1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops. 211 ** 212 ** The pConstExpr list might also contain expressions that we simply 213 ** want to keep around until the Parse object is deleted. Such 214 ** expressions have iConstExprReg==0. Do not generate code for 215 ** those expressions, of course. 216 */ 217 if( pParse->pConstExpr ){ 218 ExprList *pEL = pParse->pConstExpr; 219 pParse->okConstFactor = 0; 220 for(i=0; i<pEL->nExpr; i++){ 221 int iReg = pEL->a[i].u.iConstExprReg; 222 if( iReg>0 ){ 223 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 224 } 225 } 226 } 227 228 /* Finally, jump back to the beginning of the executable code. */ 229 sqlite3VdbeGoto(v, 1); 230 } 231 } 232 233 234 /* Get the VDBE program ready for execution 235 */ 236 if( v && pParse->nErr==0 && !db->mallocFailed ){ 237 /* A minimum of one cursor is required if autoincrement is used 238 * See ticket [a696379c1f08866] */ 239 assert( pParse->pAinc==0 || pParse->nTab>0 ); 240 sqlite3VdbeMakeReady(v, pParse); 241 pParse->rc = SQLITE_DONE; 242 }else{ 243 pParse->rc = SQLITE_ERROR; 244 } 245 } 246 247 /* 248 ** Run the parser and code generator recursively in order to generate 249 ** code for the SQL statement given onto the end of the pParse context 250 ** currently under construction. When the parser is run recursively 251 ** this way, the final OP_Halt is not appended and other initialization 252 ** and finalization steps are omitted because those are handling by the 253 ** outermost parser. 254 ** 255 ** Not everything is nestable. This facility is designed to permit 256 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 257 ** care if you decide to try to use this routine for some other purposes. 258 */ 259 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 260 va_list ap; 261 char *zSql; 262 char *zErrMsg = 0; 263 sqlite3 *db = pParse->db; 264 char saveBuf[PARSE_TAIL_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 /* This can result either from an OOM or because the formatted string 273 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 274 ** an error */ 275 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 276 pParse->nErr++; 277 return; 278 } 279 pParse->nested++; 280 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 281 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 282 sqlite3RunParser(pParse, zSql, &zErrMsg); 283 sqlite3DbFree(db, zErrMsg); 284 sqlite3DbFree(db, zSql); 285 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 286 pParse->nested--; 287 } 288 289 #if SQLITE_USER_AUTHENTICATION 290 /* 291 ** Return TRUE if zTable is the name of the system table that stores the 292 ** list of users and their access credentials. 293 */ 294 int sqlite3UserAuthTable(const char *zTable){ 295 return sqlite3_stricmp(zTable, "sqlite_user")==0; 296 } 297 #endif 298 299 /* 300 ** Locate the in-memory structure that describes a particular database 301 ** table given the name of that table and (optionally) the name of the 302 ** database containing the table. Return NULL if not found. 303 ** 304 ** If zDatabase is 0, all databases are searched for the table and the 305 ** first matching table is returned. (No checking for duplicate table 306 ** names is done.) The search order is TEMP first, then MAIN, then any 307 ** auxiliary databases added using the ATTACH command. 308 ** 309 ** See also sqlite3LocateTable(). 310 */ 311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 312 Table *p = 0; 313 int i; 314 315 /* All mutexes are required for schema access. Make sure we hold them. */ 316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 317 #if SQLITE_USER_AUTHENTICATION 318 /* Only the admin user is allowed to know that the sqlite_user table 319 ** exists */ 320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 321 return 0; 322 } 323 #endif 324 if( zDatabase ){ 325 for(i=0; i<db->nDb; i++){ 326 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 327 } 328 if( i>=db->nDb ){ 329 /* No match against the official names. But always match "main" 330 ** to schema 0 as a legacy fallback. */ 331 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 332 i = 0; 333 }else{ 334 return 0; 335 } 336 } 337 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 338 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 339 if( i==1 ){ 340 if( sqlite3StrICmp(zName+7, ALT_TEMP_SCHEMA_TABLE+7)==0 341 || sqlite3StrICmp(zName+7, ALT_SCHEMA_TABLE+7)==0 342 || sqlite3StrICmp(zName+7, DFLT_SCHEMA_TABLE+7)==0 343 ){ 344 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 345 DFLT_TEMP_SCHEMA_TABLE); 346 } 347 }else{ 348 if( sqlite3StrICmp(zName+7, ALT_SCHEMA_TABLE+7)==0 ){ 349 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 350 DFLT_SCHEMA_TABLE); 351 } 352 } 353 } 354 }else{ 355 /* Match against TEMP first */ 356 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 357 if( p ) return p; 358 /* The main database is second */ 359 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 360 if( p ) return p; 361 /* Attached databases are in order of attachment */ 362 for(i=2; i<db->nDb; i++){ 363 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 364 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 365 if( p ) break; 366 } 367 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 368 if( sqlite3StrICmp(zName+7, ALT_SCHEMA_TABLE+7)==0 ){ 369 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 370 }else if( sqlite3StrICmp(zName+7, ALT_TEMP_SCHEMA_TABLE+7)==0 ){ 371 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 372 DFLT_TEMP_SCHEMA_TABLE); 373 } 374 } 375 } 376 return p; 377 } 378 379 /* 380 ** Locate the in-memory structure that describes a particular database 381 ** table given the name of that table and (optionally) the name of the 382 ** database containing the table. Return NULL if not found. Also leave an 383 ** error message in pParse->zErrMsg. 384 ** 385 ** The difference between this routine and sqlite3FindTable() is that this 386 ** routine leaves an error message in pParse->zErrMsg where 387 ** sqlite3FindTable() does not. 388 */ 389 Table *sqlite3LocateTable( 390 Parse *pParse, /* context in which to report errors */ 391 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 392 const char *zName, /* Name of the table we are looking for */ 393 const char *zDbase /* Name of the database. Might be NULL */ 394 ){ 395 Table *p; 396 sqlite3 *db = pParse->db; 397 398 /* Read the database schema. If an error occurs, leave an error message 399 ** and code in pParse and return NULL. */ 400 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 401 && SQLITE_OK!=sqlite3ReadSchema(pParse) 402 ){ 403 return 0; 404 } 405 406 p = sqlite3FindTable(db, zName, zDbase); 407 if( p==0 ){ 408 #ifndef SQLITE_OMIT_VIRTUALTABLE 409 /* If zName is the not the name of a table in the schema created using 410 ** CREATE, then check to see if it is the name of an virtual table that 411 ** can be an eponymous virtual table. */ 412 if( pParse->disableVtab==0 ){ 413 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 414 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 415 pMod = sqlite3PragmaVtabRegister(db, zName); 416 } 417 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 418 return pMod->pEpoTab; 419 } 420 } 421 #endif 422 if( flags & LOCATE_NOERR ) return 0; 423 pParse->checkSchema = 1; 424 }else if( IsVirtual(p) && pParse->disableVtab ){ 425 p = 0; 426 } 427 428 if( p==0 ){ 429 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 430 if( zDbase ){ 431 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 432 }else{ 433 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 434 } 435 } 436 437 return p; 438 } 439 440 /* 441 ** Locate the table identified by *p. 442 ** 443 ** This is a wrapper around sqlite3LocateTable(). The difference between 444 ** sqlite3LocateTable() and this function is that this function restricts 445 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 446 ** non-NULL if it is part of a view or trigger program definition. See 447 ** sqlite3FixSrcList() for details. 448 */ 449 Table *sqlite3LocateTableItem( 450 Parse *pParse, 451 u32 flags, 452 struct SrcList_item *p 453 ){ 454 const char *zDb; 455 assert( p->pSchema==0 || p->zDatabase==0 ); 456 if( p->pSchema ){ 457 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 458 zDb = pParse->db->aDb[iDb].zDbSName; 459 }else{ 460 zDb = p->zDatabase; 461 } 462 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 463 } 464 465 /* 466 ** Locate the in-memory structure that describes 467 ** a particular index given the name of that index 468 ** and the name of the database that contains the index. 469 ** Return NULL if not found. 470 ** 471 ** If zDatabase is 0, all databases are searched for the 472 ** table and the first matching index is returned. (No checking 473 ** for duplicate index names is done.) The search order is 474 ** TEMP first, then MAIN, then any auxiliary databases added 475 ** using the ATTACH command. 476 */ 477 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 478 Index *p = 0; 479 int i; 480 /* All mutexes are required for schema access. Make sure we hold them. */ 481 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 482 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 483 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 484 Schema *pSchema = db->aDb[j].pSchema; 485 assert( pSchema ); 486 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 487 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 488 p = sqlite3HashFind(&pSchema->idxHash, zName); 489 if( p ) break; 490 } 491 return p; 492 } 493 494 /* 495 ** Reclaim the memory used by an index 496 */ 497 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 498 #ifndef SQLITE_OMIT_ANALYZE 499 sqlite3DeleteIndexSamples(db, p); 500 #endif 501 sqlite3ExprDelete(db, p->pPartIdxWhere); 502 sqlite3ExprListDelete(db, p->aColExpr); 503 sqlite3DbFree(db, p->zColAff); 504 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 505 #ifdef SQLITE_ENABLE_STAT4 506 sqlite3_free(p->aiRowEst); 507 #endif 508 sqlite3DbFree(db, p); 509 } 510 511 /* 512 ** For the index called zIdxName which is found in the database iDb, 513 ** unlike that index from its Table then remove the index from 514 ** the index hash table and free all memory structures associated 515 ** with the index. 516 */ 517 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 518 Index *pIndex; 519 Hash *pHash; 520 521 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 522 pHash = &db->aDb[iDb].pSchema->idxHash; 523 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 524 if( ALWAYS(pIndex) ){ 525 if( pIndex->pTable->pIndex==pIndex ){ 526 pIndex->pTable->pIndex = pIndex->pNext; 527 }else{ 528 Index *p; 529 /* Justification of ALWAYS(); The index must be on the list of 530 ** indices. */ 531 p = pIndex->pTable->pIndex; 532 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 533 if( ALWAYS(p && p->pNext==pIndex) ){ 534 p->pNext = pIndex->pNext; 535 } 536 } 537 sqlite3FreeIndex(db, pIndex); 538 } 539 db->mDbFlags |= DBFLAG_SchemaChange; 540 } 541 542 /* 543 ** Look through the list of open database files in db->aDb[] and if 544 ** any have been closed, remove them from the list. Reallocate the 545 ** db->aDb[] structure to a smaller size, if possible. 546 ** 547 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 548 ** are never candidates for being collapsed. 549 */ 550 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 551 int i, j; 552 for(i=j=2; i<db->nDb; i++){ 553 struct Db *pDb = &db->aDb[i]; 554 if( pDb->pBt==0 ){ 555 sqlite3DbFree(db, pDb->zDbSName); 556 pDb->zDbSName = 0; 557 continue; 558 } 559 if( j<i ){ 560 db->aDb[j] = db->aDb[i]; 561 } 562 j++; 563 } 564 db->nDb = j; 565 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 566 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 567 sqlite3DbFree(db, db->aDb); 568 db->aDb = db->aDbStatic; 569 } 570 } 571 572 /* 573 ** Reset the schema for the database at index iDb. Also reset the 574 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 575 ** Deferred resets may be run by calling with iDb<0. 576 */ 577 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 578 int i; 579 assert( iDb<db->nDb ); 580 581 if( iDb>=0 ){ 582 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 583 DbSetProperty(db, iDb, DB_ResetWanted); 584 DbSetProperty(db, 1, DB_ResetWanted); 585 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 586 } 587 588 if( db->nSchemaLock==0 ){ 589 for(i=0; i<db->nDb; i++){ 590 if( DbHasProperty(db, i, DB_ResetWanted) ){ 591 sqlite3SchemaClear(db->aDb[i].pSchema); 592 } 593 } 594 } 595 } 596 597 /* 598 ** Erase all schema information from all attached databases (including 599 ** "main" and "temp") for a single database connection. 600 */ 601 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 602 int i; 603 sqlite3BtreeEnterAll(db); 604 for(i=0; i<db->nDb; i++){ 605 Db *pDb = &db->aDb[i]; 606 if( pDb->pSchema ){ 607 if( db->nSchemaLock==0 ){ 608 sqlite3SchemaClear(pDb->pSchema); 609 }else{ 610 DbSetProperty(db, i, DB_ResetWanted); 611 } 612 } 613 } 614 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 615 sqlite3VtabUnlockList(db); 616 sqlite3BtreeLeaveAll(db); 617 if( db->nSchemaLock==0 ){ 618 sqlite3CollapseDatabaseArray(db); 619 } 620 } 621 622 /* 623 ** This routine is called when a commit occurs. 624 */ 625 void sqlite3CommitInternalChanges(sqlite3 *db){ 626 db->mDbFlags &= ~DBFLAG_SchemaChange; 627 } 628 629 /* 630 ** Delete memory allocated for the column names of a table or view (the 631 ** Table.aCol[] array). 632 */ 633 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 634 int i; 635 Column *pCol; 636 assert( pTable!=0 ); 637 if( (pCol = pTable->aCol)!=0 ){ 638 for(i=0; i<pTable->nCol; i++, pCol++){ 639 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 640 sqlite3DbFree(db, pCol->zName); 641 sqlite3ExprDelete(db, pCol->pDflt); 642 sqlite3DbFree(db, pCol->zColl); 643 } 644 sqlite3DbFree(db, pTable->aCol); 645 } 646 } 647 648 /* 649 ** Remove the memory data structures associated with the given 650 ** Table. No changes are made to disk by this routine. 651 ** 652 ** This routine just deletes the data structure. It does not unlink 653 ** the table data structure from the hash table. But it does destroy 654 ** memory structures of the indices and foreign keys associated with 655 ** the table. 656 ** 657 ** The db parameter is optional. It is needed if the Table object 658 ** contains lookaside memory. (Table objects in the schema do not use 659 ** lookaside memory, but some ephemeral Table objects do.) Or the 660 ** db parameter can be used with db->pnBytesFreed to measure the memory 661 ** used by the Table object. 662 */ 663 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 664 Index *pIndex, *pNext; 665 666 #ifdef SQLITE_DEBUG 667 /* Record the number of outstanding lookaside allocations in schema Tables 668 ** prior to doing any free() operations. Since schema Tables do not use 669 ** lookaside, this number should not change. 670 ** 671 ** If malloc has already failed, it may be that it failed while allocating 672 ** a Table object that was going to be marked ephemeral. So do not check 673 ** that no lookaside memory is used in this case either. */ 674 int nLookaside = 0; 675 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 676 nLookaside = sqlite3LookasideUsed(db, 0); 677 } 678 #endif 679 680 /* Delete all indices associated with this table. */ 681 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 682 pNext = pIndex->pNext; 683 assert( pIndex->pSchema==pTable->pSchema 684 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 685 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 686 char *zName = pIndex->zName; 687 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 688 &pIndex->pSchema->idxHash, zName, 0 689 ); 690 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 691 assert( pOld==pIndex || pOld==0 ); 692 } 693 sqlite3FreeIndex(db, pIndex); 694 } 695 696 /* Delete any foreign keys attached to this table. */ 697 sqlite3FkDelete(db, pTable); 698 699 /* Delete the Table structure itself. 700 */ 701 sqlite3DeleteColumnNames(db, pTable); 702 sqlite3DbFree(db, pTable->zName); 703 sqlite3DbFree(db, pTable->zColAff); 704 sqlite3SelectDelete(db, pTable->pSelect); 705 sqlite3ExprListDelete(db, pTable->pCheck); 706 #ifndef SQLITE_OMIT_VIRTUALTABLE 707 sqlite3VtabClear(db, pTable); 708 #endif 709 sqlite3DbFree(db, pTable); 710 711 /* Verify that no lookaside memory was used by schema tables */ 712 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 713 } 714 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 715 /* Do not delete the table until the reference count reaches zero. */ 716 if( !pTable ) return; 717 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 718 deleteTable(db, pTable); 719 } 720 721 722 /* 723 ** Unlink the given table from the hash tables and the delete the 724 ** table structure with all its indices and foreign keys. 725 */ 726 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 727 Table *p; 728 Db *pDb; 729 730 assert( db!=0 ); 731 assert( iDb>=0 && iDb<db->nDb ); 732 assert( zTabName ); 733 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 734 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 735 pDb = &db->aDb[iDb]; 736 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 737 sqlite3DeleteTable(db, p); 738 db->mDbFlags |= DBFLAG_SchemaChange; 739 } 740 741 /* 742 ** Given a token, return a string that consists of the text of that 743 ** token. Space to hold the returned string 744 ** is obtained from sqliteMalloc() and must be freed by the calling 745 ** function. 746 ** 747 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 748 ** surround the body of the token are removed. 749 ** 750 ** Tokens are often just pointers into the original SQL text and so 751 ** are not \000 terminated and are not persistent. The returned string 752 ** is \000 terminated and is persistent. 753 */ 754 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 755 char *zName; 756 if( pName ){ 757 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 758 sqlite3Dequote(zName); 759 }else{ 760 zName = 0; 761 } 762 return zName; 763 } 764 765 /* 766 ** Open the sqlite_master table stored in database number iDb for 767 ** writing. The table is opened using cursor 0. 768 */ 769 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 770 Vdbe *v = sqlite3GetVdbe(p); 771 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 772 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 773 if( p->nTab==0 ){ 774 p->nTab = 1; 775 } 776 } 777 778 /* 779 ** Parameter zName points to a nul-terminated buffer containing the name 780 ** of a database ("main", "temp" or the name of an attached db). This 781 ** function returns the index of the named database in db->aDb[], or 782 ** -1 if the named db cannot be found. 783 */ 784 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 785 int i = -1; /* Database number */ 786 if( zName ){ 787 Db *pDb; 788 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 789 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 790 /* "main" is always an acceptable alias for the primary database 791 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 792 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 793 } 794 } 795 return i; 796 } 797 798 /* 799 ** The token *pName contains the name of a database (either "main" or 800 ** "temp" or the name of an attached db). This routine returns the 801 ** index of the named database in db->aDb[], or -1 if the named db 802 ** does not exist. 803 */ 804 int sqlite3FindDb(sqlite3 *db, Token *pName){ 805 int i; /* Database number */ 806 char *zName; /* Name we are searching for */ 807 zName = sqlite3NameFromToken(db, pName); 808 i = sqlite3FindDbName(db, zName); 809 sqlite3DbFree(db, zName); 810 return i; 811 } 812 813 /* The table or view or trigger name is passed to this routine via tokens 814 ** pName1 and pName2. If the table name was fully qualified, for example: 815 ** 816 ** CREATE TABLE xxx.yyy (...); 817 ** 818 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 819 ** the table name is not fully qualified, i.e.: 820 ** 821 ** CREATE TABLE yyy(...); 822 ** 823 ** Then pName1 is set to "yyy" and pName2 is "". 824 ** 825 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 826 ** pName2) that stores the unqualified table name. The index of the 827 ** database "xxx" is returned. 828 */ 829 int sqlite3TwoPartName( 830 Parse *pParse, /* Parsing and code generating context */ 831 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 832 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 833 Token **pUnqual /* Write the unqualified object name here */ 834 ){ 835 int iDb; /* Database holding the object */ 836 sqlite3 *db = pParse->db; 837 838 assert( pName2!=0 ); 839 if( pName2->n>0 ){ 840 if( db->init.busy ) { 841 sqlite3ErrorMsg(pParse, "corrupt database"); 842 return -1; 843 } 844 *pUnqual = pName2; 845 iDb = sqlite3FindDb(db, pName1); 846 if( iDb<0 ){ 847 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 848 return -1; 849 } 850 }else{ 851 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 852 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 853 iDb = db->init.iDb; 854 *pUnqual = pName1; 855 } 856 return iDb; 857 } 858 859 /* 860 ** True if PRAGMA writable_schema is ON 861 */ 862 int sqlite3WritableSchema(sqlite3 *db){ 863 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 864 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 865 SQLITE_WriteSchema ); 866 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 867 SQLITE_Defensive ); 868 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 869 (SQLITE_WriteSchema|SQLITE_Defensive) ); 870 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 871 } 872 873 /* 874 ** This routine is used to check if the UTF-8 string zName is a legal 875 ** unqualified name for a new schema object (table, index, view or 876 ** trigger). All names are legal except those that begin with the string 877 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 878 ** is reserved for internal use. 879 ** 880 ** When parsing the sqlite_master table, this routine also checks to 881 ** make sure the "type", "name", and "tbl_name" columns are consistent 882 ** with the SQL. 883 */ 884 int sqlite3CheckObjectName( 885 Parse *pParse, /* Parsing context */ 886 const char *zName, /* Name of the object to check */ 887 const char *zType, /* Type of this object */ 888 const char *zTblName /* Parent table name for triggers and indexes */ 889 ){ 890 sqlite3 *db = pParse->db; 891 if( sqlite3WritableSchema(db) || db->init.imposterTable ){ 892 /* Skip these error checks for writable_schema=ON */ 893 return SQLITE_OK; 894 } 895 if( db->init.busy ){ 896 if( sqlite3_stricmp(zType, db->init.azInit[0]) 897 || sqlite3_stricmp(zName, db->init.azInit[1]) 898 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 899 ){ 900 if( sqlite3Config.bExtraSchemaChecks ){ 901 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 902 return SQLITE_ERROR; 903 } 904 } 905 }else{ 906 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 907 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 908 ){ 909 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 910 zName); 911 return SQLITE_ERROR; 912 } 913 914 } 915 return SQLITE_OK; 916 } 917 918 /* 919 ** Return the PRIMARY KEY index of a table 920 */ 921 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 922 Index *p; 923 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 924 return p; 925 } 926 927 /* 928 ** Convert an table column number into a index column number. That is, 929 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 930 ** find the (first) offset of that column in index pIdx. Or return -1 931 ** if column iCol is not used in index pIdx. 932 */ 933 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 934 int i; 935 for(i=0; i<pIdx->nColumn; i++){ 936 if( iCol==pIdx->aiColumn[i] ) return i; 937 } 938 return -1; 939 } 940 941 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 942 /* Convert a storage column number into a table column number. 943 ** 944 ** The storage column number (0,1,2,....) is the index of the value 945 ** as it appears in the record on disk. The true column number 946 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 947 ** 948 ** The storage column number is less than the table column number if 949 ** and only there are VIRTUAL columns to the left. 950 ** 951 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 952 */ 953 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 954 if( pTab->tabFlags & TF_HasVirtual ){ 955 int i; 956 for(i=0; i<=iCol; i++){ 957 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 958 } 959 } 960 return iCol; 961 } 962 #endif 963 964 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 965 /* Convert a table column number into a storage column number. 966 ** 967 ** The storage column number (0,1,2,....) is the index of the value 968 ** as it appears in the record on disk. Or, if the input column is 969 ** the N-th virtual column (zero-based) then the storage number is 970 ** the number of non-virtual columns in the table plus N. 971 ** 972 ** The true column number is the index (0,1,2,...) of the column in 973 ** the CREATE TABLE statement. 974 ** 975 ** If the input column is a VIRTUAL column, then it should not appear 976 ** in storage. But the value sometimes is cached in registers that 977 ** follow the range of registers used to construct storage. This 978 ** avoids computing the same VIRTUAL column multiple times, and provides 979 ** values for use by OP_Param opcodes in triggers. Hence, if the 980 ** input column is a VIRTUAL table, put it after all the other columns. 981 ** 982 ** In the following, N means "normal column", S means STORED, and 983 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 984 ** 985 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 986 ** -- 0 1 2 3 4 5 6 7 8 987 ** 988 ** Then the mapping from this function is as follows: 989 ** 990 ** INPUTS: 0 1 2 3 4 5 6 7 8 991 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 992 ** 993 ** So, in other words, this routine shifts all the virtual columns to 994 ** the end. 995 ** 996 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 997 ** this routine is a no-op macro. If the pTab does not have any virtual 998 ** columns, then this routine is no-op that always return iCol. If iCol 999 ** is negative (indicating the ROWID column) then this routine return iCol. 1000 */ 1001 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1002 int i; 1003 i16 n; 1004 assert( iCol<pTab->nCol ); 1005 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1006 for(i=0, n=0; i<iCol; i++){ 1007 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1008 } 1009 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1010 /* iCol is a virtual column itself */ 1011 return pTab->nNVCol + i - n; 1012 }else{ 1013 /* iCol is a normal or stored column */ 1014 return n; 1015 } 1016 } 1017 #endif 1018 1019 /* 1020 ** Begin constructing a new table representation in memory. This is 1021 ** the first of several action routines that get called in response 1022 ** to a CREATE TABLE statement. In particular, this routine is called 1023 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1024 ** flag is true if the table should be stored in the auxiliary database 1025 ** file instead of in the main database file. This is normally the case 1026 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1027 ** CREATE and TABLE. 1028 ** 1029 ** The new table record is initialized and put in pParse->pNewTable. 1030 ** As more of the CREATE TABLE statement is parsed, additional action 1031 ** routines will be called to add more information to this record. 1032 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1033 ** is called to complete the construction of the new table record. 1034 */ 1035 void sqlite3StartTable( 1036 Parse *pParse, /* Parser context */ 1037 Token *pName1, /* First part of the name of the table or view */ 1038 Token *pName2, /* Second part of the name of the table or view */ 1039 int isTemp, /* True if this is a TEMP table */ 1040 int isView, /* True if this is a VIEW */ 1041 int isVirtual, /* True if this is a VIRTUAL table */ 1042 int noErr /* Do nothing if table already exists */ 1043 ){ 1044 Table *pTable; 1045 char *zName = 0; /* The name of the new table */ 1046 sqlite3 *db = pParse->db; 1047 Vdbe *v; 1048 int iDb; /* Database number to create the table in */ 1049 Token *pName; /* Unqualified name of the table to create */ 1050 1051 if( db->init.busy && db->init.newTnum==1 ){ 1052 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 1053 iDb = db->init.iDb; 1054 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1055 pName = pName1; 1056 }else{ 1057 /* The common case */ 1058 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1059 if( iDb<0 ) return; 1060 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1061 /* If creating a temp table, the name may not be qualified. Unless 1062 ** the database name is "temp" anyway. */ 1063 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1064 return; 1065 } 1066 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1067 zName = sqlite3NameFromToken(db, pName); 1068 if( IN_RENAME_OBJECT ){ 1069 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1070 } 1071 } 1072 pParse->sNameToken = *pName; 1073 if( zName==0 ) return; 1074 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1075 goto begin_table_error; 1076 } 1077 if( db->init.iDb==1 ) isTemp = 1; 1078 #ifndef SQLITE_OMIT_AUTHORIZATION 1079 assert( isTemp==0 || isTemp==1 ); 1080 assert( isView==0 || isView==1 ); 1081 { 1082 static const u8 aCode[] = { 1083 SQLITE_CREATE_TABLE, 1084 SQLITE_CREATE_TEMP_TABLE, 1085 SQLITE_CREATE_VIEW, 1086 SQLITE_CREATE_TEMP_VIEW 1087 }; 1088 char *zDb = db->aDb[iDb].zDbSName; 1089 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1090 goto begin_table_error; 1091 } 1092 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1093 zName, 0, zDb) ){ 1094 goto begin_table_error; 1095 } 1096 } 1097 #endif 1098 1099 /* Make sure the new table name does not collide with an existing 1100 ** index or table name in the same database. Issue an error message if 1101 ** it does. The exception is if the statement being parsed was passed 1102 ** to an sqlite3_declare_vtab() call. In that case only the column names 1103 ** and types will be used, so there is no need to test for namespace 1104 ** collisions. 1105 */ 1106 if( !IN_SPECIAL_PARSE ){ 1107 char *zDb = db->aDb[iDb].zDbSName; 1108 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1109 goto begin_table_error; 1110 } 1111 pTable = sqlite3FindTable(db, zName, zDb); 1112 if( pTable ){ 1113 if( !noErr ){ 1114 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1115 }else{ 1116 assert( !db->init.busy || CORRUPT_DB ); 1117 sqlite3CodeVerifySchema(pParse, iDb); 1118 } 1119 goto begin_table_error; 1120 } 1121 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1122 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1123 goto begin_table_error; 1124 } 1125 } 1126 1127 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1128 if( pTable==0 ){ 1129 assert( db->mallocFailed ); 1130 pParse->rc = SQLITE_NOMEM_BKPT; 1131 pParse->nErr++; 1132 goto begin_table_error; 1133 } 1134 pTable->zName = zName; 1135 pTable->iPKey = -1; 1136 pTable->pSchema = db->aDb[iDb].pSchema; 1137 pTable->nTabRef = 1; 1138 #ifdef SQLITE_DEFAULT_ROWEST 1139 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1140 #else 1141 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1142 #endif 1143 assert( pParse->pNewTable==0 ); 1144 pParse->pNewTable = pTable; 1145 1146 /* If this is the magic sqlite_sequence table used by autoincrement, 1147 ** then record a pointer to this table in the main database structure 1148 ** so that INSERT can find the table easily. 1149 */ 1150 #ifndef SQLITE_OMIT_AUTOINCREMENT 1151 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1152 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1153 pTable->pSchema->pSeqTab = pTable; 1154 } 1155 #endif 1156 1157 /* Begin generating the code that will insert the table record into 1158 ** the schema table. Note in particular that we must go ahead 1159 ** and allocate the record number for the table entry now. Before any 1160 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1161 ** indices to be created and the table record must come before the 1162 ** indices. Hence, the record number for the table must be allocated 1163 ** now. 1164 */ 1165 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1166 int addr1; 1167 int fileFormat; 1168 int reg1, reg2, reg3; 1169 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1170 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1171 sqlite3BeginWriteOperation(pParse, 1, iDb); 1172 1173 #ifndef SQLITE_OMIT_VIRTUALTABLE 1174 if( isVirtual ){ 1175 sqlite3VdbeAddOp0(v, OP_VBegin); 1176 } 1177 #endif 1178 1179 /* If the file format and encoding in the database have not been set, 1180 ** set them now. 1181 */ 1182 reg1 = pParse->regRowid = ++pParse->nMem; 1183 reg2 = pParse->regRoot = ++pParse->nMem; 1184 reg3 = ++pParse->nMem; 1185 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1186 sqlite3VdbeUsesBtree(v, iDb); 1187 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1188 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1189 1 : SQLITE_MAX_FILE_FORMAT; 1190 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1191 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1192 sqlite3VdbeJumpHere(v, addr1); 1193 1194 /* This just creates a place-holder record in the sqlite_master table. 1195 ** The record created does not contain anything yet. It will be replaced 1196 ** by the real entry in code generated at sqlite3EndTable(). 1197 ** 1198 ** The rowid for the new entry is left in register pParse->regRowid. 1199 ** The root page number of the new table is left in reg pParse->regRoot. 1200 ** The rowid and root page number values are needed by the code that 1201 ** sqlite3EndTable will generate. 1202 */ 1203 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1204 if( isView || isVirtual ){ 1205 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1206 }else 1207 #endif 1208 { 1209 pParse->addrCrTab = 1210 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1211 } 1212 sqlite3OpenSchemaTable(pParse, iDb); 1213 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1214 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1215 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1216 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1217 sqlite3VdbeAddOp0(v, OP_Close); 1218 } 1219 1220 /* Normal (non-error) return. */ 1221 return; 1222 1223 /* If an error occurs, we jump here */ 1224 begin_table_error: 1225 sqlite3DbFree(db, zName); 1226 return; 1227 } 1228 1229 /* Set properties of a table column based on the (magical) 1230 ** name of the column. 1231 */ 1232 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1233 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1234 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1235 pCol->colFlags |= COLFLAG_HIDDEN; 1236 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1237 pTab->tabFlags |= TF_OOOHidden; 1238 } 1239 } 1240 #endif 1241 1242 1243 /* 1244 ** Add a new column to the table currently being constructed. 1245 ** 1246 ** The parser calls this routine once for each column declaration 1247 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1248 ** first to get things going. Then this routine is called for each 1249 ** column. 1250 */ 1251 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1252 Table *p; 1253 int i; 1254 char *z; 1255 char *zType; 1256 Column *pCol; 1257 sqlite3 *db = pParse->db; 1258 if( (p = pParse->pNewTable)==0 ) return; 1259 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1260 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1261 return; 1262 } 1263 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1264 if( z==0 ) return; 1265 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1266 memcpy(z, pName->z, pName->n); 1267 z[pName->n] = 0; 1268 sqlite3Dequote(z); 1269 for(i=0; i<p->nCol; i++){ 1270 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1271 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1272 sqlite3DbFree(db, z); 1273 return; 1274 } 1275 } 1276 if( (p->nCol & 0x7)==0 ){ 1277 Column *aNew; 1278 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1279 if( aNew==0 ){ 1280 sqlite3DbFree(db, z); 1281 return; 1282 } 1283 p->aCol = aNew; 1284 } 1285 pCol = &p->aCol[p->nCol]; 1286 memset(pCol, 0, sizeof(p->aCol[0])); 1287 pCol->zName = z; 1288 pCol->hName = sqlite3StrIHash(z); 1289 sqlite3ColumnPropertiesFromName(p, pCol); 1290 1291 if( pType->n==0 ){ 1292 /* If there is no type specified, columns have the default affinity 1293 ** 'BLOB' with a default size of 4 bytes. */ 1294 pCol->affinity = SQLITE_AFF_BLOB; 1295 pCol->szEst = 1; 1296 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1297 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1298 pCol->colFlags |= COLFLAG_SORTERREF; 1299 } 1300 #endif 1301 }else{ 1302 zType = z + sqlite3Strlen30(z) + 1; 1303 memcpy(zType, pType->z, pType->n); 1304 zType[pType->n] = 0; 1305 sqlite3Dequote(zType); 1306 pCol->affinity = sqlite3AffinityType(zType, pCol); 1307 pCol->colFlags |= COLFLAG_HASTYPE; 1308 } 1309 p->nCol++; 1310 p->nNVCol++; 1311 pParse->constraintName.n = 0; 1312 } 1313 1314 /* 1315 ** This routine is called by the parser while in the middle of 1316 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1317 ** been seen on a column. This routine sets the notNull flag on 1318 ** the column currently under construction. 1319 */ 1320 void sqlite3AddNotNull(Parse *pParse, int onError){ 1321 Table *p; 1322 Column *pCol; 1323 p = pParse->pNewTable; 1324 if( p==0 || NEVER(p->nCol<1) ) return; 1325 pCol = &p->aCol[p->nCol-1]; 1326 pCol->notNull = (u8)onError; 1327 p->tabFlags |= TF_HasNotNull; 1328 1329 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1330 ** on this column. */ 1331 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1332 Index *pIdx; 1333 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1334 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1335 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1336 pIdx->uniqNotNull = 1; 1337 } 1338 } 1339 } 1340 } 1341 1342 /* 1343 ** Scan the column type name zType (length nType) and return the 1344 ** associated affinity type. 1345 ** 1346 ** This routine does a case-independent search of zType for the 1347 ** substrings in the following table. If one of the substrings is 1348 ** found, the corresponding affinity is returned. If zType contains 1349 ** more than one of the substrings, entries toward the top of 1350 ** the table take priority. For example, if zType is 'BLOBINT', 1351 ** SQLITE_AFF_INTEGER is returned. 1352 ** 1353 ** Substring | Affinity 1354 ** -------------------------------- 1355 ** 'INT' | SQLITE_AFF_INTEGER 1356 ** 'CHAR' | SQLITE_AFF_TEXT 1357 ** 'CLOB' | SQLITE_AFF_TEXT 1358 ** 'TEXT' | SQLITE_AFF_TEXT 1359 ** 'BLOB' | SQLITE_AFF_BLOB 1360 ** 'REAL' | SQLITE_AFF_REAL 1361 ** 'FLOA' | SQLITE_AFF_REAL 1362 ** 'DOUB' | SQLITE_AFF_REAL 1363 ** 1364 ** If none of the substrings in the above table are found, 1365 ** SQLITE_AFF_NUMERIC is returned. 1366 */ 1367 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1368 u32 h = 0; 1369 char aff = SQLITE_AFF_NUMERIC; 1370 const char *zChar = 0; 1371 1372 assert( zIn!=0 ); 1373 while( zIn[0] ){ 1374 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1375 zIn++; 1376 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1377 aff = SQLITE_AFF_TEXT; 1378 zChar = zIn; 1379 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1380 aff = SQLITE_AFF_TEXT; 1381 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1382 aff = SQLITE_AFF_TEXT; 1383 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1384 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1385 aff = SQLITE_AFF_BLOB; 1386 if( zIn[0]=='(' ) zChar = zIn; 1387 #ifndef SQLITE_OMIT_FLOATING_POINT 1388 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1389 && aff==SQLITE_AFF_NUMERIC ){ 1390 aff = SQLITE_AFF_REAL; 1391 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1392 && aff==SQLITE_AFF_NUMERIC ){ 1393 aff = SQLITE_AFF_REAL; 1394 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1395 && aff==SQLITE_AFF_NUMERIC ){ 1396 aff = SQLITE_AFF_REAL; 1397 #endif 1398 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1399 aff = SQLITE_AFF_INTEGER; 1400 break; 1401 } 1402 } 1403 1404 /* If pCol is not NULL, store an estimate of the field size. The 1405 ** estimate is scaled so that the size of an integer is 1. */ 1406 if( pCol ){ 1407 int v = 0; /* default size is approx 4 bytes */ 1408 if( aff<SQLITE_AFF_NUMERIC ){ 1409 if( zChar ){ 1410 while( zChar[0] ){ 1411 if( sqlite3Isdigit(zChar[0]) ){ 1412 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1413 sqlite3GetInt32(zChar, &v); 1414 break; 1415 } 1416 zChar++; 1417 } 1418 }else{ 1419 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1420 } 1421 } 1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1423 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1424 pCol->colFlags |= COLFLAG_SORTERREF; 1425 } 1426 #endif 1427 v = v/4 + 1; 1428 if( v>255 ) v = 255; 1429 pCol->szEst = v; 1430 } 1431 return aff; 1432 } 1433 1434 /* 1435 ** The expression is the default value for the most recently added column 1436 ** of the table currently under construction. 1437 ** 1438 ** Default value expressions must be constant. Raise an exception if this 1439 ** is not the case. 1440 ** 1441 ** This routine is called by the parser while in the middle of 1442 ** parsing a CREATE TABLE statement. 1443 */ 1444 void sqlite3AddDefaultValue( 1445 Parse *pParse, /* Parsing context */ 1446 Expr *pExpr, /* The parsed expression of the default value */ 1447 const char *zStart, /* Start of the default value text */ 1448 const char *zEnd /* First character past end of defaut value text */ 1449 ){ 1450 Table *p; 1451 Column *pCol; 1452 sqlite3 *db = pParse->db; 1453 p = pParse->pNewTable; 1454 if( p!=0 ){ 1455 int isInit = db->init.busy && db->init.iDb!=1; 1456 pCol = &(p->aCol[p->nCol-1]); 1457 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1458 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1459 pCol->zName); 1460 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1461 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1462 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1463 testcase( pCol->colFlags & COLFLAG_STORED ); 1464 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1465 #endif 1466 }else{ 1467 /* A copy of pExpr is used instead of the original, as pExpr contains 1468 ** tokens that point to volatile memory. 1469 */ 1470 Expr x; 1471 sqlite3ExprDelete(db, pCol->pDflt); 1472 memset(&x, 0, sizeof(x)); 1473 x.op = TK_SPAN; 1474 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1475 x.pLeft = pExpr; 1476 x.flags = EP_Skip; 1477 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1478 sqlite3DbFree(db, x.u.zToken); 1479 } 1480 } 1481 if( IN_RENAME_OBJECT ){ 1482 sqlite3RenameExprUnmap(pParse, pExpr); 1483 } 1484 sqlite3ExprDelete(db, pExpr); 1485 } 1486 1487 /* 1488 ** Backwards Compatibility Hack: 1489 ** 1490 ** Historical versions of SQLite accepted strings as column names in 1491 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1492 ** 1493 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1494 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1495 ** 1496 ** This is goofy. But to preserve backwards compatibility we continue to 1497 ** accept it. This routine does the necessary conversion. It converts 1498 ** the expression given in its argument from a TK_STRING into a TK_ID 1499 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1500 ** If the expression is anything other than TK_STRING, the expression is 1501 ** unchanged. 1502 */ 1503 static void sqlite3StringToId(Expr *p){ 1504 if( p->op==TK_STRING ){ 1505 p->op = TK_ID; 1506 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1507 p->pLeft->op = TK_ID; 1508 } 1509 } 1510 1511 /* 1512 ** Tag the given column as being part of the PRIMARY KEY 1513 */ 1514 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1515 pCol->colFlags |= COLFLAG_PRIMKEY; 1516 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1517 if( pCol->colFlags & COLFLAG_GENERATED ){ 1518 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1519 testcase( pCol->colFlags & COLFLAG_STORED ); 1520 sqlite3ErrorMsg(pParse, 1521 "generated columns cannot be part of the PRIMARY KEY"); 1522 } 1523 #endif 1524 } 1525 1526 /* 1527 ** Designate the PRIMARY KEY for the table. pList is a list of names 1528 ** of columns that form the primary key. If pList is NULL, then the 1529 ** most recently added column of the table is the primary key. 1530 ** 1531 ** A table can have at most one primary key. If the table already has 1532 ** a primary key (and this is the second primary key) then create an 1533 ** error. 1534 ** 1535 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1536 ** then we will try to use that column as the rowid. Set the Table.iPKey 1537 ** field of the table under construction to be the index of the 1538 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1539 ** no INTEGER PRIMARY KEY. 1540 ** 1541 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1542 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1543 */ 1544 void sqlite3AddPrimaryKey( 1545 Parse *pParse, /* Parsing context */ 1546 ExprList *pList, /* List of field names to be indexed */ 1547 int onError, /* What to do with a uniqueness conflict */ 1548 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1549 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1550 ){ 1551 Table *pTab = pParse->pNewTable; 1552 Column *pCol = 0; 1553 int iCol = -1, i; 1554 int nTerm; 1555 if( pTab==0 ) goto primary_key_exit; 1556 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1557 sqlite3ErrorMsg(pParse, 1558 "table \"%s\" has more than one primary key", pTab->zName); 1559 goto primary_key_exit; 1560 } 1561 pTab->tabFlags |= TF_HasPrimaryKey; 1562 if( pList==0 ){ 1563 iCol = pTab->nCol - 1; 1564 pCol = &pTab->aCol[iCol]; 1565 makeColumnPartOfPrimaryKey(pParse, pCol); 1566 nTerm = 1; 1567 }else{ 1568 nTerm = pList->nExpr; 1569 for(i=0; i<nTerm; i++){ 1570 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1571 assert( pCExpr!=0 ); 1572 sqlite3StringToId(pCExpr); 1573 if( pCExpr->op==TK_ID ){ 1574 const char *zCName = pCExpr->u.zToken; 1575 for(iCol=0; iCol<pTab->nCol; iCol++){ 1576 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1577 pCol = &pTab->aCol[iCol]; 1578 makeColumnPartOfPrimaryKey(pParse, pCol); 1579 break; 1580 } 1581 } 1582 } 1583 } 1584 } 1585 if( nTerm==1 1586 && pCol 1587 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1588 && sortOrder!=SQLITE_SO_DESC 1589 ){ 1590 if( IN_RENAME_OBJECT && pList ){ 1591 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1592 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1593 } 1594 pTab->iPKey = iCol; 1595 pTab->keyConf = (u8)onError; 1596 assert( autoInc==0 || autoInc==1 ); 1597 pTab->tabFlags |= autoInc*TF_Autoincrement; 1598 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1599 (void)sqlite3HasExplicitNulls(pParse, pList); 1600 }else if( autoInc ){ 1601 #ifndef SQLITE_OMIT_AUTOINCREMENT 1602 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1603 "INTEGER PRIMARY KEY"); 1604 #endif 1605 }else{ 1606 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1607 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1608 pList = 0; 1609 } 1610 1611 primary_key_exit: 1612 sqlite3ExprListDelete(pParse->db, pList); 1613 return; 1614 } 1615 1616 /* 1617 ** Add a new CHECK constraint to the table currently under construction. 1618 */ 1619 void sqlite3AddCheckConstraint( 1620 Parse *pParse, /* Parsing context */ 1621 Expr *pCheckExpr /* The check expression */ 1622 ){ 1623 #ifndef SQLITE_OMIT_CHECK 1624 Table *pTab = pParse->pNewTable; 1625 sqlite3 *db = pParse->db; 1626 if( pTab && !IN_DECLARE_VTAB 1627 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1628 ){ 1629 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1630 if( pParse->constraintName.n ){ 1631 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1632 } 1633 }else 1634 #endif 1635 { 1636 sqlite3ExprDelete(pParse->db, pCheckExpr); 1637 } 1638 } 1639 1640 /* 1641 ** Set the collation function of the most recently parsed table column 1642 ** to the CollSeq given. 1643 */ 1644 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1645 Table *p; 1646 int i; 1647 char *zColl; /* Dequoted name of collation sequence */ 1648 sqlite3 *db; 1649 1650 if( (p = pParse->pNewTable)==0 ) return; 1651 i = p->nCol-1; 1652 db = pParse->db; 1653 zColl = sqlite3NameFromToken(db, pToken); 1654 if( !zColl ) return; 1655 1656 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1657 Index *pIdx; 1658 sqlite3DbFree(db, p->aCol[i].zColl); 1659 p->aCol[i].zColl = zColl; 1660 1661 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1662 ** then an index may have been created on this column before the 1663 ** collation type was added. Correct this if it is the case. 1664 */ 1665 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1666 assert( pIdx->nKeyCol==1 ); 1667 if( pIdx->aiColumn[0]==i ){ 1668 pIdx->azColl[0] = p->aCol[i].zColl; 1669 } 1670 } 1671 }else{ 1672 sqlite3DbFree(db, zColl); 1673 } 1674 } 1675 1676 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1677 ** column. 1678 */ 1679 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1680 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1681 u8 eType = COLFLAG_VIRTUAL; 1682 Table *pTab = pParse->pNewTable; 1683 Column *pCol; 1684 if( pTab==0 ){ 1685 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1686 goto generated_done; 1687 } 1688 pCol = &(pTab->aCol[pTab->nCol-1]); 1689 if( IN_DECLARE_VTAB ){ 1690 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1691 goto generated_done; 1692 } 1693 if( pCol->pDflt ) goto generated_error; 1694 if( pType ){ 1695 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1696 /* no-op */ 1697 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1698 eType = COLFLAG_STORED; 1699 }else{ 1700 goto generated_error; 1701 } 1702 } 1703 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1704 pCol->colFlags |= eType; 1705 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1706 assert( TF_HasStored==COLFLAG_STORED ); 1707 pTab->tabFlags |= eType; 1708 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1709 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1710 } 1711 pCol->pDflt = pExpr; 1712 pExpr = 0; 1713 goto generated_done; 1714 1715 generated_error: 1716 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1717 pCol->zName); 1718 generated_done: 1719 sqlite3ExprDelete(pParse->db, pExpr); 1720 #else 1721 /* Throw and error for the GENERATED ALWAYS AS clause if the 1722 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1723 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1724 sqlite3ExprDelete(pParse->db, pExpr); 1725 #endif 1726 } 1727 1728 /* 1729 ** Generate code that will increment the schema cookie. 1730 ** 1731 ** The schema cookie is used to determine when the schema for the 1732 ** database changes. After each schema change, the cookie value 1733 ** changes. When a process first reads the schema it records the 1734 ** cookie. Thereafter, whenever it goes to access the database, 1735 ** it checks the cookie to make sure the schema has not changed 1736 ** since it was last read. 1737 ** 1738 ** This plan is not completely bullet-proof. It is possible for 1739 ** the schema to change multiple times and for the cookie to be 1740 ** set back to prior value. But schema changes are infrequent 1741 ** and the probability of hitting the same cookie value is only 1742 ** 1 chance in 2^32. So we're safe enough. 1743 ** 1744 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1745 ** the schema-version whenever the schema changes. 1746 */ 1747 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1748 sqlite3 *db = pParse->db; 1749 Vdbe *v = pParse->pVdbe; 1750 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1751 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1752 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1753 } 1754 1755 /* 1756 ** Measure the number of characters needed to output the given 1757 ** identifier. The number returned includes any quotes used 1758 ** but does not include the null terminator. 1759 ** 1760 ** The estimate is conservative. It might be larger that what is 1761 ** really needed. 1762 */ 1763 static int identLength(const char *z){ 1764 int n; 1765 for(n=0; *z; n++, z++){ 1766 if( *z=='"' ){ n++; } 1767 } 1768 return n + 2; 1769 } 1770 1771 /* 1772 ** The first parameter is a pointer to an output buffer. The second 1773 ** parameter is a pointer to an integer that contains the offset at 1774 ** which to write into the output buffer. This function copies the 1775 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1776 ** to the specified offset in the buffer and updates *pIdx to refer 1777 ** to the first byte after the last byte written before returning. 1778 ** 1779 ** If the string zSignedIdent consists entirely of alpha-numeric 1780 ** characters, does not begin with a digit and is not an SQL keyword, 1781 ** then it is copied to the output buffer exactly as it is. Otherwise, 1782 ** it is quoted using double-quotes. 1783 */ 1784 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1785 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1786 int i, j, needQuote; 1787 i = *pIdx; 1788 1789 for(j=0; zIdent[j]; j++){ 1790 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1791 } 1792 needQuote = sqlite3Isdigit(zIdent[0]) 1793 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1794 || zIdent[j]!=0 1795 || j==0; 1796 1797 if( needQuote ) z[i++] = '"'; 1798 for(j=0; zIdent[j]; j++){ 1799 z[i++] = zIdent[j]; 1800 if( zIdent[j]=='"' ) z[i++] = '"'; 1801 } 1802 if( needQuote ) z[i++] = '"'; 1803 z[i] = 0; 1804 *pIdx = i; 1805 } 1806 1807 /* 1808 ** Generate a CREATE TABLE statement appropriate for the given 1809 ** table. Memory to hold the text of the statement is obtained 1810 ** from sqliteMalloc() and must be freed by the calling function. 1811 */ 1812 static char *createTableStmt(sqlite3 *db, Table *p){ 1813 int i, k, n; 1814 char *zStmt; 1815 char *zSep, *zSep2, *zEnd; 1816 Column *pCol; 1817 n = 0; 1818 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1819 n += identLength(pCol->zName) + 5; 1820 } 1821 n += identLength(p->zName); 1822 if( n<50 ){ 1823 zSep = ""; 1824 zSep2 = ","; 1825 zEnd = ")"; 1826 }else{ 1827 zSep = "\n "; 1828 zSep2 = ",\n "; 1829 zEnd = "\n)"; 1830 } 1831 n += 35 + 6*p->nCol; 1832 zStmt = sqlite3DbMallocRaw(0, n); 1833 if( zStmt==0 ){ 1834 sqlite3OomFault(db); 1835 return 0; 1836 } 1837 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1838 k = sqlite3Strlen30(zStmt); 1839 identPut(zStmt, &k, p->zName); 1840 zStmt[k++] = '('; 1841 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1842 static const char * const azType[] = { 1843 /* SQLITE_AFF_BLOB */ "", 1844 /* SQLITE_AFF_TEXT */ " TEXT", 1845 /* SQLITE_AFF_NUMERIC */ " NUM", 1846 /* SQLITE_AFF_INTEGER */ " INT", 1847 /* SQLITE_AFF_REAL */ " REAL" 1848 }; 1849 int len; 1850 const char *zType; 1851 1852 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1853 k += sqlite3Strlen30(&zStmt[k]); 1854 zSep = zSep2; 1855 identPut(zStmt, &k, pCol->zName); 1856 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1857 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1858 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1859 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1860 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1861 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1862 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1863 1864 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1865 len = sqlite3Strlen30(zType); 1866 assert( pCol->affinity==SQLITE_AFF_BLOB 1867 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1868 memcpy(&zStmt[k], zType, len); 1869 k += len; 1870 assert( k<=n ); 1871 } 1872 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1873 return zStmt; 1874 } 1875 1876 /* 1877 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1878 ** on success and SQLITE_NOMEM on an OOM error. 1879 */ 1880 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1881 char *zExtra; 1882 int nByte; 1883 if( pIdx->nColumn>=N ) return SQLITE_OK; 1884 assert( pIdx->isResized==0 ); 1885 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1886 zExtra = sqlite3DbMallocZero(db, nByte); 1887 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1888 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1889 pIdx->azColl = (const char**)zExtra; 1890 zExtra += sizeof(char*)*N; 1891 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1892 pIdx->aiColumn = (i16*)zExtra; 1893 zExtra += sizeof(i16)*N; 1894 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1895 pIdx->aSortOrder = (u8*)zExtra; 1896 pIdx->nColumn = N; 1897 pIdx->isResized = 1; 1898 return SQLITE_OK; 1899 } 1900 1901 /* 1902 ** Estimate the total row width for a table. 1903 */ 1904 static void estimateTableWidth(Table *pTab){ 1905 unsigned wTable = 0; 1906 const Column *pTabCol; 1907 int i; 1908 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1909 wTable += pTabCol->szEst; 1910 } 1911 if( pTab->iPKey<0 ) wTable++; 1912 pTab->szTabRow = sqlite3LogEst(wTable*4); 1913 } 1914 1915 /* 1916 ** Estimate the average size of a row for an index. 1917 */ 1918 static void estimateIndexWidth(Index *pIdx){ 1919 unsigned wIndex = 0; 1920 int i; 1921 const Column *aCol = pIdx->pTable->aCol; 1922 for(i=0; i<pIdx->nColumn; i++){ 1923 i16 x = pIdx->aiColumn[i]; 1924 assert( x<pIdx->pTable->nCol ); 1925 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1926 } 1927 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1928 } 1929 1930 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1931 ** This is used to determine if the column number x appears in any of the 1932 ** first nCol entries of an index. 1933 */ 1934 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1935 while( nCol-- > 0 ){ 1936 assert( aiCol[0]>=0 ); 1937 if( x==*(aiCol++) ){ 1938 return 1; 1939 } 1940 } 1941 return 0; 1942 } 1943 1944 /* 1945 ** Return true if any of the first nKey entries of index pIdx exactly 1946 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1947 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1948 ** or may not be the same index as pPk. 1949 ** 1950 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1951 ** not a rowid or expression. 1952 ** 1953 ** This routine differs from hasColumn() in that both the column and the 1954 ** collating sequence must match for this routine, but for hasColumn() only 1955 ** the column name must match. 1956 */ 1957 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1958 int i, j; 1959 assert( nKey<=pIdx->nColumn ); 1960 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1961 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1962 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1963 assert( pPk->pTable==pIdx->pTable ); 1964 testcase( pPk==pIdx ); 1965 j = pPk->aiColumn[iCol]; 1966 assert( j!=XN_ROWID && j!=XN_EXPR ); 1967 for(i=0; i<nKey; i++){ 1968 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1969 if( pIdx->aiColumn[i]==j 1970 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1971 ){ 1972 return 1; 1973 } 1974 } 1975 return 0; 1976 } 1977 1978 /* Recompute the colNotIdxed field of the Index. 1979 ** 1980 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1981 ** columns that are within the first 63 columns of the table. The 1982 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1983 ** of the table have a 1. 1984 ** 1985 ** 2019-10-24: For the purpose of this computation, virtual columns are 1986 ** not considered to be covered by the index, even if they are in the 1987 ** index, because we do not trust the logic in whereIndexExprTrans() to be 1988 ** able to find all instances of a reference to the indexed table column 1989 ** and convert them into references to the index. Hence we always want 1990 ** the actual table at hand in order to recompute the virtual column, if 1991 ** necessary. 1992 ** 1993 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1994 ** to determine if the index is covering index. 1995 */ 1996 static void recomputeColumnsNotIndexed(Index *pIdx){ 1997 Bitmask m = 0; 1998 int j; 1999 Table *pTab = pIdx->pTable; 2000 for(j=pIdx->nColumn-1; j>=0; j--){ 2001 int x = pIdx->aiColumn[j]; 2002 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2003 testcase( x==BMS-1 ); 2004 testcase( x==BMS-2 ); 2005 if( x<BMS-1 ) m |= MASKBIT(x); 2006 } 2007 } 2008 pIdx->colNotIdxed = ~m; 2009 assert( (pIdx->colNotIdxed>>63)==1 ); 2010 } 2011 2012 /* 2013 ** This routine runs at the end of parsing a CREATE TABLE statement that 2014 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2015 ** internal schema data structures and the generated VDBE code so that they 2016 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2017 ** Changes include: 2018 ** 2019 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2020 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2021 ** into BTREE_BLOBKEY. 2022 ** (3) Bypass the creation of the sqlite_master table entry 2023 ** for the PRIMARY KEY as the primary key index is now 2024 ** identified by the sqlite_master table entry of the table itself. 2025 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2026 ** schema to the rootpage from the main table. 2027 ** (5) Add all table columns to the PRIMARY KEY Index object 2028 ** so that the PRIMARY KEY is a covering index. The surplus 2029 ** columns are part of KeyInfo.nAllField and are not used for 2030 ** sorting or lookup or uniqueness checks. 2031 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2032 ** indices with the PRIMARY KEY columns. 2033 ** 2034 ** For virtual tables, only (1) is performed. 2035 */ 2036 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2037 Index *pIdx; 2038 Index *pPk; 2039 int nPk; 2040 int nExtra; 2041 int i, j; 2042 sqlite3 *db = pParse->db; 2043 Vdbe *v = pParse->pVdbe; 2044 2045 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2046 */ 2047 if( !db->init.imposterTable ){ 2048 for(i=0; i<pTab->nCol; i++){ 2049 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2050 pTab->aCol[i].notNull = OE_Abort; 2051 } 2052 } 2053 pTab->tabFlags |= TF_HasNotNull; 2054 } 2055 2056 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2057 ** into BTREE_BLOBKEY. 2058 */ 2059 if( pParse->addrCrTab ){ 2060 assert( v ); 2061 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 2062 } 2063 2064 /* Locate the PRIMARY KEY index. Or, if this table was originally 2065 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2066 */ 2067 if( pTab->iPKey>=0 ){ 2068 ExprList *pList; 2069 Token ipkToken; 2070 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2071 pList = sqlite3ExprListAppend(pParse, 0, 2072 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2073 if( pList==0 ) return; 2074 if( IN_RENAME_OBJECT ){ 2075 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2076 } 2077 pList->a[0].sortFlags = pParse->iPkSortOrder; 2078 assert( pParse->pNewTable==pTab ); 2079 pTab->iPKey = -1; 2080 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2081 SQLITE_IDXTYPE_PRIMARYKEY); 2082 if( db->mallocFailed || pParse->nErr ) return; 2083 pPk = sqlite3PrimaryKeyIndex(pTab); 2084 assert( pPk->nKeyCol==1 ); 2085 }else{ 2086 pPk = sqlite3PrimaryKeyIndex(pTab); 2087 assert( pPk!=0 ); 2088 2089 /* 2090 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2091 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2092 ** code assumes the PRIMARY KEY contains no repeated columns. 2093 */ 2094 for(i=j=1; i<pPk->nKeyCol; i++){ 2095 if( isDupColumn(pPk, j, pPk, i) ){ 2096 pPk->nColumn--; 2097 }else{ 2098 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2099 pPk->azColl[j] = pPk->azColl[i]; 2100 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2101 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2102 } 2103 } 2104 pPk->nKeyCol = j; 2105 } 2106 assert( pPk!=0 ); 2107 pPk->isCovering = 1; 2108 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2109 nPk = pPk->nColumn = pPk->nKeyCol; 2110 2111 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 2112 ** table entry. This is only required if currently generating VDBE 2113 ** code for a CREATE TABLE (not when parsing one as part of reading 2114 ** a database schema). */ 2115 if( v && pPk->tnum>0 ){ 2116 assert( db->init.busy==0 ); 2117 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 2118 } 2119 2120 /* The root page of the PRIMARY KEY is the table root page */ 2121 pPk->tnum = pTab->tnum; 2122 2123 /* Update the in-memory representation of all UNIQUE indices by converting 2124 ** the final rowid column into one or more columns of the PRIMARY KEY. 2125 */ 2126 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2127 int n; 2128 if( IsPrimaryKeyIndex(pIdx) ) continue; 2129 for(i=n=0; i<nPk; i++){ 2130 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2131 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2132 n++; 2133 } 2134 } 2135 if( n==0 ){ 2136 /* This index is a superset of the primary key */ 2137 pIdx->nColumn = pIdx->nKeyCol; 2138 continue; 2139 } 2140 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2141 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2142 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2143 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2144 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2145 pIdx->azColl[j] = pPk->azColl[i]; 2146 if( pPk->aSortOrder[i] ){ 2147 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2148 pIdx->bAscKeyBug = 1; 2149 } 2150 j++; 2151 } 2152 } 2153 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2154 assert( pIdx->nColumn>=j ); 2155 } 2156 2157 /* Add all table columns to the PRIMARY KEY index 2158 */ 2159 nExtra = 0; 2160 for(i=0; i<pTab->nCol; i++){ 2161 if( !hasColumn(pPk->aiColumn, nPk, i) 2162 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2163 } 2164 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2165 for(i=0, j=nPk; i<pTab->nCol; i++){ 2166 if( !hasColumn(pPk->aiColumn, j, i) 2167 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2168 ){ 2169 assert( j<pPk->nColumn ); 2170 pPk->aiColumn[j] = i; 2171 pPk->azColl[j] = sqlite3StrBINARY; 2172 j++; 2173 } 2174 } 2175 assert( pPk->nColumn==j ); 2176 assert( pTab->nNVCol<=j ); 2177 recomputeColumnsNotIndexed(pPk); 2178 } 2179 2180 2181 #ifndef SQLITE_OMIT_VIRTUALTABLE 2182 /* 2183 ** Return true if pTab is a virtual table and zName is a shadow table name 2184 ** for that virtual table. 2185 */ 2186 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2187 int nName; /* Length of zName */ 2188 Module *pMod; /* Module for the virtual table */ 2189 2190 if( !IsVirtual(pTab) ) return 0; 2191 nName = sqlite3Strlen30(pTab->zName); 2192 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2193 if( zName[nName]!='_' ) return 0; 2194 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2195 if( pMod==0 ) return 0; 2196 if( pMod->pModule->iVersion<3 ) return 0; 2197 if( pMod->pModule->xShadowName==0 ) return 0; 2198 return pMod->pModule->xShadowName(zName+nName+1); 2199 } 2200 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2201 2202 #ifndef SQLITE_OMIT_VIRTUALTABLE 2203 /* 2204 ** Return true if zName is a shadow table name in the current database 2205 ** connection. 2206 ** 2207 ** zName is temporarily modified while this routine is running, but is 2208 ** restored to its original value prior to this routine returning. 2209 */ 2210 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2211 char *zTail; /* Pointer to the last "_" in zName */ 2212 Table *pTab; /* Table that zName is a shadow of */ 2213 zTail = strrchr(zName, '_'); 2214 if( zTail==0 ) return 0; 2215 *zTail = 0; 2216 pTab = sqlite3FindTable(db, zName, 0); 2217 *zTail = '_'; 2218 if( pTab==0 ) return 0; 2219 if( !IsVirtual(pTab) ) return 0; 2220 return sqlite3IsShadowTableOf(db, pTab, zName); 2221 } 2222 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2223 2224 2225 #ifdef SQLITE_DEBUG 2226 /* 2227 ** Mark all nodes of an expression as EP_Immutable, indicating that 2228 ** they should not be changed. Expressions attached to a table or 2229 ** index definition are tagged this way to help ensure that we do 2230 ** not pass them into code generator routines by mistake. 2231 */ 2232 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2233 ExprSetVVAProperty(pExpr, EP_Immutable); 2234 return WRC_Continue; 2235 } 2236 static void markExprListImmutable(ExprList *pList){ 2237 if( pList ){ 2238 Walker w; 2239 memset(&w, 0, sizeof(w)); 2240 w.xExprCallback = markImmutableExprStep; 2241 w.xSelectCallback = sqlite3SelectWalkNoop; 2242 w.xSelectCallback2 = 0; 2243 sqlite3WalkExprList(&w, pList); 2244 } 2245 } 2246 #else 2247 #define markExprListImmutable(X) /* no-op */ 2248 #endif /* SQLITE_DEBUG */ 2249 2250 2251 /* 2252 ** This routine is called to report the final ")" that terminates 2253 ** a CREATE TABLE statement. 2254 ** 2255 ** The table structure that other action routines have been building 2256 ** is added to the internal hash tables, assuming no errors have 2257 ** occurred. 2258 ** 2259 ** An entry for the table is made in the master table on disk, unless 2260 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2261 ** it means we are reading the sqlite_master table because we just 2262 ** connected to the database or because the sqlite_master table has 2263 ** recently changed, so the entry for this table already exists in 2264 ** the sqlite_master table. We do not want to create it again. 2265 ** 2266 ** If the pSelect argument is not NULL, it means that this routine 2267 ** was called to create a table generated from a 2268 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2269 ** the new table will match the result set of the SELECT. 2270 */ 2271 void sqlite3EndTable( 2272 Parse *pParse, /* Parse context */ 2273 Token *pCons, /* The ',' token after the last column defn. */ 2274 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2275 u8 tabOpts, /* Extra table options. Usually 0. */ 2276 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2277 ){ 2278 Table *p; /* The new table */ 2279 sqlite3 *db = pParse->db; /* The database connection */ 2280 int iDb; /* Database in which the table lives */ 2281 Index *pIdx; /* An implied index of the table */ 2282 2283 if( pEnd==0 && pSelect==0 ){ 2284 return; 2285 } 2286 assert( !db->mallocFailed ); 2287 p = pParse->pNewTable; 2288 if( p==0 ) return; 2289 2290 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2291 p->tabFlags |= TF_Shadow; 2292 } 2293 2294 /* If the db->init.busy is 1 it means we are reading the SQL off the 2295 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2296 ** So do not write to the disk again. Extract the root page number 2297 ** for the table from the db->init.newTnum field. (The page number 2298 ** should have been put there by the sqliteOpenCb routine.) 2299 ** 2300 ** If the root page number is 1, that means this is the sqlite_master 2301 ** table itself. So mark it read-only. 2302 */ 2303 if( db->init.busy ){ 2304 if( pSelect ){ 2305 sqlite3ErrorMsg(pParse, ""); 2306 return; 2307 } 2308 p->tnum = db->init.newTnum; 2309 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2310 } 2311 2312 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2313 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2314 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2315 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2316 2317 /* Special processing for WITHOUT ROWID Tables */ 2318 if( tabOpts & TF_WithoutRowid ){ 2319 if( (p->tabFlags & TF_Autoincrement) ){ 2320 sqlite3ErrorMsg(pParse, 2321 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2322 return; 2323 } 2324 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2325 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2326 return; 2327 } 2328 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2329 convertToWithoutRowidTable(pParse, p); 2330 } 2331 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2332 2333 #ifndef SQLITE_OMIT_CHECK 2334 /* Resolve names in all CHECK constraint expressions. 2335 */ 2336 if( p->pCheck ){ 2337 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2338 if( pParse->nErr ){ 2339 /* If errors are seen, delete the CHECK constraints now, else they might 2340 ** actually be used if PRAGMA writable_schema=ON is set. */ 2341 sqlite3ExprListDelete(db, p->pCheck); 2342 p->pCheck = 0; 2343 }else{ 2344 markExprListImmutable(p->pCheck); 2345 } 2346 } 2347 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2348 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2349 if( p->tabFlags & TF_HasGenerated ){ 2350 int ii, nNG = 0; 2351 testcase( p->tabFlags & TF_HasVirtual ); 2352 testcase( p->tabFlags & TF_HasStored ); 2353 for(ii=0; ii<p->nCol; ii++){ 2354 u32 colFlags = p->aCol[ii].colFlags; 2355 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2356 Expr *pX = p->aCol[ii].pDflt; 2357 testcase( colFlags & COLFLAG_VIRTUAL ); 2358 testcase( colFlags & COLFLAG_STORED ); 2359 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2360 /* If there are errors in resolving the expression, change the 2361 ** expression to a NULL. This prevents code generators that operate 2362 ** on the expression from inserting extra parts into the expression 2363 ** tree that have been allocated from lookaside memory, which is 2364 ** illegal in a schema and will lead to errors or heap corruption 2365 ** when the database connection closes. */ 2366 sqlite3ExprDelete(db, pX); 2367 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2368 } 2369 }else{ 2370 nNG++; 2371 } 2372 } 2373 if( nNG==0 ){ 2374 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2375 return; 2376 } 2377 } 2378 #endif 2379 2380 /* Estimate the average row size for the table and for all implied indices */ 2381 estimateTableWidth(p); 2382 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2383 estimateIndexWidth(pIdx); 2384 } 2385 2386 /* If not initializing, then create a record for the new table 2387 ** in the schema table of the database. 2388 ** 2389 ** If this is a TEMPORARY table, write the entry into the auxiliary 2390 ** file instead of into the main database file. 2391 */ 2392 if( !db->init.busy ){ 2393 int n; 2394 Vdbe *v; 2395 char *zType; /* "view" or "table" */ 2396 char *zType2; /* "VIEW" or "TABLE" */ 2397 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2398 2399 v = sqlite3GetVdbe(pParse); 2400 if( NEVER(v==0) ) return; 2401 2402 sqlite3VdbeAddOp1(v, OP_Close, 0); 2403 2404 /* 2405 ** Initialize zType for the new view or table. 2406 */ 2407 if( p->pSelect==0 ){ 2408 /* A regular table */ 2409 zType = "table"; 2410 zType2 = "TABLE"; 2411 #ifndef SQLITE_OMIT_VIEW 2412 }else{ 2413 /* A view */ 2414 zType = "view"; 2415 zType2 = "VIEW"; 2416 #endif 2417 } 2418 2419 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2420 ** statement to populate the new table. The root-page number for the 2421 ** new table is in register pParse->regRoot. 2422 ** 2423 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2424 ** suitable state to query for the column names and types to be used 2425 ** by the new table. 2426 ** 2427 ** A shared-cache write-lock is not required to write to the new table, 2428 ** as a schema-lock must have already been obtained to create it. Since 2429 ** a schema-lock excludes all other database users, the write-lock would 2430 ** be redundant. 2431 */ 2432 if( pSelect ){ 2433 SelectDest dest; /* Where the SELECT should store results */ 2434 int regYield; /* Register holding co-routine entry-point */ 2435 int addrTop; /* Top of the co-routine */ 2436 int regRec; /* A record to be insert into the new table */ 2437 int regRowid; /* Rowid of the next row to insert */ 2438 int addrInsLoop; /* Top of the loop for inserting rows */ 2439 Table *pSelTab; /* A table that describes the SELECT results */ 2440 2441 regYield = ++pParse->nMem; 2442 regRec = ++pParse->nMem; 2443 regRowid = ++pParse->nMem; 2444 assert(pParse->nTab==1); 2445 sqlite3MayAbort(pParse); 2446 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2447 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2448 pParse->nTab = 2; 2449 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2450 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2451 if( pParse->nErr ) return; 2452 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2453 if( pSelTab==0 ) return; 2454 assert( p->aCol==0 ); 2455 p->nCol = p->nNVCol = pSelTab->nCol; 2456 p->aCol = pSelTab->aCol; 2457 pSelTab->nCol = 0; 2458 pSelTab->aCol = 0; 2459 sqlite3DeleteTable(db, pSelTab); 2460 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2461 sqlite3Select(pParse, pSelect, &dest); 2462 if( pParse->nErr ) return; 2463 sqlite3VdbeEndCoroutine(v, regYield); 2464 sqlite3VdbeJumpHere(v, addrTop - 1); 2465 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2466 VdbeCoverage(v); 2467 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2468 sqlite3TableAffinity(v, p, 0); 2469 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2470 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2471 sqlite3VdbeGoto(v, addrInsLoop); 2472 sqlite3VdbeJumpHere(v, addrInsLoop); 2473 sqlite3VdbeAddOp1(v, OP_Close, 1); 2474 } 2475 2476 /* Compute the complete text of the CREATE statement */ 2477 if( pSelect ){ 2478 zStmt = createTableStmt(db, p); 2479 }else{ 2480 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2481 n = (int)(pEnd2->z - pParse->sNameToken.z); 2482 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2483 zStmt = sqlite3MPrintf(db, 2484 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2485 ); 2486 } 2487 2488 /* A slot for the record has already been allocated in the 2489 ** schema table. We just need to update that slot with all 2490 ** the information we've collected. 2491 */ 2492 sqlite3NestedParse(pParse, 2493 "UPDATE %Q." DFLT_SCHEMA_TABLE 2494 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2495 " WHERE rowid=#%d", 2496 db->aDb[iDb].zDbSName, 2497 zType, 2498 p->zName, 2499 p->zName, 2500 pParse->regRoot, 2501 zStmt, 2502 pParse->regRowid 2503 ); 2504 sqlite3DbFree(db, zStmt); 2505 sqlite3ChangeCookie(pParse, iDb); 2506 2507 #ifndef SQLITE_OMIT_AUTOINCREMENT 2508 /* Check to see if we need to create an sqlite_sequence table for 2509 ** keeping track of autoincrement keys. 2510 */ 2511 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2512 Db *pDb = &db->aDb[iDb]; 2513 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2514 if( pDb->pSchema->pSeqTab==0 ){ 2515 sqlite3NestedParse(pParse, 2516 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2517 pDb->zDbSName 2518 ); 2519 } 2520 } 2521 #endif 2522 2523 /* Reparse everything to update our internal data structures */ 2524 sqlite3VdbeAddParseSchemaOp(v, iDb, 2525 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2526 } 2527 2528 /* Add the table to the in-memory representation of the database. 2529 */ 2530 if( db->init.busy ){ 2531 Table *pOld; 2532 Schema *pSchema = p->pSchema; 2533 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2534 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2535 if( pOld ){ 2536 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2537 sqlite3OomFault(db); 2538 return; 2539 } 2540 pParse->pNewTable = 0; 2541 db->mDbFlags |= DBFLAG_SchemaChange; 2542 2543 #ifndef SQLITE_OMIT_ALTERTABLE 2544 if( !p->pSelect ){ 2545 const char *zName = (const char *)pParse->sNameToken.z; 2546 int nName; 2547 assert( !pSelect && pCons && pEnd ); 2548 if( pCons->z==0 ){ 2549 pCons = pEnd; 2550 } 2551 nName = (int)((const char *)pCons->z - zName); 2552 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2553 } 2554 #endif 2555 } 2556 } 2557 2558 #ifndef SQLITE_OMIT_VIEW 2559 /* 2560 ** The parser calls this routine in order to create a new VIEW 2561 */ 2562 void sqlite3CreateView( 2563 Parse *pParse, /* The parsing context */ 2564 Token *pBegin, /* The CREATE token that begins the statement */ 2565 Token *pName1, /* The token that holds the name of the view */ 2566 Token *pName2, /* The token that holds the name of the view */ 2567 ExprList *pCNames, /* Optional list of view column names */ 2568 Select *pSelect, /* A SELECT statement that will become the new view */ 2569 int isTemp, /* TRUE for a TEMPORARY view */ 2570 int noErr /* Suppress error messages if VIEW already exists */ 2571 ){ 2572 Table *p; 2573 int n; 2574 const char *z; 2575 Token sEnd; 2576 DbFixer sFix; 2577 Token *pName = 0; 2578 int iDb; 2579 sqlite3 *db = pParse->db; 2580 2581 if( pParse->nVar>0 ){ 2582 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2583 goto create_view_fail; 2584 } 2585 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2586 p = pParse->pNewTable; 2587 if( p==0 || pParse->nErr ) goto create_view_fail; 2588 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2589 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2590 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2591 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2592 2593 /* Make a copy of the entire SELECT statement that defines the view. 2594 ** This will force all the Expr.token.z values to be dynamically 2595 ** allocated rather than point to the input string - which means that 2596 ** they will persist after the current sqlite3_exec() call returns. 2597 */ 2598 pSelect->selFlags |= SF_View; 2599 if( IN_RENAME_OBJECT ){ 2600 p->pSelect = pSelect; 2601 pSelect = 0; 2602 }else{ 2603 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2604 } 2605 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2606 if( db->mallocFailed ) goto create_view_fail; 2607 2608 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2609 ** the end. 2610 */ 2611 sEnd = pParse->sLastToken; 2612 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2613 if( sEnd.z[0]!=';' ){ 2614 sEnd.z += sEnd.n; 2615 } 2616 sEnd.n = 0; 2617 n = (int)(sEnd.z - pBegin->z); 2618 assert( n>0 ); 2619 z = pBegin->z; 2620 while( sqlite3Isspace(z[n-1]) ){ n--; } 2621 sEnd.z = &z[n-1]; 2622 sEnd.n = 1; 2623 2624 /* Use sqlite3EndTable() to add the view to the schema table */ 2625 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2626 2627 create_view_fail: 2628 sqlite3SelectDelete(db, pSelect); 2629 if( IN_RENAME_OBJECT ){ 2630 sqlite3RenameExprlistUnmap(pParse, pCNames); 2631 } 2632 sqlite3ExprListDelete(db, pCNames); 2633 return; 2634 } 2635 #endif /* SQLITE_OMIT_VIEW */ 2636 2637 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2638 /* 2639 ** The Table structure pTable is really a VIEW. Fill in the names of 2640 ** the columns of the view in the pTable structure. Return the number 2641 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2642 */ 2643 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2644 Table *pSelTab; /* A fake table from which we get the result set */ 2645 Select *pSel; /* Copy of the SELECT that implements the view */ 2646 int nErr = 0; /* Number of errors encountered */ 2647 int n; /* Temporarily holds the number of cursors assigned */ 2648 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2649 #ifndef SQLITE_OMIT_VIRTUALTABLE 2650 int rc; 2651 #endif 2652 #ifndef SQLITE_OMIT_AUTHORIZATION 2653 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2654 #endif 2655 2656 assert( pTable ); 2657 2658 #ifndef SQLITE_OMIT_VIRTUALTABLE 2659 db->nSchemaLock++; 2660 rc = sqlite3VtabCallConnect(pParse, pTable); 2661 db->nSchemaLock--; 2662 if( rc ){ 2663 return 1; 2664 } 2665 if( IsVirtual(pTable) ) return 0; 2666 #endif 2667 2668 #ifndef SQLITE_OMIT_VIEW 2669 /* A positive nCol means the columns names for this view are 2670 ** already known. 2671 */ 2672 if( pTable->nCol>0 ) return 0; 2673 2674 /* A negative nCol is a special marker meaning that we are currently 2675 ** trying to compute the column names. If we enter this routine with 2676 ** a negative nCol, it means two or more views form a loop, like this: 2677 ** 2678 ** CREATE VIEW one AS SELECT * FROM two; 2679 ** CREATE VIEW two AS SELECT * FROM one; 2680 ** 2681 ** Actually, the error above is now caught prior to reaching this point. 2682 ** But the following test is still important as it does come up 2683 ** in the following: 2684 ** 2685 ** CREATE TABLE main.ex1(a); 2686 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2687 ** SELECT * FROM temp.ex1; 2688 */ 2689 if( pTable->nCol<0 ){ 2690 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2691 return 1; 2692 } 2693 assert( pTable->nCol>=0 ); 2694 2695 /* If we get this far, it means we need to compute the table names. 2696 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2697 ** "*" elements in the results set of the view and will assign cursors 2698 ** to the elements of the FROM clause. But we do not want these changes 2699 ** to be permanent. So the computation is done on a copy of the SELECT 2700 ** statement that defines the view. 2701 */ 2702 assert( pTable->pSelect ); 2703 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2704 if( pSel ){ 2705 #ifndef SQLITE_OMIT_ALTERTABLE 2706 u8 eParseMode = pParse->eParseMode; 2707 pParse->eParseMode = PARSE_MODE_NORMAL; 2708 #endif 2709 n = pParse->nTab; 2710 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2711 pTable->nCol = -1; 2712 DisableLookaside; 2713 #ifndef SQLITE_OMIT_AUTHORIZATION 2714 xAuth = db->xAuth; 2715 db->xAuth = 0; 2716 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2717 db->xAuth = xAuth; 2718 #else 2719 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2720 #endif 2721 pParse->nTab = n; 2722 if( pSelTab==0 ){ 2723 pTable->nCol = 0; 2724 nErr++; 2725 }else if( pTable->pCheck ){ 2726 /* CREATE VIEW name(arglist) AS ... 2727 ** The names of the columns in the table are taken from 2728 ** arglist which is stored in pTable->pCheck. The pCheck field 2729 ** normally holds CHECK constraints on an ordinary table, but for 2730 ** a VIEW it holds the list of column names. 2731 */ 2732 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2733 &pTable->nCol, &pTable->aCol); 2734 if( db->mallocFailed==0 2735 && pParse->nErr==0 2736 && pTable->nCol==pSel->pEList->nExpr 2737 ){ 2738 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2739 SQLITE_AFF_NONE); 2740 } 2741 }else{ 2742 /* CREATE VIEW name AS... without an argument list. Construct 2743 ** the column names from the SELECT statement that defines the view. 2744 */ 2745 assert( pTable->aCol==0 ); 2746 pTable->nCol = pSelTab->nCol; 2747 pTable->aCol = pSelTab->aCol; 2748 pSelTab->nCol = 0; 2749 pSelTab->aCol = 0; 2750 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2751 } 2752 pTable->nNVCol = pTable->nCol; 2753 sqlite3DeleteTable(db, pSelTab); 2754 sqlite3SelectDelete(db, pSel); 2755 EnableLookaside; 2756 #ifndef SQLITE_OMIT_ALTERTABLE 2757 pParse->eParseMode = eParseMode; 2758 #endif 2759 } else { 2760 nErr++; 2761 } 2762 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2763 if( db->mallocFailed ){ 2764 sqlite3DeleteColumnNames(db, pTable); 2765 pTable->aCol = 0; 2766 pTable->nCol = 0; 2767 } 2768 #endif /* SQLITE_OMIT_VIEW */ 2769 return nErr; 2770 } 2771 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2772 2773 #ifndef SQLITE_OMIT_VIEW 2774 /* 2775 ** Clear the column names from every VIEW in database idx. 2776 */ 2777 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2778 HashElem *i; 2779 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2780 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2781 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2782 Table *pTab = sqliteHashData(i); 2783 if( pTab->pSelect ){ 2784 sqlite3DeleteColumnNames(db, pTab); 2785 pTab->aCol = 0; 2786 pTab->nCol = 0; 2787 } 2788 } 2789 DbClearProperty(db, idx, DB_UnresetViews); 2790 } 2791 #else 2792 # define sqliteViewResetAll(A,B) 2793 #endif /* SQLITE_OMIT_VIEW */ 2794 2795 /* 2796 ** This function is called by the VDBE to adjust the internal schema 2797 ** used by SQLite when the btree layer moves a table root page. The 2798 ** root-page of a table or index in database iDb has changed from iFrom 2799 ** to iTo. 2800 ** 2801 ** Ticket #1728: The symbol table might still contain information 2802 ** on tables and/or indices that are the process of being deleted. 2803 ** If you are unlucky, one of those deleted indices or tables might 2804 ** have the same rootpage number as the real table or index that is 2805 ** being moved. So we cannot stop searching after the first match 2806 ** because the first match might be for one of the deleted indices 2807 ** or tables and not the table/index that is actually being moved. 2808 ** We must continue looping until all tables and indices with 2809 ** rootpage==iFrom have been converted to have a rootpage of iTo 2810 ** in order to be certain that we got the right one. 2811 */ 2812 #ifndef SQLITE_OMIT_AUTOVACUUM 2813 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2814 HashElem *pElem; 2815 Hash *pHash; 2816 Db *pDb; 2817 2818 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2819 pDb = &db->aDb[iDb]; 2820 pHash = &pDb->pSchema->tblHash; 2821 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2822 Table *pTab = sqliteHashData(pElem); 2823 if( pTab->tnum==iFrom ){ 2824 pTab->tnum = iTo; 2825 } 2826 } 2827 pHash = &pDb->pSchema->idxHash; 2828 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2829 Index *pIdx = sqliteHashData(pElem); 2830 if( pIdx->tnum==iFrom ){ 2831 pIdx->tnum = iTo; 2832 } 2833 } 2834 } 2835 #endif 2836 2837 /* 2838 ** Write code to erase the table with root-page iTable from database iDb. 2839 ** Also write code to modify the sqlite_master table and internal schema 2840 ** if a root-page of another table is moved by the btree-layer whilst 2841 ** erasing iTable (this can happen with an auto-vacuum database). 2842 */ 2843 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2844 Vdbe *v = sqlite3GetVdbe(pParse); 2845 int r1 = sqlite3GetTempReg(pParse); 2846 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2847 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2848 sqlite3MayAbort(pParse); 2849 #ifndef SQLITE_OMIT_AUTOVACUUM 2850 /* OP_Destroy stores an in integer r1. If this integer 2851 ** is non-zero, then it is the root page number of a table moved to 2852 ** location iTable. The following code modifies the sqlite_master table to 2853 ** reflect this. 2854 ** 2855 ** The "#NNN" in the SQL is a special constant that means whatever value 2856 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2857 ** token for additional information. 2858 */ 2859 sqlite3NestedParse(pParse, 2860 "UPDATE %Q." DFLT_SCHEMA_TABLE 2861 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2862 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2863 #endif 2864 sqlite3ReleaseTempReg(pParse, r1); 2865 } 2866 2867 /* 2868 ** Write VDBE code to erase table pTab and all associated indices on disk. 2869 ** Code to update the sqlite_master tables and internal schema definitions 2870 ** in case a root-page belonging to another table is moved by the btree layer 2871 ** is also added (this can happen with an auto-vacuum database). 2872 */ 2873 static void destroyTable(Parse *pParse, Table *pTab){ 2874 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2875 ** is not defined), then it is important to call OP_Destroy on the 2876 ** table and index root-pages in order, starting with the numerically 2877 ** largest root-page number. This guarantees that none of the root-pages 2878 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2879 ** following were coded: 2880 ** 2881 ** OP_Destroy 4 0 2882 ** ... 2883 ** OP_Destroy 5 0 2884 ** 2885 ** and root page 5 happened to be the largest root-page number in the 2886 ** database, then root page 5 would be moved to page 4 by the 2887 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2888 ** a free-list page. 2889 */ 2890 int iTab = pTab->tnum; 2891 int iDestroyed = 0; 2892 2893 while( 1 ){ 2894 Index *pIdx; 2895 int iLargest = 0; 2896 2897 if( iDestroyed==0 || iTab<iDestroyed ){ 2898 iLargest = iTab; 2899 } 2900 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2901 int iIdx = pIdx->tnum; 2902 assert( pIdx->pSchema==pTab->pSchema ); 2903 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2904 iLargest = iIdx; 2905 } 2906 } 2907 if( iLargest==0 ){ 2908 return; 2909 }else{ 2910 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2911 assert( iDb>=0 && iDb<pParse->db->nDb ); 2912 destroyRootPage(pParse, iLargest, iDb); 2913 iDestroyed = iLargest; 2914 } 2915 } 2916 } 2917 2918 /* 2919 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2920 ** after a DROP INDEX or DROP TABLE command. 2921 */ 2922 static void sqlite3ClearStatTables( 2923 Parse *pParse, /* The parsing context */ 2924 int iDb, /* The database number */ 2925 const char *zType, /* "idx" or "tbl" */ 2926 const char *zName /* Name of index or table */ 2927 ){ 2928 int i; 2929 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2930 for(i=1; i<=4; i++){ 2931 char zTab[24]; 2932 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2933 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2934 sqlite3NestedParse(pParse, 2935 "DELETE FROM %Q.%s WHERE %s=%Q", 2936 zDbName, zTab, zType, zName 2937 ); 2938 } 2939 } 2940 } 2941 2942 /* 2943 ** Generate code to drop a table. 2944 */ 2945 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2946 Vdbe *v; 2947 sqlite3 *db = pParse->db; 2948 Trigger *pTrigger; 2949 Db *pDb = &db->aDb[iDb]; 2950 2951 v = sqlite3GetVdbe(pParse); 2952 assert( v!=0 ); 2953 sqlite3BeginWriteOperation(pParse, 1, iDb); 2954 2955 #ifndef SQLITE_OMIT_VIRTUALTABLE 2956 if( IsVirtual(pTab) ){ 2957 sqlite3VdbeAddOp0(v, OP_VBegin); 2958 } 2959 #endif 2960 2961 /* Drop all triggers associated with the table being dropped. Code 2962 ** is generated to remove entries from sqlite_master and/or 2963 ** sqlite_temp_master if required. 2964 */ 2965 pTrigger = sqlite3TriggerList(pParse, pTab); 2966 while( pTrigger ){ 2967 assert( pTrigger->pSchema==pTab->pSchema || 2968 pTrigger->pSchema==db->aDb[1].pSchema ); 2969 sqlite3DropTriggerPtr(pParse, pTrigger); 2970 pTrigger = pTrigger->pNext; 2971 } 2972 2973 #ifndef SQLITE_OMIT_AUTOINCREMENT 2974 /* Remove any entries of the sqlite_sequence table associated with 2975 ** the table being dropped. This is done before the table is dropped 2976 ** at the btree level, in case the sqlite_sequence table needs to 2977 ** move as a result of the drop (can happen in auto-vacuum mode). 2978 */ 2979 if( pTab->tabFlags & TF_Autoincrement ){ 2980 sqlite3NestedParse(pParse, 2981 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2982 pDb->zDbSName, pTab->zName 2983 ); 2984 } 2985 #endif 2986 2987 /* Drop all entries in the schema table that refer to the 2988 ** table. The program name loops through the master table and deletes 2989 ** every row that refers to a table of the same name as the one being 2990 ** dropped. Triggers are handled separately because a trigger can be 2991 ** created in the temp database that refers to a table in another 2992 ** database. 2993 */ 2994 sqlite3NestedParse(pParse, 2995 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 2996 " WHERE tbl_name=%Q and type!='trigger'", 2997 pDb->zDbSName, pTab->zName); 2998 if( !isView && !IsVirtual(pTab) ){ 2999 destroyTable(pParse, pTab); 3000 } 3001 3002 /* Remove the table entry from SQLite's internal schema and modify 3003 ** the schema cookie. 3004 */ 3005 if( IsVirtual(pTab) ){ 3006 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3007 sqlite3MayAbort(pParse); 3008 } 3009 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3010 sqlite3ChangeCookie(pParse, iDb); 3011 sqliteViewResetAll(db, iDb); 3012 } 3013 3014 /* 3015 ** Return TRUE if shadow tables should be read-only in the current 3016 ** context. 3017 */ 3018 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3019 #ifndef SQLITE_OMIT_VIRTUALTABLE 3020 if( (db->flags & SQLITE_Defensive)!=0 3021 && db->pVtabCtx==0 3022 && db->nVdbeExec==0 3023 ){ 3024 return 1; 3025 } 3026 #endif 3027 return 0; 3028 } 3029 3030 /* 3031 ** Return true if it is not allowed to drop the given table 3032 */ 3033 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3034 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3035 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3036 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3037 return 1; 3038 } 3039 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3040 return 1; 3041 } 3042 return 0; 3043 } 3044 3045 /* 3046 ** This routine is called to do the work of a DROP TABLE statement. 3047 ** pName is the name of the table to be dropped. 3048 */ 3049 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3050 Table *pTab; 3051 Vdbe *v; 3052 sqlite3 *db = pParse->db; 3053 int iDb; 3054 3055 if( db->mallocFailed ){ 3056 goto exit_drop_table; 3057 } 3058 assert( pParse->nErr==0 ); 3059 assert( pName->nSrc==1 ); 3060 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3061 if( noErr ) db->suppressErr++; 3062 assert( isView==0 || isView==LOCATE_VIEW ); 3063 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3064 if( noErr ) db->suppressErr--; 3065 3066 if( pTab==0 ){ 3067 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3068 goto exit_drop_table; 3069 } 3070 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3071 assert( iDb>=0 && iDb<db->nDb ); 3072 3073 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3074 ** it is initialized. 3075 */ 3076 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3077 goto exit_drop_table; 3078 } 3079 #ifndef SQLITE_OMIT_AUTHORIZATION 3080 { 3081 int code; 3082 const char *zTab = SCHEMA_TABLE(iDb); 3083 const char *zDb = db->aDb[iDb].zDbSName; 3084 const char *zArg2 = 0; 3085 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3086 goto exit_drop_table; 3087 } 3088 if( isView ){ 3089 if( !OMIT_TEMPDB && iDb==1 ){ 3090 code = SQLITE_DROP_TEMP_VIEW; 3091 }else{ 3092 code = SQLITE_DROP_VIEW; 3093 } 3094 #ifndef SQLITE_OMIT_VIRTUALTABLE 3095 }else if( IsVirtual(pTab) ){ 3096 code = SQLITE_DROP_VTABLE; 3097 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3098 #endif 3099 }else{ 3100 if( !OMIT_TEMPDB && iDb==1 ){ 3101 code = SQLITE_DROP_TEMP_TABLE; 3102 }else{ 3103 code = SQLITE_DROP_TABLE; 3104 } 3105 } 3106 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3107 goto exit_drop_table; 3108 } 3109 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3110 goto exit_drop_table; 3111 } 3112 } 3113 #endif 3114 if( tableMayNotBeDropped(db, pTab) ){ 3115 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3116 goto exit_drop_table; 3117 } 3118 3119 #ifndef SQLITE_OMIT_VIEW 3120 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3121 ** on a table. 3122 */ 3123 if( isView && pTab->pSelect==0 ){ 3124 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3125 goto exit_drop_table; 3126 } 3127 if( !isView && pTab->pSelect ){ 3128 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3129 goto exit_drop_table; 3130 } 3131 #endif 3132 3133 /* Generate code to remove the table from the master table 3134 ** on disk. 3135 */ 3136 v = sqlite3GetVdbe(pParse); 3137 if( v ){ 3138 sqlite3BeginWriteOperation(pParse, 1, iDb); 3139 if( !isView ){ 3140 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3141 sqlite3FkDropTable(pParse, pName, pTab); 3142 } 3143 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3144 } 3145 3146 exit_drop_table: 3147 sqlite3SrcListDelete(db, pName); 3148 } 3149 3150 /* 3151 ** This routine is called to create a new foreign key on the table 3152 ** currently under construction. pFromCol determines which columns 3153 ** in the current table point to the foreign key. If pFromCol==0 then 3154 ** connect the key to the last column inserted. pTo is the name of 3155 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3156 ** of tables in the parent pTo table. flags contains all 3157 ** information about the conflict resolution algorithms specified 3158 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3159 ** 3160 ** An FKey structure is created and added to the table currently 3161 ** under construction in the pParse->pNewTable field. 3162 ** 3163 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3164 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3165 */ 3166 void sqlite3CreateForeignKey( 3167 Parse *pParse, /* Parsing context */ 3168 ExprList *pFromCol, /* Columns in this table that point to other table */ 3169 Token *pTo, /* Name of the other table */ 3170 ExprList *pToCol, /* Columns in the other table */ 3171 int flags /* Conflict resolution algorithms. */ 3172 ){ 3173 sqlite3 *db = pParse->db; 3174 #ifndef SQLITE_OMIT_FOREIGN_KEY 3175 FKey *pFKey = 0; 3176 FKey *pNextTo; 3177 Table *p = pParse->pNewTable; 3178 int nByte; 3179 int i; 3180 int nCol; 3181 char *z; 3182 3183 assert( pTo!=0 ); 3184 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3185 if( pFromCol==0 ){ 3186 int iCol = p->nCol-1; 3187 if( NEVER(iCol<0) ) goto fk_end; 3188 if( pToCol && pToCol->nExpr!=1 ){ 3189 sqlite3ErrorMsg(pParse, "foreign key on %s" 3190 " should reference only one column of table %T", 3191 p->aCol[iCol].zName, pTo); 3192 goto fk_end; 3193 } 3194 nCol = 1; 3195 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3196 sqlite3ErrorMsg(pParse, 3197 "number of columns in foreign key does not match the number of " 3198 "columns in the referenced table"); 3199 goto fk_end; 3200 }else{ 3201 nCol = pFromCol->nExpr; 3202 } 3203 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3204 if( pToCol ){ 3205 for(i=0; i<pToCol->nExpr; i++){ 3206 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3207 } 3208 } 3209 pFKey = sqlite3DbMallocZero(db, nByte ); 3210 if( pFKey==0 ){ 3211 goto fk_end; 3212 } 3213 pFKey->pFrom = p; 3214 pFKey->pNextFrom = p->pFKey; 3215 z = (char*)&pFKey->aCol[nCol]; 3216 pFKey->zTo = z; 3217 if( IN_RENAME_OBJECT ){ 3218 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3219 } 3220 memcpy(z, pTo->z, pTo->n); 3221 z[pTo->n] = 0; 3222 sqlite3Dequote(z); 3223 z += pTo->n+1; 3224 pFKey->nCol = nCol; 3225 if( pFromCol==0 ){ 3226 pFKey->aCol[0].iFrom = p->nCol-1; 3227 }else{ 3228 for(i=0; i<nCol; i++){ 3229 int j; 3230 for(j=0; j<p->nCol; j++){ 3231 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3232 pFKey->aCol[i].iFrom = j; 3233 break; 3234 } 3235 } 3236 if( j>=p->nCol ){ 3237 sqlite3ErrorMsg(pParse, 3238 "unknown column \"%s\" in foreign key definition", 3239 pFromCol->a[i].zEName); 3240 goto fk_end; 3241 } 3242 if( IN_RENAME_OBJECT ){ 3243 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3244 } 3245 } 3246 } 3247 if( pToCol ){ 3248 for(i=0; i<nCol; i++){ 3249 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3250 pFKey->aCol[i].zCol = z; 3251 if( IN_RENAME_OBJECT ){ 3252 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3253 } 3254 memcpy(z, pToCol->a[i].zEName, n); 3255 z[n] = 0; 3256 z += n+1; 3257 } 3258 } 3259 pFKey->isDeferred = 0; 3260 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3261 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3262 3263 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3264 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3265 pFKey->zTo, (void *)pFKey 3266 ); 3267 if( pNextTo==pFKey ){ 3268 sqlite3OomFault(db); 3269 goto fk_end; 3270 } 3271 if( pNextTo ){ 3272 assert( pNextTo->pPrevTo==0 ); 3273 pFKey->pNextTo = pNextTo; 3274 pNextTo->pPrevTo = pFKey; 3275 } 3276 3277 /* Link the foreign key to the table as the last step. 3278 */ 3279 p->pFKey = pFKey; 3280 pFKey = 0; 3281 3282 fk_end: 3283 sqlite3DbFree(db, pFKey); 3284 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3285 sqlite3ExprListDelete(db, pFromCol); 3286 sqlite3ExprListDelete(db, pToCol); 3287 } 3288 3289 /* 3290 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3291 ** clause is seen as part of a foreign key definition. The isDeferred 3292 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3293 ** The behavior of the most recently created foreign key is adjusted 3294 ** accordingly. 3295 */ 3296 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3297 #ifndef SQLITE_OMIT_FOREIGN_KEY 3298 Table *pTab; 3299 FKey *pFKey; 3300 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3301 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3302 pFKey->isDeferred = (u8)isDeferred; 3303 #endif 3304 } 3305 3306 /* 3307 ** Generate code that will erase and refill index *pIdx. This is 3308 ** used to initialize a newly created index or to recompute the 3309 ** content of an index in response to a REINDEX command. 3310 ** 3311 ** if memRootPage is not negative, it means that the index is newly 3312 ** created. The register specified by memRootPage contains the 3313 ** root page number of the index. If memRootPage is negative, then 3314 ** the index already exists and must be cleared before being refilled and 3315 ** the root page number of the index is taken from pIndex->tnum. 3316 */ 3317 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3318 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3319 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3320 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3321 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3322 int addr1; /* Address of top of loop */ 3323 int addr2; /* Address to jump to for next iteration */ 3324 int tnum; /* Root page of index */ 3325 int iPartIdxLabel; /* Jump to this label to skip a row */ 3326 Vdbe *v; /* Generate code into this virtual machine */ 3327 KeyInfo *pKey; /* KeyInfo for index */ 3328 int regRecord; /* Register holding assembled index record */ 3329 sqlite3 *db = pParse->db; /* The database connection */ 3330 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3331 3332 #ifndef SQLITE_OMIT_AUTHORIZATION 3333 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3334 db->aDb[iDb].zDbSName ) ){ 3335 return; 3336 } 3337 #endif 3338 3339 /* Require a write-lock on the table to perform this operation */ 3340 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3341 3342 v = sqlite3GetVdbe(pParse); 3343 if( v==0 ) return; 3344 if( memRootPage>=0 ){ 3345 tnum = memRootPage; 3346 }else{ 3347 tnum = pIndex->tnum; 3348 } 3349 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3350 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3351 3352 /* Open the sorter cursor if we are to use one. */ 3353 iSorter = pParse->nTab++; 3354 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3355 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3356 3357 /* Open the table. Loop through all rows of the table, inserting index 3358 ** records into the sorter. */ 3359 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3360 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3361 regRecord = sqlite3GetTempReg(pParse); 3362 sqlite3MultiWrite(pParse); 3363 3364 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3365 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3366 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3367 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3368 sqlite3VdbeJumpHere(v, addr1); 3369 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3370 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3371 (char *)pKey, P4_KEYINFO); 3372 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3373 3374 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3375 if( IsUniqueIndex(pIndex) ){ 3376 int j2 = sqlite3VdbeGoto(v, 1); 3377 addr2 = sqlite3VdbeCurrentAddr(v); 3378 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3379 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3380 pIndex->nKeyCol); VdbeCoverage(v); 3381 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3382 sqlite3VdbeJumpHere(v, j2); 3383 }else{ 3384 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3385 ** abort. The exception is if one of the indexed expressions contains a 3386 ** user function that throws an exception when it is evaluated. But the 3387 ** overhead of adding a statement journal to a CREATE INDEX statement is 3388 ** very small (since most of the pages written do not contain content that 3389 ** needs to be restored if the statement aborts), so we call 3390 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3391 sqlite3MayAbort(pParse); 3392 addr2 = sqlite3VdbeCurrentAddr(v); 3393 } 3394 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3395 if( !pIndex->bAscKeyBug ){ 3396 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3397 ** faster by avoiding unnecessary seeks. But the optimization does 3398 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3399 ** with DESC primary keys, since those indexes have there keys in 3400 ** a different order from the main table. 3401 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3402 */ 3403 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3404 } 3405 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3406 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3407 sqlite3ReleaseTempReg(pParse, regRecord); 3408 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3409 sqlite3VdbeJumpHere(v, addr1); 3410 3411 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3412 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3413 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3414 } 3415 3416 /* 3417 ** Allocate heap space to hold an Index object with nCol columns. 3418 ** 3419 ** Increase the allocation size to provide an extra nExtra bytes 3420 ** of 8-byte aligned space after the Index object and return a 3421 ** pointer to this extra space in *ppExtra. 3422 */ 3423 Index *sqlite3AllocateIndexObject( 3424 sqlite3 *db, /* Database connection */ 3425 i16 nCol, /* Total number of columns in the index */ 3426 int nExtra, /* Number of bytes of extra space to alloc */ 3427 char **ppExtra /* Pointer to the "extra" space */ 3428 ){ 3429 Index *p; /* Allocated index object */ 3430 int nByte; /* Bytes of space for Index object + arrays */ 3431 3432 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3433 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3434 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3435 sizeof(i16)*nCol + /* Index.aiColumn */ 3436 sizeof(u8)*nCol); /* Index.aSortOrder */ 3437 p = sqlite3DbMallocZero(db, nByte + nExtra); 3438 if( p ){ 3439 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3440 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3441 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3442 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3443 p->aSortOrder = (u8*)pExtra; 3444 p->nColumn = nCol; 3445 p->nKeyCol = nCol - 1; 3446 *ppExtra = ((char*)p) + nByte; 3447 } 3448 return p; 3449 } 3450 3451 /* 3452 ** If expression list pList contains an expression that was parsed with 3453 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3454 ** pParse and return non-zero. Otherwise, return zero. 3455 */ 3456 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3457 if( pList ){ 3458 int i; 3459 for(i=0; i<pList->nExpr; i++){ 3460 if( pList->a[i].bNulls ){ 3461 u8 sf = pList->a[i].sortFlags; 3462 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3463 (sf==0 || sf==3) ? "FIRST" : "LAST" 3464 ); 3465 return 1; 3466 } 3467 } 3468 } 3469 return 0; 3470 } 3471 3472 /* 3473 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3474 ** and pTblList is the name of the table that is to be indexed. Both will 3475 ** be NULL for a primary key or an index that is created to satisfy a 3476 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3477 ** as the table to be indexed. pParse->pNewTable is a table that is 3478 ** currently being constructed by a CREATE TABLE statement. 3479 ** 3480 ** pList is a list of columns to be indexed. pList will be NULL if this 3481 ** is a primary key or unique-constraint on the most recent column added 3482 ** to the table currently under construction. 3483 */ 3484 void sqlite3CreateIndex( 3485 Parse *pParse, /* All information about this parse */ 3486 Token *pName1, /* First part of index name. May be NULL */ 3487 Token *pName2, /* Second part of index name. May be NULL */ 3488 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3489 ExprList *pList, /* A list of columns to be indexed */ 3490 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3491 Token *pStart, /* The CREATE token that begins this statement */ 3492 Expr *pPIWhere, /* WHERE clause for partial indices */ 3493 int sortOrder, /* Sort order of primary key when pList==NULL */ 3494 int ifNotExist, /* Omit error if index already exists */ 3495 u8 idxType /* The index type */ 3496 ){ 3497 Table *pTab = 0; /* Table to be indexed */ 3498 Index *pIndex = 0; /* The index to be created */ 3499 char *zName = 0; /* Name of the index */ 3500 int nName; /* Number of characters in zName */ 3501 int i, j; 3502 DbFixer sFix; /* For assigning database names to pTable */ 3503 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3504 sqlite3 *db = pParse->db; 3505 Db *pDb; /* The specific table containing the indexed database */ 3506 int iDb; /* Index of the database that is being written */ 3507 Token *pName = 0; /* Unqualified name of the index to create */ 3508 struct ExprList_item *pListItem; /* For looping over pList */ 3509 int nExtra = 0; /* Space allocated for zExtra[] */ 3510 int nExtraCol; /* Number of extra columns needed */ 3511 char *zExtra = 0; /* Extra space after the Index object */ 3512 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3513 3514 if( db->mallocFailed || pParse->nErr>0 ){ 3515 goto exit_create_index; 3516 } 3517 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3518 goto exit_create_index; 3519 } 3520 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3521 goto exit_create_index; 3522 } 3523 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3524 goto exit_create_index; 3525 } 3526 3527 /* 3528 ** Find the table that is to be indexed. Return early if not found. 3529 */ 3530 if( pTblName!=0 ){ 3531 3532 /* Use the two-part index name to determine the database 3533 ** to search for the table. 'Fix' the table name to this db 3534 ** before looking up the table. 3535 */ 3536 assert( pName1 && pName2 ); 3537 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3538 if( iDb<0 ) goto exit_create_index; 3539 assert( pName && pName->z ); 3540 3541 #ifndef SQLITE_OMIT_TEMPDB 3542 /* If the index name was unqualified, check if the table 3543 ** is a temp table. If so, set the database to 1. Do not do this 3544 ** if initialising a database schema. 3545 */ 3546 if( !db->init.busy ){ 3547 pTab = sqlite3SrcListLookup(pParse, pTblName); 3548 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3549 iDb = 1; 3550 } 3551 } 3552 #endif 3553 3554 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3555 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3556 /* Because the parser constructs pTblName from a single identifier, 3557 ** sqlite3FixSrcList can never fail. */ 3558 assert(0); 3559 } 3560 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3561 assert( db->mallocFailed==0 || pTab==0 ); 3562 if( pTab==0 ) goto exit_create_index; 3563 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3564 sqlite3ErrorMsg(pParse, 3565 "cannot create a TEMP index on non-TEMP table \"%s\"", 3566 pTab->zName); 3567 goto exit_create_index; 3568 } 3569 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3570 }else{ 3571 assert( pName==0 ); 3572 assert( pStart==0 ); 3573 pTab = pParse->pNewTable; 3574 if( !pTab ) goto exit_create_index; 3575 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3576 } 3577 pDb = &db->aDb[iDb]; 3578 3579 assert( pTab!=0 ); 3580 assert( pParse->nErr==0 ); 3581 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3582 && db->init.busy==0 3583 && pTblName!=0 3584 #if SQLITE_USER_AUTHENTICATION 3585 && sqlite3UserAuthTable(pTab->zName)==0 3586 #endif 3587 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3588 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3589 #endif 3590 ){ 3591 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3592 goto exit_create_index; 3593 } 3594 #ifndef SQLITE_OMIT_VIEW 3595 if( pTab->pSelect ){ 3596 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3597 goto exit_create_index; 3598 } 3599 #endif 3600 #ifndef SQLITE_OMIT_VIRTUALTABLE 3601 if( IsVirtual(pTab) ){ 3602 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3603 goto exit_create_index; 3604 } 3605 #endif 3606 3607 /* 3608 ** Find the name of the index. Make sure there is not already another 3609 ** index or table with the same name. 3610 ** 3611 ** Exception: If we are reading the names of permanent indices from the 3612 ** sqlite_master table (because some other process changed the schema) and 3613 ** one of the index names collides with the name of a temporary table or 3614 ** index, then we will continue to process this index. 3615 ** 3616 ** If pName==0 it means that we are 3617 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3618 ** own name. 3619 */ 3620 if( pName ){ 3621 zName = sqlite3NameFromToken(db, pName); 3622 if( zName==0 ) goto exit_create_index; 3623 assert( pName->z!=0 ); 3624 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3625 goto exit_create_index; 3626 } 3627 if( !IN_RENAME_OBJECT ){ 3628 if( !db->init.busy ){ 3629 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3630 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3631 goto exit_create_index; 3632 } 3633 } 3634 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3635 if( !ifNotExist ){ 3636 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3637 }else{ 3638 assert( !db->init.busy ); 3639 sqlite3CodeVerifySchema(pParse, iDb); 3640 } 3641 goto exit_create_index; 3642 } 3643 } 3644 }else{ 3645 int n; 3646 Index *pLoop; 3647 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3648 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3649 if( zName==0 ){ 3650 goto exit_create_index; 3651 } 3652 3653 /* Automatic index names generated from within sqlite3_declare_vtab() 3654 ** must have names that are distinct from normal automatic index names. 3655 ** The following statement converts "sqlite3_autoindex..." into 3656 ** "sqlite3_butoindex..." in order to make the names distinct. 3657 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3658 if( IN_SPECIAL_PARSE ) zName[7]++; 3659 } 3660 3661 /* Check for authorization to create an index. 3662 */ 3663 #ifndef SQLITE_OMIT_AUTHORIZATION 3664 if( !IN_RENAME_OBJECT ){ 3665 const char *zDb = pDb->zDbSName; 3666 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3667 goto exit_create_index; 3668 } 3669 i = SQLITE_CREATE_INDEX; 3670 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3671 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3672 goto exit_create_index; 3673 } 3674 } 3675 #endif 3676 3677 /* If pList==0, it means this routine was called to make a primary 3678 ** key out of the last column added to the table under construction. 3679 ** So create a fake list to simulate this. 3680 */ 3681 if( pList==0 ){ 3682 Token prevCol; 3683 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3684 pCol->colFlags |= COLFLAG_UNIQUE; 3685 sqlite3TokenInit(&prevCol, pCol->zName); 3686 pList = sqlite3ExprListAppend(pParse, 0, 3687 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3688 if( pList==0 ) goto exit_create_index; 3689 assert( pList->nExpr==1 ); 3690 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3691 }else{ 3692 sqlite3ExprListCheckLength(pParse, pList, "index"); 3693 if( pParse->nErr ) goto exit_create_index; 3694 } 3695 3696 /* Figure out how many bytes of space are required to store explicitly 3697 ** specified collation sequence names. 3698 */ 3699 for(i=0; i<pList->nExpr; i++){ 3700 Expr *pExpr = pList->a[i].pExpr; 3701 assert( pExpr!=0 ); 3702 if( pExpr->op==TK_COLLATE ){ 3703 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3704 } 3705 } 3706 3707 /* 3708 ** Allocate the index structure. 3709 */ 3710 nName = sqlite3Strlen30(zName); 3711 nExtraCol = pPk ? pPk->nKeyCol : 1; 3712 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3713 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3714 nName + nExtra + 1, &zExtra); 3715 if( db->mallocFailed ){ 3716 goto exit_create_index; 3717 } 3718 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3719 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3720 pIndex->zName = zExtra; 3721 zExtra += nName + 1; 3722 memcpy(pIndex->zName, zName, nName+1); 3723 pIndex->pTable = pTab; 3724 pIndex->onError = (u8)onError; 3725 pIndex->uniqNotNull = onError!=OE_None; 3726 pIndex->idxType = idxType; 3727 pIndex->pSchema = db->aDb[iDb].pSchema; 3728 pIndex->nKeyCol = pList->nExpr; 3729 if( pPIWhere ){ 3730 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3731 pIndex->pPartIdxWhere = pPIWhere; 3732 pPIWhere = 0; 3733 } 3734 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3735 3736 /* Check to see if we should honor DESC requests on index columns 3737 */ 3738 if( pDb->pSchema->file_format>=4 ){ 3739 sortOrderMask = -1; /* Honor DESC */ 3740 }else{ 3741 sortOrderMask = 0; /* Ignore DESC */ 3742 } 3743 3744 /* Analyze the list of expressions that form the terms of the index and 3745 ** report any errors. In the common case where the expression is exactly 3746 ** a table column, store that column in aiColumn[]. For general expressions, 3747 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3748 ** 3749 ** TODO: Issue a warning if two or more columns of the index are identical. 3750 ** TODO: Issue a warning if the table primary key is used as part of the 3751 ** index key. 3752 */ 3753 pListItem = pList->a; 3754 if( IN_RENAME_OBJECT ){ 3755 pIndex->aColExpr = pList; 3756 pList = 0; 3757 } 3758 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3759 Expr *pCExpr; /* The i-th index expression */ 3760 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3761 const char *zColl; /* Collation sequence name */ 3762 3763 sqlite3StringToId(pListItem->pExpr); 3764 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3765 if( pParse->nErr ) goto exit_create_index; 3766 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3767 if( pCExpr->op!=TK_COLUMN ){ 3768 if( pTab==pParse->pNewTable ){ 3769 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3770 "UNIQUE constraints"); 3771 goto exit_create_index; 3772 } 3773 if( pIndex->aColExpr==0 ){ 3774 pIndex->aColExpr = pList; 3775 pList = 0; 3776 } 3777 j = XN_EXPR; 3778 pIndex->aiColumn[i] = XN_EXPR; 3779 pIndex->uniqNotNull = 0; 3780 }else{ 3781 j = pCExpr->iColumn; 3782 assert( j<=0x7fff ); 3783 if( j<0 ){ 3784 j = pTab->iPKey; 3785 }else{ 3786 if( pTab->aCol[j].notNull==0 ){ 3787 pIndex->uniqNotNull = 0; 3788 } 3789 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3790 pIndex->bHasVCol = 1; 3791 } 3792 } 3793 pIndex->aiColumn[i] = (i16)j; 3794 } 3795 zColl = 0; 3796 if( pListItem->pExpr->op==TK_COLLATE ){ 3797 int nColl; 3798 zColl = pListItem->pExpr->u.zToken; 3799 nColl = sqlite3Strlen30(zColl) + 1; 3800 assert( nExtra>=nColl ); 3801 memcpy(zExtra, zColl, nColl); 3802 zColl = zExtra; 3803 zExtra += nColl; 3804 nExtra -= nColl; 3805 }else if( j>=0 ){ 3806 zColl = pTab->aCol[j].zColl; 3807 } 3808 if( !zColl ) zColl = sqlite3StrBINARY; 3809 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3810 goto exit_create_index; 3811 } 3812 pIndex->azColl[i] = zColl; 3813 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3814 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3815 } 3816 3817 /* Append the table key to the end of the index. For WITHOUT ROWID 3818 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3819 ** normal tables (when pPk==0) this will be the rowid. 3820 */ 3821 if( pPk ){ 3822 for(j=0; j<pPk->nKeyCol; j++){ 3823 int x = pPk->aiColumn[j]; 3824 assert( x>=0 ); 3825 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3826 pIndex->nColumn--; 3827 }else{ 3828 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3829 pIndex->aiColumn[i] = x; 3830 pIndex->azColl[i] = pPk->azColl[j]; 3831 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3832 i++; 3833 } 3834 } 3835 assert( i==pIndex->nColumn ); 3836 }else{ 3837 pIndex->aiColumn[i] = XN_ROWID; 3838 pIndex->azColl[i] = sqlite3StrBINARY; 3839 } 3840 sqlite3DefaultRowEst(pIndex); 3841 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3842 3843 /* If this index contains every column of its table, then mark 3844 ** it as a covering index */ 3845 assert( HasRowid(pTab) 3846 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3847 recomputeColumnsNotIndexed(pIndex); 3848 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3849 pIndex->isCovering = 1; 3850 for(j=0; j<pTab->nCol; j++){ 3851 if( j==pTab->iPKey ) continue; 3852 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3853 pIndex->isCovering = 0; 3854 break; 3855 } 3856 } 3857 3858 if( pTab==pParse->pNewTable ){ 3859 /* This routine has been called to create an automatic index as a 3860 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3861 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3862 ** i.e. one of: 3863 ** 3864 ** CREATE TABLE t(x PRIMARY KEY, y); 3865 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3866 ** 3867 ** Either way, check to see if the table already has such an index. If 3868 ** so, don't bother creating this one. This only applies to 3869 ** automatically created indices. Users can do as they wish with 3870 ** explicit indices. 3871 ** 3872 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3873 ** (and thus suppressing the second one) even if they have different 3874 ** sort orders. 3875 ** 3876 ** If there are different collating sequences or if the columns of 3877 ** the constraint occur in different orders, then the constraints are 3878 ** considered distinct and both result in separate indices. 3879 */ 3880 Index *pIdx; 3881 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3882 int k; 3883 assert( IsUniqueIndex(pIdx) ); 3884 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3885 assert( IsUniqueIndex(pIndex) ); 3886 3887 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3888 for(k=0; k<pIdx->nKeyCol; k++){ 3889 const char *z1; 3890 const char *z2; 3891 assert( pIdx->aiColumn[k]>=0 ); 3892 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3893 z1 = pIdx->azColl[k]; 3894 z2 = pIndex->azColl[k]; 3895 if( sqlite3StrICmp(z1, z2) ) break; 3896 } 3897 if( k==pIdx->nKeyCol ){ 3898 if( pIdx->onError!=pIndex->onError ){ 3899 /* This constraint creates the same index as a previous 3900 ** constraint specified somewhere in the CREATE TABLE statement. 3901 ** However the ON CONFLICT clauses are different. If both this 3902 ** constraint and the previous equivalent constraint have explicit 3903 ** ON CONFLICT clauses this is an error. Otherwise, use the 3904 ** explicitly specified behavior for the index. 3905 */ 3906 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3907 sqlite3ErrorMsg(pParse, 3908 "conflicting ON CONFLICT clauses specified", 0); 3909 } 3910 if( pIdx->onError==OE_Default ){ 3911 pIdx->onError = pIndex->onError; 3912 } 3913 } 3914 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3915 if( IN_RENAME_OBJECT ){ 3916 pIndex->pNext = pParse->pNewIndex; 3917 pParse->pNewIndex = pIndex; 3918 pIndex = 0; 3919 } 3920 goto exit_create_index; 3921 } 3922 } 3923 } 3924 3925 if( !IN_RENAME_OBJECT ){ 3926 3927 /* Link the new Index structure to its table and to the other 3928 ** in-memory database structures. 3929 */ 3930 assert( pParse->nErr==0 ); 3931 if( db->init.busy ){ 3932 Index *p; 3933 assert( !IN_SPECIAL_PARSE ); 3934 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3935 if( pTblName!=0 ){ 3936 pIndex->tnum = db->init.newTnum; 3937 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3938 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3939 pParse->rc = SQLITE_CORRUPT_BKPT; 3940 goto exit_create_index; 3941 } 3942 } 3943 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3944 pIndex->zName, pIndex); 3945 if( p ){ 3946 assert( p==pIndex ); /* Malloc must have failed */ 3947 sqlite3OomFault(db); 3948 goto exit_create_index; 3949 } 3950 db->mDbFlags |= DBFLAG_SchemaChange; 3951 } 3952 3953 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3954 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3955 ** emit code to allocate the index rootpage on disk and make an entry for 3956 ** the index in the sqlite_master table and populate the index with 3957 ** content. But, do not do this if we are simply reading the sqlite_master 3958 ** table to parse the schema, or if this index is the PRIMARY KEY index 3959 ** of a WITHOUT ROWID table. 3960 ** 3961 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3962 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3963 ** has just been created, it contains no data and the index initialization 3964 ** step can be skipped. 3965 */ 3966 else if( HasRowid(pTab) || pTblName!=0 ){ 3967 Vdbe *v; 3968 char *zStmt; 3969 int iMem = ++pParse->nMem; 3970 3971 v = sqlite3GetVdbe(pParse); 3972 if( v==0 ) goto exit_create_index; 3973 3974 sqlite3BeginWriteOperation(pParse, 1, iDb); 3975 3976 /* Create the rootpage for the index using CreateIndex. But before 3977 ** doing so, code a Noop instruction and store its address in 3978 ** Index.tnum. This is required in case this index is actually a 3979 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3980 ** that case the convertToWithoutRowidTable() routine will replace 3981 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3982 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3983 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3984 3985 /* Gather the complete text of the CREATE INDEX statement into 3986 ** the zStmt variable 3987 */ 3988 assert( pName!=0 || pStart==0 ); 3989 if( pStart ){ 3990 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3991 if( pName->z[n-1]==';' ) n--; 3992 /* A named index with an explicit CREATE INDEX statement */ 3993 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3994 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3995 }else{ 3996 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3997 /* zStmt = sqlite3MPrintf(""); */ 3998 zStmt = 0; 3999 } 4000 4001 /* Add an entry in sqlite_master for this index 4002 */ 4003 sqlite3NestedParse(pParse, 4004 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4005 db->aDb[iDb].zDbSName, 4006 pIndex->zName, 4007 pTab->zName, 4008 iMem, 4009 zStmt 4010 ); 4011 sqlite3DbFree(db, zStmt); 4012 4013 /* Fill the index with data and reparse the schema. Code an OP_Expire 4014 ** to invalidate all pre-compiled statements. 4015 */ 4016 if( pTblName ){ 4017 sqlite3RefillIndex(pParse, pIndex, iMem); 4018 sqlite3ChangeCookie(pParse, iDb); 4019 sqlite3VdbeAddParseSchemaOp(v, iDb, 4020 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 4021 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4022 } 4023 4024 sqlite3VdbeJumpHere(v, pIndex->tnum); 4025 } 4026 } 4027 if( db->init.busy || pTblName==0 ){ 4028 pIndex->pNext = pTab->pIndex; 4029 pTab->pIndex = pIndex; 4030 pIndex = 0; 4031 } 4032 else if( IN_RENAME_OBJECT ){ 4033 assert( pParse->pNewIndex==0 ); 4034 pParse->pNewIndex = pIndex; 4035 pIndex = 0; 4036 } 4037 4038 /* Clean up before exiting */ 4039 exit_create_index: 4040 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4041 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 4042 Index **ppFrom = &pTab->pIndex; 4043 Index *pThis; 4044 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4045 Index *pNext; 4046 if( pThis->onError!=OE_Replace ) continue; 4047 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4048 *ppFrom = pNext; 4049 pThis->pNext = pNext->pNext; 4050 pNext->pNext = pThis; 4051 ppFrom = &pNext->pNext; 4052 } 4053 break; 4054 } 4055 } 4056 sqlite3ExprDelete(db, pPIWhere); 4057 sqlite3ExprListDelete(db, pList); 4058 sqlite3SrcListDelete(db, pTblName); 4059 sqlite3DbFree(db, zName); 4060 } 4061 4062 /* 4063 ** Fill the Index.aiRowEst[] array with default information - information 4064 ** to be used when we have not run the ANALYZE command. 4065 ** 4066 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4067 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4068 ** number of rows in the table that match any particular value of the 4069 ** first column of the index. aiRowEst[2] is an estimate of the number 4070 ** of rows that match any particular combination of the first 2 columns 4071 ** of the index. And so forth. It must always be the case that 4072 * 4073 ** aiRowEst[N]<=aiRowEst[N-1] 4074 ** aiRowEst[N]>=1 4075 ** 4076 ** Apart from that, we have little to go on besides intuition as to 4077 ** how aiRowEst[] should be initialized. The numbers generated here 4078 ** are based on typical values found in actual indices. 4079 */ 4080 void sqlite3DefaultRowEst(Index *pIdx){ 4081 /* 10, 9, 8, 7, 6 */ 4082 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4083 LogEst *a = pIdx->aiRowLogEst; 4084 LogEst x; 4085 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4086 int i; 4087 4088 /* Indexes with default row estimates should not have stat1 data */ 4089 assert( !pIdx->hasStat1 ); 4090 4091 /* Set the first entry (number of rows in the index) to the estimated 4092 ** number of rows in the table, or half the number of rows in the table 4093 ** for a partial index. 4094 ** 4095 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4096 ** table but other parts we are having to guess at, then do not let the 4097 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4098 ** Failure to do this can cause the indexes for which we do not have 4099 ** stat1 data to be ignored by the query planner. tag-20200527-1 4100 */ 4101 x = pIdx->pTable->nRowLogEst; 4102 assert( 99==sqlite3LogEst(1000) ); 4103 if( x<99 ){ 4104 pIdx->pTable->nRowLogEst = x = 99; 4105 } 4106 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) ); 4107 a[0] = x; 4108 4109 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4110 ** 6 and each subsequent value (if any) is 5. */ 4111 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4112 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4113 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4114 } 4115 4116 assert( 0==sqlite3LogEst(1) ); 4117 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4118 } 4119 4120 /* 4121 ** This routine will drop an existing named index. This routine 4122 ** implements the DROP INDEX statement. 4123 */ 4124 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4125 Index *pIndex; 4126 Vdbe *v; 4127 sqlite3 *db = pParse->db; 4128 int iDb; 4129 4130 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4131 if( db->mallocFailed ){ 4132 goto exit_drop_index; 4133 } 4134 assert( pName->nSrc==1 ); 4135 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4136 goto exit_drop_index; 4137 } 4138 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4139 if( pIndex==0 ){ 4140 if( !ifExists ){ 4141 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4142 }else{ 4143 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4144 } 4145 pParse->checkSchema = 1; 4146 goto exit_drop_index; 4147 } 4148 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4149 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4150 "or PRIMARY KEY constraint cannot be dropped", 0); 4151 goto exit_drop_index; 4152 } 4153 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4154 #ifndef SQLITE_OMIT_AUTHORIZATION 4155 { 4156 int code = SQLITE_DROP_INDEX; 4157 Table *pTab = pIndex->pTable; 4158 const char *zDb = db->aDb[iDb].zDbSName; 4159 const char *zTab = SCHEMA_TABLE(iDb); 4160 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4161 goto exit_drop_index; 4162 } 4163 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4164 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4165 goto exit_drop_index; 4166 } 4167 } 4168 #endif 4169 4170 /* Generate code to remove the index and from the master table */ 4171 v = sqlite3GetVdbe(pParse); 4172 if( v ){ 4173 sqlite3BeginWriteOperation(pParse, 1, iDb); 4174 sqlite3NestedParse(pParse, 4175 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4176 db->aDb[iDb].zDbSName, pIndex->zName 4177 ); 4178 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4179 sqlite3ChangeCookie(pParse, iDb); 4180 destroyRootPage(pParse, pIndex->tnum, iDb); 4181 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4182 } 4183 4184 exit_drop_index: 4185 sqlite3SrcListDelete(db, pName); 4186 } 4187 4188 /* 4189 ** pArray is a pointer to an array of objects. Each object in the 4190 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4191 ** to extend the array so that there is space for a new object at the end. 4192 ** 4193 ** When this function is called, *pnEntry contains the current size of 4194 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4195 ** in total). 4196 ** 4197 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4198 ** space allocated for the new object is zeroed, *pnEntry updated to 4199 ** reflect the new size of the array and a pointer to the new allocation 4200 ** returned. *pIdx is set to the index of the new array entry in this case. 4201 ** 4202 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4203 ** unchanged and a copy of pArray returned. 4204 */ 4205 void *sqlite3ArrayAllocate( 4206 sqlite3 *db, /* Connection to notify of malloc failures */ 4207 void *pArray, /* Array of objects. Might be reallocated */ 4208 int szEntry, /* Size of each object in the array */ 4209 int *pnEntry, /* Number of objects currently in use */ 4210 int *pIdx /* Write the index of a new slot here */ 4211 ){ 4212 char *z; 4213 sqlite3_int64 n = *pIdx = *pnEntry; 4214 if( (n & (n-1))==0 ){ 4215 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4216 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4217 if( pNew==0 ){ 4218 *pIdx = -1; 4219 return pArray; 4220 } 4221 pArray = pNew; 4222 } 4223 z = (char*)pArray; 4224 memset(&z[n * szEntry], 0, szEntry); 4225 ++*pnEntry; 4226 return pArray; 4227 } 4228 4229 /* 4230 ** Append a new element to the given IdList. Create a new IdList if 4231 ** need be. 4232 ** 4233 ** A new IdList is returned, or NULL if malloc() fails. 4234 */ 4235 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4236 sqlite3 *db = pParse->db; 4237 int i; 4238 if( pList==0 ){ 4239 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4240 if( pList==0 ) return 0; 4241 } 4242 pList->a = sqlite3ArrayAllocate( 4243 db, 4244 pList->a, 4245 sizeof(pList->a[0]), 4246 &pList->nId, 4247 &i 4248 ); 4249 if( i<0 ){ 4250 sqlite3IdListDelete(db, pList); 4251 return 0; 4252 } 4253 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4254 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4255 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4256 } 4257 return pList; 4258 } 4259 4260 /* 4261 ** Delete an IdList. 4262 */ 4263 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4264 int i; 4265 if( pList==0 ) return; 4266 for(i=0; i<pList->nId; i++){ 4267 sqlite3DbFree(db, pList->a[i].zName); 4268 } 4269 sqlite3DbFree(db, pList->a); 4270 sqlite3DbFreeNN(db, pList); 4271 } 4272 4273 /* 4274 ** Return the index in pList of the identifier named zId. Return -1 4275 ** if not found. 4276 */ 4277 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4278 int i; 4279 if( pList==0 ) return -1; 4280 for(i=0; i<pList->nId; i++){ 4281 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4282 } 4283 return -1; 4284 } 4285 4286 /* 4287 ** Maximum size of a SrcList object. 4288 ** The SrcList object is used to represent the FROM clause of a 4289 ** SELECT statement, and the query planner cannot deal with more 4290 ** than 64 tables in a join. So any value larger than 64 here 4291 ** is sufficient for most uses. Smaller values, like say 10, are 4292 ** appropriate for small and memory-limited applications. 4293 */ 4294 #ifndef SQLITE_MAX_SRCLIST 4295 # define SQLITE_MAX_SRCLIST 200 4296 #endif 4297 4298 /* 4299 ** Expand the space allocated for the given SrcList object by 4300 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4301 ** New slots are zeroed. 4302 ** 4303 ** For example, suppose a SrcList initially contains two entries: A,B. 4304 ** To append 3 new entries onto the end, do this: 4305 ** 4306 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4307 ** 4308 ** After the call above it would contain: A, B, nil, nil, nil. 4309 ** If the iStart argument had been 1 instead of 2, then the result 4310 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4311 ** the iStart value would be 0. The result then would 4312 ** be: nil, nil, nil, A, B. 4313 ** 4314 ** If a memory allocation fails or the SrcList becomes too large, leave 4315 ** the original SrcList unchanged, return NULL, and leave an error message 4316 ** in pParse. 4317 */ 4318 SrcList *sqlite3SrcListEnlarge( 4319 Parse *pParse, /* Parsing context into which errors are reported */ 4320 SrcList *pSrc, /* The SrcList to be enlarged */ 4321 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4322 int iStart /* Index in pSrc->a[] of first new slot */ 4323 ){ 4324 int i; 4325 4326 /* Sanity checking on calling parameters */ 4327 assert( iStart>=0 ); 4328 assert( nExtra>=1 ); 4329 assert( pSrc!=0 ); 4330 assert( iStart<=pSrc->nSrc ); 4331 4332 /* Allocate additional space if needed */ 4333 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4334 SrcList *pNew; 4335 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4336 sqlite3 *db = pParse->db; 4337 4338 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4339 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4340 SQLITE_MAX_SRCLIST); 4341 return 0; 4342 } 4343 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4344 pNew = sqlite3DbRealloc(db, pSrc, 4345 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4346 if( pNew==0 ){ 4347 assert( db->mallocFailed ); 4348 return 0; 4349 } 4350 pSrc = pNew; 4351 pSrc->nAlloc = nAlloc; 4352 } 4353 4354 /* Move existing slots that come after the newly inserted slots 4355 ** out of the way */ 4356 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4357 pSrc->a[i+nExtra] = pSrc->a[i]; 4358 } 4359 pSrc->nSrc += nExtra; 4360 4361 /* Zero the newly allocated slots */ 4362 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4363 for(i=iStart; i<iStart+nExtra; i++){ 4364 pSrc->a[i].iCursor = -1; 4365 } 4366 4367 /* Return a pointer to the enlarged SrcList */ 4368 return pSrc; 4369 } 4370 4371 4372 /* 4373 ** Append a new table name to the given SrcList. Create a new SrcList if 4374 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4375 ** 4376 ** A SrcList is returned, or NULL if there is an OOM error or if the 4377 ** SrcList grows to large. The returned 4378 ** SrcList might be the same as the SrcList that was input or it might be 4379 ** a new one. If an OOM error does occurs, then the prior value of pList 4380 ** that is input to this routine is automatically freed. 4381 ** 4382 ** If pDatabase is not null, it means that the table has an optional 4383 ** database name prefix. Like this: "database.table". The pDatabase 4384 ** points to the table name and the pTable points to the database name. 4385 ** The SrcList.a[].zName field is filled with the table name which might 4386 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4387 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4388 ** or with NULL if no database is specified. 4389 ** 4390 ** In other words, if call like this: 4391 ** 4392 ** sqlite3SrcListAppend(D,A,B,0); 4393 ** 4394 ** Then B is a table name and the database name is unspecified. If called 4395 ** like this: 4396 ** 4397 ** sqlite3SrcListAppend(D,A,B,C); 4398 ** 4399 ** Then C is the table name and B is the database name. If C is defined 4400 ** then so is B. In other words, we never have a case where: 4401 ** 4402 ** sqlite3SrcListAppend(D,A,0,C); 4403 ** 4404 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4405 ** before being added to the SrcList. 4406 */ 4407 SrcList *sqlite3SrcListAppend( 4408 Parse *pParse, /* Parsing context, in which errors are reported */ 4409 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4410 Token *pTable, /* Table to append */ 4411 Token *pDatabase /* Database of the table */ 4412 ){ 4413 struct SrcList_item *pItem; 4414 sqlite3 *db; 4415 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4416 assert( pParse!=0 ); 4417 assert( pParse->db!=0 ); 4418 db = pParse->db; 4419 if( pList==0 ){ 4420 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4421 if( pList==0 ) return 0; 4422 pList->nAlloc = 1; 4423 pList->nSrc = 1; 4424 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4425 pList->a[0].iCursor = -1; 4426 }else{ 4427 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4428 if( pNew==0 ){ 4429 sqlite3SrcListDelete(db, pList); 4430 return 0; 4431 }else{ 4432 pList = pNew; 4433 } 4434 } 4435 pItem = &pList->a[pList->nSrc-1]; 4436 if( pDatabase && pDatabase->z==0 ){ 4437 pDatabase = 0; 4438 } 4439 if( pDatabase ){ 4440 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4441 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4442 }else{ 4443 pItem->zName = sqlite3NameFromToken(db, pTable); 4444 pItem->zDatabase = 0; 4445 } 4446 return pList; 4447 } 4448 4449 /* 4450 ** Assign VdbeCursor index numbers to all tables in a SrcList 4451 */ 4452 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4453 int i; 4454 struct SrcList_item *pItem; 4455 assert(pList || pParse->db->mallocFailed ); 4456 if( pList ){ 4457 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4458 if( pItem->iCursor>=0 ) break; 4459 pItem->iCursor = pParse->nTab++; 4460 if( pItem->pSelect ){ 4461 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4462 } 4463 } 4464 } 4465 } 4466 4467 /* 4468 ** Delete an entire SrcList including all its substructure. 4469 */ 4470 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4471 int i; 4472 struct SrcList_item *pItem; 4473 if( pList==0 ) return; 4474 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4475 sqlite3DbFree(db, pItem->zDatabase); 4476 sqlite3DbFree(db, pItem->zName); 4477 sqlite3DbFree(db, pItem->zAlias); 4478 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4479 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4480 sqlite3DeleteTable(db, pItem->pTab); 4481 sqlite3SelectDelete(db, pItem->pSelect); 4482 sqlite3ExprDelete(db, pItem->pOn); 4483 sqlite3IdListDelete(db, pItem->pUsing); 4484 } 4485 sqlite3DbFreeNN(db, pList); 4486 } 4487 4488 /* 4489 ** This routine is called by the parser to add a new term to the 4490 ** end of a growing FROM clause. The "p" parameter is the part of 4491 ** the FROM clause that has already been constructed. "p" is NULL 4492 ** if this is the first term of the FROM clause. pTable and pDatabase 4493 ** are the name of the table and database named in the FROM clause term. 4494 ** pDatabase is NULL if the database name qualifier is missing - the 4495 ** usual case. If the term has an alias, then pAlias points to the 4496 ** alias token. If the term is a subquery, then pSubquery is the 4497 ** SELECT statement that the subquery encodes. The pTable and 4498 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4499 ** parameters are the content of the ON and USING clauses. 4500 ** 4501 ** Return a new SrcList which encodes is the FROM with the new 4502 ** term added. 4503 */ 4504 SrcList *sqlite3SrcListAppendFromTerm( 4505 Parse *pParse, /* Parsing context */ 4506 SrcList *p, /* The left part of the FROM clause already seen */ 4507 Token *pTable, /* Name of the table to add to the FROM clause */ 4508 Token *pDatabase, /* Name of the database containing pTable */ 4509 Token *pAlias, /* The right-hand side of the AS subexpression */ 4510 Select *pSubquery, /* A subquery used in place of a table name */ 4511 Expr *pOn, /* The ON clause of a join */ 4512 IdList *pUsing /* The USING clause of a join */ 4513 ){ 4514 struct SrcList_item *pItem; 4515 sqlite3 *db = pParse->db; 4516 if( !p && (pOn || pUsing) ){ 4517 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4518 (pOn ? "ON" : "USING") 4519 ); 4520 goto append_from_error; 4521 } 4522 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4523 if( p==0 ){ 4524 goto append_from_error; 4525 } 4526 assert( p->nSrc>0 ); 4527 pItem = &p->a[p->nSrc-1]; 4528 assert( (pTable==0)==(pDatabase==0) ); 4529 assert( pItem->zName==0 || pDatabase!=0 ); 4530 if( IN_RENAME_OBJECT && pItem->zName ){ 4531 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4532 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4533 } 4534 assert( pAlias!=0 ); 4535 if( pAlias->n ){ 4536 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4537 } 4538 pItem->pSelect = pSubquery; 4539 pItem->pOn = pOn; 4540 pItem->pUsing = pUsing; 4541 return p; 4542 4543 append_from_error: 4544 assert( p==0 ); 4545 sqlite3ExprDelete(db, pOn); 4546 sqlite3IdListDelete(db, pUsing); 4547 sqlite3SelectDelete(db, pSubquery); 4548 return 0; 4549 } 4550 4551 /* 4552 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4553 ** element of the source-list passed as the second argument. 4554 */ 4555 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4556 assert( pIndexedBy!=0 ); 4557 if( p && pIndexedBy->n>0 ){ 4558 struct SrcList_item *pItem; 4559 assert( p->nSrc>0 ); 4560 pItem = &p->a[p->nSrc-1]; 4561 assert( pItem->fg.notIndexed==0 ); 4562 assert( pItem->fg.isIndexedBy==0 ); 4563 assert( pItem->fg.isTabFunc==0 ); 4564 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4565 /* A "NOT INDEXED" clause was supplied. See parse.y 4566 ** construct "indexed_opt" for details. */ 4567 pItem->fg.notIndexed = 1; 4568 }else{ 4569 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4570 pItem->fg.isIndexedBy = 1; 4571 } 4572 } 4573 } 4574 4575 /* 4576 ** Add the list of function arguments to the SrcList entry for a 4577 ** table-valued-function. 4578 */ 4579 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4580 if( p ){ 4581 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4582 assert( pItem->fg.notIndexed==0 ); 4583 assert( pItem->fg.isIndexedBy==0 ); 4584 assert( pItem->fg.isTabFunc==0 ); 4585 pItem->u1.pFuncArg = pList; 4586 pItem->fg.isTabFunc = 1; 4587 }else{ 4588 sqlite3ExprListDelete(pParse->db, pList); 4589 } 4590 } 4591 4592 /* 4593 ** When building up a FROM clause in the parser, the join operator 4594 ** is initially attached to the left operand. But the code generator 4595 ** expects the join operator to be on the right operand. This routine 4596 ** Shifts all join operators from left to right for an entire FROM 4597 ** clause. 4598 ** 4599 ** Example: Suppose the join is like this: 4600 ** 4601 ** A natural cross join B 4602 ** 4603 ** The operator is "natural cross join". The A and B operands are stored 4604 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4605 ** operator with A. This routine shifts that operator over to B. 4606 */ 4607 void sqlite3SrcListShiftJoinType(SrcList *p){ 4608 if( p ){ 4609 int i; 4610 for(i=p->nSrc-1; i>0; i--){ 4611 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4612 } 4613 p->a[0].fg.jointype = 0; 4614 } 4615 } 4616 4617 /* 4618 ** Generate VDBE code for a BEGIN statement. 4619 */ 4620 void sqlite3BeginTransaction(Parse *pParse, int type){ 4621 sqlite3 *db; 4622 Vdbe *v; 4623 int i; 4624 4625 assert( pParse!=0 ); 4626 db = pParse->db; 4627 assert( db!=0 ); 4628 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4629 return; 4630 } 4631 v = sqlite3GetVdbe(pParse); 4632 if( !v ) return; 4633 if( type!=TK_DEFERRED ){ 4634 for(i=0; i<db->nDb; i++){ 4635 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4636 sqlite3VdbeUsesBtree(v, i); 4637 } 4638 } 4639 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4640 } 4641 4642 /* 4643 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4644 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4645 ** code is generated for a COMMIT. 4646 */ 4647 void sqlite3EndTransaction(Parse *pParse, int eType){ 4648 Vdbe *v; 4649 int isRollback; 4650 4651 assert( pParse!=0 ); 4652 assert( pParse->db!=0 ); 4653 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4654 isRollback = eType==TK_ROLLBACK; 4655 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4656 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4657 return; 4658 } 4659 v = sqlite3GetVdbe(pParse); 4660 if( v ){ 4661 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4662 } 4663 } 4664 4665 /* 4666 ** This function is called by the parser when it parses a command to create, 4667 ** release or rollback an SQL savepoint. 4668 */ 4669 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4670 char *zName = sqlite3NameFromToken(pParse->db, pName); 4671 if( zName ){ 4672 Vdbe *v = sqlite3GetVdbe(pParse); 4673 #ifndef SQLITE_OMIT_AUTHORIZATION 4674 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4675 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4676 #endif 4677 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4678 sqlite3DbFree(pParse->db, zName); 4679 return; 4680 } 4681 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4682 } 4683 } 4684 4685 /* 4686 ** Make sure the TEMP database is open and available for use. Return 4687 ** the number of errors. Leave any error messages in the pParse structure. 4688 */ 4689 int sqlite3OpenTempDatabase(Parse *pParse){ 4690 sqlite3 *db = pParse->db; 4691 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4692 int rc; 4693 Btree *pBt; 4694 static const int flags = 4695 SQLITE_OPEN_READWRITE | 4696 SQLITE_OPEN_CREATE | 4697 SQLITE_OPEN_EXCLUSIVE | 4698 SQLITE_OPEN_DELETEONCLOSE | 4699 SQLITE_OPEN_TEMP_DB; 4700 4701 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4702 if( rc!=SQLITE_OK ){ 4703 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4704 "file for storing temporary tables"); 4705 pParse->rc = rc; 4706 return 1; 4707 } 4708 db->aDb[1].pBt = pBt; 4709 assert( db->aDb[1].pSchema ); 4710 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4711 sqlite3OomFault(db); 4712 return 1; 4713 } 4714 } 4715 return 0; 4716 } 4717 4718 /* 4719 ** Record the fact that the schema cookie will need to be verified 4720 ** for database iDb. The code to actually verify the schema cookie 4721 ** will occur at the end of the top-level VDBE and will be generated 4722 ** later, by sqlite3FinishCoding(). 4723 */ 4724 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4725 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4726 4727 assert( iDb>=0 && iDb<pParse->db->nDb ); 4728 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4729 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4730 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4731 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4732 DbMaskSet(pToplevel->cookieMask, iDb); 4733 if( !OMIT_TEMPDB && iDb==1 ){ 4734 sqlite3OpenTempDatabase(pToplevel); 4735 } 4736 } 4737 } 4738 4739 /* 4740 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4741 ** attached database. Otherwise, invoke it for the database named zDb only. 4742 */ 4743 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4744 sqlite3 *db = pParse->db; 4745 int i; 4746 for(i=0; i<db->nDb; i++){ 4747 Db *pDb = &db->aDb[i]; 4748 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4749 sqlite3CodeVerifySchema(pParse, i); 4750 } 4751 } 4752 } 4753 4754 /* 4755 ** Generate VDBE code that prepares for doing an operation that 4756 ** might change the database. 4757 ** 4758 ** This routine starts a new transaction if we are not already within 4759 ** a transaction. If we are already within a transaction, then a checkpoint 4760 ** is set if the setStatement parameter is true. A checkpoint should 4761 ** be set for operations that might fail (due to a constraint) part of 4762 ** the way through and which will need to undo some writes without having to 4763 ** rollback the whole transaction. For operations where all constraints 4764 ** can be checked before any changes are made to the database, it is never 4765 ** necessary to undo a write and the checkpoint should not be set. 4766 */ 4767 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4768 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4769 sqlite3CodeVerifySchema(pParse, iDb); 4770 DbMaskSet(pToplevel->writeMask, iDb); 4771 pToplevel->isMultiWrite |= setStatement; 4772 } 4773 4774 /* 4775 ** Indicate that the statement currently under construction might write 4776 ** more than one entry (example: deleting one row then inserting another, 4777 ** inserting multiple rows in a table, or inserting a row and index entries.) 4778 ** If an abort occurs after some of these writes have completed, then it will 4779 ** be necessary to undo the completed writes. 4780 */ 4781 void sqlite3MultiWrite(Parse *pParse){ 4782 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4783 pToplevel->isMultiWrite = 1; 4784 } 4785 4786 /* 4787 ** The code generator calls this routine if is discovers that it is 4788 ** possible to abort a statement prior to completion. In order to 4789 ** perform this abort without corrupting the database, we need to make 4790 ** sure that the statement is protected by a statement transaction. 4791 ** 4792 ** Technically, we only need to set the mayAbort flag if the 4793 ** isMultiWrite flag was previously set. There is a time dependency 4794 ** such that the abort must occur after the multiwrite. This makes 4795 ** some statements involving the REPLACE conflict resolution algorithm 4796 ** go a little faster. But taking advantage of this time dependency 4797 ** makes it more difficult to prove that the code is correct (in 4798 ** particular, it prevents us from writing an effective 4799 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4800 ** to take the safe route and skip the optimization. 4801 */ 4802 void sqlite3MayAbort(Parse *pParse){ 4803 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4804 pToplevel->mayAbort = 1; 4805 } 4806 4807 /* 4808 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4809 ** error. The onError parameter determines which (if any) of the statement 4810 ** and/or current transaction is rolled back. 4811 */ 4812 void sqlite3HaltConstraint( 4813 Parse *pParse, /* Parsing context */ 4814 int errCode, /* extended error code */ 4815 int onError, /* Constraint type */ 4816 char *p4, /* Error message */ 4817 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4818 u8 p5Errmsg /* P5_ErrMsg type */ 4819 ){ 4820 Vdbe *v = sqlite3GetVdbe(pParse); 4821 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4822 if( onError==OE_Abort ){ 4823 sqlite3MayAbort(pParse); 4824 } 4825 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4826 sqlite3VdbeChangeP5(v, p5Errmsg); 4827 } 4828 4829 /* 4830 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4831 */ 4832 void sqlite3UniqueConstraint( 4833 Parse *pParse, /* Parsing context */ 4834 int onError, /* Constraint type */ 4835 Index *pIdx /* The index that triggers the constraint */ 4836 ){ 4837 char *zErr; 4838 int j; 4839 StrAccum errMsg; 4840 Table *pTab = pIdx->pTable; 4841 4842 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4843 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4844 if( pIdx->aColExpr ){ 4845 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4846 }else{ 4847 for(j=0; j<pIdx->nKeyCol; j++){ 4848 char *zCol; 4849 assert( pIdx->aiColumn[j]>=0 ); 4850 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4851 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4852 sqlite3_str_appendall(&errMsg, pTab->zName); 4853 sqlite3_str_append(&errMsg, ".", 1); 4854 sqlite3_str_appendall(&errMsg, zCol); 4855 } 4856 } 4857 zErr = sqlite3StrAccumFinish(&errMsg); 4858 sqlite3HaltConstraint(pParse, 4859 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4860 : SQLITE_CONSTRAINT_UNIQUE, 4861 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4862 } 4863 4864 4865 /* 4866 ** Code an OP_Halt due to non-unique rowid. 4867 */ 4868 void sqlite3RowidConstraint( 4869 Parse *pParse, /* Parsing context */ 4870 int onError, /* Conflict resolution algorithm */ 4871 Table *pTab /* The table with the non-unique rowid */ 4872 ){ 4873 char *zMsg; 4874 int rc; 4875 if( pTab->iPKey>=0 ){ 4876 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4877 pTab->aCol[pTab->iPKey].zName); 4878 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4879 }else{ 4880 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4881 rc = SQLITE_CONSTRAINT_ROWID; 4882 } 4883 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4884 P5_ConstraintUnique); 4885 } 4886 4887 /* 4888 ** Check to see if pIndex uses the collating sequence pColl. Return 4889 ** true if it does and false if it does not. 4890 */ 4891 #ifndef SQLITE_OMIT_REINDEX 4892 static int collationMatch(const char *zColl, Index *pIndex){ 4893 int i; 4894 assert( zColl!=0 ); 4895 for(i=0; i<pIndex->nColumn; i++){ 4896 const char *z = pIndex->azColl[i]; 4897 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4898 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4899 return 1; 4900 } 4901 } 4902 return 0; 4903 } 4904 #endif 4905 4906 /* 4907 ** Recompute all indices of pTab that use the collating sequence pColl. 4908 ** If pColl==0 then recompute all indices of pTab. 4909 */ 4910 #ifndef SQLITE_OMIT_REINDEX 4911 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4912 if( !IsVirtual(pTab) ){ 4913 Index *pIndex; /* An index associated with pTab */ 4914 4915 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4916 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4917 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4918 sqlite3BeginWriteOperation(pParse, 0, iDb); 4919 sqlite3RefillIndex(pParse, pIndex, -1); 4920 } 4921 } 4922 } 4923 } 4924 #endif 4925 4926 /* 4927 ** Recompute all indices of all tables in all databases where the 4928 ** indices use the collating sequence pColl. If pColl==0 then recompute 4929 ** all indices everywhere. 4930 */ 4931 #ifndef SQLITE_OMIT_REINDEX 4932 static void reindexDatabases(Parse *pParse, char const *zColl){ 4933 Db *pDb; /* A single database */ 4934 int iDb; /* The database index number */ 4935 sqlite3 *db = pParse->db; /* The database connection */ 4936 HashElem *k; /* For looping over tables in pDb */ 4937 Table *pTab; /* A table in the database */ 4938 4939 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4940 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4941 assert( pDb!=0 ); 4942 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4943 pTab = (Table*)sqliteHashData(k); 4944 reindexTable(pParse, pTab, zColl); 4945 } 4946 } 4947 } 4948 #endif 4949 4950 /* 4951 ** Generate code for the REINDEX command. 4952 ** 4953 ** REINDEX -- 1 4954 ** REINDEX <collation> -- 2 4955 ** REINDEX ?<database>.?<tablename> -- 3 4956 ** REINDEX ?<database>.?<indexname> -- 4 4957 ** 4958 ** Form 1 causes all indices in all attached databases to be rebuilt. 4959 ** Form 2 rebuilds all indices in all databases that use the named 4960 ** collating function. Forms 3 and 4 rebuild the named index or all 4961 ** indices associated with the named table. 4962 */ 4963 #ifndef SQLITE_OMIT_REINDEX 4964 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4965 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4966 char *z; /* Name of a table or index */ 4967 const char *zDb; /* Name of the database */ 4968 Table *pTab; /* A table in the database */ 4969 Index *pIndex; /* An index associated with pTab */ 4970 int iDb; /* The database index number */ 4971 sqlite3 *db = pParse->db; /* The database connection */ 4972 Token *pObjName; /* Name of the table or index to be reindexed */ 4973 4974 /* Read the database schema. If an error occurs, leave an error message 4975 ** and code in pParse and return NULL. */ 4976 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4977 return; 4978 } 4979 4980 if( pName1==0 ){ 4981 reindexDatabases(pParse, 0); 4982 return; 4983 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4984 char *zColl; 4985 assert( pName1->z ); 4986 zColl = sqlite3NameFromToken(pParse->db, pName1); 4987 if( !zColl ) return; 4988 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4989 if( pColl ){ 4990 reindexDatabases(pParse, zColl); 4991 sqlite3DbFree(db, zColl); 4992 return; 4993 } 4994 sqlite3DbFree(db, zColl); 4995 } 4996 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4997 if( iDb<0 ) return; 4998 z = sqlite3NameFromToken(db, pObjName); 4999 if( z==0 ) return; 5000 zDb = db->aDb[iDb].zDbSName; 5001 pTab = sqlite3FindTable(db, z, zDb); 5002 if( pTab ){ 5003 reindexTable(pParse, pTab, 0); 5004 sqlite3DbFree(db, z); 5005 return; 5006 } 5007 pIndex = sqlite3FindIndex(db, z, zDb); 5008 sqlite3DbFree(db, z); 5009 if( pIndex ){ 5010 sqlite3BeginWriteOperation(pParse, 0, iDb); 5011 sqlite3RefillIndex(pParse, pIndex, -1); 5012 return; 5013 } 5014 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5015 } 5016 #endif 5017 5018 /* 5019 ** Return a KeyInfo structure that is appropriate for the given Index. 5020 ** 5021 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5022 ** when it has finished using it. 5023 */ 5024 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5025 int i; 5026 int nCol = pIdx->nColumn; 5027 int nKey = pIdx->nKeyCol; 5028 KeyInfo *pKey; 5029 if( pParse->nErr ) return 0; 5030 if( pIdx->uniqNotNull ){ 5031 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5032 }else{ 5033 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5034 } 5035 if( pKey ){ 5036 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5037 for(i=0; i<nCol; i++){ 5038 const char *zColl = pIdx->azColl[i]; 5039 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5040 sqlite3LocateCollSeq(pParse, zColl); 5041 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5042 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5043 } 5044 if( pParse->nErr ){ 5045 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5046 if( pIdx->bNoQuery==0 ){ 5047 /* Deactivate the index because it contains an unknown collating 5048 ** sequence. The only way to reactive the index is to reload the 5049 ** schema. Adding the missing collating sequence later does not 5050 ** reactive the index. The application had the chance to register 5051 ** the missing index using the collation-needed callback. For 5052 ** simplicity, SQLite will not give the application a second chance. 5053 */ 5054 pIdx->bNoQuery = 1; 5055 pParse->rc = SQLITE_ERROR_RETRY; 5056 } 5057 sqlite3KeyInfoUnref(pKey); 5058 pKey = 0; 5059 } 5060 } 5061 return pKey; 5062 } 5063 5064 #ifndef SQLITE_OMIT_CTE 5065 /* 5066 ** This routine is invoked once per CTE by the parser while parsing a 5067 ** WITH clause. 5068 */ 5069 With *sqlite3WithAdd( 5070 Parse *pParse, /* Parsing context */ 5071 With *pWith, /* Existing WITH clause, or NULL */ 5072 Token *pName, /* Name of the common-table */ 5073 ExprList *pArglist, /* Optional column name list for the table */ 5074 Select *pQuery /* Query used to initialize the table */ 5075 ){ 5076 sqlite3 *db = pParse->db; 5077 With *pNew; 5078 char *zName; 5079 5080 /* Check that the CTE name is unique within this WITH clause. If 5081 ** not, store an error in the Parse structure. */ 5082 zName = sqlite3NameFromToken(pParse->db, pName); 5083 if( zName && pWith ){ 5084 int i; 5085 for(i=0; i<pWith->nCte; i++){ 5086 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5087 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5088 } 5089 } 5090 } 5091 5092 if( pWith ){ 5093 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5094 pNew = sqlite3DbRealloc(db, pWith, nByte); 5095 }else{ 5096 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5097 } 5098 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5099 5100 if( db->mallocFailed ){ 5101 sqlite3ExprListDelete(db, pArglist); 5102 sqlite3SelectDelete(db, pQuery); 5103 sqlite3DbFree(db, zName); 5104 pNew = pWith; 5105 }else{ 5106 pNew->a[pNew->nCte].pSelect = pQuery; 5107 pNew->a[pNew->nCte].pCols = pArglist; 5108 pNew->a[pNew->nCte].zName = zName; 5109 pNew->a[pNew->nCte].zCteErr = 0; 5110 pNew->nCte++; 5111 } 5112 5113 return pNew; 5114 } 5115 5116 /* 5117 ** Free the contents of the With object passed as the second argument. 5118 */ 5119 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5120 if( pWith ){ 5121 int i; 5122 for(i=0; i<pWith->nCte; i++){ 5123 struct Cte *pCte = &pWith->a[i]; 5124 sqlite3ExprListDelete(db, pCte->pCols); 5125 sqlite3SelectDelete(db, pCte->pSelect); 5126 sqlite3DbFree(db, pCte->zName); 5127 } 5128 sqlite3DbFree(db, pWith); 5129 } 5130 } 5131 #endif /* !defined(SQLITE_OMIT_CTE) */ 5132