xref: /sqlite-3.40.0/src/build.c (revision 735ff4a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;             /* The database containing the table to be locked */
34   int iTab;            /* The root page of the table to be locked */
35   u8 isWriteLock;      /* True for write lock.  False for a read lock */
36   const char *zName;   /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   for(i=0; i<pToplevel->nTableLock; i++){
63     p = &pToplevel->aTableLock[i];
64     if( p->iDb==iDb && p->iTab==iTab ){
65       p->isWriteLock = (p->isWriteLock || isWriteLock);
66       return;
67     }
68   }
69 
70   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71   pToplevel->aTableLock =
72       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73   if( pToplevel->aTableLock ){
74     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75     p->iDb = iDb;
76     p->iTab = iTab;
77     p->isWriteLock = isWriteLock;
78     p->zName = zName;
79   }else{
80     pToplevel->nTableLock = 0;
81     pToplevel->db->mallocFailed = 1;
82   }
83 }
84 
85 /*
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
88 */
89 static void codeTableLocks(Parse *pParse){
90   int i;
91   Vdbe *pVdbe;
92 
93   pVdbe = sqlite3GetVdbe(pParse);
94   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
95 
96   for(i=0; i<pParse->nTableLock; i++){
97     TableLock *p = &pParse->aTableLock[i];
98     int p1 = p->iDb;
99     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100                       p->zName, P4_STATIC);
101   }
102 }
103 #else
104   #define codeTableLocks(x)
105 #endif
106 
107 /*
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
111 */
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114   int i;
115   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116   return 1;
117 }
118 #endif
119 
120 /*
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared.  This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
126 **
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
129 */
130 void sqlite3FinishCoding(Parse *pParse){
131   sqlite3 *db;
132   Vdbe *v;
133 
134   assert( pParse->pToplevel==0 );
135   db = pParse->db;
136   if( pParse->nested ) return;
137   if( db->mallocFailed || pParse->nErr ){
138     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139     return;
140   }
141 
142   /* Begin by generating some termination code at the end of the
143   ** vdbe program
144   */
145   v = sqlite3GetVdbe(pParse);
146   assert( !pParse->isMultiWrite
147        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148   if( v ){
149     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
150     sqlite3VdbeAddOp0(v, OP_Halt);
151 
152 #if SQLITE_USER_AUTHENTICATION
153     if( pParse->nTableLock>0 && db->init.busy==0 ){
154       sqlite3UserAuthInit(db);
155       if( db->auth.authLevel<UAUTH_User ){
156         pParse->rc = SQLITE_AUTH_USER;
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         return;
159       }
160     }
161 #endif
162 
163     /* The cookie mask contains one bit for each database file open.
164     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
165     ** set for each database that is used.  Generate code to start a
166     ** transaction on each used database and to verify the schema cookie
167     ** on each used database.
168     */
169     if( db->mallocFailed==0
170      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
171     ){
172       int iDb, i;
173       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174       sqlite3VdbeJumpHere(v, 0);
175       for(iDb=0; iDb<db->nDb; iDb++){
176         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177         sqlite3VdbeUsesBtree(v, iDb);
178         sqlite3VdbeAddOp4Int(v,
179           OP_Transaction,                    /* Opcode */
180           iDb,                               /* P1 */
181           DbMaskTest(pParse->writeMask,iDb), /* P2 */
182           pParse->cookieValue[iDb],          /* P3 */
183           db->aDb[iDb].pSchema->iGeneration  /* P4 */
184         );
185         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
186         VdbeComment((v,
187               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
188       }
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190       for(i=0; i<pParse->nVtabLock; i++){
191         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
192         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
193       }
194       pParse->nVtabLock = 0;
195 #endif
196 
197       /* Once all the cookies have been verified and transactions opened,
198       ** obtain the required table-locks. This is a no-op unless the
199       ** shared-cache feature is enabled.
200       */
201       codeTableLocks(pParse);
202 
203       /* Initialize any AUTOINCREMENT data structures required.
204       */
205       sqlite3AutoincrementBegin(pParse);
206 
207       /* Code constant expressions that where factored out of inner loops */
208       if( pParse->pConstExpr ){
209         ExprList *pEL = pParse->pConstExpr;
210         pParse->okConstFactor = 0;
211         for(i=0; i<pEL->nExpr; i++){
212           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
213         }
214       }
215 
216       /* Finally, jump back to the beginning of the executable code. */
217       sqlite3VdbeGoto(v, 1);
218     }
219   }
220 
221 
222   /* Get the VDBE program ready for execution
223   */
224   if( v && pParse->nErr==0 && !db->mallocFailed ){
225     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
226     /* A minimum of one cursor is required if autoincrement is used
227     *  See ticket [a696379c1f08866] */
228     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
229     sqlite3VdbeMakeReady(v, pParse);
230     pParse->rc = SQLITE_DONE;
231   }else{
232     pParse->rc = SQLITE_ERROR;
233   }
234 
235   /* We are done with this Parse object. There is no need to de-initialize it */
236 #if 0
237   pParse->colNamesSet = 0;
238   pParse->nTab = 0;
239   pParse->nMem = 0;
240   pParse->nSet = 0;
241   pParse->nVar = 0;
242   DbMaskZero(pParse->cookieMask);
243 #endif
244 }
245 
246 /*
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction.  When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
253 **
254 ** Not everything is nestable.  This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
256 ** care if you decide to try to use this routine for some other purposes.
257 */
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259   va_list ap;
260   char *zSql;
261   char *zErrMsg = 0;
262   sqlite3 *db = pParse->db;
263 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
264   char saveBuf[SAVE_SZ];
265 
266   if( pParse->nErr ) return;
267   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
268   va_start(ap, zFormat);
269   zSql = sqlite3VMPrintf(db, zFormat, ap);
270   va_end(ap);
271   if( zSql==0 ){
272     return;   /* A malloc must have failed */
273   }
274   pParse->nested++;
275   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
276   memset(&pParse->nVar, 0, SAVE_SZ);
277   sqlite3RunParser(pParse, zSql, &zErrMsg);
278   sqlite3DbFree(db, zErrMsg);
279   sqlite3DbFree(db, zSql);
280   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
281   pParse->nested--;
282 }
283 
284 #if SQLITE_USER_AUTHENTICATION
285 /*
286 ** Return TRUE if zTable is the name of the system table that stores the
287 ** list of users and their access credentials.
288 */
289 int sqlite3UserAuthTable(const char *zTable){
290   return sqlite3_stricmp(zTable, "sqlite_user")==0;
291 }
292 #endif
293 
294 /*
295 ** Locate the in-memory structure that describes a particular database
296 ** table given the name of that table and (optionally) the name of the
297 ** database containing the table.  Return NULL if not found.
298 **
299 ** If zDatabase is 0, all databases are searched for the table and the
300 ** first matching table is returned.  (No checking for duplicate table
301 ** names is done.)  The search order is TEMP first, then MAIN, then any
302 ** auxiliary databases added using the ATTACH command.
303 **
304 ** See also sqlite3LocateTable().
305 */
306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
307   Table *p = 0;
308   int i;
309 
310   /* All mutexes are required for schema access.  Make sure we hold them. */
311   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
312 #if SQLITE_USER_AUTHENTICATION
313   /* Only the admin user is allowed to know that the sqlite_user table
314   ** exists */
315   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
316     return 0;
317   }
318 #endif
319   for(i=OMIT_TEMPDB; i<db->nDb; i++){
320     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
321     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
322     assert( sqlite3SchemaMutexHeld(db, j, 0) );
323     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
324     if( p ) break;
325   }
326   return p;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   int isView,            /* True if looking for a VIEW rather than a TABLE */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = isView ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
363         return pMod->pEpoTab;
364       }
365     }
366 #endif
367     if( zDbase ){
368       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
369     }else{
370       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
371     }
372     pParse->checkSchema = 1;
373   }
374 
375   return p;
376 }
377 
378 /*
379 ** Locate the table identified by *p.
380 **
381 ** This is a wrapper around sqlite3LocateTable(). The difference between
382 ** sqlite3LocateTable() and this function is that this function restricts
383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
384 ** non-NULL if it is part of a view or trigger program definition. See
385 ** sqlite3FixSrcList() for details.
386 */
387 Table *sqlite3LocateTableItem(
388   Parse *pParse,
389   int isView,
390   struct SrcList_item *p
391 ){
392   const char *zDb;
393   assert( p->pSchema==0 || p->zDatabase==0 );
394   if( p->pSchema ){
395     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
396     zDb = pParse->db->aDb[iDb].zName;
397   }else{
398     zDb = p->zDatabase;
399   }
400   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
401 }
402 
403 /*
404 ** Locate the in-memory structure that describes
405 ** a particular index given the name of that index
406 ** and the name of the database that contains the index.
407 ** Return NULL if not found.
408 **
409 ** If zDatabase is 0, all databases are searched for the
410 ** table and the first matching index is returned.  (No checking
411 ** for duplicate index names is done.)  The search order is
412 ** TEMP first, then MAIN, then any auxiliary databases added
413 ** using the ATTACH command.
414 */
415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
416   Index *p = 0;
417   int i;
418   /* All mutexes are required for schema access.  Make sure we hold them. */
419   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
420   for(i=OMIT_TEMPDB; i<db->nDb; i++){
421     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
422     Schema *pSchema = db->aDb[j].pSchema;
423     assert( pSchema );
424     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
425     assert( sqlite3SchemaMutexHeld(db, j, 0) );
426     p = sqlite3HashFind(&pSchema->idxHash, zName);
427     if( p ) break;
428   }
429   return p;
430 }
431 
432 /*
433 ** Reclaim the memory used by an index
434 */
435 static void freeIndex(sqlite3 *db, Index *p){
436 #ifndef SQLITE_OMIT_ANALYZE
437   sqlite3DeleteIndexSamples(db, p);
438 #endif
439   sqlite3ExprDelete(db, p->pPartIdxWhere);
440   sqlite3ExprListDelete(db, p->aColExpr);
441   sqlite3DbFree(db, p->zColAff);
442   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
444   sqlite3_free(p->aiRowEst);
445 #endif
446   sqlite3DbFree(db, p);
447 }
448 
449 /*
450 ** For the index called zIdxName which is found in the database iDb,
451 ** unlike that index from its Table then remove the index from
452 ** the index hash table and free all memory structures associated
453 ** with the index.
454 */
455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
456   Index *pIndex;
457   Hash *pHash;
458 
459   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
460   pHash = &db->aDb[iDb].pSchema->idxHash;
461   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
462   if( ALWAYS(pIndex) ){
463     if( pIndex->pTable->pIndex==pIndex ){
464       pIndex->pTable->pIndex = pIndex->pNext;
465     }else{
466       Index *p;
467       /* Justification of ALWAYS();  The index must be on the list of
468       ** indices. */
469       p = pIndex->pTable->pIndex;
470       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
471       if( ALWAYS(p && p->pNext==pIndex) ){
472         p->pNext = pIndex->pNext;
473       }
474     }
475     freeIndex(db, pIndex);
476   }
477   db->flags |= SQLITE_InternChanges;
478 }
479 
480 /*
481 ** Look through the list of open database files in db->aDb[] and if
482 ** any have been closed, remove them from the list.  Reallocate the
483 ** db->aDb[] structure to a smaller size, if possible.
484 **
485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
486 ** are never candidates for being collapsed.
487 */
488 void sqlite3CollapseDatabaseArray(sqlite3 *db){
489   int i, j;
490   for(i=j=2; i<db->nDb; i++){
491     struct Db *pDb = &db->aDb[i];
492     if( pDb->pBt==0 ){
493       sqlite3DbFree(db, pDb->zName);
494       pDb->zName = 0;
495       continue;
496     }
497     if( j<i ){
498       db->aDb[j] = db->aDb[i];
499     }
500     j++;
501   }
502   db->nDb = j;
503   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
504     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
505     sqlite3DbFree(db, db->aDb);
506     db->aDb = db->aDbStatic;
507   }
508 }
509 
510 /*
511 ** Reset the schema for the database at index iDb.  Also reset the
512 ** TEMP schema.
513 */
514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
515   Db *pDb;
516   assert( iDb<db->nDb );
517 
518   /* Case 1:  Reset the single schema identified by iDb */
519   pDb = &db->aDb[iDb];
520   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
521   assert( pDb->pSchema!=0 );
522   sqlite3SchemaClear(pDb->pSchema);
523 
524   /* If any database other than TEMP is reset, then also reset TEMP
525   ** since TEMP might be holding triggers that reference tables in the
526   ** other database.
527   */
528   if( iDb!=1 ){
529     pDb = &db->aDb[1];
530     assert( pDb->pSchema!=0 );
531     sqlite3SchemaClear(pDb->pSchema);
532   }
533   return;
534 }
535 
536 /*
537 ** Erase all schema information from all attached databases (including
538 ** "main" and "temp") for a single database connection.
539 */
540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
541   int i;
542   sqlite3BtreeEnterAll(db);
543   for(i=0; i<db->nDb; i++){
544     Db *pDb = &db->aDb[i];
545     if( pDb->pSchema ){
546       sqlite3SchemaClear(pDb->pSchema);
547     }
548   }
549   db->flags &= ~SQLITE_InternChanges;
550   sqlite3VtabUnlockList(db);
551   sqlite3BtreeLeaveAll(db);
552   sqlite3CollapseDatabaseArray(db);
553 }
554 
555 /*
556 ** This routine is called when a commit occurs.
557 */
558 void sqlite3CommitInternalChanges(sqlite3 *db){
559   db->flags &= ~SQLITE_InternChanges;
560 }
561 
562 /*
563 ** Delete memory allocated for the column names of a table or view (the
564 ** Table.aCol[] array).
565 */
566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
567   int i;
568   Column *pCol;
569   assert( pTable!=0 );
570   if( (pCol = pTable->aCol)!=0 ){
571     for(i=0; i<pTable->nCol; i++, pCol++){
572       sqlite3DbFree(db, pCol->zName);
573       sqlite3ExprDelete(db, pCol->pDflt);
574       sqlite3DbFree(db, pCol->zDflt);
575       sqlite3DbFree(db, pCol->zType);
576       sqlite3DbFree(db, pCol->zColl);
577     }
578     sqlite3DbFree(db, pTable->aCol);
579   }
580 }
581 
582 /*
583 ** Remove the memory data structures associated with the given
584 ** Table.  No changes are made to disk by this routine.
585 **
586 ** This routine just deletes the data structure.  It does not unlink
587 ** the table data structure from the hash table.  But it does destroy
588 ** memory structures of the indices and foreign keys associated with
589 ** the table.
590 **
591 ** The db parameter is optional.  It is needed if the Table object
592 ** contains lookaside memory.  (Table objects in the schema do not use
593 ** lookaside memory, but some ephemeral Table objects do.)  Or the
594 ** db parameter can be used with db->pnBytesFreed to measure the memory
595 ** used by the Table object.
596 */
597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
598   Index *pIndex, *pNext;
599   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
600 
601   assert( !pTable || pTable->nRef>0 );
602 
603   /* Do not delete the table until the reference count reaches zero. */
604   if( !pTable ) return;
605   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
606 
607   /* Record the number of outstanding lookaside allocations in schema Tables
608   ** prior to doing any free() operations.  Since schema Tables do not use
609   ** lookaside, this number should not change. */
610   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
611                          db->lookaside.nOut : 0 );
612 
613   /* Delete all indices associated with this table. */
614   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
615     pNext = pIndex->pNext;
616     assert( pIndex->pSchema==pTable->pSchema );
617     if( !db || db->pnBytesFreed==0 ){
618       char *zName = pIndex->zName;
619       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620          &pIndex->pSchema->idxHash, zName, 0
621       );
622       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623       assert( pOld==pIndex || pOld==0 );
624     }
625     freeIndex(db, pIndex);
626   }
627 
628   /* Delete any foreign keys attached to this table. */
629   sqlite3FkDelete(db, pTable);
630 
631   /* Delete the Table structure itself.
632   */
633   sqlite3DeleteColumnNames(db, pTable);
634   sqlite3DbFree(db, pTable->zName);
635   sqlite3DbFree(db, pTable->zColAff);
636   sqlite3SelectDelete(db, pTable->pSelect);
637   sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639   sqlite3VtabClear(db, pTable);
640 #endif
641   sqlite3DbFree(db, pTable);
642 
643   /* Verify that no lookaside memory was used by schema tables */
644   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
645 }
646 
647 /*
648 ** Unlink the given table from the hash tables and the delete the
649 ** table structure with all its indices and foreign keys.
650 */
651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
652   Table *p;
653   Db *pDb;
654 
655   assert( db!=0 );
656   assert( iDb>=0 && iDb<db->nDb );
657   assert( zTabName );
658   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
659   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
660   pDb = &db->aDb[iDb];
661   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
662   sqlite3DeleteTable(db, p);
663   db->flags |= SQLITE_InternChanges;
664 }
665 
666 /*
667 ** Given a token, return a string that consists of the text of that
668 ** token.  Space to hold the returned string
669 ** is obtained from sqliteMalloc() and must be freed by the calling
670 ** function.
671 **
672 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
673 ** surround the body of the token are removed.
674 **
675 ** Tokens are often just pointers into the original SQL text and so
676 ** are not \000 terminated and are not persistent.  The returned string
677 ** is \000 terminated and is persistent.
678 */
679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
680   char *zName;
681   if( pName ){
682     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
683     sqlite3Dequote(zName);
684   }else{
685     zName = 0;
686   }
687   return zName;
688 }
689 
690 /*
691 ** Open the sqlite_master table stored in database number iDb for
692 ** writing. The table is opened using cursor 0.
693 */
694 void sqlite3OpenMasterTable(Parse *p, int iDb){
695   Vdbe *v = sqlite3GetVdbe(p);
696   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
697   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
698   if( p->nTab==0 ){
699     p->nTab = 1;
700   }
701 }
702 
703 /*
704 ** Parameter zName points to a nul-terminated buffer containing the name
705 ** of a database ("main", "temp" or the name of an attached db). This
706 ** function returns the index of the named database in db->aDb[], or
707 ** -1 if the named db cannot be found.
708 */
709 int sqlite3FindDbName(sqlite3 *db, const char *zName){
710   int i = -1;         /* Database number */
711   if( zName ){
712     Db *pDb;
713     int n = sqlite3Strlen30(zName);
714     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
715       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
716           0==sqlite3StrICmp(pDb->zName, zName) ){
717         break;
718       }
719     }
720   }
721   return i;
722 }
723 
724 /*
725 ** The token *pName contains the name of a database (either "main" or
726 ** "temp" or the name of an attached db). This routine returns the
727 ** index of the named database in db->aDb[], or -1 if the named db
728 ** does not exist.
729 */
730 int sqlite3FindDb(sqlite3 *db, Token *pName){
731   int i;                               /* Database number */
732   char *zName;                         /* Name we are searching for */
733   zName = sqlite3NameFromToken(db, pName);
734   i = sqlite3FindDbName(db, zName);
735   sqlite3DbFree(db, zName);
736   return i;
737 }
738 
739 /* The table or view or trigger name is passed to this routine via tokens
740 ** pName1 and pName2. If the table name was fully qualified, for example:
741 **
742 ** CREATE TABLE xxx.yyy (...);
743 **
744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
745 ** the table name is not fully qualified, i.e.:
746 **
747 ** CREATE TABLE yyy(...);
748 **
749 ** Then pName1 is set to "yyy" and pName2 is "".
750 **
751 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
752 ** pName2) that stores the unqualified table name.  The index of the
753 ** database "xxx" is returned.
754 */
755 int sqlite3TwoPartName(
756   Parse *pParse,      /* Parsing and code generating context */
757   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
758   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
759   Token **pUnqual     /* Write the unqualified object name here */
760 ){
761   int iDb;                    /* Database holding the object */
762   sqlite3 *db = pParse->db;
763 
764   assert( pName2!=0 );
765   if( pName2->n>0 ){
766     if( db->init.busy ) {
767       sqlite3ErrorMsg(pParse, "corrupt database");
768       return -1;
769     }
770     *pUnqual = pName2;
771     iDb = sqlite3FindDb(db, pName1);
772     if( iDb<0 ){
773       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
774       return -1;
775     }
776   }else{
777     assert( db->init.iDb==0 || db->init.busy );
778     iDb = db->init.iDb;
779     *pUnqual = pName1;
780   }
781   return iDb;
782 }
783 
784 /*
785 ** This routine is used to check if the UTF-8 string zName is a legal
786 ** unqualified name for a new schema object (table, index, view or
787 ** trigger). All names are legal except those that begin with the string
788 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
789 ** is reserved for internal use.
790 */
791 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
792   if( !pParse->db->init.busy && pParse->nested==0
793           && (pParse->db->flags & SQLITE_WriteSchema)==0
794           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
795     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
796     return SQLITE_ERROR;
797   }
798   return SQLITE_OK;
799 }
800 
801 /*
802 ** Return the PRIMARY KEY index of a table
803 */
804 Index *sqlite3PrimaryKeyIndex(Table *pTab){
805   Index *p;
806   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
807   return p;
808 }
809 
810 /*
811 ** Return the column of index pIdx that corresponds to table
812 ** column iCol.  Return -1 if not found.
813 */
814 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
815   int i;
816   for(i=0; i<pIdx->nColumn; i++){
817     if( iCol==pIdx->aiColumn[i] ) return i;
818   }
819   return -1;
820 }
821 
822 /*
823 ** Begin constructing a new table representation in memory.  This is
824 ** the first of several action routines that get called in response
825 ** to a CREATE TABLE statement.  In particular, this routine is called
826 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
827 ** flag is true if the table should be stored in the auxiliary database
828 ** file instead of in the main database file.  This is normally the case
829 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
830 ** CREATE and TABLE.
831 **
832 ** The new table record is initialized and put in pParse->pNewTable.
833 ** As more of the CREATE TABLE statement is parsed, additional action
834 ** routines will be called to add more information to this record.
835 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
836 ** is called to complete the construction of the new table record.
837 */
838 void sqlite3StartTable(
839   Parse *pParse,   /* Parser context */
840   Token *pName1,   /* First part of the name of the table or view */
841   Token *pName2,   /* Second part of the name of the table or view */
842   int isTemp,      /* True if this is a TEMP table */
843   int isView,      /* True if this is a VIEW */
844   int isVirtual,   /* True if this is a VIRTUAL table */
845   int noErr        /* Do nothing if table already exists */
846 ){
847   Table *pTable;
848   char *zName = 0; /* The name of the new table */
849   sqlite3 *db = pParse->db;
850   Vdbe *v;
851   int iDb;         /* Database number to create the table in */
852   Token *pName;    /* Unqualified name of the table to create */
853 
854   if( db->init.busy && db->init.newTnum==1 ){
855     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
856     iDb = db->init.iDb;
857     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
858     pName = pName1;
859   }else{
860     /* The common case */
861     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
862     if( iDb<0 ) return;
863     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
864       /* If creating a temp table, the name may not be qualified. Unless
865       ** the database name is "temp" anyway.  */
866       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
867       return;
868     }
869     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
870     zName = sqlite3NameFromToken(db, pName);
871   }
872   pParse->sNameToken = *pName;
873   if( zName==0 ) return;
874   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
875     goto begin_table_error;
876   }
877   if( db->init.iDb==1 ) isTemp = 1;
878 #ifndef SQLITE_OMIT_AUTHORIZATION
879   assert( isTemp==0 || isTemp==1 );
880   assert( isView==0 || isView==1 );
881   {
882     static const u8 aCode[] = {
883        SQLITE_CREATE_TABLE,
884        SQLITE_CREATE_TEMP_TABLE,
885        SQLITE_CREATE_VIEW,
886        SQLITE_CREATE_TEMP_VIEW
887     };
888     char *zDb = db->aDb[iDb].zName;
889     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
890       goto begin_table_error;
891     }
892     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
893                                        zName, 0, zDb) ){
894       goto begin_table_error;
895     }
896   }
897 #endif
898 
899   /* Make sure the new table name does not collide with an existing
900   ** index or table name in the same database.  Issue an error message if
901   ** it does. The exception is if the statement being parsed was passed
902   ** to an sqlite3_declare_vtab() call. In that case only the column names
903   ** and types will be used, so there is no need to test for namespace
904   ** collisions.
905   */
906   if( !IN_DECLARE_VTAB ){
907     char *zDb = db->aDb[iDb].zName;
908     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
909       goto begin_table_error;
910     }
911     pTable = sqlite3FindTable(db, zName, zDb);
912     if( pTable ){
913       if( !noErr ){
914         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
915       }else{
916         assert( !db->init.busy || CORRUPT_DB );
917         sqlite3CodeVerifySchema(pParse, iDb);
918       }
919       goto begin_table_error;
920     }
921     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
922       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
923       goto begin_table_error;
924     }
925   }
926 
927   pTable = sqlite3DbMallocZero(db, sizeof(Table));
928   if( pTable==0 ){
929     db->mallocFailed = 1;
930     pParse->rc = SQLITE_NOMEM;
931     pParse->nErr++;
932     goto begin_table_error;
933   }
934   pTable->zName = zName;
935   pTable->iPKey = -1;
936   pTable->pSchema = db->aDb[iDb].pSchema;
937   pTable->nRef = 1;
938   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
939   assert( pParse->pNewTable==0 );
940   pParse->pNewTable = pTable;
941 
942   /* If this is the magic sqlite_sequence table used by autoincrement,
943   ** then record a pointer to this table in the main database structure
944   ** so that INSERT can find the table easily.
945   */
946 #ifndef SQLITE_OMIT_AUTOINCREMENT
947   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
948     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
949     pTable->pSchema->pSeqTab = pTable;
950   }
951 #endif
952 
953   /* Begin generating the code that will insert the table record into
954   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
955   ** and allocate the record number for the table entry now.  Before any
956   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
957   ** indices to be created and the table record must come before the
958   ** indices.  Hence, the record number for the table must be allocated
959   ** now.
960   */
961   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
962     int addr1;
963     int fileFormat;
964     int reg1, reg2, reg3;
965     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
966     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
967     sqlite3BeginWriteOperation(pParse, 1, iDb);
968 
969 #ifndef SQLITE_OMIT_VIRTUALTABLE
970     if( isVirtual ){
971       sqlite3VdbeAddOp0(v, OP_VBegin);
972     }
973 #endif
974 
975     /* If the file format and encoding in the database have not been set,
976     ** set them now.
977     */
978     reg1 = pParse->regRowid = ++pParse->nMem;
979     reg2 = pParse->regRoot = ++pParse->nMem;
980     reg3 = ++pParse->nMem;
981     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
982     sqlite3VdbeUsesBtree(v, iDb);
983     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
984     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
985                   1 : SQLITE_MAX_FILE_FORMAT;
986     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
987     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
988     sqlite3VdbeJumpHere(v, addr1);
989 
990     /* This just creates a place-holder record in the sqlite_master table.
991     ** The record created does not contain anything yet.  It will be replaced
992     ** by the real entry in code generated at sqlite3EndTable().
993     **
994     ** The rowid for the new entry is left in register pParse->regRowid.
995     ** The root page number of the new table is left in reg pParse->regRoot.
996     ** The rowid and root page number values are needed by the code that
997     ** sqlite3EndTable will generate.
998     */
999 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1000     if( isView || isVirtual ){
1001       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1002     }else
1003 #endif
1004     {
1005       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1006     }
1007     sqlite3OpenMasterTable(pParse, iDb);
1008     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1009     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1010     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1011     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1012     sqlite3VdbeAddOp0(v, OP_Close);
1013   }
1014 
1015   /* Normal (non-error) return. */
1016   return;
1017 
1018   /* If an error occurs, we jump here */
1019 begin_table_error:
1020   sqlite3DbFree(db, zName);
1021   return;
1022 }
1023 
1024 /* Set properties of a table column based on the (magical)
1025 ** name of the column.
1026 */
1027 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1028 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1029   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1030     pCol->colFlags |= COLFLAG_HIDDEN;
1031   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1032     pTab->tabFlags |= TF_OOOHidden;
1033   }
1034 }
1035 #endif
1036 
1037 
1038 /*
1039 ** Add a new column to the table currently being constructed.
1040 **
1041 ** The parser calls this routine once for each column declaration
1042 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1043 ** first to get things going.  Then this routine is called for each
1044 ** column.
1045 */
1046 void sqlite3AddColumn(Parse *pParse, Token *pName){
1047   Table *p;
1048   int i;
1049   char *z;
1050   Column *pCol;
1051   sqlite3 *db = pParse->db;
1052   if( (p = pParse->pNewTable)==0 ) return;
1053 #if SQLITE_MAX_COLUMN
1054   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1055     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1056     return;
1057   }
1058 #endif
1059   z = sqlite3NameFromToken(db, pName);
1060   if( z==0 ) return;
1061   for(i=0; i<p->nCol; i++){
1062     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1063       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1064       sqlite3DbFree(db, z);
1065       return;
1066     }
1067   }
1068   if( (p->nCol & 0x7)==0 ){
1069     Column *aNew;
1070     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1071     if( aNew==0 ){
1072       sqlite3DbFree(db, z);
1073       return;
1074     }
1075     p->aCol = aNew;
1076   }
1077   pCol = &p->aCol[p->nCol];
1078   memset(pCol, 0, sizeof(p->aCol[0]));
1079   pCol->zName = z;
1080   sqlite3ColumnPropertiesFromName(p, pCol);
1081 
1082   /* If there is no type specified, columns have the default affinity
1083   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1084   ** be called next to set pCol->affinity correctly.
1085   */
1086   pCol->affinity = SQLITE_AFF_BLOB;
1087   pCol->szEst = 1;
1088   p->nCol++;
1089 }
1090 
1091 /*
1092 ** This routine is called by the parser while in the middle of
1093 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1094 ** been seen on a column.  This routine sets the notNull flag on
1095 ** the column currently under construction.
1096 */
1097 void sqlite3AddNotNull(Parse *pParse, int onError){
1098   Table *p;
1099   p = pParse->pNewTable;
1100   if( p==0 || NEVER(p->nCol<1) ) return;
1101   p->aCol[p->nCol-1].notNull = (u8)onError;
1102 }
1103 
1104 /*
1105 ** Scan the column type name zType (length nType) and return the
1106 ** associated affinity type.
1107 **
1108 ** This routine does a case-independent search of zType for the
1109 ** substrings in the following table. If one of the substrings is
1110 ** found, the corresponding affinity is returned. If zType contains
1111 ** more than one of the substrings, entries toward the top of
1112 ** the table take priority. For example, if zType is 'BLOBINT',
1113 ** SQLITE_AFF_INTEGER is returned.
1114 **
1115 ** Substring     | Affinity
1116 ** --------------------------------
1117 ** 'INT'         | SQLITE_AFF_INTEGER
1118 ** 'CHAR'        | SQLITE_AFF_TEXT
1119 ** 'CLOB'        | SQLITE_AFF_TEXT
1120 ** 'TEXT'        | SQLITE_AFF_TEXT
1121 ** 'BLOB'        | SQLITE_AFF_BLOB
1122 ** 'REAL'        | SQLITE_AFF_REAL
1123 ** 'FLOA'        | SQLITE_AFF_REAL
1124 ** 'DOUB'        | SQLITE_AFF_REAL
1125 **
1126 ** If none of the substrings in the above table are found,
1127 ** SQLITE_AFF_NUMERIC is returned.
1128 */
1129 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1130   u32 h = 0;
1131   char aff = SQLITE_AFF_NUMERIC;
1132   const char *zChar = 0;
1133 
1134   if( zIn==0 ) return aff;
1135   while( zIn[0] ){
1136     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1137     zIn++;
1138     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1139       aff = SQLITE_AFF_TEXT;
1140       zChar = zIn;
1141     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1142       aff = SQLITE_AFF_TEXT;
1143     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1144       aff = SQLITE_AFF_TEXT;
1145     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1146         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1147       aff = SQLITE_AFF_BLOB;
1148       if( zIn[0]=='(' ) zChar = zIn;
1149 #ifndef SQLITE_OMIT_FLOATING_POINT
1150     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1151         && aff==SQLITE_AFF_NUMERIC ){
1152       aff = SQLITE_AFF_REAL;
1153     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1154         && aff==SQLITE_AFF_NUMERIC ){
1155       aff = SQLITE_AFF_REAL;
1156     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1157         && aff==SQLITE_AFF_NUMERIC ){
1158       aff = SQLITE_AFF_REAL;
1159 #endif
1160     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1161       aff = SQLITE_AFF_INTEGER;
1162       break;
1163     }
1164   }
1165 
1166   /* If pszEst is not NULL, store an estimate of the field size.  The
1167   ** estimate is scaled so that the size of an integer is 1.  */
1168   if( pszEst ){
1169     *pszEst = 1;   /* default size is approx 4 bytes */
1170     if( aff<SQLITE_AFF_NUMERIC ){
1171       if( zChar ){
1172         while( zChar[0] ){
1173           if( sqlite3Isdigit(zChar[0]) ){
1174             int v = 0;
1175             sqlite3GetInt32(zChar, &v);
1176             v = v/4 + 1;
1177             if( v>255 ) v = 255;
1178             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1179             break;
1180           }
1181           zChar++;
1182         }
1183       }else{
1184         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1185       }
1186     }
1187   }
1188   return aff;
1189 }
1190 
1191 /*
1192 ** This routine is called by the parser while in the middle of
1193 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1194 ** token in the sequence of tokens that describe the type of the
1195 ** column currently under construction.   pLast is the last token
1196 ** in the sequence.  Use this information to construct a string
1197 ** that contains the typename of the column and store that string
1198 ** in zType.
1199 */
1200 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1201   Table *p;
1202   Column *pCol;
1203 
1204   p = pParse->pNewTable;
1205   if( p==0 || NEVER(p->nCol<1) ) return;
1206   pCol = &p->aCol[p->nCol-1];
1207   assert( pCol->zType==0 || CORRUPT_DB );
1208   sqlite3DbFree(pParse->db, pCol->zType);
1209   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1210   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1211 }
1212 
1213 /*
1214 ** The expression is the default value for the most recently added column
1215 ** of the table currently under construction.
1216 **
1217 ** Default value expressions must be constant.  Raise an exception if this
1218 ** is not the case.
1219 **
1220 ** This routine is called by the parser while in the middle of
1221 ** parsing a CREATE TABLE statement.
1222 */
1223 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1224   Table *p;
1225   Column *pCol;
1226   sqlite3 *db = pParse->db;
1227   p = pParse->pNewTable;
1228   if( p!=0 ){
1229     pCol = &(p->aCol[p->nCol-1]);
1230     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1231       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1232           pCol->zName);
1233     }else{
1234       /* A copy of pExpr is used instead of the original, as pExpr contains
1235       ** tokens that point to volatile memory. The 'span' of the expression
1236       ** is required by pragma table_info.
1237       */
1238       sqlite3ExprDelete(db, pCol->pDflt);
1239       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1240       sqlite3DbFree(db, pCol->zDflt);
1241       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1242                                      (int)(pSpan->zEnd - pSpan->zStart));
1243     }
1244   }
1245   sqlite3ExprDelete(db, pSpan->pExpr);
1246 }
1247 
1248 /*
1249 ** Backwards Compatibility Hack:
1250 **
1251 ** Historical versions of SQLite accepted strings as column names in
1252 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1253 **
1254 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1255 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1256 **
1257 ** This is goofy.  But to preserve backwards compatibility we continue to
1258 ** accept it.  This routine does the necessary conversion.  It converts
1259 ** the expression given in its argument from a TK_STRING into a TK_ID
1260 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1261 ** If the epxression is anything other than TK_STRING, the expression is
1262 ** unchanged.
1263 */
1264 static void sqlite3StringToId(Expr *p){
1265   if( p->op==TK_STRING ){
1266     p->op = TK_ID;
1267   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1268     p->pLeft->op = TK_ID;
1269   }
1270 }
1271 
1272 /*
1273 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1274 ** of columns that form the primary key.  If pList is NULL, then the
1275 ** most recently added column of the table is the primary key.
1276 **
1277 ** A table can have at most one primary key.  If the table already has
1278 ** a primary key (and this is the second primary key) then create an
1279 ** error.
1280 **
1281 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1282 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1283 ** field of the table under construction to be the index of the
1284 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1285 ** no INTEGER PRIMARY KEY.
1286 **
1287 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1288 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1289 */
1290 void sqlite3AddPrimaryKey(
1291   Parse *pParse,    /* Parsing context */
1292   ExprList *pList,  /* List of field names to be indexed */
1293   int onError,      /* What to do with a uniqueness conflict */
1294   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1295   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1296 ){
1297   Table *pTab = pParse->pNewTable;
1298   char *zType = 0;
1299   int iCol = -1, i;
1300   int nTerm;
1301   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1302   if( pTab->tabFlags & TF_HasPrimaryKey ){
1303     sqlite3ErrorMsg(pParse,
1304       "table \"%s\" has more than one primary key", pTab->zName);
1305     goto primary_key_exit;
1306   }
1307   pTab->tabFlags |= TF_HasPrimaryKey;
1308   if( pList==0 ){
1309     iCol = pTab->nCol - 1;
1310     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1311     zType = pTab->aCol[iCol].zType;
1312     nTerm = 1;
1313   }else{
1314     nTerm = pList->nExpr;
1315     for(i=0; i<nTerm; i++){
1316       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1317       assert( pCExpr!=0 );
1318       sqlite3StringToId(pCExpr);
1319       if( pCExpr->op==TK_ID ){
1320         const char *zCName = pCExpr->u.zToken;
1321         for(iCol=0; iCol<pTab->nCol; iCol++){
1322           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1323             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1324             zType = pTab->aCol[iCol].zType;
1325             break;
1326           }
1327         }
1328       }
1329     }
1330   }
1331   if( nTerm==1
1332    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1333    && sortOrder!=SQLITE_SO_DESC
1334   ){
1335     pTab->iPKey = iCol;
1336     pTab->keyConf = (u8)onError;
1337     assert( autoInc==0 || autoInc==1 );
1338     pTab->tabFlags |= autoInc*TF_Autoincrement;
1339     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1340   }else if( autoInc ){
1341 #ifndef SQLITE_OMIT_AUTOINCREMENT
1342     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1343        "INTEGER PRIMARY KEY");
1344 #endif
1345   }else{
1346     Index *p;
1347     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1348                            0, sortOrder, 0);
1349     if( p ){
1350       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1351     }
1352     pList = 0;
1353   }
1354 
1355 primary_key_exit:
1356   sqlite3ExprListDelete(pParse->db, pList);
1357   return;
1358 }
1359 
1360 /*
1361 ** Add a new CHECK constraint to the table currently under construction.
1362 */
1363 void sqlite3AddCheckConstraint(
1364   Parse *pParse,    /* Parsing context */
1365   Expr *pCheckExpr  /* The check expression */
1366 ){
1367 #ifndef SQLITE_OMIT_CHECK
1368   Table *pTab = pParse->pNewTable;
1369   sqlite3 *db = pParse->db;
1370   if( pTab && !IN_DECLARE_VTAB
1371    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1372   ){
1373     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1374     if( pParse->constraintName.n ){
1375       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1376     }
1377   }else
1378 #endif
1379   {
1380     sqlite3ExprDelete(pParse->db, pCheckExpr);
1381   }
1382 }
1383 
1384 /*
1385 ** Set the collation function of the most recently parsed table column
1386 ** to the CollSeq given.
1387 */
1388 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1389   Table *p;
1390   int i;
1391   char *zColl;              /* Dequoted name of collation sequence */
1392   sqlite3 *db;
1393 
1394   if( (p = pParse->pNewTable)==0 ) return;
1395   i = p->nCol-1;
1396   db = pParse->db;
1397   zColl = sqlite3NameFromToken(db, pToken);
1398   if( !zColl ) return;
1399 
1400   if( sqlite3LocateCollSeq(pParse, zColl) ){
1401     Index *pIdx;
1402     sqlite3DbFree(db, p->aCol[i].zColl);
1403     p->aCol[i].zColl = zColl;
1404 
1405     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1406     ** then an index may have been created on this column before the
1407     ** collation type was added. Correct this if it is the case.
1408     */
1409     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1410       assert( pIdx->nKeyCol==1 );
1411       if( pIdx->aiColumn[0]==i ){
1412         pIdx->azColl[0] = p->aCol[i].zColl;
1413       }
1414     }
1415   }else{
1416     sqlite3DbFree(db, zColl);
1417   }
1418 }
1419 
1420 /*
1421 ** This function returns the collation sequence for database native text
1422 ** encoding identified by the string zName, length nName.
1423 **
1424 ** If the requested collation sequence is not available, or not available
1425 ** in the database native encoding, the collation factory is invoked to
1426 ** request it. If the collation factory does not supply such a sequence,
1427 ** and the sequence is available in another text encoding, then that is
1428 ** returned instead.
1429 **
1430 ** If no versions of the requested collations sequence are available, or
1431 ** another error occurs, NULL is returned and an error message written into
1432 ** pParse.
1433 **
1434 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1435 ** invokes the collation factory if the named collation cannot be found
1436 ** and generates an error message.
1437 **
1438 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1439 */
1440 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1441   sqlite3 *db = pParse->db;
1442   u8 enc = ENC(db);
1443   u8 initbusy = db->init.busy;
1444   CollSeq *pColl;
1445 
1446   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1447   if( !initbusy && (!pColl || !pColl->xCmp) ){
1448     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1449   }
1450 
1451   return pColl;
1452 }
1453 
1454 
1455 /*
1456 ** Generate code that will increment the schema cookie.
1457 **
1458 ** The schema cookie is used to determine when the schema for the
1459 ** database changes.  After each schema change, the cookie value
1460 ** changes.  When a process first reads the schema it records the
1461 ** cookie.  Thereafter, whenever it goes to access the database,
1462 ** it checks the cookie to make sure the schema has not changed
1463 ** since it was last read.
1464 **
1465 ** This plan is not completely bullet-proof.  It is possible for
1466 ** the schema to change multiple times and for the cookie to be
1467 ** set back to prior value.  But schema changes are infrequent
1468 ** and the probability of hitting the same cookie value is only
1469 ** 1 chance in 2^32.  So we're safe enough.
1470 */
1471 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1472   sqlite3 *db = pParse->db;
1473   Vdbe *v = pParse->pVdbe;
1474   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1475   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1476                     db->aDb[iDb].pSchema->schema_cookie+1);
1477 }
1478 
1479 /*
1480 ** Measure the number of characters needed to output the given
1481 ** identifier.  The number returned includes any quotes used
1482 ** but does not include the null terminator.
1483 **
1484 ** The estimate is conservative.  It might be larger that what is
1485 ** really needed.
1486 */
1487 static int identLength(const char *z){
1488   int n;
1489   for(n=0; *z; n++, z++){
1490     if( *z=='"' ){ n++; }
1491   }
1492   return n + 2;
1493 }
1494 
1495 /*
1496 ** The first parameter is a pointer to an output buffer. The second
1497 ** parameter is a pointer to an integer that contains the offset at
1498 ** which to write into the output buffer. This function copies the
1499 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1500 ** to the specified offset in the buffer and updates *pIdx to refer
1501 ** to the first byte after the last byte written before returning.
1502 **
1503 ** If the string zSignedIdent consists entirely of alpha-numeric
1504 ** characters, does not begin with a digit and is not an SQL keyword,
1505 ** then it is copied to the output buffer exactly as it is. Otherwise,
1506 ** it is quoted using double-quotes.
1507 */
1508 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1509   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1510   int i, j, needQuote;
1511   i = *pIdx;
1512 
1513   for(j=0; zIdent[j]; j++){
1514     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1515   }
1516   needQuote = sqlite3Isdigit(zIdent[0])
1517             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1518             || zIdent[j]!=0
1519             || j==0;
1520 
1521   if( needQuote ) z[i++] = '"';
1522   for(j=0; zIdent[j]; j++){
1523     z[i++] = zIdent[j];
1524     if( zIdent[j]=='"' ) z[i++] = '"';
1525   }
1526   if( needQuote ) z[i++] = '"';
1527   z[i] = 0;
1528   *pIdx = i;
1529 }
1530 
1531 /*
1532 ** Generate a CREATE TABLE statement appropriate for the given
1533 ** table.  Memory to hold the text of the statement is obtained
1534 ** from sqliteMalloc() and must be freed by the calling function.
1535 */
1536 static char *createTableStmt(sqlite3 *db, Table *p){
1537   int i, k, n;
1538   char *zStmt;
1539   char *zSep, *zSep2, *zEnd;
1540   Column *pCol;
1541   n = 0;
1542   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1543     n += identLength(pCol->zName) + 5;
1544   }
1545   n += identLength(p->zName);
1546   if( n<50 ){
1547     zSep = "";
1548     zSep2 = ",";
1549     zEnd = ")";
1550   }else{
1551     zSep = "\n  ";
1552     zSep2 = ",\n  ";
1553     zEnd = "\n)";
1554   }
1555   n += 35 + 6*p->nCol;
1556   zStmt = sqlite3DbMallocRaw(0, n);
1557   if( zStmt==0 ){
1558     db->mallocFailed = 1;
1559     return 0;
1560   }
1561   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1562   k = sqlite3Strlen30(zStmt);
1563   identPut(zStmt, &k, p->zName);
1564   zStmt[k++] = '(';
1565   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1566     static const char * const azType[] = {
1567         /* SQLITE_AFF_BLOB    */ "",
1568         /* SQLITE_AFF_TEXT    */ " TEXT",
1569         /* SQLITE_AFF_NUMERIC */ " NUM",
1570         /* SQLITE_AFF_INTEGER */ " INT",
1571         /* SQLITE_AFF_REAL    */ " REAL"
1572     };
1573     int len;
1574     const char *zType;
1575 
1576     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1577     k += sqlite3Strlen30(&zStmt[k]);
1578     zSep = zSep2;
1579     identPut(zStmt, &k, pCol->zName);
1580     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1581     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1582     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1583     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1584     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1585     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1586     testcase( pCol->affinity==SQLITE_AFF_REAL );
1587 
1588     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1589     len = sqlite3Strlen30(zType);
1590     assert( pCol->affinity==SQLITE_AFF_BLOB
1591             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1592     memcpy(&zStmt[k], zType, len);
1593     k += len;
1594     assert( k<=n );
1595   }
1596   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1597   return zStmt;
1598 }
1599 
1600 /*
1601 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1602 ** on success and SQLITE_NOMEM on an OOM error.
1603 */
1604 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1605   char *zExtra;
1606   int nByte;
1607   if( pIdx->nColumn>=N ) return SQLITE_OK;
1608   assert( pIdx->isResized==0 );
1609   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1610   zExtra = sqlite3DbMallocZero(db, nByte);
1611   if( zExtra==0 ) return SQLITE_NOMEM;
1612   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1613   pIdx->azColl = (const char**)zExtra;
1614   zExtra += sizeof(char*)*N;
1615   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1616   pIdx->aiColumn = (i16*)zExtra;
1617   zExtra += sizeof(i16)*N;
1618   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1619   pIdx->aSortOrder = (u8*)zExtra;
1620   pIdx->nColumn = N;
1621   pIdx->isResized = 1;
1622   return SQLITE_OK;
1623 }
1624 
1625 /*
1626 ** Estimate the total row width for a table.
1627 */
1628 static void estimateTableWidth(Table *pTab){
1629   unsigned wTable = 0;
1630   const Column *pTabCol;
1631   int i;
1632   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1633     wTable += pTabCol->szEst;
1634   }
1635   if( pTab->iPKey<0 ) wTable++;
1636   pTab->szTabRow = sqlite3LogEst(wTable*4);
1637 }
1638 
1639 /*
1640 ** Estimate the average size of a row for an index.
1641 */
1642 static void estimateIndexWidth(Index *pIdx){
1643   unsigned wIndex = 0;
1644   int i;
1645   const Column *aCol = pIdx->pTable->aCol;
1646   for(i=0; i<pIdx->nColumn; i++){
1647     i16 x = pIdx->aiColumn[i];
1648     assert( x<pIdx->pTable->nCol );
1649     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1650   }
1651   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1652 }
1653 
1654 /* Return true if value x is found any of the first nCol entries of aiCol[]
1655 */
1656 static int hasColumn(const i16 *aiCol, int nCol, int x){
1657   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1658   return 0;
1659 }
1660 
1661 /*
1662 ** This routine runs at the end of parsing a CREATE TABLE statement that
1663 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1664 ** internal schema data structures and the generated VDBE code so that they
1665 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1666 ** Changes include:
1667 **
1668 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1669 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1670 **          data storage is a covering index btree.
1671 **     (2)  Bypass the creation of the sqlite_master table entry
1672 **          for the PRIMARY KEY as the primary key index is now
1673 **          identified by the sqlite_master table entry of the table itself.
1674 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1675 **          schema to the rootpage from the main table.
1676 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1677 **     (5)  Add all table columns to the PRIMARY KEY Index object
1678 **          so that the PRIMARY KEY is a covering index.  The surplus
1679 **          columns are part of KeyInfo.nXField and are not used for
1680 **          sorting or lookup or uniqueness checks.
1681 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1682 **          indices with the PRIMARY KEY columns.
1683 */
1684 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1685   Index *pIdx;
1686   Index *pPk;
1687   int nPk;
1688   int i, j;
1689   sqlite3 *db = pParse->db;
1690   Vdbe *v = pParse->pVdbe;
1691 
1692   /* Convert the OP_CreateTable opcode that would normally create the
1693   ** root-page for the table into an OP_CreateIndex opcode.  The index
1694   ** created will become the PRIMARY KEY index.
1695   */
1696   if( pParse->addrCrTab ){
1697     assert( v );
1698     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1699   }
1700 
1701   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1702   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1703   */
1704   if( pTab->iPKey>=0 ){
1705     ExprList *pList;
1706     Token ipkToken;
1707     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1708     pList = sqlite3ExprListAppend(pParse, 0,
1709                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1710     if( pList==0 ) return;
1711     pList->a[0].sortOrder = pParse->iPkSortOrder;
1712     assert( pParse->pNewTable==pTab );
1713     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1714     if( pPk==0 ) return;
1715     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1716     pTab->iPKey = -1;
1717   }else{
1718     pPk = sqlite3PrimaryKeyIndex(pTab);
1719 
1720     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1721     ** table entry. This is only required if currently generating VDBE
1722     ** code for a CREATE TABLE (not when parsing one as part of reading
1723     ** a database schema).  */
1724     if( v ){
1725       assert( db->init.busy==0 );
1726       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1727     }
1728 
1729     /*
1730     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1731     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1732     ** code assumes the PRIMARY KEY contains no repeated columns.
1733     */
1734     for(i=j=1; i<pPk->nKeyCol; i++){
1735       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1736         pPk->nColumn--;
1737       }else{
1738         pPk->aiColumn[j++] = pPk->aiColumn[i];
1739       }
1740     }
1741     pPk->nKeyCol = j;
1742   }
1743   pPk->isCovering = 1;
1744   assert( pPk!=0 );
1745   nPk = pPk->nKeyCol;
1746 
1747   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1748   ** do not enforce this for imposter tables.) */
1749   if( !db->init.imposterTable ){
1750     for(i=0; i<nPk; i++){
1751       pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1752     }
1753     pPk->uniqNotNull = 1;
1754   }
1755 
1756   /* The root page of the PRIMARY KEY is the table root page */
1757   pPk->tnum = pTab->tnum;
1758 
1759   /* Update the in-memory representation of all UNIQUE indices by converting
1760   ** the final rowid column into one or more columns of the PRIMARY KEY.
1761   */
1762   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1763     int n;
1764     if( IsPrimaryKeyIndex(pIdx) ) continue;
1765     for(i=n=0; i<nPk; i++){
1766       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1767     }
1768     if( n==0 ){
1769       /* This index is a superset of the primary key */
1770       pIdx->nColumn = pIdx->nKeyCol;
1771       continue;
1772     }
1773     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1774     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1775       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1776         pIdx->aiColumn[j] = pPk->aiColumn[i];
1777         pIdx->azColl[j] = pPk->azColl[i];
1778         j++;
1779       }
1780     }
1781     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1782     assert( pIdx->nColumn>=j );
1783   }
1784 
1785   /* Add all table columns to the PRIMARY KEY index
1786   */
1787   if( nPk<pTab->nCol ){
1788     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1789     for(i=0, j=nPk; i<pTab->nCol; i++){
1790       if( !hasColumn(pPk->aiColumn, j, i) ){
1791         assert( j<pPk->nColumn );
1792         pPk->aiColumn[j] = i;
1793         pPk->azColl[j] = sqlite3StrBINARY;
1794         j++;
1795       }
1796     }
1797     assert( pPk->nColumn==j );
1798     assert( pTab->nCol==j );
1799   }else{
1800     pPk->nColumn = pTab->nCol;
1801   }
1802 }
1803 
1804 /*
1805 ** This routine is called to report the final ")" that terminates
1806 ** a CREATE TABLE statement.
1807 **
1808 ** The table structure that other action routines have been building
1809 ** is added to the internal hash tables, assuming no errors have
1810 ** occurred.
1811 **
1812 ** An entry for the table is made in the master table on disk, unless
1813 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1814 ** it means we are reading the sqlite_master table because we just
1815 ** connected to the database or because the sqlite_master table has
1816 ** recently changed, so the entry for this table already exists in
1817 ** the sqlite_master table.  We do not want to create it again.
1818 **
1819 ** If the pSelect argument is not NULL, it means that this routine
1820 ** was called to create a table generated from a
1821 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1822 ** the new table will match the result set of the SELECT.
1823 */
1824 void sqlite3EndTable(
1825   Parse *pParse,          /* Parse context */
1826   Token *pCons,           /* The ',' token after the last column defn. */
1827   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1828   u8 tabOpts,             /* Extra table options. Usually 0. */
1829   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1830 ){
1831   Table *p;                 /* The new table */
1832   sqlite3 *db = pParse->db; /* The database connection */
1833   int iDb;                  /* Database in which the table lives */
1834   Index *pIdx;              /* An implied index of the table */
1835 
1836   if( pEnd==0 && pSelect==0 ){
1837     return;
1838   }
1839   assert( !db->mallocFailed );
1840   p = pParse->pNewTable;
1841   if( p==0 ) return;
1842 
1843   assert( !db->init.busy || !pSelect );
1844 
1845   /* If the db->init.busy is 1 it means we are reading the SQL off the
1846   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1847   ** So do not write to the disk again.  Extract the root page number
1848   ** for the table from the db->init.newTnum field.  (The page number
1849   ** should have been put there by the sqliteOpenCb routine.)
1850   **
1851   ** If the root page number is 1, that means this is the sqlite_master
1852   ** table itself.  So mark it read-only.
1853   */
1854   if( db->init.busy ){
1855     p->tnum = db->init.newTnum;
1856     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1857   }
1858 
1859   /* Special processing for WITHOUT ROWID Tables */
1860   if( tabOpts & TF_WithoutRowid ){
1861     if( (p->tabFlags & TF_Autoincrement) ){
1862       sqlite3ErrorMsg(pParse,
1863           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1864       return;
1865     }
1866     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1867       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1868     }else{
1869       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1870       convertToWithoutRowidTable(pParse, p);
1871     }
1872   }
1873 
1874   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1875 
1876 #ifndef SQLITE_OMIT_CHECK
1877   /* Resolve names in all CHECK constraint expressions.
1878   */
1879   if( p->pCheck ){
1880     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1881   }
1882 #endif /* !defined(SQLITE_OMIT_CHECK) */
1883 
1884   /* Estimate the average row size for the table and for all implied indices */
1885   estimateTableWidth(p);
1886   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1887     estimateIndexWidth(pIdx);
1888   }
1889 
1890   /* If not initializing, then create a record for the new table
1891   ** in the SQLITE_MASTER table of the database.
1892   **
1893   ** If this is a TEMPORARY table, write the entry into the auxiliary
1894   ** file instead of into the main database file.
1895   */
1896   if( !db->init.busy ){
1897     int n;
1898     Vdbe *v;
1899     char *zType;    /* "view" or "table" */
1900     char *zType2;   /* "VIEW" or "TABLE" */
1901     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1902 
1903     v = sqlite3GetVdbe(pParse);
1904     if( NEVER(v==0) ) return;
1905 
1906     sqlite3VdbeAddOp1(v, OP_Close, 0);
1907 
1908     /*
1909     ** Initialize zType for the new view or table.
1910     */
1911     if( p->pSelect==0 ){
1912       /* A regular table */
1913       zType = "table";
1914       zType2 = "TABLE";
1915 #ifndef SQLITE_OMIT_VIEW
1916     }else{
1917       /* A view */
1918       zType = "view";
1919       zType2 = "VIEW";
1920 #endif
1921     }
1922 
1923     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1924     ** statement to populate the new table. The root-page number for the
1925     ** new table is in register pParse->regRoot.
1926     **
1927     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1928     ** suitable state to query for the column names and types to be used
1929     ** by the new table.
1930     **
1931     ** A shared-cache write-lock is not required to write to the new table,
1932     ** as a schema-lock must have already been obtained to create it. Since
1933     ** a schema-lock excludes all other database users, the write-lock would
1934     ** be redundant.
1935     */
1936     if( pSelect ){
1937       SelectDest dest;    /* Where the SELECT should store results */
1938       int regYield;       /* Register holding co-routine entry-point */
1939       int addrTop;        /* Top of the co-routine */
1940       int regRec;         /* A record to be insert into the new table */
1941       int regRowid;       /* Rowid of the next row to insert */
1942       int addrInsLoop;    /* Top of the loop for inserting rows */
1943       Table *pSelTab;     /* A table that describes the SELECT results */
1944 
1945       regYield = ++pParse->nMem;
1946       regRec = ++pParse->nMem;
1947       regRowid = ++pParse->nMem;
1948       assert(pParse->nTab==1);
1949       sqlite3MayAbort(pParse);
1950       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1951       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1952       pParse->nTab = 2;
1953       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1954       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1955       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1956       sqlite3Select(pParse, pSelect, &dest);
1957       sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1958       sqlite3VdbeJumpHere(v, addrTop - 1);
1959       if( pParse->nErr ) return;
1960       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1961       if( pSelTab==0 ) return;
1962       assert( p->aCol==0 );
1963       p->nCol = pSelTab->nCol;
1964       p->aCol = pSelTab->aCol;
1965       pSelTab->nCol = 0;
1966       pSelTab->aCol = 0;
1967       sqlite3DeleteTable(db, pSelTab);
1968       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1969       VdbeCoverage(v);
1970       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1971       sqlite3TableAffinity(v, p, 0);
1972       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1973       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1974       sqlite3VdbeGoto(v, addrInsLoop);
1975       sqlite3VdbeJumpHere(v, addrInsLoop);
1976       sqlite3VdbeAddOp1(v, OP_Close, 1);
1977     }
1978 
1979     /* Compute the complete text of the CREATE statement */
1980     if( pSelect ){
1981       zStmt = createTableStmt(db, p);
1982     }else{
1983       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1984       n = (int)(pEnd2->z - pParse->sNameToken.z);
1985       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1986       zStmt = sqlite3MPrintf(db,
1987           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1988       );
1989     }
1990 
1991     /* A slot for the record has already been allocated in the
1992     ** SQLITE_MASTER table.  We just need to update that slot with all
1993     ** the information we've collected.
1994     */
1995     sqlite3NestedParse(pParse,
1996       "UPDATE %Q.%s "
1997          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1998        "WHERE rowid=#%d",
1999       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2000       zType,
2001       p->zName,
2002       p->zName,
2003       pParse->regRoot,
2004       zStmt,
2005       pParse->regRowid
2006     );
2007     sqlite3DbFree(db, zStmt);
2008     sqlite3ChangeCookie(pParse, iDb);
2009 
2010 #ifndef SQLITE_OMIT_AUTOINCREMENT
2011     /* Check to see if we need to create an sqlite_sequence table for
2012     ** keeping track of autoincrement keys.
2013     */
2014     if( p->tabFlags & TF_Autoincrement ){
2015       Db *pDb = &db->aDb[iDb];
2016       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2017       if( pDb->pSchema->pSeqTab==0 ){
2018         sqlite3NestedParse(pParse,
2019           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2020           pDb->zName
2021         );
2022       }
2023     }
2024 #endif
2025 
2026     /* Reparse everything to update our internal data structures */
2027     sqlite3VdbeAddParseSchemaOp(v, iDb,
2028            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2029   }
2030 
2031 
2032   /* Add the table to the in-memory representation of the database.
2033   */
2034   if( db->init.busy ){
2035     Table *pOld;
2036     Schema *pSchema = p->pSchema;
2037     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2038     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2039     if( pOld ){
2040       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2041       db->mallocFailed = 1;
2042       return;
2043     }
2044     pParse->pNewTable = 0;
2045     db->flags |= SQLITE_InternChanges;
2046 
2047 #ifndef SQLITE_OMIT_ALTERTABLE
2048     if( !p->pSelect ){
2049       const char *zName = (const char *)pParse->sNameToken.z;
2050       int nName;
2051       assert( !pSelect && pCons && pEnd );
2052       if( pCons->z==0 ){
2053         pCons = pEnd;
2054       }
2055       nName = (int)((const char *)pCons->z - zName);
2056       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2057     }
2058 #endif
2059   }
2060 }
2061 
2062 #ifndef SQLITE_OMIT_VIEW
2063 /*
2064 ** The parser calls this routine in order to create a new VIEW
2065 */
2066 void sqlite3CreateView(
2067   Parse *pParse,     /* The parsing context */
2068   Token *pBegin,     /* The CREATE token that begins the statement */
2069   Token *pName1,     /* The token that holds the name of the view */
2070   Token *pName2,     /* The token that holds the name of the view */
2071   ExprList *pCNames, /* Optional list of view column names */
2072   Select *pSelect,   /* A SELECT statement that will become the new view */
2073   int isTemp,        /* TRUE for a TEMPORARY view */
2074   int noErr          /* Suppress error messages if VIEW already exists */
2075 ){
2076   Table *p;
2077   int n;
2078   const char *z;
2079   Token sEnd;
2080   DbFixer sFix;
2081   Token *pName = 0;
2082   int iDb;
2083   sqlite3 *db = pParse->db;
2084 
2085   if( pParse->nVar>0 ){
2086     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2087     goto create_view_fail;
2088   }
2089   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2090   p = pParse->pNewTable;
2091   if( p==0 || pParse->nErr ) goto create_view_fail;
2092   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2093   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2094   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2095   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2096 
2097   /* Make a copy of the entire SELECT statement that defines the view.
2098   ** This will force all the Expr.token.z values to be dynamically
2099   ** allocated rather than point to the input string - which means that
2100   ** they will persist after the current sqlite3_exec() call returns.
2101   */
2102   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2103   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2104   if( db->mallocFailed ) goto create_view_fail;
2105 
2106   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2107   ** the end.
2108   */
2109   sEnd = pParse->sLastToken;
2110   assert( sEnd.z[0]!=0 );
2111   if( sEnd.z[0]!=';' ){
2112     sEnd.z += sEnd.n;
2113   }
2114   sEnd.n = 0;
2115   n = (int)(sEnd.z - pBegin->z);
2116   assert( n>0 );
2117   z = pBegin->z;
2118   while( sqlite3Isspace(z[n-1]) ){ n--; }
2119   sEnd.z = &z[n-1];
2120   sEnd.n = 1;
2121 
2122   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2123   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2124 
2125 create_view_fail:
2126   sqlite3SelectDelete(db, pSelect);
2127   sqlite3ExprListDelete(db, pCNames);
2128   return;
2129 }
2130 #endif /* SQLITE_OMIT_VIEW */
2131 
2132 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2133 /*
2134 ** The Table structure pTable is really a VIEW.  Fill in the names of
2135 ** the columns of the view in the pTable structure.  Return the number
2136 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2137 */
2138 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2139   Table *pSelTab;   /* A fake table from which we get the result set */
2140   Select *pSel;     /* Copy of the SELECT that implements the view */
2141   int nErr = 0;     /* Number of errors encountered */
2142   int n;            /* Temporarily holds the number of cursors assigned */
2143   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2144   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2145   u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */
2146 
2147   assert( pTable );
2148 
2149 #ifndef SQLITE_OMIT_VIRTUALTABLE
2150   if( sqlite3VtabCallConnect(pParse, pTable) ){
2151     return SQLITE_ERROR;
2152   }
2153   if( IsVirtual(pTable) ) return 0;
2154 #endif
2155 
2156 #ifndef SQLITE_OMIT_VIEW
2157   /* A positive nCol means the columns names for this view are
2158   ** already known.
2159   */
2160   if( pTable->nCol>0 ) return 0;
2161 
2162   /* A negative nCol is a special marker meaning that we are currently
2163   ** trying to compute the column names.  If we enter this routine with
2164   ** a negative nCol, it means two or more views form a loop, like this:
2165   **
2166   **     CREATE VIEW one AS SELECT * FROM two;
2167   **     CREATE VIEW two AS SELECT * FROM one;
2168   **
2169   ** Actually, the error above is now caught prior to reaching this point.
2170   ** But the following test is still important as it does come up
2171   ** in the following:
2172   **
2173   **     CREATE TABLE main.ex1(a);
2174   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2175   **     SELECT * FROM temp.ex1;
2176   */
2177   if( pTable->nCol<0 ){
2178     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2179     return 1;
2180   }
2181   assert( pTable->nCol>=0 );
2182 
2183   /* If we get this far, it means we need to compute the table names.
2184   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2185   ** "*" elements in the results set of the view and will assign cursors
2186   ** to the elements of the FROM clause.  But we do not want these changes
2187   ** to be permanent.  So the computation is done on a copy of the SELECT
2188   ** statement that defines the view.
2189   */
2190   assert( pTable->pSelect );
2191   bEnabledLA = db->lookaside.bEnabled;
2192   if( pTable->pCheck ){
2193     db->lookaside.bEnabled = 0;
2194     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2195                                &pTable->nCol, &pTable->aCol);
2196   }else{
2197     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2198     if( pSel ){
2199       n = pParse->nTab;
2200       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2201       pTable->nCol = -1;
2202       db->lookaside.bEnabled = 0;
2203 #ifndef SQLITE_OMIT_AUTHORIZATION
2204       xAuth = db->xAuth;
2205       db->xAuth = 0;
2206       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2207       db->xAuth = xAuth;
2208 #else
2209       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2210 #endif
2211       pParse->nTab = n;
2212       if( pSelTab ){
2213         assert( pTable->aCol==0 );
2214         pTable->nCol = pSelTab->nCol;
2215         pTable->aCol = pSelTab->aCol;
2216         pSelTab->nCol = 0;
2217         pSelTab->aCol = 0;
2218         sqlite3DeleteTable(db, pSelTab);
2219         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2220       }else{
2221         pTable->nCol = 0;
2222         nErr++;
2223       }
2224       sqlite3SelectDelete(db, pSel);
2225     } else {
2226       nErr++;
2227     }
2228   }
2229   db->lookaside.bEnabled = bEnabledLA;
2230   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2231 #endif /* SQLITE_OMIT_VIEW */
2232   return nErr;
2233 }
2234 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2235 
2236 #ifndef SQLITE_OMIT_VIEW
2237 /*
2238 ** Clear the column names from every VIEW in database idx.
2239 */
2240 static void sqliteViewResetAll(sqlite3 *db, int idx){
2241   HashElem *i;
2242   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2243   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2244   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2245     Table *pTab = sqliteHashData(i);
2246     if( pTab->pSelect ){
2247       sqlite3DeleteColumnNames(db, pTab);
2248       pTab->aCol = 0;
2249       pTab->nCol = 0;
2250     }
2251   }
2252   DbClearProperty(db, idx, DB_UnresetViews);
2253 }
2254 #else
2255 # define sqliteViewResetAll(A,B)
2256 #endif /* SQLITE_OMIT_VIEW */
2257 
2258 /*
2259 ** This function is called by the VDBE to adjust the internal schema
2260 ** used by SQLite when the btree layer moves a table root page. The
2261 ** root-page of a table or index in database iDb has changed from iFrom
2262 ** to iTo.
2263 **
2264 ** Ticket #1728:  The symbol table might still contain information
2265 ** on tables and/or indices that are the process of being deleted.
2266 ** If you are unlucky, one of those deleted indices or tables might
2267 ** have the same rootpage number as the real table or index that is
2268 ** being moved.  So we cannot stop searching after the first match
2269 ** because the first match might be for one of the deleted indices
2270 ** or tables and not the table/index that is actually being moved.
2271 ** We must continue looping until all tables and indices with
2272 ** rootpage==iFrom have been converted to have a rootpage of iTo
2273 ** in order to be certain that we got the right one.
2274 */
2275 #ifndef SQLITE_OMIT_AUTOVACUUM
2276 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2277   HashElem *pElem;
2278   Hash *pHash;
2279   Db *pDb;
2280 
2281   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2282   pDb = &db->aDb[iDb];
2283   pHash = &pDb->pSchema->tblHash;
2284   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2285     Table *pTab = sqliteHashData(pElem);
2286     if( pTab->tnum==iFrom ){
2287       pTab->tnum = iTo;
2288     }
2289   }
2290   pHash = &pDb->pSchema->idxHash;
2291   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2292     Index *pIdx = sqliteHashData(pElem);
2293     if( pIdx->tnum==iFrom ){
2294       pIdx->tnum = iTo;
2295     }
2296   }
2297 }
2298 #endif
2299 
2300 /*
2301 ** Write code to erase the table with root-page iTable from database iDb.
2302 ** Also write code to modify the sqlite_master table and internal schema
2303 ** if a root-page of another table is moved by the btree-layer whilst
2304 ** erasing iTable (this can happen with an auto-vacuum database).
2305 */
2306 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2307   Vdbe *v = sqlite3GetVdbe(pParse);
2308   int r1 = sqlite3GetTempReg(pParse);
2309   assert( iTable>1 );
2310   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2311   sqlite3MayAbort(pParse);
2312 #ifndef SQLITE_OMIT_AUTOVACUUM
2313   /* OP_Destroy stores an in integer r1. If this integer
2314   ** is non-zero, then it is the root page number of a table moved to
2315   ** location iTable. The following code modifies the sqlite_master table to
2316   ** reflect this.
2317   **
2318   ** The "#NNN" in the SQL is a special constant that means whatever value
2319   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2320   ** token for additional information.
2321   */
2322   sqlite3NestedParse(pParse,
2323      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2324      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2325 #endif
2326   sqlite3ReleaseTempReg(pParse, r1);
2327 }
2328 
2329 /*
2330 ** Write VDBE code to erase table pTab and all associated indices on disk.
2331 ** Code to update the sqlite_master tables and internal schema definitions
2332 ** in case a root-page belonging to another table is moved by the btree layer
2333 ** is also added (this can happen with an auto-vacuum database).
2334 */
2335 static void destroyTable(Parse *pParse, Table *pTab){
2336 #ifdef SQLITE_OMIT_AUTOVACUUM
2337   Index *pIdx;
2338   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2339   destroyRootPage(pParse, pTab->tnum, iDb);
2340   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2341     destroyRootPage(pParse, pIdx->tnum, iDb);
2342   }
2343 #else
2344   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2345   ** is not defined), then it is important to call OP_Destroy on the
2346   ** table and index root-pages in order, starting with the numerically
2347   ** largest root-page number. This guarantees that none of the root-pages
2348   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2349   ** following were coded:
2350   **
2351   ** OP_Destroy 4 0
2352   ** ...
2353   ** OP_Destroy 5 0
2354   **
2355   ** and root page 5 happened to be the largest root-page number in the
2356   ** database, then root page 5 would be moved to page 4 by the
2357   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2358   ** a free-list page.
2359   */
2360   int iTab = pTab->tnum;
2361   int iDestroyed = 0;
2362 
2363   while( 1 ){
2364     Index *pIdx;
2365     int iLargest = 0;
2366 
2367     if( iDestroyed==0 || iTab<iDestroyed ){
2368       iLargest = iTab;
2369     }
2370     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2371       int iIdx = pIdx->tnum;
2372       assert( pIdx->pSchema==pTab->pSchema );
2373       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2374         iLargest = iIdx;
2375       }
2376     }
2377     if( iLargest==0 ){
2378       return;
2379     }else{
2380       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2381       assert( iDb>=0 && iDb<pParse->db->nDb );
2382       destroyRootPage(pParse, iLargest, iDb);
2383       iDestroyed = iLargest;
2384     }
2385   }
2386 #endif
2387 }
2388 
2389 /*
2390 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2391 ** after a DROP INDEX or DROP TABLE command.
2392 */
2393 static void sqlite3ClearStatTables(
2394   Parse *pParse,         /* The parsing context */
2395   int iDb,               /* The database number */
2396   const char *zType,     /* "idx" or "tbl" */
2397   const char *zName      /* Name of index or table */
2398 ){
2399   int i;
2400   const char *zDbName = pParse->db->aDb[iDb].zName;
2401   for(i=1; i<=4; i++){
2402     char zTab[24];
2403     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2404     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2405       sqlite3NestedParse(pParse,
2406         "DELETE FROM %Q.%s WHERE %s=%Q",
2407         zDbName, zTab, zType, zName
2408       );
2409     }
2410   }
2411 }
2412 
2413 /*
2414 ** Generate code to drop a table.
2415 */
2416 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2417   Vdbe *v;
2418   sqlite3 *db = pParse->db;
2419   Trigger *pTrigger;
2420   Db *pDb = &db->aDb[iDb];
2421 
2422   v = sqlite3GetVdbe(pParse);
2423   assert( v!=0 );
2424   sqlite3BeginWriteOperation(pParse, 1, iDb);
2425 
2426 #ifndef SQLITE_OMIT_VIRTUALTABLE
2427   if( IsVirtual(pTab) ){
2428     sqlite3VdbeAddOp0(v, OP_VBegin);
2429   }
2430 #endif
2431 
2432   /* Drop all triggers associated with the table being dropped. Code
2433   ** is generated to remove entries from sqlite_master and/or
2434   ** sqlite_temp_master if required.
2435   */
2436   pTrigger = sqlite3TriggerList(pParse, pTab);
2437   while( pTrigger ){
2438     assert( pTrigger->pSchema==pTab->pSchema ||
2439         pTrigger->pSchema==db->aDb[1].pSchema );
2440     sqlite3DropTriggerPtr(pParse, pTrigger);
2441     pTrigger = pTrigger->pNext;
2442   }
2443 
2444 #ifndef SQLITE_OMIT_AUTOINCREMENT
2445   /* Remove any entries of the sqlite_sequence table associated with
2446   ** the table being dropped. This is done before the table is dropped
2447   ** at the btree level, in case the sqlite_sequence table needs to
2448   ** move as a result of the drop (can happen in auto-vacuum mode).
2449   */
2450   if( pTab->tabFlags & TF_Autoincrement ){
2451     sqlite3NestedParse(pParse,
2452       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2453       pDb->zName, pTab->zName
2454     );
2455   }
2456 #endif
2457 
2458   /* Drop all SQLITE_MASTER table and index entries that refer to the
2459   ** table. The program name loops through the master table and deletes
2460   ** every row that refers to a table of the same name as the one being
2461   ** dropped. Triggers are handled separately because a trigger can be
2462   ** created in the temp database that refers to a table in another
2463   ** database.
2464   */
2465   sqlite3NestedParse(pParse,
2466       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2467       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2468   if( !isView && !IsVirtual(pTab) ){
2469     destroyTable(pParse, pTab);
2470   }
2471 
2472   /* Remove the table entry from SQLite's internal schema and modify
2473   ** the schema cookie.
2474   */
2475   if( IsVirtual(pTab) ){
2476     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2477   }
2478   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2479   sqlite3ChangeCookie(pParse, iDb);
2480   sqliteViewResetAll(db, iDb);
2481 }
2482 
2483 /*
2484 ** This routine is called to do the work of a DROP TABLE statement.
2485 ** pName is the name of the table to be dropped.
2486 */
2487 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2488   Table *pTab;
2489   Vdbe *v;
2490   sqlite3 *db = pParse->db;
2491   int iDb;
2492 
2493   if( db->mallocFailed ){
2494     goto exit_drop_table;
2495   }
2496   assert( pParse->nErr==0 );
2497   assert( pName->nSrc==1 );
2498   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2499   if( noErr ) db->suppressErr++;
2500   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2501   if( noErr ) db->suppressErr--;
2502 
2503   if( pTab==0 ){
2504     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2505     goto exit_drop_table;
2506   }
2507   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2508   assert( iDb>=0 && iDb<db->nDb );
2509 
2510   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2511   ** it is initialized.
2512   */
2513   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2514     goto exit_drop_table;
2515   }
2516 #ifndef SQLITE_OMIT_AUTHORIZATION
2517   {
2518     int code;
2519     const char *zTab = SCHEMA_TABLE(iDb);
2520     const char *zDb = db->aDb[iDb].zName;
2521     const char *zArg2 = 0;
2522     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2523       goto exit_drop_table;
2524     }
2525     if( isView ){
2526       if( !OMIT_TEMPDB && iDb==1 ){
2527         code = SQLITE_DROP_TEMP_VIEW;
2528       }else{
2529         code = SQLITE_DROP_VIEW;
2530       }
2531 #ifndef SQLITE_OMIT_VIRTUALTABLE
2532     }else if( IsVirtual(pTab) ){
2533       code = SQLITE_DROP_VTABLE;
2534       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2535 #endif
2536     }else{
2537       if( !OMIT_TEMPDB && iDb==1 ){
2538         code = SQLITE_DROP_TEMP_TABLE;
2539       }else{
2540         code = SQLITE_DROP_TABLE;
2541       }
2542     }
2543     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2544       goto exit_drop_table;
2545     }
2546     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2547       goto exit_drop_table;
2548     }
2549   }
2550 #endif
2551   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2552     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2553     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2554     goto exit_drop_table;
2555   }
2556 
2557 #ifndef SQLITE_OMIT_VIEW
2558   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2559   ** on a table.
2560   */
2561   if( isView && pTab->pSelect==0 ){
2562     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2563     goto exit_drop_table;
2564   }
2565   if( !isView && pTab->pSelect ){
2566     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2567     goto exit_drop_table;
2568   }
2569 #endif
2570 
2571   /* Generate code to remove the table from the master table
2572   ** on disk.
2573   */
2574   v = sqlite3GetVdbe(pParse);
2575   if( v ){
2576     sqlite3BeginWriteOperation(pParse, 1, iDb);
2577     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2578     sqlite3FkDropTable(pParse, pName, pTab);
2579     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2580   }
2581 
2582 exit_drop_table:
2583   sqlite3SrcListDelete(db, pName);
2584 }
2585 
2586 /*
2587 ** This routine is called to create a new foreign key on the table
2588 ** currently under construction.  pFromCol determines which columns
2589 ** in the current table point to the foreign key.  If pFromCol==0 then
2590 ** connect the key to the last column inserted.  pTo is the name of
2591 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2592 ** of tables in the parent pTo table.  flags contains all
2593 ** information about the conflict resolution algorithms specified
2594 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2595 **
2596 ** An FKey structure is created and added to the table currently
2597 ** under construction in the pParse->pNewTable field.
2598 **
2599 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2600 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2601 */
2602 void sqlite3CreateForeignKey(
2603   Parse *pParse,       /* Parsing context */
2604   ExprList *pFromCol,  /* Columns in this table that point to other table */
2605   Token *pTo,          /* Name of the other table */
2606   ExprList *pToCol,    /* Columns in the other table */
2607   int flags            /* Conflict resolution algorithms. */
2608 ){
2609   sqlite3 *db = pParse->db;
2610 #ifndef SQLITE_OMIT_FOREIGN_KEY
2611   FKey *pFKey = 0;
2612   FKey *pNextTo;
2613   Table *p = pParse->pNewTable;
2614   int nByte;
2615   int i;
2616   int nCol;
2617   char *z;
2618 
2619   assert( pTo!=0 );
2620   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2621   if( pFromCol==0 ){
2622     int iCol = p->nCol-1;
2623     if( NEVER(iCol<0) ) goto fk_end;
2624     if( pToCol && pToCol->nExpr!=1 ){
2625       sqlite3ErrorMsg(pParse, "foreign key on %s"
2626          " should reference only one column of table %T",
2627          p->aCol[iCol].zName, pTo);
2628       goto fk_end;
2629     }
2630     nCol = 1;
2631   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2632     sqlite3ErrorMsg(pParse,
2633         "number of columns in foreign key does not match the number of "
2634         "columns in the referenced table");
2635     goto fk_end;
2636   }else{
2637     nCol = pFromCol->nExpr;
2638   }
2639   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2640   if( pToCol ){
2641     for(i=0; i<pToCol->nExpr; i++){
2642       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2643     }
2644   }
2645   pFKey = sqlite3DbMallocZero(db, nByte );
2646   if( pFKey==0 ){
2647     goto fk_end;
2648   }
2649   pFKey->pFrom = p;
2650   pFKey->pNextFrom = p->pFKey;
2651   z = (char*)&pFKey->aCol[nCol];
2652   pFKey->zTo = z;
2653   memcpy(z, pTo->z, pTo->n);
2654   z[pTo->n] = 0;
2655   sqlite3Dequote(z);
2656   z += pTo->n+1;
2657   pFKey->nCol = nCol;
2658   if( pFromCol==0 ){
2659     pFKey->aCol[0].iFrom = p->nCol-1;
2660   }else{
2661     for(i=0; i<nCol; i++){
2662       int j;
2663       for(j=0; j<p->nCol; j++){
2664         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2665           pFKey->aCol[i].iFrom = j;
2666           break;
2667         }
2668       }
2669       if( j>=p->nCol ){
2670         sqlite3ErrorMsg(pParse,
2671           "unknown column \"%s\" in foreign key definition",
2672           pFromCol->a[i].zName);
2673         goto fk_end;
2674       }
2675     }
2676   }
2677   if( pToCol ){
2678     for(i=0; i<nCol; i++){
2679       int n = sqlite3Strlen30(pToCol->a[i].zName);
2680       pFKey->aCol[i].zCol = z;
2681       memcpy(z, pToCol->a[i].zName, n);
2682       z[n] = 0;
2683       z += n+1;
2684     }
2685   }
2686   pFKey->isDeferred = 0;
2687   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2688   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2689 
2690   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2691   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2692       pFKey->zTo, (void *)pFKey
2693   );
2694   if( pNextTo==pFKey ){
2695     db->mallocFailed = 1;
2696     goto fk_end;
2697   }
2698   if( pNextTo ){
2699     assert( pNextTo->pPrevTo==0 );
2700     pFKey->pNextTo = pNextTo;
2701     pNextTo->pPrevTo = pFKey;
2702   }
2703 
2704   /* Link the foreign key to the table as the last step.
2705   */
2706   p->pFKey = pFKey;
2707   pFKey = 0;
2708 
2709 fk_end:
2710   sqlite3DbFree(db, pFKey);
2711 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2712   sqlite3ExprListDelete(db, pFromCol);
2713   sqlite3ExprListDelete(db, pToCol);
2714 }
2715 
2716 /*
2717 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2718 ** clause is seen as part of a foreign key definition.  The isDeferred
2719 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2720 ** The behavior of the most recently created foreign key is adjusted
2721 ** accordingly.
2722 */
2723 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2724 #ifndef SQLITE_OMIT_FOREIGN_KEY
2725   Table *pTab;
2726   FKey *pFKey;
2727   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2728   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2729   pFKey->isDeferred = (u8)isDeferred;
2730 #endif
2731 }
2732 
2733 /*
2734 ** Generate code that will erase and refill index *pIdx.  This is
2735 ** used to initialize a newly created index or to recompute the
2736 ** content of an index in response to a REINDEX command.
2737 **
2738 ** if memRootPage is not negative, it means that the index is newly
2739 ** created.  The register specified by memRootPage contains the
2740 ** root page number of the index.  If memRootPage is negative, then
2741 ** the index already exists and must be cleared before being refilled and
2742 ** the root page number of the index is taken from pIndex->tnum.
2743 */
2744 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2745   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2746   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2747   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2748   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2749   int addr1;                     /* Address of top of loop */
2750   int addr2;                     /* Address to jump to for next iteration */
2751   int tnum;                      /* Root page of index */
2752   int iPartIdxLabel;             /* Jump to this label to skip a row */
2753   Vdbe *v;                       /* Generate code into this virtual machine */
2754   KeyInfo *pKey;                 /* KeyInfo for index */
2755   int regRecord;                 /* Register holding assembled index record */
2756   sqlite3 *db = pParse->db;      /* The database connection */
2757   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2758 
2759 #ifndef SQLITE_OMIT_AUTHORIZATION
2760   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2761       db->aDb[iDb].zName ) ){
2762     return;
2763   }
2764 #endif
2765 
2766   /* Require a write-lock on the table to perform this operation */
2767   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2768 
2769   v = sqlite3GetVdbe(pParse);
2770   if( v==0 ) return;
2771   if( memRootPage>=0 ){
2772     tnum = memRootPage;
2773   }else{
2774     tnum = pIndex->tnum;
2775   }
2776   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2777 
2778   /* Open the sorter cursor if we are to use one. */
2779   iSorter = pParse->nTab++;
2780   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2781                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2782 
2783   /* Open the table. Loop through all rows of the table, inserting index
2784   ** records into the sorter. */
2785   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2786   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2787   regRecord = sqlite3GetTempReg(pParse);
2788 
2789   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2790   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2791   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2792   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2793   sqlite3VdbeJumpHere(v, addr1);
2794   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2795   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2796                     (char *)pKey, P4_KEYINFO);
2797   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2798 
2799   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2800   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2801   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2802     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2803     sqlite3VdbeGoto(v, j2);
2804     addr2 = sqlite3VdbeCurrentAddr(v);
2805     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2806                          pIndex->nKeyCol); VdbeCoverage(v);
2807     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2808   }else{
2809     addr2 = sqlite3VdbeCurrentAddr(v);
2810   }
2811   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2812   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2813   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2814   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2815   sqlite3ReleaseTempReg(pParse, regRecord);
2816   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2817   sqlite3VdbeJumpHere(v, addr1);
2818 
2819   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2820   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2821   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2822 }
2823 
2824 /*
2825 ** Allocate heap space to hold an Index object with nCol columns.
2826 **
2827 ** Increase the allocation size to provide an extra nExtra bytes
2828 ** of 8-byte aligned space after the Index object and return a
2829 ** pointer to this extra space in *ppExtra.
2830 */
2831 Index *sqlite3AllocateIndexObject(
2832   sqlite3 *db,         /* Database connection */
2833   i16 nCol,            /* Total number of columns in the index */
2834   int nExtra,          /* Number of bytes of extra space to alloc */
2835   char **ppExtra       /* Pointer to the "extra" space */
2836 ){
2837   Index *p;            /* Allocated index object */
2838   int nByte;           /* Bytes of space for Index object + arrays */
2839 
2840   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2841           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2842           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2843                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2844                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2845   p = sqlite3DbMallocZero(db, nByte + nExtra);
2846   if( p ){
2847     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2848     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2849     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2850     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2851     p->aSortOrder = (u8*)pExtra;
2852     p->nColumn = nCol;
2853     p->nKeyCol = nCol - 1;
2854     *ppExtra = ((char*)p) + nByte;
2855   }
2856   return p;
2857 }
2858 
2859 /*
2860 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2861 ** and pTblList is the name of the table that is to be indexed.  Both will
2862 ** be NULL for a primary key or an index that is created to satisfy a
2863 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2864 ** as the table to be indexed.  pParse->pNewTable is a table that is
2865 ** currently being constructed by a CREATE TABLE statement.
2866 **
2867 ** pList is a list of columns to be indexed.  pList will be NULL if this
2868 ** is a primary key or unique-constraint on the most recent column added
2869 ** to the table currently under construction.
2870 **
2871 ** If the index is created successfully, return a pointer to the new Index
2872 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2873 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2874 */
2875 Index *sqlite3CreateIndex(
2876   Parse *pParse,     /* All information about this parse */
2877   Token *pName1,     /* First part of index name. May be NULL */
2878   Token *pName2,     /* Second part of index name. May be NULL */
2879   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2880   ExprList *pList,   /* A list of columns to be indexed */
2881   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2882   Token *pStart,     /* The CREATE token that begins this statement */
2883   Expr *pPIWhere,    /* WHERE clause for partial indices */
2884   int sortOrder,     /* Sort order of primary key when pList==NULL */
2885   int ifNotExist     /* Omit error if index already exists */
2886 ){
2887   Index *pRet = 0;     /* Pointer to return */
2888   Table *pTab = 0;     /* Table to be indexed */
2889   Index *pIndex = 0;   /* The index to be created */
2890   char *zName = 0;     /* Name of the index */
2891   int nName;           /* Number of characters in zName */
2892   int i, j;
2893   DbFixer sFix;        /* For assigning database names to pTable */
2894   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2895   sqlite3 *db = pParse->db;
2896   Db *pDb;             /* The specific table containing the indexed database */
2897   int iDb;             /* Index of the database that is being written */
2898   Token *pName = 0;    /* Unqualified name of the index to create */
2899   struct ExprList_item *pListItem; /* For looping over pList */
2900   int nExtra = 0;                  /* Space allocated for zExtra[] */
2901   int nExtraCol;                   /* Number of extra columns needed */
2902   char *zExtra = 0;                /* Extra space after the Index object */
2903   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2904 
2905   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2906     goto exit_create_index;
2907   }
2908   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2909     goto exit_create_index;
2910   }
2911 
2912   /*
2913   ** Find the table that is to be indexed.  Return early if not found.
2914   */
2915   if( pTblName!=0 ){
2916 
2917     /* Use the two-part index name to determine the database
2918     ** to search for the table. 'Fix' the table name to this db
2919     ** before looking up the table.
2920     */
2921     assert( pName1 && pName2 );
2922     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2923     if( iDb<0 ) goto exit_create_index;
2924     assert( pName && pName->z );
2925 
2926 #ifndef SQLITE_OMIT_TEMPDB
2927     /* If the index name was unqualified, check if the table
2928     ** is a temp table. If so, set the database to 1. Do not do this
2929     ** if initialising a database schema.
2930     */
2931     if( !db->init.busy ){
2932       pTab = sqlite3SrcListLookup(pParse, pTblName);
2933       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2934         iDb = 1;
2935       }
2936     }
2937 #endif
2938 
2939     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2940     if( sqlite3FixSrcList(&sFix, pTblName) ){
2941       /* Because the parser constructs pTblName from a single identifier,
2942       ** sqlite3FixSrcList can never fail. */
2943       assert(0);
2944     }
2945     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2946     assert( db->mallocFailed==0 || pTab==0 );
2947     if( pTab==0 ) goto exit_create_index;
2948     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2949       sqlite3ErrorMsg(pParse,
2950            "cannot create a TEMP index on non-TEMP table \"%s\"",
2951            pTab->zName);
2952       goto exit_create_index;
2953     }
2954     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2955   }else{
2956     assert( pName==0 );
2957     assert( pStart==0 );
2958     pTab = pParse->pNewTable;
2959     if( !pTab ) goto exit_create_index;
2960     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2961   }
2962   pDb = &db->aDb[iDb];
2963 
2964   assert( pTab!=0 );
2965   assert( pParse->nErr==0 );
2966   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2967        && db->init.busy==0
2968 #if SQLITE_USER_AUTHENTICATION
2969        && sqlite3UserAuthTable(pTab->zName)==0
2970 #endif
2971        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2972     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2973     goto exit_create_index;
2974   }
2975 #ifndef SQLITE_OMIT_VIEW
2976   if( pTab->pSelect ){
2977     sqlite3ErrorMsg(pParse, "views may not be indexed");
2978     goto exit_create_index;
2979   }
2980 #endif
2981 #ifndef SQLITE_OMIT_VIRTUALTABLE
2982   if( IsVirtual(pTab) ){
2983     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2984     goto exit_create_index;
2985   }
2986 #endif
2987 
2988   /*
2989   ** Find the name of the index.  Make sure there is not already another
2990   ** index or table with the same name.
2991   **
2992   ** Exception:  If we are reading the names of permanent indices from the
2993   ** sqlite_master table (because some other process changed the schema) and
2994   ** one of the index names collides with the name of a temporary table or
2995   ** index, then we will continue to process this index.
2996   **
2997   ** If pName==0 it means that we are
2998   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2999   ** own name.
3000   */
3001   if( pName ){
3002     zName = sqlite3NameFromToken(db, pName);
3003     if( zName==0 ) goto exit_create_index;
3004     assert( pName->z!=0 );
3005     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3006       goto exit_create_index;
3007     }
3008     if( !db->init.busy ){
3009       if( sqlite3FindTable(db, zName, 0)!=0 ){
3010         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3011         goto exit_create_index;
3012       }
3013     }
3014     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3015       if( !ifNotExist ){
3016         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3017       }else{
3018         assert( !db->init.busy );
3019         sqlite3CodeVerifySchema(pParse, iDb);
3020       }
3021       goto exit_create_index;
3022     }
3023   }else{
3024     int n;
3025     Index *pLoop;
3026     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3027     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3028     if( zName==0 ){
3029       goto exit_create_index;
3030     }
3031   }
3032 
3033   /* Check for authorization to create an index.
3034   */
3035 #ifndef SQLITE_OMIT_AUTHORIZATION
3036   {
3037     const char *zDb = pDb->zName;
3038     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3039       goto exit_create_index;
3040     }
3041     i = SQLITE_CREATE_INDEX;
3042     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3043     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3044       goto exit_create_index;
3045     }
3046   }
3047 #endif
3048 
3049   /* If pList==0, it means this routine was called to make a primary
3050   ** key out of the last column added to the table under construction.
3051   ** So create a fake list to simulate this.
3052   */
3053   if( pList==0 ){
3054     Token prevCol;
3055     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3056     pList = sqlite3ExprListAppend(pParse, 0,
3057               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3058     if( pList==0 ) goto exit_create_index;
3059     assert( pList->nExpr==1 );
3060     sqlite3ExprListSetSortOrder(pList, sortOrder);
3061   }else{
3062     sqlite3ExprListCheckLength(pParse, pList, "index");
3063   }
3064 
3065   /* Figure out how many bytes of space are required to store explicitly
3066   ** specified collation sequence names.
3067   */
3068   for(i=0; i<pList->nExpr; i++){
3069     Expr *pExpr = pList->a[i].pExpr;
3070     assert( pExpr!=0 );
3071     if( pExpr->op==TK_COLLATE ){
3072       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3073     }
3074   }
3075 
3076   /*
3077   ** Allocate the index structure.
3078   */
3079   nName = sqlite3Strlen30(zName);
3080   nExtraCol = pPk ? pPk->nKeyCol : 1;
3081   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3082                                       nName + nExtra + 1, &zExtra);
3083   if( db->mallocFailed ){
3084     goto exit_create_index;
3085   }
3086   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3087   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3088   pIndex->zName = zExtra;
3089   zExtra += nName + 1;
3090   memcpy(pIndex->zName, zName, nName+1);
3091   pIndex->pTable = pTab;
3092   pIndex->onError = (u8)onError;
3093   pIndex->uniqNotNull = onError!=OE_None;
3094   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3095   pIndex->pSchema = db->aDb[iDb].pSchema;
3096   pIndex->nKeyCol = pList->nExpr;
3097   if( pPIWhere ){
3098     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3099     pIndex->pPartIdxWhere = pPIWhere;
3100     pPIWhere = 0;
3101   }
3102   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3103 
3104   /* Check to see if we should honor DESC requests on index columns
3105   */
3106   if( pDb->pSchema->file_format>=4 ){
3107     sortOrderMask = -1;   /* Honor DESC */
3108   }else{
3109     sortOrderMask = 0;    /* Ignore DESC */
3110   }
3111 
3112   /* Analyze the list of expressions that form the terms of the index and
3113   ** report any errors.  In the common case where the expression is exactly
3114   ** a table column, store that column in aiColumn[].  For general expressions,
3115   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3116   **
3117   ** TODO: Issue a warning if two or more columns of the index are identical.
3118   ** TODO: Issue a warning if the table primary key is used as part of the
3119   ** index key.
3120   */
3121   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3122     Expr *pCExpr;                  /* The i-th index expression */
3123     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3124     const char *zColl;             /* Collation sequence name */
3125 
3126     sqlite3StringToId(pListItem->pExpr);
3127     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3128     if( pParse->nErr ) goto exit_create_index;
3129     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3130     if( pCExpr->op!=TK_COLUMN ){
3131       if( pTab==pParse->pNewTable ){
3132         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3133                                 "UNIQUE constraints");
3134         goto exit_create_index;
3135       }
3136       if( pIndex->aColExpr==0 ){
3137         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3138         pIndex->aColExpr = pCopy;
3139         if( !db->mallocFailed ){
3140           assert( pCopy!=0 );
3141           pListItem = &pCopy->a[i];
3142         }
3143       }
3144       j = XN_EXPR;
3145       pIndex->aiColumn[i] = XN_EXPR;
3146       pIndex->uniqNotNull = 0;
3147     }else{
3148       j = pCExpr->iColumn;
3149       assert( j<=0x7fff );
3150       if( j<0 ){
3151         j = pTab->iPKey;
3152       }else if( pTab->aCol[j].notNull==0 ){
3153         pIndex->uniqNotNull = 0;
3154       }
3155       pIndex->aiColumn[i] = (i16)j;
3156     }
3157     zColl = 0;
3158     if( pListItem->pExpr->op==TK_COLLATE ){
3159       int nColl;
3160       zColl = pListItem->pExpr->u.zToken;
3161       nColl = sqlite3Strlen30(zColl) + 1;
3162       assert( nExtra>=nColl );
3163       memcpy(zExtra, zColl, nColl);
3164       zColl = zExtra;
3165       zExtra += nColl;
3166       nExtra -= nColl;
3167     }else if( j>=0 ){
3168       zColl = pTab->aCol[j].zColl;
3169     }
3170     if( !zColl ) zColl = sqlite3StrBINARY;
3171     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3172       goto exit_create_index;
3173     }
3174     pIndex->azColl[i] = zColl;
3175     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3176     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3177   }
3178 
3179   /* Append the table key to the end of the index.  For WITHOUT ROWID
3180   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3181   ** normal tables (when pPk==0) this will be the rowid.
3182   */
3183   if( pPk ){
3184     for(j=0; j<pPk->nKeyCol; j++){
3185       int x = pPk->aiColumn[j];
3186       assert( x>=0 );
3187       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3188         pIndex->nColumn--;
3189       }else{
3190         pIndex->aiColumn[i] = x;
3191         pIndex->azColl[i] = pPk->azColl[j];
3192         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3193         i++;
3194       }
3195     }
3196     assert( i==pIndex->nColumn );
3197   }else{
3198     pIndex->aiColumn[i] = XN_ROWID;
3199     pIndex->azColl[i] = sqlite3StrBINARY;
3200   }
3201   sqlite3DefaultRowEst(pIndex);
3202   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3203 
3204   if( pTab==pParse->pNewTable ){
3205     /* This routine has been called to create an automatic index as a
3206     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3207     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3208     ** i.e. one of:
3209     **
3210     ** CREATE TABLE t(x PRIMARY KEY, y);
3211     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3212     **
3213     ** Either way, check to see if the table already has such an index. If
3214     ** so, don't bother creating this one. This only applies to
3215     ** automatically created indices. Users can do as they wish with
3216     ** explicit indices.
3217     **
3218     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3219     ** (and thus suppressing the second one) even if they have different
3220     ** sort orders.
3221     **
3222     ** If there are different collating sequences or if the columns of
3223     ** the constraint occur in different orders, then the constraints are
3224     ** considered distinct and both result in separate indices.
3225     */
3226     Index *pIdx;
3227     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3228       int k;
3229       assert( IsUniqueIndex(pIdx) );
3230       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3231       assert( IsUniqueIndex(pIndex) );
3232 
3233       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3234       for(k=0; k<pIdx->nKeyCol; k++){
3235         const char *z1;
3236         const char *z2;
3237         assert( pIdx->aiColumn[k]>=0 );
3238         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3239         z1 = pIdx->azColl[k];
3240         z2 = pIndex->azColl[k];
3241         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3242       }
3243       if( k==pIdx->nKeyCol ){
3244         if( pIdx->onError!=pIndex->onError ){
3245           /* This constraint creates the same index as a previous
3246           ** constraint specified somewhere in the CREATE TABLE statement.
3247           ** However the ON CONFLICT clauses are different. If both this
3248           ** constraint and the previous equivalent constraint have explicit
3249           ** ON CONFLICT clauses this is an error. Otherwise, use the
3250           ** explicitly specified behavior for the index.
3251           */
3252           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3253             sqlite3ErrorMsg(pParse,
3254                 "conflicting ON CONFLICT clauses specified", 0);
3255           }
3256           if( pIdx->onError==OE_Default ){
3257             pIdx->onError = pIndex->onError;
3258           }
3259         }
3260         pRet = pIdx;
3261         goto exit_create_index;
3262       }
3263     }
3264   }
3265 
3266   /* Link the new Index structure to its table and to the other
3267   ** in-memory database structures.
3268   */
3269   assert( pParse->nErr==0 );
3270   if( db->init.busy ){
3271     Index *p;
3272     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3273     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3274                           pIndex->zName, pIndex);
3275     if( p ){
3276       assert( p==pIndex );  /* Malloc must have failed */
3277       db->mallocFailed = 1;
3278       goto exit_create_index;
3279     }
3280     db->flags |= SQLITE_InternChanges;
3281     if( pTblName!=0 ){
3282       pIndex->tnum = db->init.newTnum;
3283     }
3284   }
3285 
3286   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3287   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3288   ** emit code to allocate the index rootpage on disk and make an entry for
3289   ** the index in the sqlite_master table and populate the index with
3290   ** content.  But, do not do this if we are simply reading the sqlite_master
3291   ** table to parse the schema, or if this index is the PRIMARY KEY index
3292   ** of a WITHOUT ROWID table.
3293   **
3294   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3295   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3296   ** has just been created, it contains no data and the index initialization
3297   ** step can be skipped.
3298   */
3299   else if( HasRowid(pTab) || pTblName!=0 ){
3300     Vdbe *v;
3301     char *zStmt;
3302     int iMem = ++pParse->nMem;
3303 
3304     v = sqlite3GetVdbe(pParse);
3305     if( v==0 ) goto exit_create_index;
3306 
3307     sqlite3BeginWriteOperation(pParse, 1, iDb);
3308 
3309     /* Create the rootpage for the index using CreateIndex. But before
3310     ** doing so, code a Noop instruction and store its address in
3311     ** Index.tnum. This is required in case this index is actually a
3312     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3313     ** that case the convertToWithoutRowidTable() routine will replace
3314     ** the Noop with a Goto to jump over the VDBE code generated below. */
3315     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3316     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3317 
3318     /* Gather the complete text of the CREATE INDEX statement into
3319     ** the zStmt variable
3320     */
3321     if( pStart ){
3322       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3323       if( pName->z[n-1]==';' ) n--;
3324       /* A named index with an explicit CREATE INDEX statement */
3325       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3326         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3327     }else{
3328       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3329       /* zStmt = sqlite3MPrintf(""); */
3330       zStmt = 0;
3331     }
3332 
3333     /* Add an entry in sqlite_master for this index
3334     */
3335     sqlite3NestedParse(pParse,
3336         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3337         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3338         pIndex->zName,
3339         pTab->zName,
3340         iMem,
3341         zStmt
3342     );
3343     sqlite3DbFree(db, zStmt);
3344 
3345     /* Fill the index with data and reparse the schema. Code an OP_Expire
3346     ** to invalidate all pre-compiled statements.
3347     */
3348     if( pTblName ){
3349       sqlite3RefillIndex(pParse, pIndex, iMem);
3350       sqlite3ChangeCookie(pParse, iDb);
3351       sqlite3VdbeAddParseSchemaOp(v, iDb,
3352          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3353       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3354     }
3355 
3356     sqlite3VdbeJumpHere(v, pIndex->tnum);
3357   }
3358 
3359   /* When adding an index to the list of indices for a table, make
3360   ** sure all indices labeled OE_Replace come after all those labeled
3361   ** OE_Ignore.  This is necessary for the correct constraint check
3362   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3363   ** UPDATE and INSERT statements.
3364   */
3365   if( db->init.busy || pTblName==0 ){
3366     if( onError!=OE_Replace || pTab->pIndex==0
3367          || pTab->pIndex->onError==OE_Replace){
3368       pIndex->pNext = pTab->pIndex;
3369       pTab->pIndex = pIndex;
3370     }else{
3371       Index *pOther = pTab->pIndex;
3372       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3373         pOther = pOther->pNext;
3374       }
3375       pIndex->pNext = pOther->pNext;
3376       pOther->pNext = pIndex;
3377     }
3378     pRet = pIndex;
3379     pIndex = 0;
3380   }
3381 
3382   /* Clean up before exiting */
3383 exit_create_index:
3384   if( pIndex ) freeIndex(db, pIndex);
3385   sqlite3ExprDelete(db, pPIWhere);
3386   sqlite3ExprListDelete(db, pList);
3387   sqlite3SrcListDelete(db, pTblName);
3388   sqlite3DbFree(db, zName);
3389   return pRet;
3390 }
3391 
3392 /*
3393 ** Fill the Index.aiRowEst[] array with default information - information
3394 ** to be used when we have not run the ANALYZE command.
3395 **
3396 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3397 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3398 ** number of rows in the table that match any particular value of the
3399 ** first column of the index.  aiRowEst[2] is an estimate of the number
3400 ** of rows that match any particular combination of the first 2 columns
3401 ** of the index.  And so forth.  It must always be the case that
3402 *
3403 **           aiRowEst[N]<=aiRowEst[N-1]
3404 **           aiRowEst[N]>=1
3405 **
3406 ** Apart from that, we have little to go on besides intuition as to
3407 ** how aiRowEst[] should be initialized.  The numbers generated here
3408 ** are based on typical values found in actual indices.
3409 */
3410 void sqlite3DefaultRowEst(Index *pIdx){
3411   /*                10,  9,  8,  7,  6 */
3412   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3413   LogEst *a = pIdx->aiRowLogEst;
3414   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3415   int i;
3416 
3417   /* Set the first entry (number of rows in the index) to the estimated
3418   ** number of rows in the table. Or 10, if the estimated number of rows
3419   ** in the table is less than that.  */
3420   a[0] = pIdx->pTable->nRowLogEst;
3421   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3422 
3423   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3424   ** 6 and each subsequent value (if any) is 5.  */
3425   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3426   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3427     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3428   }
3429 
3430   assert( 0==sqlite3LogEst(1) );
3431   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3432 }
3433 
3434 /*
3435 ** This routine will drop an existing named index.  This routine
3436 ** implements the DROP INDEX statement.
3437 */
3438 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3439   Index *pIndex;
3440   Vdbe *v;
3441   sqlite3 *db = pParse->db;
3442   int iDb;
3443 
3444   assert( pParse->nErr==0 );   /* Never called with prior errors */
3445   if( db->mallocFailed ){
3446     goto exit_drop_index;
3447   }
3448   assert( pName->nSrc==1 );
3449   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3450     goto exit_drop_index;
3451   }
3452   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3453   if( pIndex==0 ){
3454     if( !ifExists ){
3455       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3456     }else{
3457       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3458     }
3459     pParse->checkSchema = 1;
3460     goto exit_drop_index;
3461   }
3462   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3463     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3464       "or PRIMARY KEY constraint cannot be dropped", 0);
3465     goto exit_drop_index;
3466   }
3467   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3468 #ifndef SQLITE_OMIT_AUTHORIZATION
3469   {
3470     int code = SQLITE_DROP_INDEX;
3471     Table *pTab = pIndex->pTable;
3472     const char *zDb = db->aDb[iDb].zName;
3473     const char *zTab = SCHEMA_TABLE(iDb);
3474     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3475       goto exit_drop_index;
3476     }
3477     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3478     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3479       goto exit_drop_index;
3480     }
3481   }
3482 #endif
3483 
3484   /* Generate code to remove the index and from the master table */
3485   v = sqlite3GetVdbe(pParse);
3486   if( v ){
3487     sqlite3BeginWriteOperation(pParse, 1, iDb);
3488     sqlite3NestedParse(pParse,
3489        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3490        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3491     );
3492     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3493     sqlite3ChangeCookie(pParse, iDb);
3494     destroyRootPage(pParse, pIndex->tnum, iDb);
3495     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3496   }
3497 
3498 exit_drop_index:
3499   sqlite3SrcListDelete(db, pName);
3500 }
3501 
3502 /*
3503 ** pArray is a pointer to an array of objects. Each object in the
3504 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3505 ** to extend the array so that there is space for a new object at the end.
3506 **
3507 ** When this function is called, *pnEntry contains the current size of
3508 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3509 ** in total).
3510 **
3511 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3512 ** space allocated for the new object is zeroed, *pnEntry updated to
3513 ** reflect the new size of the array and a pointer to the new allocation
3514 ** returned. *pIdx is set to the index of the new array entry in this case.
3515 **
3516 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3517 ** unchanged and a copy of pArray returned.
3518 */
3519 void *sqlite3ArrayAllocate(
3520   sqlite3 *db,      /* Connection to notify of malloc failures */
3521   void *pArray,     /* Array of objects.  Might be reallocated */
3522   int szEntry,      /* Size of each object in the array */
3523   int *pnEntry,     /* Number of objects currently in use */
3524   int *pIdx         /* Write the index of a new slot here */
3525 ){
3526   char *z;
3527   int n = *pnEntry;
3528   if( (n & (n-1))==0 ){
3529     int sz = (n==0) ? 1 : 2*n;
3530     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3531     if( pNew==0 ){
3532       *pIdx = -1;
3533       return pArray;
3534     }
3535     pArray = pNew;
3536   }
3537   z = (char*)pArray;
3538   memset(&z[n * szEntry], 0, szEntry);
3539   *pIdx = n;
3540   ++*pnEntry;
3541   return pArray;
3542 }
3543 
3544 /*
3545 ** Append a new element to the given IdList.  Create a new IdList if
3546 ** need be.
3547 **
3548 ** A new IdList is returned, or NULL if malloc() fails.
3549 */
3550 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3551   int i;
3552   if( pList==0 ){
3553     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3554     if( pList==0 ) return 0;
3555   }
3556   pList->a = sqlite3ArrayAllocate(
3557       db,
3558       pList->a,
3559       sizeof(pList->a[0]),
3560       &pList->nId,
3561       &i
3562   );
3563   if( i<0 ){
3564     sqlite3IdListDelete(db, pList);
3565     return 0;
3566   }
3567   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3568   return pList;
3569 }
3570 
3571 /*
3572 ** Delete an IdList.
3573 */
3574 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3575   int i;
3576   if( pList==0 ) return;
3577   for(i=0; i<pList->nId; i++){
3578     sqlite3DbFree(db, pList->a[i].zName);
3579   }
3580   sqlite3DbFree(db, pList->a);
3581   sqlite3DbFree(db, pList);
3582 }
3583 
3584 /*
3585 ** Return the index in pList of the identifier named zId.  Return -1
3586 ** if not found.
3587 */
3588 int sqlite3IdListIndex(IdList *pList, const char *zName){
3589   int i;
3590   if( pList==0 ) return -1;
3591   for(i=0; i<pList->nId; i++){
3592     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3593   }
3594   return -1;
3595 }
3596 
3597 /*
3598 ** Expand the space allocated for the given SrcList object by
3599 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3600 ** New slots are zeroed.
3601 **
3602 ** For example, suppose a SrcList initially contains two entries: A,B.
3603 ** To append 3 new entries onto the end, do this:
3604 **
3605 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3606 **
3607 ** After the call above it would contain:  A, B, nil, nil, nil.
3608 ** If the iStart argument had been 1 instead of 2, then the result
3609 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3610 ** the iStart value would be 0.  The result then would
3611 ** be: nil, nil, nil, A, B.
3612 **
3613 ** If a memory allocation fails the SrcList is unchanged.  The
3614 ** db->mallocFailed flag will be set to true.
3615 */
3616 SrcList *sqlite3SrcListEnlarge(
3617   sqlite3 *db,       /* Database connection to notify of OOM errors */
3618   SrcList *pSrc,     /* The SrcList to be enlarged */
3619   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3620   int iStart         /* Index in pSrc->a[] of first new slot */
3621 ){
3622   int i;
3623 
3624   /* Sanity checking on calling parameters */
3625   assert( iStart>=0 );
3626   assert( nExtra>=1 );
3627   assert( pSrc!=0 );
3628   assert( iStart<=pSrc->nSrc );
3629 
3630   /* Allocate additional space if needed */
3631   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3632     SrcList *pNew;
3633     int nAlloc = pSrc->nSrc+nExtra;
3634     int nGot;
3635     pNew = sqlite3DbRealloc(db, pSrc,
3636                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3637     if( pNew==0 ){
3638       assert( db->mallocFailed );
3639       return pSrc;
3640     }
3641     pSrc = pNew;
3642     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3643     pSrc->nAlloc = nGot;
3644   }
3645 
3646   /* Move existing slots that come after the newly inserted slots
3647   ** out of the way */
3648   for(i=pSrc->nSrc-1; i>=iStart; i--){
3649     pSrc->a[i+nExtra] = pSrc->a[i];
3650   }
3651   pSrc->nSrc += nExtra;
3652 
3653   /* Zero the newly allocated slots */
3654   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3655   for(i=iStart; i<iStart+nExtra; i++){
3656     pSrc->a[i].iCursor = -1;
3657   }
3658 
3659   /* Return a pointer to the enlarged SrcList */
3660   return pSrc;
3661 }
3662 
3663 
3664 /*
3665 ** Append a new table name to the given SrcList.  Create a new SrcList if
3666 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3667 **
3668 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3669 ** SrcList might be the same as the SrcList that was input or it might be
3670 ** a new one.  If an OOM error does occurs, then the prior value of pList
3671 ** that is input to this routine is automatically freed.
3672 **
3673 ** If pDatabase is not null, it means that the table has an optional
3674 ** database name prefix.  Like this:  "database.table".  The pDatabase
3675 ** points to the table name and the pTable points to the database name.
3676 ** The SrcList.a[].zName field is filled with the table name which might
3677 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3678 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3679 ** or with NULL if no database is specified.
3680 **
3681 ** In other words, if call like this:
3682 **
3683 **         sqlite3SrcListAppend(D,A,B,0);
3684 **
3685 ** Then B is a table name and the database name is unspecified.  If called
3686 ** like this:
3687 **
3688 **         sqlite3SrcListAppend(D,A,B,C);
3689 **
3690 ** Then C is the table name and B is the database name.  If C is defined
3691 ** then so is B.  In other words, we never have a case where:
3692 **
3693 **         sqlite3SrcListAppend(D,A,0,C);
3694 **
3695 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3696 ** before being added to the SrcList.
3697 */
3698 SrcList *sqlite3SrcListAppend(
3699   sqlite3 *db,        /* Connection to notify of malloc failures */
3700   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3701   Token *pTable,      /* Table to append */
3702   Token *pDatabase    /* Database of the table */
3703 ){
3704   struct SrcList_item *pItem;
3705   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3706   if( pList==0 ){
3707     pList = sqlite3DbMallocRaw(db, sizeof(SrcList) );
3708     if( pList==0 ) return 0;
3709     pList->nAlloc = 1;
3710     pList->nSrc = 0;
3711   }
3712   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3713   if( db->mallocFailed ){
3714     sqlite3SrcListDelete(db, pList);
3715     return 0;
3716   }
3717   pItem = &pList->a[pList->nSrc-1];
3718   if( pDatabase && pDatabase->z==0 ){
3719     pDatabase = 0;
3720   }
3721   if( pDatabase ){
3722     Token *pTemp = pDatabase;
3723     pDatabase = pTable;
3724     pTable = pTemp;
3725   }
3726   pItem->zName = sqlite3NameFromToken(db, pTable);
3727   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3728   return pList;
3729 }
3730 
3731 /*
3732 ** Assign VdbeCursor index numbers to all tables in a SrcList
3733 */
3734 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3735   int i;
3736   struct SrcList_item *pItem;
3737   assert(pList || pParse->db->mallocFailed );
3738   if( pList ){
3739     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3740       if( pItem->iCursor>=0 ) break;
3741       pItem->iCursor = pParse->nTab++;
3742       if( pItem->pSelect ){
3743         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3744       }
3745     }
3746   }
3747 }
3748 
3749 /*
3750 ** Delete an entire SrcList including all its substructure.
3751 */
3752 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3753   int i;
3754   struct SrcList_item *pItem;
3755   if( pList==0 ) return;
3756   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3757     sqlite3DbFree(db, pItem->zDatabase);
3758     sqlite3DbFree(db, pItem->zName);
3759     sqlite3DbFree(db, pItem->zAlias);
3760     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3761     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3762     sqlite3DeleteTable(db, pItem->pTab);
3763     sqlite3SelectDelete(db, pItem->pSelect);
3764     sqlite3ExprDelete(db, pItem->pOn);
3765     sqlite3IdListDelete(db, pItem->pUsing);
3766   }
3767   sqlite3DbFree(db, pList);
3768 }
3769 
3770 /*
3771 ** This routine is called by the parser to add a new term to the
3772 ** end of a growing FROM clause.  The "p" parameter is the part of
3773 ** the FROM clause that has already been constructed.  "p" is NULL
3774 ** if this is the first term of the FROM clause.  pTable and pDatabase
3775 ** are the name of the table and database named in the FROM clause term.
3776 ** pDatabase is NULL if the database name qualifier is missing - the
3777 ** usual case.  If the term has an alias, then pAlias points to the
3778 ** alias token.  If the term is a subquery, then pSubquery is the
3779 ** SELECT statement that the subquery encodes.  The pTable and
3780 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3781 ** parameters are the content of the ON and USING clauses.
3782 **
3783 ** Return a new SrcList which encodes is the FROM with the new
3784 ** term added.
3785 */
3786 SrcList *sqlite3SrcListAppendFromTerm(
3787   Parse *pParse,          /* Parsing context */
3788   SrcList *p,             /* The left part of the FROM clause already seen */
3789   Token *pTable,          /* Name of the table to add to the FROM clause */
3790   Token *pDatabase,       /* Name of the database containing pTable */
3791   Token *pAlias,          /* The right-hand side of the AS subexpression */
3792   Select *pSubquery,      /* A subquery used in place of a table name */
3793   Expr *pOn,              /* The ON clause of a join */
3794   IdList *pUsing          /* The USING clause of a join */
3795 ){
3796   struct SrcList_item *pItem;
3797   sqlite3 *db = pParse->db;
3798   if( !p && (pOn || pUsing) ){
3799     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3800       (pOn ? "ON" : "USING")
3801     );
3802     goto append_from_error;
3803   }
3804   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3805   if( p==0 || NEVER(p->nSrc==0) ){
3806     goto append_from_error;
3807   }
3808   pItem = &p->a[p->nSrc-1];
3809   assert( pAlias!=0 );
3810   if( pAlias->n ){
3811     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3812   }
3813   pItem->pSelect = pSubquery;
3814   pItem->pOn = pOn;
3815   pItem->pUsing = pUsing;
3816   return p;
3817 
3818  append_from_error:
3819   assert( p==0 );
3820   sqlite3ExprDelete(db, pOn);
3821   sqlite3IdListDelete(db, pUsing);
3822   sqlite3SelectDelete(db, pSubquery);
3823   return 0;
3824 }
3825 
3826 /*
3827 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3828 ** element of the source-list passed as the second argument.
3829 */
3830 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3831   assert( pIndexedBy!=0 );
3832   if( p && ALWAYS(p->nSrc>0) ){
3833     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3834     assert( pItem->fg.notIndexed==0 );
3835     assert( pItem->fg.isIndexedBy==0 );
3836     assert( pItem->fg.isTabFunc==0 );
3837     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3838       /* A "NOT INDEXED" clause was supplied. See parse.y
3839       ** construct "indexed_opt" for details. */
3840       pItem->fg.notIndexed = 1;
3841     }else{
3842       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3843       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3844     }
3845   }
3846 }
3847 
3848 /*
3849 ** Add the list of function arguments to the SrcList entry for a
3850 ** table-valued-function.
3851 */
3852 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3853   if( p ){
3854     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3855     assert( pItem->fg.notIndexed==0 );
3856     assert( pItem->fg.isIndexedBy==0 );
3857     assert( pItem->fg.isTabFunc==0 );
3858     pItem->u1.pFuncArg = pList;
3859     pItem->fg.isTabFunc = 1;
3860   }else{
3861     sqlite3ExprListDelete(pParse->db, pList);
3862   }
3863 }
3864 
3865 /*
3866 ** When building up a FROM clause in the parser, the join operator
3867 ** is initially attached to the left operand.  But the code generator
3868 ** expects the join operator to be on the right operand.  This routine
3869 ** Shifts all join operators from left to right for an entire FROM
3870 ** clause.
3871 **
3872 ** Example: Suppose the join is like this:
3873 **
3874 **           A natural cross join B
3875 **
3876 ** The operator is "natural cross join".  The A and B operands are stored
3877 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3878 ** operator with A.  This routine shifts that operator over to B.
3879 */
3880 void sqlite3SrcListShiftJoinType(SrcList *p){
3881   if( p ){
3882     int i;
3883     for(i=p->nSrc-1; i>0; i--){
3884       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3885     }
3886     p->a[0].fg.jointype = 0;
3887   }
3888 }
3889 
3890 /*
3891 ** Generate VDBE code for a BEGIN statement.
3892 */
3893 void sqlite3BeginTransaction(Parse *pParse, int type){
3894   sqlite3 *db;
3895   Vdbe *v;
3896   int i;
3897 
3898   assert( pParse!=0 );
3899   db = pParse->db;
3900   assert( db!=0 );
3901   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3902     return;
3903   }
3904   v = sqlite3GetVdbe(pParse);
3905   if( !v ) return;
3906   if( type!=TK_DEFERRED ){
3907     for(i=0; i<db->nDb; i++){
3908       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3909       sqlite3VdbeUsesBtree(v, i);
3910     }
3911   }
3912   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3913 }
3914 
3915 /*
3916 ** Generate VDBE code for a COMMIT statement.
3917 */
3918 void sqlite3CommitTransaction(Parse *pParse){
3919   Vdbe *v;
3920 
3921   assert( pParse!=0 );
3922   assert( pParse->db!=0 );
3923   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3924     return;
3925   }
3926   v = sqlite3GetVdbe(pParse);
3927   if( v ){
3928     sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3929   }
3930 }
3931 
3932 /*
3933 ** Generate VDBE code for a ROLLBACK statement.
3934 */
3935 void sqlite3RollbackTransaction(Parse *pParse){
3936   Vdbe *v;
3937 
3938   assert( pParse!=0 );
3939   assert( pParse->db!=0 );
3940   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3941     return;
3942   }
3943   v = sqlite3GetVdbe(pParse);
3944   if( v ){
3945     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3946   }
3947 }
3948 
3949 /*
3950 ** This function is called by the parser when it parses a command to create,
3951 ** release or rollback an SQL savepoint.
3952 */
3953 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3954   char *zName = sqlite3NameFromToken(pParse->db, pName);
3955   if( zName ){
3956     Vdbe *v = sqlite3GetVdbe(pParse);
3957 #ifndef SQLITE_OMIT_AUTHORIZATION
3958     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3959     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3960 #endif
3961     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3962       sqlite3DbFree(pParse->db, zName);
3963       return;
3964     }
3965     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3966   }
3967 }
3968 
3969 /*
3970 ** Make sure the TEMP database is open and available for use.  Return
3971 ** the number of errors.  Leave any error messages in the pParse structure.
3972 */
3973 int sqlite3OpenTempDatabase(Parse *pParse){
3974   sqlite3 *db = pParse->db;
3975   if( db->aDb[1].pBt==0 && !pParse->explain ){
3976     int rc;
3977     Btree *pBt;
3978     static const int flags =
3979           SQLITE_OPEN_READWRITE |
3980           SQLITE_OPEN_CREATE |
3981           SQLITE_OPEN_EXCLUSIVE |
3982           SQLITE_OPEN_DELETEONCLOSE |
3983           SQLITE_OPEN_TEMP_DB;
3984 
3985     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3986     if( rc!=SQLITE_OK ){
3987       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3988         "file for storing temporary tables");
3989       pParse->rc = rc;
3990       return 1;
3991     }
3992     db->aDb[1].pBt = pBt;
3993     assert( db->aDb[1].pSchema );
3994     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3995       db->mallocFailed = 1;
3996       return 1;
3997     }
3998   }
3999   return 0;
4000 }
4001 
4002 /*
4003 ** Record the fact that the schema cookie will need to be verified
4004 ** for database iDb.  The code to actually verify the schema cookie
4005 ** will occur at the end of the top-level VDBE and will be generated
4006 ** later, by sqlite3FinishCoding().
4007 */
4008 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4009   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4010   sqlite3 *db = pToplevel->db;
4011 
4012   assert( iDb>=0 && iDb<db->nDb );
4013   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4014   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4015   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4016   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4017     DbMaskSet(pToplevel->cookieMask, iDb);
4018     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4019     if( !OMIT_TEMPDB && iDb==1 ){
4020       sqlite3OpenTempDatabase(pToplevel);
4021     }
4022   }
4023 }
4024 
4025 /*
4026 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4027 ** attached database. Otherwise, invoke it for the database named zDb only.
4028 */
4029 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4030   sqlite3 *db = pParse->db;
4031   int i;
4032   for(i=0; i<db->nDb; i++){
4033     Db *pDb = &db->aDb[i];
4034     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4035       sqlite3CodeVerifySchema(pParse, i);
4036     }
4037   }
4038 }
4039 
4040 /*
4041 ** Generate VDBE code that prepares for doing an operation that
4042 ** might change the database.
4043 **
4044 ** This routine starts a new transaction if we are not already within
4045 ** a transaction.  If we are already within a transaction, then a checkpoint
4046 ** is set if the setStatement parameter is true.  A checkpoint should
4047 ** be set for operations that might fail (due to a constraint) part of
4048 ** the way through and which will need to undo some writes without having to
4049 ** rollback the whole transaction.  For operations where all constraints
4050 ** can be checked before any changes are made to the database, it is never
4051 ** necessary to undo a write and the checkpoint should not be set.
4052 */
4053 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4054   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4055   sqlite3CodeVerifySchema(pParse, iDb);
4056   DbMaskSet(pToplevel->writeMask, iDb);
4057   pToplevel->isMultiWrite |= setStatement;
4058 }
4059 
4060 /*
4061 ** Indicate that the statement currently under construction might write
4062 ** more than one entry (example: deleting one row then inserting another,
4063 ** inserting multiple rows in a table, or inserting a row and index entries.)
4064 ** If an abort occurs after some of these writes have completed, then it will
4065 ** be necessary to undo the completed writes.
4066 */
4067 void sqlite3MultiWrite(Parse *pParse){
4068   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4069   pToplevel->isMultiWrite = 1;
4070 }
4071 
4072 /*
4073 ** The code generator calls this routine if is discovers that it is
4074 ** possible to abort a statement prior to completion.  In order to
4075 ** perform this abort without corrupting the database, we need to make
4076 ** sure that the statement is protected by a statement transaction.
4077 **
4078 ** Technically, we only need to set the mayAbort flag if the
4079 ** isMultiWrite flag was previously set.  There is a time dependency
4080 ** such that the abort must occur after the multiwrite.  This makes
4081 ** some statements involving the REPLACE conflict resolution algorithm
4082 ** go a little faster.  But taking advantage of this time dependency
4083 ** makes it more difficult to prove that the code is correct (in
4084 ** particular, it prevents us from writing an effective
4085 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4086 ** to take the safe route and skip the optimization.
4087 */
4088 void sqlite3MayAbort(Parse *pParse){
4089   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4090   pToplevel->mayAbort = 1;
4091 }
4092 
4093 /*
4094 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4095 ** error. The onError parameter determines which (if any) of the statement
4096 ** and/or current transaction is rolled back.
4097 */
4098 void sqlite3HaltConstraint(
4099   Parse *pParse,    /* Parsing context */
4100   int errCode,      /* extended error code */
4101   int onError,      /* Constraint type */
4102   char *p4,         /* Error message */
4103   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4104   u8 p5Errmsg       /* P5_ErrMsg type */
4105 ){
4106   Vdbe *v = sqlite3GetVdbe(pParse);
4107   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4108   if( onError==OE_Abort ){
4109     sqlite3MayAbort(pParse);
4110   }
4111   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4112   sqlite3VdbeChangeP5(v, p5Errmsg);
4113 }
4114 
4115 /*
4116 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4117 */
4118 void sqlite3UniqueConstraint(
4119   Parse *pParse,    /* Parsing context */
4120   int onError,      /* Constraint type */
4121   Index *pIdx       /* The index that triggers the constraint */
4122 ){
4123   char *zErr;
4124   int j;
4125   StrAccum errMsg;
4126   Table *pTab = pIdx->pTable;
4127 
4128   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4129   if( pIdx->aColExpr ){
4130     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4131   }else{
4132     for(j=0; j<pIdx->nKeyCol; j++){
4133       char *zCol;
4134       assert( pIdx->aiColumn[j]>=0 );
4135       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4136       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4137       sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4138     }
4139   }
4140   zErr = sqlite3StrAccumFinish(&errMsg);
4141   sqlite3HaltConstraint(pParse,
4142     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4143                             : SQLITE_CONSTRAINT_UNIQUE,
4144     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4145 }
4146 
4147 
4148 /*
4149 ** Code an OP_Halt due to non-unique rowid.
4150 */
4151 void sqlite3RowidConstraint(
4152   Parse *pParse,    /* Parsing context */
4153   int onError,      /* Conflict resolution algorithm */
4154   Table *pTab       /* The table with the non-unique rowid */
4155 ){
4156   char *zMsg;
4157   int rc;
4158   if( pTab->iPKey>=0 ){
4159     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4160                           pTab->aCol[pTab->iPKey].zName);
4161     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4162   }else{
4163     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4164     rc = SQLITE_CONSTRAINT_ROWID;
4165   }
4166   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4167                         P5_ConstraintUnique);
4168 }
4169 
4170 /*
4171 ** Check to see if pIndex uses the collating sequence pColl.  Return
4172 ** true if it does and false if it does not.
4173 */
4174 #ifndef SQLITE_OMIT_REINDEX
4175 static int collationMatch(const char *zColl, Index *pIndex){
4176   int i;
4177   assert( zColl!=0 );
4178   for(i=0; i<pIndex->nColumn; i++){
4179     const char *z = pIndex->azColl[i];
4180     assert( z!=0 || pIndex->aiColumn[i]<0 );
4181     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4182       return 1;
4183     }
4184   }
4185   return 0;
4186 }
4187 #endif
4188 
4189 /*
4190 ** Recompute all indices of pTab that use the collating sequence pColl.
4191 ** If pColl==0 then recompute all indices of pTab.
4192 */
4193 #ifndef SQLITE_OMIT_REINDEX
4194 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4195   Index *pIndex;              /* An index associated with pTab */
4196 
4197   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4198     if( zColl==0 || collationMatch(zColl, pIndex) ){
4199       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4200       sqlite3BeginWriteOperation(pParse, 0, iDb);
4201       sqlite3RefillIndex(pParse, pIndex, -1);
4202     }
4203   }
4204 }
4205 #endif
4206 
4207 /*
4208 ** Recompute all indices of all tables in all databases where the
4209 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4210 ** all indices everywhere.
4211 */
4212 #ifndef SQLITE_OMIT_REINDEX
4213 static void reindexDatabases(Parse *pParse, char const *zColl){
4214   Db *pDb;                    /* A single database */
4215   int iDb;                    /* The database index number */
4216   sqlite3 *db = pParse->db;   /* The database connection */
4217   HashElem *k;                /* For looping over tables in pDb */
4218   Table *pTab;                /* A table in the database */
4219 
4220   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4221   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4222     assert( pDb!=0 );
4223     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4224       pTab = (Table*)sqliteHashData(k);
4225       reindexTable(pParse, pTab, zColl);
4226     }
4227   }
4228 }
4229 #endif
4230 
4231 /*
4232 ** Generate code for the REINDEX command.
4233 **
4234 **        REINDEX                            -- 1
4235 **        REINDEX  <collation>               -- 2
4236 **        REINDEX  ?<database>.?<tablename>  -- 3
4237 **        REINDEX  ?<database>.?<indexname>  -- 4
4238 **
4239 ** Form 1 causes all indices in all attached databases to be rebuilt.
4240 ** Form 2 rebuilds all indices in all databases that use the named
4241 ** collating function.  Forms 3 and 4 rebuild the named index or all
4242 ** indices associated with the named table.
4243 */
4244 #ifndef SQLITE_OMIT_REINDEX
4245 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4246   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4247   char *z;                    /* Name of a table or index */
4248   const char *zDb;            /* Name of the database */
4249   Table *pTab;                /* A table in the database */
4250   Index *pIndex;              /* An index associated with pTab */
4251   int iDb;                    /* The database index number */
4252   sqlite3 *db = pParse->db;   /* The database connection */
4253   Token *pObjName;            /* Name of the table or index to be reindexed */
4254 
4255   /* Read the database schema. If an error occurs, leave an error message
4256   ** and code in pParse and return NULL. */
4257   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4258     return;
4259   }
4260 
4261   if( pName1==0 ){
4262     reindexDatabases(pParse, 0);
4263     return;
4264   }else if( NEVER(pName2==0) || pName2->z==0 ){
4265     char *zColl;
4266     assert( pName1->z );
4267     zColl = sqlite3NameFromToken(pParse->db, pName1);
4268     if( !zColl ) return;
4269     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4270     if( pColl ){
4271       reindexDatabases(pParse, zColl);
4272       sqlite3DbFree(db, zColl);
4273       return;
4274     }
4275     sqlite3DbFree(db, zColl);
4276   }
4277   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4278   if( iDb<0 ) return;
4279   z = sqlite3NameFromToken(db, pObjName);
4280   if( z==0 ) return;
4281   zDb = db->aDb[iDb].zName;
4282   pTab = sqlite3FindTable(db, z, zDb);
4283   if( pTab ){
4284     reindexTable(pParse, pTab, 0);
4285     sqlite3DbFree(db, z);
4286     return;
4287   }
4288   pIndex = sqlite3FindIndex(db, z, zDb);
4289   sqlite3DbFree(db, z);
4290   if( pIndex ){
4291     sqlite3BeginWriteOperation(pParse, 0, iDb);
4292     sqlite3RefillIndex(pParse, pIndex, -1);
4293     return;
4294   }
4295   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4296 }
4297 #endif
4298 
4299 /*
4300 ** Return a KeyInfo structure that is appropriate for the given Index.
4301 **
4302 ** The KeyInfo structure for an index is cached in the Index object.
4303 ** So there might be multiple references to the returned pointer.  The
4304 ** caller should not try to modify the KeyInfo object.
4305 **
4306 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4307 ** when it has finished using it.
4308 */
4309 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4310   int i;
4311   int nCol = pIdx->nColumn;
4312   int nKey = pIdx->nKeyCol;
4313   KeyInfo *pKey;
4314   if( pParse->nErr ) return 0;
4315   if( pIdx->uniqNotNull ){
4316     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4317   }else{
4318     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4319   }
4320   if( pKey ){
4321     assert( sqlite3KeyInfoIsWriteable(pKey) );
4322     for(i=0; i<nCol; i++){
4323       const char *zColl = pIdx->azColl[i];
4324       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4325                         sqlite3LocateCollSeq(pParse, zColl);
4326       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4327     }
4328     if( pParse->nErr ){
4329       sqlite3KeyInfoUnref(pKey);
4330       pKey = 0;
4331     }
4332   }
4333   return pKey;
4334 }
4335 
4336 #ifndef SQLITE_OMIT_CTE
4337 /*
4338 ** This routine is invoked once per CTE by the parser while parsing a
4339 ** WITH clause.
4340 */
4341 With *sqlite3WithAdd(
4342   Parse *pParse,          /* Parsing context */
4343   With *pWith,            /* Existing WITH clause, or NULL */
4344   Token *pName,           /* Name of the common-table */
4345   ExprList *pArglist,     /* Optional column name list for the table */
4346   Select *pQuery          /* Query used to initialize the table */
4347 ){
4348   sqlite3 *db = pParse->db;
4349   With *pNew;
4350   char *zName;
4351 
4352   /* Check that the CTE name is unique within this WITH clause. If
4353   ** not, store an error in the Parse structure. */
4354   zName = sqlite3NameFromToken(pParse->db, pName);
4355   if( zName && pWith ){
4356     int i;
4357     for(i=0; i<pWith->nCte; i++){
4358       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4359         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4360       }
4361     }
4362   }
4363 
4364   if( pWith ){
4365     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4366     pNew = sqlite3DbRealloc(db, pWith, nByte);
4367   }else{
4368     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4369   }
4370   assert( zName!=0 || pNew==0 );
4371   assert( db->mallocFailed==0 || pNew==0 );
4372 
4373   if( pNew==0 ){
4374     sqlite3ExprListDelete(db, pArglist);
4375     sqlite3SelectDelete(db, pQuery);
4376     sqlite3DbFree(db, zName);
4377     pNew = pWith;
4378   }else{
4379     pNew->a[pNew->nCte].pSelect = pQuery;
4380     pNew->a[pNew->nCte].pCols = pArglist;
4381     pNew->a[pNew->nCte].zName = zName;
4382     pNew->a[pNew->nCte].zCteErr = 0;
4383     pNew->nCte++;
4384   }
4385 
4386   return pNew;
4387 }
4388 
4389 /*
4390 ** Free the contents of the With object passed as the second argument.
4391 */
4392 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4393   if( pWith ){
4394     int i;
4395     for(i=0; i<pWith->nCte; i++){
4396       struct Cte *pCte = &pWith->a[i];
4397       sqlite3ExprListDelete(db, pCte->pCols);
4398       sqlite3SelectDelete(db, pCte->pSelect);
4399       sqlite3DbFree(db, pCte->zName);
4400     }
4401     sqlite3DbFree(db, pWith);
4402   }
4403 }
4404 #endif /* !defined(SQLITE_OMIT_CTE) */
4405