1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 static SQLITE_NOINLINE void lockTable( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 pToplevel = sqlite3ParseToplevel(pParse); 63 for(i=0; i<pToplevel->nTableLock; i++){ 64 p = &pToplevel->aTableLock[i]; 65 if( p->iDb==iDb && p->iTab==iTab ){ 66 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 return; 68 } 69 } 70 71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 pToplevel->aTableLock = 73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 if( pToplevel->aTableLock ){ 75 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p->iDb = iDb; 77 p->iTab = iTab; 78 p->isWriteLock = isWriteLock; 79 p->zLockName = zName; 80 }else{ 81 pToplevel->nTableLock = 0; 82 sqlite3OomFault(pToplevel->db); 83 } 84 } 85 void sqlite3TableLock( 86 Parse *pParse, /* Parsing context */ 87 int iDb, /* Index of the database containing the table to lock */ 88 Pgno iTab, /* Root page number of the table to be locked */ 89 u8 isWriteLock, /* True for a write lock */ 90 const char *zName /* Name of the table to be locked */ 91 ){ 92 if( iDb==1 ) return; 93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 94 lockTable(pParse, iDb, iTab, isWriteLock, zName); 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe = pParse->pVdbe; 104 assert( pVdbe!=0 ); 105 106 for(i=0; i<pParse->nTableLock; i++){ 107 TableLock *p = &pParse->aTableLock[i]; 108 int p1 = p->iDb; 109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 110 p->zLockName, P4_STATIC); 111 } 112 } 113 #else 114 #define codeTableLocks(x) 115 #endif 116 117 /* 118 ** Return TRUE if the given yDbMask object is empty - if it contains no 119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 121 */ 122 #if SQLITE_MAX_ATTACHED>30 123 int sqlite3DbMaskAllZero(yDbMask m){ 124 int i; 125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 126 return 1; 127 } 128 #endif 129 130 /* 131 ** This routine is called after a single SQL statement has been 132 ** parsed and a VDBE program to execute that statement has been 133 ** prepared. This routine puts the finishing touches on the 134 ** VDBE program and resets the pParse structure for the next 135 ** parse. 136 ** 137 ** Note that if an error occurred, it might be the case that 138 ** no VDBE code was generated. 139 */ 140 void sqlite3FinishCoding(Parse *pParse){ 141 sqlite3 *db; 142 Vdbe *v; 143 144 assert( pParse->pToplevel==0 ); 145 db = pParse->db; 146 assert( db->pParse==pParse ); 147 if( pParse->nested ) return; 148 if( pParse->nErr ){ 149 if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; 150 return; 151 } 152 assert( db->mallocFailed==0 ); 153 154 /* Begin by generating some termination code at the end of the 155 ** vdbe program 156 */ 157 v = pParse->pVdbe; 158 if( v==0 ){ 159 if( db->init.busy ){ 160 pParse->rc = SQLITE_DONE; 161 return; 162 } 163 v = sqlite3GetVdbe(pParse); 164 if( v==0 ) pParse->rc = SQLITE_ERROR; 165 } 166 assert( !pParse->isMultiWrite 167 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 168 if( v ){ 169 if( pParse->bReturning ){ 170 Returning *pReturning = pParse->u1.pReturning; 171 int addrRewind; 172 int i; 173 int reg; 174 175 if( NEVER(pReturning->nRetCol==0) ){ 176 assert( CORRUPT_DB ); 177 }else{ 178 sqlite3VdbeAddOp0(v, OP_FkCheck); 179 addrRewind = 180 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 181 VdbeCoverage(v); 182 reg = pReturning->iRetReg; 183 for(i=0; i<pReturning->nRetCol; i++){ 184 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 185 } 186 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 187 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 188 VdbeCoverage(v); 189 sqlite3VdbeJumpHere(v, addrRewind); 190 } 191 } 192 sqlite3VdbeAddOp0(v, OP_Halt); 193 194 #if SQLITE_USER_AUTHENTICATION 195 if( pParse->nTableLock>0 && db->init.busy==0 ){ 196 sqlite3UserAuthInit(db); 197 if( db->auth.authLevel<UAUTH_User ){ 198 sqlite3ErrorMsg(pParse, "user not authenticated"); 199 pParse->rc = SQLITE_AUTH_USER; 200 return; 201 } 202 } 203 #endif 204 205 /* The cookie mask contains one bit for each database file open. 206 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 207 ** set for each database that is used. Generate code to start a 208 ** transaction on each used database and to verify the schema cookie 209 ** on each used database. 210 */ 211 if( db->mallocFailed==0 212 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 213 ){ 214 int iDb, i; 215 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 216 sqlite3VdbeJumpHere(v, 0); 217 for(iDb=0; iDb<db->nDb; iDb++){ 218 Schema *pSchema; 219 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 220 sqlite3VdbeUsesBtree(v, iDb); 221 pSchema = db->aDb[iDb].pSchema; 222 sqlite3VdbeAddOp4Int(v, 223 OP_Transaction, /* Opcode */ 224 iDb, /* P1 */ 225 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 226 pSchema->schema_cookie, /* P3 */ 227 pSchema->iGeneration /* P4 */ 228 ); 229 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 230 VdbeComment((v, 231 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 232 } 233 #ifndef SQLITE_OMIT_VIRTUALTABLE 234 for(i=0; i<pParse->nVtabLock; i++){ 235 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 236 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 237 } 238 pParse->nVtabLock = 0; 239 #endif 240 241 /* Once all the cookies have been verified and transactions opened, 242 ** obtain the required table-locks. This is a no-op unless the 243 ** shared-cache feature is enabled. 244 */ 245 codeTableLocks(pParse); 246 247 /* Initialize any AUTOINCREMENT data structures required. 248 */ 249 sqlite3AutoincrementBegin(pParse); 250 251 /* Code constant expressions that where factored out of inner loops. 252 ** 253 ** The pConstExpr list might also contain expressions that we simply 254 ** want to keep around until the Parse object is deleted. Such 255 ** expressions have iConstExprReg==0. Do not generate code for 256 ** those expressions, of course. 257 */ 258 if( pParse->pConstExpr ){ 259 ExprList *pEL = pParse->pConstExpr; 260 pParse->okConstFactor = 0; 261 for(i=0; i<pEL->nExpr; i++){ 262 int iReg = pEL->a[i].u.iConstExprReg; 263 if( iReg>0 ){ 264 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 265 } 266 } 267 } 268 269 if( pParse->bReturning ){ 270 Returning *pRet = pParse->u1.pReturning; 271 if( NEVER(pRet->nRetCol==0) ){ 272 assert( CORRUPT_DB ); 273 }else{ 274 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 275 } 276 } 277 278 /* Finally, jump back to the beginning of the executable code. */ 279 sqlite3VdbeGoto(v, 1); 280 } 281 } 282 283 /* Get the VDBE program ready for execution 284 */ 285 assert( v!=0 || pParse->nErr ); 286 assert( db->mallocFailed==0 || pParse->nErr ); 287 if( pParse->nErr==0 ){ 288 /* A minimum of one cursor is required if autoincrement is used 289 * See ticket [a696379c1f08866] */ 290 assert( pParse->pAinc==0 || pParse->nTab>0 ); 291 sqlite3VdbeMakeReady(v, pParse); 292 pParse->rc = SQLITE_DONE; 293 }else{ 294 pParse->rc = SQLITE_ERROR; 295 } 296 } 297 298 /* 299 ** Run the parser and code generator recursively in order to generate 300 ** code for the SQL statement given onto the end of the pParse context 301 ** currently under construction. Notes: 302 ** 303 ** * The final OP_Halt is not appended and other initialization 304 ** and finalization steps are omitted because those are handling by the 305 ** outermost parser. 306 ** 307 ** * Built-in SQL functions always take precedence over application-defined 308 ** SQL functions. In other words, it is not possible to override a 309 ** built-in function. 310 */ 311 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 312 va_list ap; 313 char *zSql; 314 sqlite3 *db = pParse->db; 315 u32 savedDbFlags = db->mDbFlags; 316 char saveBuf[PARSE_TAIL_SZ]; 317 318 if( pParse->nErr ) return; 319 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 320 va_start(ap, zFormat); 321 zSql = sqlite3VMPrintf(db, zFormat, ap); 322 va_end(ap); 323 if( zSql==0 ){ 324 /* This can result either from an OOM or because the formatted string 325 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 326 ** an error */ 327 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 328 pParse->nErr++; 329 return; 330 } 331 pParse->nested++; 332 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 333 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 334 db->mDbFlags |= DBFLAG_PreferBuiltin; 335 sqlite3RunParser(pParse, zSql); 336 sqlite3DbFree(db, pParse->zErrMsg); 337 pParse->zErrMsg = 0; 338 db->mDbFlags = savedDbFlags; 339 sqlite3DbFree(db, zSql); 340 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 341 pParse->nested--; 342 } 343 344 #if SQLITE_USER_AUTHENTICATION 345 /* 346 ** Return TRUE if zTable is the name of the system table that stores the 347 ** list of users and their access credentials. 348 */ 349 int sqlite3UserAuthTable(const char *zTable){ 350 return sqlite3_stricmp(zTable, "sqlite_user")==0; 351 } 352 #endif 353 354 /* 355 ** Locate the in-memory structure that describes a particular database 356 ** table given the name of that table and (optionally) the name of the 357 ** database containing the table. Return NULL if not found. 358 ** 359 ** If zDatabase is 0, all databases are searched for the table and the 360 ** first matching table is returned. (No checking for duplicate table 361 ** names is done.) The search order is TEMP first, then MAIN, then any 362 ** auxiliary databases added using the ATTACH command. 363 ** 364 ** See also sqlite3LocateTable(). 365 */ 366 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 367 Table *p = 0; 368 int i; 369 370 /* All mutexes are required for schema access. Make sure we hold them. */ 371 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 372 #if SQLITE_USER_AUTHENTICATION 373 /* Only the admin user is allowed to know that the sqlite_user table 374 ** exists */ 375 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 376 return 0; 377 } 378 #endif 379 if( zDatabase ){ 380 for(i=0; i<db->nDb; i++){ 381 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 382 } 383 if( i>=db->nDb ){ 384 /* No match against the official names. But always match "main" 385 ** to schema 0 as a legacy fallback. */ 386 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 387 i = 0; 388 }else{ 389 return 0; 390 } 391 } 392 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 393 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 394 if( i==1 ){ 395 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 396 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 397 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 398 ){ 399 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 400 LEGACY_TEMP_SCHEMA_TABLE); 401 } 402 }else{ 403 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 404 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 405 LEGACY_SCHEMA_TABLE); 406 } 407 } 408 } 409 }else{ 410 /* Match against TEMP first */ 411 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 412 if( p ) return p; 413 /* The main database is second */ 414 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 415 if( p ) return p; 416 /* Attached databases are in order of attachment */ 417 for(i=2; i<db->nDb; i++){ 418 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 419 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 420 if( p ) break; 421 } 422 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 423 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 424 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); 425 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ 426 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 427 LEGACY_TEMP_SCHEMA_TABLE); 428 } 429 } 430 } 431 return p; 432 } 433 434 /* 435 ** Locate the in-memory structure that describes a particular database 436 ** table given the name of that table and (optionally) the name of the 437 ** database containing the table. Return NULL if not found. Also leave an 438 ** error message in pParse->zErrMsg. 439 ** 440 ** The difference between this routine and sqlite3FindTable() is that this 441 ** routine leaves an error message in pParse->zErrMsg where 442 ** sqlite3FindTable() does not. 443 */ 444 Table *sqlite3LocateTable( 445 Parse *pParse, /* context in which to report errors */ 446 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 447 const char *zName, /* Name of the table we are looking for */ 448 const char *zDbase /* Name of the database. Might be NULL */ 449 ){ 450 Table *p; 451 sqlite3 *db = pParse->db; 452 453 /* Read the database schema. If an error occurs, leave an error message 454 ** and code in pParse and return NULL. */ 455 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 456 && SQLITE_OK!=sqlite3ReadSchema(pParse) 457 ){ 458 return 0; 459 } 460 461 p = sqlite3FindTable(db, zName, zDbase); 462 if( p==0 ){ 463 #ifndef SQLITE_OMIT_VIRTUALTABLE 464 /* If zName is the not the name of a table in the schema created using 465 ** CREATE, then check to see if it is the name of an virtual table that 466 ** can be an eponymous virtual table. */ 467 if( pParse->disableVtab==0 && db->init.busy==0 ){ 468 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 469 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 470 pMod = sqlite3PragmaVtabRegister(db, zName); 471 } 472 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 473 testcase( pMod->pEpoTab==0 ); 474 return pMod->pEpoTab; 475 } 476 } 477 #endif 478 if( flags & LOCATE_NOERR ) return 0; 479 pParse->checkSchema = 1; 480 }else if( IsVirtual(p) && pParse->disableVtab ){ 481 p = 0; 482 } 483 484 if( p==0 ){ 485 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 486 if( zDbase ){ 487 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 488 }else{ 489 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 490 } 491 }else{ 492 assert( HasRowid(p) || p->iPKey<0 ); 493 } 494 495 return p; 496 } 497 498 /* 499 ** Locate the table identified by *p. 500 ** 501 ** This is a wrapper around sqlite3LocateTable(). The difference between 502 ** sqlite3LocateTable() and this function is that this function restricts 503 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 504 ** non-NULL if it is part of a view or trigger program definition. See 505 ** sqlite3FixSrcList() for details. 506 */ 507 Table *sqlite3LocateTableItem( 508 Parse *pParse, 509 u32 flags, 510 SrcItem *p 511 ){ 512 const char *zDb; 513 assert( p->pSchema==0 || p->zDatabase==0 ); 514 if( p->pSchema ){ 515 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 516 zDb = pParse->db->aDb[iDb].zDbSName; 517 }else{ 518 zDb = p->zDatabase; 519 } 520 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 521 } 522 523 /* 524 ** Return the preferred table name for system tables. Translate legacy 525 ** names into the new preferred names, as appropriate. 526 */ 527 const char *sqlite3PreferredTableName(const char *zName){ 528 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 529 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ 530 return PREFERRED_SCHEMA_TABLE; 531 } 532 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ 533 return PREFERRED_TEMP_SCHEMA_TABLE; 534 } 535 } 536 return zName; 537 } 538 539 /* 540 ** Locate the in-memory structure that describes 541 ** a particular index given the name of that index 542 ** and the name of the database that contains the index. 543 ** Return NULL if not found. 544 ** 545 ** If zDatabase is 0, all databases are searched for the 546 ** table and the first matching index is returned. (No checking 547 ** for duplicate index names is done.) The search order is 548 ** TEMP first, then MAIN, then any auxiliary databases added 549 ** using the ATTACH command. 550 */ 551 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 552 Index *p = 0; 553 int i; 554 /* All mutexes are required for schema access. Make sure we hold them. */ 555 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 556 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 557 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 558 Schema *pSchema = db->aDb[j].pSchema; 559 assert( pSchema ); 560 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 561 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 562 p = sqlite3HashFind(&pSchema->idxHash, zName); 563 if( p ) break; 564 } 565 return p; 566 } 567 568 /* 569 ** Reclaim the memory used by an index 570 */ 571 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 572 #ifndef SQLITE_OMIT_ANALYZE 573 sqlite3DeleteIndexSamples(db, p); 574 #endif 575 sqlite3ExprDelete(db, p->pPartIdxWhere); 576 sqlite3ExprListDelete(db, p->aColExpr); 577 sqlite3DbFree(db, p->zColAff); 578 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 579 #ifdef SQLITE_ENABLE_STAT4 580 sqlite3_free(p->aiRowEst); 581 #endif 582 sqlite3DbFree(db, p); 583 } 584 585 /* 586 ** For the index called zIdxName which is found in the database iDb, 587 ** unlike that index from its Table then remove the index from 588 ** the index hash table and free all memory structures associated 589 ** with the index. 590 */ 591 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 592 Index *pIndex; 593 Hash *pHash; 594 595 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 596 pHash = &db->aDb[iDb].pSchema->idxHash; 597 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 598 if( ALWAYS(pIndex) ){ 599 if( pIndex->pTable->pIndex==pIndex ){ 600 pIndex->pTable->pIndex = pIndex->pNext; 601 }else{ 602 Index *p; 603 /* Justification of ALWAYS(); The index must be on the list of 604 ** indices. */ 605 p = pIndex->pTable->pIndex; 606 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 607 if( ALWAYS(p && p->pNext==pIndex) ){ 608 p->pNext = pIndex->pNext; 609 } 610 } 611 sqlite3FreeIndex(db, pIndex); 612 } 613 db->mDbFlags |= DBFLAG_SchemaChange; 614 } 615 616 /* 617 ** Look through the list of open database files in db->aDb[] and if 618 ** any have been closed, remove them from the list. Reallocate the 619 ** db->aDb[] structure to a smaller size, if possible. 620 ** 621 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 622 ** are never candidates for being collapsed. 623 */ 624 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 625 int i, j; 626 for(i=j=2; i<db->nDb; i++){ 627 struct Db *pDb = &db->aDb[i]; 628 if( pDb->pBt==0 ){ 629 sqlite3DbFree(db, pDb->zDbSName); 630 pDb->zDbSName = 0; 631 continue; 632 } 633 if( j<i ){ 634 db->aDb[j] = db->aDb[i]; 635 } 636 j++; 637 } 638 db->nDb = j; 639 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 640 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 641 sqlite3DbFree(db, db->aDb); 642 db->aDb = db->aDbStatic; 643 } 644 } 645 646 /* 647 ** Reset the schema for the database at index iDb. Also reset the 648 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 649 ** Deferred resets may be run by calling with iDb<0. 650 */ 651 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 652 int i; 653 assert( iDb<db->nDb ); 654 655 if( iDb>=0 ){ 656 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 657 DbSetProperty(db, iDb, DB_ResetWanted); 658 DbSetProperty(db, 1, DB_ResetWanted); 659 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 660 } 661 662 if( db->nSchemaLock==0 ){ 663 for(i=0; i<db->nDb; i++){ 664 if( DbHasProperty(db, i, DB_ResetWanted) ){ 665 sqlite3SchemaClear(db->aDb[i].pSchema); 666 } 667 } 668 } 669 } 670 671 /* 672 ** Erase all schema information from all attached databases (including 673 ** "main" and "temp") for a single database connection. 674 */ 675 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 676 int i; 677 sqlite3BtreeEnterAll(db); 678 for(i=0; i<db->nDb; i++){ 679 Db *pDb = &db->aDb[i]; 680 if( pDb->pSchema ){ 681 if( db->nSchemaLock==0 ){ 682 sqlite3SchemaClear(pDb->pSchema); 683 }else{ 684 DbSetProperty(db, i, DB_ResetWanted); 685 } 686 } 687 } 688 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 689 sqlite3VtabUnlockList(db); 690 sqlite3BtreeLeaveAll(db); 691 if( db->nSchemaLock==0 ){ 692 sqlite3CollapseDatabaseArray(db); 693 } 694 } 695 696 /* 697 ** This routine is called when a commit occurs. 698 */ 699 void sqlite3CommitInternalChanges(sqlite3 *db){ 700 db->mDbFlags &= ~DBFLAG_SchemaChange; 701 } 702 703 /* 704 ** Set the expression associated with a column. This is usually 705 ** the DEFAULT value, but might also be the expression that computes 706 ** the value for a generated column. 707 */ 708 void sqlite3ColumnSetExpr( 709 Parse *pParse, /* Parsing context */ 710 Table *pTab, /* The table containing the column */ 711 Column *pCol, /* The column to receive the new DEFAULT expression */ 712 Expr *pExpr /* The new default expression */ 713 ){ 714 ExprList *pList; 715 assert( IsOrdinaryTable(pTab) ); 716 pList = pTab->u.tab.pDfltList; 717 if( pCol->iDflt==0 718 || NEVER(pList==0) 719 || NEVER(pList->nExpr<pCol->iDflt) 720 ){ 721 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; 722 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); 723 }else{ 724 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); 725 pList->a[pCol->iDflt-1].pExpr = pExpr; 726 } 727 } 728 729 /* 730 ** Return the expression associated with a column. The expression might be 731 ** the DEFAULT clause or the AS clause of a generated column. 732 ** Return NULL if the column has no associated expression. 733 */ 734 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ 735 if( pCol->iDflt==0 ) return 0; 736 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0; 737 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; 738 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0; 739 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 740 } 741 742 /* 743 ** Set the collating sequence name for a column. 744 */ 745 void sqlite3ColumnSetColl( 746 sqlite3 *db, 747 Column *pCol, 748 const char *zColl 749 ){ 750 i64 nColl; 751 i64 n; 752 char *zNew; 753 assert( zColl!=0 ); 754 n = sqlite3Strlen30(pCol->zCnName) + 1; 755 if( pCol->colFlags & COLFLAG_HASTYPE ){ 756 n += sqlite3Strlen30(pCol->zCnName+n) + 1; 757 } 758 nColl = sqlite3Strlen30(zColl) + 1; 759 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); 760 if( zNew ){ 761 pCol->zCnName = zNew; 762 memcpy(pCol->zCnName + n, zColl, nColl); 763 pCol->colFlags |= COLFLAG_HASCOLL; 764 } 765 } 766 767 /* 768 ** Return the collating squence name for a column 769 */ 770 const char *sqlite3ColumnColl(Column *pCol){ 771 const char *z; 772 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; 773 z = pCol->zCnName; 774 while( *z ){ z++; } 775 if( pCol->colFlags & COLFLAG_HASTYPE ){ 776 do{ z++; }while( *z ); 777 } 778 return z+1; 779 } 780 781 /* 782 ** Delete memory allocated for the column names of a table or view (the 783 ** Table.aCol[] array). 784 */ 785 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 786 int i; 787 Column *pCol; 788 assert( pTable!=0 ); 789 if( (pCol = pTable->aCol)!=0 ){ 790 for(i=0; i<pTable->nCol; i++, pCol++){ 791 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); 792 sqlite3DbFree(db, pCol->zCnName); 793 } 794 sqlite3DbFree(db, pTable->aCol); 795 if( IsOrdinaryTable(pTable) ){ 796 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); 797 } 798 if( db==0 || db->pnBytesFreed==0 ){ 799 pTable->aCol = 0; 800 pTable->nCol = 0; 801 if( IsOrdinaryTable(pTable) ){ 802 pTable->u.tab.pDfltList = 0; 803 } 804 } 805 } 806 } 807 808 /* 809 ** Remove the memory data structures associated with the given 810 ** Table. No changes are made to disk by this routine. 811 ** 812 ** This routine just deletes the data structure. It does not unlink 813 ** the table data structure from the hash table. But it does destroy 814 ** memory structures of the indices and foreign keys associated with 815 ** the table. 816 ** 817 ** The db parameter is optional. It is needed if the Table object 818 ** contains lookaside memory. (Table objects in the schema do not use 819 ** lookaside memory, but some ephemeral Table objects do.) Or the 820 ** db parameter can be used with db->pnBytesFreed to measure the memory 821 ** used by the Table object. 822 */ 823 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 824 Index *pIndex, *pNext; 825 826 #ifdef SQLITE_DEBUG 827 /* Record the number of outstanding lookaside allocations in schema Tables 828 ** prior to doing any free() operations. Since schema Tables do not use 829 ** lookaside, this number should not change. 830 ** 831 ** If malloc has already failed, it may be that it failed while allocating 832 ** a Table object that was going to be marked ephemeral. So do not check 833 ** that no lookaside memory is used in this case either. */ 834 int nLookaside = 0; 835 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 836 nLookaside = sqlite3LookasideUsed(db, 0); 837 } 838 #endif 839 840 /* Delete all indices associated with this table. */ 841 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 842 pNext = pIndex->pNext; 843 assert( pIndex->pSchema==pTable->pSchema 844 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 845 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 846 char *zName = pIndex->zName; 847 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 848 &pIndex->pSchema->idxHash, zName, 0 849 ); 850 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 851 assert( pOld==pIndex || pOld==0 ); 852 } 853 sqlite3FreeIndex(db, pIndex); 854 } 855 856 if( IsOrdinaryTable(pTable) ){ 857 sqlite3FkDelete(db, pTable); 858 } 859 #ifndef SQLITE_OMIT_VIRTUAL_TABLE 860 else if( IsVirtual(pTable) ){ 861 sqlite3VtabClear(db, pTable); 862 } 863 #endif 864 else{ 865 assert( IsView(pTable) ); 866 sqlite3SelectDelete(db, pTable->u.view.pSelect); 867 } 868 869 /* Delete the Table structure itself. 870 */ 871 sqlite3DeleteColumnNames(db, pTable); 872 sqlite3DbFree(db, pTable->zName); 873 sqlite3DbFree(db, pTable->zColAff); 874 sqlite3ExprListDelete(db, pTable->pCheck); 875 sqlite3DbFree(db, pTable); 876 877 /* Verify that no lookaside memory was used by schema tables */ 878 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 879 } 880 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 881 /* Do not delete the table until the reference count reaches zero. */ 882 if( !pTable ) return; 883 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 884 deleteTable(db, pTable); 885 } 886 887 888 /* 889 ** Unlink the given table from the hash tables and the delete the 890 ** table structure with all its indices and foreign keys. 891 */ 892 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 893 Table *p; 894 Db *pDb; 895 896 assert( db!=0 ); 897 assert( iDb>=0 && iDb<db->nDb ); 898 assert( zTabName ); 899 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 900 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 901 pDb = &db->aDb[iDb]; 902 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 903 sqlite3DeleteTable(db, p); 904 db->mDbFlags |= DBFLAG_SchemaChange; 905 } 906 907 /* 908 ** Given a token, return a string that consists of the text of that 909 ** token. Space to hold the returned string 910 ** is obtained from sqliteMalloc() and must be freed by the calling 911 ** function. 912 ** 913 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 914 ** surround the body of the token are removed. 915 ** 916 ** Tokens are often just pointers into the original SQL text and so 917 ** are not \000 terminated and are not persistent. The returned string 918 ** is \000 terminated and is persistent. 919 */ 920 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ 921 char *zName; 922 if( pName ){ 923 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); 924 sqlite3Dequote(zName); 925 }else{ 926 zName = 0; 927 } 928 return zName; 929 } 930 931 /* 932 ** Open the sqlite_schema table stored in database number iDb for 933 ** writing. The table is opened using cursor 0. 934 */ 935 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 936 Vdbe *v = sqlite3GetVdbe(p); 937 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); 938 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 939 if( p->nTab==0 ){ 940 p->nTab = 1; 941 } 942 } 943 944 /* 945 ** Parameter zName points to a nul-terminated buffer containing the name 946 ** of a database ("main", "temp" or the name of an attached db). This 947 ** function returns the index of the named database in db->aDb[], or 948 ** -1 if the named db cannot be found. 949 */ 950 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 951 int i = -1; /* Database number */ 952 if( zName ){ 953 Db *pDb; 954 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 955 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 956 /* "main" is always an acceptable alias for the primary database 957 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 958 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 959 } 960 } 961 return i; 962 } 963 964 /* 965 ** The token *pName contains the name of a database (either "main" or 966 ** "temp" or the name of an attached db). This routine returns the 967 ** index of the named database in db->aDb[], or -1 if the named db 968 ** does not exist. 969 */ 970 int sqlite3FindDb(sqlite3 *db, Token *pName){ 971 int i; /* Database number */ 972 char *zName; /* Name we are searching for */ 973 zName = sqlite3NameFromToken(db, pName); 974 i = sqlite3FindDbName(db, zName); 975 sqlite3DbFree(db, zName); 976 return i; 977 } 978 979 /* The table or view or trigger name is passed to this routine via tokens 980 ** pName1 and pName2. If the table name was fully qualified, for example: 981 ** 982 ** CREATE TABLE xxx.yyy (...); 983 ** 984 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 985 ** the table name is not fully qualified, i.e.: 986 ** 987 ** CREATE TABLE yyy(...); 988 ** 989 ** Then pName1 is set to "yyy" and pName2 is "". 990 ** 991 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 992 ** pName2) that stores the unqualified table name. The index of the 993 ** database "xxx" is returned. 994 */ 995 int sqlite3TwoPartName( 996 Parse *pParse, /* Parsing and code generating context */ 997 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 998 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 999 Token **pUnqual /* Write the unqualified object name here */ 1000 ){ 1001 int iDb; /* Database holding the object */ 1002 sqlite3 *db = pParse->db; 1003 1004 assert( pName2!=0 ); 1005 if( pName2->n>0 ){ 1006 if( db->init.busy ) { 1007 sqlite3ErrorMsg(pParse, "corrupt database"); 1008 return -1; 1009 } 1010 *pUnqual = pName2; 1011 iDb = sqlite3FindDb(db, pName1); 1012 if( iDb<0 ){ 1013 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 1014 return -1; 1015 } 1016 }else{ 1017 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 1018 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 1019 iDb = db->init.iDb; 1020 *pUnqual = pName1; 1021 } 1022 return iDb; 1023 } 1024 1025 /* 1026 ** True if PRAGMA writable_schema is ON 1027 */ 1028 int sqlite3WritableSchema(sqlite3 *db){ 1029 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 1030 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1031 SQLITE_WriteSchema ); 1032 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1033 SQLITE_Defensive ); 1034 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 1035 (SQLITE_WriteSchema|SQLITE_Defensive) ); 1036 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 1037 } 1038 1039 /* 1040 ** This routine is used to check if the UTF-8 string zName is a legal 1041 ** unqualified name for a new schema object (table, index, view or 1042 ** trigger). All names are legal except those that begin with the string 1043 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 1044 ** is reserved for internal use. 1045 ** 1046 ** When parsing the sqlite_schema table, this routine also checks to 1047 ** make sure the "type", "name", and "tbl_name" columns are consistent 1048 ** with the SQL. 1049 */ 1050 int sqlite3CheckObjectName( 1051 Parse *pParse, /* Parsing context */ 1052 const char *zName, /* Name of the object to check */ 1053 const char *zType, /* Type of this object */ 1054 const char *zTblName /* Parent table name for triggers and indexes */ 1055 ){ 1056 sqlite3 *db = pParse->db; 1057 if( sqlite3WritableSchema(db) 1058 || db->init.imposterTable 1059 || !sqlite3Config.bExtraSchemaChecks 1060 ){ 1061 /* Skip these error checks for writable_schema=ON */ 1062 return SQLITE_OK; 1063 } 1064 if( db->init.busy ){ 1065 if( sqlite3_stricmp(zType, db->init.azInit[0]) 1066 || sqlite3_stricmp(zName, db->init.azInit[1]) 1067 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 1068 ){ 1069 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 1070 return SQLITE_ERROR; 1071 } 1072 }else{ 1073 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 1074 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 1075 ){ 1076 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 1077 zName); 1078 return SQLITE_ERROR; 1079 } 1080 1081 } 1082 return SQLITE_OK; 1083 } 1084 1085 /* 1086 ** Return the PRIMARY KEY index of a table 1087 */ 1088 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 1089 Index *p; 1090 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 1091 return p; 1092 } 1093 1094 /* 1095 ** Convert an table column number into a index column number. That is, 1096 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 1097 ** find the (first) offset of that column in index pIdx. Or return -1 1098 ** if column iCol is not used in index pIdx. 1099 */ 1100 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 1101 int i; 1102 for(i=0; i<pIdx->nColumn; i++){ 1103 if( iCol==pIdx->aiColumn[i] ) return i; 1104 } 1105 return -1; 1106 } 1107 1108 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1109 /* Convert a storage column number into a table column number. 1110 ** 1111 ** The storage column number (0,1,2,....) is the index of the value 1112 ** as it appears in the record on disk. The true column number 1113 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 1114 ** 1115 ** The storage column number is less than the table column number if 1116 ** and only there are VIRTUAL columns to the left. 1117 ** 1118 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 1119 */ 1120 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 1121 if( pTab->tabFlags & TF_HasVirtual ){ 1122 int i; 1123 for(i=0; i<=iCol; i++){ 1124 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 1125 } 1126 } 1127 return iCol; 1128 } 1129 #endif 1130 1131 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1132 /* Convert a table column number into a storage column number. 1133 ** 1134 ** The storage column number (0,1,2,....) is the index of the value 1135 ** as it appears in the record on disk. Or, if the input column is 1136 ** the N-th virtual column (zero-based) then the storage number is 1137 ** the number of non-virtual columns in the table plus N. 1138 ** 1139 ** The true column number is the index (0,1,2,...) of the column in 1140 ** the CREATE TABLE statement. 1141 ** 1142 ** If the input column is a VIRTUAL column, then it should not appear 1143 ** in storage. But the value sometimes is cached in registers that 1144 ** follow the range of registers used to construct storage. This 1145 ** avoids computing the same VIRTUAL column multiple times, and provides 1146 ** values for use by OP_Param opcodes in triggers. Hence, if the 1147 ** input column is a VIRTUAL table, put it after all the other columns. 1148 ** 1149 ** In the following, N means "normal column", S means STORED, and 1150 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1151 ** 1152 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1153 ** -- 0 1 2 3 4 5 6 7 8 1154 ** 1155 ** Then the mapping from this function is as follows: 1156 ** 1157 ** INPUTS: 0 1 2 3 4 5 6 7 8 1158 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1159 ** 1160 ** So, in other words, this routine shifts all the virtual columns to 1161 ** the end. 1162 ** 1163 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1164 ** this routine is a no-op macro. If the pTab does not have any virtual 1165 ** columns, then this routine is no-op that always return iCol. If iCol 1166 ** is negative (indicating the ROWID column) then this routine return iCol. 1167 */ 1168 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1169 int i; 1170 i16 n; 1171 assert( iCol<pTab->nCol ); 1172 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1173 for(i=0, n=0; i<iCol; i++){ 1174 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1175 } 1176 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1177 /* iCol is a virtual column itself */ 1178 return pTab->nNVCol + i - n; 1179 }else{ 1180 /* iCol is a normal or stored column */ 1181 return n; 1182 } 1183 } 1184 #endif 1185 1186 /* 1187 ** Insert a single OP_JournalMode query opcode in order to force the 1188 ** prepared statement to return false for sqlite3_stmt_readonly(). This 1189 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 1190 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 1191 ** will return false for sqlite3_stmt_readonly() even if that statement 1192 ** is a read-only no-op. 1193 */ 1194 static void sqlite3ForceNotReadOnly(Parse *pParse){ 1195 int iReg = ++pParse->nMem; 1196 Vdbe *v = sqlite3GetVdbe(pParse); 1197 if( v ){ 1198 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 1199 sqlite3VdbeUsesBtree(v, 0); 1200 } 1201 } 1202 1203 /* 1204 ** Begin constructing a new table representation in memory. This is 1205 ** the first of several action routines that get called in response 1206 ** to a CREATE TABLE statement. In particular, this routine is called 1207 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1208 ** flag is true if the table should be stored in the auxiliary database 1209 ** file instead of in the main database file. This is normally the case 1210 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1211 ** CREATE and TABLE. 1212 ** 1213 ** The new table record is initialized and put in pParse->pNewTable. 1214 ** As more of the CREATE TABLE statement is parsed, additional action 1215 ** routines will be called to add more information to this record. 1216 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1217 ** is called to complete the construction of the new table record. 1218 */ 1219 void sqlite3StartTable( 1220 Parse *pParse, /* Parser context */ 1221 Token *pName1, /* First part of the name of the table or view */ 1222 Token *pName2, /* Second part of the name of the table or view */ 1223 int isTemp, /* True if this is a TEMP table */ 1224 int isView, /* True if this is a VIEW */ 1225 int isVirtual, /* True if this is a VIRTUAL table */ 1226 int noErr /* Do nothing if table already exists */ 1227 ){ 1228 Table *pTable; 1229 char *zName = 0; /* The name of the new table */ 1230 sqlite3 *db = pParse->db; 1231 Vdbe *v; 1232 int iDb; /* Database number to create the table in */ 1233 Token *pName; /* Unqualified name of the table to create */ 1234 1235 if( db->init.busy && db->init.newTnum==1 ){ 1236 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1237 iDb = db->init.iDb; 1238 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1239 pName = pName1; 1240 }else{ 1241 /* The common case */ 1242 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1243 if( iDb<0 ) return; 1244 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1245 /* If creating a temp table, the name may not be qualified. Unless 1246 ** the database name is "temp" anyway. */ 1247 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1248 return; 1249 } 1250 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1251 zName = sqlite3NameFromToken(db, pName); 1252 if( IN_RENAME_OBJECT ){ 1253 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1254 } 1255 } 1256 pParse->sNameToken = *pName; 1257 if( zName==0 ) return; 1258 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1259 goto begin_table_error; 1260 } 1261 if( db->init.iDb==1 ) isTemp = 1; 1262 #ifndef SQLITE_OMIT_AUTHORIZATION 1263 assert( isTemp==0 || isTemp==1 ); 1264 assert( isView==0 || isView==1 ); 1265 { 1266 static const u8 aCode[] = { 1267 SQLITE_CREATE_TABLE, 1268 SQLITE_CREATE_TEMP_TABLE, 1269 SQLITE_CREATE_VIEW, 1270 SQLITE_CREATE_TEMP_VIEW 1271 }; 1272 char *zDb = db->aDb[iDb].zDbSName; 1273 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1274 goto begin_table_error; 1275 } 1276 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1277 zName, 0, zDb) ){ 1278 goto begin_table_error; 1279 } 1280 } 1281 #endif 1282 1283 /* Make sure the new table name does not collide with an existing 1284 ** index or table name in the same database. Issue an error message if 1285 ** it does. The exception is if the statement being parsed was passed 1286 ** to an sqlite3_declare_vtab() call. In that case only the column names 1287 ** and types will be used, so there is no need to test for namespace 1288 ** collisions. 1289 */ 1290 if( !IN_SPECIAL_PARSE ){ 1291 char *zDb = db->aDb[iDb].zDbSName; 1292 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1293 goto begin_table_error; 1294 } 1295 pTable = sqlite3FindTable(db, zName, zDb); 1296 if( pTable ){ 1297 if( !noErr ){ 1298 sqlite3ErrorMsg(pParse, "%s %T already exists", 1299 (IsView(pTable)? "view" : "table"), pName); 1300 }else{ 1301 assert( !db->init.busy || CORRUPT_DB ); 1302 sqlite3CodeVerifySchema(pParse, iDb); 1303 sqlite3ForceNotReadOnly(pParse); 1304 } 1305 goto begin_table_error; 1306 } 1307 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1308 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1309 goto begin_table_error; 1310 } 1311 } 1312 1313 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1314 if( pTable==0 ){ 1315 assert( db->mallocFailed ); 1316 pParse->rc = SQLITE_NOMEM_BKPT; 1317 pParse->nErr++; 1318 goto begin_table_error; 1319 } 1320 pTable->zName = zName; 1321 pTable->iPKey = -1; 1322 pTable->pSchema = db->aDb[iDb].pSchema; 1323 pTable->nTabRef = 1; 1324 #ifdef SQLITE_DEFAULT_ROWEST 1325 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1326 #else 1327 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1328 #endif 1329 assert( pParse->pNewTable==0 ); 1330 pParse->pNewTable = pTable; 1331 1332 /* Begin generating the code that will insert the table record into 1333 ** the schema table. Note in particular that we must go ahead 1334 ** and allocate the record number for the table entry now. Before any 1335 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1336 ** indices to be created and the table record must come before the 1337 ** indices. Hence, the record number for the table must be allocated 1338 ** now. 1339 */ 1340 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1341 int addr1; 1342 int fileFormat; 1343 int reg1, reg2, reg3; 1344 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1345 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1346 sqlite3BeginWriteOperation(pParse, 1, iDb); 1347 1348 #ifndef SQLITE_OMIT_VIRTUALTABLE 1349 if( isVirtual ){ 1350 sqlite3VdbeAddOp0(v, OP_VBegin); 1351 } 1352 #endif 1353 1354 /* If the file format and encoding in the database have not been set, 1355 ** set them now. 1356 */ 1357 reg1 = pParse->regRowid = ++pParse->nMem; 1358 reg2 = pParse->regRoot = ++pParse->nMem; 1359 reg3 = ++pParse->nMem; 1360 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1361 sqlite3VdbeUsesBtree(v, iDb); 1362 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1363 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1364 1 : SQLITE_MAX_FILE_FORMAT; 1365 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1366 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1367 sqlite3VdbeJumpHere(v, addr1); 1368 1369 /* This just creates a place-holder record in the sqlite_schema table. 1370 ** The record created does not contain anything yet. It will be replaced 1371 ** by the real entry in code generated at sqlite3EndTable(). 1372 ** 1373 ** The rowid for the new entry is left in register pParse->regRowid. 1374 ** The root page number of the new table is left in reg pParse->regRoot. 1375 ** The rowid and root page number values are needed by the code that 1376 ** sqlite3EndTable will generate. 1377 */ 1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1379 if( isView || isVirtual ){ 1380 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1381 }else 1382 #endif 1383 { 1384 assert( !pParse->bReturning ); 1385 pParse->u1.addrCrTab = 1386 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1387 } 1388 sqlite3OpenSchemaTable(pParse, iDb); 1389 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1390 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1391 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1392 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1393 sqlite3VdbeAddOp0(v, OP_Close); 1394 } 1395 1396 /* Normal (non-error) return. */ 1397 return; 1398 1399 /* If an error occurs, we jump here */ 1400 begin_table_error: 1401 pParse->checkSchema = 1; 1402 sqlite3DbFree(db, zName); 1403 return; 1404 } 1405 1406 /* Set properties of a table column based on the (magical) 1407 ** name of the column. 1408 */ 1409 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1410 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1411 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ 1412 pCol->colFlags |= COLFLAG_HIDDEN; 1413 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1414 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1415 pTab->tabFlags |= TF_OOOHidden; 1416 } 1417 } 1418 #endif 1419 1420 /* 1421 ** Name of the special TEMP trigger used to implement RETURNING. The 1422 ** name begins with "sqlite_" so that it is guaranteed not to collide 1423 ** with any application-generated triggers. 1424 */ 1425 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1426 1427 /* 1428 ** Clean up the data structures associated with the RETURNING clause. 1429 */ 1430 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1431 Hash *pHash; 1432 pHash = &(db->aDb[1].pSchema->trigHash); 1433 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1434 sqlite3ExprListDelete(db, pRet->pReturnEL); 1435 sqlite3DbFree(db, pRet); 1436 } 1437 1438 /* 1439 ** Add the RETURNING clause to the parse currently underway. 1440 ** 1441 ** This routine creates a special TEMP trigger that will fire for each row 1442 ** of the DML statement. That TEMP trigger contains a single SELECT 1443 ** statement with a result set that is the argument of the RETURNING clause. 1444 ** The trigger has the Trigger.bReturning flag and an opcode of 1445 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1446 ** knows to handle it specially. The TEMP trigger is automatically 1447 ** removed at the end of the parse. 1448 ** 1449 ** When this routine is called, we do not yet know if the RETURNING clause 1450 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1451 ** RETURNING trigger instead. It will then be converted into the appropriate 1452 ** type on the first call to sqlite3TriggersExist(). 1453 */ 1454 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1455 Returning *pRet; 1456 Hash *pHash; 1457 sqlite3 *db = pParse->db; 1458 if( pParse->pNewTrigger ){ 1459 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1460 }else{ 1461 assert( pParse->bReturning==0 ); 1462 } 1463 pParse->bReturning = 1; 1464 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1465 if( pRet==0 ){ 1466 sqlite3ExprListDelete(db, pList); 1467 return; 1468 } 1469 pParse->u1.pReturning = pRet; 1470 pRet->pParse = pParse; 1471 pRet->pReturnEL = pList; 1472 sqlite3ParserAddCleanup(pParse, 1473 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1474 testcase( pParse->earlyCleanup ); 1475 if( db->mallocFailed ) return; 1476 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1477 pRet->retTrig.op = TK_RETURNING; 1478 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1479 pRet->retTrig.bReturning = 1; 1480 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1481 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 1482 pRet->retTrig.step_list = &pRet->retTStep; 1483 pRet->retTStep.op = TK_RETURNING; 1484 pRet->retTStep.pTrig = &pRet->retTrig; 1485 pRet->retTStep.pExprList = pList; 1486 pHash = &(db->aDb[1].pSchema->trigHash); 1487 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1488 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1489 ==&pRet->retTrig ){ 1490 sqlite3OomFault(db); 1491 } 1492 } 1493 1494 /* 1495 ** Add a new column to the table currently being constructed. 1496 ** 1497 ** The parser calls this routine once for each column declaration 1498 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1499 ** first to get things going. Then this routine is called for each 1500 ** column. 1501 */ 1502 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ 1503 Table *p; 1504 int i; 1505 char *z; 1506 char *zType; 1507 Column *pCol; 1508 sqlite3 *db = pParse->db; 1509 u8 hName; 1510 Column *aNew; 1511 u8 eType = COLTYPE_CUSTOM; 1512 u8 szEst = 1; 1513 char affinity = SQLITE_AFF_BLOB; 1514 1515 if( (p = pParse->pNewTable)==0 ) return; 1516 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1517 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1518 return; 1519 } 1520 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); 1521 1522 /* Because keywords GENERATE ALWAYS can be converted into indentifiers 1523 ** by the parser, we can sometimes end up with a typename that ends 1524 ** with "generated always". Check for this case and omit the surplus 1525 ** text. */ 1526 if( sType.n>=16 1527 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 1528 ){ 1529 sType.n -= 6; 1530 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1531 if( sType.n>=9 1532 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 1533 ){ 1534 sType.n -= 9; 1535 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 1536 } 1537 } 1538 1539 /* Check for standard typenames. For standard typenames we will 1540 ** set the Column.eType field rather than storing the typename after 1541 ** the column name, in order to save space. */ 1542 if( sType.n>=3 ){ 1543 sqlite3DequoteToken(&sType); 1544 for(i=0; i<SQLITE_N_STDTYPE; i++){ 1545 if( sType.n==sqlite3StdTypeLen[i] 1546 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0 1547 ){ 1548 sType.n = 0; 1549 eType = i+1; 1550 affinity = sqlite3StdTypeAffinity[i]; 1551 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5; 1552 break; 1553 } 1554 } 1555 } 1556 1557 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) ); 1558 if( z==0 ) return; 1559 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); 1560 memcpy(z, sName.z, sName.n); 1561 z[sName.n] = 0; 1562 sqlite3Dequote(z); 1563 hName = sqlite3StrIHash(z); 1564 for(i=0; i<p->nCol; i++){ 1565 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ 1566 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1567 sqlite3DbFree(db, z); 1568 return; 1569 } 1570 } 1571 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); 1572 if( aNew==0 ){ 1573 sqlite3DbFree(db, z); 1574 return; 1575 } 1576 p->aCol = aNew; 1577 pCol = &p->aCol[p->nCol]; 1578 memset(pCol, 0, sizeof(p->aCol[0])); 1579 pCol->zCnName = z; 1580 pCol->hName = hName; 1581 sqlite3ColumnPropertiesFromName(p, pCol); 1582 1583 if( sType.n==0 ){ 1584 /* If there is no type specified, columns have the default affinity 1585 ** 'BLOB' with a default size of 4 bytes. */ 1586 pCol->affinity = affinity; 1587 pCol->eCType = eType; 1588 pCol->szEst = szEst; 1589 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1590 if( affinity==SQLITE_AFF_BLOB ){ 1591 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1592 pCol->colFlags |= COLFLAG_SORTERREF; 1593 } 1594 } 1595 #endif 1596 }else{ 1597 zType = z + sqlite3Strlen30(z) + 1; 1598 memcpy(zType, sType.z, sType.n); 1599 zType[sType.n] = 0; 1600 sqlite3Dequote(zType); 1601 pCol->affinity = sqlite3AffinityType(zType, pCol); 1602 pCol->colFlags |= COLFLAG_HASTYPE; 1603 } 1604 p->nCol++; 1605 p->nNVCol++; 1606 pParse->constraintName.n = 0; 1607 } 1608 1609 /* 1610 ** This routine is called by the parser while in the middle of 1611 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1612 ** been seen on a column. This routine sets the notNull flag on 1613 ** the column currently under construction. 1614 */ 1615 void sqlite3AddNotNull(Parse *pParse, int onError){ 1616 Table *p; 1617 Column *pCol; 1618 p = pParse->pNewTable; 1619 if( p==0 || NEVER(p->nCol<1) ) return; 1620 pCol = &p->aCol[p->nCol-1]; 1621 pCol->notNull = (u8)onError; 1622 p->tabFlags |= TF_HasNotNull; 1623 1624 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1625 ** on this column. */ 1626 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1627 Index *pIdx; 1628 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1629 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1630 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1631 pIdx->uniqNotNull = 1; 1632 } 1633 } 1634 } 1635 } 1636 1637 /* 1638 ** Scan the column type name zType (length nType) and return the 1639 ** associated affinity type. 1640 ** 1641 ** This routine does a case-independent search of zType for the 1642 ** substrings in the following table. If one of the substrings is 1643 ** found, the corresponding affinity is returned. If zType contains 1644 ** more than one of the substrings, entries toward the top of 1645 ** the table take priority. For example, if zType is 'BLOBINT', 1646 ** SQLITE_AFF_INTEGER is returned. 1647 ** 1648 ** Substring | Affinity 1649 ** -------------------------------- 1650 ** 'INT' | SQLITE_AFF_INTEGER 1651 ** 'CHAR' | SQLITE_AFF_TEXT 1652 ** 'CLOB' | SQLITE_AFF_TEXT 1653 ** 'TEXT' | SQLITE_AFF_TEXT 1654 ** 'BLOB' | SQLITE_AFF_BLOB 1655 ** 'REAL' | SQLITE_AFF_REAL 1656 ** 'FLOA' | SQLITE_AFF_REAL 1657 ** 'DOUB' | SQLITE_AFF_REAL 1658 ** 1659 ** If none of the substrings in the above table are found, 1660 ** SQLITE_AFF_NUMERIC is returned. 1661 */ 1662 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1663 u32 h = 0; 1664 char aff = SQLITE_AFF_NUMERIC; 1665 const char *zChar = 0; 1666 1667 assert( zIn!=0 ); 1668 while( zIn[0] ){ 1669 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1670 zIn++; 1671 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1672 aff = SQLITE_AFF_TEXT; 1673 zChar = zIn; 1674 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1675 aff = SQLITE_AFF_TEXT; 1676 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1677 aff = SQLITE_AFF_TEXT; 1678 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1679 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1680 aff = SQLITE_AFF_BLOB; 1681 if( zIn[0]=='(' ) zChar = zIn; 1682 #ifndef SQLITE_OMIT_FLOATING_POINT 1683 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1684 && aff==SQLITE_AFF_NUMERIC ){ 1685 aff = SQLITE_AFF_REAL; 1686 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1687 && aff==SQLITE_AFF_NUMERIC ){ 1688 aff = SQLITE_AFF_REAL; 1689 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1690 && aff==SQLITE_AFF_NUMERIC ){ 1691 aff = SQLITE_AFF_REAL; 1692 #endif 1693 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1694 aff = SQLITE_AFF_INTEGER; 1695 break; 1696 } 1697 } 1698 1699 /* If pCol is not NULL, store an estimate of the field size. The 1700 ** estimate is scaled so that the size of an integer is 1. */ 1701 if( pCol ){ 1702 int v = 0; /* default size is approx 4 bytes */ 1703 if( aff<SQLITE_AFF_NUMERIC ){ 1704 if( zChar ){ 1705 while( zChar[0] ){ 1706 if( sqlite3Isdigit(zChar[0]) ){ 1707 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1708 sqlite3GetInt32(zChar, &v); 1709 break; 1710 } 1711 zChar++; 1712 } 1713 }else{ 1714 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1715 } 1716 } 1717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1718 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1719 pCol->colFlags |= COLFLAG_SORTERREF; 1720 } 1721 #endif 1722 v = v/4 + 1; 1723 if( v>255 ) v = 255; 1724 pCol->szEst = v; 1725 } 1726 return aff; 1727 } 1728 1729 /* 1730 ** The expression is the default value for the most recently added column 1731 ** of the table currently under construction. 1732 ** 1733 ** Default value expressions must be constant. Raise an exception if this 1734 ** is not the case. 1735 ** 1736 ** This routine is called by the parser while in the middle of 1737 ** parsing a CREATE TABLE statement. 1738 */ 1739 void sqlite3AddDefaultValue( 1740 Parse *pParse, /* Parsing context */ 1741 Expr *pExpr, /* The parsed expression of the default value */ 1742 const char *zStart, /* Start of the default value text */ 1743 const char *zEnd /* First character past end of defaut value text */ 1744 ){ 1745 Table *p; 1746 Column *pCol; 1747 sqlite3 *db = pParse->db; 1748 p = pParse->pNewTable; 1749 if( p!=0 ){ 1750 int isInit = db->init.busy && db->init.iDb!=1; 1751 pCol = &(p->aCol[p->nCol-1]); 1752 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1753 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1754 pCol->zCnName); 1755 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1756 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1757 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1758 testcase( pCol->colFlags & COLFLAG_STORED ); 1759 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1760 #endif 1761 }else{ 1762 /* A copy of pExpr is used instead of the original, as pExpr contains 1763 ** tokens that point to volatile memory. 1764 */ 1765 Expr x, *pDfltExpr; 1766 memset(&x, 0, sizeof(x)); 1767 x.op = TK_SPAN; 1768 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1769 x.pLeft = pExpr; 1770 x.flags = EP_Skip; 1771 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1772 sqlite3DbFree(db, x.u.zToken); 1773 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); 1774 } 1775 } 1776 if( IN_RENAME_OBJECT ){ 1777 sqlite3RenameExprUnmap(pParse, pExpr); 1778 } 1779 sqlite3ExprDelete(db, pExpr); 1780 } 1781 1782 /* 1783 ** Backwards Compatibility Hack: 1784 ** 1785 ** Historical versions of SQLite accepted strings as column names in 1786 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1787 ** 1788 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1789 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1790 ** 1791 ** This is goofy. But to preserve backwards compatibility we continue to 1792 ** accept it. This routine does the necessary conversion. It converts 1793 ** the expression given in its argument from a TK_STRING into a TK_ID 1794 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1795 ** If the expression is anything other than TK_STRING, the expression is 1796 ** unchanged. 1797 */ 1798 static void sqlite3StringToId(Expr *p){ 1799 if( p->op==TK_STRING ){ 1800 p->op = TK_ID; 1801 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1802 p->pLeft->op = TK_ID; 1803 } 1804 } 1805 1806 /* 1807 ** Tag the given column as being part of the PRIMARY KEY 1808 */ 1809 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1810 pCol->colFlags |= COLFLAG_PRIMKEY; 1811 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1812 if( pCol->colFlags & COLFLAG_GENERATED ){ 1813 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1814 testcase( pCol->colFlags & COLFLAG_STORED ); 1815 sqlite3ErrorMsg(pParse, 1816 "generated columns cannot be part of the PRIMARY KEY"); 1817 } 1818 #endif 1819 } 1820 1821 /* 1822 ** Designate the PRIMARY KEY for the table. pList is a list of names 1823 ** of columns that form the primary key. If pList is NULL, then the 1824 ** most recently added column of the table is the primary key. 1825 ** 1826 ** A table can have at most one primary key. If the table already has 1827 ** a primary key (and this is the second primary key) then create an 1828 ** error. 1829 ** 1830 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1831 ** then we will try to use that column as the rowid. Set the Table.iPKey 1832 ** field of the table under construction to be the index of the 1833 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1834 ** no INTEGER PRIMARY KEY. 1835 ** 1836 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1837 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1838 */ 1839 void sqlite3AddPrimaryKey( 1840 Parse *pParse, /* Parsing context */ 1841 ExprList *pList, /* List of field names to be indexed */ 1842 int onError, /* What to do with a uniqueness conflict */ 1843 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1844 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1845 ){ 1846 Table *pTab = pParse->pNewTable; 1847 Column *pCol = 0; 1848 int iCol = -1, i; 1849 int nTerm; 1850 if( pTab==0 ) goto primary_key_exit; 1851 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1852 sqlite3ErrorMsg(pParse, 1853 "table \"%s\" has more than one primary key", pTab->zName); 1854 goto primary_key_exit; 1855 } 1856 pTab->tabFlags |= TF_HasPrimaryKey; 1857 if( pList==0 ){ 1858 iCol = pTab->nCol - 1; 1859 pCol = &pTab->aCol[iCol]; 1860 makeColumnPartOfPrimaryKey(pParse, pCol); 1861 nTerm = 1; 1862 }else{ 1863 nTerm = pList->nExpr; 1864 for(i=0; i<nTerm; i++){ 1865 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1866 assert( pCExpr!=0 ); 1867 sqlite3StringToId(pCExpr); 1868 if( pCExpr->op==TK_ID ){ 1869 const char *zCName; 1870 assert( !ExprHasProperty(pCExpr, EP_IntValue) ); 1871 zCName = pCExpr->u.zToken; 1872 for(iCol=0; iCol<pTab->nCol; iCol++){ 1873 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ 1874 pCol = &pTab->aCol[iCol]; 1875 makeColumnPartOfPrimaryKey(pParse, pCol); 1876 break; 1877 } 1878 } 1879 } 1880 } 1881 } 1882 if( nTerm==1 1883 && pCol 1884 && pCol->eCType==COLTYPE_INTEGER 1885 && sortOrder!=SQLITE_SO_DESC 1886 ){ 1887 if( IN_RENAME_OBJECT && pList ){ 1888 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1889 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1890 } 1891 pTab->iPKey = iCol; 1892 pTab->keyConf = (u8)onError; 1893 assert( autoInc==0 || autoInc==1 ); 1894 pTab->tabFlags |= autoInc*TF_Autoincrement; 1895 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1896 (void)sqlite3HasExplicitNulls(pParse, pList); 1897 }else if( autoInc ){ 1898 #ifndef SQLITE_OMIT_AUTOINCREMENT 1899 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1900 "INTEGER PRIMARY KEY"); 1901 #endif 1902 }else{ 1903 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1904 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1905 pList = 0; 1906 } 1907 1908 primary_key_exit: 1909 sqlite3ExprListDelete(pParse->db, pList); 1910 return; 1911 } 1912 1913 /* 1914 ** Add a new CHECK constraint to the table currently under construction. 1915 */ 1916 void sqlite3AddCheckConstraint( 1917 Parse *pParse, /* Parsing context */ 1918 Expr *pCheckExpr, /* The check expression */ 1919 const char *zStart, /* Opening "(" */ 1920 const char *zEnd /* Closing ")" */ 1921 ){ 1922 #ifndef SQLITE_OMIT_CHECK 1923 Table *pTab = pParse->pNewTable; 1924 sqlite3 *db = pParse->db; 1925 if( pTab && !IN_DECLARE_VTAB 1926 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1927 ){ 1928 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1929 if( pParse->constraintName.n ){ 1930 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1931 }else{ 1932 Token t; 1933 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1934 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1935 t.z = zStart; 1936 t.n = (int)(zEnd - t.z); 1937 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1938 } 1939 }else 1940 #endif 1941 { 1942 sqlite3ExprDelete(pParse->db, pCheckExpr); 1943 } 1944 } 1945 1946 /* 1947 ** Set the collation function of the most recently parsed table column 1948 ** to the CollSeq given. 1949 */ 1950 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1951 Table *p; 1952 int i; 1953 char *zColl; /* Dequoted name of collation sequence */ 1954 sqlite3 *db; 1955 1956 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1957 i = p->nCol-1; 1958 db = pParse->db; 1959 zColl = sqlite3NameFromToken(db, pToken); 1960 if( !zColl ) return; 1961 1962 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1963 Index *pIdx; 1964 sqlite3ColumnSetColl(db, &p->aCol[i], zColl); 1965 1966 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1967 ** then an index may have been created on this column before the 1968 ** collation type was added. Correct this if it is the case. 1969 */ 1970 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1971 assert( pIdx->nKeyCol==1 ); 1972 if( pIdx->aiColumn[0]==i ){ 1973 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); 1974 } 1975 } 1976 } 1977 sqlite3DbFree(db, zColl); 1978 } 1979 1980 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1981 ** column. 1982 */ 1983 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1984 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1985 u8 eType = COLFLAG_VIRTUAL; 1986 Table *pTab = pParse->pNewTable; 1987 Column *pCol; 1988 if( pTab==0 ){ 1989 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1990 goto generated_done; 1991 } 1992 pCol = &(pTab->aCol[pTab->nCol-1]); 1993 if( IN_DECLARE_VTAB ){ 1994 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1995 goto generated_done; 1996 } 1997 if( pCol->iDflt>0 ) goto generated_error; 1998 if( pType ){ 1999 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 2000 /* no-op */ 2001 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 2002 eType = COLFLAG_STORED; 2003 }else{ 2004 goto generated_error; 2005 } 2006 } 2007 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 2008 pCol->colFlags |= eType; 2009 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 2010 assert( TF_HasStored==COLFLAG_STORED ); 2011 pTab->tabFlags |= eType; 2012 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 2013 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 2014 } 2015 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); 2016 pExpr = 0; 2017 goto generated_done; 2018 2019 generated_error: 2020 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 2021 pCol->zCnName); 2022 generated_done: 2023 sqlite3ExprDelete(pParse->db, pExpr); 2024 #else 2025 /* Throw and error for the GENERATED ALWAYS AS clause if the 2026 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 2027 sqlite3ErrorMsg(pParse, "generated columns not supported"); 2028 sqlite3ExprDelete(pParse->db, pExpr); 2029 #endif 2030 } 2031 2032 /* 2033 ** Generate code that will increment the schema cookie. 2034 ** 2035 ** The schema cookie is used to determine when the schema for the 2036 ** database changes. After each schema change, the cookie value 2037 ** changes. When a process first reads the schema it records the 2038 ** cookie. Thereafter, whenever it goes to access the database, 2039 ** it checks the cookie to make sure the schema has not changed 2040 ** since it was last read. 2041 ** 2042 ** This plan is not completely bullet-proof. It is possible for 2043 ** the schema to change multiple times and for the cookie to be 2044 ** set back to prior value. But schema changes are infrequent 2045 ** and the probability of hitting the same cookie value is only 2046 ** 1 chance in 2^32. So we're safe enough. 2047 ** 2048 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 2049 ** the schema-version whenever the schema changes. 2050 */ 2051 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 2052 sqlite3 *db = pParse->db; 2053 Vdbe *v = pParse->pVdbe; 2054 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2055 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 2056 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 2057 } 2058 2059 /* 2060 ** Measure the number of characters needed to output the given 2061 ** identifier. The number returned includes any quotes used 2062 ** but does not include the null terminator. 2063 ** 2064 ** The estimate is conservative. It might be larger that what is 2065 ** really needed. 2066 */ 2067 static int identLength(const char *z){ 2068 int n; 2069 for(n=0; *z; n++, z++){ 2070 if( *z=='"' ){ n++; } 2071 } 2072 return n + 2; 2073 } 2074 2075 /* 2076 ** The first parameter is a pointer to an output buffer. The second 2077 ** parameter is a pointer to an integer that contains the offset at 2078 ** which to write into the output buffer. This function copies the 2079 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 2080 ** to the specified offset in the buffer and updates *pIdx to refer 2081 ** to the first byte after the last byte written before returning. 2082 ** 2083 ** If the string zSignedIdent consists entirely of alpha-numeric 2084 ** characters, does not begin with a digit and is not an SQL keyword, 2085 ** then it is copied to the output buffer exactly as it is. Otherwise, 2086 ** it is quoted using double-quotes. 2087 */ 2088 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 2089 unsigned char *zIdent = (unsigned char*)zSignedIdent; 2090 int i, j, needQuote; 2091 i = *pIdx; 2092 2093 for(j=0; zIdent[j]; j++){ 2094 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 2095 } 2096 needQuote = sqlite3Isdigit(zIdent[0]) 2097 || sqlite3KeywordCode(zIdent, j)!=TK_ID 2098 || zIdent[j]!=0 2099 || j==0; 2100 2101 if( needQuote ) z[i++] = '"'; 2102 for(j=0; zIdent[j]; j++){ 2103 z[i++] = zIdent[j]; 2104 if( zIdent[j]=='"' ) z[i++] = '"'; 2105 } 2106 if( needQuote ) z[i++] = '"'; 2107 z[i] = 0; 2108 *pIdx = i; 2109 } 2110 2111 /* 2112 ** Generate a CREATE TABLE statement appropriate for the given 2113 ** table. Memory to hold the text of the statement is obtained 2114 ** from sqliteMalloc() and must be freed by the calling function. 2115 */ 2116 static char *createTableStmt(sqlite3 *db, Table *p){ 2117 int i, k, n; 2118 char *zStmt; 2119 char *zSep, *zSep2, *zEnd; 2120 Column *pCol; 2121 n = 0; 2122 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 2123 n += identLength(pCol->zCnName) + 5; 2124 } 2125 n += identLength(p->zName); 2126 if( n<50 ){ 2127 zSep = ""; 2128 zSep2 = ","; 2129 zEnd = ")"; 2130 }else{ 2131 zSep = "\n "; 2132 zSep2 = ",\n "; 2133 zEnd = "\n)"; 2134 } 2135 n += 35 + 6*p->nCol; 2136 zStmt = sqlite3DbMallocRaw(0, n); 2137 if( zStmt==0 ){ 2138 sqlite3OomFault(db); 2139 return 0; 2140 } 2141 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 2142 k = sqlite3Strlen30(zStmt); 2143 identPut(zStmt, &k, p->zName); 2144 zStmt[k++] = '('; 2145 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 2146 static const char * const azType[] = { 2147 /* SQLITE_AFF_BLOB */ "", 2148 /* SQLITE_AFF_TEXT */ " TEXT", 2149 /* SQLITE_AFF_NUMERIC */ " NUM", 2150 /* SQLITE_AFF_INTEGER */ " INT", 2151 /* SQLITE_AFF_REAL */ " REAL" 2152 }; 2153 int len; 2154 const char *zType; 2155 2156 sqlite3_snprintf(n-k, &zStmt[k], zSep); 2157 k += sqlite3Strlen30(&zStmt[k]); 2158 zSep = zSep2; 2159 identPut(zStmt, &k, pCol->zCnName); 2160 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 2161 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 2162 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 2163 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 2164 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 2165 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 2166 testcase( pCol->affinity==SQLITE_AFF_REAL ); 2167 2168 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 2169 len = sqlite3Strlen30(zType); 2170 assert( pCol->affinity==SQLITE_AFF_BLOB 2171 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 2172 memcpy(&zStmt[k], zType, len); 2173 k += len; 2174 assert( k<=n ); 2175 } 2176 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 2177 return zStmt; 2178 } 2179 2180 /* 2181 ** Resize an Index object to hold N columns total. Return SQLITE_OK 2182 ** on success and SQLITE_NOMEM on an OOM error. 2183 */ 2184 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 2185 char *zExtra; 2186 int nByte; 2187 if( pIdx->nColumn>=N ) return SQLITE_OK; 2188 assert( pIdx->isResized==0 ); 2189 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 2190 zExtra = sqlite3DbMallocZero(db, nByte); 2191 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 2192 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 2193 pIdx->azColl = (const char**)zExtra; 2194 zExtra += sizeof(char*)*N; 2195 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 2196 pIdx->aiRowLogEst = (LogEst*)zExtra; 2197 zExtra += sizeof(LogEst)*N; 2198 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2199 pIdx->aiColumn = (i16*)zExtra; 2200 zExtra += sizeof(i16)*N; 2201 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2202 pIdx->aSortOrder = (u8*)zExtra; 2203 pIdx->nColumn = N; 2204 pIdx->isResized = 1; 2205 return SQLITE_OK; 2206 } 2207 2208 /* 2209 ** Estimate the total row width for a table. 2210 */ 2211 static void estimateTableWidth(Table *pTab){ 2212 unsigned wTable = 0; 2213 const Column *pTabCol; 2214 int i; 2215 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2216 wTable += pTabCol->szEst; 2217 } 2218 if( pTab->iPKey<0 ) wTable++; 2219 pTab->szTabRow = sqlite3LogEst(wTable*4); 2220 } 2221 2222 /* 2223 ** Estimate the average size of a row for an index. 2224 */ 2225 static void estimateIndexWidth(Index *pIdx){ 2226 unsigned wIndex = 0; 2227 int i; 2228 const Column *aCol = pIdx->pTable->aCol; 2229 for(i=0; i<pIdx->nColumn; i++){ 2230 i16 x = pIdx->aiColumn[i]; 2231 assert( x<pIdx->pTable->nCol ); 2232 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2233 } 2234 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2235 } 2236 2237 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2238 ** This is used to determine if the column number x appears in any of the 2239 ** first nCol entries of an index. 2240 */ 2241 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2242 while( nCol-- > 0 ){ 2243 if( x==*(aiCol++) ){ 2244 return 1; 2245 } 2246 } 2247 return 0; 2248 } 2249 2250 /* 2251 ** Return true if any of the first nKey entries of index pIdx exactly 2252 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2253 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2254 ** or may not be the same index as pPk. 2255 ** 2256 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2257 ** not a rowid or expression. 2258 ** 2259 ** This routine differs from hasColumn() in that both the column and the 2260 ** collating sequence must match for this routine, but for hasColumn() only 2261 ** the column name must match. 2262 */ 2263 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2264 int i, j; 2265 assert( nKey<=pIdx->nColumn ); 2266 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2267 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2268 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2269 assert( pPk->pTable==pIdx->pTable ); 2270 testcase( pPk==pIdx ); 2271 j = pPk->aiColumn[iCol]; 2272 assert( j!=XN_ROWID && j!=XN_EXPR ); 2273 for(i=0; i<nKey; i++){ 2274 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2275 if( pIdx->aiColumn[i]==j 2276 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2277 ){ 2278 return 1; 2279 } 2280 } 2281 return 0; 2282 } 2283 2284 /* Recompute the colNotIdxed field of the Index. 2285 ** 2286 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2287 ** columns that are within the first 63 columns of the table. The 2288 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2289 ** of the table have a 1. 2290 ** 2291 ** 2019-10-24: For the purpose of this computation, virtual columns are 2292 ** not considered to be covered by the index, even if they are in the 2293 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2294 ** able to find all instances of a reference to the indexed table column 2295 ** and convert them into references to the index. Hence we always want 2296 ** the actual table at hand in order to recompute the virtual column, if 2297 ** necessary. 2298 ** 2299 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2300 ** to determine if the index is covering index. 2301 */ 2302 static void recomputeColumnsNotIndexed(Index *pIdx){ 2303 Bitmask m = 0; 2304 int j; 2305 Table *pTab = pIdx->pTable; 2306 for(j=pIdx->nColumn-1; j>=0; j--){ 2307 int x = pIdx->aiColumn[j]; 2308 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2309 testcase( x==BMS-1 ); 2310 testcase( x==BMS-2 ); 2311 if( x<BMS-1 ) m |= MASKBIT(x); 2312 } 2313 } 2314 pIdx->colNotIdxed = ~m; 2315 assert( (pIdx->colNotIdxed>>63)==1 ); 2316 } 2317 2318 /* 2319 ** This routine runs at the end of parsing a CREATE TABLE statement that 2320 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2321 ** internal schema data structures and the generated VDBE code so that they 2322 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2323 ** Changes include: 2324 ** 2325 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2326 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2327 ** into BTREE_BLOBKEY. 2328 ** (3) Bypass the creation of the sqlite_schema table entry 2329 ** for the PRIMARY KEY as the primary key index is now 2330 ** identified by the sqlite_schema table entry of the table itself. 2331 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2332 ** schema to the rootpage from the main table. 2333 ** (5) Add all table columns to the PRIMARY KEY Index object 2334 ** so that the PRIMARY KEY is a covering index. The surplus 2335 ** columns are part of KeyInfo.nAllField and are not used for 2336 ** sorting or lookup or uniqueness checks. 2337 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2338 ** indices with the PRIMARY KEY columns. 2339 ** 2340 ** For virtual tables, only (1) is performed. 2341 */ 2342 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2343 Index *pIdx; 2344 Index *pPk; 2345 int nPk; 2346 int nExtra; 2347 int i, j; 2348 sqlite3 *db = pParse->db; 2349 Vdbe *v = pParse->pVdbe; 2350 2351 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2352 */ 2353 if( !db->init.imposterTable ){ 2354 for(i=0; i<pTab->nCol; i++){ 2355 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 2356 && (pTab->aCol[i].notNull==OE_None) 2357 ){ 2358 pTab->aCol[i].notNull = OE_Abort; 2359 } 2360 } 2361 pTab->tabFlags |= TF_HasNotNull; 2362 } 2363 2364 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2365 ** into BTREE_BLOBKEY. 2366 */ 2367 assert( !pParse->bReturning ); 2368 if( pParse->u1.addrCrTab ){ 2369 assert( v ); 2370 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2371 } 2372 2373 /* Locate the PRIMARY KEY index. Or, if this table was originally 2374 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2375 */ 2376 if( pTab->iPKey>=0 ){ 2377 ExprList *pList; 2378 Token ipkToken; 2379 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); 2380 pList = sqlite3ExprListAppend(pParse, 0, 2381 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2382 if( pList==0 ){ 2383 pTab->tabFlags &= ~TF_WithoutRowid; 2384 return; 2385 } 2386 if( IN_RENAME_OBJECT ){ 2387 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2388 } 2389 pList->a[0].sortFlags = pParse->iPkSortOrder; 2390 assert( pParse->pNewTable==pTab ); 2391 pTab->iPKey = -1; 2392 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2393 SQLITE_IDXTYPE_PRIMARYKEY); 2394 if( pParse->nErr ){ 2395 pTab->tabFlags &= ~TF_WithoutRowid; 2396 return; 2397 } 2398 assert( db->mallocFailed==0 ); 2399 pPk = sqlite3PrimaryKeyIndex(pTab); 2400 assert( pPk->nKeyCol==1 ); 2401 }else{ 2402 pPk = sqlite3PrimaryKeyIndex(pTab); 2403 assert( pPk!=0 ); 2404 2405 /* 2406 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2407 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2408 ** code assumes the PRIMARY KEY contains no repeated columns. 2409 */ 2410 for(i=j=1; i<pPk->nKeyCol; i++){ 2411 if( isDupColumn(pPk, j, pPk, i) ){ 2412 pPk->nColumn--; 2413 }else{ 2414 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2415 pPk->azColl[j] = pPk->azColl[i]; 2416 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2417 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2418 } 2419 } 2420 pPk->nKeyCol = j; 2421 } 2422 assert( pPk!=0 ); 2423 pPk->isCovering = 1; 2424 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2425 nPk = pPk->nColumn = pPk->nKeyCol; 2426 2427 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2428 ** table entry. This is only required if currently generating VDBE 2429 ** code for a CREATE TABLE (not when parsing one as part of reading 2430 ** a database schema). */ 2431 if( v && pPk->tnum>0 ){ 2432 assert( db->init.busy==0 ); 2433 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2434 } 2435 2436 /* The root page of the PRIMARY KEY is the table root page */ 2437 pPk->tnum = pTab->tnum; 2438 2439 /* Update the in-memory representation of all UNIQUE indices by converting 2440 ** the final rowid column into one or more columns of the PRIMARY KEY. 2441 */ 2442 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2443 int n; 2444 if( IsPrimaryKeyIndex(pIdx) ) continue; 2445 for(i=n=0; i<nPk; i++){ 2446 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2447 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2448 n++; 2449 } 2450 } 2451 if( n==0 ){ 2452 /* This index is a superset of the primary key */ 2453 pIdx->nColumn = pIdx->nKeyCol; 2454 continue; 2455 } 2456 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2457 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2458 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2459 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2460 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2461 pIdx->azColl[j] = pPk->azColl[i]; 2462 if( pPk->aSortOrder[i] ){ 2463 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2464 pIdx->bAscKeyBug = 1; 2465 } 2466 j++; 2467 } 2468 } 2469 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2470 assert( pIdx->nColumn>=j ); 2471 } 2472 2473 /* Add all table columns to the PRIMARY KEY index 2474 */ 2475 nExtra = 0; 2476 for(i=0; i<pTab->nCol; i++){ 2477 if( !hasColumn(pPk->aiColumn, nPk, i) 2478 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2479 } 2480 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2481 for(i=0, j=nPk; i<pTab->nCol; i++){ 2482 if( !hasColumn(pPk->aiColumn, j, i) 2483 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2484 ){ 2485 assert( j<pPk->nColumn ); 2486 pPk->aiColumn[j] = i; 2487 pPk->azColl[j] = sqlite3StrBINARY; 2488 j++; 2489 } 2490 } 2491 assert( pPk->nColumn==j ); 2492 assert( pTab->nNVCol<=j ); 2493 recomputeColumnsNotIndexed(pPk); 2494 } 2495 2496 2497 #ifndef SQLITE_OMIT_VIRTUALTABLE 2498 /* 2499 ** Return true if pTab is a virtual table and zName is a shadow table name 2500 ** for that virtual table. 2501 */ 2502 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2503 int nName; /* Length of zName */ 2504 Module *pMod; /* Module for the virtual table */ 2505 2506 if( !IsVirtual(pTab) ) return 0; 2507 nName = sqlite3Strlen30(pTab->zName); 2508 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2509 if( zName[nName]!='_' ) return 0; 2510 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2511 if( pMod==0 ) return 0; 2512 if( pMod->pModule->iVersion<3 ) return 0; 2513 if( pMod->pModule->xShadowName==0 ) return 0; 2514 return pMod->pModule->xShadowName(zName+nName+1); 2515 } 2516 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2517 2518 #ifndef SQLITE_OMIT_VIRTUALTABLE 2519 /* 2520 ** Table pTab is a virtual table. If it the virtual table implementation 2521 ** exists and has an xShadowName method, then loop over all other ordinary 2522 ** tables within the same schema looking for shadow tables of pTab, and mark 2523 ** any shadow tables seen using the TF_Shadow flag. 2524 */ 2525 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ 2526 int nName; /* Length of pTab->zName */ 2527 Module *pMod; /* Module for the virtual table */ 2528 HashElem *k; /* For looping through the symbol table */ 2529 2530 assert( IsVirtual(pTab) ); 2531 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 2532 if( pMod==0 ) return; 2533 if( NEVER(pMod->pModule==0) ) return; 2534 if( pMod->pModule->iVersion<3 ) return; 2535 if( pMod->pModule->xShadowName==0 ) return; 2536 assert( pTab->zName!=0 ); 2537 nName = sqlite3Strlen30(pTab->zName); 2538 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ 2539 Table *pOther = sqliteHashData(k); 2540 assert( pOther->zName!=0 ); 2541 if( !IsOrdinaryTable(pOther) ) continue; 2542 if( pOther->tabFlags & TF_Shadow ) continue; 2543 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 2544 && pOther->zName[nName]=='_' 2545 && pMod->pModule->xShadowName(pOther->zName+nName+1) 2546 ){ 2547 pOther->tabFlags |= TF_Shadow; 2548 } 2549 } 2550 } 2551 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2552 2553 #ifndef SQLITE_OMIT_VIRTUALTABLE 2554 /* 2555 ** Return true if zName is a shadow table name in the current database 2556 ** connection. 2557 ** 2558 ** zName is temporarily modified while this routine is running, but is 2559 ** restored to its original value prior to this routine returning. 2560 */ 2561 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2562 char *zTail; /* Pointer to the last "_" in zName */ 2563 Table *pTab; /* Table that zName is a shadow of */ 2564 zTail = strrchr(zName, '_'); 2565 if( zTail==0 ) return 0; 2566 *zTail = 0; 2567 pTab = sqlite3FindTable(db, zName, 0); 2568 *zTail = '_'; 2569 if( pTab==0 ) return 0; 2570 if( !IsVirtual(pTab) ) return 0; 2571 return sqlite3IsShadowTableOf(db, pTab, zName); 2572 } 2573 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2574 2575 2576 #ifdef SQLITE_DEBUG 2577 /* 2578 ** Mark all nodes of an expression as EP_Immutable, indicating that 2579 ** they should not be changed. Expressions attached to a table or 2580 ** index definition are tagged this way to help ensure that we do 2581 ** not pass them into code generator routines by mistake. 2582 */ 2583 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2584 ExprSetVVAProperty(pExpr, EP_Immutable); 2585 return WRC_Continue; 2586 } 2587 static void markExprListImmutable(ExprList *pList){ 2588 if( pList ){ 2589 Walker w; 2590 memset(&w, 0, sizeof(w)); 2591 w.xExprCallback = markImmutableExprStep; 2592 w.xSelectCallback = sqlite3SelectWalkNoop; 2593 w.xSelectCallback2 = 0; 2594 sqlite3WalkExprList(&w, pList); 2595 } 2596 } 2597 #else 2598 #define markExprListImmutable(X) /* no-op */ 2599 #endif /* SQLITE_DEBUG */ 2600 2601 2602 /* 2603 ** This routine is called to report the final ")" that terminates 2604 ** a CREATE TABLE statement. 2605 ** 2606 ** The table structure that other action routines have been building 2607 ** is added to the internal hash tables, assuming no errors have 2608 ** occurred. 2609 ** 2610 ** An entry for the table is made in the schema table on disk, unless 2611 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2612 ** it means we are reading the sqlite_schema table because we just 2613 ** connected to the database or because the sqlite_schema table has 2614 ** recently changed, so the entry for this table already exists in 2615 ** the sqlite_schema table. We do not want to create it again. 2616 ** 2617 ** If the pSelect argument is not NULL, it means that this routine 2618 ** was called to create a table generated from a 2619 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2620 ** the new table will match the result set of the SELECT. 2621 */ 2622 void sqlite3EndTable( 2623 Parse *pParse, /* Parse context */ 2624 Token *pCons, /* The ',' token after the last column defn. */ 2625 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2626 u32 tabOpts, /* Extra table options. Usually 0. */ 2627 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2628 ){ 2629 Table *p; /* The new table */ 2630 sqlite3 *db = pParse->db; /* The database connection */ 2631 int iDb; /* Database in which the table lives */ 2632 Index *pIdx; /* An implied index of the table */ 2633 2634 if( pEnd==0 && pSelect==0 ){ 2635 return; 2636 } 2637 p = pParse->pNewTable; 2638 if( p==0 ) return; 2639 2640 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2641 p->tabFlags |= TF_Shadow; 2642 } 2643 2644 /* If the db->init.busy is 1 it means we are reading the SQL off the 2645 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2646 ** So do not write to the disk again. Extract the root page number 2647 ** for the table from the db->init.newTnum field. (The page number 2648 ** should have been put there by the sqliteOpenCb routine.) 2649 ** 2650 ** If the root page number is 1, that means this is the sqlite_schema 2651 ** table itself. So mark it read-only. 2652 */ 2653 if( db->init.busy ){ 2654 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ 2655 sqlite3ErrorMsg(pParse, ""); 2656 return; 2657 } 2658 p->tnum = db->init.newTnum; 2659 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2660 } 2661 2662 /* Special processing for tables that include the STRICT keyword: 2663 ** 2664 ** * Do not allow custom column datatypes. Every column must have 2665 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. 2666 ** 2667 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, 2668 ** then all columns of the PRIMARY KEY must have a NOT NULL 2669 ** constraint. 2670 */ 2671 if( tabOpts & TF_Strict ){ 2672 int ii; 2673 p->tabFlags |= TF_Strict; 2674 for(ii=0; ii<p->nCol; ii++){ 2675 Column *pCol = &p->aCol[ii]; 2676 if( pCol->eCType==COLTYPE_CUSTOM ){ 2677 if( pCol->colFlags & COLFLAG_HASTYPE ){ 2678 sqlite3ErrorMsg(pParse, 2679 "unknown datatype for %s.%s: \"%s\"", 2680 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") 2681 ); 2682 }else{ 2683 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", 2684 p->zName, pCol->zCnName); 2685 } 2686 return; 2687 }else if( pCol->eCType==COLTYPE_ANY ){ 2688 pCol->affinity = SQLITE_AFF_BLOB; 2689 } 2690 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 2691 && p->iPKey!=ii 2692 && pCol->notNull == OE_None 2693 ){ 2694 pCol->notNull = OE_Abort; 2695 p->tabFlags |= TF_HasNotNull; 2696 } 2697 } 2698 } 2699 2700 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2701 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2702 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2703 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2704 2705 /* Special processing for WITHOUT ROWID Tables */ 2706 if( tabOpts & TF_WithoutRowid ){ 2707 if( (p->tabFlags & TF_Autoincrement) ){ 2708 sqlite3ErrorMsg(pParse, 2709 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2710 return; 2711 } 2712 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2713 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2714 return; 2715 } 2716 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2717 convertToWithoutRowidTable(pParse, p); 2718 } 2719 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2720 2721 #ifndef SQLITE_OMIT_CHECK 2722 /* Resolve names in all CHECK constraint expressions. 2723 */ 2724 if( p->pCheck ){ 2725 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2726 if( pParse->nErr ){ 2727 /* If errors are seen, delete the CHECK constraints now, else they might 2728 ** actually be used if PRAGMA writable_schema=ON is set. */ 2729 sqlite3ExprListDelete(db, p->pCheck); 2730 p->pCheck = 0; 2731 }else{ 2732 markExprListImmutable(p->pCheck); 2733 } 2734 } 2735 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2736 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2737 if( p->tabFlags & TF_HasGenerated ){ 2738 int ii, nNG = 0; 2739 testcase( p->tabFlags & TF_HasVirtual ); 2740 testcase( p->tabFlags & TF_HasStored ); 2741 for(ii=0; ii<p->nCol; ii++){ 2742 u32 colFlags = p->aCol[ii].colFlags; 2743 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2744 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); 2745 testcase( colFlags & COLFLAG_VIRTUAL ); 2746 testcase( colFlags & COLFLAG_STORED ); 2747 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2748 /* If there are errors in resolving the expression, change the 2749 ** expression to a NULL. This prevents code generators that operate 2750 ** on the expression from inserting extra parts into the expression 2751 ** tree that have been allocated from lookaside memory, which is 2752 ** illegal in a schema and will lead to errors or heap corruption 2753 ** when the database connection closes. */ 2754 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], 2755 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 2756 } 2757 }else{ 2758 nNG++; 2759 } 2760 } 2761 if( nNG==0 ){ 2762 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2763 return; 2764 } 2765 } 2766 #endif 2767 2768 /* Estimate the average row size for the table and for all implied indices */ 2769 estimateTableWidth(p); 2770 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2771 estimateIndexWidth(pIdx); 2772 } 2773 2774 /* If not initializing, then create a record for the new table 2775 ** in the schema table of the database. 2776 ** 2777 ** If this is a TEMPORARY table, write the entry into the auxiliary 2778 ** file instead of into the main database file. 2779 */ 2780 if( !db->init.busy ){ 2781 int n; 2782 Vdbe *v; 2783 char *zType; /* "view" or "table" */ 2784 char *zType2; /* "VIEW" or "TABLE" */ 2785 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2786 2787 v = sqlite3GetVdbe(pParse); 2788 if( NEVER(v==0) ) return; 2789 2790 sqlite3VdbeAddOp1(v, OP_Close, 0); 2791 2792 /* 2793 ** Initialize zType for the new view or table. 2794 */ 2795 if( IsOrdinaryTable(p) ){ 2796 /* A regular table */ 2797 zType = "table"; 2798 zType2 = "TABLE"; 2799 #ifndef SQLITE_OMIT_VIEW 2800 }else{ 2801 /* A view */ 2802 zType = "view"; 2803 zType2 = "VIEW"; 2804 #endif 2805 } 2806 2807 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2808 ** statement to populate the new table. The root-page number for the 2809 ** new table is in register pParse->regRoot. 2810 ** 2811 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2812 ** suitable state to query for the column names and types to be used 2813 ** by the new table. 2814 ** 2815 ** A shared-cache write-lock is not required to write to the new table, 2816 ** as a schema-lock must have already been obtained to create it. Since 2817 ** a schema-lock excludes all other database users, the write-lock would 2818 ** be redundant. 2819 */ 2820 if( pSelect ){ 2821 SelectDest dest; /* Where the SELECT should store results */ 2822 int regYield; /* Register holding co-routine entry-point */ 2823 int addrTop; /* Top of the co-routine */ 2824 int regRec; /* A record to be insert into the new table */ 2825 int regRowid; /* Rowid of the next row to insert */ 2826 int addrInsLoop; /* Top of the loop for inserting rows */ 2827 Table *pSelTab; /* A table that describes the SELECT results */ 2828 2829 regYield = ++pParse->nMem; 2830 regRec = ++pParse->nMem; 2831 regRowid = ++pParse->nMem; 2832 assert(pParse->nTab==1); 2833 sqlite3MayAbort(pParse); 2834 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2835 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2836 pParse->nTab = 2; 2837 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2838 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2839 if( pParse->nErr ) return; 2840 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2841 if( pSelTab==0 ) return; 2842 assert( p->aCol==0 ); 2843 p->nCol = p->nNVCol = pSelTab->nCol; 2844 p->aCol = pSelTab->aCol; 2845 pSelTab->nCol = 0; 2846 pSelTab->aCol = 0; 2847 sqlite3DeleteTable(db, pSelTab); 2848 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2849 sqlite3Select(pParse, pSelect, &dest); 2850 if( pParse->nErr ) return; 2851 sqlite3VdbeEndCoroutine(v, regYield); 2852 sqlite3VdbeJumpHere(v, addrTop - 1); 2853 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2854 VdbeCoverage(v); 2855 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2856 sqlite3TableAffinity(v, p, 0); 2857 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2858 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2859 sqlite3VdbeGoto(v, addrInsLoop); 2860 sqlite3VdbeJumpHere(v, addrInsLoop); 2861 sqlite3VdbeAddOp1(v, OP_Close, 1); 2862 } 2863 2864 /* Compute the complete text of the CREATE statement */ 2865 if( pSelect ){ 2866 zStmt = createTableStmt(db, p); 2867 }else{ 2868 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2869 n = (int)(pEnd2->z - pParse->sNameToken.z); 2870 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2871 zStmt = sqlite3MPrintf(db, 2872 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2873 ); 2874 } 2875 2876 /* A slot for the record has already been allocated in the 2877 ** schema table. We just need to update that slot with all 2878 ** the information we've collected. 2879 */ 2880 sqlite3NestedParse(pParse, 2881 "UPDATE %Q." LEGACY_SCHEMA_TABLE 2882 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2883 " WHERE rowid=#%d", 2884 db->aDb[iDb].zDbSName, 2885 zType, 2886 p->zName, 2887 p->zName, 2888 pParse->regRoot, 2889 zStmt, 2890 pParse->regRowid 2891 ); 2892 sqlite3DbFree(db, zStmt); 2893 sqlite3ChangeCookie(pParse, iDb); 2894 2895 #ifndef SQLITE_OMIT_AUTOINCREMENT 2896 /* Check to see if we need to create an sqlite_sequence table for 2897 ** keeping track of autoincrement keys. 2898 */ 2899 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2900 Db *pDb = &db->aDb[iDb]; 2901 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2902 if( pDb->pSchema->pSeqTab==0 ){ 2903 sqlite3NestedParse(pParse, 2904 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2905 pDb->zDbSName 2906 ); 2907 } 2908 } 2909 #endif 2910 2911 /* Reparse everything to update our internal data structures */ 2912 sqlite3VdbeAddParseSchemaOp(v, iDb, 2913 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2914 } 2915 2916 /* Add the table to the in-memory representation of the database. 2917 */ 2918 if( db->init.busy ){ 2919 Table *pOld; 2920 Schema *pSchema = p->pSchema; 2921 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2922 assert( HasRowid(p) || p->iPKey<0 ); 2923 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2924 if( pOld ){ 2925 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2926 sqlite3OomFault(db); 2927 return; 2928 } 2929 pParse->pNewTable = 0; 2930 db->mDbFlags |= DBFLAG_SchemaChange; 2931 2932 /* If this is the magic sqlite_sequence table used by autoincrement, 2933 ** then record a pointer to this table in the main database structure 2934 ** so that INSERT can find the table easily. */ 2935 assert( !pParse->nested ); 2936 #ifndef SQLITE_OMIT_AUTOINCREMENT 2937 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2938 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2939 p->pSchema->pSeqTab = p; 2940 } 2941 #endif 2942 } 2943 2944 #ifndef SQLITE_OMIT_ALTERTABLE 2945 if( !pSelect && IsOrdinaryTable(p) ){ 2946 assert( pCons && pEnd ); 2947 if( pCons->z==0 ){ 2948 pCons = pEnd; 2949 } 2950 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2951 } 2952 #endif 2953 } 2954 2955 #ifndef SQLITE_OMIT_VIEW 2956 /* 2957 ** The parser calls this routine in order to create a new VIEW 2958 */ 2959 void sqlite3CreateView( 2960 Parse *pParse, /* The parsing context */ 2961 Token *pBegin, /* The CREATE token that begins the statement */ 2962 Token *pName1, /* The token that holds the name of the view */ 2963 Token *pName2, /* The token that holds the name of the view */ 2964 ExprList *pCNames, /* Optional list of view column names */ 2965 Select *pSelect, /* A SELECT statement that will become the new view */ 2966 int isTemp, /* TRUE for a TEMPORARY view */ 2967 int noErr /* Suppress error messages if VIEW already exists */ 2968 ){ 2969 Table *p; 2970 int n; 2971 const char *z; 2972 Token sEnd; 2973 DbFixer sFix; 2974 Token *pName = 0; 2975 int iDb; 2976 sqlite3 *db = pParse->db; 2977 2978 if( pParse->nVar>0 ){ 2979 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2980 goto create_view_fail; 2981 } 2982 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2983 p = pParse->pNewTable; 2984 if( p==0 || pParse->nErr ) goto create_view_fail; 2985 2986 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2987 ** on a view, even though views do not have rowids. The following flag 2988 ** setting fixes this problem. But the fix can be disabled by compiling 2989 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2990 ** depend upon the old buggy behavior. */ 2991 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2992 p->tabFlags |= TF_NoVisibleRowid; 2993 #endif 2994 2995 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2996 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2997 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2998 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2999 3000 /* Make a copy of the entire SELECT statement that defines the view. 3001 ** This will force all the Expr.token.z values to be dynamically 3002 ** allocated rather than point to the input string - which means that 3003 ** they will persist after the current sqlite3_exec() call returns. 3004 */ 3005 pSelect->selFlags |= SF_View; 3006 if( IN_RENAME_OBJECT ){ 3007 p->u.view.pSelect = pSelect; 3008 pSelect = 0; 3009 }else{ 3010 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 3011 } 3012 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 3013 p->eTabType = TABTYP_VIEW; 3014 if( db->mallocFailed ) goto create_view_fail; 3015 3016 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 3017 ** the end. 3018 */ 3019 sEnd = pParse->sLastToken; 3020 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 3021 if( sEnd.z[0]!=';' ){ 3022 sEnd.z += sEnd.n; 3023 } 3024 sEnd.n = 0; 3025 n = (int)(sEnd.z - pBegin->z); 3026 assert( n>0 ); 3027 z = pBegin->z; 3028 while( sqlite3Isspace(z[n-1]) ){ n--; } 3029 sEnd.z = &z[n-1]; 3030 sEnd.n = 1; 3031 3032 /* Use sqlite3EndTable() to add the view to the schema table */ 3033 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 3034 3035 create_view_fail: 3036 sqlite3SelectDelete(db, pSelect); 3037 if( IN_RENAME_OBJECT ){ 3038 sqlite3RenameExprlistUnmap(pParse, pCNames); 3039 } 3040 sqlite3ExprListDelete(db, pCNames); 3041 return; 3042 } 3043 #endif /* SQLITE_OMIT_VIEW */ 3044 3045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3046 /* 3047 ** The Table structure pTable is really a VIEW. Fill in the names of 3048 ** the columns of the view in the pTable structure. Return the number 3049 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 3050 */ 3051 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 3052 Table *pSelTab; /* A fake table from which we get the result set */ 3053 Select *pSel; /* Copy of the SELECT that implements the view */ 3054 int nErr = 0; /* Number of errors encountered */ 3055 int n; /* Temporarily holds the number of cursors assigned */ 3056 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 3057 #ifndef SQLITE_OMIT_VIRTUALTABLE 3058 int rc; 3059 #endif 3060 #ifndef SQLITE_OMIT_AUTHORIZATION 3061 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 3062 #endif 3063 3064 assert( pTable ); 3065 3066 #ifndef SQLITE_OMIT_VIRTUALTABLE 3067 if( IsVirtual(pTable) ){ 3068 db->nSchemaLock++; 3069 rc = sqlite3VtabCallConnect(pParse, pTable); 3070 db->nSchemaLock--; 3071 return rc; 3072 } 3073 #endif 3074 3075 #ifndef SQLITE_OMIT_VIEW 3076 /* A positive nCol means the columns names for this view are 3077 ** already known. 3078 */ 3079 if( pTable->nCol>0 ) return 0; 3080 3081 /* A negative nCol is a special marker meaning that we are currently 3082 ** trying to compute the column names. If we enter this routine with 3083 ** a negative nCol, it means two or more views form a loop, like this: 3084 ** 3085 ** CREATE VIEW one AS SELECT * FROM two; 3086 ** CREATE VIEW two AS SELECT * FROM one; 3087 ** 3088 ** Actually, the error above is now caught prior to reaching this point. 3089 ** But the following test is still important as it does come up 3090 ** in the following: 3091 ** 3092 ** CREATE TABLE main.ex1(a); 3093 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 3094 ** SELECT * FROM temp.ex1; 3095 */ 3096 if( pTable->nCol<0 ){ 3097 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 3098 return 1; 3099 } 3100 assert( pTable->nCol>=0 ); 3101 3102 /* If we get this far, it means we need to compute the table names. 3103 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 3104 ** "*" elements in the results set of the view and will assign cursors 3105 ** to the elements of the FROM clause. But we do not want these changes 3106 ** to be permanent. So the computation is done on a copy of the SELECT 3107 ** statement that defines the view. 3108 */ 3109 assert( IsView(pTable) ); 3110 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); 3111 if( pSel ){ 3112 u8 eParseMode = pParse->eParseMode; 3113 pParse->eParseMode = PARSE_MODE_NORMAL; 3114 n = pParse->nTab; 3115 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 3116 pTable->nCol = -1; 3117 DisableLookaside; 3118 #ifndef SQLITE_OMIT_AUTHORIZATION 3119 xAuth = db->xAuth; 3120 db->xAuth = 0; 3121 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3122 db->xAuth = xAuth; 3123 #else 3124 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 3125 #endif 3126 pParse->nTab = n; 3127 if( pSelTab==0 ){ 3128 pTable->nCol = 0; 3129 nErr++; 3130 }else if( pTable->pCheck ){ 3131 /* CREATE VIEW name(arglist) AS ... 3132 ** The names of the columns in the table are taken from 3133 ** arglist which is stored in pTable->pCheck. The pCheck field 3134 ** normally holds CHECK constraints on an ordinary table, but for 3135 ** a VIEW it holds the list of column names. 3136 */ 3137 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 3138 &pTable->nCol, &pTable->aCol); 3139 if( pParse->nErr==0 3140 && pTable->nCol==pSel->pEList->nExpr 3141 ){ 3142 assert( db->mallocFailed==0 ); 3143 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 3144 SQLITE_AFF_NONE); 3145 } 3146 }else{ 3147 /* CREATE VIEW name AS... without an argument list. Construct 3148 ** the column names from the SELECT statement that defines the view. 3149 */ 3150 assert( pTable->aCol==0 ); 3151 pTable->nCol = pSelTab->nCol; 3152 pTable->aCol = pSelTab->aCol; 3153 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 3154 pSelTab->nCol = 0; 3155 pSelTab->aCol = 0; 3156 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 3157 } 3158 pTable->nNVCol = pTable->nCol; 3159 sqlite3DeleteTable(db, pSelTab); 3160 sqlite3SelectDelete(db, pSel); 3161 EnableLookaside; 3162 pParse->eParseMode = eParseMode; 3163 } else { 3164 nErr++; 3165 } 3166 pTable->pSchema->schemaFlags |= DB_UnresetViews; 3167 if( db->mallocFailed ){ 3168 sqlite3DeleteColumnNames(db, pTable); 3169 } 3170 #endif /* SQLITE_OMIT_VIEW */ 3171 return nErr; 3172 } 3173 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 3174 3175 #ifndef SQLITE_OMIT_VIEW 3176 /* 3177 ** Clear the column names from every VIEW in database idx. 3178 */ 3179 static void sqliteViewResetAll(sqlite3 *db, int idx){ 3180 HashElem *i; 3181 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 3182 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 3183 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 3184 Table *pTab = sqliteHashData(i); 3185 if( IsView(pTab) ){ 3186 sqlite3DeleteColumnNames(db, pTab); 3187 } 3188 } 3189 DbClearProperty(db, idx, DB_UnresetViews); 3190 } 3191 #else 3192 # define sqliteViewResetAll(A,B) 3193 #endif /* SQLITE_OMIT_VIEW */ 3194 3195 /* 3196 ** This function is called by the VDBE to adjust the internal schema 3197 ** used by SQLite when the btree layer moves a table root page. The 3198 ** root-page of a table or index in database iDb has changed from iFrom 3199 ** to iTo. 3200 ** 3201 ** Ticket #1728: The symbol table might still contain information 3202 ** on tables and/or indices that are the process of being deleted. 3203 ** If you are unlucky, one of those deleted indices or tables might 3204 ** have the same rootpage number as the real table or index that is 3205 ** being moved. So we cannot stop searching after the first match 3206 ** because the first match might be for one of the deleted indices 3207 ** or tables and not the table/index that is actually being moved. 3208 ** We must continue looping until all tables and indices with 3209 ** rootpage==iFrom have been converted to have a rootpage of iTo 3210 ** in order to be certain that we got the right one. 3211 */ 3212 #ifndef SQLITE_OMIT_AUTOVACUUM 3213 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 3214 HashElem *pElem; 3215 Hash *pHash; 3216 Db *pDb; 3217 3218 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3219 pDb = &db->aDb[iDb]; 3220 pHash = &pDb->pSchema->tblHash; 3221 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3222 Table *pTab = sqliteHashData(pElem); 3223 if( pTab->tnum==iFrom ){ 3224 pTab->tnum = iTo; 3225 } 3226 } 3227 pHash = &pDb->pSchema->idxHash; 3228 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 3229 Index *pIdx = sqliteHashData(pElem); 3230 if( pIdx->tnum==iFrom ){ 3231 pIdx->tnum = iTo; 3232 } 3233 } 3234 } 3235 #endif 3236 3237 /* 3238 ** Write code to erase the table with root-page iTable from database iDb. 3239 ** Also write code to modify the sqlite_schema table and internal schema 3240 ** if a root-page of another table is moved by the btree-layer whilst 3241 ** erasing iTable (this can happen with an auto-vacuum database). 3242 */ 3243 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 3244 Vdbe *v = sqlite3GetVdbe(pParse); 3245 int r1 = sqlite3GetTempReg(pParse); 3246 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 3247 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 3248 sqlite3MayAbort(pParse); 3249 #ifndef SQLITE_OMIT_AUTOVACUUM 3250 /* OP_Destroy stores an in integer r1. If this integer 3251 ** is non-zero, then it is the root page number of a table moved to 3252 ** location iTable. The following code modifies the sqlite_schema table to 3253 ** reflect this. 3254 ** 3255 ** The "#NNN" in the SQL is a special constant that means whatever value 3256 ** is in register NNN. See grammar rules associated with the TK_REGISTER 3257 ** token for additional information. 3258 */ 3259 sqlite3NestedParse(pParse, 3260 "UPDATE %Q." LEGACY_SCHEMA_TABLE 3261 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 3262 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 3263 #endif 3264 sqlite3ReleaseTempReg(pParse, r1); 3265 } 3266 3267 /* 3268 ** Write VDBE code to erase table pTab and all associated indices on disk. 3269 ** Code to update the sqlite_schema tables and internal schema definitions 3270 ** in case a root-page belonging to another table is moved by the btree layer 3271 ** is also added (this can happen with an auto-vacuum database). 3272 */ 3273 static void destroyTable(Parse *pParse, Table *pTab){ 3274 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3275 ** is not defined), then it is important to call OP_Destroy on the 3276 ** table and index root-pages in order, starting with the numerically 3277 ** largest root-page number. This guarantees that none of the root-pages 3278 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3279 ** following were coded: 3280 ** 3281 ** OP_Destroy 4 0 3282 ** ... 3283 ** OP_Destroy 5 0 3284 ** 3285 ** and root page 5 happened to be the largest root-page number in the 3286 ** database, then root page 5 would be moved to page 4 by the 3287 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3288 ** a free-list page. 3289 */ 3290 Pgno iTab = pTab->tnum; 3291 Pgno iDestroyed = 0; 3292 3293 while( 1 ){ 3294 Index *pIdx; 3295 Pgno iLargest = 0; 3296 3297 if( iDestroyed==0 || iTab<iDestroyed ){ 3298 iLargest = iTab; 3299 } 3300 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3301 Pgno iIdx = pIdx->tnum; 3302 assert( pIdx->pSchema==pTab->pSchema ); 3303 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3304 iLargest = iIdx; 3305 } 3306 } 3307 if( iLargest==0 ){ 3308 return; 3309 }else{ 3310 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3311 assert( iDb>=0 && iDb<pParse->db->nDb ); 3312 destroyRootPage(pParse, iLargest, iDb); 3313 iDestroyed = iLargest; 3314 } 3315 } 3316 } 3317 3318 /* 3319 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3320 ** after a DROP INDEX or DROP TABLE command. 3321 */ 3322 static void sqlite3ClearStatTables( 3323 Parse *pParse, /* The parsing context */ 3324 int iDb, /* The database number */ 3325 const char *zType, /* "idx" or "tbl" */ 3326 const char *zName /* Name of index or table */ 3327 ){ 3328 int i; 3329 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3330 for(i=1; i<=4; i++){ 3331 char zTab[24]; 3332 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3333 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3334 sqlite3NestedParse(pParse, 3335 "DELETE FROM %Q.%s WHERE %s=%Q", 3336 zDbName, zTab, zType, zName 3337 ); 3338 } 3339 } 3340 } 3341 3342 /* 3343 ** Generate code to drop a table. 3344 */ 3345 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3346 Vdbe *v; 3347 sqlite3 *db = pParse->db; 3348 Trigger *pTrigger; 3349 Db *pDb = &db->aDb[iDb]; 3350 3351 v = sqlite3GetVdbe(pParse); 3352 assert( v!=0 ); 3353 sqlite3BeginWriteOperation(pParse, 1, iDb); 3354 3355 #ifndef SQLITE_OMIT_VIRTUALTABLE 3356 if( IsVirtual(pTab) ){ 3357 sqlite3VdbeAddOp0(v, OP_VBegin); 3358 } 3359 #endif 3360 3361 /* Drop all triggers associated with the table being dropped. Code 3362 ** is generated to remove entries from sqlite_schema and/or 3363 ** sqlite_temp_schema if required. 3364 */ 3365 pTrigger = sqlite3TriggerList(pParse, pTab); 3366 while( pTrigger ){ 3367 assert( pTrigger->pSchema==pTab->pSchema || 3368 pTrigger->pSchema==db->aDb[1].pSchema ); 3369 sqlite3DropTriggerPtr(pParse, pTrigger); 3370 pTrigger = pTrigger->pNext; 3371 } 3372 3373 #ifndef SQLITE_OMIT_AUTOINCREMENT 3374 /* Remove any entries of the sqlite_sequence table associated with 3375 ** the table being dropped. This is done before the table is dropped 3376 ** at the btree level, in case the sqlite_sequence table needs to 3377 ** move as a result of the drop (can happen in auto-vacuum mode). 3378 */ 3379 if( pTab->tabFlags & TF_Autoincrement ){ 3380 sqlite3NestedParse(pParse, 3381 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3382 pDb->zDbSName, pTab->zName 3383 ); 3384 } 3385 #endif 3386 3387 /* Drop all entries in the schema table that refer to the 3388 ** table. The program name loops through the schema table and deletes 3389 ** every row that refers to a table of the same name as the one being 3390 ** dropped. Triggers are handled separately because a trigger can be 3391 ** created in the temp database that refers to a table in another 3392 ** database. 3393 */ 3394 sqlite3NestedParse(pParse, 3395 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE 3396 " WHERE tbl_name=%Q and type!='trigger'", 3397 pDb->zDbSName, pTab->zName); 3398 if( !isView && !IsVirtual(pTab) ){ 3399 destroyTable(pParse, pTab); 3400 } 3401 3402 /* Remove the table entry from SQLite's internal schema and modify 3403 ** the schema cookie. 3404 */ 3405 if( IsVirtual(pTab) ){ 3406 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3407 sqlite3MayAbort(pParse); 3408 } 3409 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3410 sqlite3ChangeCookie(pParse, iDb); 3411 sqliteViewResetAll(db, iDb); 3412 } 3413 3414 /* 3415 ** Return TRUE if shadow tables should be read-only in the current 3416 ** context. 3417 */ 3418 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3419 #ifndef SQLITE_OMIT_VIRTUALTABLE 3420 if( (db->flags & SQLITE_Defensive)!=0 3421 && db->pVtabCtx==0 3422 && db->nVdbeExec==0 3423 && !sqlite3VtabInSync(db) 3424 ){ 3425 return 1; 3426 } 3427 #endif 3428 return 0; 3429 } 3430 3431 /* 3432 ** Return true if it is not allowed to drop the given table 3433 */ 3434 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3435 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3436 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3437 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3438 return 1; 3439 } 3440 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3441 return 1; 3442 } 3443 if( pTab->tabFlags & TF_Eponymous ){ 3444 return 1; 3445 } 3446 return 0; 3447 } 3448 3449 /* 3450 ** This routine is called to do the work of a DROP TABLE statement. 3451 ** pName is the name of the table to be dropped. 3452 */ 3453 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3454 Table *pTab; 3455 Vdbe *v; 3456 sqlite3 *db = pParse->db; 3457 int iDb; 3458 3459 if( db->mallocFailed ){ 3460 goto exit_drop_table; 3461 } 3462 assert( pParse->nErr==0 ); 3463 assert( pName->nSrc==1 ); 3464 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3465 if( noErr ) db->suppressErr++; 3466 assert( isView==0 || isView==LOCATE_VIEW ); 3467 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3468 if( noErr ) db->suppressErr--; 3469 3470 if( pTab==0 ){ 3471 if( noErr ){ 3472 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3473 sqlite3ForceNotReadOnly(pParse); 3474 } 3475 goto exit_drop_table; 3476 } 3477 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3478 assert( iDb>=0 && iDb<db->nDb ); 3479 3480 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3481 ** it is initialized. 3482 */ 3483 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3484 goto exit_drop_table; 3485 } 3486 #ifndef SQLITE_OMIT_AUTHORIZATION 3487 { 3488 int code; 3489 const char *zTab = SCHEMA_TABLE(iDb); 3490 const char *zDb = db->aDb[iDb].zDbSName; 3491 const char *zArg2 = 0; 3492 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3493 goto exit_drop_table; 3494 } 3495 if( isView ){ 3496 if( !OMIT_TEMPDB && iDb==1 ){ 3497 code = SQLITE_DROP_TEMP_VIEW; 3498 }else{ 3499 code = SQLITE_DROP_VIEW; 3500 } 3501 #ifndef SQLITE_OMIT_VIRTUALTABLE 3502 }else if( IsVirtual(pTab) ){ 3503 code = SQLITE_DROP_VTABLE; 3504 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3505 #endif 3506 }else{ 3507 if( !OMIT_TEMPDB && iDb==1 ){ 3508 code = SQLITE_DROP_TEMP_TABLE; 3509 }else{ 3510 code = SQLITE_DROP_TABLE; 3511 } 3512 } 3513 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3514 goto exit_drop_table; 3515 } 3516 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3517 goto exit_drop_table; 3518 } 3519 } 3520 #endif 3521 if( tableMayNotBeDropped(db, pTab) ){ 3522 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3523 goto exit_drop_table; 3524 } 3525 3526 #ifndef SQLITE_OMIT_VIEW 3527 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3528 ** on a table. 3529 */ 3530 if( isView && !IsView(pTab) ){ 3531 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3532 goto exit_drop_table; 3533 } 3534 if( !isView && IsView(pTab) ){ 3535 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3536 goto exit_drop_table; 3537 } 3538 #endif 3539 3540 /* Generate code to remove the table from the schema table 3541 ** on disk. 3542 */ 3543 v = sqlite3GetVdbe(pParse); 3544 if( v ){ 3545 sqlite3BeginWriteOperation(pParse, 1, iDb); 3546 if( !isView ){ 3547 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3548 sqlite3FkDropTable(pParse, pName, pTab); 3549 } 3550 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3551 } 3552 3553 exit_drop_table: 3554 sqlite3SrcListDelete(db, pName); 3555 } 3556 3557 /* 3558 ** This routine is called to create a new foreign key on the table 3559 ** currently under construction. pFromCol determines which columns 3560 ** in the current table point to the foreign key. If pFromCol==0 then 3561 ** connect the key to the last column inserted. pTo is the name of 3562 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3563 ** of tables in the parent pTo table. flags contains all 3564 ** information about the conflict resolution algorithms specified 3565 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3566 ** 3567 ** An FKey structure is created and added to the table currently 3568 ** under construction in the pParse->pNewTable field. 3569 ** 3570 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3571 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3572 */ 3573 void sqlite3CreateForeignKey( 3574 Parse *pParse, /* Parsing context */ 3575 ExprList *pFromCol, /* Columns in this table that point to other table */ 3576 Token *pTo, /* Name of the other table */ 3577 ExprList *pToCol, /* Columns in the other table */ 3578 int flags /* Conflict resolution algorithms. */ 3579 ){ 3580 sqlite3 *db = pParse->db; 3581 #ifndef SQLITE_OMIT_FOREIGN_KEY 3582 FKey *pFKey = 0; 3583 FKey *pNextTo; 3584 Table *p = pParse->pNewTable; 3585 i64 nByte; 3586 int i; 3587 int nCol; 3588 char *z; 3589 3590 assert( pTo!=0 ); 3591 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3592 if( pFromCol==0 ){ 3593 int iCol = p->nCol-1; 3594 if( NEVER(iCol<0) ) goto fk_end; 3595 if( pToCol && pToCol->nExpr!=1 ){ 3596 sqlite3ErrorMsg(pParse, "foreign key on %s" 3597 " should reference only one column of table %T", 3598 p->aCol[iCol].zCnName, pTo); 3599 goto fk_end; 3600 } 3601 nCol = 1; 3602 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3603 sqlite3ErrorMsg(pParse, 3604 "number of columns in foreign key does not match the number of " 3605 "columns in the referenced table"); 3606 goto fk_end; 3607 }else{ 3608 nCol = pFromCol->nExpr; 3609 } 3610 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3611 if( pToCol ){ 3612 for(i=0; i<pToCol->nExpr; i++){ 3613 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3614 } 3615 } 3616 pFKey = sqlite3DbMallocZero(db, nByte ); 3617 if( pFKey==0 ){ 3618 goto fk_end; 3619 } 3620 pFKey->pFrom = p; 3621 assert( IsOrdinaryTable(p) ); 3622 pFKey->pNextFrom = p->u.tab.pFKey; 3623 z = (char*)&pFKey->aCol[nCol]; 3624 pFKey->zTo = z; 3625 if( IN_RENAME_OBJECT ){ 3626 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3627 } 3628 memcpy(z, pTo->z, pTo->n); 3629 z[pTo->n] = 0; 3630 sqlite3Dequote(z); 3631 z += pTo->n+1; 3632 pFKey->nCol = nCol; 3633 if( pFromCol==0 ){ 3634 pFKey->aCol[0].iFrom = p->nCol-1; 3635 }else{ 3636 for(i=0; i<nCol; i++){ 3637 int j; 3638 for(j=0; j<p->nCol; j++){ 3639 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ 3640 pFKey->aCol[i].iFrom = j; 3641 break; 3642 } 3643 } 3644 if( j>=p->nCol ){ 3645 sqlite3ErrorMsg(pParse, 3646 "unknown column \"%s\" in foreign key definition", 3647 pFromCol->a[i].zEName); 3648 goto fk_end; 3649 } 3650 if( IN_RENAME_OBJECT ){ 3651 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3652 } 3653 } 3654 } 3655 if( pToCol ){ 3656 for(i=0; i<nCol; i++){ 3657 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3658 pFKey->aCol[i].zCol = z; 3659 if( IN_RENAME_OBJECT ){ 3660 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3661 } 3662 memcpy(z, pToCol->a[i].zEName, n); 3663 z[n] = 0; 3664 z += n+1; 3665 } 3666 } 3667 pFKey->isDeferred = 0; 3668 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3669 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3670 3671 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3672 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3673 pFKey->zTo, (void *)pFKey 3674 ); 3675 if( pNextTo==pFKey ){ 3676 sqlite3OomFault(db); 3677 goto fk_end; 3678 } 3679 if( pNextTo ){ 3680 assert( pNextTo->pPrevTo==0 ); 3681 pFKey->pNextTo = pNextTo; 3682 pNextTo->pPrevTo = pFKey; 3683 } 3684 3685 /* Link the foreign key to the table as the last step. 3686 */ 3687 assert( IsOrdinaryTable(p) ); 3688 p->u.tab.pFKey = pFKey; 3689 pFKey = 0; 3690 3691 fk_end: 3692 sqlite3DbFree(db, pFKey); 3693 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3694 sqlite3ExprListDelete(db, pFromCol); 3695 sqlite3ExprListDelete(db, pToCol); 3696 } 3697 3698 /* 3699 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3700 ** clause is seen as part of a foreign key definition. The isDeferred 3701 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3702 ** The behavior of the most recently created foreign key is adjusted 3703 ** accordingly. 3704 */ 3705 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3706 #ifndef SQLITE_OMIT_FOREIGN_KEY 3707 Table *pTab; 3708 FKey *pFKey; 3709 if( (pTab = pParse->pNewTable)==0 ) return; 3710 if( NEVER(!IsOrdinaryTable(pTab)) ) return; 3711 if( (pFKey = pTab->u.tab.pFKey)==0 ) return; 3712 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3713 pFKey->isDeferred = (u8)isDeferred; 3714 #endif 3715 } 3716 3717 /* 3718 ** Generate code that will erase and refill index *pIdx. This is 3719 ** used to initialize a newly created index or to recompute the 3720 ** content of an index in response to a REINDEX command. 3721 ** 3722 ** if memRootPage is not negative, it means that the index is newly 3723 ** created. The register specified by memRootPage contains the 3724 ** root page number of the index. If memRootPage is negative, then 3725 ** the index already exists and must be cleared before being refilled and 3726 ** the root page number of the index is taken from pIndex->tnum. 3727 */ 3728 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3729 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3730 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3731 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3732 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3733 int addr1; /* Address of top of loop */ 3734 int addr2; /* Address to jump to for next iteration */ 3735 Pgno tnum; /* Root page of index */ 3736 int iPartIdxLabel; /* Jump to this label to skip a row */ 3737 Vdbe *v; /* Generate code into this virtual machine */ 3738 KeyInfo *pKey; /* KeyInfo for index */ 3739 int regRecord; /* Register holding assembled index record */ 3740 sqlite3 *db = pParse->db; /* The database connection */ 3741 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3742 3743 #ifndef SQLITE_OMIT_AUTHORIZATION 3744 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3745 db->aDb[iDb].zDbSName ) ){ 3746 return; 3747 } 3748 #endif 3749 3750 /* Require a write-lock on the table to perform this operation */ 3751 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3752 3753 v = sqlite3GetVdbe(pParse); 3754 if( v==0 ) return; 3755 if( memRootPage>=0 ){ 3756 tnum = (Pgno)memRootPage; 3757 }else{ 3758 tnum = pIndex->tnum; 3759 } 3760 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3761 assert( pKey!=0 || pParse->nErr ); 3762 3763 /* Open the sorter cursor if we are to use one. */ 3764 iSorter = pParse->nTab++; 3765 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3766 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3767 3768 /* Open the table. Loop through all rows of the table, inserting index 3769 ** records into the sorter. */ 3770 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3771 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3772 regRecord = sqlite3GetTempReg(pParse); 3773 sqlite3MultiWrite(pParse); 3774 3775 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3776 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3777 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3778 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3779 sqlite3VdbeJumpHere(v, addr1); 3780 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3781 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3782 (char *)pKey, P4_KEYINFO); 3783 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3784 3785 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3786 if( IsUniqueIndex(pIndex) ){ 3787 int j2 = sqlite3VdbeGoto(v, 1); 3788 addr2 = sqlite3VdbeCurrentAddr(v); 3789 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3790 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3791 pIndex->nKeyCol); VdbeCoverage(v); 3792 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3793 sqlite3VdbeJumpHere(v, j2); 3794 }else{ 3795 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3796 ** abort. The exception is if one of the indexed expressions contains a 3797 ** user function that throws an exception when it is evaluated. But the 3798 ** overhead of adding a statement journal to a CREATE INDEX statement is 3799 ** very small (since most of the pages written do not contain content that 3800 ** needs to be restored if the statement aborts), so we call 3801 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3802 sqlite3MayAbort(pParse); 3803 addr2 = sqlite3VdbeCurrentAddr(v); 3804 } 3805 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3806 if( !pIndex->bAscKeyBug ){ 3807 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3808 ** faster by avoiding unnecessary seeks. But the optimization does 3809 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3810 ** with DESC primary keys, since those indexes have there keys in 3811 ** a different order from the main table. 3812 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3813 */ 3814 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3815 } 3816 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3817 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3818 sqlite3ReleaseTempReg(pParse, regRecord); 3819 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3820 sqlite3VdbeJumpHere(v, addr1); 3821 3822 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3823 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3824 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3825 } 3826 3827 /* 3828 ** Allocate heap space to hold an Index object with nCol columns. 3829 ** 3830 ** Increase the allocation size to provide an extra nExtra bytes 3831 ** of 8-byte aligned space after the Index object and return a 3832 ** pointer to this extra space in *ppExtra. 3833 */ 3834 Index *sqlite3AllocateIndexObject( 3835 sqlite3 *db, /* Database connection */ 3836 i16 nCol, /* Total number of columns in the index */ 3837 int nExtra, /* Number of bytes of extra space to alloc */ 3838 char **ppExtra /* Pointer to the "extra" space */ 3839 ){ 3840 Index *p; /* Allocated index object */ 3841 int nByte; /* Bytes of space for Index object + arrays */ 3842 3843 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3844 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3845 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3846 sizeof(i16)*nCol + /* Index.aiColumn */ 3847 sizeof(u8)*nCol); /* Index.aSortOrder */ 3848 p = sqlite3DbMallocZero(db, nByte + nExtra); 3849 if( p ){ 3850 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3851 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3852 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3853 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3854 p->aSortOrder = (u8*)pExtra; 3855 p->nColumn = nCol; 3856 p->nKeyCol = nCol - 1; 3857 *ppExtra = ((char*)p) + nByte; 3858 } 3859 return p; 3860 } 3861 3862 /* 3863 ** If expression list pList contains an expression that was parsed with 3864 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3865 ** pParse and return non-zero. Otherwise, return zero. 3866 */ 3867 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3868 if( pList ){ 3869 int i; 3870 for(i=0; i<pList->nExpr; i++){ 3871 if( pList->a[i].bNulls ){ 3872 u8 sf = pList->a[i].sortFlags; 3873 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3874 (sf==0 || sf==3) ? "FIRST" : "LAST" 3875 ); 3876 return 1; 3877 } 3878 } 3879 } 3880 return 0; 3881 } 3882 3883 /* 3884 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3885 ** and pTblList is the name of the table that is to be indexed. Both will 3886 ** be NULL for a primary key or an index that is created to satisfy a 3887 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3888 ** as the table to be indexed. pParse->pNewTable is a table that is 3889 ** currently being constructed by a CREATE TABLE statement. 3890 ** 3891 ** pList is a list of columns to be indexed. pList will be NULL if this 3892 ** is a primary key or unique-constraint on the most recent column added 3893 ** to the table currently under construction. 3894 */ 3895 void sqlite3CreateIndex( 3896 Parse *pParse, /* All information about this parse */ 3897 Token *pName1, /* First part of index name. May be NULL */ 3898 Token *pName2, /* Second part of index name. May be NULL */ 3899 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3900 ExprList *pList, /* A list of columns to be indexed */ 3901 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3902 Token *pStart, /* The CREATE token that begins this statement */ 3903 Expr *pPIWhere, /* WHERE clause for partial indices */ 3904 int sortOrder, /* Sort order of primary key when pList==NULL */ 3905 int ifNotExist, /* Omit error if index already exists */ 3906 u8 idxType /* The index type */ 3907 ){ 3908 Table *pTab = 0; /* Table to be indexed */ 3909 Index *pIndex = 0; /* The index to be created */ 3910 char *zName = 0; /* Name of the index */ 3911 int nName; /* Number of characters in zName */ 3912 int i, j; 3913 DbFixer sFix; /* For assigning database names to pTable */ 3914 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3915 sqlite3 *db = pParse->db; 3916 Db *pDb; /* The specific table containing the indexed database */ 3917 int iDb; /* Index of the database that is being written */ 3918 Token *pName = 0; /* Unqualified name of the index to create */ 3919 struct ExprList_item *pListItem; /* For looping over pList */ 3920 int nExtra = 0; /* Space allocated for zExtra[] */ 3921 int nExtraCol; /* Number of extra columns needed */ 3922 char *zExtra = 0; /* Extra space after the Index object */ 3923 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3924 3925 assert( db->pParse==pParse ); 3926 if( pParse->nErr ){ 3927 goto exit_create_index; 3928 } 3929 assert( db->mallocFailed==0 ); 3930 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3931 goto exit_create_index; 3932 } 3933 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3934 goto exit_create_index; 3935 } 3936 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3937 goto exit_create_index; 3938 } 3939 3940 /* 3941 ** Find the table that is to be indexed. Return early if not found. 3942 */ 3943 if( pTblName!=0 ){ 3944 3945 /* Use the two-part index name to determine the database 3946 ** to search for the table. 'Fix' the table name to this db 3947 ** before looking up the table. 3948 */ 3949 assert( pName1 && pName2 ); 3950 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3951 if( iDb<0 ) goto exit_create_index; 3952 assert( pName && pName->z ); 3953 3954 #ifndef SQLITE_OMIT_TEMPDB 3955 /* If the index name was unqualified, check if the table 3956 ** is a temp table. If so, set the database to 1. Do not do this 3957 ** if initialising a database schema. 3958 */ 3959 if( !db->init.busy ){ 3960 pTab = sqlite3SrcListLookup(pParse, pTblName); 3961 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3962 iDb = 1; 3963 } 3964 } 3965 #endif 3966 3967 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3968 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3969 /* Because the parser constructs pTblName from a single identifier, 3970 ** sqlite3FixSrcList can never fail. */ 3971 assert(0); 3972 } 3973 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3974 assert( db->mallocFailed==0 || pTab==0 ); 3975 if( pTab==0 ) goto exit_create_index; 3976 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3977 sqlite3ErrorMsg(pParse, 3978 "cannot create a TEMP index on non-TEMP table \"%s\"", 3979 pTab->zName); 3980 goto exit_create_index; 3981 } 3982 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3983 }else{ 3984 assert( pName==0 ); 3985 assert( pStart==0 ); 3986 pTab = pParse->pNewTable; 3987 if( !pTab ) goto exit_create_index; 3988 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3989 } 3990 pDb = &db->aDb[iDb]; 3991 3992 assert( pTab!=0 ); 3993 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3994 && db->init.busy==0 3995 && pTblName!=0 3996 #if SQLITE_USER_AUTHENTICATION 3997 && sqlite3UserAuthTable(pTab->zName)==0 3998 #endif 3999 ){ 4000 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 4001 goto exit_create_index; 4002 } 4003 #ifndef SQLITE_OMIT_VIEW 4004 if( IsView(pTab) ){ 4005 sqlite3ErrorMsg(pParse, "views may not be indexed"); 4006 goto exit_create_index; 4007 } 4008 #endif 4009 #ifndef SQLITE_OMIT_VIRTUALTABLE 4010 if( IsVirtual(pTab) ){ 4011 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 4012 goto exit_create_index; 4013 } 4014 #endif 4015 4016 /* 4017 ** Find the name of the index. Make sure there is not already another 4018 ** index or table with the same name. 4019 ** 4020 ** Exception: If we are reading the names of permanent indices from the 4021 ** sqlite_schema table (because some other process changed the schema) and 4022 ** one of the index names collides with the name of a temporary table or 4023 ** index, then we will continue to process this index. 4024 ** 4025 ** If pName==0 it means that we are 4026 ** dealing with a primary key or UNIQUE constraint. We have to invent our 4027 ** own name. 4028 */ 4029 if( pName ){ 4030 zName = sqlite3NameFromToken(db, pName); 4031 if( zName==0 ) goto exit_create_index; 4032 assert( pName->z!=0 ); 4033 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 4034 goto exit_create_index; 4035 } 4036 if( !IN_RENAME_OBJECT ){ 4037 if( !db->init.busy ){ 4038 if( sqlite3FindTable(db, zName, 0)!=0 ){ 4039 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 4040 goto exit_create_index; 4041 } 4042 } 4043 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 4044 if( !ifNotExist ){ 4045 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 4046 }else{ 4047 assert( !db->init.busy ); 4048 sqlite3CodeVerifySchema(pParse, iDb); 4049 sqlite3ForceNotReadOnly(pParse); 4050 } 4051 goto exit_create_index; 4052 } 4053 } 4054 }else{ 4055 int n; 4056 Index *pLoop; 4057 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 4058 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 4059 if( zName==0 ){ 4060 goto exit_create_index; 4061 } 4062 4063 /* Automatic index names generated from within sqlite3_declare_vtab() 4064 ** must have names that are distinct from normal automatic index names. 4065 ** The following statement converts "sqlite3_autoindex..." into 4066 ** "sqlite3_butoindex..." in order to make the names distinct. 4067 ** The "vtab_err.test" test demonstrates the need of this statement. */ 4068 if( IN_SPECIAL_PARSE ) zName[7]++; 4069 } 4070 4071 /* Check for authorization to create an index. 4072 */ 4073 #ifndef SQLITE_OMIT_AUTHORIZATION 4074 if( !IN_RENAME_OBJECT ){ 4075 const char *zDb = pDb->zDbSName; 4076 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 4077 goto exit_create_index; 4078 } 4079 i = SQLITE_CREATE_INDEX; 4080 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 4081 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 4082 goto exit_create_index; 4083 } 4084 } 4085 #endif 4086 4087 /* If pList==0, it means this routine was called to make a primary 4088 ** key out of the last column added to the table under construction. 4089 ** So create a fake list to simulate this. 4090 */ 4091 if( pList==0 ){ 4092 Token prevCol; 4093 Column *pCol = &pTab->aCol[pTab->nCol-1]; 4094 pCol->colFlags |= COLFLAG_UNIQUE; 4095 sqlite3TokenInit(&prevCol, pCol->zCnName); 4096 pList = sqlite3ExprListAppend(pParse, 0, 4097 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 4098 if( pList==0 ) goto exit_create_index; 4099 assert( pList->nExpr==1 ); 4100 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 4101 }else{ 4102 sqlite3ExprListCheckLength(pParse, pList, "index"); 4103 if( pParse->nErr ) goto exit_create_index; 4104 } 4105 4106 /* Figure out how many bytes of space are required to store explicitly 4107 ** specified collation sequence names. 4108 */ 4109 for(i=0; i<pList->nExpr; i++){ 4110 Expr *pExpr = pList->a[i].pExpr; 4111 assert( pExpr!=0 ); 4112 if( pExpr->op==TK_COLLATE ){ 4113 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4114 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 4115 } 4116 } 4117 4118 /* 4119 ** Allocate the index structure. 4120 */ 4121 nName = sqlite3Strlen30(zName); 4122 nExtraCol = pPk ? pPk->nKeyCol : 1; 4123 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 4124 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 4125 nName + nExtra + 1, &zExtra); 4126 if( db->mallocFailed ){ 4127 goto exit_create_index; 4128 } 4129 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 4130 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 4131 pIndex->zName = zExtra; 4132 zExtra += nName + 1; 4133 memcpy(pIndex->zName, zName, nName+1); 4134 pIndex->pTable = pTab; 4135 pIndex->onError = (u8)onError; 4136 pIndex->uniqNotNull = onError!=OE_None; 4137 pIndex->idxType = idxType; 4138 pIndex->pSchema = db->aDb[iDb].pSchema; 4139 pIndex->nKeyCol = pList->nExpr; 4140 if( pPIWhere ){ 4141 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 4142 pIndex->pPartIdxWhere = pPIWhere; 4143 pPIWhere = 0; 4144 } 4145 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4146 4147 /* Check to see if we should honor DESC requests on index columns 4148 */ 4149 if( pDb->pSchema->file_format>=4 ){ 4150 sortOrderMask = -1; /* Honor DESC */ 4151 }else{ 4152 sortOrderMask = 0; /* Ignore DESC */ 4153 } 4154 4155 /* Analyze the list of expressions that form the terms of the index and 4156 ** report any errors. In the common case where the expression is exactly 4157 ** a table column, store that column in aiColumn[]. For general expressions, 4158 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 4159 ** 4160 ** TODO: Issue a warning if two or more columns of the index are identical. 4161 ** TODO: Issue a warning if the table primary key is used as part of the 4162 ** index key. 4163 */ 4164 pListItem = pList->a; 4165 if( IN_RENAME_OBJECT ){ 4166 pIndex->aColExpr = pList; 4167 pList = 0; 4168 } 4169 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 4170 Expr *pCExpr; /* The i-th index expression */ 4171 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 4172 const char *zColl; /* Collation sequence name */ 4173 4174 sqlite3StringToId(pListItem->pExpr); 4175 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 4176 if( pParse->nErr ) goto exit_create_index; 4177 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 4178 if( pCExpr->op!=TK_COLUMN ){ 4179 if( pTab==pParse->pNewTable ){ 4180 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 4181 "UNIQUE constraints"); 4182 goto exit_create_index; 4183 } 4184 if( pIndex->aColExpr==0 ){ 4185 pIndex->aColExpr = pList; 4186 pList = 0; 4187 } 4188 j = XN_EXPR; 4189 pIndex->aiColumn[i] = XN_EXPR; 4190 pIndex->uniqNotNull = 0; 4191 }else{ 4192 j = pCExpr->iColumn; 4193 assert( j<=0x7fff ); 4194 if( j<0 ){ 4195 j = pTab->iPKey; 4196 }else{ 4197 if( pTab->aCol[j].notNull==0 ){ 4198 pIndex->uniqNotNull = 0; 4199 } 4200 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 4201 pIndex->bHasVCol = 1; 4202 } 4203 } 4204 pIndex->aiColumn[i] = (i16)j; 4205 } 4206 zColl = 0; 4207 if( pListItem->pExpr->op==TK_COLLATE ){ 4208 int nColl; 4209 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); 4210 zColl = pListItem->pExpr->u.zToken; 4211 nColl = sqlite3Strlen30(zColl) + 1; 4212 assert( nExtra>=nColl ); 4213 memcpy(zExtra, zColl, nColl); 4214 zColl = zExtra; 4215 zExtra += nColl; 4216 nExtra -= nColl; 4217 }else if( j>=0 ){ 4218 zColl = sqlite3ColumnColl(&pTab->aCol[j]); 4219 } 4220 if( !zColl ) zColl = sqlite3StrBINARY; 4221 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 4222 goto exit_create_index; 4223 } 4224 pIndex->azColl[i] = zColl; 4225 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 4226 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 4227 } 4228 4229 /* Append the table key to the end of the index. For WITHOUT ROWID 4230 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 4231 ** normal tables (when pPk==0) this will be the rowid. 4232 */ 4233 if( pPk ){ 4234 for(j=0; j<pPk->nKeyCol; j++){ 4235 int x = pPk->aiColumn[j]; 4236 assert( x>=0 ); 4237 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 4238 pIndex->nColumn--; 4239 }else{ 4240 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 4241 pIndex->aiColumn[i] = x; 4242 pIndex->azColl[i] = pPk->azColl[j]; 4243 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 4244 i++; 4245 } 4246 } 4247 assert( i==pIndex->nColumn ); 4248 }else{ 4249 pIndex->aiColumn[i] = XN_ROWID; 4250 pIndex->azColl[i] = sqlite3StrBINARY; 4251 } 4252 sqlite3DefaultRowEst(pIndex); 4253 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 4254 4255 /* If this index contains every column of its table, then mark 4256 ** it as a covering index */ 4257 assert( HasRowid(pTab) 4258 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 4259 recomputeColumnsNotIndexed(pIndex); 4260 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 4261 pIndex->isCovering = 1; 4262 for(j=0; j<pTab->nCol; j++){ 4263 if( j==pTab->iPKey ) continue; 4264 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 4265 pIndex->isCovering = 0; 4266 break; 4267 } 4268 } 4269 4270 if( pTab==pParse->pNewTable ){ 4271 /* This routine has been called to create an automatic index as a 4272 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 4273 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 4274 ** i.e. one of: 4275 ** 4276 ** CREATE TABLE t(x PRIMARY KEY, y); 4277 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 4278 ** 4279 ** Either way, check to see if the table already has such an index. If 4280 ** so, don't bother creating this one. This only applies to 4281 ** automatically created indices. Users can do as they wish with 4282 ** explicit indices. 4283 ** 4284 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 4285 ** (and thus suppressing the second one) even if they have different 4286 ** sort orders. 4287 ** 4288 ** If there are different collating sequences or if the columns of 4289 ** the constraint occur in different orders, then the constraints are 4290 ** considered distinct and both result in separate indices. 4291 */ 4292 Index *pIdx; 4293 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4294 int k; 4295 assert( IsUniqueIndex(pIdx) ); 4296 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4297 assert( IsUniqueIndex(pIndex) ); 4298 4299 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4300 for(k=0; k<pIdx->nKeyCol; k++){ 4301 const char *z1; 4302 const char *z2; 4303 assert( pIdx->aiColumn[k]>=0 ); 4304 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4305 z1 = pIdx->azColl[k]; 4306 z2 = pIndex->azColl[k]; 4307 if( sqlite3StrICmp(z1, z2) ) break; 4308 } 4309 if( k==pIdx->nKeyCol ){ 4310 if( pIdx->onError!=pIndex->onError ){ 4311 /* This constraint creates the same index as a previous 4312 ** constraint specified somewhere in the CREATE TABLE statement. 4313 ** However the ON CONFLICT clauses are different. If both this 4314 ** constraint and the previous equivalent constraint have explicit 4315 ** ON CONFLICT clauses this is an error. Otherwise, use the 4316 ** explicitly specified behavior for the index. 4317 */ 4318 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4319 sqlite3ErrorMsg(pParse, 4320 "conflicting ON CONFLICT clauses specified", 0); 4321 } 4322 if( pIdx->onError==OE_Default ){ 4323 pIdx->onError = pIndex->onError; 4324 } 4325 } 4326 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4327 if( IN_RENAME_OBJECT ){ 4328 pIndex->pNext = pParse->pNewIndex; 4329 pParse->pNewIndex = pIndex; 4330 pIndex = 0; 4331 } 4332 goto exit_create_index; 4333 } 4334 } 4335 } 4336 4337 if( !IN_RENAME_OBJECT ){ 4338 4339 /* Link the new Index structure to its table and to the other 4340 ** in-memory database structures. 4341 */ 4342 assert( pParse->nErr==0 ); 4343 if( db->init.busy ){ 4344 Index *p; 4345 assert( !IN_SPECIAL_PARSE ); 4346 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4347 if( pTblName!=0 ){ 4348 pIndex->tnum = db->init.newTnum; 4349 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4350 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4351 pParse->rc = SQLITE_CORRUPT_BKPT; 4352 goto exit_create_index; 4353 } 4354 } 4355 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4356 pIndex->zName, pIndex); 4357 if( p ){ 4358 assert( p==pIndex ); /* Malloc must have failed */ 4359 sqlite3OomFault(db); 4360 goto exit_create_index; 4361 } 4362 db->mDbFlags |= DBFLAG_SchemaChange; 4363 } 4364 4365 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4366 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4367 ** emit code to allocate the index rootpage on disk and make an entry for 4368 ** the index in the sqlite_schema table and populate the index with 4369 ** content. But, do not do this if we are simply reading the sqlite_schema 4370 ** table to parse the schema, or if this index is the PRIMARY KEY index 4371 ** of a WITHOUT ROWID table. 4372 ** 4373 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4374 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4375 ** has just been created, it contains no data and the index initialization 4376 ** step can be skipped. 4377 */ 4378 else if( HasRowid(pTab) || pTblName!=0 ){ 4379 Vdbe *v; 4380 char *zStmt; 4381 int iMem = ++pParse->nMem; 4382 4383 v = sqlite3GetVdbe(pParse); 4384 if( v==0 ) goto exit_create_index; 4385 4386 sqlite3BeginWriteOperation(pParse, 1, iDb); 4387 4388 /* Create the rootpage for the index using CreateIndex. But before 4389 ** doing so, code a Noop instruction and store its address in 4390 ** Index.tnum. This is required in case this index is actually a 4391 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4392 ** that case the convertToWithoutRowidTable() routine will replace 4393 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4394 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4395 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4396 4397 /* Gather the complete text of the CREATE INDEX statement into 4398 ** the zStmt variable 4399 */ 4400 assert( pName!=0 || pStart==0 ); 4401 if( pStart ){ 4402 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4403 if( pName->z[n-1]==';' ) n--; 4404 /* A named index with an explicit CREATE INDEX statement */ 4405 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4406 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4407 }else{ 4408 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4409 /* zStmt = sqlite3MPrintf(""); */ 4410 zStmt = 0; 4411 } 4412 4413 /* Add an entry in sqlite_schema for this index 4414 */ 4415 sqlite3NestedParse(pParse, 4416 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4417 db->aDb[iDb].zDbSName, 4418 pIndex->zName, 4419 pTab->zName, 4420 iMem, 4421 zStmt 4422 ); 4423 sqlite3DbFree(db, zStmt); 4424 4425 /* Fill the index with data and reparse the schema. Code an OP_Expire 4426 ** to invalidate all pre-compiled statements. 4427 */ 4428 if( pTblName ){ 4429 sqlite3RefillIndex(pParse, pIndex, iMem); 4430 sqlite3ChangeCookie(pParse, iDb); 4431 sqlite3VdbeAddParseSchemaOp(v, iDb, 4432 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4433 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4434 } 4435 4436 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4437 } 4438 } 4439 if( db->init.busy || pTblName==0 ){ 4440 pIndex->pNext = pTab->pIndex; 4441 pTab->pIndex = pIndex; 4442 pIndex = 0; 4443 } 4444 else if( IN_RENAME_OBJECT ){ 4445 assert( pParse->pNewIndex==0 ); 4446 pParse->pNewIndex = pIndex; 4447 pIndex = 0; 4448 } 4449 4450 /* Clean up before exiting */ 4451 exit_create_index: 4452 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4453 if( pTab ){ 4454 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4455 ** The list was already ordered when this routine was entered, so at this 4456 ** point at most a single index (the newly added index) will be out of 4457 ** order. So we have to reorder at most one index. */ 4458 Index **ppFrom; 4459 Index *pThis; 4460 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4461 Index *pNext; 4462 if( pThis->onError!=OE_Replace ) continue; 4463 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4464 *ppFrom = pNext; 4465 pThis->pNext = pNext->pNext; 4466 pNext->pNext = pThis; 4467 ppFrom = &pNext->pNext; 4468 } 4469 break; 4470 } 4471 #ifdef SQLITE_DEBUG 4472 /* Verify that all REPLACE indexes really are now at the end 4473 ** of the index list. In other words, no other index type ever 4474 ** comes after a REPLACE index on the list. */ 4475 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4476 assert( pThis->onError!=OE_Replace 4477 || pThis->pNext==0 4478 || pThis->pNext->onError==OE_Replace ); 4479 } 4480 #endif 4481 } 4482 sqlite3ExprDelete(db, pPIWhere); 4483 sqlite3ExprListDelete(db, pList); 4484 sqlite3SrcListDelete(db, pTblName); 4485 sqlite3DbFree(db, zName); 4486 } 4487 4488 /* 4489 ** Fill the Index.aiRowEst[] array with default information - information 4490 ** to be used when we have not run the ANALYZE command. 4491 ** 4492 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4493 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4494 ** number of rows in the table that match any particular value of the 4495 ** first column of the index. aiRowEst[2] is an estimate of the number 4496 ** of rows that match any particular combination of the first 2 columns 4497 ** of the index. And so forth. It must always be the case that 4498 * 4499 ** aiRowEst[N]<=aiRowEst[N-1] 4500 ** aiRowEst[N]>=1 4501 ** 4502 ** Apart from that, we have little to go on besides intuition as to 4503 ** how aiRowEst[] should be initialized. The numbers generated here 4504 ** are based on typical values found in actual indices. 4505 */ 4506 void sqlite3DefaultRowEst(Index *pIdx){ 4507 /* 10, 9, 8, 7, 6 */ 4508 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4509 LogEst *a = pIdx->aiRowLogEst; 4510 LogEst x; 4511 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4512 int i; 4513 4514 /* Indexes with default row estimates should not have stat1 data */ 4515 assert( !pIdx->hasStat1 ); 4516 4517 /* Set the first entry (number of rows in the index) to the estimated 4518 ** number of rows in the table, or half the number of rows in the table 4519 ** for a partial index. 4520 ** 4521 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4522 ** table but other parts we are having to guess at, then do not let the 4523 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4524 ** Failure to do this can cause the indexes for which we do not have 4525 ** stat1 data to be ignored by the query planner. 4526 */ 4527 x = pIdx->pTable->nRowLogEst; 4528 assert( 99==sqlite3LogEst(1000) ); 4529 if( x<99 ){ 4530 pIdx->pTable->nRowLogEst = x = 99; 4531 } 4532 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 4533 a[0] = x; 4534 4535 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4536 ** 6 and each subsequent value (if any) is 5. */ 4537 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4538 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4539 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4540 } 4541 4542 assert( 0==sqlite3LogEst(1) ); 4543 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4544 } 4545 4546 /* 4547 ** This routine will drop an existing named index. This routine 4548 ** implements the DROP INDEX statement. 4549 */ 4550 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4551 Index *pIndex; 4552 Vdbe *v; 4553 sqlite3 *db = pParse->db; 4554 int iDb; 4555 4556 if( db->mallocFailed ){ 4557 goto exit_drop_index; 4558 } 4559 assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ 4560 assert( pName->nSrc==1 ); 4561 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4562 goto exit_drop_index; 4563 } 4564 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4565 if( pIndex==0 ){ 4566 if( !ifExists ){ 4567 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4568 }else{ 4569 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4570 sqlite3ForceNotReadOnly(pParse); 4571 } 4572 pParse->checkSchema = 1; 4573 goto exit_drop_index; 4574 } 4575 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4576 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4577 "or PRIMARY KEY constraint cannot be dropped", 0); 4578 goto exit_drop_index; 4579 } 4580 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4581 #ifndef SQLITE_OMIT_AUTHORIZATION 4582 { 4583 int code = SQLITE_DROP_INDEX; 4584 Table *pTab = pIndex->pTable; 4585 const char *zDb = db->aDb[iDb].zDbSName; 4586 const char *zTab = SCHEMA_TABLE(iDb); 4587 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4588 goto exit_drop_index; 4589 } 4590 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 4591 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4592 goto exit_drop_index; 4593 } 4594 } 4595 #endif 4596 4597 /* Generate code to remove the index and from the schema table */ 4598 v = sqlite3GetVdbe(pParse); 4599 if( v ){ 4600 sqlite3BeginWriteOperation(pParse, 1, iDb); 4601 sqlite3NestedParse(pParse, 4602 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4603 db->aDb[iDb].zDbSName, pIndex->zName 4604 ); 4605 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4606 sqlite3ChangeCookie(pParse, iDb); 4607 destroyRootPage(pParse, pIndex->tnum, iDb); 4608 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4609 } 4610 4611 exit_drop_index: 4612 sqlite3SrcListDelete(db, pName); 4613 } 4614 4615 /* 4616 ** pArray is a pointer to an array of objects. Each object in the 4617 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4618 ** to extend the array so that there is space for a new object at the end. 4619 ** 4620 ** When this function is called, *pnEntry contains the current size of 4621 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4622 ** in total). 4623 ** 4624 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4625 ** space allocated for the new object is zeroed, *pnEntry updated to 4626 ** reflect the new size of the array and a pointer to the new allocation 4627 ** returned. *pIdx is set to the index of the new array entry in this case. 4628 ** 4629 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4630 ** unchanged and a copy of pArray returned. 4631 */ 4632 void *sqlite3ArrayAllocate( 4633 sqlite3 *db, /* Connection to notify of malloc failures */ 4634 void *pArray, /* Array of objects. Might be reallocated */ 4635 int szEntry, /* Size of each object in the array */ 4636 int *pnEntry, /* Number of objects currently in use */ 4637 int *pIdx /* Write the index of a new slot here */ 4638 ){ 4639 char *z; 4640 sqlite3_int64 n = *pIdx = *pnEntry; 4641 if( (n & (n-1))==0 ){ 4642 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4643 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4644 if( pNew==0 ){ 4645 *pIdx = -1; 4646 return pArray; 4647 } 4648 pArray = pNew; 4649 } 4650 z = (char*)pArray; 4651 memset(&z[n * szEntry], 0, szEntry); 4652 ++*pnEntry; 4653 return pArray; 4654 } 4655 4656 /* 4657 ** Append a new element to the given IdList. Create a new IdList if 4658 ** need be. 4659 ** 4660 ** A new IdList is returned, or NULL if malloc() fails. 4661 */ 4662 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4663 sqlite3 *db = pParse->db; 4664 int i; 4665 if( pList==0 ){ 4666 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4667 if( pList==0 ) return 0; 4668 } 4669 pList->a = sqlite3ArrayAllocate( 4670 db, 4671 pList->a, 4672 sizeof(pList->a[0]), 4673 &pList->nId, 4674 &i 4675 ); 4676 if( i<0 ){ 4677 sqlite3IdListDelete(db, pList); 4678 return 0; 4679 } 4680 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4681 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4682 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4683 } 4684 return pList; 4685 } 4686 4687 /* 4688 ** Delete an IdList. 4689 */ 4690 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4691 int i; 4692 if( pList==0 ) return; 4693 for(i=0; i<pList->nId; i++){ 4694 sqlite3DbFree(db, pList->a[i].zName); 4695 } 4696 sqlite3DbFree(db, pList->a); 4697 sqlite3DbFreeNN(db, pList); 4698 } 4699 4700 /* 4701 ** Return the index in pList of the identifier named zId. Return -1 4702 ** if not found. 4703 */ 4704 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4705 int i; 4706 if( pList==0 ) return -1; 4707 for(i=0; i<pList->nId; i++){ 4708 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4709 } 4710 return -1; 4711 } 4712 4713 /* 4714 ** Maximum size of a SrcList object. 4715 ** The SrcList object is used to represent the FROM clause of a 4716 ** SELECT statement, and the query planner cannot deal with more 4717 ** than 64 tables in a join. So any value larger than 64 here 4718 ** is sufficient for most uses. Smaller values, like say 10, are 4719 ** appropriate for small and memory-limited applications. 4720 */ 4721 #ifndef SQLITE_MAX_SRCLIST 4722 # define SQLITE_MAX_SRCLIST 200 4723 #endif 4724 4725 /* 4726 ** Expand the space allocated for the given SrcList object by 4727 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4728 ** New slots are zeroed. 4729 ** 4730 ** For example, suppose a SrcList initially contains two entries: A,B. 4731 ** To append 3 new entries onto the end, do this: 4732 ** 4733 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4734 ** 4735 ** After the call above it would contain: A, B, nil, nil, nil. 4736 ** If the iStart argument had been 1 instead of 2, then the result 4737 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4738 ** the iStart value would be 0. The result then would 4739 ** be: nil, nil, nil, A, B. 4740 ** 4741 ** If a memory allocation fails or the SrcList becomes too large, leave 4742 ** the original SrcList unchanged, return NULL, and leave an error message 4743 ** in pParse. 4744 */ 4745 SrcList *sqlite3SrcListEnlarge( 4746 Parse *pParse, /* Parsing context into which errors are reported */ 4747 SrcList *pSrc, /* The SrcList to be enlarged */ 4748 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4749 int iStart /* Index in pSrc->a[] of first new slot */ 4750 ){ 4751 int i; 4752 4753 /* Sanity checking on calling parameters */ 4754 assert( iStart>=0 ); 4755 assert( nExtra>=1 ); 4756 assert( pSrc!=0 ); 4757 assert( iStart<=pSrc->nSrc ); 4758 4759 /* Allocate additional space if needed */ 4760 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4761 SrcList *pNew; 4762 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4763 sqlite3 *db = pParse->db; 4764 4765 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4766 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4767 SQLITE_MAX_SRCLIST); 4768 return 0; 4769 } 4770 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4771 pNew = sqlite3DbRealloc(db, pSrc, 4772 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4773 if( pNew==0 ){ 4774 assert( db->mallocFailed ); 4775 return 0; 4776 } 4777 pSrc = pNew; 4778 pSrc->nAlloc = nAlloc; 4779 } 4780 4781 /* Move existing slots that come after the newly inserted slots 4782 ** out of the way */ 4783 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4784 pSrc->a[i+nExtra] = pSrc->a[i]; 4785 } 4786 pSrc->nSrc += nExtra; 4787 4788 /* Zero the newly allocated slots */ 4789 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4790 for(i=iStart; i<iStart+nExtra; i++){ 4791 pSrc->a[i].iCursor = -1; 4792 } 4793 4794 /* Return a pointer to the enlarged SrcList */ 4795 return pSrc; 4796 } 4797 4798 4799 /* 4800 ** Append a new table name to the given SrcList. Create a new SrcList if 4801 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4802 ** 4803 ** A SrcList is returned, or NULL if there is an OOM error or if the 4804 ** SrcList grows to large. The returned 4805 ** SrcList might be the same as the SrcList that was input or it might be 4806 ** a new one. If an OOM error does occurs, then the prior value of pList 4807 ** that is input to this routine is automatically freed. 4808 ** 4809 ** If pDatabase is not null, it means that the table has an optional 4810 ** database name prefix. Like this: "database.table". The pDatabase 4811 ** points to the table name and the pTable points to the database name. 4812 ** The SrcList.a[].zName field is filled with the table name which might 4813 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4814 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4815 ** or with NULL if no database is specified. 4816 ** 4817 ** In other words, if call like this: 4818 ** 4819 ** sqlite3SrcListAppend(D,A,B,0); 4820 ** 4821 ** Then B is a table name and the database name is unspecified. If called 4822 ** like this: 4823 ** 4824 ** sqlite3SrcListAppend(D,A,B,C); 4825 ** 4826 ** Then C is the table name and B is the database name. If C is defined 4827 ** then so is B. In other words, we never have a case where: 4828 ** 4829 ** sqlite3SrcListAppend(D,A,0,C); 4830 ** 4831 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4832 ** before being added to the SrcList. 4833 */ 4834 SrcList *sqlite3SrcListAppend( 4835 Parse *pParse, /* Parsing context, in which errors are reported */ 4836 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4837 Token *pTable, /* Table to append */ 4838 Token *pDatabase /* Database of the table */ 4839 ){ 4840 SrcItem *pItem; 4841 sqlite3 *db; 4842 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4843 assert( pParse!=0 ); 4844 assert( pParse->db!=0 ); 4845 db = pParse->db; 4846 if( pList==0 ){ 4847 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4848 if( pList==0 ) return 0; 4849 pList->nAlloc = 1; 4850 pList->nSrc = 1; 4851 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4852 pList->a[0].iCursor = -1; 4853 }else{ 4854 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4855 if( pNew==0 ){ 4856 sqlite3SrcListDelete(db, pList); 4857 return 0; 4858 }else{ 4859 pList = pNew; 4860 } 4861 } 4862 pItem = &pList->a[pList->nSrc-1]; 4863 if( pDatabase && pDatabase->z==0 ){ 4864 pDatabase = 0; 4865 } 4866 if( pDatabase ){ 4867 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4868 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4869 }else{ 4870 pItem->zName = sqlite3NameFromToken(db, pTable); 4871 pItem->zDatabase = 0; 4872 } 4873 return pList; 4874 } 4875 4876 /* 4877 ** Assign VdbeCursor index numbers to all tables in a SrcList 4878 */ 4879 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4880 int i; 4881 SrcItem *pItem; 4882 assert( pList || pParse->db->mallocFailed ); 4883 if( ALWAYS(pList) ){ 4884 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4885 if( pItem->iCursor>=0 ) continue; 4886 pItem->iCursor = pParse->nTab++; 4887 if( pItem->pSelect ){ 4888 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4889 } 4890 } 4891 } 4892 } 4893 4894 /* 4895 ** Delete an entire SrcList including all its substructure. 4896 */ 4897 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4898 int i; 4899 SrcItem *pItem; 4900 if( pList==0 ) return; 4901 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4902 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4903 sqlite3DbFree(db, pItem->zName); 4904 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4905 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4906 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4907 sqlite3DeleteTable(db, pItem->pTab); 4908 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4909 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4910 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4911 } 4912 sqlite3DbFreeNN(db, pList); 4913 } 4914 4915 /* 4916 ** This routine is called by the parser to add a new term to the 4917 ** end of a growing FROM clause. The "p" parameter is the part of 4918 ** the FROM clause that has already been constructed. "p" is NULL 4919 ** if this is the first term of the FROM clause. pTable and pDatabase 4920 ** are the name of the table and database named in the FROM clause term. 4921 ** pDatabase is NULL if the database name qualifier is missing - the 4922 ** usual case. If the term has an alias, then pAlias points to the 4923 ** alias token. If the term is a subquery, then pSubquery is the 4924 ** SELECT statement that the subquery encodes. The pTable and 4925 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4926 ** parameters are the content of the ON and USING clauses. 4927 ** 4928 ** Return a new SrcList which encodes is the FROM with the new 4929 ** term added. 4930 */ 4931 SrcList *sqlite3SrcListAppendFromTerm( 4932 Parse *pParse, /* Parsing context */ 4933 SrcList *p, /* The left part of the FROM clause already seen */ 4934 Token *pTable, /* Name of the table to add to the FROM clause */ 4935 Token *pDatabase, /* Name of the database containing pTable */ 4936 Token *pAlias, /* The right-hand side of the AS subexpression */ 4937 Select *pSubquery, /* A subquery used in place of a table name */ 4938 Expr *pOn, /* The ON clause of a join */ 4939 IdList *pUsing /* The USING clause of a join */ 4940 ){ 4941 SrcItem *pItem; 4942 sqlite3 *db = pParse->db; 4943 if( !p && (pOn || pUsing) ){ 4944 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4945 (pOn ? "ON" : "USING") 4946 ); 4947 goto append_from_error; 4948 } 4949 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4950 if( p==0 ){ 4951 goto append_from_error; 4952 } 4953 assert( p->nSrc>0 ); 4954 pItem = &p->a[p->nSrc-1]; 4955 assert( (pTable==0)==(pDatabase==0) ); 4956 assert( pItem->zName==0 || pDatabase!=0 ); 4957 if( IN_RENAME_OBJECT && pItem->zName ){ 4958 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4959 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4960 } 4961 assert( pAlias!=0 ); 4962 if( pAlias->n ){ 4963 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4964 } 4965 pItem->pSelect = pSubquery; 4966 pItem->pOn = pOn; 4967 pItem->pUsing = pUsing; 4968 return p; 4969 4970 append_from_error: 4971 assert( p==0 ); 4972 sqlite3ExprDelete(db, pOn); 4973 sqlite3IdListDelete(db, pUsing); 4974 sqlite3SelectDelete(db, pSubquery); 4975 return 0; 4976 } 4977 4978 /* 4979 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4980 ** element of the source-list passed as the second argument. 4981 */ 4982 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4983 assert( pIndexedBy!=0 ); 4984 if( p && pIndexedBy->n>0 ){ 4985 SrcItem *pItem; 4986 assert( p->nSrc>0 ); 4987 pItem = &p->a[p->nSrc-1]; 4988 assert( pItem->fg.notIndexed==0 ); 4989 assert( pItem->fg.isIndexedBy==0 ); 4990 assert( pItem->fg.isTabFunc==0 ); 4991 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4992 /* A "NOT INDEXED" clause was supplied. See parse.y 4993 ** construct "indexed_opt" for details. */ 4994 pItem->fg.notIndexed = 1; 4995 }else{ 4996 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4997 pItem->fg.isIndexedBy = 1; 4998 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ 4999 } 5000 } 5001 } 5002 5003 /* 5004 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 5005 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 5006 ** are deleted by this function. 5007 */ 5008 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 5009 assert( p1 && p1->nSrc==1 ); 5010 if( p2 ){ 5011 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 5012 if( pNew==0 ){ 5013 sqlite3SrcListDelete(pParse->db, p2); 5014 }else{ 5015 p1 = pNew; 5016 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 5017 sqlite3DbFree(pParse->db, p2); 5018 } 5019 } 5020 return p1; 5021 } 5022 5023 /* 5024 ** Add the list of function arguments to the SrcList entry for a 5025 ** table-valued-function. 5026 */ 5027 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 5028 if( p ){ 5029 SrcItem *pItem = &p->a[p->nSrc-1]; 5030 assert( pItem->fg.notIndexed==0 ); 5031 assert( pItem->fg.isIndexedBy==0 ); 5032 assert( pItem->fg.isTabFunc==0 ); 5033 pItem->u1.pFuncArg = pList; 5034 pItem->fg.isTabFunc = 1; 5035 }else{ 5036 sqlite3ExprListDelete(pParse->db, pList); 5037 } 5038 } 5039 5040 /* 5041 ** When building up a FROM clause in the parser, the join operator 5042 ** is initially attached to the left operand. But the code generator 5043 ** expects the join operator to be on the right operand. This routine 5044 ** Shifts all join operators from left to right for an entire FROM 5045 ** clause. 5046 ** 5047 ** Example: Suppose the join is like this: 5048 ** 5049 ** A natural cross join B 5050 ** 5051 ** The operator is "natural cross join". The A and B operands are stored 5052 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 5053 ** operator with A. This routine shifts that operator over to B. 5054 */ 5055 void sqlite3SrcListShiftJoinType(SrcList *p){ 5056 if( p ){ 5057 int i; 5058 for(i=p->nSrc-1; i>0; i--){ 5059 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 5060 } 5061 p->a[0].fg.jointype = 0; 5062 } 5063 } 5064 5065 /* 5066 ** Generate VDBE code for a BEGIN statement. 5067 */ 5068 void sqlite3BeginTransaction(Parse *pParse, int type){ 5069 sqlite3 *db; 5070 Vdbe *v; 5071 int i; 5072 5073 assert( pParse!=0 ); 5074 db = pParse->db; 5075 assert( db!=0 ); 5076 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 5077 return; 5078 } 5079 v = sqlite3GetVdbe(pParse); 5080 if( !v ) return; 5081 if( type!=TK_DEFERRED ){ 5082 for(i=0; i<db->nDb; i++){ 5083 int eTxnType; 5084 Btree *pBt = db->aDb[i].pBt; 5085 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 5086 eTxnType = 0; /* Read txn */ 5087 }else if( type==TK_EXCLUSIVE ){ 5088 eTxnType = 2; /* Exclusive txn */ 5089 }else{ 5090 eTxnType = 1; /* Write txn */ 5091 } 5092 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 5093 sqlite3VdbeUsesBtree(v, i); 5094 } 5095 } 5096 sqlite3VdbeAddOp0(v, OP_AutoCommit); 5097 } 5098 5099 /* 5100 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 5101 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 5102 ** code is generated for a COMMIT. 5103 */ 5104 void sqlite3EndTransaction(Parse *pParse, int eType){ 5105 Vdbe *v; 5106 int isRollback; 5107 5108 assert( pParse!=0 ); 5109 assert( pParse->db!=0 ); 5110 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 5111 isRollback = eType==TK_ROLLBACK; 5112 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 5113 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 5114 return; 5115 } 5116 v = sqlite3GetVdbe(pParse); 5117 if( v ){ 5118 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 5119 } 5120 } 5121 5122 /* 5123 ** This function is called by the parser when it parses a command to create, 5124 ** release or rollback an SQL savepoint. 5125 */ 5126 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 5127 char *zName = sqlite3NameFromToken(pParse->db, pName); 5128 if( zName ){ 5129 Vdbe *v = sqlite3GetVdbe(pParse); 5130 #ifndef SQLITE_OMIT_AUTHORIZATION 5131 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 5132 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 5133 #endif 5134 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 5135 sqlite3DbFree(pParse->db, zName); 5136 return; 5137 } 5138 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 5139 } 5140 } 5141 5142 /* 5143 ** Make sure the TEMP database is open and available for use. Return 5144 ** the number of errors. Leave any error messages in the pParse structure. 5145 */ 5146 int sqlite3OpenTempDatabase(Parse *pParse){ 5147 sqlite3 *db = pParse->db; 5148 if( db->aDb[1].pBt==0 && !pParse->explain ){ 5149 int rc; 5150 Btree *pBt; 5151 static const int flags = 5152 SQLITE_OPEN_READWRITE | 5153 SQLITE_OPEN_CREATE | 5154 SQLITE_OPEN_EXCLUSIVE | 5155 SQLITE_OPEN_DELETEONCLOSE | 5156 SQLITE_OPEN_TEMP_DB; 5157 5158 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 5159 if( rc!=SQLITE_OK ){ 5160 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 5161 "file for storing temporary tables"); 5162 pParse->rc = rc; 5163 return 1; 5164 } 5165 db->aDb[1].pBt = pBt; 5166 assert( db->aDb[1].pSchema ); 5167 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 5168 sqlite3OomFault(db); 5169 return 1; 5170 } 5171 } 5172 return 0; 5173 } 5174 5175 /* 5176 ** Record the fact that the schema cookie will need to be verified 5177 ** for database iDb. The code to actually verify the schema cookie 5178 ** will occur at the end of the top-level VDBE and will be generated 5179 ** later, by sqlite3FinishCoding(). 5180 */ 5181 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 5182 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 5183 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 5184 assert( iDb<SQLITE_MAX_DB ); 5185 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 5186 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 5187 DbMaskSet(pToplevel->cookieMask, iDb); 5188 if( !OMIT_TEMPDB && iDb==1 ){ 5189 sqlite3OpenTempDatabase(pToplevel); 5190 } 5191 } 5192 } 5193 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 5194 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 5195 } 5196 5197 5198 /* 5199 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 5200 ** attached database. Otherwise, invoke it for the database named zDb only. 5201 */ 5202 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 5203 sqlite3 *db = pParse->db; 5204 int i; 5205 for(i=0; i<db->nDb; i++){ 5206 Db *pDb = &db->aDb[i]; 5207 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 5208 sqlite3CodeVerifySchema(pParse, i); 5209 } 5210 } 5211 } 5212 5213 /* 5214 ** Generate VDBE code that prepares for doing an operation that 5215 ** might change the database. 5216 ** 5217 ** This routine starts a new transaction if we are not already within 5218 ** a transaction. If we are already within a transaction, then a checkpoint 5219 ** is set if the setStatement parameter is true. A checkpoint should 5220 ** be set for operations that might fail (due to a constraint) part of 5221 ** the way through and which will need to undo some writes without having to 5222 ** rollback the whole transaction. For operations where all constraints 5223 ** can be checked before any changes are made to the database, it is never 5224 ** necessary to undo a write and the checkpoint should not be set. 5225 */ 5226 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 5227 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5228 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 5229 DbMaskSet(pToplevel->writeMask, iDb); 5230 pToplevel->isMultiWrite |= setStatement; 5231 } 5232 5233 /* 5234 ** Indicate that the statement currently under construction might write 5235 ** more than one entry (example: deleting one row then inserting another, 5236 ** inserting multiple rows in a table, or inserting a row and index entries.) 5237 ** If an abort occurs after some of these writes have completed, then it will 5238 ** be necessary to undo the completed writes. 5239 */ 5240 void sqlite3MultiWrite(Parse *pParse){ 5241 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5242 pToplevel->isMultiWrite = 1; 5243 } 5244 5245 /* 5246 ** The code generator calls this routine if is discovers that it is 5247 ** possible to abort a statement prior to completion. In order to 5248 ** perform this abort without corrupting the database, we need to make 5249 ** sure that the statement is protected by a statement transaction. 5250 ** 5251 ** Technically, we only need to set the mayAbort flag if the 5252 ** isMultiWrite flag was previously set. There is a time dependency 5253 ** such that the abort must occur after the multiwrite. This makes 5254 ** some statements involving the REPLACE conflict resolution algorithm 5255 ** go a little faster. But taking advantage of this time dependency 5256 ** makes it more difficult to prove that the code is correct (in 5257 ** particular, it prevents us from writing an effective 5258 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 5259 ** to take the safe route and skip the optimization. 5260 */ 5261 void sqlite3MayAbort(Parse *pParse){ 5262 Parse *pToplevel = sqlite3ParseToplevel(pParse); 5263 pToplevel->mayAbort = 1; 5264 } 5265 5266 /* 5267 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 5268 ** error. The onError parameter determines which (if any) of the statement 5269 ** and/or current transaction is rolled back. 5270 */ 5271 void sqlite3HaltConstraint( 5272 Parse *pParse, /* Parsing context */ 5273 int errCode, /* extended error code */ 5274 int onError, /* Constraint type */ 5275 char *p4, /* Error message */ 5276 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 5277 u8 p5Errmsg /* P5_ErrMsg type */ 5278 ){ 5279 Vdbe *v; 5280 assert( pParse->pVdbe!=0 ); 5281 v = sqlite3GetVdbe(pParse); 5282 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 5283 if( onError==OE_Abort ){ 5284 sqlite3MayAbort(pParse); 5285 } 5286 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 5287 sqlite3VdbeChangeP5(v, p5Errmsg); 5288 } 5289 5290 /* 5291 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5292 */ 5293 void sqlite3UniqueConstraint( 5294 Parse *pParse, /* Parsing context */ 5295 int onError, /* Constraint type */ 5296 Index *pIdx /* The index that triggers the constraint */ 5297 ){ 5298 char *zErr; 5299 int j; 5300 StrAccum errMsg; 5301 Table *pTab = pIdx->pTable; 5302 5303 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5304 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5305 if( pIdx->aColExpr ){ 5306 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5307 }else{ 5308 for(j=0; j<pIdx->nKeyCol; j++){ 5309 char *zCol; 5310 assert( pIdx->aiColumn[j]>=0 ); 5311 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; 5312 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5313 sqlite3_str_appendall(&errMsg, pTab->zName); 5314 sqlite3_str_append(&errMsg, ".", 1); 5315 sqlite3_str_appendall(&errMsg, zCol); 5316 } 5317 } 5318 zErr = sqlite3StrAccumFinish(&errMsg); 5319 sqlite3HaltConstraint(pParse, 5320 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5321 : SQLITE_CONSTRAINT_UNIQUE, 5322 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5323 } 5324 5325 5326 /* 5327 ** Code an OP_Halt due to non-unique rowid. 5328 */ 5329 void sqlite3RowidConstraint( 5330 Parse *pParse, /* Parsing context */ 5331 int onError, /* Conflict resolution algorithm */ 5332 Table *pTab /* The table with the non-unique rowid */ 5333 ){ 5334 char *zMsg; 5335 int rc; 5336 if( pTab->iPKey>=0 ){ 5337 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5338 pTab->aCol[pTab->iPKey].zCnName); 5339 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5340 }else{ 5341 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5342 rc = SQLITE_CONSTRAINT_ROWID; 5343 } 5344 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5345 P5_ConstraintUnique); 5346 } 5347 5348 /* 5349 ** Check to see if pIndex uses the collating sequence pColl. Return 5350 ** true if it does and false if it does not. 5351 */ 5352 #ifndef SQLITE_OMIT_REINDEX 5353 static int collationMatch(const char *zColl, Index *pIndex){ 5354 int i; 5355 assert( zColl!=0 ); 5356 for(i=0; i<pIndex->nColumn; i++){ 5357 const char *z = pIndex->azColl[i]; 5358 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5359 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5360 return 1; 5361 } 5362 } 5363 return 0; 5364 } 5365 #endif 5366 5367 /* 5368 ** Recompute all indices of pTab that use the collating sequence pColl. 5369 ** If pColl==0 then recompute all indices of pTab. 5370 */ 5371 #ifndef SQLITE_OMIT_REINDEX 5372 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5373 if( !IsVirtual(pTab) ){ 5374 Index *pIndex; /* An index associated with pTab */ 5375 5376 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5377 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5378 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5379 sqlite3BeginWriteOperation(pParse, 0, iDb); 5380 sqlite3RefillIndex(pParse, pIndex, -1); 5381 } 5382 } 5383 } 5384 } 5385 #endif 5386 5387 /* 5388 ** Recompute all indices of all tables in all databases where the 5389 ** indices use the collating sequence pColl. If pColl==0 then recompute 5390 ** all indices everywhere. 5391 */ 5392 #ifndef SQLITE_OMIT_REINDEX 5393 static void reindexDatabases(Parse *pParse, char const *zColl){ 5394 Db *pDb; /* A single database */ 5395 int iDb; /* The database index number */ 5396 sqlite3 *db = pParse->db; /* The database connection */ 5397 HashElem *k; /* For looping over tables in pDb */ 5398 Table *pTab; /* A table in the database */ 5399 5400 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5401 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5402 assert( pDb!=0 ); 5403 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5404 pTab = (Table*)sqliteHashData(k); 5405 reindexTable(pParse, pTab, zColl); 5406 } 5407 } 5408 } 5409 #endif 5410 5411 /* 5412 ** Generate code for the REINDEX command. 5413 ** 5414 ** REINDEX -- 1 5415 ** REINDEX <collation> -- 2 5416 ** REINDEX ?<database>.?<tablename> -- 3 5417 ** REINDEX ?<database>.?<indexname> -- 4 5418 ** 5419 ** Form 1 causes all indices in all attached databases to be rebuilt. 5420 ** Form 2 rebuilds all indices in all databases that use the named 5421 ** collating function. Forms 3 and 4 rebuild the named index or all 5422 ** indices associated with the named table. 5423 */ 5424 #ifndef SQLITE_OMIT_REINDEX 5425 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5426 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5427 char *z; /* Name of a table or index */ 5428 const char *zDb; /* Name of the database */ 5429 Table *pTab; /* A table in the database */ 5430 Index *pIndex; /* An index associated with pTab */ 5431 int iDb; /* The database index number */ 5432 sqlite3 *db = pParse->db; /* The database connection */ 5433 Token *pObjName; /* Name of the table or index to be reindexed */ 5434 5435 /* Read the database schema. If an error occurs, leave an error message 5436 ** and code in pParse and return NULL. */ 5437 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5438 return; 5439 } 5440 5441 if( pName1==0 ){ 5442 reindexDatabases(pParse, 0); 5443 return; 5444 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5445 char *zColl; 5446 assert( pName1->z ); 5447 zColl = sqlite3NameFromToken(pParse->db, pName1); 5448 if( !zColl ) return; 5449 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5450 if( pColl ){ 5451 reindexDatabases(pParse, zColl); 5452 sqlite3DbFree(db, zColl); 5453 return; 5454 } 5455 sqlite3DbFree(db, zColl); 5456 } 5457 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5458 if( iDb<0 ) return; 5459 z = sqlite3NameFromToken(db, pObjName); 5460 if( z==0 ) return; 5461 zDb = db->aDb[iDb].zDbSName; 5462 pTab = sqlite3FindTable(db, z, zDb); 5463 if( pTab ){ 5464 reindexTable(pParse, pTab, 0); 5465 sqlite3DbFree(db, z); 5466 return; 5467 } 5468 pIndex = sqlite3FindIndex(db, z, zDb); 5469 sqlite3DbFree(db, z); 5470 if( pIndex ){ 5471 sqlite3BeginWriteOperation(pParse, 0, iDb); 5472 sqlite3RefillIndex(pParse, pIndex, -1); 5473 return; 5474 } 5475 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5476 } 5477 #endif 5478 5479 /* 5480 ** Return a KeyInfo structure that is appropriate for the given Index. 5481 ** 5482 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5483 ** when it has finished using it. 5484 */ 5485 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5486 int i; 5487 int nCol = pIdx->nColumn; 5488 int nKey = pIdx->nKeyCol; 5489 KeyInfo *pKey; 5490 if( pParse->nErr ) return 0; 5491 if( pIdx->uniqNotNull ){ 5492 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5493 }else{ 5494 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5495 } 5496 if( pKey ){ 5497 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5498 for(i=0; i<nCol; i++){ 5499 const char *zColl = pIdx->azColl[i]; 5500 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5501 sqlite3LocateCollSeq(pParse, zColl); 5502 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5503 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5504 } 5505 if( pParse->nErr ){ 5506 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5507 if( pIdx->bNoQuery==0 ){ 5508 /* Deactivate the index because it contains an unknown collating 5509 ** sequence. The only way to reactive the index is to reload the 5510 ** schema. Adding the missing collating sequence later does not 5511 ** reactive the index. The application had the chance to register 5512 ** the missing index using the collation-needed callback. For 5513 ** simplicity, SQLite will not give the application a second chance. 5514 */ 5515 pIdx->bNoQuery = 1; 5516 pParse->rc = SQLITE_ERROR_RETRY; 5517 } 5518 sqlite3KeyInfoUnref(pKey); 5519 pKey = 0; 5520 } 5521 } 5522 return pKey; 5523 } 5524 5525 #ifndef SQLITE_OMIT_CTE 5526 /* 5527 ** Create a new CTE object 5528 */ 5529 Cte *sqlite3CteNew( 5530 Parse *pParse, /* Parsing context */ 5531 Token *pName, /* Name of the common-table */ 5532 ExprList *pArglist, /* Optional column name list for the table */ 5533 Select *pQuery, /* Query used to initialize the table */ 5534 u8 eM10d /* The MATERIALIZED flag */ 5535 ){ 5536 Cte *pNew; 5537 sqlite3 *db = pParse->db; 5538 5539 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5540 assert( pNew!=0 || db->mallocFailed ); 5541 5542 if( db->mallocFailed ){ 5543 sqlite3ExprListDelete(db, pArglist); 5544 sqlite3SelectDelete(db, pQuery); 5545 }else{ 5546 pNew->pSelect = pQuery; 5547 pNew->pCols = pArglist; 5548 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5549 pNew->eM10d = eM10d; 5550 } 5551 return pNew; 5552 } 5553 5554 /* 5555 ** Clear information from a Cte object, but do not deallocate storage 5556 ** for the object itself. 5557 */ 5558 static void cteClear(sqlite3 *db, Cte *pCte){ 5559 assert( pCte!=0 ); 5560 sqlite3ExprListDelete(db, pCte->pCols); 5561 sqlite3SelectDelete(db, pCte->pSelect); 5562 sqlite3DbFree(db, pCte->zName); 5563 } 5564 5565 /* 5566 ** Free the contents of the CTE object passed as the second argument. 5567 */ 5568 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5569 assert( pCte!=0 ); 5570 cteClear(db, pCte); 5571 sqlite3DbFree(db, pCte); 5572 } 5573 5574 /* 5575 ** This routine is invoked once per CTE by the parser while parsing a 5576 ** WITH clause. The CTE described by teh third argument is added to 5577 ** the WITH clause of the second argument. If the second argument is 5578 ** NULL, then a new WITH argument is created. 5579 */ 5580 With *sqlite3WithAdd( 5581 Parse *pParse, /* Parsing context */ 5582 With *pWith, /* Existing WITH clause, or NULL */ 5583 Cte *pCte /* CTE to add to the WITH clause */ 5584 ){ 5585 sqlite3 *db = pParse->db; 5586 With *pNew; 5587 char *zName; 5588 5589 if( pCte==0 ){ 5590 return pWith; 5591 } 5592 5593 /* Check that the CTE name is unique within this WITH clause. If 5594 ** not, store an error in the Parse structure. */ 5595 zName = pCte->zName; 5596 if( zName && pWith ){ 5597 int i; 5598 for(i=0; i<pWith->nCte; i++){ 5599 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5600 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5601 } 5602 } 5603 } 5604 5605 if( pWith ){ 5606 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5607 pNew = sqlite3DbRealloc(db, pWith, nByte); 5608 }else{ 5609 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5610 } 5611 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5612 5613 if( db->mallocFailed ){ 5614 sqlite3CteDelete(db, pCte); 5615 pNew = pWith; 5616 }else{ 5617 pNew->a[pNew->nCte++] = *pCte; 5618 sqlite3DbFree(db, pCte); 5619 } 5620 5621 return pNew; 5622 } 5623 5624 /* 5625 ** Free the contents of the With object passed as the second argument. 5626 */ 5627 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5628 if( pWith ){ 5629 int i; 5630 for(i=0; i<pWith->nCte; i++){ 5631 cteClear(db, &pWith->a[i]); 5632 } 5633 sqlite3DbFree(db, pWith); 5634 } 5635 } 5636 #endif /* !defined(SQLITE_OMIT_CTE) */ 5637