1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 pToplevel->db->mallocFailed = 1; 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 int isView, /* True if looking for a VIEW rather than a TABLE */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = isView ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( zDbase ){ 368 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 369 }else{ 370 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 371 } 372 pParse->checkSchema = 1; 373 } 374 375 return p; 376 } 377 378 /* 379 ** Locate the table identified by *p. 380 ** 381 ** This is a wrapper around sqlite3LocateTable(). The difference between 382 ** sqlite3LocateTable() and this function is that this function restricts 383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 384 ** non-NULL if it is part of a view or trigger program definition. See 385 ** sqlite3FixSrcList() for details. 386 */ 387 Table *sqlite3LocateTableItem( 388 Parse *pParse, 389 int isView, 390 struct SrcList_item *p 391 ){ 392 const char *zDb; 393 assert( p->pSchema==0 || p->zDatabase==0 ); 394 if( p->pSchema ){ 395 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 396 zDb = pParse->db->aDb[iDb].zName; 397 }else{ 398 zDb = p->zDatabase; 399 } 400 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 401 } 402 403 /* 404 ** Locate the in-memory structure that describes 405 ** a particular index given the name of that index 406 ** and the name of the database that contains the index. 407 ** Return NULL if not found. 408 ** 409 ** If zDatabase is 0, all databases are searched for the 410 ** table and the first matching index is returned. (No checking 411 ** for duplicate index names is done.) The search order is 412 ** TEMP first, then MAIN, then any auxiliary databases added 413 ** using the ATTACH command. 414 */ 415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 416 Index *p = 0; 417 int i; 418 /* All mutexes are required for schema access. Make sure we hold them. */ 419 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 420 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 421 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 422 Schema *pSchema = db->aDb[j].pSchema; 423 assert( pSchema ); 424 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 425 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 426 p = sqlite3HashFind(&pSchema->idxHash, zName); 427 if( p ) break; 428 } 429 return p; 430 } 431 432 /* 433 ** Reclaim the memory used by an index 434 */ 435 static void freeIndex(sqlite3 *db, Index *p){ 436 #ifndef SQLITE_OMIT_ANALYZE 437 sqlite3DeleteIndexSamples(db, p); 438 #endif 439 sqlite3ExprDelete(db, p->pPartIdxWhere); 440 sqlite3ExprListDelete(db, p->aColExpr); 441 sqlite3DbFree(db, p->zColAff); 442 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 sqlite3_free(p->aiRowEst); 445 #endif 446 sqlite3DbFree(db, p); 447 } 448 449 /* 450 ** For the index called zIdxName which is found in the database iDb, 451 ** unlike that index from its Table then remove the index from 452 ** the index hash table and free all memory structures associated 453 ** with the index. 454 */ 455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 456 Index *pIndex; 457 Hash *pHash; 458 459 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 460 pHash = &db->aDb[iDb].pSchema->idxHash; 461 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 462 if( ALWAYS(pIndex) ){ 463 if( pIndex->pTable->pIndex==pIndex ){ 464 pIndex->pTable->pIndex = pIndex->pNext; 465 }else{ 466 Index *p; 467 /* Justification of ALWAYS(); The index must be on the list of 468 ** indices. */ 469 p = pIndex->pTable->pIndex; 470 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 471 if( ALWAYS(p && p->pNext==pIndex) ){ 472 p->pNext = pIndex->pNext; 473 } 474 } 475 freeIndex(db, pIndex); 476 } 477 db->flags |= SQLITE_InternChanges; 478 } 479 480 /* 481 ** Look through the list of open database files in db->aDb[] and if 482 ** any have been closed, remove them from the list. Reallocate the 483 ** db->aDb[] structure to a smaller size, if possible. 484 ** 485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 486 ** are never candidates for being collapsed. 487 */ 488 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 489 int i, j; 490 for(i=j=2; i<db->nDb; i++){ 491 struct Db *pDb = &db->aDb[i]; 492 if( pDb->pBt==0 ){ 493 sqlite3DbFree(db, pDb->zName); 494 pDb->zName = 0; 495 continue; 496 } 497 if( j<i ){ 498 db->aDb[j] = db->aDb[i]; 499 } 500 j++; 501 } 502 db->nDb = j; 503 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 504 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 505 sqlite3DbFree(db, db->aDb); 506 db->aDb = db->aDbStatic; 507 } 508 } 509 510 /* 511 ** Reset the schema for the database at index iDb. Also reset the 512 ** TEMP schema. 513 */ 514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 515 Db *pDb; 516 assert( iDb<db->nDb ); 517 518 /* Case 1: Reset the single schema identified by iDb */ 519 pDb = &db->aDb[iDb]; 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 assert( pDb->pSchema!=0 ); 522 sqlite3SchemaClear(pDb->pSchema); 523 524 /* If any database other than TEMP is reset, then also reset TEMP 525 ** since TEMP might be holding triggers that reference tables in the 526 ** other database. 527 */ 528 if( iDb!=1 ){ 529 pDb = &db->aDb[1]; 530 assert( pDb->pSchema!=0 ); 531 sqlite3SchemaClear(pDb->pSchema); 532 } 533 return; 534 } 535 536 /* 537 ** Erase all schema information from all attached databases (including 538 ** "main" and "temp") for a single database connection. 539 */ 540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 541 int i; 542 sqlite3BtreeEnterAll(db); 543 for(i=0; i<db->nDb; i++){ 544 Db *pDb = &db->aDb[i]; 545 if( pDb->pSchema ){ 546 sqlite3SchemaClear(pDb->pSchema); 547 } 548 } 549 db->flags &= ~SQLITE_InternChanges; 550 sqlite3VtabUnlockList(db); 551 sqlite3BtreeLeaveAll(db); 552 sqlite3CollapseDatabaseArray(db); 553 } 554 555 /* 556 ** This routine is called when a commit occurs. 557 */ 558 void sqlite3CommitInternalChanges(sqlite3 *db){ 559 db->flags &= ~SQLITE_InternChanges; 560 } 561 562 /* 563 ** Delete memory allocated for the column names of a table or view (the 564 ** Table.aCol[] array). 565 */ 566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 567 int i; 568 Column *pCol; 569 assert( pTable!=0 ); 570 if( (pCol = pTable->aCol)!=0 ){ 571 for(i=0; i<pTable->nCol; i++, pCol++){ 572 sqlite3DbFree(db, pCol->zName); 573 sqlite3ExprDelete(db, pCol->pDflt); 574 sqlite3DbFree(db, pCol->zDflt); 575 sqlite3DbFree(db, pCol->zType); 576 sqlite3DbFree(db, pCol->zColl); 577 } 578 sqlite3DbFree(db, pTable->aCol); 579 } 580 } 581 582 /* 583 ** Remove the memory data structures associated with the given 584 ** Table. No changes are made to disk by this routine. 585 ** 586 ** This routine just deletes the data structure. It does not unlink 587 ** the table data structure from the hash table. But it does destroy 588 ** memory structures of the indices and foreign keys associated with 589 ** the table. 590 ** 591 ** The db parameter is optional. It is needed if the Table object 592 ** contains lookaside memory. (Table objects in the schema do not use 593 ** lookaside memory, but some ephemeral Table objects do.) Or the 594 ** db parameter can be used with db->pnBytesFreed to measure the memory 595 ** used by the Table object. 596 */ 597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 598 Index *pIndex, *pNext; 599 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 600 601 assert( !pTable || pTable->nRef>0 ); 602 603 /* Do not delete the table until the reference count reaches zero. */ 604 if( !pTable ) return; 605 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 606 607 /* Record the number of outstanding lookaside allocations in schema Tables 608 ** prior to doing any free() operations. Since schema Tables do not use 609 ** lookaside, this number should not change. */ 610 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 611 db->lookaside.nOut : 0 ); 612 613 /* Delete all indices associated with this table. */ 614 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 615 pNext = pIndex->pNext; 616 assert( pIndex->pSchema==pTable->pSchema ); 617 if( !db || db->pnBytesFreed==0 ){ 618 char *zName = pIndex->zName; 619 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 620 &pIndex->pSchema->idxHash, zName, 0 621 ); 622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 623 assert( pOld==pIndex || pOld==0 ); 624 } 625 freeIndex(db, pIndex); 626 } 627 628 /* Delete any foreign keys attached to this table. */ 629 sqlite3FkDelete(db, pTable); 630 631 /* Delete the Table structure itself. 632 */ 633 sqlite3DeleteColumnNames(db, pTable); 634 sqlite3DbFree(db, pTable->zName); 635 sqlite3DbFree(db, pTable->zColAff); 636 sqlite3SelectDelete(db, pTable->pSelect); 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #ifndef SQLITE_OMIT_VIRTUALTABLE 639 sqlite3VtabClear(db, pTable); 640 #endif 641 sqlite3DbFree(db, pTable); 642 643 /* Verify that no lookaside memory was used by schema tables */ 644 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 645 } 646 647 /* 648 ** Unlink the given table from the hash tables and the delete the 649 ** table structure with all its indices and foreign keys. 650 */ 651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 652 Table *p; 653 Db *pDb; 654 655 assert( db!=0 ); 656 assert( iDb>=0 && iDb<db->nDb ); 657 assert( zTabName ); 658 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 659 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 660 pDb = &db->aDb[iDb]; 661 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 662 sqlite3DeleteTable(db, p); 663 db->flags |= SQLITE_InternChanges; 664 } 665 666 /* 667 ** Given a token, return a string that consists of the text of that 668 ** token. Space to hold the returned string 669 ** is obtained from sqliteMalloc() and must be freed by the calling 670 ** function. 671 ** 672 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 673 ** surround the body of the token are removed. 674 ** 675 ** Tokens are often just pointers into the original SQL text and so 676 ** are not \000 terminated and are not persistent. The returned string 677 ** is \000 terminated and is persistent. 678 */ 679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 680 char *zName; 681 if( pName ){ 682 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 683 sqlite3Dequote(zName); 684 }else{ 685 zName = 0; 686 } 687 return zName; 688 } 689 690 /* 691 ** Open the sqlite_master table stored in database number iDb for 692 ** writing. The table is opened using cursor 0. 693 */ 694 void sqlite3OpenMasterTable(Parse *p, int iDb){ 695 Vdbe *v = sqlite3GetVdbe(p); 696 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 697 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 698 if( p->nTab==0 ){ 699 p->nTab = 1; 700 } 701 } 702 703 /* 704 ** Parameter zName points to a nul-terminated buffer containing the name 705 ** of a database ("main", "temp" or the name of an attached db). This 706 ** function returns the index of the named database in db->aDb[], or 707 ** -1 if the named db cannot be found. 708 */ 709 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 710 int i = -1; /* Database number */ 711 if( zName ){ 712 Db *pDb; 713 int n = sqlite3Strlen30(zName); 714 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 715 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 716 0==sqlite3StrICmp(pDb->zName, zName) ){ 717 break; 718 } 719 } 720 } 721 return i; 722 } 723 724 /* 725 ** The token *pName contains the name of a database (either "main" or 726 ** "temp" or the name of an attached db). This routine returns the 727 ** index of the named database in db->aDb[], or -1 if the named db 728 ** does not exist. 729 */ 730 int sqlite3FindDb(sqlite3 *db, Token *pName){ 731 int i; /* Database number */ 732 char *zName; /* Name we are searching for */ 733 zName = sqlite3NameFromToken(db, pName); 734 i = sqlite3FindDbName(db, zName); 735 sqlite3DbFree(db, zName); 736 return i; 737 } 738 739 /* The table or view or trigger name is passed to this routine via tokens 740 ** pName1 and pName2. If the table name was fully qualified, for example: 741 ** 742 ** CREATE TABLE xxx.yyy (...); 743 ** 744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 745 ** the table name is not fully qualified, i.e.: 746 ** 747 ** CREATE TABLE yyy(...); 748 ** 749 ** Then pName1 is set to "yyy" and pName2 is "". 750 ** 751 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 752 ** pName2) that stores the unqualified table name. The index of the 753 ** database "xxx" is returned. 754 */ 755 int sqlite3TwoPartName( 756 Parse *pParse, /* Parsing and code generating context */ 757 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 758 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 759 Token **pUnqual /* Write the unqualified object name here */ 760 ){ 761 int iDb; /* Database holding the object */ 762 sqlite3 *db = pParse->db; 763 764 assert( pName2!=0 ); 765 if( pName2->n>0 ){ 766 if( db->init.busy ) { 767 sqlite3ErrorMsg(pParse, "corrupt database"); 768 return -1; 769 } 770 *pUnqual = pName2; 771 iDb = sqlite3FindDb(db, pName1); 772 if( iDb<0 ){ 773 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 774 return -1; 775 } 776 }else{ 777 assert( db->init.iDb==0 || db->init.busy ); 778 iDb = db->init.iDb; 779 *pUnqual = pName1; 780 } 781 return iDb; 782 } 783 784 /* 785 ** This routine is used to check if the UTF-8 string zName is a legal 786 ** unqualified name for a new schema object (table, index, view or 787 ** trigger). All names are legal except those that begin with the string 788 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 789 ** is reserved for internal use. 790 */ 791 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 792 if( !pParse->db->init.busy && pParse->nested==0 793 && (pParse->db->flags & SQLITE_WriteSchema)==0 794 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 795 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 796 return SQLITE_ERROR; 797 } 798 return SQLITE_OK; 799 } 800 801 /* 802 ** Return the PRIMARY KEY index of a table 803 */ 804 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 805 Index *p; 806 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 807 return p; 808 } 809 810 /* 811 ** Return the column of index pIdx that corresponds to table 812 ** column iCol. Return -1 if not found. 813 */ 814 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 815 int i; 816 for(i=0; i<pIdx->nColumn; i++){ 817 if( iCol==pIdx->aiColumn[i] ) return i; 818 } 819 return -1; 820 } 821 822 /* 823 ** Begin constructing a new table representation in memory. This is 824 ** the first of several action routines that get called in response 825 ** to a CREATE TABLE statement. In particular, this routine is called 826 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 827 ** flag is true if the table should be stored in the auxiliary database 828 ** file instead of in the main database file. This is normally the case 829 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 830 ** CREATE and TABLE. 831 ** 832 ** The new table record is initialized and put in pParse->pNewTable. 833 ** As more of the CREATE TABLE statement is parsed, additional action 834 ** routines will be called to add more information to this record. 835 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 836 ** is called to complete the construction of the new table record. 837 */ 838 void sqlite3StartTable( 839 Parse *pParse, /* Parser context */ 840 Token *pName1, /* First part of the name of the table or view */ 841 Token *pName2, /* Second part of the name of the table or view */ 842 int isTemp, /* True if this is a TEMP table */ 843 int isView, /* True if this is a VIEW */ 844 int isVirtual, /* True if this is a VIRTUAL table */ 845 int noErr /* Do nothing if table already exists */ 846 ){ 847 Table *pTable; 848 char *zName = 0; /* The name of the new table */ 849 sqlite3 *db = pParse->db; 850 Vdbe *v; 851 int iDb; /* Database number to create the table in */ 852 Token *pName; /* Unqualified name of the table to create */ 853 854 if( db->init.busy && db->init.newTnum==1 ){ 855 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 856 iDb = db->init.iDb; 857 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 858 pName = pName1; 859 }else{ 860 /* The common case */ 861 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 862 if( iDb<0 ) return; 863 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 864 /* If creating a temp table, the name may not be qualified. Unless 865 ** the database name is "temp" anyway. */ 866 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 867 return; 868 } 869 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 870 zName = sqlite3NameFromToken(db, pName); 871 } 872 pParse->sNameToken = *pName; 873 if( zName==0 ) return; 874 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 875 goto begin_table_error; 876 } 877 if( db->init.iDb==1 ) isTemp = 1; 878 #ifndef SQLITE_OMIT_AUTHORIZATION 879 assert( isTemp==0 || isTemp==1 ); 880 assert( isView==0 || isView==1 ); 881 { 882 static const u8 aCode[] = { 883 SQLITE_CREATE_TABLE, 884 SQLITE_CREATE_TEMP_TABLE, 885 SQLITE_CREATE_VIEW, 886 SQLITE_CREATE_TEMP_VIEW 887 }; 888 char *zDb = db->aDb[iDb].zName; 889 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 890 goto begin_table_error; 891 } 892 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 893 zName, 0, zDb) ){ 894 goto begin_table_error; 895 } 896 } 897 #endif 898 899 /* Make sure the new table name does not collide with an existing 900 ** index or table name in the same database. Issue an error message if 901 ** it does. The exception is if the statement being parsed was passed 902 ** to an sqlite3_declare_vtab() call. In that case only the column names 903 ** and types will be used, so there is no need to test for namespace 904 ** collisions. 905 */ 906 if( !IN_DECLARE_VTAB ){ 907 char *zDb = db->aDb[iDb].zName; 908 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 909 goto begin_table_error; 910 } 911 pTable = sqlite3FindTable(db, zName, zDb); 912 if( pTable ){ 913 if( !noErr ){ 914 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 915 }else{ 916 assert( !db->init.busy || CORRUPT_DB ); 917 sqlite3CodeVerifySchema(pParse, iDb); 918 } 919 goto begin_table_error; 920 } 921 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 922 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 923 goto begin_table_error; 924 } 925 } 926 927 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 928 if( pTable==0 ){ 929 db->mallocFailed = 1; 930 pParse->rc = SQLITE_NOMEM; 931 pParse->nErr++; 932 goto begin_table_error; 933 } 934 pTable->zName = zName; 935 pTable->iPKey = -1; 936 pTable->pSchema = db->aDb[iDb].pSchema; 937 pTable->nRef = 1; 938 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 939 assert( pParse->pNewTable==0 ); 940 pParse->pNewTable = pTable; 941 942 /* If this is the magic sqlite_sequence table used by autoincrement, 943 ** then record a pointer to this table in the main database structure 944 ** so that INSERT can find the table easily. 945 */ 946 #ifndef SQLITE_OMIT_AUTOINCREMENT 947 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 948 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 949 pTable->pSchema->pSeqTab = pTable; 950 } 951 #endif 952 953 /* Begin generating the code that will insert the table record into 954 ** the SQLITE_MASTER table. Note in particular that we must go ahead 955 ** and allocate the record number for the table entry now. Before any 956 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 957 ** indices to be created and the table record must come before the 958 ** indices. Hence, the record number for the table must be allocated 959 ** now. 960 */ 961 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 962 int addr1; 963 int fileFormat; 964 int reg1, reg2, reg3; 965 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 966 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 967 sqlite3BeginWriteOperation(pParse, 1, iDb); 968 969 #ifndef SQLITE_OMIT_VIRTUALTABLE 970 if( isVirtual ){ 971 sqlite3VdbeAddOp0(v, OP_VBegin); 972 } 973 #endif 974 975 /* If the file format and encoding in the database have not been set, 976 ** set them now. 977 */ 978 reg1 = pParse->regRowid = ++pParse->nMem; 979 reg2 = pParse->regRoot = ++pParse->nMem; 980 reg3 = ++pParse->nMem; 981 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 982 sqlite3VdbeUsesBtree(v, iDb); 983 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 984 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 985 1 : SQLITE_MAX_FILE_FORMAT; 986 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 987 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 988 sqlite3VdbeJumpHere(v, addr1); 989 990 /* This just creates a place-holder record in the sqlite_master table. 991 ** The record created does not contain anything yet. It will be replaced 992 ** by the real entry in code generated at sqlite3EndTable(). 993 ** 994 ** The rowid for the new entry is left in register pParse->regRowid. 995 ** The root page number of the new table is left in reg pParse->regRoot. 996 ** The rowid and root page number values are needed by the code that 997 ** sqlite3EndTable will generate. 998 */ 999 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1000 if( isView || isVirtual ){ 1001 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1002 }else 1003 #endif 1004 { 1005 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1006 } 1007 sqlite3OpenMasterTable(pParse, iDb); 1008 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1009 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1010 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1011 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1012 sqlite3VdbeAddOp0(v, OP_Close); 1013 } 1014 1015 /* Normal (non-error) return. */ 1016 return; 1017 1018 /* If an error occurs, we jump here */ 1019 begin_table_error: 1020 sqlite3DbFree(db, zName); 1021 return; 1022 } 1023 1024 /* Set properties of a table column based on the (magical) 1025 ** name of the column. 1026 */ 1027 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1028 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1029 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1030 pCol->colFlags |= COLFLAG_HIDDEN; 1031 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1032 pTab->tabFlags |= TF_OOOHidden; 1033 } 1034 } 1035 #endif 1036 1037 1038 /* 1039 ** Add a new column to the table currently being constructed. 1040 ** 1041 ** The parser calls this routine once for each column declaration 1042 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1043 ** first to get things going. Then this routine is called for each 1044 ** column. 1045 */ 1046 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1047 Table *p; 1048 int i; 1049 char *z; 1050 Column *pCol; 1051 sqlite3 *db = pParse->db; 1052 if( (p = pParse->pNewTable)==0 ) return; 1053 #if SQLITE_MAX_COLUMN 1054 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1055 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1056 return; 1057 } 1058 #endif 1059 z = sqlite3NameFromToken(db, pName); 1060 if( z==0 ) return; 1061 for(i=0; i<p->nCol; i++){ 1062 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1063 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1064 sqlite3DbFree(db, z); 1065 return; 1066 } 1067 } 1068 if( (p->nCol & 0x7)==0 ){ 1069 Column *aNew; 1070 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1071 if( aNew==0 ){ 1072 sqlite3DbFree(db, z); 1073 return; 1074 } 1075 p->aCol = aNew; 1076 } 1077 pCol = &p->aCol[p->nCol]; 1078 memset(pCol, 0, sizeof(p->aCol[0])); 1079 pCol->zName = z; 1080 sqlite3ColumnPropertiesFromName(p, pCol); 1081 1082 /* If there is no type specified, columns have the default affinity 1083 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1084 ** be called next to set pCol->affinity correctly. 1085 */ 1086 pCol->affinity = SQLITE_AFF_BLOB; 1087 pCol->szEst = 1; 1088 p->nCol++; 1089 } 1090 1091 /* 1092 ** This routine is called by the parser while in the middle of 1093 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1094 ** been seen on a column. This routine sets the notNull flag on 1095 ** the column currently under construction. 1096 */ 1097 void sqlite3AddNotNull(Parse *pParse, int onError){ 1098 Table *p; 1099 p = pParse->pNewTable; 1100 if( p==0 || NEVER(p->nCol<1) ) return; 1101 p->aCol[p->nCol-1].notNull = (u8)onError; 1102 } 1103 1104 /* 1105 ** Scan the column type name zType (length nType) and return the 1106 ** associated affinity type. 1107 ** 1108 ** This routine does a case-independent search of zType for the 1109 ** substrings in the following table. If one of the substrings is 1110 ** found, the corresponding affinity is returned. If zType contains 1111 ** more than one of the substrings, entries toward the top of 1112 ** the table take priority. For example, if zType is 'BLOBINT', 1113 ** SQLITE_AFF_INTEGER is returned. 1114 ** 1115 ** Substring | Affinity 1116 ** -------------------------------- 1117 ** 'INT' | SQLITE_AFF_INTEGER 1118 ** 'CHAR' | SQLITE_AFF_TEXT 1119 ** 'CLOB' | SQLITE_AFF_TEXT 1120 ** 'TEXT' | SQLITE_AFF_TEXT 1121 ** 'BLOB' | SQLITE_AFF_BLOB 1122 ** 'REAL' | SQLITE_AFF_REAL 1123 ** 'FLOA' | SQLITE_AFF_REAL 1124 ** 'DOUB' | SQLITE_AFF_REAL 1125 ** 1126 ** If none of the substrings in the above table are found, 1127 ** SQLITE_AFF_NUMERIC is returned. 1128 */ 1129 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1130 u32 h = 0; 1131 char aff = SQLITE_AFF_NUMERIC; 1132 const char *zChar = 0; 1133 1134 if( zIn==0 ) return aff; 1135 while( zIn[0] ){ 1136 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1137 zIn++; 1138 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1139 aff = SQLITE_AFF_TEXT; 1140 zChar = zIn; 1141 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1142 aff = SQLITE_AFF_TEXT; 1143 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1144 aff = SQLITE_AFF_TEXT; 1145 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1146 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1147 aff = SQLITE_AFF_BLOB; 1148 if( zIn[0]=='(' ) zChar = zIn; 1149 #ifndef SQLITE_OMIT_FLOATING_POINT 1150 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1151 && aff==SQLITE_AFF_NUMERIC ){ 1152 aff = SQLITE_AFF_REAL; 1153 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1154 && aff==SQLITE_AFF_NUMERIC ){ 1155 aff = SQLITE_AFF_REAL; 1156 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1157 && aff==SQLITE_AFF_NUMERIC ){ 1158 aff = SQLITE_AFF_REAL; 1159 #endif 1160 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1161 aff = SQLITE_AFF_INTEGER; 1162 break; 1163 } 1164 } 1165 1166 /* If pszEst is not NULL, store an estimate of the field size. The 1167 ** estimate is scaled so that the size of an integer is 1. */ 1168 if( pszEst ){ 1169 *pszEst = 1; /* default size is approx 4 bytes */ 1170 if( aff<SQLITE_AFF_NUMERIC ){ 1171 if( zChar ){ 1172 while( zChar[0] ){ 1173 if( sqlite3Isdigit(zChar[0]) ){ 1174 int v = 0; 1175 sqlite3GetInt32(zChar, &v); 1176 v = v/4 + 1; 1177 if( v>255 ) v = 255; 1178 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1179 break; 1180 } 1181 zChar++; 1182 } 1183 }else{ 1184 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1185 } 1186 } 1187 } 1188 return aff; 1189 } 1190 1191 /* 1192 ** This routine is called by the parser while in the middle of 1193 ** parsing a CREATE TABLE statement. The pFirst token is the first 1194 ** token in the sequence of tokens that describe the type of the 1195 ** column currently under construction. pLast is the last token 1196 ** in the sequence. Use this information to construct a string 1197 ** that contains the typename of the column and store that string 1198 ** in zType. 1199 */ 1200 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1201 Table *p; 1202 Column *pCol; 1203 1204 p = pParse->pNewTable; 1205 if( p==0 || NEVER(p->nCol<1) ) return; 1206 pCol = &p->aCol[p->nCol-1]; 1207 assert( pCol->zType==0 || CORRUPT_DB ); 1208 sqlite3DbFree(pParse->db, pCol->zType); 1209 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1210 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1211 } 1212 1213 /* 1214 ** The expression is the default value for the most recently added column 1215 ** of the table currently under construction. 1216 ** 1217 ** Default value expressions must be constant. Raise an exception if this 1218 ** is not the case. 1219 ** 1220 ** This routine is called by the parser while in the middle of 1221 ** parsing a CREATE TABLE statement. 1222 */ 1223 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1224 Table *p; 1225 Column *pCol; 1226 sqlite3 *db = pParse->db; 1227 p = pParse->pNewTable; 1228 if( p!=0 ){ 1229 pCol = &(p->aCol[p->nCol-1]); 1230 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1231 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1232 pCol->zName); 1233 }else{ 1234 /* A copy of pExpr is used instead of the original, as pExpr contains 1235 ** tokens that point to volatile memory. The 'span' of the expression 1236 ** is required by pragma table_info. 1237 */ 1238 sqlite3ExprDelete(db, pCol->pDflt); 1239 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1240 sqlite3DbFree(db, pCol->zDflt); 1241 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1242 (int)(pSpan->zEnd - pSpan->zStart)); 1243 } 1244 } 1245 sqlite3ExprDelete(db, pSpan->pExpr); 1246 } 1247 1248 /* 1249 ** Backwards Compatibility Hack: 1250 ** 1251 ** Historical versions of SQLite accepted strings as column names in 1252 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1253 ** 1254 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1255 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1256 ** 1257 ** This is goofy. But to preserve backwards compatibility we continue to 1258 ** accept it. This routine does the necessary conversion. It converts 1259 ** the expression given in its argument from a TK_STRING into a TK_ID 1260 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1261 ** If the epxression is anything other than TK_STRING, the expression is 1262 ** unchanged. 1263 */ 1264 static void sqlite3StringToId(Expr *p){ 1265 if( p->op==TK_STRING ){ 1266 p->op = TK_ID; 1267 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1268 p->pLeft->op = TK_ID; 1269 } 1270 } 1271 1272 /* 1273 ** Designate the PRIMARY KEY for the table. pList is a list of names 1274 ** of columns that form the primary key. If pList is NULL, then the 1275 ** most recently added column of the table is the primary key. 1276 ** 1277 ** A table can have at most one primary key. If the table already has 1278 ** a primary key (and this is the second primary key) then create an 1279 ** error. 1280 ** 1281 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1282 ** then we will try to use that column as the rowid. Set the Table.iPKey 1283 ** field of the table under construction to be the index of the 1284 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1285 ** no INTEGER PRIMARY KEY. 1286 ** 1287 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1288 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1289 */ 1290 void sqlite3AddPrimaryKey( 1291 Parse *pParse, /* Parsing context */ 1292 ExprList *pList, /* List of field names to be indexed */ 1293 int onError, /* What to do with a uniqueness conflict */ 1294 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1295 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1296 ){ 1297 Table *pTab = pParse->pNewTable; 1298 char *zType = 0; 1299 int iCol = -1, i; 1300 int nTerm; 1301 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1302 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1303 sqlite3ErrorMsg(pParse, 1304 "table \"%s\" has more than one primary key", pTab->zName); 1305 goto primary_key_exit; 1306 } 1307 pTab->tabFlags |= TF_HasPrimaryKey; 1308 if( pList==0 ){ 1309 iCol = pTab->nCol - 1; 1310 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1311 zType = pTab->aCol[iCol].zType; 1312 nTerm = 1; 1313 }else{ 1314 nTerm = pList->nExpr; 1315 for(i=0; i<nTerm; i++){ 1316 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1317 assert( pCExpr!=0 ); 1318 sqlite3StringToId(pCExpr); 1319 if( pCExpr->op==TK_ID ){ 1320 const char *zCName = pCExpr->u.zToken; 1321 for(iCol=0; iCol<pTab->nCol; iCol++){ 1322 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1323 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1324 zType = pTab->aCol[iCol].zType; 1325 break; 1326 } 1327 } 1328 } 1329 } 1330 } 1331 if( nTerm==1 1332 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1333 && sortOrder!=SQLITE_SO_DESC 1334 ){ 1335 pTab->iPKey = iCol; 1336 pTab->keyConf = (u8)onError; 1337 assert( autoInc==0 || autoInc==1 ); 1338 pTab->tabFlags |= autoInc*TF_Autoincrement; 1339 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1340 }else if( autoInc ){ 1341 #ifndef SQLITE_OMIT_AUTOINCREMENT 1342 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1343 "INTEGER PRIMARY KEY"); 1344 #endif 1345 }else{ 1346 Index *p; 1347 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1348 0, sortOrder, 0); 1349 if( p ){ 1350 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1351 } 1352 pList = 0; 1353 } 1354 1355 primary_key_exit: 1356 sqlite3ExprListDelete(pParse->db, pList); 1357 return; 1358 } 1359 1360 /* 1361 ** Add a new CHECK constraint to the table currently under construction. 1362 */ 1363 void sqlite3AddCheckConstraint( 1364 Parse *pParse, /* Parsing context */ 1365 Expr *pCheckExpr /* The check expression */ 1366 ){ 1367 #ifndef SQLITE_OMIT_CHECK 1368 Table *pTab = pParse->pNewTable; 1369 sqlite3 *db = pParse->db; 1370 if( pTab && !IN_DECLARE_VTAB 1371 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1372 ){ 1373 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1374 if( pParse->constraintName.n ){ 1375 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1376 } 1377 }else 1378 #endif 1379 { 1380 sqlite3ExprDelete(pParse->db, pCheckExpr); 1381 } 1382 } 1383 1384 /* 1385 ** Set the collation function of the most recently parsed table column 1386 ** to the CollSeq given. 1387 */ 1388 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1389 Table *p; 1390 int i; 1391 char *zColl; /* Dequoted name of collation sequence */ 1392 sqlite3 *db; 1393 1394 if( (p = pParse->pNewTable)==0 ) return; 1395 i = p->nCol-1; 1396 db = pParse->db; 1397 zColl = sqlite3NameFromToken(db, pToken); 1398 if( !zColl ) return; 1399 1400 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1401 Index *pIdx; 1402 sqlite3DbFree(db, p->aCol[i].zColl); 1403 p->aCol[i].zColl = zColl; 1404 1405 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1406 ** then an index may have been created on this column before the 1407 ** collation type was added. Correct this if it is the case. 1408 */ 1409 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1410 assert( pIdx->nKeyCol==1 ); 1411 if( pIdx->aiColumn[0]==i ){ 1412 pIdx->azColl[0] = p->aCol[i].zColl; 1413 } 1414 } 1415 }else{ 1416 sqlite3DbFree(db, zColl); 1417 } 1418 } 1419 1420 /* 1421 ** This function returns the collation sequence for database native text 1422 ** encoding identified by the string zName, length nName. 1423 ** 1424 ** If the requested collation sequence is not available, or not available 1425 ** in the database native encoding, the collation factory is invoked to 1426 ** request it. If the collation factory does not supply such a sequence, 1427 ** and the sequence is available in another text encoding, then that is 1428 ** returned instead. 1429 ** 1430 ** If no versions of the requested collations sequence are available, or 1431 ** another error occurs, NULL is returned and an error message written into 1432 ** pParse. 1433 ** 1434 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1435 ** invokes the collation factory if the named collation cannot be found 1436 ** and generates an error message. 1437 ** 1438 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1439 */ 1440 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1441 sqlite3 *db = pParse->db; 1442 u8 enc = ENC(db); 1443 u8 initbusy = db->init.busy; 1444 CollSeq *pColl; 1445 1446 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1447 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1448 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1449 } 1450 1451 return pColl; 1452 } 1453 1454 1455 /* 1456 ** Generate code that will increment the schema cookie. 1457 ** 1458 ** The schema cookie is used to determine when the schema for the 1459 ** database changes. After each schema change, the cookie value 1460 ** changes. When a process first reads the schema it records the 1461 ** cookie. Thereafter, whenever it goes to access the database, 1462 ** it checks the cookie to make sure the schema has not changed 1463 ** since it was last read. 1464 ** 1465 ** This plan is not completely bullet-proof. It is possible for 1466 ** the schema to change multiple times and for the cookie to be 1467 ** set back to prior value. But schema changes are infrequent 1468 ** and the probability of hitting the same cookie value is only 1469 ** 1 chance in 2^32. So we're safe enough. 1470 */ 1471 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1472 sqlite3 *db = pParse->db; 1473 Vdbe *v = pParse->pVdbe; 1474 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1475 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1476 db->aDb[iDb].pSchema->schema_cookie+1); 1477 } 1478 1479 /* 1480 ** Measure the number of characters needed to output the given 1481 ** identifier. The number returned includes any quotes used 1482 ** but does not include the null terminator. 1483 ** 1484 ** The estimate is conservative. It might be larger that what is 1485 ** really needed. 1486 */ 1487 static int identLength(const char *z){ 1488 int n; 1489 for(n=0; *z; n++, z++){ 1490 if( *z=='"' ){ n++; } 1491 } 1492 return n + 2; 1493 } 1494 1495 /* 1496 ** The first parameter is a pointer to an output buffer. The second 1497 ** parameter is a pointer to an integer that contains the offset at 1498 ** which to write into the output buffer. This function copies the 1499 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1500 ** to the specified offset in the buffer and updates *pIdx to refer 1501 ** to the first byte after the last byte written before returning. 1502 ** 1503 ** If the string zSignedIdent consists entirely of alpha-numeric 1504 ** characters, does not begin with a digit and is not an SQL keyword, 1505 ** then it is copied to the output buffer exactly as it is. Otherwise, 1506 ** it is quoted using double-quotes. 1507 */ 1508 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1509 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1510 int i, j, needQuote; 1511 i = *pIdx; 1512 1513 for(j=0; zIdent[j]; j++){ 1514 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1515 } 1516 needQuote = sqlite3Isdigit(zIdent[0]) 1517 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1518 || zIdent[j]!=0 1519 || j==0; 1520 1521 if( needQuote ) z[i++] = '"'; 1522 for(j=0; zIdent[j]; j++){ 1523 z[i++] = zIdent[j]; 1524 if( zIdent[j]=='"' ) z[i++] = '"'; 1525 } 1526 if( needQuote ) z[i++] = '"'; 1527 z[i] = 0; 1528 *pIdx = i; 1529 } 1530 1531 /* 1532 ** Generate a CREATE TABLE statement appropriate for the given 1533 ** table. Memory to hold the text of the statement is obtained 1534 ** from sqliteMalloc() and must be freed by the calling function. 1535 */ 1536 static char *createTableStmt(sqlite3 *db, Table *p){ 1537 int i, k, n; 1538 char *zStmt; 1539 char *zSep, *zSep2, *zEnd; 1540 Column *pCol; 1541 n = 0; 1542 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1543 n += identLength(pCol->zName) + 5; 1544 } 1545 n += identLength(p->zName); 1546 if( n<50 ){ 1547 zSep = ""; 1548 zSep2 = ","; 1549 zEnd = ")"; 1550 }else{ 1551 zSep = "\n "; 1552 zSep2 = ",\n "; 1553 zEnd = "\n)"; 1554 } 1555 n += 35 + 6*p->nCol; 1556 zStmt = sqlite3DbMallocRaw(0, n); 1557 if( zStmt==0 ){ 1558 db->mallocFailed = 1; 1559 return 0; 1560 } 1561 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1562 k = sqlite3Strlen30(zStmt); 1563 identPut(zStmt, &k, p->zName); 1564 zStmt[k++] = '('; 1565 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1566 static const char * const azType[] = { 1567 /* SQLITE_AFF_BLOB */ "", 1568 /* SQLITE_AFF_TEXT */ " TEXT", 1569 /* SQLITE_AFF_NUMERIC */ " NUM", 1570 /* SQLITE_AFF_INTEGER */ " INT", 1571 /* SQLITE_AFF_REAL */ " REAL" 1572 }; 1573 int len; 1574 const char *zType; 1575 1576 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1577 k += sqlite3Strlen30(&zStmt[k]); 1578 zSep = zSep2; 1579 identPut(zStmt, &k, pCol->zName); 1580 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1581 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1582 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1583 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1584 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1585 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1586 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1587 1588 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1589 len = sqlite3Strlen30(zType); 1590 assert( pCol->affinity==SQLITE_AFF_BLOB 1591 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1592 memcpy(&zStmt[k], zType, len); 1593 k += len; 1594 assert( k<=n ); 1595 } 1596 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1597 return zStmt; 1598 } 1599 1600 /* 1601 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1602 ** on success and SQLITE_NOMEM on an OOM error. 1603 */ 1604 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1605 char *zExtra; 1606 int nByte; 1607 if( pIdx->nColumn>=N ) return SQLITE_OK; 1608 assert( pIdx->isResized==0 ); 1609 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1610 zExtra = sqlite3DbMallocZero(db, nByte); 1611 if( zExtra==0 ) return SQLITE_NOMEM; 1612 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1613 pIdx->azColl = (const char**)zExtra; 1614 zExtra += sizeof(char*)*N; 1615 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1616 pIdx->aiColumn = (i16*)zExtra; 1617 zExtra += sizeof(i16)*N; 1618 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1619 pIdx->aSortOrder = (u8*)zExtra; 1620 pIdx->nColumn = N; 1621 pIdx->isResized = 1; 1622 return SQLITE_OK; 1623 } 1624 1625 /* 1626 ** Estimate the total row width for a table. 1627 */ 1628 static void estimateTableWidth(Table *pTab){ 1629 unsigned wTable = 0; 1630 const Column *pTabCol; 1631 int i; 1632 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1633 wTable += pTabCol->szEst; 1634 } 1635 if( pTab->iPKey<0 ) wTable++; 1636 pTab->szTabRow = sqlite3LogEst(wTable*4); 1637 } 1638 1639 /* 1640 ** Estimate the average size of a row for an index. 1641 */ 1642 static void estimateIndexWidth(Index *pIdx){ 1643 unsigned wIndex = 0; 1644 int i; 1645 const Column *aCol = pIdx->pTable->aCol; 1646 for(i=0; i<pIdx->nColumn; i++){ 1647 i16 x = pIdx->aiColumn[i]; 1648 assert( x<pIdx->pTable->nCol ); 1649 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1650 } 1651 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1652 } 1653 1654 /* Return true if value x is found any of the first nCol entries of aiCol[] 1655 */ 1656 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1657 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1658 return 0; 1659 } 1660 1661 /* 1662 ** This routine runs at the end of parsing a CREATE TABLE statement that 1663 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1664 ** internal schema data structures and the generated VDBE code so that they 1665 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1666 ** Changes include: 1667 ** 1668 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1669 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1670 ** data storage is a covering index btree. 1671 ** (2) Bypass the creation of the sqlite_master table entry 1672 ** for the PRIMARY KEY as the primary key index is now 1673 ** identified by the sqlite_master table entry of the table itself. 1674 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1675 ** schema to the rootpage from the main table. 1676 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1677 ** (5) Add all table columns to the PRIMARY KEY Index object 1678 ** so that the PRIMARY KEY is a covering index. The surplus 1679 ** columns are part of KeyInfo.nXField and are not used for 1680 ** sorting or lookup or uniqueness checks. 1681 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1682 ** indices with the PRIMARY KEY columns. 1683 */ 1684 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1685 Index *pIdx; 1686 Index *pPk; 1687 int nPk; 1688 int i, j; 1689 sqlite3 *db = pParse->db; 1690 Vdbe *v = pParse->pVdbe; 1691 1692 /* Convert the OP_CreateTable opcode that would normally create the 1693 ** root-page for the table into an OP_CreateIndex opcode. The index 1694 ** created will become the PRIMARY KEY index. 1695 */ 1696 if( pParse->addrCrTab ){ 1697 assert( v ); 1698 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1699 } 1700 1701 /* Locate the PRIMARY KEY index. Or, if this table was originally 1702 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1703 */ 1704 if( pTab->iPKey>=0 ){ 1705 ExprList *pList; 1706 Token ipkToken; 1707 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1708 pList = sqlite3ExprListAppend(pParse, 0, 1709 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1710 if( pList==0 ) return; 1711 pList->a[0].sortOrder = pParse->iPkSortOrder; 1712 assert( pParse->pNewTable==pTab ); 1713 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1714 if( pPk==0 ) return; 1715 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1716 pTab->iPKey = -1; 1717 }else{ 1718 pPk = sqlite3PrimaryKeyIndex(pTab); 1719 1720 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1721 ** table entry. This is only required if currently generating VDBE 1722 ** code for a CREATE TABLE (not when parsing one as part of reading 1723 ** a database schema). */ 1724 if( v ){ 1725 assert( db->init.busy==0 ); 1726 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1727 } 1728 1729 /* 1730 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1731 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1732 ** code assumes the PRIMARY KEY contains no repeated columns. 1733 */ 1734 for(i=j=1; i<pPk->nKeyCol; i++){ 1735 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1736 pPk->nColumn--; 1737 }else{ 1738 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1739 } 1740 } 1741 pPk->nKeyCol = j; 1742 } 1743 pPk->isCovering = 1; 1744 assert( pPk!=0 ); 1745 nPk = pPk->nKeyCol; 1746 1747 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1748 ** do not enforce this for imposter tables.) */ 1749 if( !db->init.imposterTable ){ 1750 for(i=0; i<nPk; i++){ 1751 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort; 1752 } 1753 pPk->uniqNotNull = 1; 1754 } 1755 1756 /* The root page of the PRIMARY KEY is the table root page */ 1757 pPk->tnum = pTab->tnum; 1758 1759 /* Update the in-memory representation of all UNIQUE indices by converting 1760 ** the final rowid column into one or more columns of the PRIMARY KEY. 1761 */ 1762 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1763 int n; 1764 if( IsPrimaryKeyIndex(pIdx) ) continue; 1765 for(i=n=0; i<nPk; i++){ 1766 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1767 } 1768 if( n==0 ){ 1769 /* This index is a superset of the primary key */ 1770 pIdx->nColumn = pIdx->nKeyCol; 1771 continue; 1772 } 1773 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1774 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1775 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1776 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1777 pIdx->azColl[j] = pPk->azColl[i]; 1778 j++; 1779 } 1780 } 1781 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1782 assert( pIdx->nColumn>=j ); 1783 } 1784 1785 /* Add all table columns to the PRIMARY KEY index 1786 */ 1787 if( nPk<pTab->nCol ){ 1788 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1789 for(i=0, j=nPk; i<pTab->nCol; i++){ 1790 if( !hasColumn(pPk->aiColumn, j, i) ){ 1791 assert( j<pPk->nColumn ); 1792 pPk->aiColumn[j] = i; 1793 pPk->azColl[j] = sqlite3StrBINARY; 1794 j++; 1795 } 1796 } 1797 assert( pPk->nColumn==j ); 1798 assert( pTab->nCol==j ); 1799 }else{ 1800 pPk->nColumn = pTab->nCol; 1801 } 1802 } 1803 1804 /* 1805 ** This routine is called to report the final ")" that terminates 1806 ** a CREATE TABLE statement. 1807 ** 1808 ** The table structure that other action routines have been building 1809 ** is added to the internal hash tables, assuming no errors have 1810 ** occurred. 1811 ** 1812 ** An entry for the table is made in the master table on disk, unless 1813 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1814 ** it means we are reading the sqlite_master table because we just 1815 ** connected to the database or because the sqlite_master table has 1816 ** recently changed, so the entry for this table already exists in 1817 ** the sqlite_master table. We do not want to create it again. 1818 ** 1819 ** If the pSelect argument is not NULL, it means that this routine 1820 ** was called to create a table generated from a 1821 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1822 ** the new table will match the result set of the SELECT. 1823 */ 1824 void sqlite3EndTable( 1825 Parse *pParse, /* Parse context */ 1826 Token *pCons, /* The ',' token after the last column defn. */ 1827 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1828 u8 tabOpts, /* Extra table options. Usually 0. */ 1829 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1830 ){ 1831 Table *p; /* The new table */ 1832 sqlite3 *db = pParse->db; /* The database connection */ 1833 int iDb; /* Database in which the table lives */ 1834 Index *pIdx; /* An implied index of the table */ 1835 1836 if( pEnd==0 && pSelect==0 ){ 1837 return; 1838 } 1839 assert( !db->mallocFailed ); 1840 p = pParse->pNewTable; 1841 if( p==0 ) return; 1842 1843 assert( !db->init.busy || !pSelect ); 1844 1845 /* If the db->init.busy is 1 it means we are reading the SQL off the 1846 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1847 ** So do not write to the disk again. Extract the root page number 1848 ** for the table from the db->init.newTnum field. (The page number 1849 ** should have been put there by the sqliteOpenCb routine.) 1850 ** 1851 ** If the root page number is 1, that means this is the sqlite_master 1852 ** table itself. So mark it read-only. 1853 */ 1854 if( db->init.busy ){ 1855 p->tnum = db->init.newTnum; 1856 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1857 } 1858 1859 /* Special processing for WITHOUT ROWID Tables */ 1860 if( tabOpts & TF_WithoutRowid ){ 1861 if( (p->tabFlags & TF_Autoincrement) ){ 1862 sqlite3ErrorMsg(pParse, 1863 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1864 return; 1865 } 1866 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1867 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1868 }else{ 1869 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1870 convertToWithoutRowidTable(pParse, p); 1871 } 1872 } 1873 1874 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1875 1876 #ifndef SQLITE_OMIT_CHECK 1877 /* Resolve names in all CHECK constraint expressions. 1878 */ 1879 if( p->pCheck ){ 1880 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1881 } 1882 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1883 1884 /* Estimate the average row size for the table and for all implied indices */ 1885 estimateTableWidth(p); 1886 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1887 estimateIndexWidth(pIdx); 1888 } 1889 1890 /* If not initializing, then create a record for the new table 1891 ** in the SQLITE_MASTER table of the database. 1892 ** 1893 ** If this is a TEMPORARY table, write the entry into the auxiliary 1894 ** file instead of into the main database file. 1895 */ 1896 if( !db->init.busy ){ 1897 int n; 1898 Vdbe *v; 1899 char *zType; /* "view" or "table" */ 1900 char *zType2; /* "VIEW" or "TABLE" */ 1901 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1902 1903 v = sqlite3GetVdbe(pParse); 1904 if( NEVER(v==0) ) return; 1905 1906 sqlite3VdbeAddOp1(v, OP_Close, 0); 1907 1908 /* 1909 ** Initialize zType for the new view or table. 1910 */ 1911 if( p->pSelect==0 ){ 1912 /* A regular table */ 1913 zType = "table"; 1914 zType2 = "TABLE"; 1915 #ifndef SQLITE_OMIT_VIEW 1916 }else{ 1917 /* A view */ 1918 zType = "view"; 1919 zType2 = "VIEW"; 1920 #endif 1921 } 1922 1923 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1924 ** statement to populate the new table. The root-page number for the 1925 ** new table is in register pParse->regRoot. 1926 ** 1927 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1928 ** suitable state to query for the column names and types to be used 1929 ** by the new table. 1930 ** 1931 ** A shared-cache write-lock is not required to write to the new table, 1932 ** as a schema-lock must have already been obtained to create it. Since 1933 ** a schema-lock excludes all other database users, the write-lock would 1934 ** be redundant. 1935 */ 1936 if( pSelect ){ 1937 SelectDest dest; /* Where the SELECT should store results */ 1938 int regYield; /* Register holding co-routine entry-point */ 1939 int addrTop; /* Top of the co-routine */ 1940 int regRec; /* A record to be insert into the new table */ 1941 int regRowid; /* Rowid of the next row to insert */ 1942 int addrInsLoop; /* Top of the loop for inserting rows */ 1943 Table *pSelTab; /* A table that describes the SELECT results */ 1944 1945 regYield = ++pParse->nMem; 1946 regRec = ++pParse->nMem; 1947 regRowid = ++pParse->nMem; 1948 assert(pParse->nTab==1); 1949 sqlite3MayAbort(pParse); 1950 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1951 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1952 pParse->nTab = 2; 1953 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1954 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1955 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1956 sqlite3Select(pParse, pSelect, &dest); 1957 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1958 sqlite3VdbeJumpHere(v, addrTop - 1); 1959 if( pParse->nErr ) return; 1960 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1961 if( pSelTab==0 ) return; 1962 assert( p->aCol==0 ); 1963 p->nCol = pSelTab->nCol; 1964 p->aCol = pSelTab->aCol; 1965 pSelTab->nCol = 0; 1966 pSelTab->aCol = 0; 1967 sqlite3DeleteTable(db, pSelTab); 1968 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1969 VdbeCoverage(v); 1970 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1971 sqlite3TableAffinity(v, p, 0); 1972 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1973 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1974 sqlite3VdbeGoto(v, addrInsLoop); 1975 sqlite3VdbeJumpHere(v, addrInsLoop); 1976 sqlite3VdbeAddOp1(v, OP_Close, 1); 1977 } 1978 1979 /* Compute the complete text of the CREATE statement */ 1980 if( pSelect ){ 1981 zStmt = createTableStmt(db, p); 1982 }else{ 1983 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1984 n = (int)(pEnd2->z - pParse->sNameToken.z); 1985 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1986 zStmt = sqlite3MPrintf(db, 1987 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1988 ); 1989 } 1990 1991 /* A slot for the record has already been allocated in the 1992 ** SQLITE_MASTER table. We just need to update that slot with all 1993 ** the information we've collected. 1994 */ 1995 sqlite3NestedParse(pParse, 1996 "UPDATE %Q.%s " 1997 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1998 "WHERE rowid=#%d", 1999 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2000 zType, 2001 p->zName, 2002 p->zName, 2003 pParse->regRoot, 2004 zStmt, 2005 pParse->regRowid 2006 ); 2007 sqlite3DbFree(db, zStmt); 2008 sqlite3ChangeCookie(pParse, iDb); 2009 2010 #ifndef SQLITE_OMIT_AUTOINCREMENT 2011 /* Check to see if we need to create an sqlite_sequence table for 2012 ** keeping track of autoincrement keys. 2013 */ 2014 if( p->tabFlags & TF_Autoincrement ){ 2015 Db *pDb = &db->aDb[iDb]; 2016 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2017 if( pDb->pSchema->pSeqTab==0 ){ 2018 sqlite3NestedParse(pParse, 2019 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2020 pDb->zName 2021 ); 2022 } 2023 } 2024 #endif 2025 2026 /* Reparse everything to update our internal data structures */ 2027 sqlite3VdbeAddParseSchemaOp(v, iDb, 2028 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2029 } 2030 2031 2032 /* Add the table to the in-memory representation of the database. 2033 */ 2034 if( db->init.busy ){ 2035 Table *pOld; 2036 Schema *pSchema = p->pSchema; 2037 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2038 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2039 if( pOld ){ 2040 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2041 db->mallocFailed = 1; 2042 return; 2043 } 2044 pParse->pNewTable = 0; 2045 db->flags |= SQLITE_InternChanges; 2046 2047 #ifndef SQLITE_OMIT_ALTERTABLE 2048 if( !p->pSelect ){ 2049 const char *zName = (const char *)pParse->sNameToken.z; 2050 int nName; 2051 assert( !pSelect && pCons && pEnd ); 2052 if( pCons->z==0 ){ 2053 pCons = pEnd; 2054 } 2055 nName = (int)((const char *)pCons->z - zName); 2056 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2057 } 2058 #endif 2059 } 2060 } 2061 2062 #ifndef SQLITE_OMIT_VIEW 2063 /* 2064 ** The parser calls this routine in order to create a new VIEW 2065 */ 2066 void sqlite3CreateView( 2067 Parse *pParse, /* The parsing context */ 2068 Token *pBegin, /* The CREATE token that begins the statement */ 2069 Token *pName1, /* The token that holds the name of the view */ 2070 Token *pName2, /* The token that holds the name of the view */ 2071 ExprList *pCNames, /* Optional list of view column names */ 2072 Select *pSelect, /* A SELECT statement that will become the new view */ 2073 int isTemp, /* TRUE for a TEMPORARY view */ 2074 int noErr /* Suppress error messages if VIEW already exists */ 2075 ){ 2076 Table *p; 2077 int n; 2078 const char *z; 2079 Token sEnd; 2080 DbFixer sFix; 2081 Token *pName = 0; 2082 int iDb; 2083 sqlite3 *db = pParse->db; 2084 2085 if( pParse->nVar>0 ){ 2086 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2087 goto create_view_fail; 2088 } 2089 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2090 p = pParse->pNewTable; 2091 if( p==0 || pParse->nErr ) goto create_view_fail; 2092 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2093 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2094 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2095 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2096 2097 /* Make a copy of the entire SELECT statement that defines the view. 2098 ** This will force all the Expr.token.z values to be dynamically 2099 ** allocated rather than point to the input string - which means that 2100 ** they will persist after the current sqlite3_exec() call returns. 2101 */ 2102 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2103 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2104 if( db->mallocFailed ) goto create_view_fail; 2105 2106 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2107 ** the end. 2108 */ 2109 sEnd = pParse->sLastToken; 2110 assert( sEnd.z[0]!=0 ); 2111 if( sEnd.z[0]!=';' ){ 2112 sEnd.z += sEnd.n; 2113 } 2114 sEnd.n = 0; 2115 n = (int)(sEnd.z - pBegin->z); 2116 assert( n>0 ); 2117 z = pBegin->z; 2118 while( sqlite3Isspace(z[n-1]) ){ n--; } 2119 sEnd.z = &z[n-1]; 2120 sEnd.n = 1; 2121 2122 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2123 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2124 2125 create_view_fail: 2126 sqlite3SelectDelete(db, pSelect); 2127 sqlite3ExprListDelete(db, pCNames); 2128 return; 2129 } 2130 #endif /* SQLITE_OMIT_VIEW */ 2131 2132 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2133 /* 2134 ** The Table structure pTable is really a VIEW. Fill in the names of 2135 ** the columns of the view in the pTable structure. Return the number 2136 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2137 */ 2138 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2139 Table *pSelTab; /* A fake table from which we get the result set */ 2140 Select *pSel; /* Copy of the SELECT that implements the view */ 2141 int nErr = 0; /* Number of errors encountered */ 2142 int n; /* Temporarily holds the number of cursors assigned */ 2143 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2144 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2145 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2146 2147 assert( pTable ); 2148 2149 #ifndef SQLITE_OMIT_VIRTUALTABLE 2150 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2151 return SQLITE_ERROR; 2152 } 2153 if( IsVirtual(pTable) ) return 0; 2154 #endif 2155 2156 #ifndef SQLITE_OMIT_VIEW 2157 /* A positive nCol means the columns names for this view are 2158 ** already known. 2159 */ 2160 if( pTable->nCol>0 ) return 0; 2161 2162 /* A negative nCol is a special marker meaning that we are currently 2163 ** trying to compute the column names. If we enter this routine with 2164 ** a negative nCol, it means two or more views form a loop, like this: 2165 ** 2166 ** CREATE VIEW one AS SELECT * FROM two; 2167 ** CREATE VIEW two AS SELECT * FROM one; 2168 ** 2169 ** Actually, the error above is now caught prior to reaching this point. 2170 ** But the following test is still important as it does come up 2171 ** in the following: 2172 ** 2173 ** CREATE TABLE main.ex1(a); 2174 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2175 ** SELECT * FROM temp.ex1; 2176 */ 2177 if( pTable->nCol<0 ){ 2178 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2179 return 1; 2180 } 2181 assert( pTable->nCol>=0 ); 2182 2183 /* If we get this far, it means we need to compute the table names. 2184 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2185 ** "*" elements in the results set of the view and will assign cursors 2186 ** to the elements of the FROM clause. But we do not want these changes 2187 ** to be permanent. So the computation is done on a copy of the SELECT 2188 ** statement that defines the view. 2189 */ 2190 assert( pTable->pSelect ); 2191 bEnabledLA = db->lookaside.bEnabled; 2192 if( pTable->pCheck ){ 2193 db->lookaside.bEnabled = 0; 2194 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2195 &pTable->nCol, &pTable->aCol); 2196 }else{ 2197 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2198 if( pSel ){ 2199 n = pParse->nTab; 2200 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2201 pTable->nCol = -1; 2202 db->lookaside.bEnabled = 0; 2203 #ifndef SQLITE_OMIT_AUTHORIZATION 2204 xAuth = db->xAuth; 2205 db->xAuth = 0; 2206 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2207 db->xAuth = xAuth; 2208 #else 2209 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2210 #endif 2211 pParse->nTab = n; 2212 if( pSelTab ){ 2213 assert( pTable->aCol==0 ); 2214 pTable->nCol = pSelTab->nCol; 2215 pTable->aCol = pSelTab->aCol; 2216 pSelTab->nCol = 0; 2217 pSelTab->aCol = 0; 2218 sqlite3DeleteTable(db, pSelTab); 2219 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2220 }else{ 2221 pTable->nCol = 0; 2222 nErr++; 2223 } 2224 sqlite3SelectDelete(db, pSel); 2225 } else { 2226 nErr++; 2227 } 2228 } 2229 db->lookaside.bEnabled = bEnabledLA; 2230 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2231 #endif /* SQLITE_OMIT_VIEW */ 2232 return nErr; 2233 } 2234 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2235 2236 #ifndef SQLITE_OMIT_VIEW 2237 /* 2238 ** Clear the column names from every VIEW in database idx. 2239 */ 2240 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2241 HashElem *i; 2242 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2243 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2244 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2245 Table *pTab = sqliteHashData(i); 2246 if( pTab->pSelect ){ 2247 sqlite3DeleteColumnNames(db, pTab); 2248 pTab->aCol = 0; 2249 pTab->nCol = 0; 2250 } 2251 } 2252 DbClearProperty(db, idx, DB_UnresetViews); 2253 } 2254 #else 2255 # define sqliteViewResetAll(A,B) 2256 #endif /* SQLITE_OMIT_VIEW */ 2257 2258 /* 2259 ** This function is called by the VDBE to adjust the internal schema 2260 ** used by SQLite when the btree layer moves a table root page. The 2261 ** root-page of a table or index in database iDb has changed from iFrom 2262 ** to iTo. 2263 ** 2264 ** Ticket #1728: The symbol table might still contain information 2265 ** on tables and/or indices that are the process of being deleted. 2266 ** If you are unlucky, one of those deleted indices or tables might 2267 ** have the same rootpage number as the real table or index that is 2268 ** being moved. So we cannot stop searching after the first match 2269 ** because the first match might be for one of the deleted indices 2270 ** or tables and not the table/index that is actually being moved. 2271 ** We must continue looping until all tables and indices with 2272 ** rootpage==iFrom have been converted to have a rootpage of iTo 2273 ** in order to be certain that we got the right one. 2274 */ 2275 #ifndef SQLITE_OMIT_AUTOVACUUM 2276 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2277 HashElem *pElem; 2278 Hash *pHash; 2279 Db *pDb; 2280 2281 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2282 pDb = &db->aDb[iDb]; 2283 pHash = &pDb->pSchema->tblHash; 2284 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2285 Table *pTab = sqliteHashData(pElem); 2286 if( pTab->tnum==iFrom ){ 2287 pTab->tnum = iTo; 2288 } 2289 } 2290 pHash = &pDb->pSchema->idxHash; 2291 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2292 Index *pIdx = sqliteHashData(pElem); 2293 if( pIdx->tnum==iFrom ){ 2294 pIdx->tnum = iTo; 2295 } 2296 } 2297 } 2298 #endif 2299 2300 /* 2301 ** Write code to erase the table with root-page iTable from database iDb. 2302 ** Also write code to modify the sqlite_master table and internal schema 2303 ** if a root-page of another table is moved by the btree-layer whilst 2304 ** erasing iTable (this can happen with an auto-vacuum database). 2305 */ 2306 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2307 Vdbe *v = sqlite3GetVdbe(pParse); 2308 int r1 = sqlite3GetTempReg(pParse); 2309 assert( iTable>1 ); 2310 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2311 sqlite3MayAbort(pParse); 2312 #ifndef SQLITE_OMIT_AUTOVACUUM 2313 /* OP_Destroy stores an in integer r1. If this integer 2314 ** is non-zero, then it is the root page number of a table moved to 2315 ** location iTable. The following code modifies the sqlite_master table to 2316 ** reflect this. 2317 ** 2318 ** The "#NNN" in the SQL is a special constant that means whatever value 2319 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2320 ** token for additional information. 2321 */ 2322 sqlite3NestedParse(pParse, 2323 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2324 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2325 #endif 2326 sqlite3ReleaseTempReg(pParse, r1); 2327 } 2328 2329 /* 2330 ** Write VDBE code to erase table pTab and all associated indices on disk. 2331 ** Code to update the sqlite_master tables and internal schema definitions 2332 ** in case a root-page belonging to another table is moved by the btree layer 2333 ** is also added (this can happen with an auto-vacuum database). 2334 */ 2335 static void destroyTable(Parse *pParse, Table *pTab){ 2336 #ifdef SQLITE_OMIT_AUTOVACUUM 2337 Index *pIdx; 2338 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2339 destroyRootPage(pParse, pTab->tnum, iDb); 2340 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2341 destroyRootPage(pParse, pIdx->tnum, iDb); 2342 } 2343 #else 2344 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2345 ** is not defined), then it is important to call OP_Destroy on the 2346 ** table and index root-pages in order, starting with the numerically 2347 ** largest root-page number. This guarantees that none of the root-pages 2348 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2349 ** following were coded: 2350 ** 2351 ** OP_Destroy 4 0 2352 ** ... 2353 ** OP_Destroy 5 0 2354 ** 2355 ** and root page 5 happened to be the largest root-page number in the 2356 ** database, then root page 5 would be moved to page 4 by the 2357 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2358 ** a free-list page. 2359 */ 2360 int iTab = pTab->tnum; 2361 int iDestroyed = 0; 2362 2363 while( 1 ){ 2364 Index *pIdx; 2365 int iLargest = 0; 2366 2367 if( iDestroyed==0 || iTab<iDestroyed ){ 2368 iLargest = iTab; 2369 } 2370 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2371 int iIdx = pIdx->tnum; 2372 assert( pIdx->pSchema==pTab->pSchema ); 2373 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2374 iLargest = iIdx; 2375 } 2376 } 2377 if( iLargest==0 ){ 2378 return; 2379 }else{ 2380 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2381 assert( iDb>=0 && iDb<pParse->db->nDb ); 2382 destroyRootPage(pParse, iLargest, iDb); 2383 iDestroyed = iLargest; 2384 } 2385 } 2386 #endif 2387 } 2388 2389 /* 2390 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2391 ** after a DROP INDEX or DROP TABLE command. 2392 */ 2393 static void sqlite3ClearStatTables( 2394 Parse *pParse, /* The parsing context */ 2395 int iDb, /* The database number */ 2396 const char *zType, /* "idx" or "tbl" */ 2397 const char *zName /* Name of index or table */ 2398 ){ 2399 int i; 2400 const char *zDbName = pParse->db->aDb[iDb].zName; 2401 for(i=1; i<=4; i++){ 2402 char zTab[24]; 2403 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2404 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2405 sqlite3NestedParse(pParse, 2406 "DELETE FROM %Q.%s WHERE %s=%Q", 2407 zDbName, zTab, zType, zName 2408 ); 2409 } 2410 } 2411 } 2412 2413 /* 2414 ** Generate code to drop a table. 2415 */ 2416 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2417 Vdbe *v; 2418 sqlite3 *db = pParse->db; 2419 Trigger *pTrigger; 2420 Db *pDb = &db->aDb[iDb]; 2421 2422 v = sqlite3GetVdbe(pParse); 2423 assert( v!=0 ); 2424 sqlite3BeginWriteOperation(pParse, 1, iDb); 2425 2426 #ifndef SQLITE_OMIT_VIRTUALTABLE 2427 if( IsVirtual(pTab) ){ 2428 sqlite3VdbeAddOp0(v, OP_VBegin); 2429 } 2430 #endif 2431 2432 /* Drop all triggers associated with the table being dropped. Code 2433 ** is generated to remove entries from sqlite_master and/or 2434 ** sqlite_temp_master if required. 2435 */ 2436 pTrigger = sqlite3TriggerList(pParse, pTab); 2437 while( pTrigger ){ 2438 assert( pTrigger->pSchema==pTab->pSchema || 2439 pTrigger->pSchema==db->aDb[1].pSchema ); 2440 sqlite3DropTriggerPtr(pParse, pTrigger); 2441 pTrigger = pTrigger->pNext; 2442 } 2443 2444 #ifndef SQLITE_OMIT_AUTOINCREMENT 2445 /* Remove any entries of the sqlite_sequence table associated with 2446 ** the table being dropped. This is done before the table is dropped 2447 ** at the btree level, in case the sqlite_sequence table needs to 2448 ** move as a result of the drop (can happen in auto-vacuum mode). 2449 */ 2450 if( pTab->tabFlags & TF_Autoincrement ){ 2451 sqlite3NestedParse(pParse, 2452 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2453 pDb->zName, pTab->zName 2454 ); 2455 } 2456 #endif 2457 2458 /* Drop all SQLITE_MASTER table and index entries that refer to the 2459 ** table. The program name loops through the master table and deletes 2460 ** every row that refers to a table of the same name as the one being 2461 ** dropped. Triggers are handled separately because a trigger can be 2462 ** created in the temp database that refers to a table in another 2463 ** database. 2464 */ 2465 sqlite3NestedParse(pParse, 2466 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2467 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2468 if( !isView && !IsVirtual(pTab) ){ 2469 destroyTable(pParse, pTab); 2470 } 2471 2472 /* Remove the table entry from SQLite's internal schema and modify 2473 ** the schema cookie. 2474 */ 2475 if( IsVirtual(pTab) ){ 2476 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2477 } 2478 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2479 sqlite3ChangeCookie(pParse, iDb); 2480 sqliteViewResetAll(db, iDb); 2481 } 2482 2483 /* 2484 ** This routine is called to do the work of a DROP TABLE statement. 2485 ** pName is the name of the table to be dropped. 2486 */ 2487 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2488 Table *pTab; 2489 Vdbe *v; 2490 sqlite3 *db = pParse->db; 2491 int iDb; 2492 2493 if( db->mallocFailed ){ 2494 goto exit_drop_table; 2495 } 2496 assert( pParse->nErr==0 ); 2497 assert( pName->nSrc==1 ); 2498 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2499 if( noErr ) db->suppressErr++; 2500 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2501 if( noErr ) db->suppressErr--; 2502 2503 if( pTab==0 ){ 2504 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2505 goto exit_drop_table; 2506 } 2507 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2508 assert( iDb>=0 && iDb<db->nDb ); 2509 2510 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2511 ** it is initialized. 2512 */ 2513 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2514 goto exit_drop_table; 2515 } 2516 #ifndef SQLITE_OMIT_AUTHORIZATION 2517 { 2518 int code; 2519 const char *zTab = SCHEMA_TABLE(iDb); 2520 const char *zDb = db->aDb[iDb].zName; 2521 const char *zArg2 = 0; 2522 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2523 goto exit_drop_table; 2524 } 2525 if( isView ){ 2526 if( !OMIT_TEMPDB && iDb==1 ){ 2527 code = SQLITE_DROP_TEMP_VIEW; 2528 }else{ 2529 code = SQLITE_DROP_VIEW; 2530 } 2531 #ifndef SQLITE_OMIT_VIRTUALTABLE 2532 }else if( IsVirtual(pTab) ){ 2533 code = SQLITE_DROP_VTABLE; 2534 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2535 #endif 2536 }else{ 2537 if( !OMIT_TEMPDB && iDb==1 ){ 2538 code = SQLITE_DROP_TEMP_TABLE; 2539 }else{ 2540 code = SQLITE_DROP_TABLE; 2541 } 2542 } 2543 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2544 goto exit_drop_table; 2545 } 2546 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2547 goto exit_drop_table; 2548 } 2549 } 2550 #endif 2551 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2552 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2553 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2554 goto exit_drop_table; 2555 } 2556 2557 #ifndef SQLITE_OMIT_VIEW 2558 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2559 ** on a table. 2560 */ 2561 if( isView && pTab->pSelect==0 ){ 2562 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2563 goto exit_drop_table; 2564 } 2565 if( !isView && pTab->pSelect ){ 2566 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2567 goto exit_drop_table; 2568 } 2569 #endif 2570 2571 /* Generate code to remove the table from the master table 2572 ** on disk. 2573 */ 2574 v = sqlite3GetVdbe(pParse); 2575 if( v ){ 2576 sqlite3BeginWriteOperation(pParse, 1, iDb); 2577 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2578 sqlite3FkDropTable(pParse, pName, pTab); 2579 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2580 } 2581 2582 exit_drop_table: 2583 sqlite3SrcListDelete(db, pName); 2584 } 2585 2586 /* 2587 ** This routine is called to create a new foreign key on the table 2588 ** currently under construction. pFromCol determines which columns 2589 ** in the current table point to the foreign key. If pFromCol==0 then 2590 ** connect the key to the last column inserted. pTo is the name of 2591 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2592 ** of tables in the parent pTo table. flags contains all 2593 ** information about the conflict resolution algorithms specified 2594 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2595 ** 2596 ** An FKey structure is created and added to the table currently 2597 ** under construction in the pParse->pNewTable field. 2598 ** 2599 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2600 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2601 */ 2602 void sqlite3CreateForeignKey( 2603 Parse *pParse, /* Parsing context */ 2604 ExprList *pFromCol, /* Columns in this table that point to other table */ 2605 Token *pTo, /* Name of the other table */ 2606 ExprList *pToCol, /* Columns in the other table */ 2607 int flags /* Conflict resolution algorithms. */ 2608 ){ 2609 sqlite3 *db = pParse->db; 2610 #ifndef SQLITE_OMIT_FOREIGN_KEY 2611 FKey *pFKey = 0; 2612 FKey *pNextTo; 2613 Table *p = pParse->pNewTable; 2614 int nByte; 2615 int i; 2616 int nCol; 2617 char *z; 2618 2619 assert( pTo!=0 ); 2620 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2621 if( pFromCol==0 ){ 2622 int iCol = p->nCol-1; 2623 if( NEVER(iCol<0) ) goto fk_end; 2624 if( pToCol && pToCol->nExpr!=1 ){ 2625 sqlite3ErrorMsg(pParse, "foreign key on %s" 2626 " should reference only one column of table %T", 2627 p->aCol[iCol].zName, pTo); 2628 goto fk_end; 2629 } 2630 nCol = 1; 2631 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2632 sqlite3ErrorMsg(pParse, 2633 "number of columns in foreign key does not match the number of " 2634 "columns in the referenced table"); 2635 goto fk_end; 2636 }else{ 2637 nCol = pFromCol->nExpr; 2638 } 2639 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2640 if( pToCol ){ 2641 for(i=0; i<pToCol->nExpr; i++){ 2642 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2643 } 2644 } 2645 pFKey = sqlite3DbMallocZero(db, nByte ); 2646 if( pFKey==0 ){ 2647 goto fk_end; 2648 } 2649 pFKey->pFrom = p; 2650 pFKey->pNextFrom = p->pFKey; 2651 z = (char*)&pFKey->aCol[nCol]; 2652 pFKey->zTo = z; 2653 memcpy(z, pTo->z, pTo->n); 2654 z[pTo->n] = 0; 2655 sqlite3Dequote(z); 2656 z += pTo->n+1; 2657 pFKey->nCol = nCol; 2658 if( pFromCol==0 ){ 2659 pFKey->aCol[0].iFrom = p->nCol-1; 2660 }else{ 2661 for(i=0; i<nCol; i++){ 2662 int j; 2663 for(j=0; j<p->nCol; j++){ 2664 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2665 pFKey->aCol[i].iFrom = j; 2666 break; 2667 } 2668 } 2669 if( j>=p->nCol ){ 2670 sqlite3ErrorMsg(pParse, 2671 "unknown column \"%s\" in foreign key definition", 2672 pFromCol->a[i].zName); 2673 goto fk_end; 2674 } 2675 } 2676 } 2677 if( pToCol ){ 2678 for(i=0; i<nCol; i++){ 2679 int n = sqlite3Strlen30(pToCol->a[i].zName); 2680 pFKey->aCol[i].zCol = z; 2681 memcpy(z, pToCol->a[i].zName, n); 2682 z[n] = 0; 2683 z += n+1; 2684 } 2685 } 2686 pFKey->isDeferred = 0; 2687 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2688 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2689 2690 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2691 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2692 pFKey->zTo, (void *)pFKey 2693 ); 2694 if( pNextTo==pFKey ){ 2695 db->mallocFailed = 1; 2696 goto fk_end; 2697 } 2698 if( pNextTo ){ 2699 assert( pNextTo->pPrevTo==0 ); 2700 pFKey->pNextTo = pNextTo; 2701 pNextTo->pPrevTo = pFKey; 2702 } 2703 2704 /* Link the foreign key to the table as the last step. 2705 */ 2706 p->pFKey = pFKey; 2707 pFKey = 0; 2708 2709 fk_end: 2710 sqlite3DbFree(db, pFKey); 2711 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2712 sqlite3ExprListDelete(db, pFromCol); 2713 sqlite3ExprListDelete(db, pToCol); 2714 } 2715 2716 /* 2717 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2718 ** clause is seen as part of a foreign key definition. The isDeferred 2719 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2720 ** The behavior of the most recently created foreign key is adjusted 2721 ** accordingly. 2722 */ 2723 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2724 #ifndef SQLITE_OMIT_FOREIGN_KEY 2725 Table *pTab; 2726 FKey *pFKey; 2727 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2728 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2729 pFKey->isDeferred = (u8)isDeferred; 2730 #endif 2731 } 2732 2733 /* 2734 ** Generate code that will erase and refill index *pIdx. This is 2735 ** used to initialize a newly created index or to recompute the 2736 ** content of an index in response to a REINDEX command. 2737 ** 2738 ** if memRootPage is not negative, it means that the index is newly 2739 ** created. The register specified by memRootPage contains the 2740 ** root page number of the index. If memRootPage is negative, then 2741 ** the index already exists and must be cleared before being refilled and 2742 ** the root page number of the index is taken from pIndex->tnum. 2743 */ 2744 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2745 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2746 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2747 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2748 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2749 int addr1; /* Address of top of loop */ 2750 int addr2; /* Address to jump to for next iteration */ 2751 int tnum; /* Root page of index */ 2752 int iPartIdxLabel; /* Jump to this label to skip a row */ 2753 Vdbe *v; /* Generate code into this virtual machine */ 2754 KeyInfo *pKey; /* KeyInfo for index */ 2755 int regRecord; /* Register holding assembled index record */ 2756 sqlite3 *db = pParse->db; /* The database connection */ 2757 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2758 2759 #ifndef SQLITE_OMIT_AUTHORIZATION 2760 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2761 db->aDb[iDb].zName ) ){ 2762 return; 2763 } 2764 #endif 2765 2766 /* Require a write-lock on the table to perform this operation */ 2767 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2768 2769 v = sqlite3GetVdbe(pParse); 2770 if( v==0 ) return; 2771 if( memRootPage>=0 ){ 2772 tnum = memRootPage; 2773 }else{ 2774 tnum = pIndex->tnum; 2775 } 2776 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2777 2778 /* Open the sorter cursor if we are to use one. */ 2779 iSorter = pParse->nTab++; 2780 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2781 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2782 2783 /* Open the table. Loop through all rows of the table, inserting index 2784 ** records into the sorter. */ 2785 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2786 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2787 regRecord = sqlite3GetTempReg(pParse); 2788 2789 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2790 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2791 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2792 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2793 sqlite3VdbeJumpHere(v, addr1); 2794 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2795 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2796 (char *)pKey, P4_KEYINFO); 2797 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2798 2799 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2800 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2801 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2802 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2803 sqlite3VdbeGoto(v, j2); 2804 addr2 = sqlite3VdbeCurrentAddr(v); 2805 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2806 pIndex->nKeyCol); VdbeCoverage(v); 2807 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2808 }else{ 2809 addr2 = sqlite3VdbeCurrentAddr(v); 2810 } 2811 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2812 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2813 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2814 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2815 sqlite3ReleaseTempReg(pParse, regRecord); 2816 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2817 sqlite3VdbeJumpHere(v, addr1); 2818 2819 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2820 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2821 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2822 } 2823 2824 /* 2825 ** Allocate heap space to hold an Index object with nCol columns. 2826 ** 2827 ** Increase the allocation size to provide an extra nExtra bytes 2828 ** of 8-byte aligned space after the Index object and return a 2829 ** pointer to this extra space in *ppExtra. 2830 */ 2831 Index *sqlite3AllocateIndexObject( 2832 sqlite3 *db, /* Database connection */ 2833 i16 nCol, /* Total number of columns in the index */ 2834 int nExtra, /* Number of bytes of extra space to alloc */ 2835 char **ppExtra /* Pointer to the "extra" space */ 2836 ){ 2837 Index *p; /* Allocated index object */ 2838 int nByte; /* Bytes of space for Index object + arrays */ 2839 2840 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2841 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2842 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2843 sizeof(i16)*nCol + /* Index.aiColumn */ 2844 sizeof(u8)*nCol); /* Index.aSortOrder */ 2845 p = sqlite3DbMallocZero(db, nByte + nExtra); 2846 if( p ){ 2847 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2848 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2849 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2850 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2851 p->aSortOrder = (u8*)pExtra; 2852 p->nColumn = nCol; 2853 p->nKeyCol = nCol - 1; 2854 *ppExtra = ((char*)p) + nByte; 2855 } 2856 return p; 2857 } 2858 2859 /* 2860 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2861 ** and pTblList is the name of the table that is to be indexed. Both will 2862 ** be NULL for a primary key or an index that is created to satisfy a 2863 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2864 ** as the table to be indexed. pParse->pNewTable is a table that is 2865 ** currently being constructed by a CREATE TABLE statement. 2866 ** 2867 ** pList is a list of columns to be indexed. pList will be NULL if this 2868 ** is a primary key or unique-constraint on the most recent column added 2869 ** to the table currently under construction. 2870 ** 2871 ** If the index is created successfully, return a pointer to the new Index 2872 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2873 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2874 */ 2875 Index *sqlite3CreateIndex( 2876 Parse *pParse, /* All information about this parse */ 2877 Token *pName1, /* First part of index name. May be NULL */ 2878 Token *pName2, /* Second part of index name. May be NULL */ 2879 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2880 ExprList *pList, /* A list of columns to be indexed */ 2881 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2882 Token *pStart, /* The CREATE token that begins this statement */ 2883 Expr *pPIWhere, /* WHERE clause for partial indices */ 2884 int sortOrder, /* Sort order of primary key when pList==NULL */ 2885 int ifNotExist /* Omit error if index already exists */ 2886 ){ 2887 Index *pRet = 0; /* Pointer to return */ 2888 Table *pTab = 0; /* Table to be indexed */ 2889 Index *pIndex = 0; /* The index to be created */ 2890 char *zName = 0; /* Name of the index */ 2891 int nName; /* Number of characters in zName */ 2892 int i, j; 2893 DbFixer sFix; /* For assigning database names to pTable */ 2894 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2895 sqlite3 *db = pParse->db; 2896 Db *pDb; /* The specific table containing the indexed database */ 2897 int iDb; /* Index of the database that is being written */ 2898 Token *pName = 0; /* Unqualified name of the index to create */ 2899 struct ExprList_item *pListItem; /* For looping over pList */ 2900 int nExtra = 0; /* Space allocated for zExtra[] */ 2901 int nExtraCol; /* Number of extra columns needed */ 2902 char *zExtra = 0; /* Extra space after the Index object */ 2903 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2904 2905 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2906 goto exit_create_index; 2907 } 2908 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2909 goto exit_create_index; 2910 } 2911 2912 /* 2913 ** Find the table that is to be indexed. Return early if not found. 2914 */ 2915 if( pTblName!=0 ){ 2916 2917 /* Use the two-part index name to determine the database 2918 ** to search for the table. 'Fix' the table name to this db 2919 ** before looking up the table. 2920 */ 2921 assert( pName1 && pName2 ); 2922 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2923 if( iDb<0 ) goto exit_create_index; 2924 assert( pName && pName->z ); 2925 2926 #ifndef SQLITE_OMIT_TEMPDB 2927 /* If the index name was unqualified, check if the table 2928 ** is a temp table. If so, set the database to 1. Do not do this 2929 ** if initialising a database schema. 2930 */ 2931 if( !db->init.busy ){ 2932 pTab = sqlite3SrcListLookup(pParse, pTblName); 2933 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2934 iDb = 1; 2935 } 2936 } 2937 #endif 2938 2939 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2940 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2941 /* Because the parser constructs pTblName from a single identifier, 2942 ** sqlite3FixSrcList can never fail. */ 2943 assert(0); 2944 } 2945 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2946 assert( db->mallocFailed==0 || pTab==0 ); 2947 if( pTab==0 ) goto exit_create_index; 2948 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2949 sqlite3ErrorMsg(pParse, 2950 "cannot create a TEMP index on non-TEMP table \"%s\"", 2951 pTab->zName); 2952 goto exit_create_index; 2953 } 2954 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2955 }else{ 2956 assert( pName==0 ); 2957 assert( pStart==0 ); 2958 pTab = pParse->pNewTable; 2959 if( !pTab ) goto exit_create_index; 2960 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2961 } 2962 pDb = &db->aDb[iDb]; 2963 2964 assert( pTab!=0 ); 2965 assert( pParse->nErr==0 ); 2966 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2967 && db->init.busy==0 2968 #if SQLITE_USER_AUTHENTICATION 2969 && sqlite3UserAuthTable(pTab->zName)==0 2970 #endif 2971 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2972 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2973 goto exit_create_index; 2974 } 2975 #ifndef SQLITE_OMIT_VIEW 2976 if( pTab->pSelect ){ 2977 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2978 goto exit_create_index; 2979 } 2980 #endif 2981 #ifndef SQLITE_OMIT_VIRTUALTABLE 2982 if( IsVirtual(pTab) ){ 2983 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2984 goto exit_create_index; 2985 } 2986 #endif 2987 2988 /* 2989 ** Find the name of the index. Make sure there is not already another 2990 ** index or table with the same name. 2991 ** 2992 ** Exception: If we are reading the names of permanent indices from the 2993 ** sqlite_master table (because some other process changed the schema) and 2994 ** one of the index names collides with the name of a temporary table or 2995 ** index, then we will continue to process this index. 2996 ** 2997 ** If pName==0 it means that we are 2998 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2999 ** own name. 3000 */ 3001 if( pName ){ 3002 zName = sqlite3NameFromToken(db, pName); 3003 if( zName==0 ) goto exit_create_index; 3004 assert( pName->z!=0 ); 3005 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3006 goto exit_create_index; 3007 } 3008 if( !db->init.busy ){ 3009 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3010 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3011 goto exit_create_index; 3012 } 3013 } 3014 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3015 if( !ifNotExist ){ 3016 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3017 }else{ 3018 assert( !db->init.busy ); 3019 sqlite3CodeVerifySchema(pParse, iDb); 3020 } 3021 goto exit_create_index; 3022 } 3023 }else{ 3024 int n; 3025 Index *pLoop; 3026 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3027 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3028 if( zName==0 ){ 3029 goto exit_create_index; 3030 } 3031 } 3032 3033 /* Check for authorization to create an index. 3034 */ 3035 #ifndef SQLITE_OMIT_AUTHORIZATION 3036 { 3037 const char *zDb = pDb->zName; 3038 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3039 goto exit_create_index; 3040 } 3041 i = SQLITE_CREATE_INDEX; 3042 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3043 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3044 goto exit_create_index; 3045 } 3046 } 3047 #endif 3048 3049 /* If pList==0, it means this routine was called to make a primary 3050 ** key out of the last column added to the table under construction. 3051 ** So create a fake list to simulate this. 3052 */ 3053 if( pList==0 ){ 3054 Token prevCol; 3055 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3056 pList = sqlite3ExprListAppend(pParse, 0, 3057 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3058 if( pList==0 ) goto exit_create_index; 3059 assert( pList->nExpr==1 ); 3060 sqlite3ExprListSetSortOrder(pList, sortOrder); 3061 }else{ 3062 sqlite3ExprListCheckLength(pParse, pList, "index"); 3063 } 3064 3065 /* Figure out how many bytes of space are required to store explicitly 3066 ** specified collation sequence names. 3067 */ 3068 for(i=0; i<pList->nExpr; i++){ 3069 Expr *pExpr = pList->a[i].pExpr; 3070 assert( pExpr!=0 ); 3071 if( pExpr->op==TK_COLLATE ){ 3072 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3073 } 3074 } 3075 3076 /* 3077 ** Allocate the index structure. 3078 */ 3079 nName = sqlite3Strlen30(zName); 3080 nExtraCol = pPk ? pPk->nKeyCol : 1; 3081 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3082 nName + nExtra + 1, &zExtra); 3083 if( db->mallocFailed ){ 3084 goto exit_create_index; 3085 } 3086 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3087 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3088 pIndex->zName = zExtra; 3089 zExtra += nName + 1; 3090 memcpy(pIndex->zName, zName, nName+1); 3091 pIndex->pTable = pTab; 3092 pIndex->onError = (u8)onError; 3093 pIndex->uniqNotNull = onError!=OE_None; 3094 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3095 pIndex->pSchema = db->aDb[iDb].pSchema; 3096 pIndex->nKeyCol = pList->nExpr; 3097 if( pPIWhere ){ 3098 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3099 pIndex->pPartIdxWhere = pPIWhere; 3100 pPIWhere = 0; 3101 } 3102 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3103 3104 /* Check to see if we should honor DESC requests on index columns 3105 */ 3106 if( pDb->pSchema->file_format>=4 ){ 3107 sortOrderMask = -1; /* Honor DESC */ 3108 }else{ 3109 sortOrderMask = 0; /* Ignore DESC */ 3110 } 3111 3112 /* Analyze the list of expressions that form the terms of the index and 3113 ** report any errors. In the common case where the expression is exactly 3114 ** a table column, store that column in aiColumn[]. For general expressions, 3115 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3116 ** 3117 ** TODO: Issue a warning if two or more columns of the index are identical. 3118 ** TODO: Issue a warning if the table primary key is used as part of the 3119 ** index key. 3120 */ 3121 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3122 Expr *pCExpr; /* The i-th index expression */ 3123 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3124 const char *zColl; /* Collation sequence name */ 3125 3126 sqlite3StringToId(pListItem->pExpr); 3127 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3128 if( pParse->nErr ) goto exit_create_index; 3129 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3130 if( pCExpr->op!=TK_COLUMN ){ 3131 if( pTab==pParse->pNewTable ){ 3132 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3133 "UNIQUE constraints"); 3134 goto exit_create_index; 3135 } 3136 if( pIndex->aColExpr==0 ){ 3137 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3138 pIndex->aColExpr = pCopy; 3139 if( !db->mallocFailed ){ 3140 assert( pCopy!=0 ); 3141 pListItem = &pCopy->a[i]; 3142 } 3143 } 3144 j = XN_EXPR; 3145 pIndex->aiColumn[i] = XN_EXPR; 3146 pIndex->uniqNotNull = 0; 3147 }else{ 3148 j = pCExpr->iColumn; 3149 assert( j<=0x7fff ); 3150 if( j<0 ){ 3151 j = pTab->iPKey; 3152 }else if( pTab->aCol[j].notNull==0 ){ 3153 pIndex->uniqNotNull = 0; 3154 } 3155 pIndex->aiColumn[i] = (i16)j; 3156 } 3157 zColl = 0; 3158 if( pListItem->pExpr->op==TK_COLLATE ){ 3159 int nColl; 3160 zColl = pListItem->pExpr->u.zToken; 3161 nColl = sqlite3Strlen30(zColl) + 1; 3162 assert( nExtra>=nColl ); 3163 memcpy(zExtra, zColl, nColl); 3164 zColl = zExtra; 3165 zExtra += nColl; 3166 nExtra -= nColl; 3167 }else if( j>=0 ){ 3168 zColl = pTab->aCol[j].zColl; 3169 } 3170 if( !zColl ) zColl = sqlite3StrBINARY; 3171 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3172 goto exit_create_index; 3173 } 3174 pIndex->azColl[i] = zColl; 3175 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3176 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3177 } 3178 3179 /* Append the table key to the end of the index. For WITHOUT ROWID 3180 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3181 ** normal tables (when pPk==0) this will be the rowid. 3182 */ 3183 if( pPk ){ 3184 for(j=0; j<pPk->nKeyCol; j++){ 3185 int x = pPk->aiColumn[j]; 3186 assert( x>=0 ); 3187 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3188 pIndex->nColumn--; 3189 }else{ 3190 pIndex->aiColumn[i] = x; 3191 pIndex->azColl[i] = pPk->azColl[j]; 3192 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3193 i++; 3194 } 3195 } 3196 assert( i==pIndex->nColumn ); 3197 }else{ 3198 pIndex->aiColumn[i] = XN_ROWID; 3199 pIndex->azColl[i] = sqlite3StrBINARY; 3200 } 3201 sqlite3DefaultRowEst(pIndex); 3202 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3203 3204 if( pTab==pParse->pNewTable ){ 3205 /* This routine has been called to create an automatic index as a 3206 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3207 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3208 ** i.e. one of: 3209 ** 3210 ** CREATE TABLE t(x PRIMARY KEY, y); 3211 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3212 ** 3213 ** Either way, check to see if the table already has such an index. If 3214 ** so, don't bother creating this one. This only applies to 3215 ** automatically created indices. Users can do as they wish with 3216 ** explicit indices. 3217 ** 3218 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3219 ** (and thus suppressing the second one) even if they have different 3220 ** sort orders. 3221 ** 3222 ** If there are different collating sequences or if the columns of 3223 ** the constraint occur in different orders, then the constraints are 3224 ** considered distinct and both result in separate indices. 3225 */ 3226 Index *pIdx; 3227 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3228 int k; 3229 assert( IsUniqueIndex(pIdx) ); 3230 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3231 assert( IsUniqueIndex(pIndex) ); 3232 3233 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3234 for(k=0; k<pIdx->nKeyCol; k++){ 3235 const char *z1; 3236 const char *z2; 3237 assert( pIdx->aiColumn[k]>=0 ); 3238 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3239 z1 = pIdx->azColl[k]; 3240 z2 = pIndex->azColl[k]; 3241 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3242 } 3243 if( k==pIdx->nKeyCol ){ 3244 if( pIdx->onError!=pIndex->onError ){ 3245 /* This constraint creates the same index as a previous 3246 ** constraint specified somewhere in the CREATE TABLE statement. 3247 ** However the ON CONFLICT clauses are different. If both this 3248 ** constraint and the previous equivalent constraint have explicit 3249 ** ON CONFLICT clauses this is an error. Otherwise, use the 3250 ** explicitly specified behavior for the index. 3251 */ 3252 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3253 sqlite3ErrorMsg(pParse, 3254 "conflicting ON CONFLICT clauses specified", 0); 3255 } 3256 if( pIdx->onError==OE_Default ){ 3257 pIdx->onError = pIndex->onError; 3258 } 3259 } 3260 pRet = pIdx; 3261 goto exit_create_index; 3262 } 3263 } 3264 } 3265 3266 /* Link the new Index structure to its table and to the other 3267 ** in-memory database structures. 3268 */ 3269 assert( pParse->nErr==0 ); 3270 if( db->init.busy ){ 3271 Index *p; 3272 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3273 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3274 pIndex->zName, pIndex); 3275 if( p ){ 3276 assert( p==pIndex ); /* Malloc must have failed */ 3277 db->mallocFailed = 1; 3278 goto exit_create_index; 3279 } 3280 db->flags |= SQLITE_InternChanges; 3281 if( pTblName!=0 ){ 3282 pIndex->tnum = db->init.newTnum; 3283 } 3284 } 3285 3286 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3287 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3288 ** emit code to allocate the index rootpage on disk and make an entry for 3289 ** the index in the sqlite_master table and populate the index with 3290 ** content. But, do not do this if we are simply reading the sqlite_master 3291 ** table to parse the schema, or if this index is the PRIMARY KEY index 3292 ** of a WITHOUT ROWID table. 3293 ** 3294 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3295 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3296 ** has just been created, it contains no data and the index initialization 3297 ** step can be skipped. 3298 */ 3299 else if( HasRowid(pTab) || pTblName!=0 ){ 3300 Vdbe *v; 3301 char *zStmt; 3302 int iMem = ++pParse->nMem; 3303 3304 v = sqlite3GetVdbe(pParse); 3305 if( v==0 ) goto exit_create_index; 3306 3307 sqlite3BeginWriteOperation(pParse, 1, iDb); 3308 3309 /* Create the rootpage for the index using CreateIndex. But before 3310 ** doing so, code a Noop instruction and store its address in 3311 ** Index.tnum. This is required in case this index is actually a 3312 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3313 ** that case the convertToWithoutRowidTable() routine will replace 3314 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3315 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3316 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3317 3318 /* Gather the complete text of the CREATE INDEX statement into 3319 ** the zStmt variable 3320 */ 3321 if( pStart ){ 3322 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3323 if( pName->z[n-1]==';' ) n--; 3324 /* A named index with an explicit CREATE INDEX statement */ 3325 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3326 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3327 }else{ 3328 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3329 /* zStmt = sqlite3MPrintf(""); */ 3330 zStmt = 0; 3331 } 3332 3333 /* Add an entry in sqlite_master for this index 3334 */ 3335 sqlite3NestedParse(pParse, 3336 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3337 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3338 pIndex->zName, 3339 pTab->zName, 3340 iMem, 3341 zStmt 3342 ); 3343 sqlite3DbFree(db, zStmt); 3344 3345 /* Fill the index with data and reparse the schema. Code an OP_Expire 3346 ** to invalidate all pre-compiled statements. 3347 */ 3348 if( pTblName ){ 3349 sqlite3RefillIndex(pParse, pIndex, iMem); 3350 sqlite3ChangeCookie(pParse, iDb); 3351 sqlite3VdbeAddParseSchemaOp(v, iDb, 3352 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3353 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3354 } 3355 3356 sqlite3VdbeJumpHere(v, pIndex->tnum); 3357 } 3358 3359 /* When adding an index to the list of indices for a table, make 3360 ** sure all indices labeled OE_Replace come after all those labeled 3361 ** OE_Ignore. This is necessary for the correct constraint check 3362 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3363 ** UPDATE and INSERT statements. 3364 */ 3365 if( db->init.busy || pTblName==0 ){ 3366 if( onError!=OE_Replace || pTab->pIndex==0 3367 || pTab->pIndex->onError==OE_Replace){ 3368 pIndex->pNext = pTab->pIndex; 3369 pTab->pIndex = pIndex; 3370 }else{ 3371 Index *pOther = pTab->pIndex; 3372 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3373 pOther = pOther->pNext; 3374 } 3375 pIndex->pNext = pOther->pNext; 3376 pOther->pNext = pIndex; 3377 } 3378 pRet = pIndex; 3379 pIndex = 0; 3380 } 3381 3382 /* Clean up before exiting */ 3383 exit_create_index: 3384 if( pIndex ) freeIndex(db, pIndex); 3385 sqlite3ExprDelete(db, pPIWhere); 3386 sqlite3ExprListDelete(db, pList); 3387 sqlite3SrcListDelete(db, pTblName); 3388 sqlite3DbFree(db, zName); 3389 return pRet; 3390 } 3391 3392 /* 3393 ** Fill the Index.aiRowEst[] array with default information - information 3394 ** to be used when we have not run the ANALYZE command. 3395 ** 3396 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3397 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3398 ** number of rows in the table that match any particular value of the 3399 ** first column of the index. aiRowEst[2] is an estimate of the number 3400 ** of rows that match any particular combination of the first 2 columns 3401 ** of the index. And so forth. It must always be the case that 3402 * 3403 ** aiRowEst[N]<=aiRowEst[N-1] 3404 ** aiRowEst[N]>=1 3405 ** 3406 ** Apart from that, we have little to go on besides intuition as to 3407 ** how aiRowEst[] should be initialized. The numbers generated here 3408 ** are based on typical values found in actual indices. 3409 */ 3410 void sqlite3DefaultRowEst(Index *pIdx){ 3411 /* 10, 9, 8, 7, 6 */ 3412 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3413 LogEst *a = pIdx->aiRowLogEst; 3414 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3415 int i; 3416 3417 /* Set the first entry (number of rows in the index) to the estimated 3418 ** number of rows in the table. Or 10, if the estimated number of rows 3419 ** in the table is less than that. */ 3420 a[0] = pIdx->pTable->nRowLogEst; 3421 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3422 3423 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3424 ** 6 and each subsequent value (if any) is 5. */ 3425 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3426 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3427 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3428 } 3429 3430 assert( 0==sqlite3LogEst(1) ); 3431 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3432 } 3433 3434 /* 3435 ** This routine will drop an existing named index. This routine 3436 ** implements the DROP INDEX statement. 3437 */ 3438 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3439 Index *pIndex; 3440 Vdbe *v; 3441 sqlite3 *db = pParse->db; 3442 int iDb; 3443 3444 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3445 if( db->mallocFailed ){ 3446 goto exit_drop_index; 3447 } 3448 assert( pName->nSrc==1 ); 3449 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3450 goto exit_drop_index; 3451 } 3452 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3453 if( pIndex==0 ){ 3454 if( !ifExists ){ 3455 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3456 }else{ 3457 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3458 } 3459 pParse->checkSchema = 1; 3460 goto exit_drop_index; 3461 } 3462 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3463 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3464 "or PRIMARY KEY constraint cannot be dropped", 0); 3465 goto exit_drop_index; 3466 } 3467 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3468 #ifndef SQLITE_OMIT_AUTHORIZATION 3469 { 3470 int code = SQLITE_DROP_INDEX; 3471 Table *pTab = pIndex->pTable; 3472 const char *zDb = db->aDb[iDb].zName; 3473 const char *zTab = SCHEMA_TABLE(iDb); 3474 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3475 goto exit_drop_index; 3476 } 3477 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3478 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3479 goto exit_drop_index; 3480 } 3481 } 3482 #endif 3483 3484 /* Generate code to remove the index and from the master table */ 3485 v = sqlite3GetVdbe(pParse); 3486 if( v ){ 3487 sqlite3BeginWriteOperation(pParse, 1, iDb); 3488 sqlite3NestedParse(pParse, 3489 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3490 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3491 ); 3492 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3493 sqlite3ChangeCookie(pParse, iDb); 3494 destroyRootPage(pParse, pIndex->tnum, iDb); 3495 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3496 } 3497 3498 exit_drop_index: 3499 sqlite3SrcListDelete(db, pName); 3500 } 3501 3502 /* 3503 ** pArray is a pointer to an array of objects. Each object in the 3504 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3505 ** to extend the array so that there is space for a new object at the end. 3506 ** 3507 ** When this function is called, *pnEntry contains the current size of 3508 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3509 ** in total). 3510 ** 3511 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3512 ** space allocated for the new object is zeroed, *pnEntry updated to 3513 ** reflect the new size of the array and a pointer to the new allocation 3514 ** returned. *pIdx is set to the index of the new array entry in this case. 3515 ** 3516 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3517 ** unchanged and a copy of pArray returned. 3518 */ 3519 void *sqlite3ArrayAllocate( 3520 sqlite3 *db, /* Connection to notify of malloc failures */ 3521 void *pArray, /* Array of objects. Might be reallocated */ 3522 int szEntry, /* Size of each object in the array */ 3523 int *pnEntry, /* Number of objects currently in use */ 3524 int *pIdx /* Write the index of a new slot here */ 3525 ){ 3526 char *z; 3527 int n = *pnEntry; 3528 if( (n & (n-1))==0 ){ 3529 int sz = (n==0) ? 1 : 2*n; 3530 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3531 if( pNew==0 ){ 3532 *pIdx = -1; 3533 return pArray; 3534 } 3535 pArray = pNew; 3536 } 3537 z = (char*)pArray; 3538 memset(&z[n * szEntry], 0, szEntry); 3539 *pIdx = n; 3540 ++*pnEntry; 3541 return pArray; 3542 } 3543 3544 /* 3545 ** Append a new element to the given IdList. Create a new IdList if 3546 ** need be. 3547 ** 3548 ** A new IdList is returned, or NULL if malloc() fails. 3549 */ 3550 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3551 int i; 3552 if( pList==0 ){ 3553 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3554 if( pList==0 ) return 0; 3555 } 3556 pList->a = sqlite3ArrayAllocate( 3557 db, 3558 pList->a, 3559 sizeof(pList->a[0]), 3560 &pList->nId, 3561 &i 3562 ); 3563 if( i<0 ){ 3564 sqlite3IdListDelete(db, pList); 3565 return 0; 3566 } 3567 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3568 return pList; 3569 } 3570 3571 /* 3572 ** Delete an IdList. 3573 */ 3574 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3575 int i; 3576 if( pList==0 ) return; 3577 for(i=0; i<pList->nId; i++){ 3578 sqlite3DbFree(db, pList->a[i].zName); 3579 } 3580 sqlite3DbFree(db, pList->a); 3581 sqlite3DbFree(db, pList); 3582 } 3583 3584 /* 3585 ** Return the index in pList of the identifier named zId. Return -1 3586 ** if not found. 3587 */ 3588 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3589 int i; 3590 if( pList==0 ) return -1; 3591 for(i=0; i<pList->nId; i++){ 3592 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3593 } 3594 return -1; 3595 } 3596 3597 /* 3598 ** Expand the space allocated for the given SrcList object by 3599 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3600 ** New slots are zeroed. 3601 ** 3602 ** For example, suppose a SrcList initially contains two entries: A,B. 3603 ** To append 3 new entries onto the end, do this: 3604 ** 3605 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3606 ** 3607 ** After the call above it would contain: A, B, nil, nil, nil. 3608 ** If the iStart argument had been 1 instead of 2, then the result 3609 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3610 ** the iStart value would be 0. The result then would 3611 ** be: nil, nil, nil, A, B. 3612 ** 3613 ** If a memory allocation fails the SrcList is unchanged. The 3614 ** db->mallocFailed flag will be set to true. 3615 */ 3616 SrcList *sqlite3SrcListEnlarge( 3617 sqlite3 *db, /* Database connection to notify of OOM errors */ 3618 SrcList *pSrc, /* The SrcList to be enlarged */ 3619 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3620 int iStart /* Index in pSrc->a[] of first new slot */ 3621 ){ 3622 int i; 3623 3624 /* Sanity checking on calling parameters */ 3625 assert( iStart>=0 ); 3626 assert( nExtra>=1 ); 3627 assert( pSrc!=0 ); 3628 assert( iStart<=pSrc->nSrc ); 3629 3630 /* Allocate additional space if needed */ 3631 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3632 SrcList *pNew; 3633 int nAlloc = pSrc->nSrc+nExtra; 3634 int nGot; 3635 pNew = sqlite3DbRealloc(db, pSrc, 3636 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3637 if( pNew==0 ){ 3638 assert( db->mallocFailed ); 3639 return pSrc; 3640 } 3641 pSrc = pNew; 3642 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3643 pSrc->nAlloc = nGot; 3644 } 3645 3646 /* Move existing slots that come after the newly inserted slots 3647 ** out of the way */ 3648 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3649 pSrc->a[i+nExtra] = pSrc->a[i]; 3650 } 3651 pSrc->nSrc += nExtra; 3652 3653 /* Zero the newly allocated slots */ 3654 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3655 for(i=iStart; i<iStart+nExtra; i++){ 3656 pSrc->a[i].iCursor = -1; 3657 } 3658 3659 /* Return a pointer to the enlarged SrcList */ 3660 return pSrc; 3661 } 3662 3663 3664 /* 3665 ** Append a new table name to the given SrcList. Create a new SrcList if 3666 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3667 ** 3668 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3669 ** SrcList might be the same as the SrcList that was input or it might be 3670 ** a new one. If an OOM error does occurs, then the prior value of pList 3671 ** that is input to this routine is automatically freed. 3672 ** 3673 ** If pDatabase is not null, it means that the table has an optional 3674 ** database name prefix. Like this: "database.table". The pDatabase 3675 ** points to the table name and the pTable points to the database name. 3676 ** The SrcList.a[].zName field is filled with the table name which might 3677 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3678 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3679 ** or with NULL if no database is specified. 3680 ** 3681 ** In other words, if call like this: 3682 ** 3683 ** sqlite3SrcListAppend(D,A,B,0); 3684 ** 3685 ** Then B is a table name and the database name is unspecified. If called 3686 ** like this: 3687 ** 3688 ** sqlite3SrcListAppend(D,A,B,C); 3689 ** 3690 ** Then C is the table name and B is the database name. If C is defined 3691 ** then so is B. In other words, we never have a case where: 3692 ** 3693 ** sqlite3SrcListAppend(D,A,0,C); 3694 ** 3695 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3696 ** before being added to the SrcList. 3697 */ 3698 SrcList *sqlite3SrcListAppend( 3699 sqlite3 *db, /* Connection to notify of malloc failures */ 3700 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3701 Token *pTable, /* Table to append */ 3702 Token *pDatabase /* Database of the table */ 3703 ){ 3704 struct SrcList_item *pItem; 3705 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3706 if( pList==0 ){ 3707 pList = sqlite3DbMallocRaw(db, sizeof(SrcList) ); 3708 if( pList==0 ) return 0; 3709 pList->nAlloc = 1; 3710 pList->nSrc = 0; 3711 } 3712 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3713 if( db->mallocFailed ){ 3714 sqlite3SrcListDelete(db, pList); 3715 return 0; 3716 } 3717 pItem = &pList->a[pList->nSrc-1]; 3718 if( pDatabase && pDatabase->z==0 ){ 3719 pDatabase = 0; 3720 } 3721 if( pDatabase ){ 3722 Token *pTemp = pDatabase; 3723 pDatabase = pTable; 3724 pTable = pTemp; 3725 } 3726 pItem->zName = sqlite3NameFromToken(db, pTable); 3727 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3728 return pList; 3729 } 3730 3731 /* 3732 ** Assign VdbeCursor index numbers to all tables in a SrcList 3733 */ 3734 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3735 int i; 3736 struct SrcList_item *pItem; 3737 assert(pList || pParse->db->mallocFailed ); 3738 if( pList ){ 3739 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3740 if( pItem->iCursor>=0 ) break; 3741 pItem->iCursor = pParse->nTab++; 3742 if( pItem->pSelect ){ 3743 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3744 } 3745 } 3746 } 3747 } 3748 3749 /* 3750 ** Delete an entire SrcList including all its substructure. 3751 */ 3752 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3753 int i; 3754 struct SrcList_item *pItem; 3755 if( pList==0 ) return; 3756 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3757 sqlite3DbFree(db, pItem->zDatabase); 3758 sqlite3DbFree(db, pItem->zName); 3759 sqlite3DbFree(db, pItem->zAlias); 3760 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3761 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3762 sqlite3DeleteTable(db, pItem->pTab); 3763 sqlite3SelectDelete(db, pItem->pSelect); 3764 sqlite3ExprDelete(db, pItem->pOn); 3765 sqlite3IdListDelete(db, pItem->pUsing); 3766 } 3767 sqlite3DbFree(db, pList); 3768 } 3769 3770 /* 3771 ** This routine is called by the parser to add a new term to the 3772 ** end of a growing FROM clause. The "p" parameter is the part of 3773 ** the FROM clause that has already been constructed. "p" is NULL 3774 ** if this is the first term of the FROM clause. pTable and pDatabase 3775 ** are the name of the table and database named in the FROM clause term. 3776 ** pDatabase is NULL if the database name qualifier is missing - the 3777 ** usual case. If the term has an alias, then pAlias points to the 3778 ** alias token. If the term is a subquery, then pSubquery is the 3779 ** SELECT statement that the subquery encodes. The pTable and 3780 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3781 ** parameters are the content of the ON and USING clauses. 3782 ** 3783 ** Return a new SrcList which encodes is the FROM with the new 3784 ** term added. 3785 */ 3786 SrcList *sqlite3SrcListAppendFromTerm( 3787 Parse *pParse, /* Parsing context */ 3788 SrcList *p, /* The left part of the FROM clause already seen */ 3789 Token *pTable, /* Name of the table to add to the FROM clause */ 3790 Token *pDatabase, /* Name of the database containing pTable */ 3791 Token *pAlias, /* The right-hand side of the AS subexpression */ 3792 Select *pSubquery, /* A subquery used in place of a table name */ 3793 Expr *pOn, /* The ON clause of a join */ 3794 IdList *pUsing /* The USING clause of a join */ 3795 ){ 3796 struct SrcList_item *pItem; 3797 sqlite3 *db = pParse->db; 3798 if( !p && (pOn || pUsing) ){ 3799 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3800 (pOn ? "ON" : "USING") 3801 ); 3802 goto append_from_error; 3803 } 3804 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3805 if( p==0 || NEVER(p->nSrc==0) ){ 3806 goto append_from_error; 3807 } 3808 pItem = &p->a[p->nSrc-1]; 3809 assert( pAlias!=0 ); 3810 if( pAlias->n ){ 3811 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3812 } 3813 pItem->pSelect = pSubquery; 3814 pItem->pOn = pOn; 3815 pItem->pUsing = pUsing; 3816 return p; 3817 3818 append_from_error: 3819 assert( p==0 ); 3820 sqlite3ExprDelete(db, pOn); 3821 sqlite3IdListDelete(db, pUsing); 3822 sqlite3SelectDelete(db, pSubquery); 3823 return 0; 3824 } 3825 3826 /* 3827 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3828 ** element of the source-list passed as the second argument. 3829 */ 3830 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3831 assert( pIndexedBy!=0 ); 3832 if( p && ALWAYS(p->nSrc>0) ){ 3833 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3834 assert( pItem->fg.notIndexed==0 ); 3835 assert( pItem->fg.isIndexedBy==0 ); 3836 assert( pItem->fg.isTabFunc==0 ); 3837 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3838 /* A "NOT INDEXED" clause was supplied. See parse.y 3839 ** construct "indexed_opt" for details. */ 3840 pItem->fg.notIndexed = 1; 3841 }else{ 3842 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3843 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3844 } 3845 } 3846 } 3847 3848 /* 3849 ** Add the list of function arguments to the SrcList entry for a 3850 ** table-valued-function. 3851 */ 3852 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3853 if( p ){ 3854 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3855 assert( pItem->fg.notIndexed==0 ); 3856 assert( pItem->fg.isIndexedBy==0 ); 3857 assert( pItem->fg.isTabFunc==0 ); 3858 pItem->u1.pFuncArg = pList; 3859 pItem->fg.isTabFunc = 1; 3860 }else{ 3861 sqlite3ExprListDelete(pParse->db, pList); 3862 } 3863 } 3864 3865 /* 3866 ** When building up a FROM clause in the parser, the join operator 3867 ** is initially attached to the left operand. But the code generator 3868 ** expects the join operator to be on the right operand. This routine 3869 ** Shifts all join operators from left to right for an entire FROM 3870 ** clause. 3871 ** 3872 ** Example: Suppose the join is like this: 3873 ** 3874 ** A natural cross join B 3875 ** 3876 ** The operator is "natural cross join". The A and B operands are stored 3877 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3878 ** operator with A. This routine shifts that operator over to B. 3879 */ 3880 void sqlite3SrcListShiftJoinType(SrcList *p){ 3881 if( p ){ 3882 int i; 3883 for(i=p->nSrc-1; i>0; i--){ 3884 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3885 } 3886 p->a[0].fg.jointype = 0; 3887 } 3888 } 3889 3890 /* 3891 ** Generate VDBE code for a BEGIN statement. 3892 */ 3893 void sqlite3BeginTransaction(Parse *pParse, int type){ 3894 sqlite3 *db; 3895 Vdbe *v; 3896 int i; 3897 3898 assert( pParse!=0 ); 3899 db = pParse->db; 3900 assert( db!=0 ); 3901 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3902 return; 3903 } 3904 v = sqlite3GetVdbe(pParse); 3905 if( !v ) return; 3906 if( type!=TK_DEFERRED ){ 3907 for(i=0; i<db->nDb; i++){ 3908 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3909 sqlite3VdbeUsesBtree(v, i); 3910 } 3911 } 3912 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3913 } 3914 3915 /* 3916 ** Generate VDBE code for a COMMIT statement. 3917 */ 3918 void sqlite3CommitTransaction(Parse *pParse){ 3919 Vdbe *v; 3920 3921 assert( pParse!=0 ); 3922 assert( pParse->db!=0 ); 3923 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3924 return; 3925 } 3926 v = sqlite3GetVdbe(pParse); 3927 if( v ){ 3928 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3929 } 3930 } 3931 3932 /* 3933 ** Generate VDBE code for a ROLLBACK statement. 3934 */ 3935 void sqlite3RollbackTransaction(Parse *pParse){ 3936 Vdbe *v; 3937 3938 assert( pParse!=0 ); 3939 assert( pParse->db!=0 ); 3940 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3941 return; 3942 } 3943 v = sqlite3GetVdbe(pParse); 3944 if( v ){ 3945 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3946 } 3947 } 3948 3949 /* 3950 ** This function is called by the parser when it parses a command to create, 3951 ** release or rollback an SQL savepoint. 3952 */ 3953 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3954 char *zName = sqlite3NameFromToken(pParse->db, pName); 3955 if( zName ){ 3956 Vdbe *v = sqlite3GetVdbe(pParse); 3957 #ifndef SQLITE_OMIT_AUTHORIZATION 3958 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3959 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3960 #endif 3961 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3962 sqlite3DbFree(pParse->db, zName); 3963 return; 3964 } 3965 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3966 } 3967 } 3968 3969 /* 3970 ** Make sure the TEMP database is open and available for use. Return 3971 ** the number of errors. Leave any error messages in the pParse structure. 3972 */ 3973 int sqlite3OpenTempDatabase(Parse *pParse){ 3974 sqlite3 *db = pParse->db; 3975 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3976 int rc; 3977 Btree *pBt; 3978 static const int flags = 3979 SQLITE_OPEN_READWRITE | 3980 SQLITE_OPEN_CREATE | 3981 SQLITE_OPEN_EXCLUSIVE | 3982 SQLITE_OPEN_DELETEONCLOSE | 3983 SQLITE_OPEN_TEMP_DB; 3984 3985 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3986 if( rc!=SQLITE_OK ){ 3987 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3988 "file for storing temporary tables"); 3989 pParse->rc = rc; 3990 return 1; 3991 } 3992 db->aDb[1].pBt = pBt; 3993 assert( db->aDb[1].pSchema ); 3994 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3995 db->mallocFailed = 1; 3996 return 1; 3997 } 3998 } 3999 return 0; 4000 } 4001 4002 /* 4003 ** Record the fact that the schema cookie will need to be verified 4004 ** for database iDb. The code to actually verify the schema cookie 4005 ** will occur at the end of the top-level VDBE and will be generated 4006 ** later, by sqlite3FinishCoding(). 4007 */ 4008 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4009 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4010 sqlite3 *db = pToplevel->db; 4011 4012 assert( iDb>=0 && iDb<db->nDb ); 4013 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4014 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4015 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4016 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4017 DbMaskSet(pToplevel->cookieMask, iDb); 4018 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4019 if( !OMIT_TEMPDB && iDb==1 ){ 4020 sqlite3OpenTempDatabase(pToplevel); 4021 } 4022 } 4023 } 4024 4025 /* 4026 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4027 ** attached database. Otherwise, invoke it for the database named zDb only. 4028 */ 4029 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4030 sqlite3 *db = pParse->db; 4031 int i; 4032 for(i=0; i<db->nDb; i++){ 4033 Db *pDb = &db->aDb[i]; 4034 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4035 sqlite3CodeVerifySchema(pParse, i); 4036 } 4037 } 4038 } 4039 4040 /* 4041 ** Generate VDBE code that prepares for doing an operation that 4042 ** might change the database. 4043 ** 4044 ** This routine starts a new transaction if we are not already within 4045 ** a transaction. If we are already within a transaction, then a checkpoint 4046 ** is set if the setStatement parameter is true. A checkpoint should 4047 ** be set for operations that might fail (due to a constraint) part of 4048 ** the way through and which will need to undo some writes without having to 4049 ** rollback the whole transaction. For operations where all constraints 4050 ** can be checked before any changes are made to the database, it is never 4051 ** necessary to undo a write and the checkpoint should not be set. 4052 */ 4053 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4054 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4055 sqlite3CodeVerifySchema(pParse, iDb); 4056 DbMaskSet(pToplevel->writeMask, iDb); 4057 pToplevel->isMultiWrite |= setStatement; 4058 } 4059 4060 /* 4061 ** Indicate that the statement currently under construction might write 4062 ** more than one entry (example: deleting one row then inserting another, 4063 ** inserting multiple rows in a table, or inserting a row and index entries.) 4064 ** If an abort occurs after some of these writes have completed, then it will 4065 ** be necessary to undo the completed writes. 4066 */ 4067 void sqlite3MultiWrite(Parse *pParse){ 4068 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4069 pToplevel->isMultiWrite = 1; 4070 } 4071 4072 /* 4073 ** The code generator calls this routine if is discovers that it is 4074 ** possible to abort a statement prior to completion. In order to 4075 ** perform this abort without corrupting the database, we need to make 4076 ** sure that the statement is protected by a statement transaction. 4077 ** 4078 ** Technically, we only need to set the mayAbort flag if the 4079 ** isMultiWrite flag was previously set. There is a time dependency 4080 ** such that the abort must occur after the multiwrite. This makes 4081 ** some statements involving the REPLACE conflict resolution algorithm 4082 ** go a little faster. But taking advantage of this time dependency 4083 ** makes it more difficult to prove that the code is correct (in 4084 ** particular, it prevents us from writing an effective 4085 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4086 ** to take the safe route and skip the optimization. 4087 */ 4088 void sqlite3MayAbort(Parse *pParse){ 4089 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4090 pToplevel->mayAbort = 1; 4091 } 4092 4093 /* 4094 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4095 ** error. The onError parameter determines which (if any) of the statement 4096 ** and/or current transaction is rolled back. 4097 */ 4098 void sqlite3HaltConstraint( 4099 Parse *pParse, /* Parsing context */ 4100 int errCode, /* extended error code */ 4101 int onError, /* Constraint type */ 4102 char *p4, /* Error message */ 4103 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4104 u8 p5Errmsg /* P5_ErrMsg type */ 4105 ){ 4106 Vdbe *v = sqlite3GetVdbe(pParse); 4107 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4108 if( onError==OE_Abort ){ 4109 sqlite3MayAbort(pParse); 4110 } 4111 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4112 sqlite3VdbeChangeP5(v, p5Errmsg); 4113 } 4114 4115 /* 4116 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4117 */ 4118 void sqlite3UniqueConstraint( 4119 Parse *pParse, /* Parsing context */ 4120 int onError, /* Constraint type */ 4121 Index *pIdx /* The index that triggers the constraint */ 4122 ){ 4123 char *zErr; 4124 int j; 4125 StrAccum errMsg; 4126 Table *pTab = pIdx->pTable; 4127 4128 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4129 if( pIdx->aColExpr ){ 4130 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4131 }else{ 4132 for(j=0; j<pIdx->nKeyCol; j++){ 4133 char *zCol; 4134 assert( pIdx->aiColumn[j]>=0 ); 4135 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4136 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4137 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4138 } 4139 } 4140 zErr = sqlite3StrAccumFinish(&errMsg); 4141 sqlite3HaltConstraint(pParse, 4142 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4143 : SQLITE_CONSTRAINT_UNIQUE, 4144 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4145 } 4146 4147 4148 /* 4149 ** Code an OP_Halt due to non-unique rowid. 4150 */ 4151 void sqlite3RowidConstraint( 4152 Parse *pParse, /* Parsing context */ 4153 int onError, /* Conflict resolution algorithm */ 4154 Table *pTab /* The table with the non-unique rowid */ 4155 ){ 4156 char *zMsg; 4157 int rc; 4158 if( pTab->iPKey>=0 ){ 4159 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4160 pTab->aCol[pTab->iPKey].zName); 4161 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4162 }else{ 4163 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4164 rc = SQLITE_CONSTRAINT_ROWID; 4165 } 4166 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4167 P5_ConstraintUnique); 4168 } 4169 4170 /* 4171 ** Check to see if pIndex uses the collating sequence pColl. Return 4172 ** true if it does and false if it does not. 4173 */ 4174 #ifndef SQLITE_OMIT_REINDEX 4175 static int collationMatch(const char *zColl, Index *pIndex){ 4176 int i; 4177 assert( zColl!=0 ); 4178 for(i=0; i<pIndex->nColumn; i++){ 4179 const char *z = pIndex->azColl[i]; 4180 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4181 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4182 return 1; 4183 } 4184 } 4185 return 0; 4186 } 4187 #endif 4188 4189 /* 4190 ** Recompute all indices of pTab that use the collating sequence pColl. 4191 ** If pColl==0 then recompute all indices of pTab. 4192 */ 4193 #ifndef SQLITE_OMIT_REINDEX 4194 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4195 Index *pIndex; /* An index associated with pTab */ 4196 4197 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4198 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4199 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4200 sqlite3BeginWriteOperation(pParse, 0, iDb); 4201 sqlite3RefillIndex(pParse, pIndex, -1); 4202 } 4203 } 4204 } 4205 #endif 4206 4207 /* 4208 ** Recompute all indices of all tables in all databases where the 4209 ** indices use the collating sequence pColl. If pColl==0 then recompute 4210 ** all indices everywhere. 4211 */ 4212 #ifndef SQLITE_OMIT_REINDEX 4213 static void reindexDatabases(Parse *pParse, char const *zColl){ 4214 Db *pDb; /* A single database */ 4215 int iDb; /* The database index number */ 4216 sqlite3 *db = pParse->db; /* The database connection */ 4217 HashElem *k; /* For looping over tables in pDb */ 4218 Table *pTab; /* A table in the database */ 4219 4220 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4221 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4222 assert( pDb!=0 ); 4223 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4224 pTab = (Table*)sqliteHashData(k); 4225 reindexTable(pParse, pTab, zColl); 4226 } 4227 } 4228 } 4229 #endif 4230 4231 /* 4232 ** Generate code for the REINDEX command. 4233 ** 4234 ** REINDEX -- 1 4235 ** REINDEX <collation> -- 2 4236 ** REINDEX ?<database>.?<tablename> -- 3 4237 ** REINDEX ?<database>.?<indexname> -- 4 4238 ** 4239 ** Form 1 causes all indices in all attached databases to be rebuilt. 4240 ** Form 2 rebuilds all indices in all databases that use the named 4241 ** collating function. Forms 3 and 4 rebuild the named index or all 4242 ** indices associated with the named table. 4243 */ 4244 #ifndef SQLITE_OMIT_REINDEX 4245 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4246 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4247 char *z; /* Name of a table or index */ 4248 const char *zDb; /* Name of the database */ 4249 Table *pTab; /* A table in the database */ 4250 Index *pIndex; /* An index associated with pTab */ 4251 int iDb; /* The database index number */ 4252 sqlite3 *db = pParse->db; /* The database connection */ 4253 Token *pObjName; /* Name of the table or index to be reindexed */ 4254 4255 /* Read the database schema. If an error occurs, leave an error message 4256 ** and code in pParse and return NULL. */ 4257 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4258 return; 4259 } 4260 4261 if( pName1==0 ){ 4262 reindexDatabases(pParse, 0); 4263 return; 4264 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4265 char *zColl; 4266 assert( pName1->z ); 4267 zColl = sqlite3NameFromToken(pParse->db, pName1); 4268 if( !zColl ) return; 4269 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4270 if( pColl ){ 4271 reindexDatabases(pParse, zColl); 4272 sqlite3DbFree(db, zColl); 4273 return; 4274 } 4275 sqlite3DbFree(db, zColl); 4276 } 4277 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4278 if( iDb<0 ) return; 4279 z = sqlite3NameFromToken(db, pObjName); 4280 if( z==0 ) return; 4281 zDb = db->aDb[iDb].zName; 4282 pTab = sqlite3FindTable(db, z, zDb); 4283 if( pTab ){ 4284 reindexTable(pParse, pTab, 0); 4285 sqlite3DbFree(db, z); 4286 return; 4287 } 4288 pIndex = sqlite3FindIndex(db, z, zDb); 4289 sqlite3DbFree(db, z); 4290 if( pIndex ){ 4291 sqlite3BeginWriteOperation(pParse, 0, iDb); 4292 sqlite3RefillIndex(pParse, pIndex, -1); 4293 return; 4294 } 4295 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4296 } 4297 #endif 4298 4299 /* 4300 ** Return a KeyInfo structure that is appropriate for the given Index. 4301 ** 4302 ** The KeyInfo structure for an index is cached in the Index object. 4303 ** So there might be multiple references to the returned pointer. The 4304 ** caller should not try to modify the KeyInfo object. 4305 ** 4306 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4307 ** when it has finished using it. 4308 */ 4309 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4310 int i; 4311 int nCol = pIdx->nColumn; 4312 int nKey = pIdx->nKeyCol; 4313 KeyInfo *pKey; 4314 if( pParse->nErr ) return 0; 4315 if( pIdx->uniqNotNull ){ 4316 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4317 }else{ 4318 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4319 } 4320 if( pKey ){ 4321 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4322 for(i=0; i<nCol; i++){ 4323 const char *zColl = pIdx->azColl[i]; 4324 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4325 sqlite3LocateCollSeq(pParse, zColl); 4326 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4327 } 4328 if( pParse->nErr ){ 4329 sqlite3KeyInfoUnref(pKey); 4330 pKey = 0; 4331 } 4332 } 4333 return pKey; 4334 } 4335 4336 #ifndef SQLITE_OMIT_CTE 4337 /* 4338 ** This routine is invoked once per CTE by the parser while parsing a 4339 ** WITH clause. 4340 */ 4341 With *sqlite3WithAdd( 4342 Parse *pParse, /* Parsing context */ 4343 With *pWith, /* Existing WITH clause, or NULL */ 4344 Token *pName, /* Name of the common-table */ 4345 ExprList *pArglist, /* Optional column name list for the table */ 4346 Select *pQuery /* Query used to initialize the table */ 4347 ){ 4348 sqlite3 *db = pParse->db; 4349 With *pNew; 4350 char *zName; 4351 4352 /* Check that the CTE name is unique within this WITH clause. If 4353 ** not, store an error in the Parse structure. */ 4354 zName = sqlite3NameFromToken(pParse->db, pName); 4355 if( zName && pWith ){ 4356 int i; 4357 for(i=0; i<pWith->nCte; i++){ 4358 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4359 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4360 } 4361 } 4362 } 4363 4364 if( pWith ){ 4365 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4366 pNew = sqlite3DbRealloc(db, pWith, nByte); 4367 }else{ 4368 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4369 } 4370 assert( zName!=0 || pNew==0 ); 4371 assert( db->mallocFailed==0 || pNew==0 ); 4372 4373 if( pNew==0 ){ 4374 sqlite3ExprListDelete(db, pArglist); 4375 sqlite3SelectDelete(db, pQuery); 4376 sqlite3DbFree(db, zName); 4377 pNew = pWith; 4378 }else{ 4379 pNew->a[pNew->nCte].pSelect = pQuery; 4380 pNew->a[pNew->nCte].pCols = pArglist; 4381 pNew->a[pNew->nCte].zName = zName; 4382 pNew->a[pNew->nCte].zCteErr = 0; 4383 pNew->nCte++; 4384 } 4385 4386 return pNew; 4387 } 4388 4389 /* 4390 ** Free the contents of the With object passed as the second argument. 4391 */ 4392 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4393 if( pWith ){ 4394 int i; 4395 for(i=0; i<pWith->nCte; i++){ 4396 struct Cte *pCte = &pWith->a[i]; 4397 sqlite3ExprListDelete(db, pCte->pCols); 4398 sqlite3SelectDelete(db, pCte->pSelect); 4399 sqlite3DbFree(db, pCte->zName); 4400 } 4401 sqlite3DbFree(db, pWith); 4402 } 4403 } 4404 #endif /* !defined(SQLITE_OMIT_CTE) */ 4405