634   }
5635 }
5636 #endif /* !defined(SQLITE_OMIT_CTE) */
5637